
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

5-1-1979 

Aquatic Invertebrates and Water Chemistry of Strip-Mine Ponds in Aquatic Invertebrates and Water Chemistry of Strip-Mine Ponds in 

Western North Dakota Western North Dakota 

Donald Llewllyn Batema 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Batema, Donald Llewllyn, "Aquatic Invertebrates and Water Chemistry of Strip-Mine Ponds in Western 
North Dakota" (1979). Theses and Dissertations. 2643. 
https://commons.und.edu/theses/2643 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator 
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/2643
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2643?utm_source=commons.und.edu%2Ftheses%2F2643&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


AQUATIC INVERTEBRATES AND WATER CHEMISTRY 

OF STRIP-MINE PONDS IN WESTERN 

NORTH DAKOTA

by

Donald Llewellyn Batema 

Bachelor of Arts, Hope College, 1974

A Thesis

Submitted to the Graduate Faculty 

of the

University of North Dakota 

in partial fulfillment of the requirements 

for the degree of 

Master of Science

Grand Forks, North Dakota

May
1979



This thesis submitted by Donald Llewellyn Batema in partial 
fulfillment of the requirements for the Degree of Master of Science 
from the University of North Dakota is hereby approved by the Faculty 
Advisory Committee under whom the work has been done.

ii



Permission

Title Aquatic Invertebrates and Water Chemistry of Strip-Mine Ponds 

in Western North Dakota 

Department Biology

Degree Master of Science ________ _______________________________

In presenting this thesis in partial fulfillment of the 
requirements for a graduate degree from the University of 
North Dakota, I agree that the Library of this University 
shall make it freely available for inspection. I further 
agree that permission for extensive copying for scholarly 
purposes may be granted by the professor who supervised my 
thesis work or, in his absence, by the Chairman of the 
Department or the Dean of the Graduate School. It is under­
stood that any copying or publication or other use of this 
thesis or part thereof for financial gain shall not be allowed 
without my written permission. It is also understood that due 
recognition shall be given to me and to the University of 
North Dakota in any scholarly use which may be made of any 
material in my thesis.

Signature

Date

iii



ACKNOWLEDGEMENTS

Dr. Frederick Duerr served as chairman of my committee and offered 

advice and criticism throughout the study. I acknowledge all his 

efforts and the guidance of my other committee members, Drs. Richard 

Crawford and John D. Williams. I also thank my committee for their 

helpful comments and criticisms of the thesis.

I am deeply indebted to Steven D. Fairaizl for assistance in 

collecting water samples during the winter months. A sincere apprecia­

tion is extended to Emil Berard for use of the laboratory facilities 

and lodging at the North Dakota Game and Fish Department at Riverdale, 

North Dakota.

I am grateful to Elmer J. Finck for guidance and timely discussions. 

I appreciate the assistance of Cassie Benz, Elmer J. Finck, and Steven D. 

Fairaizl with atomic absorption spectrophotometry. And I thank Sunny 

O'Neal for typing the final manuscript. I also wish to thank Alden 

Kollman for help provided at various points through my study.

I am especially grateful for the help offered by my wife, Rosanne, 

and her understanding and patience throughout the study.

Though the thesis was largely self-supported, some funding was 

provided by Project Reclamation under Bureau of Mines/grant #G0264001.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..........................................  iv

LIST OF T A B L E S ............................................  vii

LIST OF ILLUSTRATIONS ....................................  ix

ABSTRACT..................................................  xi

INTRODUCTION ..............................................  1

STUDY AREAS ..............................................  4
Climate ..............................................  4
Geology and Spoils ....................................  4
P o n d s ................................................  5

MATERIALS AND METHODS ....................................  36
Field Methods - Soil and Water Chemistry ............  36
Laboratory Methods - Soil and Water Chemistry ........  36
Field Methods - Aquatic Invertebrates ................  38
Laboratory Methods - Aquatic Invertebrates ..........  40
Mapping and Morphometry ..............................  41
Computer Analyses ....................................  41

RESULTS ..................................................  42
Water Chemistry......................................  42

Chemical Characteristics . . .  ..................  42
Ionic Dominance, Conductivity and Salinity . . . .  58
Comparisons to N B U N ..............................  70
Sediment and Spoil Chemistry ....................  70

Aquatic Invertebrates ................................  77
Species Composition ............................  77
Density and Biomass ............................  87
Species Diversity ..............................  100

DISCUSSION................................................  104
Chemical Characteristics ..............................  104

pH, carbonate buffer system ....................  104
Electrical conductivity ..........................  106
Sodium, Potassium, Calcium and Magnesium ........  108
Sulfate and Chloride............................  109
Nitrogen........................................  110
Phosphates......................................  Ill
Trace elements..................................  112
Heavy metal toxicity............................  114
Comparisons to N B U N ..............................  116

v



Community Structure ..................................  118
Species Composition, Density and Biomass ........  118
Species Diversity ................................  125
Equitibility ....................................  129

SUMMARY AND CONCLUSIONS ..................................  131

APPENDIX..................................................  135

LITERATURE CITED ..........................................  158

vi



LIST OF TABLES

Table Page

1. Surface and subsurface dimensions of selected strip—mine
ponds and NBUN in western North Dakota.......... . 8

2. Mean concentration of 25 ions, pH and electrical
conductivity in four strip-mine ponds and NBUN
from September 1975 to August 1976, in ppm ........ 43

3. Analysis of variance of chemical variables in strip-
mine ponds......................................   59

4. Tukey's test: Analysis of differences of chemical
variables between strip-mine ponds of various ages . 60

5. Major cations and ions in four strip-mine ponds and
N B U N ..............................................  61

6. Dunnett's test: Comparisons between strip-mine ponds
(experimental) and NBUN (control) from May 1976
through August 1976     71

7. pH, electrical conductivity, and major ions in the
sediments of strip-mine ponds and NBUN. Water 
saturation extract ................................  72

8. Trace elements of sediments in strip-mine ponds and NBUN.
Water saturation extractable and NH^OAc extractable
i o n s ................................................  73

9. Trace elements of sediments in strip-mine ponds and NBUN.
EDTA extractable i o n s ............................  74

10. Calcium and Magnesium in the spoils surrounding strip-
mine ponds of various a g e s ........................  76

11. Species collected from NBUN and three strip-mine ponds
in western North Dakota, 1976   78

12. List of invertebrate fauna collected from NB1 . . . . . .  82

13. List of invertebrate fauna collected from NB15 . 83

14. List of invertebrate fauna collected from DS30 . . . . .  85

15. List of invertebrate fauna collected from NBUN . 86

vii



16. Similarity values of the three strip-mine ponds compared
to N B U N ..........................................  88

17. Biomass and density for selected invertebrate groups at
NB1 ..............................................  91

18. Biomass and density for selected invertebrate groups at
N B 1 5 ..............................................  95

19. Biomass and density for selected invertebrate groups at
D S 3 0 ..............................................  98

20. Biomass and density for selected invertebrate groups at
N B U N ..............................................  99

21. Comparison of the Shannon-Wiener Diversity Index and
species richness in three strip-mine ponds and
N B U N ..............................................  103

22. Concentration of 26 chemical variables in four strip-mine
ponds and N B U N ........................   136

23. pH, electrical conductivity, and major ions in the spoils
surrounding strip-mine ponds. Water saturation 
extraction........................................  145

24. Trace elements of spoils surrounding strip-mine ponds.
Water saturation and NH^OAc extracts ..............  146

25. Trace elements of spoils surrounding strip-mine ponds.
EDTA extractable i o n s ............................  147

26. Density and biomass values for invertebrates at selected
strip-mine ponds ..................................  148

27. Species Diversity: ANOVA for species number (s) . . . .  156

28. Species Diversity: ANOVA for the Shannon-Wiener
Diversity Index (H')..............................  157

viii



LIST OF ILLUSTRATIONS

Figure Page

1. Map of North Dakota showing location of the study sites . . 6

2. Photograph of Dakota Star 3 0 .........................  10

3. Morphometric and vegetative map of Dakota Star 30 ........  12

4. Photograph of North Beulah 1 5 .........................  15

5. Morphometric and vegetative map of North Beulah 15 . . . .  17

6. Photograph of Glenharold 5 ................   19

7. Morphometric and vegetative map of Glenharold 5 ........ 22

8. Photograph of Glenharold 1 ...........................  24

9. Photograph of North Beulah 1 .........................  26

10. Morphometric map of Glenharold 1 .....................  29

11. Morphometric map of North Beulah 1 ...................  31

12. Morphometric and vegetative map of North Beulah Unmined . . 33

13. Temporal trend of electrical conductivity in selected
strip-mine ponds in western North Dakota .............. 44

14. Temporal trend of sodium in selected strip-mine ponds in
western North Dakota .................................. 46

15. Temporal trend of pH in selected strip-mine ponds in
western North Dakota .................................. 48

16. Temporal trend of copper in selected strip-mine ponds in
western North Dakota .................................. 50

17. Temporal trend of nitrates in selected strip-mine ponds
in western North Dakota ................  . . . . . .  52

18. Temporal trend of phosphate in selected stripr-mine ponds
in western North D a k o t a ........................    54

19. Temporal trend of silicon in selected strip-mine ponds in
western North Dakota .................................. 56

ix



20. Percent composition of the seven major ions in four
strip-mine ponds and N B U N .......................  62

\
21. Changes in precipitation, water levels and electrical

conductivity in four strip-mine ponds and NBUN . . .  66

22. Summer means of density and biomass in three strip-mine
ponds and N B U N ....................................  89

23. Percent composition of major invertebrate groups at three
strip-mine ponds and NBUN, using numbers of
organisms (density) .............................. 93

24. Percent composition of major invertebrate groups at three
strip-mine ponds and NBUN, using biomass ........... 96

25. Species diversity in three strip-mine ponds and NBUN
using the Shannon-Wiener index...................... 101

x



ABSTRACT

The chemical and biological properties of ponds artifically created 

as a result of the strip-mining process, were studied in Mercer County, 

North Dakota. The water in four of these ponds was analyzed for 25 

chemical variables, pH and electrical conductivity. These same 

variables were also analyzed in bottom sediments and spoils surrounding 

the four ponds. Invertebrates were collected and identified from these 

ponds, as well as measuring certain attributes of community structure, 

including species composition, density, biomass and species diversity. 

Both the chemical and biological properties documented in strip-mine 

ponds were compared to a naturally occurring pond nearby (NBUN).

The strip-mine ponds studied showed high salinites (819-2029 ppm), 

with sodium and sulfate, as the dominant ions. Though salinities are 

higher than NBUN (250 ppm), they are not at levels which exceed the 

normal range (100-100,000 ppm) for alkaline ponds in North Dakota, 

Wyoming and Saskatchewan, Canada. Other chemical variables (Ca, Mg, K, 

Li, Mn, Ni, Sr, Cl and NO3) which were also higher in strip-mine ponds 

when compared to NBUN, still were not unlike typical prairie potholes. 

Several ions (Al, Cu, Fe, Mo, NH4, Pb, PO^, Si and Zn) were essentially 
no different from NBUN. Heavy metal toxicity, which is a potential 

problem, is minimal because these metals are quickly precipitated into 

the bottom sediment as they are leached from surrounding spoil.

When a strip-mine pond is formed, it is almost immediately used by 

wildlife and soon becomes inhabited with aquatic organisms. A total of 

97 species were identified in three strip-mine ponds and NBUN. The most

xi



common phyla in these ponds are Mollusca and Arthropoda. The class

Insecta comprises almost 80% of all species identified, with Diptera

(26 species) and Coleoptera (24 species) the most common orders.

Cnidaria, Nematomorpha, Bryozoa and Annelida are not common to strip-

mine ponds. As amount of vegetation increases, it has a moderating

effect on water chemistry, as well as providing food, shelter and

support for aquatic invertebrates. This causes an increase in the

various properties of community structure. Density increases from
2 21,337 ind./m at NB1 to 13,453 ind./m at DS30. Biomass increases from 

15.4 lbs/acre to 1,133.1 lbs/acre. Species diversity at NB1 is 1.81 

and 2.53 at DS30, using the Shannon-Wiener index. A similarity index 

comparing strip-mine ponds and NBUN shows that as the strip-mine pond 

increases in age, the more it resembles NBUN.

In general, surface mined waters will tend to resemble naturally 

occurring ponds, both chemically and biologically, within a few years.

xii



INTRODUCTION

The use of coal to keep up with the rising energy demands has 

focused attention on strip-mining in the Northern Great Plains states. 

Extensive deposits of lignite and sub-butiminous coal are located in 

the Fort Union geologic group in North Dakota, Montana and Wyoming 

(Sandoval et. al., 1973). Extraction of the coal has created concern, 

particularly over environmental disturbance. As a result, universities 

and government and private agencies are interested in developing reclama­

tion programs designed to solve the environmental problems caused by 

strip-mining.

Though definite progress has been made in reclaiming strip-mined 

lands in North Dakota (Sandoval et. al., 1973; Wali, 1973; Wali and 

Sandoval, 1975; and Wali and Freeman, 1973), information describing 

impacts on aquatic ecosystems is limited. Because of the fundamental 

difference in coal chemistry, climate and hydrology in North Dakota, 

Montana, and Wyoming, the impacts may be very different from the coal 

regions in the eastern United States (Dettman and Olsen, 1977).

Only small amounts of pyrite are present at mines in the western 

coal province, and the alkaline nature of the overburden and soils 

suggests that acid drainage would be minimal. Research in Colorado, 

Wyoming and Montana shows that the most important aquatic impact is 

leaching of soluble salts from mine spoils and transport of these 

salts to surface or ground waters (Dettman and Olsen, 1977; McWhorter 

et. al., 1975; and Olsen and Dettman, 1976). Another potential problem 

is toxicity of certain metal and non-metal ions (Thurston et. al., 1976).

1
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In North Dakota, Sandoval et. al. (1973) have monitered certain 

chemical variables in strip-mine ponds to determine the value of such 

waters for irrigation purposes. Selected strip-mine ponds have been 

sampled periodically by the North Dakota Game and Fish Department as 

part of a continuing limnological survey of North Dakota surface waters. 

Hagen and Shaw (1974) have assessed possible impacts of coal development 

on the quality of surface waters in the Northern Great Plains. However, 

little information on ponds is presented since the primary responsibili­

ty of this group is assessment of impacts on the rivers and streams in 

or near the Fort Union-Powder River coal deposits.

Research on aquatic invertebrates in western North Dakota is also 

limited. An Environmental Analysis Record (Bennett, 1976) states that 

no surveys of aquatic animals are available for the Glenharold Mine Coal 

Lease tract, a section of land within the present study area. Bovee 

(1975) has investigated aquatic relationships in the Northern Great 

Plains, but confines his assessment to stream invertebrates. Organism 

diversity was determined at selected ponds in the immediate vicinity of 

a designated coal gasification site just west of the present study area 

(Comita and Whitman, 1976). Macroinvertebrate composition and density 

was determined in several types of aquatic ecosystems in Mercer County 

(Woodward-Clyde, 1978). And finally, Cvancara and Van Alstine (1977) 

have documented the distribution and limiting factors of aquatic snails 

south and west of the Missouri River.

Though these studies have contributed information on the nature of 

surface waters and aquatic invertebrates found in western North Dakota 

ponds, little is known about these factors in strip-mine ponds. This 

study was undertaken in order to add to the existing knowledge of the
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chemical and biological properties of the ponds formed from the drainage 

of strip-mining areas. The purposes of this study were to: (1) document 

the chemical characteristics of ponds in strip-mined areas with particu­

lar reference to a comparison of such factors among ponds of various 

ages; (2) determine composition, density and biomass of macroinverte­

brates; (3) investigate species diversity and other properties of 

community with respect to ponds of various ages; and (4) determine effects 

of water chemistry on aquatic invertebrates.



STUDY AREAS

Climate

The climate of western North Dakota is a semi-arid, continental type 

and can be characterized as having high diurnal temperatures and infre­

quent precipitation. The mean temperatures for January and July are 

about -20.8 degrees C and 13.0 degrees C respectively (Sandoval, et.al., 

1973). The average annual precipitation is about 40 to 50 centimeters, 

most of which falls within the growing season. June is commonly the 

wettest month. Rainfall is erratic, with short rainy periods followed 

by long dry periods. High winds generally occur throughout the year, 

and during the summer these winds cause water levels in the ponds to 

decline by increasing evaporation rates.

Geology and Spoils

Most of the North Dakota lignite deposits are in the Paleocene 

strata of the Tongue River and Sentinal Butte Formations of the Fort 

Union group. All the ponds in the present study are located in the 

Sentinal Butte Formation and within the Knife River Drainage area.

The geology of this area consists of alternating layers of lignite, 

soft shales and some sandstone (Kulland, 1975). Lignite veins are 

approximately 2-13 meters in thickness.

The natural soils of North Dakota are mostly Orthent and Agri- 

boralls (Wali, Freeman and Kollman, 1975). Orthents are loamy or clayey, 

and Agriboralls are rich, well developed soils with clay accumulation in

4
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subsurface horizons. The major use of Orthents is for rangeland, and 

Agriboralls support small grain farming, haying and pastures (Wali, 

Freeman and Kollman, 1975).

The spoils overturned by mining operations are high in clays, 

particularly montmorillite and illite. Other predominant minerals 

include quartz, feldspars and carbonates (Kulland, 1975). The high 

alkalinity and salinity of these spoils is due to high sodium, calcium 

and magnesium concentrations.

Ponds

Five ponds, ranging from one to thirty years of age, in three strip­

mining areas in Mercer county, North Dakota were chosen as representative 

of artificially created ponds. These ponds are located at the Glenharold 

mine near Stanton, the Dakota Star mine northwest of Hazen, and the North 

Beulah mine east of Beulah (Fig. 1). Since these three mines are all 

located in the Sentinal Butte Formation of the Fort Union group, the 

ponds created at these sites have similar geological origins. In addi­

tion, a pond from an unmined area near the North Beulah mine was selected 

for comparative purposes.

A. Dakota Star pond (DS30)

The Dakota Star mine is an inactive mine eight miles northwest of 

Hazen, North Dakota (section 20, T145N, R86W), The pond in this mining 

area is at least thirty years old and is one of the oldest strip-mine 

ponds in Mercer county. It is 520 feet long, has an average width of 

69.5 feet, an average depth of 1.7 feet and covers an area of .83 surface

acres (Table 1).
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Fig. 1. Map of North Dakota showing location of study sites.
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Table 1. Surface and subsurface dimensions of selected strip-mine ponds and NBUN in western North Dakota.

SURFACE DIMENSIONS

POND
YEAR
FORMED

MAXIMUM
LENGTH
(ft.)

MAXIMUM
WIDTH
(ft.)

MEAN
WIDTH
(ft.)

SURFACE
AREA
(ft.2)

SURFACE
AREA

(acres)

SHORELINE
LENGTH
(ft.)

SHORELINE
DEVELOPMENT

INDEX

DS30 1945 520 92 69.5 36,120 .83 1303 1.93

NB15 1960 228 59 37.7 8,600 .20 591 1.80

G5 1970 728 328 184.6 134,418 3.18 1828 1.41

NB1 1974 272 119 80.9 21,995 .50 646 1.23

NBUN — 251 132 87.9 22,059 .51 673 1.28

SUBSURFACE DIMENSIONS

MAXIMUM MEAN

POND
DEPTH
(ft.)

DEPTH
(ft.)

VOLUME 
(ft.3)

VOLUME
DEVELOPMENT i—ii

o 1' - 2 '

BASIN SLOPE %
2'-3' 3 ' -4' 4'-5' 5' -6' O

N 1 1 0
0

DS30 3.8 1.7 60,000 1.34 9.7 7.0 10.3 7.3

NB15 6.4 3.7 32,000 1.66 62.7 44.4 41.0 33.1 14.9 26.2

G5 7.2 3.8 505,000 1.58 19.0 6.5 4.8 5.7 4.9 4.3 4.1 3.3

NB1 3.0 1.3 28,125 1.30 7.0 4.1 6.8

NBUN 4.6 2.1 46,250 1.37 7.0 11.9 10.9 9.4
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Dakota Star 30 (DS30) is situated in an area which has never been 

regraded or recontoured and consequently is in a depression between high 

spoil piles (Fig. 2). The spoil banks are well vegetated with volunteer 

vegetation which includes such plants as Bromus inermis, Melilotus 

officinalis, Brassica sp., Helianthus spp., Agropyron spp., Boa 

compressa and Aster spp. Since the piles are well vegetated and they 

show little erosion, the pond water is clear. Along the edge of the pond 

there are scattered outcroppings of coal which cause an organic, brown- 

yellow color in the water.

The bottom sediment at DS30 is well developed with a thick organic 

layer, including coarsely to finely decomposed material. A thin mucky 

layer underlies the richer upper layer. The bottom and shoreline of DS30 

are more stable than any other strip-mine pond studied.

The pond is well stocked with rooted and emergent vegetation with 

Typha angustifolia abundant on the west end, eastern half and sections 

of the north and south shores (Fig. 3). Phragmites communis is common at 

the west end, intermingled with the Typha. Scirpus spp. appear on the 

southwest shore, and scattered elsewhere are grasses (Poaceae), sedges 

(Cyperaceae), Sagittaria cuneata, Chava sp., and Ceratophyllum sp. 

Potamogeton spp. are abundant and located centrally in the pond.

Populus deltoides appear on the north and south sides of the pond,

B. North Beulah Pond (NB15)

North Beulah 15 (NB15) is a fifteen year old pond located four miles 

northeast of Beulah (section 8, T144N, R37W). NB15 is 228 feet long with 

an average width of 37,7 feet, an average depth of 3.7 feet and a surface 

area of .20 acres (Table 1).
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Fig, 2. Photograph of Dakota Star 30,
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Fig. 3. Morphometric and vegetative map of Dakota Star 30.
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North Beulah 15 is also located in an area that has never been 

regraded or recontoured (Fig. 4). It lies in a depression between spoil 

banks above the general level of the roads in the mine. The spoil 

banks are not heavily vegetated. Melilotus officinalis, Brassica sp., 

and planted grasses such as Agvopyvon spp., are common on the banks 

surrounding NB15. The water in the pond is clear, colorless and there 

is little evidence of erosion.

The bottom sediment at NB15 has a very thin aerobic layer and a 

slightly thicker darker layer which overlie a rather soft and unstable 

clayey bottom. The dark layer is comprised of decayed and partly decayed 

plant (mostly Typha shoots) and animal material.

NB15 is only moderately vegetated with rooted and emergent plants 

(Fig. 5). Typha angustifolia is most abundant and encircles the entire 

pond except for a few places where Scirpus spp. and/or grasses (Poaceae) 

and sedges (Cyperaceae) are located. Saggittaria cuneata is rare. 

Potamogeton sp. is common in the central portions of the pond. In 1975 

Potamogeton was abundant, but in 1976 it was reduced to a little patch 

at the north end. Populus deltoides and Salix sp. are located around the 

south end of the pond.

C. Glenharold Pond (G5)

The largest of the selected ponds (3.1 surface acres) is located 

seven miles southwest of Stanton, North Dakota (section 20, T144N, R84W). 

Glenharold 5 (G5) is a five year old pond 728 feet long with an average 

width of 184.6 feet and average depth of 3.8 feet (Table 1).

Extremely high and steep spoil banks surround this pond, except for 

a narrow strip at the northwest and southeast corners (Fig. 6). The
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Fig. 4. Photograph of North Beulah 15.
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Fig. 5. Morphometric and vegetative map of North Beulah 15.
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Fig. 6. Photograph of Glenharold 5.
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vegetation on these spoils is poorly developed and mostly volunteer.

Some attempt has been made to stabilize the spoil banks by planting trees. 

Because the vegetative cover is poor, erosion and landslides are common, 

and consequently the water is turbid. Due to prevailing northwesterly 

winds, the pond seems to be in a natural wind tunnel. This factor also 

contributes to the high turbidity. Outcroppings of exposed coal appear 

in a couple of places along the shoreline.

The pond edge and bottom sediment are soft and clayey in most 

places. A very thin aerobic layer lies above a very thin dark layer. 

These overlie the soft clay which makes up most of the bottom sediment.

In some places the bottom consists of coarser, firmer materials.

Aquatic plants are few in number and scattered (Fig. 7). Typha 

angusti folia and Soirpus spp. are the most common emergent plants, while 

Saggitaria cuneata and Chara sp. are occasionally found. Potamogeton 

sp., not observed in 1975, was collected in restricted areas in 1976. 

Populus deltoides seedlings and Salix spp. trees are scattered along the 

pond edge.

D. Glenharold (Gl) and North Beulah Pond (NB1)

The Glenharold pond (Gl) and the North Beulah pond (NB1) were both 

one year old when the present study began. They were artificially formed 

through regrading and recontouring of spoil piles. Consequently, the 

surrounding area takes on the appearance of the gently rolling topography 

typical of nearby unmined areas (Fig. 8 and 9). Both Gl and NB1 are 

surrounded by planted grasses and Koohia, which is the first plant to 

invade these regraded areas.
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Fig. 7. Morphometric and vegetative map of Glenharold 5.
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Fig. 8. Photograph of Glenharold 1.
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Fig. 9. Photograph of North Beulah 1.



27



28

The Glenharold pond (section 20, T144N, R84W) is 204 feet long, has 

an average width of 53.9 feet, and average depth of 1.8 feet and a maximum 

depth of 2.5 feet. NB1 (section 8, T144N, R87W) is 272 feet long, has 

an average width of 80.9 feet, an average depth of 1,3 feet and covers 

an area of .50 acres (Table 1).

The water in these ponds is clear and colorless, but is easily made 

turbid by wind activity. The pond edge and bottom sediments are extremely 

soft and clayey and very unstable. Sediments in the newly created ponds 

are physically no different from the naked spoil surrounding these ponds.

No true aquatic macrophytes were observed in these ponds in 1975.

Only Poputus deltoides seedlings were common along the shoreline. In 

the following year, Potamogeton sp., and Typha angustifolia were the 

first aquatic plants to be collected at G1 and NB1. Until the macrophytes 

became established, dried dead Kochia plants blown into the ponds provided 

the only support for the animal life (Figures 10 and 11),

E. North Beulah Unmined Pond (NBUN)

A naturally occurring pond, in an area adjacent to, but not included 

in the North Beulah mining area, was selected for comparative purposes. 

NBUN covers an area of .51 surface acres and is 251 feet long with an 

average width of 87.9 feet and average depth of 2.1 feet (Table 1).

A gently rolling topography surrounds NBUN (Fig. 12). The unmined 

area is covered primarily with a thick stand of Bromus sp. mixed with 

Agropyvon cristatum. Since the area around the pond is heavily vegetated 

and there is an absence of steep banks, minimal erosion occurs. Conse­

quently, the pond edge is well stabilized. The water is clear but is 

colored a yellow-brown.
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Fig. 10. Morphometric map of Glenharold 1.
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Fig. 11. Morphometric map of North Beulah 1.
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Fig. 12. Morphometric and vegetative map of North Beulah unmined.
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The vegetation in NBUN is typical of a deep-marsh emergent wetland 

(Stewart and Kantrud, 1972). It consists of various members of the genus 

Scivpus and the dominant Typha angustifolia. A number of shallow marsh 

elements are characteristic as well; Cave:r spp., Sium suave, Spavganium 

sp., Saggittavia cuneata and Alisma sp. Also present are Chava sp,,

Lemma tvisulca, Cevatophyllum sp., Myviophyllum exalbescens, Ranunculus 

tvichophyllus, Glycevia gvandis3 Utviculavia vulgavis and Potamogeton spp.



MATERIALS AND METHODS

I. FIELD METHODS - Soil and Water Chemistry

Water samples were collected every third or fourth week beginning 

September 15, 1975. This schedule continued until May 1976 when samples 

were collected once a week. Several surface sites within a pond were 

sampled during the open water season and combined to form a composite 

sample (APHA, Standard Methods, 1971). Samples were collected near the 

center of the pond during periods of ice cover. Dissolved oxygen 

samples were collected from the surface and ten centimeters from the 

bottom.

Composite samples were also obtained for bottom sediments. Several 

sites within a pond were sampled from the top five centimeters of the 

sediment, combined (Jackson, 1958) and placed in double lined plastic 

bags. Soil samples were collected at four locations around each pond; 

one site for each side of the pond. Samples from the top ten centimeters 

of the surface were placed in ice cream cartons.

After collection, the monthly water samples, bottom sediment samples, 

and soil samples were transported to the university laboratory for 

analyses. The weekly water samples were analyzed at the North Dakota 

Game and Fish laboratory at Riverdale, North Dakota.

II. LABORATORY METHODS - Soil and Water Chemistry

Before the water samples were frozen and within four to ten hours, 

pH, electrical conductivity, nitrates, ammonia, dissolved oxygen,

36
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alkalinity and ortho-phosphate were analyzed. Other chemical determina­

tions were completed at a later date on the stored material. These 

tests included total phosphate, chlorides, sulfates, several major ions 

and trace elements.

A. WATER

Water samples were filtered and analyzed for the following cations 

by atomic absorption spectrophotometry: Aluminum (Al), Calcium (Ca), 

Copper (Cu), Iron (Fe), Potassium (K), Lithium (Li), Magnesium (Mg),

Sodium (Na), Nickel (Ni), Lead (Pb), Silicon (Si), Strontium (Sr) and 

Zinc (Zn). A PHM62 standard pH meter (Radiometer) was used to determine 

pH, and electrical conductivity was measured with a Radiometer conducti­

vity meter. Salinity was calculated using conductivity readings with the 

formula given in Jackson (1958). The barium chloride turbidometric 

method of Kollman (1974) was used to determine sulfates, and a Radiometer 

silver-chloride probe (Type P4011) was used for chlorides.

Carbonate and bicarbonate alkalinity was determined by titration with 

.02 N sulfuric acid to the phenophthalein and methyl orange endpoints 

(APHA, Standard Methods, 1971). The Winkler method, with the azide modi­

fication, was used to measure dissolved oxygen of samples fixed in the 

field.

Phosphorus was analyzed by the molybdenum blue-ascorbic acid method 

as given in APHA, Standard Methods (1971) . Samples were filtered for 

the ortho-phosphate determination, but not for total phosphates. Direct 

nesslerization was used to measure ammonia (APHA, Standard Methods, 1971). 

The ultraviolet method of Goldman and Jacobs (1961) was used to determine 

nitrates. Ammonia, nitrates, and phosphates were measured spectrophoto- 

metrically.
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B. Soil and Bottom Sediments

Soil and bottom sediment samples were air dried, ground and passed 

through a 2mm sieve. Analysis for major cations and trace elements were 

accomplished with a Perkin-Elmer atomic absorption spectrophotometer.

Three extraction procedures were used to determine available cations:

A IN ammonium acetate extraction to measure the replaceable (water 

soluble plus exchangeable) ions: Na, Ca, Mg, K, Mn, Sr, and Li; a .02 N 

EDTA extraction to determine the complexed and/or chelated (fixed) ions: 

Chromium (Cr), Cadmium (Cd), Molybdenum (Mo), Ni, Fe, Cu, Li, Sr, Mn,

Zn, Pb, Si, and A1 ; and a water saturation extraction to determine 

water soluble Na, Ca, Mg, K, Fe, Mn, Zn, Li, and Sr. The methods out­

lined above are found in Jackson (1958), Perkin-Elmer Manual (1973),

Wikum and Wali (1974), and Wali and Krajina (1973).

The water saturation extract was also used to measure pH, electrical 

conductivity, chlorides and sulfates by the same methods given for water 

analyses. Samples were analyzed for phosphorus in a dilute acid flouride 

extract with the molybdenum blue method of Bray and Kurtz (Jackson, 1958). 

Boron (B) was extracted with .02 N EDTA and measured spectrophotometrically 

by the carmine method of Hatcher and Wilcox (1950). The Walkley-Black 

method (1934) was used to find percent organic matter.

III. FIELD METHODS - Aquatic Invertebrates
2Invertebrates were collected qualitatively with a .12 m dip net, 

and dredge samples were obtained with an Ekman grab to include benthic 

organisms. Qualitative samples were used to determine total number of

species for each pond.
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Quantitative samples of invertebrates inhabiting littoral regions

were collected with a modified Korinkova sampler (Edmundson and Winberg,

1971). The frame of the modified sampler was constructed with 1.9 cm

diameter iron rods. These iron rods were cut and welded together to
2form top and bottom frames with a sampling area of 0.45 m , In addition,

a washer was welded into the corner of the bottom frame so that 0.7 m

long iron rods could be screwed in each corner. These iron rods extended

15 cm beyond the bottom frame to allow the sampler to be placed securely

in the bottom substrate of the pond. Then the top frame was welded into

place to complete the framework of the sampler. Unlike the Korinkova

sampler, this sampler lacks a movable frame and therefore can only be

used at a fixed depth. Also, it samples half the area of the original

sampler. To compensate for this, two samples were collected at each

site and combined. Other features are similar to the sampler originally

described in Edmundson and Winberg (1971).
2A 522.86 cm Eckman dredge was used to sample benthic organisms.

The bottom sediment in strip-mine ponds is soft and generally free from 

coarse, hard materials, so the Eckman proved to be a suitable device to 

sample benthos. Two grabs were obtained at each site and combined.

Samples from each site were transferred to a white enamel pan and 

then to plastic bags with a 10% formalin-70% alcohol mixture. No 

separation of invertebrates was accomplished in the field. These samples 

were then transported to the university laboratory and stored for future 

analyses.

For all ponds sampled quantitatively there were three sampling 

sites, each one located in a different vegetative type whenever possible. 

It was felt that three sites per pond was adequate to obtain a represen­
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tative sampling of aquatic invertebrates.

IV. LABORATORY METHODS - Aquatic Invertebrates

Littoral organisms collected with the Korinkova sampler, and benthic 

animals obtained by an Eckman dredge were separated from vegetation or 

mud by two floatation techniques. Sodium sulfate in a saturated solution 

proved to be far superior to Anderson's (1959) sugar floatation technique. 

Sodium sulfate is a better method of separation because: 1) it is not 

sticky or messy to work with, 2) there is no need to measure specific 

gravity and then correcting for changes, 3) it can be reused many more 

times than sugar and 4) most importantly, sodium sulfate acts as a 

better dispersing agent to facilitate release of organisms from vegeta­

tion and mud.

Once separated, the organisms were sorted to major groups and 

identified. Authorities for invertebrate identification included:

Pennack (1953), Ward and Whipple (1918), Johannson (1934-7), Usinger 

(1968), Malloch (1917), Needham and Needham (1962), and Eddy and Hodson 

(1961). Representatives of each species identified were preserved and 

stored in 70% alcohol with a few drops of glycerin.

Individuals within a taxon were counted and their density represented 

as individuals per meter square. Biomass was determined by obtaining dry 

weights. The Shannon-Wiener index was used as a measure of species 

diversity (Shannon and Weaver, 1949; Pielou, 1966a and b; Pielou, 1975), 

and the method of Lloyd and Ghelardi (1964) was used to determine equi-

tibility.
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V. MAPPING AND MORPHOMETRY

A transit was used to map ponds according to procedures specified 

by Welch (1948). Ponds were mapped in early May 1976 when water levels 

were near peak height. At most points where a reading on bearing and 

distance were taken for the transit map a cross section was obtained.

Depth was measured by sounding at two foot intervals.

Several morphometric and bathymetric calculations based on transit 

map data and cross section data were obtained. A Gelman polar planimeter 

was used to determine surface area of the ponds. Length of shoreline 

was measured by stepping off segments with a dividers. Volume was 

computed by constructing hypsographic curves for each pond. These 

methods and methods for obtaining other surface and subsurface dimensions 

are given in Welch (1948) and Cole (1975),

VI. COMPUTER ANALYSES

Various statistical techniques were used to determine relationships 

of chemical variables to strip-mine ponds on the IBM 370/135 computer at 

the UND computer center. The Dunnett's test and other statistical methods 

using multiple linear regression are outlined in Williams (1974a).



RESULTS

WATER CHEMISTRY 

Chemical Characteristics

The mean concentration of 25 ions, pH, and electrical conductivity 

are presented in Table 2. Temporal trends of these variables were 

analyzed and results indicate that they fall into four groups:

Group 1: Electrical conductivity (E.C.), Calcium (Ca), Magnesium 

(Mg), Sodium (Na), Potassium (K), Strontium (Sr),

Sulfate (SO^), and Chloride (Cl)

Group 2: pH

Group 3: Nickel (Ni), Lead (Pb), Lithium (Li), Molybdenum (Mo), 

Aluminum (Al), Copper (Cu), Iron (Fe), Zinc (Zn), and 

Manganese (Mn)

Gtoup 4: Silicon (Si), Nitrate (NO-), total-PO. and ortho-PO, .J 4 4
The mean temporal trends of the variables in group 1 (Fig. 13 and 14) 

have a tendency to increase in summer and fall with maximum concentration 

reached under ice cover. Figure 15 shows that pH increases until fall, 

then decreases, reaching its lowest levels during periods of ice cover. 

Those ions in group 3 (Fig. 16) tend to remain constant throughout the 

seasons, except for slight to moderate increases in winter. Nitrates, 

phosphates and silicon (Fig. 17, 18, and 19) are correlated to biological 

activity and/or chemical changes and belong to group 4.

42
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Table 2. Mean concentration of 25 ions, pH and electrical conductivity 
in four strip-mine ponds and NBUN from September 1975 to 
August 1976, in ppm.

Variable DS30 NB15 G5 NB1 NBUN

pH 7.60 8.07 8.54 8.44 8.20
E.C., ymhos/cm 4080 2310 1580 1970 400
Ca 252.7 57.5 23.5 32,8 30.8

Mg 1100.6 51.8 11.4 46.2 14.7
K 19.6 16.5 11.7 16.3 10.4
Na 388.0 473.6 370.9 385.5 52.7
A1 .10 .16 .25 .11 .13
Cu .03 .02 .02 .02 .02
Fe .05 .04 .05 .03 .06
Li .20 .09 .06 .21 .02
Mn .06 .04 .01 .01 .01
Mo .007 .003 .005 .005 .005
Ni .08 .06 .04 .04 .02
Pb .18 .11 .08 .09 .07
Si 3.8 1.8 1.4 1.4 1.7
Sr 5.05 1.04 .28 .83 .26
Zn .06 .05 .05 .06 .03
so4 152.2 693.0 565.0 819.0 9.0
Cl 91.6 7.4 12.1 13.3 4.4
NH,4 1.04 .51 .99 .44 .73
n o 3 .233 .123 .123 .130 .100
n o2 .0046 .0069 .0062 .0072 .0030
Ortho-PO,4 .07 .06 .08 .09 .09
Total-PO.4 .48 .23 .39 .37 .41
h c o3 327 216 298 150 153
co3 4 22 71 45 39
D.O.

Surface 5.9 8.5 7.7 9.3 12.1
Bottom 4.5 7.7 6.5 8.2 8.5
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Fig. 13. Temporal trend of electrical conductivity in selected 
strip-mine ponds in western North Dakota. A group 1 
variable.
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Fig. 14. Temporal trend of sodium in selected stripHnine ponds in
western North Dakota. (see key, Fig. 13). A group 1
variable.
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Fig. 15. Temporal trend of pH in selected strip-mine ponds in
western North Dakota. (see key, Fig. 13). A group 2
variable.
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Fig. 16. Temporal trend of copper in selected strip-mine ponds
in western North Dakota. (see key, Fig. 13). A group
3 variable.
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Fig. 17. Temporal trend of nitrates in selected strip-mine ponds in
western North Dakota (see key, Fig. 13). A group 4 variable.
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Fig. 18. Temporal trend of phosphates in selected strip-mine ponds
in western North Dakota. (see key, Fig. 13). A group 4
variable.
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Fig. 19. Temporal trend of silicon in selected strip-mine ponds in
western North Dakota. (see key, Fig. 13). A group 4
variable.
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Examination of the water chemistry data (Appendix 1, Table 22) by 

analysis of variance (Table 3) shows that many ions vary significantly 

(t 2.78 at a = .05) between strip-mine ponds of various ages. Analysis 

of these differences (Table 4) indicate that certain water variables show 

increases in concentration with increasing age: Electrical conductivity, 

Ni, Mn, SO^ and Pb. A decrease in concentration with increasing age 

is exhibited by pH. Water variables like Ca, Mg, Cl, NO^, Li, Si, 

and Sr do not seem to correlate to the age of the pond; although in 

most cases DS30 has significantly higher concentrations. Phosphates, K,

Na, Fe, Al, Cu, Mo and Zn are essentially the same from one strip-mine 

pond to the next, regardless of age.

Ionic Dominance, Conductivity and Salinity

The anion composition of the ponds in this study was divided into 

two dominance patterns: a bicarbonate-type (HCO^ > SO^ > Cl) and a 

sulfate-type (SO^ > HCO^ > Cl). The bicarbonate waters ranged from 350 

to 1590 ymho/cm. Transition from bicarbonate to sulfate dominance began 

at 1010 ymho/cm, with complete dominance recorded at 1600 ymho/cm. Most 

strip-mine ponds show the sulfate-type pattern (Table 5 and Fig. 20).

The cation structure in all ponds but DS30 is sodium-calcium dominant. 

Above conductivities of 2300 ymho/cm magnesium becomes more common and 

therefore the waters tend to be sodium-magnesium dominant (Table 5).

A strong correlation exists between precipitation, changes in water 

level and conductivity (Fig. 21). As water levels decline due to decreas­

ing precipitation and increasing evaporation there is an increase in 

conductivity values and therefore salinity. After spring runoff, water 

levels declined to June 5 when 3.75 cm of precipitation during June
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Table 3. Analysis of variance of chemical variables in selected strip- 
mine ponds.

Variable F-Value for Ponds

Ca 208.18*

Sr 118.80*

PH 60,94*

Li 40.00*

E.C. 37.82*

Cl 22.14*

Si 17.38*

N03 15.50*

A1 9.33*

Pb 7.75*

Mo 7.00*

K 6.72*

so 4 5.10*

Mg 4.32*

Mn 4.00*

Cu 2,78*

Ni 2.62

Na 2.59

Fe 2.40

Total-PO^ 1.03

Ortho-PO.4 .78

Zn .47

*Significance at the .05 level, t ^2.78
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Table 4. Tukey's test: Analysis of differences of chemical variables between strip-mine ponds of various ages.

E-C. pH Ca

DS30 NB15 G5 NB1 DS30 NB15 G5 NB1 DS30 NB15 G5 NB1

DS30 — DS 30 — DS30 —

NB15 A. 36* - NB15 -3.27* — NB15 19.07* —

G5 7.29* 2.93 - G5 -6.69* -3.42* -- G5 22.52* 3.46*
NB1 6.21* 1.91 -.98 — NB1 -6.61* -3.39* -.02 — NB1 21.16* 2.34 -1.07 —

Mg K A1
DS30 NB15 G5 NB1 DS30 NB15 G5 NB1 DS30 NB15 G5 NB1

DS30 - DS30 — DS30 —
NB15 2.85* — NB15 1.00 — NB15 -1.81 —

G5 2.95* .10 — G5 3.11* 2.10 — G5 -4.38* -2.57 —
NB1 2.8A* .04 -.06 " NB1 .15 -.84 -2.91* - NB1 -.47 1.32 3.85* ~

Cu Mn Li
DS30 NB15 G5 NB1 DS30 NB15 G5 NB1 DS30 NB15 G5 NB1

DS30 - DS30 — DS30 —

NB15 2.20 - NB15 1.50 — NB15 6.43* —
G5 1.A2 -.78 — G5 2.63* 1.13 — G5 7.72* 1.28 —
NB1 .94 -1.23 -.46 " NB1 2.58 1.10 -.02 — NB1 6.66* .31 -.96 —

Mo Si Pb
DS30 NB15 G5 NB1 DS30 NB15 G5 NB1 DS30 NB15 G5 NB1

DS30 — DS30 -- DS30 —

NB15 4.66* — NB15 4.51* _ NB15 2.40
G5 1.43 -3.23* — G5 5.50* .99 — G5 3.92* 1.53 _
NB1 2.16 -2.44 .75 -- NB1 5.41* .96 .02 - NB1 3.23* .86 -.65 -

Sr Cl so,
DS30 NB15 G5 NB1 DS30 NB15 G5 NB1 DS30 NB15 G5 NB1

DS30 — DS30 — DS30 —

NB15 13.33* - NB15 6.43* — NB15 2.46 —

G5 15.82* 2.49 - G5 6.14* -.29 — G5 2.89* .43 _
NB1 13.49* .33 -2.13 — NB1 5.84* -.50 -.22 — NB1 1.70 -.73 -1.16 _

DS30 NB15 G5 NB1

DS30 —

NB15 7.17* _
G5 7.57* .39 —

NB1 6.76* -.32 -.71

♦significance at the a - .05 level> 2.63
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Table 5. Major cations and 
(summer 1976), in

anions in 
ppm.

four strip-mine ponds and NBUN

POND

Variable DS30 NB15 G5 NB1 NBUN

Na 361 452 344 305 55

Ca 237 69 25 37 31

Mg 290 50 11 30 16

K 15 17 12 16 10

Total cations 903 588 392 388 112

h c o3 328 216 297 150 153

Cl 61 7 12 11 5

SO,4
892 511 203 284 10

Total anions 1181 734 512 445 168

Grand Total 2084 1322 904 833 280

E.C. pmho/cm 3170 2300 1420 1280 390

Salinity (calculated) 2029 1472 909 819 250
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Fig. 20. Percent composition of the seven major ions in four 
strip-mine ponds and NBUN.
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Fig, 20 (continued)
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Changes in precipitation, water levels and electrical 
conductivity in four strip-mine ponds and NBUN.

A------- -A W a t e r  l eve l

•-------• C o n d u c t i v i t y
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Fig. 21 (continued)
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combined with surface runoff increased water levels again and in some 

cases (e.g. NB1) beyond the spring reading. During this time conductivity 

values decreased. Conductivity then increased from 15 to 36 percent 

between late June and mid-August as the water levels began to decrease 

again.

Comparisons to NBUN

Comparisons of strip-mine ponds to the pond in the unmined area 

(NBUN) are given in Table 6 for each of the variables. Concentration of 

many ions in strip-mine ponds are significantly (t >_ 2.54 at a = .05) 

higher than NBUN. Only Fe at NB1, pH at DS30, and total-PO^ and Mo at 

NB5 are significantly lower than NBUN. The following ions, though not 

significant, are generally lower in strip-mine ponds: Fe, pH, Al, Mn,

Mo, Si and phosphates.

Strip-mine ponds are compared to NBUN in Table 5 with respect to 

major ions, conductivity and salinity. Three noticeable differences 

exist between strip-mine ponds and NBUN: (1) strip-mine ponds are more 

highly mineralized and therefore have higher salinities than NBUN; (2)

NBUN is bicarbonate-sulfate dominant. Though G5 exhibits a bicarbonate 

type pattern, it is not as pronounced as at NBUN and (3) NBUN is not as 

strongly sodium dominant as the strip-mine ponds.

Sediment and Spoil Chemistry

The concentrations of 23 ions, pH, electrical conductivity and 

percent organic matter are given in Tables 7-9 for bottom sediments.

All the major cations and anions in the sediments are at lower levels 

than NBUN. Several trace ions are also lower: B, Cr, Li, Mo, Ni, pH,

Si and Sr. Certain trace elements have concentrations higher than those
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Table 6. Dunnet's test: 
perimental) and 
through August

comparisons between strip-mine ponds 
the unmined pond (control) from May 

1976.

(ex-
1976

Variable DS30 NB15 G5 NB1

E.C. 32.19* 22.38* 12.06* 11.71*

PH -5.02* -.68 3.49* 3.21*

Na 14.06* 19.19* 13.40* 11.32*

Ca 17.76* 3.27* -.56 .66

Mg 32.65* 5.82* -.63 2.64*

K 7.62* 7.62* .45 6.71*

A1 -.62 .83 1.87 -.42

Cu 1.75 -.00 1.00 2.00

Fe -1.97 -2.88* -2.12 -3.56*

Li 32.28* 10.70* 6.67* 8.24*

Mn 2.49 -.28 -.69 .14

Mo -.35 -3.39* -1.06 -1.13

Ni 5.15* 2.75* 1.12 1.37

Pb 2.97* .87 -.00 .59

Si 3.78* .43 -.27 -.22

Sr 22.97* 4.50* .01 2.88*

Zn .28 .11 .45 2.29

so4 25.00* 14.28* 5.28* 7.54*

Cl 40.79* 2.01 4.67* 3.92*

NO 3 7.65* 1.47 .58 .37

Ortho-PO.4 -1.24 -2.19 -.24 -1.67

Total-PO,4 -.27 -3.11* -.03 -1.85

*Significance at .05 level, t 2.54



Table 7. pH, 
and

electrical conductivity 
NBUN. Water saturation

(E.C.),
extract

and maj or ions in the sediments of stripi-mine ponds

Sample Site PH
E.C. 

mhos/cm
%

O.M.
Ca Mg K Na P SO,4 Cl

DS301 (l)2 7.15 1.00 - 567.7 83.5 .34

ppm-

2.29 - 420 46.4

NB151 (1) 7.91 1.82 2.82 187.3 84.5 .61 4.69 .298 1400 39.8

G51 (1) 8.11 1.20 3.81 106.7 40.2 .35 4.14 .149 800 355.0

NB11 (1) 7.07 1.60 1.31 110.3 61.8 .46 3.30 .894 1025 23.1

NBUN1 (1) 7.58 3.78 4.17 922.0 350.1 72.00 150.00 6.250 9400 876.5

DS303 (2) 7.55 3.45 1.58 891.7 381.6 1.13 5.68 .225 2775 88.9

NB13 (1) 8.93 .90 1.12 783.4 25.2 .19 2.57 2.979 475 23.1

1 Samples collected during summer 1975
2 Number in parenthesis are number of samples collected per site
3 Samples collected during winter 1975-1976



Table 8. Trace elements of sediments in strip-mine ponds and NBUN. Water saturation extractable and
NH.OAc extractable ions.

Li Mn Sr Zn Fe Ca Mg Na K Sr Mn Li
Sample Site Water Saturation

ppm
NH.OAc4

DS301 (l)2 .14 .39 1.80 .07 .11 4983.6 1769.0 3.84 1.80 31.20 28,91 .28

NB151 (1) .13 .18 3.23 .09 .12 3800.0 1030.2 5.08 1.84 23.54 21.91 .18

G51 (1) .08 .15 1.36 .22 .15 4550.0 1045.2 5.86 1.44 22.80 9.57 .18

NB11 (1) .12 .07 2.84 .07 .11 2733.6 905.8 3.44 1.50 22.34 8.57 .18

NBUN1 (1) - - - - - 7432.0 4537.0 876.10 452.80 - - -

DS303 (2) .32 .18 11.78 .10 .12 4866.8 2677.0 8.64 4.51 34.77 20.58 .60

NB11 (1) .07 .05 .86 .16 .11 4483.6 1752.0 10.12 3.02 39.06 10.91 .34

1 Samples collected during summer 1975
2 Number in parenthesis are number of samples collected per site
3 Samples collected during winter 1975-1976



Table 9. Trace elements of sediments in strip-mine ponds and NBUN. EDTA extractable ions.

Sample Site
A1 B Cd Cr Cu Fe

DS301 2 3 (1) 1.50 .423 .30 .055 13.75 679.2

NB151 (1) 0.00 .070 .39 .022 17.08 340.0

G51 (1) 1.50 .088 .40 .200 14.17 433.2

NB11 (1) 2.25 .008 .34 .003 8.41 211.7

NBUN1 (1) 2.00 1.570 2.23 .321 5.25 65.0

DS301 (2) 2.13 .192 .43 .008 22.71 445.0

NB11 (1) .25 .013 .40 .004 11.24 286.7

Li Mn Mo Ni Pb Si Sr Zn
■ppm

.18 169.28 .052 .52 .58 18.3 6.32 8.85

.13 70.35 .064 .65 .52 10.5 6.49 10.68

.11 55.68 .059 .51 .45 14.3 5.16 7.93

.13 39.51 .032 .37 .27 11.0 8.55 6.68

2.00 71.00 .120 2.42 4.17 74.8 32.06 2.21

.40 56.14 .084 .47 .75 13.8 15.02 11.93

.23 52.51 .083 .35 .13 9.5 10.43 8.60

1 Samples collected during summer 1975
2 Number in parenthesis are number of samples collected per site
3 Samples collected during winter 1975-1976
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in NBUN: Cu, Fe, Zn and Mn.

The same variables were analyzed for the spoil material, and the 

results appear in Appendix 1, Tables 23, 24 and 25, Table 10 gives the 

concentration of calcium and magnisium in the spoils surrounding the 

strip-mine ponds of various ages. The spoil around DS30 has higher 

levels of replaceable calcium and magnesium than any other spoil 

analyzed.
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Table 10. Calcium and magnesium in the spoils surrounding strip-mine 
ponds of various ages, in ppm.

Ca^ Ca2 Mgx Mg2

DS30 4872 178 1444 57

NB15 3996 282 1025 100

G5 4260 198 981 78

NB1 3360 225 1069 122

1 Water extractable (soluble) Ca and Mg

2 Ammonium acetate extractable (exchangable) Ca and Mg
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AQUATIC INVERTEBRATES 

Species Composition

Ninety-seven invertebrate taxa were identified from NBUN and three 

strip-mine ponds (DS30, NB15, and NB1). Table 11 shows that six phyla 

are represented from the collections. Nematomorpha, Cnidaria, Bryozoa 

and Annelida are not common in strip-mine ponds. The bulk of the 

organisms present in these ponds belong to either Mollusca or Arthropoda. 

The class Insecta comprises almost 80% of all the species identified.

A closer Inspection of the Insecta (Table 11) reveals that there are 

two dominant orders; the Dipterans and Coleopterans, with 26 and 24 

species respectively. Chironomidae and Dytiscidae are the most common 

families within the two dominant orders.

Species composition of NB1 is the simplest among the strip-mine 

ponds studied (Table 12). Many of the 27 species identified from NB1 

are Dipterans. Bezzia (Probezzia) spp. are the most common Dipterans, 

followed by Tanytarsus sp., PaZporrryia sp., Chaoborus sp., Tabanus sp., 

and Chrysops sp. Other common insects are Corixidae and Notoneota sp.

The Coleopterans, HaZipZus sp., Berosus sp., and Hydraena sp. are 

occasionally found associated with Koohia sp. The only common non-insect 

is Hydracarina.

The invertebrate fauna at NB15 includes a much larger and wider 

variety of species than exists at NB1 (Table 13). Mollusca, Amphipoda, 

Ephemeroptera, Odonata, and Tricoptera, which are rarely collected at 

NB1, have several common species at NB15. Characteristic species include: 

HyaVleta azteoay Lestes spp., Hydracarina Physa spp., EnaZZegma spp., and 

Lymnea sp. Glossiphonia oomplanata, PZaoobdeZZa vugosa, Anax sp.,



Table 11. Species collected from NBUN and three strip-mine ponds in western North Dakota, 1976.

PHYLUM CLASS ORDER FAMILY GENUS OR SPECIES

I. CNIDARIA Hydrozoa Hydroida Hydridae Hydra sp.

II. NEMATOMORPHA Gordioidea Chordodidae Paragordius sp.

III. BRYOZOA Phylactolaemata Plumatellina Plumatellidae Plumatella sp.

IV. ANNELIDA Oligochaeta Plesiopora Naididae Ophidonais sp.
Hirudinea Rhynchobdellida Glossiphoniidae Glossiphonia

complanata
Helobdella stagnalis 
Placobdella rugosa

Arhynchobdellida Erpobdellidae Erpobdella punctata

V. ARTHROPODA Crustacea Amphipoda Talitridae Hyallela azteca
Arachnoidea Hydracarnia
Insecta Collembola

Ephemeroptera Baetidae Caenis sp. 
Centroptilum spp. 
Callibaetis spp.

Odonata (Anisoptera) Aeschnidae Aeschna spp. 
Anax sp.

Libellulidae Libellula spn.
Odonata (Zygoptera) Coenagrionidae Ischnura spp. 

Enallagma spp. 
Lestes spp.

Hemiptera Corixidae
Macroveliidae Maarovelia sp.
Notonectidae Notonecta sp.
Gerridae Gerris sp.
Pleidae Plea striola



Table 11 (continued)

PHYLUM CLASS ORDER

Tricoptera

Coleoptera

FAMILY

Nepidae
Belostomatidae
Leptoceridae

Limnephilidae

Phryganeidae
Dytiscidae

(Hydroporinae)

Dytiscidae
(Laccophilinae)

Dytiscidae
(Noterinae)

Dytiscidae
(Colymbetinae)

Dytiscidae
(Dytiscinae)

Haliplidae
Gyrinidae

GENUS OR SPECIES

Ranatra sp. 
Belostoma sp.

Triaenodes tarda

Limnephilus spp. 
Limnephilus 

submonilifer 
Glyphotaelius sp. 
Hesperophylax sp. 
Platyaentropus sp. 
Phryganea sp.

Bidessus sp. 
Hydroporus spp. 
Deroneotes spp.

Laeoophilus sp.

Hydroaanthus sp.

Agabus sp. 
Copelatus sp. 
Coptotomus sp. 
Colymbetes sp.

Hydaticus sp. 
Aoilius sp. 
Dytisaus spp. 
Haliplus spp. 
Gyrinus sp.



Table 11 (continued)

PHYLUM CLASS ORDER

Diptera

FAMILY

Hydrophilidae

Hydraenidae
Elmidae

Chrysomelidae
Curculionidae

Anthomyiidae
Brachydeutra
Ceratopogonidae

Culicidae

Tipulidae
Tabanidae

Stratiomyiidae
Ephydridae
Chironomidae

(Tanypodinae)

Chironomidae
(Orthocladiinae)

GENUS OR SPECIES

Bevosus sp, 
Tvopistemus sp. 
Paraaymus sp. 
Hydraena sp.
Narpus sp. 
Ancyronyx sp. 
Donaoia sp. 
Hyperodes spp. 
Lissorhoptrus 

simplex

Bezzia (Probezzia) 
spp.

Palpomyia tibialis 
Chaoborus spp. 
Culex sp.
Anopheles sp. 
Tipula sp.
Tabanus sp. 
Chrysops sp. 
Odontorrryia einata 
Ephydra sp.

Pentaneurasp.
Tanypus stellatus 
Pvooladius sp. 
Anatopynia dyari

Cvicotopus sp.



Table 11 (continued)

PHYLUM

VI. MOLLUSCA

CLASS ORDER

Gastropoda Pulmonata

Pelecyopoda

FAMILY GENUS OR SPECIES

Chironomidae
(Chironominae)

Spaniotoma sp.

Chironomus spp. 
Chironomus tentans 
Chironomus 
plumosus 

Chironomus
(Endoohironomus)
spp.

Chironomus
(Lirrmochironomus) 
spp.

Chironomus
( Cryptochironomus) 
spp.

Chironomus
(G lyp to tendipe s )
spp.

Tanytarsus spp.

Lymnaeidae Lymnaea spp. 
Stagnioola sp.

Physidae Physa spp. 
Aplexa hypnorum

Planorbidae Helisoma spp. 
Helisoma

Ancylidae
Amnicolidae
Sphaeriidae

oompanulata 
Gyraulus spp. 
Ferrissia sp. 
Arrmicola sp. 
Sphaerium spp. 
Musouliwv spp.
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NEMATOMORPHA MOLLUSCA

Paragordius GASTROPODA
Physa

ARTHRQPODA Gyraulus

CRUSTACEA

Hyallela azteaa 

HYDRACARINA 

INSECTA

EPHEMEROPTERA
Centroptilum
Callebaetis

ODONATA
Enallegma

HEMIPTERA
Corixidae
Notonecta

TRICOPTERA
Triaenodes tarda

COLEOPTERA
Berosus
Paraoymus
Hydranea
Haliplus
Gyrinus

DIPTERA
Tany tarsus
Pentaneura
Anaptopynia
Tanypus
Chironomus
Bezzia (Probezzia)
Palpomyia
Chaoborus
Tabanus
Chrysops
Ephydra

Table 12. List of invertebrate fauna collected from NB1,
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Table 13. List of invertebrate fauna collected from NB15.

ANNELIDA

Plaaobdella rugosa 
Glossiphonia complanata

ARTHROPODA

CRUSTACEA

Hyallela azteca

HYDRACARNIA

INSECTA

EPHEMEROPTERA
Centroptilum
Callebaetis
Caenis

ODONATA
Enallegma
Isahnuva
Lestes
Libellula
Anax

HEMIPTERA
Gerris 
Ranatra 
Corixidae 
Notoneota 
Plea striola

TRICOPTERA
Phryganea 
Triaenodes tarda

COLEOPTERA
Copelatus
Berosus
Hydrooanthus
Bidessue
Laaaophilus
Deroneotes
Hydroporous
Hydatieus
Dytisaus
Tropistemus

COLEOPTERA (continued)
Hydranea 
Haliplus 
Gyrinus 
Donaaia

DIPTERA
Pentaneura
Anaptopynia
Tanypus
Chironomus

(Endochironomus) 
Chironomus

(Glypotendipes) 
Spaniotoma 
Chironomus 
Chironomus

( Cryptochironomus) 
Tabanus 
Chrysops 
Ephydra
Bezzia (Probezzia)
Palpomyia
Chaoborous

MOLLUSCA

PELECYOPODA

Musoulium
Sphaerium

GASTROPODA

Lyrrmea
Physa
Gyraulus
Aplexa
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Libellula spp., Caenis sp., Ranatra sp., and Plea striola, and many 

Dipteran and Coleopteran genera are collected for the first time at NB15.

Fifty-nine invertebrate species were identified from the oldest 

strip-mine pond, only seven more than at NB15, Although species numbers 

are similar at both ponds, this is no indication that species composition 

is similar (Table 14). In particular, the Tricoptera are more varied at 

DS30. Besides Triaenodes sp. and Phryganea sp., other Tricopterans in­

clude Lirrmephilus spp., Hesperophylax sp., and Glyphotaelius sp. Several 

species, like Ophidonais sp., Odontomyia sp., Plvmatella sp., and Hydra 

sp. are not encountered in collections prior to DS30. And then there are 

those species which are absent from DS30, although they are characteris­

tic of NB15; Chrysops sp., Tabanus sp., Palpomyia sp., Bezzia 

(Probezzia) spp., Glossiphonia sp., and Placobdella sp.

The unmined pond, NBUN, contains 78 species of invertebrates, more 

than any other strip-mine pond studied (Table 15). Hyallela azteca, 

Gyraulus spp., Lyrrmea sp., Musculium sp., Helisoma spp., Enallegma spp., 

and Callibaetis spp. are representative of invertebrates collected from 

NBUN. Although DS30 has fewer species than NBUN, the species composition 

is similar.

Some species characteristic to NBUN are absent in DS30 and the 

other strip-mine ponds. Helisoma is a genus not found in any strip-mine 

pond studied. Other species absent include: Erpobdella sp., Helobdella 

sp., Tipula sp., and Brachydeutra.

Annelids are poorly represented in strip-mine ponds. Oligochaetes 

are found in DS30 and leeches (Glossiphonia sp. and Placobdella sp.) 

are present at NB15, but not as commonly as they are found in NBUN.

To summarize the extent of similarity between the fauna of strip-mine
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Table 14. List of invertebrate fauna collected from DS30,

CNIDARIA 

Hydra 

BRYOZOA

Plumatella

ANNELIDA

Ophidonias

ARTHROPODA

CRUSTACEA

Hyallela azteca 

HYDRACARNIA 

INSECTA

EPHEMEROPTERA
Centroptilum
Callebaetis
Caenis

ODONATA
Anax
Aeschna
Libellula
Enallegma
Ischnura
Lestes

HEMIPTERA
Plea striola
Notonecta
Corixidae
Belostoma
Ranatra
Gerris

TRICOPTERA
Leptoceridae 
Limnephilidae 
Phryganea 
Limnephilus 
Hespvophylax 
Glyphotaelius

CQLEQPTERA
Copelatus
Berosus
Hydrocanthus
Laccophilus
Deroneotes
Hydroporous
Dytiseus
Paraeymus
Hydraena
Haliplus
Gyrinus
Donaoia
Elmidae
Ancryonyx
Hyperodes

DIPTERA
Chironomus
Chironomus tentans
Chironomus plumosus
Pentanura
Anaptopynia
Tanypus
Chironomus

(Lirnnochironomus) 
Chironomus

(Endochironomus) 
Chironomus

(Glypotendipes) 
Spaniotoma 
Ephydra 
Chaoboros 
Odontomyia

MOLLUSCA

PELECYOPODA

Musculium
Sphaerium

GASTROPODA

Lyrmea
Physa
Stagnicola
Gyraulus
Aplexa
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Table 15. List of invertebrate fauna collected at NBUN.

BRYOZOA COLEOPTERA
Copelatus

MOLLUSCA

Plumatella Berosus- 
Hydro canthus

PELECYOPODA

ANNELIDA Bidess-us Musculium

Ophidonais
Laccophilus Sphaerium
Coptotomus

Glossiphonia complanata Deronectes GASTROPODA
Placobdella rugosa Hydroporous

DytiscusHelobdella stagnalis Lyrrmea
Erpobdella punctata Colymbetes Physa

Paracymus Stagnicola
ARTHROPODA Tvopistevnus Helisoma

Hydreana Gyraulus
CRUSTACEA Haliplus Helisoma

Hyallela azteca
Gyvinus companulc
Donacia
Narpus

HYDRACARNIA Hyperodes 
Lissorhoptrus

INSECTA simplex

EPHEMEROPTERA DIPTERA
Centroptilum Chironomus
Callebaetis Chivonomus
Caenis ten tans 

Chironomus
ODONATA plumosus
Anax Tanylarsus
Aeschna Pentanura
Libellula Anaptopynia
Enallegma Tanypus
Ischnura Chironomus
Lestes (Lirmo chironomus ) 

Chironomus
HEMIPTERA (Endochironomus)
Gerris Chironomus
Hanatra (Glypotendipes)
Corixidae Spaniotoma
Notonecta Cricotopus
Plea striola Chironomus

( Cryptochironomus)
TRICOPTERA Procladius
Leptoceridae Tabanus
Limnophilidae Ckrysops
Phryganea Ephydra

TipulaTriaenodes
Lirrmephi lus Bezzia (Probezzia)
Hesperophylax Pulpomyia
Glyphotalius Chaoborous
Platycentropus Odonotomyia

Brachydeutra
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ponds and NBUN, a simple similarity index was used;

cc = 2 C X 1 0 0
a + b

where 'c' is the number of species common to the compared ponds, ’a ’ is 

the number of species of one pond, and Tb ’ is the number of species in 

the other pond. Increasing values of the index were obtained when 

comparing the three strip-mine ponds to NBUN (Table 16). These increasing 

values show that as a strip-mine pond increases in age, the more it 

resembles NBUN.

Density and Biomass * 2

The mean summer biomass and density of invertebrates in the three 

strip-mine ponds and NBUN are compared in Figure 22 and Appendix 2,

Table 26. Both biomass and density increase through the strip-mine pond 

series. Biomass increases slowly at first then more quickly; whereas the 

increase in density is constant and progressive. This difference is due 

mostly to the lower snail biomass at NB15.

A slightly greater density and biomass is found at DS30 than at NBUN. 

The greater amounts are due to the large number of snails and chironomids 

at DS30.

The average weight of the animal population at NB1 for the summer
2is 15.4 lbs/acre, or 1,337 individuals/m . Maximum weights and density 

are obtained in July and August (Table 17). Figure 23 shows that 

numerically the Diptera account for almost 80% of all organisms present 

in NB1. Chironomidae and Ceratopogonidae greatly outnumber other 

organisms (Table 17). However, Hemipteran dry weight far exceeds the 

dry weight of the dominant Dipterans.



TABLE 16. Similarity values of the three strip-mine ponds compared to NBUN.

Pond Interval MAY JUNE JULY AUGUST MEAN + S.E.*

NB1-NBUN 26.1 33.8 25.8 46.8 33.1 + 4.92

NB15-NBUN 52.2 59.4 45.6 63.0 55.1 + 3.87

DS30-NBUN 71.6 72.6 54.5 62.0 65.2 + 4.29

*S.E. standard error of the mean (s-)
y
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Fig. 22. Summer means of density and biomass in three strip-mine 
ponds and NBUN.
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* 2 2Table 17. Biomass Cg/m ) and Density (individuals/m ) for selected invertebrate groups at NB1.

ind/m2 g/m2 ind/m2 , 2 g/m ind/m2 , 2 g/m ind/m2 , 2 g/m ind/m2 g/m2
Nematomorpha - - 29 .043 38 .058 - - 67 .101
Hydracarnia - - - - 183 .154 33 .004 217 .158

Amphipoda - - - - 8 .004 8 .004 17 .008

Hemiptera - - 96 .308 133 2.751 285 1.960 487 5.020

Coleoptera - - 42 .046 25 .039 61 .077 127 .163

Diptera* 17 .023 195 .123 1803 .119 1891 .499 3906 .763

Chironomidae - - 8 .029 682 .052 202 .017 884 .098

Tabanidae - - 29 .073 - - 212 .397 240 .470

Chaoborinae 17 .023 51 .036 178 .041 33 .027 278 .127

Ceratopogonidae — — 116 .010 943 .026 1444 .058 2503 .094

*includes: Chironomidae, Tabanidae, Chaoborinae, Ceratopogonidae
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The mean weight of aquatic invertebrates at NB15 is 97.1 lbs/acre 
2(6498 individuals/m ). This is a substantial increase in the average

weight compared to the fauna in NB1. Figure 23 shows that the Amphipoda

account for 38% of the organisms present in NB15. Hyallela azteoa is

consistently numerous throughout the summer (Table 18), reaching 3856 
2individuals/m in July. Odonata are also quite numerous, with peaks in

June and August (Table 18). In June, the major contribution comes

primarily from Lestes spp. and in August from Enallegma spp. Table 18

shows that Odonata and Mollusca make up the bulk of the biomass.

At DS30, the mean summer biomass of invertebrates is 1,133.1 lbs/acre 
2(13,453 individuals/m ). This is more than a 10-fold increase over NB15. 

Mollusca account for most of this increase (Fig. 24, Table 19). The dry 

weight of Odonata and Diptera also contribute to this increase in biomass. 

Besides high biomass, Mollusca are second only to Dipterans as the most 

numerous group of organisms. The dominance of the Dipterans is due to 

chironomids (Table 19), particularly Chivonorms tentans and C. plwnosus.

The chironomids represent 76% of the total biomass and 75% of the total 

density among the Dipterans.

The average weight of the summer invertebrate population at NBUN is
2854.7 lbs/acre (11,125 individuals/m ). This value is similar to that 

obtained for DS30. The Mollusca make up the major portion of biomass and 

density. Recruitment of new individuals (Helisoma) is most apparent in 

June. Odonata are second only to Mollusca in total biomass (Table 20). 

Dipterans exist in large numbers, with peaks in June and August (Table 20). 

Though Chivonorms tentans and C. plumosus are found at NBUN, they are not 

present in such numbers as in DS30. This means that other Dipteran 

families such as Tabanidae and Chaoborinae contribute more to total
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Fig. 23. Percent composition of major invertebrate groups at three 
strip-mine ponds and NBUN, using numbers of organisms 
(density).
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MAY JUNE

2 2Table 18. Biomass (g/m ) and Density (individuals/m )

ind/m2 g/m2 ind/m2 g/m2

Annelida 8 .017 10 .010

Hydracarnia 386 .239 1168 1.088

Amphipoda 1693 1.064 1766 .620

Hemiptera 33 .242 650 1.638

Ephemeroptera - - 389 .497

Odonata 200 .797 1729 4.283

Tricoptera 8 .010 8 .010

Coleoptera 50 .349 175 .503

Diptera 529 .471 670 1.075

Mollusca 355 1.83 1082 6.63

for selected invertebrate groups at NB15.

JULY
ind/m2 g/m2 ind/m2

471 .308 333

3856 1.204 2595

408 1.497 317

28 .009 569

952 1.585 1221

17 .013 25

158 .824 83

634 .662 1265

344 1.95 1406

AUGUST TOTAL
g/m2 ind/m2 g/m2

- 18 .027

.169 2359 1.805

.838 9910 3.727

.411 1408 3.789

.530 985 1.036

7.006 4102 13.671

.029 58 .063

.042 467 1.717

1.710 3098 3.857

3.50 3187 13.9
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MAY JUNE

2 2Table 19. Biomass (g/m ) and Density (individuals/m )

ind/m2 , 2 g/m ind/m2 , 2 g/m

Annelida - - 10 .016

Hydracarnia 67 .045 133 .145

Amphipoda 533 .240 650 .382

Hemiptera 42 .276 771 2.062

Ephemeroptera - - 408 .745

Odonata 192 .628 2059 6.390

Tricoptera - - 82 .108

Coleoptera 75 .108 476 .641

Diptera* 1819 1.886 4540 3.704

Chironomidae 1694 1.631 4020 2.959

Mollusca 1662 65.1 5125 146.5

*includes Chironomidae

for selected invertebrate groups at DS30.

ind/m
JULY 

2 g/m2 ind/m
AUGUST
2 / 2 g/m

TOTALS
2 2 ind/m g/m

19 .023 - - 29 .039

108 .094 92 .082 400 .366

913 .242 1655 .798 3750 1.662

425 1.110 558 6,087 1783 9.534

25 .011 1936 1.972 2369 2.728

752 2.155 1866 8.022 4869 17.194

91 .120 103 .144 275 .372

192 .123 192 ,321 934 ] .193

4691 4.424 9907 6.249 20958 16.263

3617 3.501 6617 3.867 15948 11.958

3467 139.4 6425 108.4 16679 459.4



Table 20. Biomass (g/m ) and Density (individuals/m ) for selected invertebrate groups at NBÛ I.

MAY JUNE
ind/m2 g/m2 ind/m2 g/m2

Annelida 25 .227 32 .044

Hydracarnia 25 .013 71 .072

Amphipoda 607 .465 1540 .921

Hemiptera 42 .050 517 1.332

Ephemeroptera - - 231 .547

Odonata 633 1.603 1033 3.837

Tricoptera 42 .143 139 .178

Coleoptera 58 .215 358 .513

Diptera* 680 .615 3326 1.378

Chironomidae 166 .089 2124 .170

Tabanidae 231 .213 218 .312

Chaoborinae 258 .313 625 .635

Misc. Diptera - - 358 .261

Mollusca 1033 38.1 7719 114.6

JULY AUGUST
ind/m2 g/m2 ind/m2 g/m2 ind/m2 g/m2

55 .072 121 .272 233 .614

28 .018 17 .008 140 .112

2616 .852 2862 1.644 7625 3.882

325 1.246 550 4.140 1433 6.768

17 .099 1742 1.483 1990 2.129

600 1.684 1532 3.655 3798 10.779

336 .389 409 .747 926 1.456

430 .230 235 .392 1082 1.349

1213 .676 3327 2.134 8546 4.803

574 .148 188o .395 4752 .802

173 .220 250 .485 873 1.230

358 .161 1138 .901 2380 2.010

108 .148 50 .352 516 .761

4102 90.7 4717 107.7 17571 351.1

*includes: Chironomidae, Tabanidae, Chaoborinae, Ceratopogonidae and misc. Diptera
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biomass.

The Annelids in strip-mine ponds do not approach the density or 

biomass of the Annelids in NBUN (Tables 14-17). In contrast, the 

Hydracarina contribute more to the total biomass and density in strip- 

mine ponds than they do in NBUN (Tables 17-19).

Species Diversity

Diversity shows a distinct tendency to increase with increasing age 

of the pond (Fig. 25). Although diversity illustrates a distinct 

pattern, equitability values are all similar (Fig. 25). This suggests 

that evenness does not account for most of the differences observed in 

diversity. The increase in diversity throughout the strip-mine pond 

series is attributed primarily to species richness (Table 21 and Appendix 2, 

Tables 27 and 28).

However, the value of using H* rather than species richness alone is 

illustrated by the July collections at DS30 and NB15. The number of 

species is similar in both ponds (Table 21), however, H' indicates much 

higher species diversity at DS30.
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Fig. 25. Species diversity in three strip-mine ponds and NBUN 
using the Shannon-Wiener index.
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Table 21. Comparison of the Shannon-Wiener Diversity Index and species richness in three strip-mine ponds 
and NBUN.

MAY JUNE JULY AUGUST MEAN + S.E.* TOTAL
POND H' s H' s H' s H' s H ’ s

DS30 2.26 27 2.68 52 2.32 29 2.87 43 2.53 + .146 59

NB15 2.05 30 2.57 40 1.81 31 2.51 36 2.24 + .183 54

NB1 1.33 6 2.38 16 1.78 13 1.74 20 1.81 + .216 27

NBUN 2.70 40 2.75 61 2.71 48 2.94 55 2.78 + .056 78

*S.E. = standard error of the mean (s-)
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DISCUSSION

CHEMICAL CHARACTERISTICS

Driver and Peden (1977) have shown that an interdependent set of 

factors affect the water chemistry of Canadian prairie wetlands. Some of 

these factors also influence the chemistry of strip-mine ponds. They 

are: 1) the amount of soluble salts in the spoil material available for

leaching, 2) permeability of the spoil material, 3) topography surround­

ing the ponds and 4) components of water loss, in particular evaporation 

and freezing out. In addition, ion-interaction (Kollman, 1974), bacterial 

decomposition and other abiotic processes have varying affects on strip- 

mine pond chemistry.

Seasonal variation in water chemistry is controlled largely by the 

semi-arid climate of western North Dakota, where evaporation exceeds 

summer precipitation. Strip-mine ponds, which have no outlets, act 

like large evaporating dishes as the water levels gradually decline. 

Evaporation, therefore, is probably the single most important factor 

affecting pond chemistry.

In the following sections, trends of certain elements in strip-mine 

ponds will be discussed with respect to these factors.

pH, carbonate buffer system

Highest pH values occurred in summer and autumn during peak photo­

synthetic activity, and the lowest values occurred in winter under ice 

when some carbonate is reconverted to bicarbonate by CO2 arising from
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decomposition (Figure 16, Appendix 1). Changes in pH reflect variations 

in pond conditions, particularly photosynthesis in saline waters (Cole, 

1975 and Farmer, 1973). During photosynthesis, plants can successively 

absorb CO^, eliminate bicarbonates, precipitate CO 2 and form hydroxyl 

ions. All these events lead to a rise in pH. In contrast, when respira­

tion and decomposition occur, pH decreases as CO2 is liberated.

Seasonal variations in pH are also influenced by concentration of 

mineral ions. As with saline lakes in Washington (Anderson, 1958) and 

North Dakota (Farmer, 1973), the narrow pH range in DS30 reflects large 

amounts of ions that produce a high buffer effect. The increasingly 

wider range of pH with successively younger strip-mine ponds corresponds 

to a decrease in the amount of ions, and hence a decrease in the buffer 

effect (Tables 2 and 5, Appendix 1, Table 22).

The mean pH values decreased with increasing age of the pond 

(Tables 2 and 4). This trend is contrary to what one might expect. The 

older strip-mine ponds have more vegetation; and with more plants, photo­

synthesis would be greater and therefore a higher pH would be the result. 

This trend is not observed because there is an accumulation of acid 

forming substances with passage of time. This is substantiated by the 

trend in sulfates, which has the tendency to increase with the age of 

the pond (Table 5).

Sulfates in the form of calcium sulfate (gypsum) are a major source

of H+ to strip-mine ponds. Calcium sulfate is readily leached from

spoil and is found encrusting the pyrite in Fort Union coal (Kulland,
++1975). Any exchange between Ca and hydrogen ions forms sulfuric acid.

More pyrite is found within the drainage of DS30 than any other 

strip-mine pond. Oxidization of this mineral leads to the formation
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of sulfuric acid in the following manner:

4 Fe 02 + 15 02 + H20 — - 2  Fe2 (S04>3 + 2 H2SC>4

DS30 has several oxidized coal outcroppings and consequently the 

water is stained with humic acids. Berg (1962) studied the brown- 

stained humic waters of the Congo and noted that the pH of these waters 

were controlled largely by organic acids. Though humic acids were not 

specifically analyzed, they are a potential source of H+ to DS30.

Electrical conductivity

One of the major problems confronting aquatic impacts in western 

mining areas is the leaching of soluble salts (Dettman and Olsen, 1976). 

Electrical conductivity gives a quick and easy measure of the total con­

centration of salts in the water leached from the surrounding spoils.

In strip-mine ponds the conductivity shows an increase from spring 

to fall with maximum concentration in winter (Fig. 13). Seasonal changes 

in the conductivity of strip-mine ponds are pronounced for several 

reasons. First, the ponds are frozen over from 4-6 months each year. 

Second, during the summer period, rapid evaporation takes place. And 

third, in the spring the ponds receive a considerable amount of runoff, 

which is most of the inflow in some cases.

To illustrate the affect of the semi-arid climate on strip-mine 

ponds, changes in water level, conductivity and precipitation for the 

summer months appear in Fig. 21. As water levels decline due to decreasing 

precipitation, there is an increase in electrical conductivity. This 

relationship is especially true for the latter part of the summer. The 

decline in water levels and concentration of salts is attributed primarily 

to evaporation, and secondarily to seepage from the basin. These results
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are similar to those obtained by Driver and Peden (1977) In their study 

of Canadian prairie lakes.

The relative composition of the major ions (Fig, 20) shows that among 

the negative ions sulfate and bicarbonate predominant, The anionic com­

position of strip-mine ponds are of the sulfate type (SO^ > HCO^ > Cl) 

and the bicarbonate type (HCO^ > SO^ > Cl). The occurrence of high 

sulfates in strip-mine ponds can be explained by the leaching of soluble 

gypsum and other sulfate salts from the spoil surrounding the ponds, 

Glenharold 5 is the only pond with a bicarbonate-dominant pattern,

Rawson and Moore (1944) have noted that the difference between sulfate 

lakes and bicarbonate lakes on the Canadian prairie is a result of 

differing soil, vegetation and climatic conditions. Riley (1960) has 

shown that spoil characteristics differ not only within the same geologic 

formation, but also between local areas. The difference between G5 and 

the other ponds is probably a result of the different spoil characteris­

tics between mining sites. Therefore, lower levels of sulfate and higher 

levels of carbonates might occur at Glenharold relative to North Beulah.

The cation structure in all strip-mine ponds except DS30 are sodium- 

calcium dominant. In most temperate waters, calcium tends to predominate 

together with bicarbonates (Milbrink, 1977 and Hutchinson, 1957),

Driver and Peden (1977) and Rozkowska & Rozkowski (1969) have shown that 

calcium also predominates in naturally alkaline waters in the semi-arid 

regions of southern Saskatchewan and Manitoba. However, in strip-mine 

ponds, sodium is by far the dominant cation (Table 5, Fig, 20).

Kulland (1975) has shown that Ca and Mg decrease, while Na increases 

through the profile of undisturbed soil at mining sites in Mercer and 

Oliver counties. As the overburden is overturned and exposed, then
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spoil higher in Na (in relation to Ca and Mg) is available for leaching. 

Sodium is very reactive and soluble, and when leached from soil, its 

compounds tend to remain in solution. Together, the increased availabi­

lity and the high solubility of sodium make it the dominant cation in 

strip-mine ponds.

Above conductivities of 2300 ymho/cm, magnesium becomes more common 

than calcium and therefore DS30 is the only pond which is sodium-magnesium 

dominant. Because most magnesium compounds surpass similar calcium 

compounds in their ability to remain in solution, they precipitate at 

different rates. Calcium is usually more abundant than magnesium in 

fresh waters because there is a preponderance of calcium over magnesium 

in sedimentary rock (Cole, 1975). However, at the conductivities given 

above for DS30, the waters are saline and the solubility product of CaCO^ 

is changed and c.alcite is precipitated. At this point magnesium assumes 

more importance.

Information on trends and differences between strip-mine ponds of 

the seven major ions is discussed further in the next two sections.

Sodium, Potassium, Calcium and Magnesium

The temporal trends of Na, K, Ca and Mg tend to increase through the 

summer and fall with the maximum reached in the winter months (Fig. 14). 

All of these ions probably show this trend because of evaporation in 

summer, freezing out under ice cover and dilution by spring runoff.

Many authors have reported similar results (Rawson and Moore, 1944; 

Rozkowska & Rozkowski, 1969; Driver and Peden, 1977; Kollman, 1974; 

and Anderson, 1958). This trend has become expected in shallow, saline 

waters which have little or no major outflow. Rockett (1976) has shown 

that strip-mine ponds in Wyoming have similar levels of Na, K, Ca and Mg
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and presumably they have similar trends.

Levels of Ca and Mg are significantly higher at DS30 than the other 

strip-mine ponds (Tables 2, 5). Slightly higher levels of both Ca and Mg 

(replaceable) are present in the spoil surrounding DS30 (Table 10). This 

suggests that more of these two cations are available for leaching from 

the watershed.

Sulfate and Chloride

Sulfate in water is relatively low except in closed basins, where 

concentration is increased by evaporation. Another exception is the 

sulfate added to aquatic systems in mining areas (Heaton, 1951 and 

Crawford, 1942). The principal sources of sulfate, as has already been 

discussed, result from the leaching of gypsum and the oxidation of 

pyrite (FeS) leached from the lignite.

The temporal trend of sulfates and chlorides show the same trend as 

the four major cations (Tables 2, 5). These anions also show this trend 

because of evaporation and, therefore, increasing concentration.

Continuous leaching of gypsum and pyrite over the years has resulted 

in an increasing sulfate concentration in strip-mine ponds (Table 5). 

Herndon and Hodge (1936) long ago showed that in acid mine waters, any 

carbonate hardness in the lakes is converted into non-carbonate hardness, 

owing to the large amounts of sulfur leached from pyrite. This left 

minerals in the sulfate form causing acidic waters. Although sulfate 

minerals accumulate in strip-mine ponds of North Dakota, the naturally 

alkaline water maintains a carbonate-buffer system.

Chlorides are regularly present in waters, but are abundant only in 

very saline and brackish waters (Cole, 1975). Chloride levels are 

similar in all the strip-mine ponds studied except DS30 (Table 2).
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DS30 is more saline than the other ponds and therefore would be expected 

to have higher levels. In addition, this pond may have contamination 

from animal wastes since cattle graze the surrounding banks, Frequently 

their waste were noted in the shallows of the pond, Since animal excre­

tions contain, on the average, 5g Cl"/liter (Cole, 1975), a source of 

soluble Cl is added to DS30 that may not be added to the other ponds.

Nitrogen

Nitrogen occurs in the elemental, organic and inorganic states. It 

is the inorganic compounds, ammonium salts, nitrate and nitrite which 

are important to biological growth. These forms of nitrogen are made 

available by decomposition, the agents being bacteria primarily and the 

ultimate end product being ammonia-nitrogen. Seasonal cycles of the 

three inorganic nitrogen forms are closely interrelated and are influenced 

by decomposition rates and peak utilization by aquatic organisms.

Summer maxima of ammonia-nitrogen occur when the rate of ammonifi- 

cation exceeds rate of assimilation by plankton. Farmer (1973) has 

shown that NH^-N peaks were followed by plankton increases and a 

decrease in this form of nitrogen. Presumably a similar situation 

exists in strip-mine ponds, which show maxima about early May and late 

June (Appendix 1, Table 22).

Generally, high nitrate levels coincided with lowered ammonia- 

nitrogen concentrations. When ammonia values were high, it indicates 

that assimilation and/or decompsoition rates were predominate over 

bacterial oxidation. Oxidative processes surpass reductive processes 

to give nitrate peaks. These peaks vary from pond to pond, but tend 

to be in the spring and fall (Fig. 17, Appendix 1, Table 22).
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Ammonia levels are higher at DS30 and G5 than the other two strip- 

mine ponds (Appendix 1, Table 22). Higher ammonia at DS30 is the direct 

result of more plant and animal matter available for decomposition,

Ammonia levels at G5 exceed NB15 presumably because G5 has slightly 

higher temperatures. G5 has much greater turbidity and this causes an 

increase in temperature, and this results in a higher rate of ammonifica- 

tion.

Nitrates also do not seem to correlate with the age of the pond 

(Fig. 17, Appendix 1, Table 22), though levels are significantly higher 

at DS30 than any other pond. There are two probable reasons for this:

1. DS30 has more vegetation than any other pond. Therefore more 

organic matter is available for decomposition, 2. cattle feces add a 

source of nitrogen that is not added to any other pond.

Phosphates

Highest phosphate levels are observed under ice during the winter 

(Fig. 18, Appendix 1, Table 22). Hydrogen sulfide formed anaerobically 

under ice reacts with iron to form FeS and liberates phosphorous (Einsele, 

1936; and Ohle, 1954). Increased phosphorous is also caused by reduced 

photosynthetic activity and lowered pH which enables precipitated 

phosphorous to be brought back into solution.

Phosphate in strip-mine ponds tends to decline through the summer 

(Appendix 1, Table 22). When ferrous ions and phosphate occur together 

under aerobic conditions, insoluble ferric phosphate is precipitated, 

thus tying up phosphate in the sediments (Einsele, 1936 and Ohle, 1954). 

The decline in phosphate also coincides with the onset of maccrophyte 

growth and plankton production (Driver & Peden, 1977) .



112

Concentrations of total phosphorous in sulface waters of alkaline 

lakes are generally high, particularly soda lakes (Milbrink, 1977), 

Strip-mine ponds have phosphate levels similar to the alkaline lakes 

studied by Milbrink, both on the order of 300 yg/1. Most phosphate is 

bound in blue-green algae and suspended organic material.

Phosphates are essentially the same from one strip-mine pond to 

the next (Tables 2 and 3). Since the decay of plant and animal material 

is a source of phosphorous to the living components of aquatic ecosystems; 

then one might expect a difference in phosphorous content with age of 

the pond. DS30 with the greatest amount of vegetation and animal 

material should have higher phosphates than younger ponds. However, 

because of changing reclamation practices, the more recent ponds have 

phosphate levels similar to older ponds. The older ponds (DS30 and NB15) 

were formed in areas where active reclamation is the exception rather 

than the rule. In more recent areas, N-P-K fertilizers are applied to 

the recontoured surfaces to help promote growth of a cover species.

Hence, it may be assumed that the higher-than-expected levels of phosphate 

in recent ponds are partially a result of fertilizers applied to and 

leached from the drainage area.

Trace elements

All the strip-mine ponds studied contain measurable amounts of Cu,

Pb, Zn, Fe, Mn, Mo, Ni, Li, Sr, A1 and Si. Rockett (1976) showed 

similar levels of trace elements in his study of Wyoming strip-mine 

ponds. The temporal trends of copper and lead remain relatively constant 

throughout the seasons (Appendix 1, Fig, 16), and do not seem to be 

correlated with biological activity or climatic and chemical changes. 

Kpllman (1974) has shown that copper generally tends to increase in
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concentration through the season. The increase is attributed to either 

a factor of productivity (algal blooms) or may be tied to marl formation 

or adsorption to organics. These factors, which also occur in strip-mine 

ponds, do not seem to affect the trend of copper.

Aluminum, molybdenum, nickel, manganese, lithium and zinc have 

similar constant trends, but have slight to moderate increases in some 

ponds during periods of ice cover (Appendix 1, Table 22). Presumably 

the increase is due to freezing out or release of ions from the sediments 

due to decreasing pH.

Aluminum also seems to show a slight decrease through the summer 

season in the older strip-mine ponds. Kollman (1974) has shown that 

aluminum decreases due to precipitation of aluminum hydroxide or phosphate, 

plant uptake and complexing by dissolved organic matter after plant 

death. In the younger ponds there are few plants and therefore little 

dissolved organic matter. In contrast, DS30 and NB15 show decreases 

because they have good growths of plants which take up aluminum ions and 

complexing probably occurs on dissolved organic matter.

Nickel shows a decrease through the summer in some ponds. If pH is 

correlated with nickel in strip-mine ponds, it would be because of 

increasing pH. Dakota Star 30, which has the lowest pH retains constant 

nickel levels. However at NB1, where pH is highest, nickel decreases 

through the summer season.

The trend of manganese is a little different from the others in 

this group (Appendix 1, Table 22). A very rapid decrease occurs in the 

spring season and probably is a result of precipitation of manganic 

hydroxides in the presence of dissolved oxygen. This decrease is 

followed by constancy and then increase under ice due to freezing out
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and release of manganous ions from the sediments (Tables 7-9).

Strontium follows a trend similar to calcium (Appendix 1, Table 22). 

This is not unexpected since strontium chemically behaves like calcium 

in surface waters (Cole, 1975), The strontium levels are probably tied 

to marl formation as is calcium. When marl falls off plants as they 

begin to die, soluble strontium and calcium bicarbonate are formed. 

Therefore, the level of strontium and calcium are increased.

The seasonal trend of silicon is explained largely by the activity 

of diatoms (Fig. 19). Silicon is used by diatoms in the construction 

of frustules which are insoluble at high pH. During high pH, silicon 

levels are low and when the pH begins to decrease the concentration of 

silicon increases (Appendix 1, Table 22).

4

Heavy metal toxicity

Dettman and Olsen (1977) state that two major problems exist in the 

assessment of aquatic impacts in the western U.S. One, the leaching of 

soluble salts has already been discussed. The second is the potential 

toxicity from trace elements, particularly the heavy metals.

Studies on the acid lakes in the eastern coal province (Heaton,

1951; Crawford, 1942 and Smith & Frey, 1971) and the Missouri region 

(Campbell et. al., 1965a & b) have reported toxic levels of heavy 

metals. Skogerboe (1976) has noted that some heavy metals associated 

with western mining areas are in forms normally considered soluble. 

Therefore, the potential for high levels of heavy metals exist within 

the study area. However, Table 2 shows that concentrations of these 

heavy metals are generally low and are not acutely toxic to aquatic 

organisms.

Skogerboe (1976) states that seven variables are important in
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controlling the chemical equilibria which determine the solubilities 

of many heavy metals. These variables are: pH, total alkalinity, 

total hardness, total sulfate, chloride, nitrate and orthophosphate.

The ranges of these variables are similar between Skogerboe's and the 

present study. Only a major flux of soluble metal ions would cause 

any observable shift in the chemical equilibrium, and once noted would 

give an indication of toxicity to aquatic communities.

Two types of chemical interactions may occur for a particular metal 

ion and any combination of the anionic species. Immobilization of the 

metal ion due to precipitation or to an ion exchange type process may 

occur, or the ion may be mobilized by complexation processes which 

enhance solubility of the metal ion (Stumm and Morgan, 1970).

Because levels of heavy metals are low in strip-mine ponds, preci­

pitation processes are suspected. Probably precipitation by carbonate 

or hydroxide is the controlling equilibrium. Skogerboe (1976) showed 

that solubilities of most metals increase with pH due primarily to the 

formation of soluble hydroxy complexes. The solubilities also tend to 

increase in more acid solutions due to protonation of the carbonate. 

Metals in the strip-mine ponds studied showed no tendency to increase 

in solubility with changes in pH (Appendix 1, Table 22),

As a check on the hypothesis that precipitation accounts for the 

low levels of heavy metals, sediment samples were collected and analyzed. 

Tables 7-9 show that sediment samples from ponds contain higher concen­

trations for most heavy metals measured. This implies that those 

elements contained in the runoff are largely removed from solution and 

precipitated in the sediment fairly rapidly,
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Comparisons to NBUN

The total amount of cations and anions and therefore salinity is 

far greater in the three strip-mine ponds when compared to NBUN (Table 5). 

In fact salinity is three to ten times higher in strip-mine ponds.

Rawson and Moore (1944) have shown that salinities of Canadian prairie 

lakes range from 35 to 118,000 ppm. The strip-mine ponds fall within 

this range and would be considered moderately saline. NBUN, on the 

other hand, is in the range Rawson and Moore (1944) regard as having 

incipient salinity. They use a cut-off point of 200-300 ppm between 

fresh water and saline water.

Bicarbonate is the dominant anion at NBUN (Table 5), which is 

typical of alkaline waters in semi-arid regions (Driver and Peden, 1977 

and Rawson and Moore, 1944). Unlike these waters, strip-mine ponds are 

dominated by sulfates (Table 5). Levels of sulfate are significantly 

higher (t > 2.54, « = .05) in strip-mine ponds (Table 6) and are important 

in contributing to higher salinities.

Calcium is usually the dominant cation in naturally occuring 

alkaline waters in semi-arid regions (Milbrink, 1977), but sodium is 

slightly predominant at NBUN. This is even more evident with strip-mine 

ponds. NBUN has significantly lower levels of sodium (Table 6) and 

therefore is not so clearly sodium dominant.

Together sodium and sulfate account for the major differences 

between strip-mine ponds and NBUN. Reasons for higher levels of these 

ions have already been discussed. These ions result in the greater 

mineralization and salinity in stripr-mine ponds as well as changing the 

anionic and cationic structure.
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Milbrink (1977) states that phosphates are high in alkaline waters, 

usually on the order of .3 mg/1. Phosphate levels at NBUN average .4 mg/1. 

However levels at strip-mine ponds are lower, and in some cases signifi­

cantly lower than NBUN (Table 6). Milbrink (1977) has also noted that 

nitrate-nitrogen is generally low in alkaline waters. Table 6 shows 

that NBUN has lower levels of nitrates when compared to strip-mine 

ponds.

One might conclude that nitrogen is probably more limiting than 

phosphorous at NBUN, but that phosphorous is more limiting than nitrogen 

in strip-mine ponds. There are a couple of reasons for this. First 

there may be a low nitrogen/phosphorous ratio in the sources of these 

elements. Sources from overburden material are different from natural 

soils. Also, phosphorous added because of fertilizers is a source of 

this element to strip-mine ponds. Second, phosphorous may regenerate 

more rapidly than does ammonia from decomposing organic matter in these 

ponds.

Certain trace elements are essentially no different between NBUN 

and strip-mine ponds (Table 6). Iron is significantly lower in strip- 

mine ponds. With the addition of iron in the form of SO^, Cl and NO^, 

the salts tend to dissociate. The resulting ferrous and ferric ions 

combine with hydroxide to form precipitates, with little iron remaining 

in solution. In waters like NBUN, which are not as strongly buffered, 

iron tends to remain in solution, hence the higher levels of this element 

in NBUN.

Lithium, an alakli metal related to Na & K, is significantly higher 

in all strip-mine ponds (Table 6). Nickel, lead, strontium and silicon 

show significance in certain strip-mine ponds and the trend of signifi­

cance suggests that concentrations of these ions increase with the age



118

of the pond. Therefore there is an accumulation of these elements, 

particularly in DS30. The higher levels in strip-mine ponds is probably 

due to geochemical origions or related to some biological activity.

COMMUNITY STRUCTURE

Species Composition, Species Density and Biomass

Distinct differences in species composition, species density and 

biomass exist in the three strip-mine ponds (Tables 11-14, Tables 17-19, 

Fig. 22 and 25). North Beulah 1 has fewer kinds of species, lower total 

density and lower biomass than the other two strip-mine ponds. North 

Beulah 15, in turn, has less organisms, lower density and lower biomass 

than Dakota Star 30. In the Mercer County ponds a progressive process 

of maturing is seen. Crawford (1942) and others (Campbell et. al.,

1965a & b; Smith & Frey, 1971; Parsons, 1964; Gash, 1968; Heaton, 1951; 

Simpson, 1961 and Waller, 1967) have noted similar progressive changes 

in acidic strip-mine ponds.

North Beulah 1 is most unlike NBUN and the other strip-mine ponds. 

Chemically and physically it is the most severe environment for aquatic 

invertebrates. The ranges of several measured chemical variables are 

more extreme than any other pond studied (Table 2, Appendix 1, Table 22). 

In addition, NB1 is more exposed to climatic factors. The most frequently 

occurring species are the Dipterans Bezzia (Ppobezzia) sp., Tanytarsus 

sp., Palpomyia sp. and Chaoborus spp., and the Hemipterans Notonecta and 

Corixidae. They occur in such large numbers, in particular the Ceratopo- 

gonidae (2503 individuals/m^), as to leave little doubt of their tolerance 

to this harsh environment. Roback (1974) states that the Ceratopogonidae 

are very common and very dense in places where chemical extremes exist.
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The percent composition of the major invertebrate groups (Fig 23 & 

24) gives an indication of the community structure found at NB1, The 

Diptera account for almost 80% of all organisms present in this pond. 

Roback (1974) states that the Diptera, represented chiefly by the 

Chironomidae, have members tolerant of many chemical extremes. They, 

along with the Ceratopogonidae, are extremely tolerant pioneer groups. 

Ordinarily they require only a small amount of food and have short 

life histories. At NB1 there are five genera of chironomids, Tanypue sp. 

Tanytarsus sp., Chironomus spp., Pentanura sp., and Anaptopynia sp,, 

which represents half the number of Dipterans found.

The Insecta group (Figures 23 & 24), Hemiptera and Coleoptera 

primarily, comprises 14% of all organisms at NB1. They generally have 

powers of locomotion which enable them to move from one environment to 

another with more ease than most invertebrates (Pennack, 1958). For 

this reason, Roback (1974) does not consider the Haliplidae, Dytiscidae, 

Gyrinidae and Hydrophilidae to be of great significance in water quality 

studies. However, the fact that larval stages of some beetles (Berosus 

sp., and Haliplus spp.) have been found in bottom sediments of NB1 

suggests that these genera are also tolerating the environmental extremes 

The Hemipterans, in particular Notonecta sp., in addition to their 

mobility are usually common and abundant everywhere in a pond. The 

Hemipterans make up almost the entire total summer biomass at NB1 with 

5.02 grams/m^ (Table 17).

The successional trend in strip-mine ponds continues with NB15 which 

contains a larger and somewhat different assembledge of aquatic inverte­

brates. Amphipoda, Odonatg, Ephemeroptera, and Mollusca are a familiar 

part of the structure of the faunal community. The primary reasons for
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the change in species composition are due to the presence of vegetation 

as a source for support and shelter and moderation of chemical extremes,

Chvysops sp. is the only Dipteran among the six most frequently 

occurring species. Other genera include; Hyallela, Lestes, Hydracarnia, 

Physa, and Enallegma, Amphipoda numbers attain a maximum of 9910 

individuals/m^. Hyallela azteaa comprises almost 40% of all organisms 

found at NB15. Pennack (1958) states that amphipods are not generally 

well adapted to adverse environmental conditions. The dominance of 

Hyallela azteea at NB15 suggests that environmental conditions have 

moderated in comparison to NB1.

The increase in the number of species at NB15 has caused an increase 

in the number of food chains, and therefore a more complex community 

structure than is evident at NB1. fephemeroptera, for example, fulfill 

all the basic requirements of an herbivore and perhaps are the prime 

grazers in the aquatic food web (Day, 1968). Ephemeroptera nymphs 

occupy an important place in the economy of NB15, since they are a major 

food source of birds and Odonata. At NB1, where Ephemeroptera are 

lacking, this food chain does not exist.

Some authors (Day, 1968; Needham, et. al., 1935) have stated that 

Ephemeroptera are sensitive to pollution and chemical extremes.

However, many species can tolerate high alkalinity. Caenis sp., 

Centroptilum spp., and Callebaetis spp., common to NB15, are listed by 

Roback (1974) as tolerant to high levels of alkalinity, as much as 220 ppm. 

Alkalinity at NB15 ranges from 204 to 228 ppm. Alkalinity is even higher 

at DS30 where these same species are collected.

In the first summer of the study, Odonata were absent from NB1. 

However, during the second summer, Enallegma sp. was present among a
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small patch of Potamogeton sp. Since Enallegma sp. appeared at NB1 only 

when Potamogeton sp. is present, this suggests that vegetation, and not 

harsh chemical conditions limit certain Odonata populations. Enallegma sp. 

is sucessful in consistently maintaining good population sizes under 

chemical extremes (Roback, 1974). At NB15 where vegetation is more 

prominant, Odonata attain both high density and high biomass (4102 

individuals/m^ and 13.67 grams/m^).

One of the most frequently occurring species at NB15 is Physa spp. 

Since physical and chemical conditions have a profound affect upon 

mollusca, they give an indication of the quality of the water. The 

most important features of a favorable habitat according to Mozley (1954) 

are (1) cleanliness of water, (2) absence of disturbance and (3) presence 

of CaCO^. Calcium carbonate is necessary for shell formation and 

precipitation and agglutination of clay particles to produce clear 

waters. Clear waters allow light to enter so that vegetation can grow 

and give the support necessary for Mollusca.

Snails do not thrive at NB1 because some of the above criteria are 

not met. Chemically there is enough CaCO^ to allow for shell growth.

But the water is turbid and not at all protected from the wind. Because 

there is a good deal of clay still in suspension, a clear water is not 

available to let light in the pond. Therefore, a good supply of 

vegetation does not exist. However, in the second summer of the study 

some Potamogeton sp. and Typha sp. became established and the water was 

a little less turbid. With conditions improving, one specimen of 

Gyraulus sp. and one of Physa sp. was collected from NB1.

At NB15 the clay has precipitated to produce a clear, clean water; 

there is sufficient CaCO^j and there is ample vegetation. However,
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there are aspects which cause molluscan distribution to be limited. The 

most fundamental condition governing snail populations is the form of 

the basin (Mozley, 1954). At NB15, the basin slope excedes 62%, making

predation easier on snails and their eggs. Although molluscan distribu-
2

tion is limited it still accounts for the highest biomass (13.9 grams/m ) 

(Table 18).

Pieczynski (1964) has evaluated the role of water mites and has 

shown that they assume a significant place in the lake ecosystem. The 

following observations at NB15 support some of Piecyznski’s conclusions:

(1) Water mites tend to occur abundantly in the relatively shallow

parts of the pond. At their peak in June, Hydracarina reach 1168
2individuals/m (Table 18). (2) Water mites display a considerable

amount of ecological activity. This ecological activity was not 

measured, but it was observed. The high trapibility of water mites 

together with the high abundance, caused a high degree of prevalence of 

water mites in the environment (Pieczynski, 1964). (3) Along with

high abundance and activity, the predacious nature of water mites helps 

decrease invertebrate fauna. Laird (1947) has shown in his experiments 

on mosquitoes that water mites have a significant role in reducing 

Anopheles and Culex. Water mites may be responsible for Culex having 

lower abundance at NB15 than at any other pond studied. (4) Crisp (1959) 

reported on a decreasing fecundity of Corixidae caused by parasitism of 

Hydracarnia. Parasitism of water mites on corixids was observed, but 

not quantified. The Corixidae at NB15 account for 3.35% of all organisms, 

while at NB1 they make up 4.01% of the total number of organisms collected. 

This may be indicative of the reduction of numbers of the invertebrate 

fauna at NB15 by water mites. (5) Finally, Hydracarnia have few natural
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enemies and have high resistance to extreme environmental factors. 

Cloudsley-Thompson (1947) showed in laboratory experiments that neither 

invertebrate predators or fish fed on water mites. This, he pointed 

out, was due to vivid coloration and large, subcutaneous glands which 

secrete a repelling substance. In contradiction to this, Pennack (1958) 

has pointed out that Hydracarnia are preyed upon by a wide variety of 

aquatic invertebrates, especially Cnidarians and carnivorous insects. 

Cnidarians are not present at NB15, but carnivorous insects, especially 

Anisoptera, are abundant. Since water mite populations flourish in 

spite of the presence of an abundant predator, perhaps the vivid 

coloration and subcutaneous glands do repel Anisoptera. Anisoptera 

were only abundant where few water mites were present, and vice versa.

Continuing along the successional series, community structure and 

species composition are more varied at DS30 than at any other strip-mine 

pond studied. Total number of species is not very different from NB15, 

and many of the same species occur in both (Tables 13 and 14). However, 

DS30 resembles NBUN more so than NB15. The Tricoptera of DS30 include 

several species absent from the other strip-mine ponds, but which are 

found at NBUN. Most of these species belong to the family Limnephilidae. 

Cases of Limnephilidae are triangular, circular or flat in cross section; 

compact or loosely constructed; and composed of bits of a great variety 

of vegetable, or mineral matter (Pennack, 1958). At NBUN and DS30, 

Limnephilid cases are usually round in cross section, loosely constructed 

and composed of twigs, grass, mollusc shells, sand, gravel and leonardite. 

The absence of Limnephilidae at NB15 may be explained by the lack of

most case materials.
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Another indication of the increased community structure at DS30 

is the absence of several species in the other two strip-mine ponds 

(Tables 11-14). Odontomyia is chiefly associated with flowers, and 

DS30 is the only strip-mine pond with a sufficient number of wild- 

flowers to support a population of Odontomyia. With so few flowers in 

the area surrounding the two other strip-mine ponds, soldier flies are 

not expected to have larval stages present in the ponds. Hydra require 

large pieces of debris or they do not occur on fine, muddy bottoms 

(Pennack, 1958). NB1 has a soft, clayey bottom devoid of debris.

NB15 has a muddy bottom with some debris, but nothing like that which 

exists at DS30. Finally, Plumatella is characteristically found in 

unpolluted ponds on the underside of logs and stones or on twigs where 

the light is dim. The chemical environment and exposure to light 

prohibits Plumetalla at NB1. No logs, stones, or twigs are present at 

NB15, though presumably vegetation would support Plumatella if enough 

shade were available. Only at DS30 and NBUN where twigs or branches and 

enough shade exists is Plumatella present. Because of the increasing 

stabilization of the pond bottom and the area surrounding the pond, the 

community structure of DS30 becomes more like NBUN.

Comparing Dakota Star 30 with NBUN (Tables 15 and 16), a high degree 

of similarity is found between the biotas of the two. Other studies 

(Comita and Whitman, 1976; Cvancara and Van Alstine , 1977; and Woodward- 

Clyde, 1978) conducted within or near the present study area show that 

ponds in unmined areas and the strip-mine ponds studied have similar 

biota. This may be taken as evidence that the strip-mine ponds are in 

the process of returning to the biological norm found typically in 

natural ponds in Mercer County.
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Although DS30 is most like NBUN, the benthic community differs 

significantly. Chironomus tentans and C. plwnosus dominate the bottom 

fauna at DS30. Except for other chironomids, Mollusca and occasional 

oligocheates, all other organisms common to NBUN benthos are lacking.

Reasons for this are not understood, although fluctuating water 

levels may help explain the dominance of chironomids. Ponds within the 

study area continually go through severe changes in water level with 

spring thaw and summer drought. Rawson (1962) and Grimas (1962, 1964) 

have shown that fluctuating water levels favor chironomids by causing 

a change in the balance of the fauna.

Annelids are poorly represented in strip-mine ponds. No oligocheates 

are present until DS30. Since aquatic oligocheates occupy a niche 

equivalent to their terrestial counterparts, feeding on bottom mud 

and mixing surface layers, one would expect to find oligocheates at 

NB15, as well as DS30.

Sawyer (1972) has studied several factors which affect the ecological 

distribution of leeches. Of these, chemical and physical factors have 

little or no diiect influence on abundance of leeches, except low 

levels of hardness, alkalinity and pH and high levels of salinity.

Since DS30 has high levels of hardness and alkalinity and pH is on the 

alkaline side of neutral, perhaps the high salinity limits leeches at 

this pond. All other factors listed by Sawyer (1972) are found at DS30 

and only the high salinity is suspect.

Species Diversity

Hutchinson (1959) was important in focusing attention on the 

subject and problems of species diversity. Since his paper, certain
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aspects of diversity have become better understood. Diversity and its 

converse, dominance, are not simply products of environmental conditions 

or species interactions alone, but contain aspects of both factors,

Pielou (1975) and Pianka (1966) have summarized several mechanisms which 

have been proposed to explain the variations found in species diversity. 

Of these, three are of particular interest to the discussion of the 

diversity observed in strip-mine ponds: (1) environmental stability,

(2) spatial hetergeneity, and (3) productivity.

The environmental stability hypothesis assumes that relative 

constancy and predictability of favorable conditions for a given group 

of organisms increases species diversity by guaranteeing the availability 

of critical resources, and ensuring favorable growth and reproduction.

The high environmental stability leads to high community stability which, 

in turn, permits high diversity (Pielou, 1975).

A distinct increase in species diversity occurs through the pond 

series (Fig. 25 and Table 21). Correlated with this increase in 

diversity is an increase in environmental stability. Because NB1 is 

the most severe environment, experiencing the widest fluctuations in 

chemical and physical factors, instability and unpredictability act in 

two ways to decrease species diversity: (1) To survive in an unstable 

environment, a species needs to be flexible and highly tolerant. This 

has been shown for Bezzia (Probezzia) and the Chironomidae at NB1, As 

a result, a given type of habitat can contain fewer niches and hence 

fewer species the more strongly unstable or more widely fluctuating the 

conditions (Pielou, 1975). Since NB1 is the most unstable pond environ­

mentally, it has the lowest species diversity. (2) Only those species 

that can quickly and surely become established in a newly created
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environment can persist; thus species-populations that can not establish 

themselves in a new environment will be automatically excluded from such 

environments. The Diptera, as a whole, are quick to establish themselves 

at NB1. Invertebrates like Ephemeroptera, Odonata and Mollusca are 

exluded from NB1 because they can not persist in such an unstable 

environment. Since few species are able to establish themselves quickly 

in such an environment as NB1, then species diversity is low.

Environmental stability with respect to species diversity has its 

greatest affect on NB1. This does not mean that it does not help 

determine diversity at NB15 or DS30, but other mechanisms of diversity 

are probably more important. With a substantial increase in the amount 

and kinds of aquatic macrophytes there is a larger amount of spatial 

variation in the ponds which provides a greater number and variety of 

available habitats for specialized species.

It has been inferred throughout this discussion that substrates, 

particularly vegetation, are important in determining the number of 

species in the various ponds. Long ago it was shown that vegetation 

was important in support of animal life in pond. The presence and 

distribution of macrophytes is of prime importance to the diversity of 

chydorid communities (Whitside and Harmsworth, 1967). Abele (1974), 

studying decopod crustaceans, found strong positive correlation between 

species number and the number of different substrate types available.

A similar situation exists in strip-mine ponds and can be seen vividly 

in the succession of ponds.

Abele (1974) further noted that the substrates in the crustacean 

environment are used as shelter, feeding sites and as a source of 

nutrition. Typha, Potamogeton and other higher aquatic plants at NB15
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and DS30 provide places of shelter for many invertebrates. As well as 

shelter, these aquatic plants provide feeding sites because of abundant 

epiphytic growth, particularly on Typha. In some instances vegetation 

(Typha) is an important food source, especially for the herbivores like 

Ephemeroptera, some Coleoptera, Tricoptera and Mollusca, A site for 

reproduction is another important utilization of aquatic macrophytes 

that should be considered in strip-mine ponds. For example, the eggs 

of Haliplus were found attached to aquatic vegetation.

Increasing the number of substrates in a pond would increase the 

number of species present. Theoretically a species can use one substrate 

for shelter, one for a reproductive site, another for a feeding site and 

yet another for a source of nutrition, thus reducing the competitive 

interaction for each one and thereby increasing the diversity (Abele,

1974) .

The increase in number of substrates correlates with the increase 

in diversity. Therefore segregation is at a maximum at DS30 because 

of the greater number of vegetative substrates. The number of vegetative 

substrates is probably the most important factor in the diversity in 

strip-mine ponds.

Connell and Orias (1964) have argued that high diversity is strongly 

influenced by high productivity. The productivity hypothesis supposes 

that diversity is directly proportional to the rate of energy flow.

This determines the abundance of species-populations and hence the sizes 

of their gene pools. All the energy assimilated by living organisms is 

allocated to two purposes; either it is used for reproduction and growth 

as expressed in density or biomass or both, or it is used and dissipated 

in maintenance of homeostatic regulatory processes (Connell and Orias, 1964).
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Because of a widely fluctuating environment, it is expected that at 

NB1 a larger fraction of assimilated energy must be allocated to 

maintenance of homeostasis and hence a smaller fraction is available 

for population growth and reproduction. As the environment at NB15 and 

DS30 becomes less harsh, organisms can put more energy into growth and 

reproduction. This observation is confirmed by the increase in both 

density and biomass through the pond series (Fig. 22). Therefore a 

higher diversity at DS30 correlates with its higher biomass and density.

Equitibility

The diversity of a community depends on two things: the number of 

species and the relative abundance of each individual species. To 

adequately describe a community's diversity both factors of the diversity 

index should be considered. A community with a few, evenly represented 

species can have the same diversity index as one with many unevenly 

represented species. It is desirable to keep these two aspects of 

diversity separate.

It is predicted that in a rigorous environment diversity can be 

determined by relative abundance, and in a non-rigorous environment 

species richness alone is enough to determine diversity (Tramer, 1969) . 

For phytoplankton communities Sager and Hasler (1969) found that 

relative abundance (J') accounted for most of the difference in community 

diversities. Tramer (1969) showed that breeding bird diversities can 

be adequately described by merely counting the number of species, and 

disregarding the relative abundance. Tramer (1969) suggested that 

these strategies are responses to the two basic types of environments, 

with phytoplankton at one extreme and breeding birds at the other

extreme.
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Community diversities at strip-mine ponds fall somewhere in 

between the extremes. The observation that most of the difference in 

diversity in strip-mine ponds is accounted for by species richness 

can be misleading. For many cases this may be true, but there are 

exceptions.

At NB1, the May and June diversities are higher than in July and 

August (Appendix 2, Table 23). This is because the Ceratopogonidae do 

not become dominant until mid to late summer. They cause the J' to 

increase and consequently the H' to decrease. Prior to their abundance 

the few species that were present had similar abundances and this caused 

higher H'. The variability of J' is greatest at NB1 and least at DS30. 

Goulden (1964) has noted that low and variable J' would appear to be a 

general characteristic either of early succession or of an ecosystem 

containing opportunistic species. NB1 is certainly in early succession 

and the Ceratopogonidae are opportunistic and probably gain advantages 

not shared by other species.

At NB15 the J' is not as variable as it is at NB1, but is also 

accounts for a significant part of the diversity. Species richness is 

similar at NB15 and DS30 in July, however H' indicates a much higher 

species diversity at DS30 (Appendix 2, Tables 27 and 28 and Table 21). 

HyatZeta azteoa accounts for over half the individuals collected at NB15. 

Inclusion of numbers of individuals of each species in the index, 

information which is not considered in species richness alone, provides 

a more complete description of community structure. And in this particular 

case, J' accounts for much of the diversity.



SUMMARY AND CONCLUSIONS

As a rule in the past, ponds in spoil banks of mined areas arose 

incidentally as a result of haphazard piling of overburden. Groundwater 

and runoff from rainfall would tend to fill any depression, without 

natural drainage. In several areas these ponds have been of secondary 

value, such as for recreation, wildlife and domestic animals.

Modern strip-mining practice includes leveling and recontouring 

the land, and encourages the growth of planted and volunteer vegetation. 

Since the land can be structured so that water does not accumulate in 

depressions, the question is, why make ponds in strip-mined areas?

There is a tendency to think that chemicals leached from newly surfaced 

spoil might contain materials harmful to life. If drainage water were 

collected in basins and held there, then any such harmful material 

would stay in the mined area. Efforts are already underway to discourage 

pond formation and to eliminate existing ponds in certain mining areas 

of North Dakota because of this reasoning.

Certainly in some areas with high pyrite content it has been shown 

that sulfuric acid makes the waters so acidic that plant and animal life 

is inhibited. But, in the waters of mined areas of western North Dakota 

such harmful material is minimal. Geologically, this area is one of 

naturally occurring alkaline waters. The waters of all studied ponds 

are alkaline, but not so alkaline as to inhibit life, nor very different 

from naturally occurring bodies of water nearby.

This study also shows that newly formed ponds in strip-mine areas 

rapidly become similar to the chemical and biological norm in adjacent

131
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areas. Within the first year after formation, new ponds already contain 

some form of life - mostly aquatic insects. The chemical environment at 

NB1 is harsh, but by the second summer, cattails and pondweeds start to 

grow and begin to moderate the chemistry of the water. This causes an 

increase in the quantity and variety of animal life. As the amount of 

rooted and submerged vegetation increases, the chemical environment 

improves and the animal productivity, as shown by biomass, density and 

species diversity, increases, until, by the 30th year (DS30), the 

fauna of mined ponds are practically indistinguishable from those in 

naturally occurring prairie patholes.

The value of any body of water in a semi-arid area like North Dakota 

for recreational, wildlife and domestic purposes, is obvious. Since 

strip-mine waters have "good" water quality and support adequate animal 

populations, their recreational and wildlife values are likewise obvious.

In fact, the North Dakota Game and Fish Department has long claimed 

that spoil banks provide game animals, birds and other wildlife with some 

of the best habitat in the area.

In conclusion it might be pointed out that:

Chemically:

1) Ponds in strip-mine areas (pH 7.6-8.5) and NBUN (pH 8.2) are 

alkaline.

2) Strip-mine ponds show high salinities, with sodium and sulfate 

as the dominant ions. Though salinities are higher than NBUN, 

they do not exceed the range of naturally occurring ponds of 

similar geologic setting in North Dakota, Wyoming and Saskatchawan,

Canada.
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3) Several other variables analyzed in strip-mine ponds have 

concentrations higher than NBUN (Sr, Ni, K, Mn, Ca, Li, Mg,

NO^, Cl). Although concentrations are higher, they are not 

above levels that would be expected in prairie potholes.

A) Other variables analyzed (Fe, Al, Pb, Si, Cu, Zn, Mo, NH^,

PO^) are essentially no different from NBUN.

5) Trace ions and heavy metal toxicity is not a problem in 

strip-mine ponds. Levels are normal or low because they are 

quickly precipitated into bottom sediments. Therefore, there 

are no materials that are really harmful to life.

6) In general, surface mined waters will tend to resemble 

naturally occurring ponds located within the same geography 

after vegetation has become established in these waters. 

Moderation in water chemistry of strip-mine ponds is noticable 

within the first couple years of vegetative growth.

Biologically:

1) When an impoundment is formed, it is immediately used by 

wildlife and soon becomes inhabitated with aquatic organisms.

2) Six Phyla are represented in collections from strip-mine ponds. 

Nematomorpha, Cnidaria, Bryozoa and Annelida are not common

in these ponds. The bulk of the organisms are Mollusca or 

Arthropoda, with the Insecta representing 80% of all species 

identified.

3) Vegetation is the key to limiting overall productivity in 

community structure. Not only does vegetation moderate water 

chemistry, it also provides food, shelter, sites for reproduction 

and support for aquatic insects.
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4) As amount of vegetation increases from NB1 through DS30, so does 

the density, biomass and species diversity. Density increases 

from 1,337 ind./m^ at NB1 to 13,453 ind./m^ at DS30. Biomass 

increases from 15,9 lbs/acre to 1,133,1 lbs/acre. Species 

diversity, as measured by the Shannon-wiener index, increases 

from 1.81 at NB1 to 2.53 at DS30.

5) Increasing values of a similarity index were obtained when 

comparing three strip-mine ponds to NBUN. These values show 

that as a strip-mine pond increases in age, the more it 

resembles NBUN.

6) In general, ponds in strip-mine areas support a variety of 

aquatic life and exhibit a growth potential not unlike typical

prairie potholes.
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Table 22. Concentration of 26 chemical variables in four strip-mine 
ponds and NBUN, in ppm. (except pH and E.C, in yminho/cm^)
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TABLE 22

D A T E OS 30 NB1 5 G5 NB l NBUN

PH 9 - 1 5 - T 5 7 . 9 2 9 . 0 0 8 . 2 0 9 . 6 0 _____
PH 1 0 - 0 5 - 7 5 7 . 9 2 9 . 0 3 9 . 0 9 9 . 0 9 —

PH 1 0 - 2 5 - 7 5 7 . 9 0 8 . 0  7 8 . 6 9 8 . 8 3 —

PH 1 1 - 0 9 - 7 5 7 . 7 4 7 . 9 7 6 . 4 4 8 . 5 9 ------ -
PH 1 2 - 0 6 - 7 5 7 . 5  0 7 . 2 7 7 . 7 0 7 . 6 0 --- _ _
PH i - i e - 7 6 6 . 9 5 7 . 2 0 8 . 1 0 — —

PH 2 - 2 1 - 7 6 6 . 9 7 7 . 1 9 8 . 2 7 7 . 3 4 —

PH 3 - 2 1 - 7 6 7 . 2 7 7 . 3 5 7 . 9 3 7 . 5 7 —

PH 4 - 1 7 - 7 6 7 . 7 5 8 . 1 0 6 . 3 4 3 . 3 5 —

PH 5 - 0 7 - 7 6 7 . 5 6 8 . 2 3 8 . 5 8 8 . 1 9 7 . 4 6
PH 5 - 2 0 - 7 6 7 . 6 0 6 . 3 4 8 . 7 3 8 . 5 3 7 . 7 5
PH 5 - 2 7 - 7 6 7 . 6 0 8 . 4 4 8 . 8 4 8 . 6 9 7 . 7 6
PH 6 - 0 6 - 7 6 7 . 7 6 8 . 5 3 9 . 0 4 8 . 6 5 8 . 3 0
PH 6 - 1 0 - 7 6 7 . 8 4 8 . 5 3 9 . 0 0 8 . 9 1 8 . 4 5
PH 6 — S 8 — 7 6 7 . 8 4 8 . 4 6 9 . 0 5 9 . 1 0 8 . 7 0
PH 6 - 2 5 - 7 6 7 .  78 8 .  06 8 . 7 5 8 . 8 2 8 . 5 8
PH 7 - 0 1 - 7 6 7 . 6 2 8 . 3 3 8 . 9 4 9 . 2 2 8 » 6 2
P H 7 - 0 8 - 7 6 7 . 7 4 8 - 3 3 8 . 9 5 9 . 1 0 8 . 8 7
PH 7 - 1 4 - 7 6 7 . 9 4 a .  16 8 . 9 5 8 . 8 0 8 . 6 0
PH 8 - 0 7 - 7 6 7 . 6 2 8 . 1 4 9 . 1 0 9 . 5 0 9 . 5 0

EC 9 - 1 5 - 7 5 3 . 9 0 2 . 7 4 1 . 6 4 3 . 3 9 —
EC 1 0 - 0 5 - 7 5 3 . 9 1 2 . 1 4 1 . 2 9 2 . 5 8 —
E C 1 0 - 2 7 - 7 5 4 . 5 7 2 . 4 9 1 . 4 5 2 . 7 9 —
E C 1 1 - 0 9 - 7 5 4 . 6 8 2 . 3 6 1 . 4 5 2 . 7 2 —
EC 1 2 - 0 6 - 7 5 5 . 5 4 2 . 6 8 1 . 7 4 5 .  1 4 —
E C 1 - 1 8 - 7 6 5 . 7 9 2 . 9 3 2 . 5 4 — —
E C 2 - 2 1 - 7 6 5 . 7 9 2 . 7 9 2 . 3 5 . 3 1 —
E C 3 - 2 1 - 7 6 . 9 4 . 9 3 . 4 6 . 4 9 —
E C 4 - 1 6 - 7 6 2 . 4 9 2 . 3 2 1 . 2 8 1 . 0 0 —
E C 5 - 0 7 - 7 6 2 . 8  ! 2 . 3 3 1 . 4  1 1 . 2 3 . 4  1
EC 5 - 2 0 - 7 6 3 . 1 9 2 . 1 ? 1 . 4 6 1 . 4 3 . 4 2
E C 5 - 2 7 - 7 6 3 . 0 1 2 . 2 9 1 . 3 2 1 . 3 5 . 3 5
E C 6 - 0 6 - 7 6 3 .  1 7 2 . 3 2 1 . 4 5 1 . 4 2 . 3 9
EC 6 - 1 0 - 7 6 3 .  1 7 2 . 3 0 1 . 4 9 1 . 4 2 . 4 1
EC 6 - 1 8 - 7 6 3 . 0 9 2 . 2 9 1 . 3 5 1 . 3 2 . 4  1
E C 6 - 2 5 - 7 6 2 . 7 7 2 .  13 1 . 2 5 1 . 0  1 . 4  1
EC 7 - 0 1 - 7 6 2 . 9 3 2 . 1 4 1 . 2 9 l .  1 0 . 3 6
EC 7 - 0 8 - 7 6 2 . 9 0 2 . 1 7 1 . 3 5 1 . 1 9 . 3 5
E C 7 - 1 4 - 7 6 3 . 1 7 2 . 2 2 1 . 4 2 1 . 3 0 . 3 9
E C 8 - 0 7 - 7 6 3 . 6 4 2 . 4 9 1 . 5 9 2 . 2 9 . 4  1

NA 9 - 1 5 - 7 5 4 1 0 4 4 0 3 6 0 8 0 0 —

NA 1 0 - 0 5 - 7 5 4 0 0 2 3 0 3 6 0 5 9 0 —

NA 1 0 - 2 5 - 7 5 1 8 0 5 0 0 3 4 0 140 —

NA 1 1 - 0 9 - 7 5 3 5 0 5 0 0 3 5 0 3 9 0 —

NA 1 2 - 0 6 - 7 5 7 1 0 5 9 0 AS O 1 2 0 0 —

NA 1 - 1 8 - 7 6 7 5 0 6 9 0 710 ---------- - —

NA 2 - 2 1 - 7 6 7 S 0 6 8 5 6 6 0 7 0 —

NA 3 - 2 1 - 7 6 2 2 0 190 I 3 C 105 —

NA 4 - 1 7 - 7 6 2 3 0 4 0 0 2 6 0 1 7 0 —

NA 5 - 0 7 - 7 6 2 5 0 4 0 0 2 5 0 2 0 0 50
NA 5 - 2 0 - 7 6 2 9 0 4 50 3 0 0 2 3 0 SO
NA 5 - 2 7 - 7 6 3 3 0 4 5 0 3 1 0 2 7 0 40
NA 6 - 0 6 - 7 6 3 6 0 4 6 0 3 4 0 2 8 0 6 0
NA 6 - 1 0 - 7 6 3 6 0 4 6 0 3 6 0 2 9 0 50
NA 6 - 1 8 - 7 6 3 5 0 4 7 0 3 4  C 2 70 80
NA 6 - 2 5 - 7 6 31 0 4 2 0 3 0 0 2 1 0 50
NA 7 - 0 1 - 7 6 3 4  0 4 30 3 2 C 24 0 60
NA 7 - 0 8 - 7 6 3 4 0 44 0 3 4  0 4 1 0 50
NA 7 - 1 4 - 7 6 3 8 0 4 5 0 3 5 0 2 7 0 6 0
NA 8 - 0 7 - 7 6 A S O 4 9 0 4 0 0 4 7 0 50
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Table 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

CA 9 - 1 5 - 7 5 2 0 4 35 10 4 1 __
C A 1 0 - 0 5 - 7 5 2 5 7 35 12 2 8 —

C A 1 0 - 2 5 - 7 5 2 5 6 4 8 1 1 2 6 — —

C A 1 1 - 0 9 - 7 5 2 9 4 49 13 2 6 —

CA 1 2 - 0 6 - 7 5 3 2 0 5 8 16 4e —

CA 1 - 1 8 - 7 6 3 4 2 3 8 6 2 — —

C A 2 - 2 1 - 7 6 3 5 7 61 3 1 1 5 —

C A 3 - 2 1 - 7 6 191 42 30 2 8 —

C A 4 - 1 7 - 7 6 2 6 2 6 3 23 29 —

CA 5 - 0 7 - 7 6 2 05 51 24 3 8 2 9
CA 5 - 2 0 - 7 6 2 6  1 76 3 1 4 5 4 6
CA 5 - 2 7 - 7 6 191 66 13 40 12
C A 6 - 0 6 - 7 6 84 86 3 0 3 6 4 l
C A 6 - 1 0 - 7 6 2 8 6 64 23 4 5 3 4
C A 6 - 1 8 - 7 6 2 4 8 72 23 3 3 3 5
CA 6 - 2 5 - 7 6 2 2 8 62 2 1 3 2 3 1
C A 7 - 0 1 - 7 6 251 6 7 2 3 2 7 3 0
C A 7 - 0 8 - 7 6 2 6 0 66 2 2 4 8 3 3
CA 7 - 1 4 - 7 6 2 5 2 6 8 3 5 2 8 2 6
CA 8 - 0 7 - 7 6 2 8 5 68 2 4 4 9 2 2

MG 9 - 1 5 - 7 5 2 7 3 4 8 1 1 8 2 —
MG 1 0 - 0 5 - 7 5 1 8 1 24 to 5 5 —
MG 1 0 - 2 5 - 7 5 8 2 51 10 1 0 —
MG 1 1 - 0 9 - 7 5 1 16 53 1 1 3 5 —
MG 1 2 - 0 6 - 7 5 4 2 0 0 66 16 140 —

MG 1 - 1 8 - 7 6 6 4 0 0 6 9 3 1 — — —
MG 2 - 2 1 - 7 6 8 2 0 0 74 3 0 7 —
MG 3 - 2 1 - 7 6 1 12 22 6 1 1 —
MG 4 - 1 7 - 7 6 1 42 48 9 19 —

MG 5 - 0 7 - 7 6 159 45 1C 3 0 13
MG 5 - 2 0 - 7 6 1 85 51 13 32 1 1
MG 5 - 2 7 - 7 6 2 0  1 5 0 12 3 3 12
MG 6 - 0 6 - 7 6 2 1 9 52 13 32 15
MG 6 - 1 0 - 7 6 2 2 9 50 12 3 2 15
MG 6 - 1 8 - 7 6 2 1 4 54 10 3 0 15
MG 6 - 2 5 - 7 6 187 44 9 18 14
MG 7 - 0 1 - 7 6 1 9 7 46 9 2 3 16
MG 7 - 0 6 - 7 6 2 1 5 4 7 10 3 9 17
MG 7 - 1 4 - 7 6 2 2 4 49 12 2 6 16
MG 8 - 0 7 - 7 6 2 7 6 5 6 1 1 44 18

K 9 - 1 5 - 7 5 2 2 14 1 1 3 6 —
K 1 0 - 0 5 - 7 5 15 6 1 1 2 5 — —
K 1 0 - 2 5 - 7 5 6 I S 10 4 —
K 1 1 - 0 9 - 7 5 9 15 1 1 16 —

K 1 2 - 0 6 - 7 5 3 3 20 14 4 7 —
K 1 - 1 8 - 7 6 32 21 21 — —
K 2 - 2 1 - 7 6 30 23 20 13 —

K 3 - 2 1 - 7 6 14 7 c a —

K 4 - 1 7 - 7 6 16 15 1C 12 —
K 5 - 0 7 - 7 6 1 5 16 8 12 10
K 5 - 2 0 - 7 6 19 16 7 16 1 1
K 5 - 2 7 - 7 6 19 16 10 17 10
K 6 - 0 6 - 7 6 2 0 1 7 1 1 1 7 11
K 6 - 1 0 - 7 6 19 17 13 17 11
K 6 - 1 8 - 7 6 1 7 16 12 16 1C
K 6 - 2 5 - 7 6 14 16 1 1 12 9
K 7 - 0 1 - 7 6 15 1 7 1 l 1 4 10
K 7 - 0 8 - 7 6 t. 4 16 1 1 18 9
K 7 - 1 4 - 7 6 1 4 17 12 17 1 0
K 8 - 0 7 - 7 6 1 7 19 14 19 14

9 - 1 5 - 7 5  2 8 2 5 6 7 5  2 4 7 5  5 6 2 5S Q4
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Table 22 (continued)
DATE DS30

S 0 4  1 0 - 0 5 - 7 5  1 4 0 0  
S 0 4  1 0 - 2 5 - 7 5  1 3 2 5  
5 0 4  1 I — OS — 7 5  1 0 5 0  
S 0 4  1 2 - 0 6 - 7 5  4 0 6 5  
S 0 4  1 - 1 8 - 7 6  6 0 4 5  
S 0 4  2 - 2 1 - 7 6  2 6 5 0  
S 0 4  3 - 2 1 - 7 6  2 0 5  
SO 4 4 - 1 7 - 7 6  1 2 3 5  
SC14 5 - 0 7 - 7 6  6 8 5  
S 0 4  5 - 2 0 - 7 6  8 3 0  
5 0 4  5 - 2 7 - 7 6  7 8 0  
S 0 4  6 - 0 6 - 7 6  9 3 5  
S G 4  6 - 1 0 - 7 6  7 8 5  
S O 4 6 - 1 8 - 7 6  9 0 0  
S 0 4  6 - 2 5 - 7 6  9 3 5  
S 0 4  7 - 0 1 - 7 6  7 8 0  
S 0 4  7 - 0 8 - 7 6  8 3 0  
S 0 4  7 - 1 4 - 7 6  1 0 4 5  
S 0 4  8 - 0 7 - 7 6  1 1 2 5

C l  9 - 1 5 - 7 5  1 3 2  
C l  1 0 - 0 5 - 7 5  9 2  
C l  1 0 - 2 5 - 7 5  78  
C l  1 1 - 0 9 - 7 5  6 9  
C l  1 2 - 0 6 - 7 5  2 1 0  
C l  1 - 1 8 - 7 6  3 e 0  
C l  2 - 2 1 - 7 6  1 4 6  
C l  3 - 2 1 - 7 6  5 
C l  4 - 1 7 - 7 6  5 2  
C l  5 - 0 7 - 7 6  55 
C l  5 - 2 0 - 7 6  6 0  
C l  5 - 2 7 - 7 6  6 7  
C l  6 - 0 6 - 7 6  69 
C l  6 - 1 0 - 7 6  6 7  
C l  6 - 1 8 - 7 6  65  
C l  6 - 2 5 - 7 6  52 
C l  7 - 0 1 - 7 6  53  
C l  7 - 0 8 - 7 6  57  
C l  7 - 1 4 - 7 6  57  
C l  8 - 0 7 - 7 6  67

A 1 9 - 1 5 - 7 5  . 2  
A1 1 0 - 0 5 - 7 5  . 2  
A 1 1 0 - 2 5 - 7 5  . 1  
A 1 1 1 - 0 9 - 7 5  . 1  
A 1 1 2 - 0 6 - 7 5  0 
A 1 1 - 1 8 - 7 6  0 
A 1 2 - 2 1 - 7 6  . 1  
A 1 3 - 2 1 - 7 6  . 2  
A 1 4 - 1 7 - 7 6  0 
A 1 5 - 0 7 - 7 6  . 2  
A 1 5 - 2 0 - 7 6  . 1  
A l  5 - 2 7 - 7 6  . 1  
A 1 6 - 0 6 - 7 6  . 2  
A l  6 - 1 0 - 7 6  0 
A l  6 - 1 8 - 7 6  . 1  
A l  6 - 2 5 - 7 6  - 1  
A l  7 - 0 1 - 7 6  . 1  
A l  7 - 0 8 - 7 6  . 1  
A l  7 - 1 4 - 7 6  - 1  
A l  8 - 0 7 - 7 6  0

C U  9 - 1 5 - 7 5  . 0 4  
C U  1 0 - 0 5 - 7 5  . 0 3  
C U  1 0 - 2 5 - 7 5  . 0 2  
C U  1 1 - 0 9 - 7 5  - 0 7

NB15 G5 NB1
6 6 0 2 0 0 7 6 0
5 0 0 150 7 2 5
6 3 5 2 4 0 6 7 5

1 9 6 0 2 5 4 5 5 6 7 0
7 7 0 4 2 0 —

8 0 0 4 4 5 30
2 2 5 75 175
6 3 0 5 2 5 2 2 5
4 5 5 ISO 2 2 5
5 0 5 2 3 0 2 8 5
5 7 5 2 5 0 3 5 0
5 1 5 2 2 0 3 2 0
4 5 0 170 2 3  0
4 3 0 2 0 5 3 1 5
4 4 5 150 2 5 5
5 7 5 195 1 70
5 3 5 2 4 0 2 5 5
5 0 5 2 0 0 2 3 5
6 3 0 2 4 5 490

5 1 8 48
4 7 1 1
5 8 13
7 9 1 4

1 1 2 3 6 7
1 0 17 —

9 17 4
1 9 c 4

7 5 6
8 7 7
9 10 8
7 1 0 9
8 12 10
8 13 1 1
9 13 1 1
6 t o 9
6 1 0 1 1
5 1 l 1 1
7 13 1 1
5 1 1 8

.  1 . 2 .  1

. 5 . 4 . 2

. 1 . 4 . 2

. 2 . 2 . 2

.  1 . 2 0
0 . 4 — —

. 2 . 2 . 2

. 1 . 3 .  1

. 1 . 3 0

. 3 - 2 . 2
0 . 3 0

.  1 . 2 .  1

. 4 . 2 .  1

.  1 .  1 .  1

. 2 • 1 . 2

. 2 ,  1 . 2

.  1 .  1 .  1

.  1 .  1 .  1

. 2 . 6 0

. 1 . 3 .  1

.  03 . 0 2 . 0 3

. 0 2 . 0 1 . 0 2

.  03 . 0 3 . 0 2

. 0 2 - 0 3 . 0 3
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Table 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

c u 1 2 - 0 6 - 7 5 . 0 6 . 0 4 . 0 3 . 0 5 —

c u 1 - 1 8 - 7 6 . 0 4 . 0 3 . 0 7 — -------

c u 2 - 2 1 - 7 6 . 0 3 . 0 2 . 0 3 . 0 3 —

c u 3 - 2 1 - 7 6 . 0 2 . 0 1 . 0  1 . 0 2 —

c u 4 — 17— 7 6 . 0 2 . 0 3 . 0 2 . 0 2 —

c u 5 - 0 7 - 7 6 .  03 . 0 3 . 0 3 . 0 5 . 0 2
c u 5 - 2 0 - 7 6 . 0 3 . 0 1 . 0 3 . 0 5 . 0 2
c u 5 - 2 7 - 7 6 . 0 2 . 0 3 . 0 3 . 0 2 . 0 2
c u 6 - 0 6 - 7 6 . 0 2 . 0 1 . 0 2 . 0 2 . 0 2
c u 6 - 1 0 - 7 6 . 0 2 . 0 1 . 0 1 . 0 2 . 0 2
c u 6 - 1 8 - 7 6 . 0 3 . 0 1 . 0 2 . 0 2 . 0 2
c u 6 - 2 5 - 7 6 . 0 2 . 0 2 . 0 2 . 0 1 . 0 1
c u 7 - 0 1 - 7 6 . 0 1 . 0 2 . 0 2 . 0 1 . 0  1
c u 7 - 0 8 - 7 6 . 0 3 . 0 2 . 0 2 . 0 3 . 0 2
c u 7 - 1 4 - 7 6 . 0 2 . 0 2 . 0 2 . 0 2 . 0 2
c u 8 - 0 7 - 7 6 . 0 4 . 0 2 .  02 . 0 3 . 0 2

F E 9 - 1 5 - 7 5 . 0 5 .  06 . 0 4 . 0 3 —

F E 1 0 - 0 5 - 7 5 . 0 3 - 0 2 . 1 C . 0 2 —

F E 1 0 - 2 5 - 7 5 . 0 3 . 0 4 . 0 8 0 -----—
F E 1 1 - 0 9 - 7 5 . 0 5 . 0 1 . 0 4 . 0 1 —

F E 1 2 - 0 6 - 7 5 . 0 7 . 0 6 . 0 7 . 0 8 —

F E 1 - 1 8 - 7 6 . 0 7 . 0 5 . 7 4 — —

F E 2 - 2 1 - 7 6 .  06 . 0 4 . 0 4 . 0 8 —

F E 3 - 2 1 - 7 6 . 0 6 . 0 3 . o e . 0 6 —

F E 4 - 1 7 - 7 6 . 0 4 . 0 4 . 0 3 . 0 3 —

F E 5 - 0 7 - 7 6 .  05 . 0 3 . 0 4 . 0 4 . 0 7
F E 5 - 2 0 - 7 6 . 0 9 . 0 5 .  1 1 . 0 4 . 0 5
F E 5 - 2 7 - 7 6 . 0 6 . 0 5 . 0 8 . 0 3 .  15
F E 6 - 0 6 - 7 6 . 0 5 . 0 3 . 0 5 . 0 6 . 0 7
F E 6 - 1 0 - 7 6 . 0 2 . 0 4 . 0 5 . 0 3 . 0 3
F E 6 - 1 8 - 7 6 . 0 2 . 0 2 . 0  1 0 . 0 9
F E 6 - 2 5 - 7 6 . 0 3 0 . 0 2 0 . 0 5
F E 7 - 0 1 - 7 6 .  02 0 . 0 2 . 0 2 - 0 2
F E 7 - 0 8 - 7 6 . 0 3 0 0 0 . 0 2
F E 7 - 1 4 - 7 6 . 0 4 . 0 8 . 0 3 0 . 0 9
F E 8 - 0 7 - 7 6 .  04 . 0 3 . 0 2 . 0 2 . 0 7

PB 9 - 1 5 - 7 5 . 3 . 1 .  i . 2 —
PS 1 0 - 0 5 - 7 5 . 3 . 2 . 2 .  1 —
PB 1 0 - 2 5 - 7 5 . 2 . 2 . 2 . 2 —

P B 1 1— 0 9 — 7 5 . 2 . 2 .  1 .  1 —
PB 1 2 - 0 6 - 7 5 .  1 0 0 .  1 —
PB 1 - 1 8 - 7 6 . 2 .  1 . 2 — —
PB 2 - 2 1 - 7 6 . 2 . 1 0 0 —
PB 3 - 2 1 - 7 6 .  1 . 2 0 .  1 —
PB 4 - 1 7 - 7 6 .  1 . 2 .  1 .  1 —
P B 5 - 0 7 - 7 6 . 2 . 2 .  1 .  1 . 2
PB 5 - 2 0 - 7 6 . 2 . 2 .  1 . 2 .  1
P B 5 - 2 7 - 7 6 . 2 . 2 .  1 . 2 . 2
PB 6 - 0 6 - 7 6 . 2 . 1 .  1 . 2 0
PB 6 - 1 0 - 7 6 . 2 0 0 .  1 .  1
PB 6 - 1 8 - 7 6 0 0 .  1 .  1 0
P B 6 - 2 5 - 7 6 . 2 0 0 0 0
PB 7 - 0 1 - 7 6 .  1 . 1 0 0 .  1
PB 7 - 0 8 - 7 6 . 2 .  1 .  i .  1 0
PB 7 - 1 4 - 7 6 • 1 .  1 .  1 0 0
PB 8 - 0 7 - 7 6 . 2 ® 3. .  1 0 .  1

L I 9 — 15— 7 5 . 2 3 . 0 9 . 0 6 . 2 0 —

L I 1 0 - 0 5 - 7 5 . 1 7 . 1 6 . 0 4 . 0 6 -------

L I 1 0 - 2 5 - 7 5 . 0 4 . 0 8 . 0 6 . 0 3 —
L I 1 1 - 0 9 - 7 5 . 1 1 . 0 8 . 0 5 . 0 9 —

L I 1 2 - 0 6 - 7 5 . 3 6 .  1C . 0 8 . 3 0
L I 1 - 1 8 - 7 6 . 3 8 . 1 0 .  12 — --- —

L I 2 - 2 1 - 7 6 . 3 8 .  1 1 . 1 1 . 0 3 —
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T a b l e 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

L I 3 - 2 1 - 7 6 .  11 . 0 4 . 0 3 . 0 3 —

L I 4 - 1 7 - 7 6 . 1 3 - 0 7 . 0 5 .04 — — —
L I 5 - 0 7 - 7 6 . 1 5 . 0 7 . 0 5 . 0 5 . 0 2
L I 5 - 2 0 - 7 6 . 1 7 . 0 8 . 0 4 . 0 6 . 0 2
L I 5 - 2 7 - 7 6 . 1 8 . 0 8 . 0 6 . 0 6 . 0 2
L I 6 - 0 6 - 7 6 . 1 9 . 0 8 .  06 . 0 7 . 0 2
L I 6 - 1 0 - 7 6 . 2 0 . 0 8 . 0 6 . 0 7 . 0 2
L I 6 — 18— 7 6 . 1 9 . 0 8 . 0 6 . 0 6 . 0 2
L I 6 - 2 5 - 7 6 .  17 . 0 7 . 0 5 . 0 5 . 0 2
L I 7 - 0 1 - 7 6 . 1 8 . 0 7 . 0 5 . 0 5 . 0 2
L I 7 - 0 8 - 7 6 . 1 9 . 0 7 . 0 6 • 0 8 . 0 3
L I 7 - 1 4 - 7 6 . 2 0 . 0 7 . 0 5 . 0 6 . 0 1
L I 8 - 0 7 - 7 6 . 2 4 . 0 8 . 0 6 . 0 8 . 0 2

NI 9 - 1 5 - 7 5 .  10 . 0 6 . 0 5 . 0 6 —

N I 1 0 - 0 5 - 7 5 . 0 9 . 0 3 . 0 6 . 0 7 —

N I 1 0 - 2 5 - 7 5 . 0 8 . 0 6 . 0 5 . 0 5 —

N I 1 1 - 0 9 - 7 5 .  10 . 0 8 . 0 6 . 0 6 —

NI 1 2 - 0 6 - 7 5 . 1 2 . 0 8 . 0 6 . 0 9 —

N I 1 - 1 8 - 7 6 .  15 .  08 . 1 3 — —

N I 2 - 2 1 - 7 6 . 1 4 . 0 9 . 0 5 . 0 6 —

N I 3 - 2 1 - 7 6 . 0 8 . 0 4 0 . 0 3 —

NI 4 - 1 7 - 7 6 . 0 9 . 0 6 . 0 4 . 0 6 —

N I 5 - 0 7 - 7 6 . 0 7 . 0 5 . 0 5 • OS . 0 3
N I 5 - 2 0 - 7 6 . 1 0 . 0 9 . 0 4 . 0 3 . 0 4
N I 5 - 2 7 - 7 6 . 0 8 . 0 7 . 0 5 . 0 8 . 0 3
N ( 6 - 0 6 - 7 6 .  1 1 . 0 7 . 0 6 . 0 6 . 0 5
N ( 6 — 1C - 76 . 0 7 . 0 7 . 0 6 . 0 3 . 0 3
N I 6 - 1 e - 7 6 . 0 9 . 0 3 . 0 2 0 0
N I 6 - 2 5 - 7 6 .  04 . 0 2 0 0 0
N I 7 - 0 1 - 7 6 . 0 4 . 0 4 C 0 0
N I 7 - 0 8 - 7 6 . 0 6 . 0 4 . 0 3 . 0 4 0
N I 7 - 1 4 - 7 6 . 0 5 . 0 2 0 . 0 5 0
N I 8 - 0 7 - 7 6 . 0 7 0 0 0 0

MN 9 - 1 5 - 7 5 . 1 0 . 0 1 0 0 —
MN 1 0 - 0 5 - 7 5 - 0 7 0 0 0 —

MN 1 0 - 2 5 - 7 5 . 0 2 . 0 3 . 0 2 0 —

MN 1 1 - 0 9 - 7 5 . 1 8 .  02 . 0 5 0 —

MN 1 2 - 0 6 - 7 5 . 2 3 . 0 6 0 0 — — —
MN 1 - 1 8 - 7 6 . 2 7 . 1 4 . 0 3 — — — —
MN 2 - 2 1 - 7 6 1 . 0 8 . 3 5 . 0 2 . 0 5 —

MN 3 - 2 1 - 7 6 . 0 5 . 2 8 . 0 2 . 0 3 —

MN 4 - 1 7 - 7 6 . 0 8 . 1 6 . 0 1 . 0  1 — —
MN 5 - 0 7 - 7 6 . 0 6 . 0 2 . 0  1 . 0 1 . 0 1
MN 5 - 2 0 - 7 6 . 0 2 . 0 1 . 0  1 . 0 2 . 0 2
MN 5 - 2 7 - 7 6 . 1  1 . 0 2 . 0 2 . 0 2 . 0 2
MN 6 - 0 6 - 7 6 . 0 4 . 0  1 . 0 2 . 0 1 . 0 2
MN 6 - 1 0 - 7 6 . 0 1 . 0 1 . 0 1 . 0 3 0
MN 6 - 1 8 - 7 6 . 0 2 . 0 2 . 0  1 . 0  1 . 0 1
MN 6 - 2 5 - 7 6 . 0 1 . 0 1 . 0  1 . 0 1 . 0 2
MN 7 - 0 1 - 7 6 . 0 1 . 0 2 0 . 0 2 0
MN 7 - 0 8 - 7 6 . 0 2 0 0 . 0 1 0
MN 7 - 1 4 - 7 6 . 0 2 . 0 1 . 0  1 . 0  1 . 0 2
MN 8 - 0 7 - 7 6 . 0 2 . 0 1 . 0 1 . 0 2 . 0 4

MO 9 - 1 5 - 7 5 . 0 1 6 . 0 1  1 . 0 1 0 . 0 0 9 —
MO 1 0 — 0 5 — 75 . 0 0 7 . 0 0 8 . 0 0 6 . 0 0 7
MO 1 0 - 2 5 - 7 5 . 0  1 4 . 0 0 7 . 0 0 7 . 0 1 2 —
MO 1 1 - 0 9 - 7 5 . 0 0 6 . 0 0 2 . 0 0  3 . 0 0 7
MO 1 2 - 0 6 - 7 5 . 0 0 5 . 0 0 2 . 0 0 6 . 0 0 3 -----—* —
MO 1 - 1 8 - 7 6 . 0 0 9 0 . 0 0 9 — — —--—
MO 2 - 2 1 - 7 6 . 0 0 7 . 0 0 2 . 0 0 9 . 0 0 8 ——  —
MO 3 - 2 1 - 7 6 . 0 0 6 . 0 0  1 . 0 0 9 . 0 0 6 “  — — —
MO 4 - 1 7 - 7 6 . 0  1 1 . 0 0 3 . 0 0 5 . 0 0 4 ----- -----
MO 5 - 0 7 - 7 6 . 0 0 9 . 0 0 2 . 0 0 4 . 0 0 5 • 0 0 3
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Table 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

MO 5 - 2 0 - 7 6 . 0 0 5 . 0 0  2 .ooe . 0 0 5 . 0 0 6
MO 5 - 2 7 - 7 6 .00 1 0 . 0 0 4 .  002 . 0 0 5
MO 6 - 0 6 - 7 6 .002 0 . 0 0 2 . 0 0 5 . 0 0 6
MO 6 - 1 0 - 7 6 . 0  11 0 . 0  06 . 0 0 4 . 0 0 3
MO 6 - 1 8 - 7 6 .00 1 . 0 0 1 . 0 0 3 . 0 0 3 . 0 0 3
MO 6 - 2 5 - 7 6 . 0 0 6 0 . 0 0 3 . 0 0 5 . 0 0 3
MO 7 - 0 1 - 7 6 . 0 0 5 . 0 0  1 . 0 0 4 . 0 0 3 .002
MO 7 - 0 8 - 7 6 . 0 0 7 . 0 0 1 . 0 0 3 . 0 0 7 . 0 2 1
MO 7 - 1 4 - 7 6 . 0 0 3 . 0 0 4 . 0 0 5 . 0 0 3 . 0 0 5
MO 8 - 0 7 - 7 6 . 0 0 5 • 001 . 0 0 3 .002 .003

S I 9 - 1 5 - 7 5 8 . 1 1 . 4 1 . 2 1 . 5 —
S I 1 0 - 0 5 - 7 5 6 .  1 . 7 2 . 2 1 . 5 — — _
S I 1 0 - 2 5 - 7 5 2 . 3 1 . 2 1 . 6 . 9 ----—
S I 1 1 - 0 9 - 7 5 1 . 1 . 4 . 2 . 2 _  —

S I 1 2 - 0 6 - 7 5 2 . 5 1 . 6 1 . 0 . 8 — -----
S I 1 - 1 8 - 7 6 7 . 8 1 . 8 . 3 — —

S I 2 - 2 1 - 7 6 2 . 3 2 . 6 1 . 2 . 7 -----—
S I 3 - 2 1 - 7 6 2 . 4 2 . 7 . 4 1 . 7 —
S I 4 - 1 7 - 7 6 1 . 8 2 . 5 2 . 3 1 . 6 -----—
S I 5 - 0 7 - 7 6 . 8 1 . 5 . 7 .  7 2 . 3
S I 5 - 2 0 - 7 6 1 . 6 2 . 3 . 7 1 . 0 . 4
S I 5 - 2 7 - 7 6 2 . 3 . 3 . 3 2 . 4 • 4
S I 6 - 0 6 - 7 6 3 . 7 . 3 . 4 .  1 .  6
S I 6 - 1 0 - 7 6 5 . 0 2 . 1 1 . 4 2 . 0 3 . 0
S I 6 - 1 8 - 7 6 7 . 4 3 . 0 3 . 6 2 . 3 2 . 3
S I 6 - 2 5 - 7 6 5 . 5 2 . 9 3 . 2 . 7 1 . 6
S I 7 - 0 1 - 7 6 3 . 9 3 . 1 2 . 2 2 . 0 3 . 0
S I 7 - 0 8 - 7 6 3 . 1 3 .  1 2 . 0 1 . 5 1 . 0
S I 7 - 1 4 - 7 6 4 . 3 1 . 4 1 . 3 3 .  7 2 . 9
S I 8 - 0 7 - 7 6 3 . 5 1 . 4 1 . 5 1 . 2 1 . 2

SR 9 - 1 5 - 7 5 3 . 8 7 1 . 1 3 . 1 8 2 . 1 0 —
SR 1 0 - 0 5 - 7 5 4 . 3 0 . 6 3 .  13 1 . 2 6 -----—
SR 1 0 - 2 5 - 7 5 5 . 9 0 1 . 1 6 . 1 7 . 6 8 —— —

SR 1 1 - 0 9 - 7 5 7 . 2 0 1 .  17 . 1 7 . 9 5 -----—
SR 1 2 - 0 6 - 7 5 7 . 9 0 1 . 2 1 . 2 0 3 . 1 3 —
SR 1 - 1 8 - 7 6 7 . 9 0 1 . 0 3 1 . 0 3 — —
SR 2 - 2 1 - 7 6 9 . 1 0 1 . 0 4 . 4  1 . 2 4 — —
SR 3 - 2 1 - 7 6 3 . 2 0 . 5 4 .  19 . 3 0 —
SR 4 - 1 7 - 7 6 3 . 6 6 1 . 0 0 . 2 4 . 5 0 — - —
SR 5 - 0 7 - 7 6 3 . 5 4 . 7 7 . 2 7 . 7 7 . 2 1
SR 5 - 2 0 - 7 6 4 . 7 6 1 . 0 2 . 2 9 . 7 7 . 3 7
SR 5 - 2 7 - 7 6 3 . 5 6 . 9 6 .  16 . 7 6 .  1 6
SR 6 - 0 6 - 7 6 4 . 5 1 1 . 4 3 . 3 3 . 8 7 . 3 4
SR 6 - 1 0 - 7 6 3 . 6 9 . 9 2 . 2 1 . 9 4 . 2  1
SR 6 - 1 8 - 7 6 4 . 1 6 1 .  13 . 2 0 . 6 4 . 2 0
SR 6 - 2 5 - 7 6 3 . e s 1 . 0 8 . 2 3 . 5 7 . 2 8
SR 7 - 0 1 - 7 6 4 . 0 5 1 . 0 0 . 2 2 . 4 7 . 2 4
SR 7 - 0 8 - 7 6 4 . 5 3 1 . 0 1 . 2 6 1 . 0 7 . 3 6
SR 7 - 1 4 - 7 6 4 . 5 9 1 . 1 1 . 3 5 . 5 5 . 2 3
SR 8 - 0 7 - 7 6 6 . 7 0 1 . 2 8 . 3 6 1 . 1 2 . 2 7

Z N 9 - 1 5 - 7 5 . 0 5 . 3 6 . 0 7 . 0 9 --------
ZN 1 0 - 0 5 - 7 5 . 1 5 . 0 6 . 0 9 .  1 1
ZN 1 0 - 2 5 - 7 5 . 1 4 . 0 2 . 0 5 . 1 7
Z N 1 1 - 0 9 - 7 5 . 0 5 . 0 3 . 0 3 . 0 6 — ■* —
ZN 1 2 - 0 6 - 7 5 . 0 6 . 0 7 . 0 6 . 0 6 —  — —

Z N 1 - 1 8 - 7 6 . 0 4 . 0 6 . 2 4 —

Z N 2 - 2 1 - 7 6 . 0 5 . 0 2 . 0  1 0 * "
Z N 3 - 2 1 - 7 6 . 0 8 . 0 4 . 0  1 . 0 2
Z N 4 - 1 7 - 7 6 .  0 5 . 0 2 . 0 2 . 0 7
Z N 5 - 0 7 - 7 6 . 0  1 . 0 5 . 0 5 . 1 3 • 0 4
ZN 5 - 2 0 - 7 6 . 0 7 . 0 7 . 0 5 . 1 0 • 0 2
Z N 5 - 2 7 - 7 6 . 0 5 . 0 3 . 1 6 . 0 2 • 0 5
Z N 6 - 0 6 - 7 6 . 0 7 . 0 2 . O S . 0 6 • 0 4
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T a b l e 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

Z N 6 - 1 0 - 7 6 . 0 1 0 . 0 1 .21 .01
2N 6 - I S - 7 6 . 0 3 . 0 6 . 0 4 . 0 8 . 0 5
ZN 6 - 2 5 - 7 6 . 0 4 . 0 7 . 0 4 .02 . 0 4
Z N 7 - 0 1 - 7 6 . 0 3 . 0 2 . 0 3 . 0 3 . 0 1
ZN 7 - 0 e - 7 6 . 0 3 .02 0 . 0 6 . 0 3
ZN 7 - 1 4 - 7 6 . 0 5 . 0 5 . 0  1 . 0 1 .02
ZN 8 - 0 7 - 7 6 . 0 4 . 0 1 0 . 0 7 . 0 7

0 P 0 4 9 - 1 5 - 7 5 . 0 4 . 0 3 . 0 3 . 0 5 —
0 P 0 4 1 0 - 0 5 - 7 5 . 0 3 . 0 4 . 0 8 . 0 6 —
O P 0 4 1 0 - 2 5 - 7 5 . 0 3 . 0 3 . 0 4 . 0 6 — ——
G P 0 4 1 1 - 3 5 - 7 5 . 0 4 . 0 3 . 0 4 . 0 5 —
0 P 0 4 1 2 - 0 6 - 7 5 . 0 8 .  1 1 . 1 2 . 2 3 —
G P 0 4 1 - 1 8 - 7 6 . 1 6 . 0 2 . 0 2 — ■-------
O P C 4 2 - 2 1 - 7 6 . 1 9 . 1 7 . 0 8 . 4 4 —
0 P 0 4 3 - 2 1 - 7 6 . 0 8 . 0 4 .  1 0 . 2 4 —
0 P D 4 4 - 1 7 - 7 6 . 0 6 . 0 5 . 0 9 . 0 9 —
0 P 0 4 5 - 0 7 - 7 6 . 2 5 . 0 5 . 0 6 . 0 5 . 0 4
0 P 0 4 5 —2 C— 76 . 0 6 . 0 4 . 0 4 . 0 5 . 0 9
0 P 0 4 5 - 2 7 - 7 6 . 0 4 . 0 3 . 1 2 . 0 2 . 1 0
OP0 4 6 - 0 6 - 7 6 . 0 3 . 0 7 . 0 9 . 0 5 . 1 9
0 P 0 4 6 — 1C— 7 6 . 0 4 . 0 2 . 0 5 . 0 4 . 0 6
0 P D 4 6 - 1 8 - 7 6 . 0 4 . 0 2 . 0 1 . 0 4 . 0 6
0 P 0 4 6 - 2 5 - 7 6 . 0 2 . 0 3 .  16 . 0 6 .  12
0 P 0 4 7 - 0 1 - 7 6 . 0 4 . 0 8 . 1 4 . 0 6 . 0 8
QP0 4 7 - 0 8 - 7 6 . 0 2 .  02 . 0 3 . 0 2 . 0 4
O P 0 4 7 - 1 4 - 7 6 . 0 2 . 0 1 . 0 5 . 0 2 . 0 3
OPD4 8 - 0 7 - 7 6 . 0 2 . 0 1 . 0 4 . 0 8 . 0 3

T P 0 4 9 - 1 5 - 7 5 . 3 6 . 1 2 . 2 8 . 2 9 —
T  PG4 1 0 - 0 5 - 7 5 . 3 1 . 1 6 . 2 7 . 2 8 — — —
T P 0 4 1 0 - 2 5 - 7 5 . 1 3 .  10 . 1 3 . 2 1 — ----
r  p o 4 1 1 - 0 9 - 7 5 .  1 l . 0 6 .. 16 . 1 6 —

T P Q 4 1 2 - 0 6 - 7 5 . 3 4 . 2 9 . 3 7 . 5 2 —
T P 0 4 1 - 1 8 - 7 6 — . 6 6 .  16 — —
r p o 4 2 - 2 1 - 7 6 2 . 8 6 . 4 2 . 2 5 . 8  1 —

T P 0 4 3 - 2 1 - 7 6 . 5 8 . 3 6 . 7 0 . 9 / —

T P C 4 4 - 1 7 - 7 6 . 1 6 . 5 5 — — — . 9 5 — ——
T P 0 4 5 - 0 7 - 7 6 . 2 1 . 1 8 . 2 4 . 2 8 . 3 2
T P 0 4 S - 2 C - 7 6 . 5 1 .  19 . 4 3 .  13 . 3 1
T P Q 4 5 - 2 7 - 7 6 . 3 4 . 1 5 . 5 4 . 2 3 . 7  1
T P 0 4 6 - 0 6 - 7 6 . 5 9 . 0 8 . 4 7 . 5 7 . 4 7
T P D 4 6 - 1 0 - 7 6 1 . 0 6 . 2 3 . 4  1 . 0 8 1 . 0 6
T P Q 4 6 - 1 8 - 7 6 . 3 5 . 1 8 . 4 7 .  16 . 3 5
T P G 4 6 - 2 5 - 7 6 . 1 9 .  1 4 . 2 8 . 2 2 . 2 4
T P G 4 7 - 0 1 - 7 6 .  1 7 . 0 9 . 4 2 . 3 5 . 2 8
T P G 4 7 - 0 8 - 7 6 . 2 3 . 1 4 — . 2 8 . 1 6
T P G 4 7 - 1 4 - 7 6 . 4 4 . 2 5 — . 4 4 . 2 5
T P G 4 8 - 0 7 - 7 6 . 1 6 — . 3 4 . 1 4 . 3 3

N 0 3 9 - 1 5 - 7 5 . 2 2 4 . 1 0 5 .  0 7 9 . 1 8 8 —

N 0 3 1 0 - 0 5 - 7 5 . 2 8 0 . 1 1 0 .  0 9 4 . 0 9 8 --------—
N 0 3 1 0 - 2 5 - 7 5 . 1 8 1 . 1 1 3 .  157 . 1 1 4 ----- ------
N C 3 1 1 - 0 9 - 7 5 . 2 6 5 .  160 . 1 3 5 . 1 7 0 -----— —
N 0 3 1 2 - 0 6 - 7 5 . 2 7 8 .  126 .  144 . 2 4  0 ----- —  —
NQ3 1 - 1 8 - 7 6 . 2 6 4 . 1 4 0 . 0 8 5 — — — — —
NG3 2 - 2 1 - 7 6 . 1 6 7 . 1 4 6 . 2 0 2 . 2 3 6 -----— -
NQ3 3 - 2 1 - 7 6 .  1 8 5 . 0 6 5 .  160 .  170 — ~ — —
N 0 3 4 - 1 7 - 7 6 . 1 7 5 .  187 .  165 .  14 1 ----- -----
NG3 5 - 0 7 - 7 6 . i e 7 .  1 80 . 0 8 2 . 0 9 0 . 3 7 0
N 0 3 5 - 2 0 - 7 6 . 1 7 8 . 1 2 9 . 1 0 6 . 1 1  1 .  120
NQ3 5 - 2 7 - 7 6 . 1 7 8 . 1 4 9 .  1 7 2 . 1 0 0 • 1 3 0
N 0 3 6 - 0 6 - 7 6 . 3 7 4 .  123 .  1 4 2 . 1 4 0 . 1 7 8
N 0 3 6 - 1 0 - 7 6 . 3 1 7 . 1 1 5 . 1 5 9 . 0 8 6 . 0 0  3
N G3 6 - 1 8 - 7 6 . 2 3 5 .  1 13 .  0 2 8 . 0 7 0 • 0 0 3
NQ3 6 - 2 5 - 7 6 . 2 1 3 . 0 8 0 . 0 5 6 . 0 3 2 . 0 4 9
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Table 22 (continued)
DATE DS30 NB15 G5 NB1 NBUN

NQ3 7 - 0 1 - 7 6 . 2 4 3 . 0 8 3 . 0 4 9 . 0 4 6 . 0 7 0
N 0 3 7 - 0 8 - 7 6 . 2 7 7 . 1 4 7 .  180 . 1 6 1 . 0 9 8
N 0 3 7 - 1 4 - 7 6 . 2 3 7 . 1 1 5 . 0 8 4 .  1 S 5 . 0 6 5
NQ3 8 - 0 7 - 7 6 . 2 6 5 . 1 4 0 .  125 . 1 4 7 . 1 1 2

AM 5 - 0 7 - 7 6 1 . 6 2 . 3 2 . 7 4 . 3 6 • 6 5
AM 5 - 2 C - 7 6 1 . 0 9 . 4 2 . 7 6 . 3 2 . 6 8
AM 5 - 2 7 - 7 6 . 8 6 . 4 8 1 . 4 8 . 4 6 . 7 1
AM 6 - 0 6 - 7 6 1 . 1 2 . 6 4 1 . 0 9 . 6 2 . 8 4
AM 6 - 1 0 - 7 6 1 . 2 2 . 6 6 . 6 5 . 4 9 1 . 0 0
AM 6 - 1 8 - 7 6 . 7 6 . 4 1 . 8 4 . 3 9 . 6 3
AM 6 - 2 5 - 7 6 . 7 8 . 5 0 1 . 3 5 . 4 3 . 5 8
AM 7 - 0 1 - 7 6 . 8 8 . 6 3 1 . 0 1 . 4 8 . 7 4
AM 7 - 0 8 - 7 6 1 . 4 2 . 5 5 . 8 9 . 6 1 1 . 0 0
AM 7 - 1 4 - 7 6 1 . 2 4 - 5 5 1 . 0 7 • 6 5 . 8 3
AM 8 - 0 7 - 7 6 1 - 2 7 . 4 9 . 9 1 . 7 7 . 8 3

H C 0 3 6 - 1 0 - 7 6 3 5 0 2 2 8 3 3 6 1 7 0 154
H C 0 3 6 - 1 8 - 7 6 5 2 6 2 1 6 3 3 8 1 5 0 156
H C 0 3 6 - 2 5 - 7 6 2 8 6 2 1 6 2 7 2 1 2 0 126
H C 0 3 7 - 0 1 - 7 6 2 8 8 2 1 0 2 5 e 1 2 4 1 5 2
H C 0 3 7 - 1 4 - 7 6 2 9 0 2 2 0 2 8 6 160 2 0 4
H C 0 3 8 - 0 7 - 7 6 2 2 4 2 0 4 3 2 6 1 7 8 124

C 0 3 6 - 1 0 - 7 6 0 28 7 2 3 2 2 0
C G 3 6 - 1 8 - 7 6 0 24 6 4 5 2 2 4
0 0 3 6 - 2 5 - 7 6 0 0 3 2 2 8 2 8
C G 3 7 - 0 1 - 7 6 0 2 0 6 8 8 0 2 4
C 0 3 7 - 1 4 - 7 6 24 2 8 76 0 2 4
C 0 3 8 - 0 7 - 7 6 0 28 1 12 8 0 1 16

D O T 6 - 1 0 - 7 6  T O P 3 . 4 8 . 9 9 . 4 9 . 7 1 0 . 7
DOB B O T 2 . 4 e .2 8 . 6 8 . 9 8 . 7
D O T 6 - 2 7 - 7 6  T O P 1 0 . 0 1 1 . 0 — 1 1 . 5 1 4 . 3
DOB B O T 7 . 9 1 0 . 3 — 1 0 . 6 1 1 . 7
D O T 8 - 0 7 - 7 6  T O P 4 . 3 5 . 7 5 . 9 6 . 6 1 1 . 2
DOB B O T ------- 4 . 5 4 . 3 5 . 0 5 . 2



Table 23. pH, electrical conductivity, and major ions in the spoils surrounding strip-mine ponds -
water saturation extraction.

Sample site pH E.C.
mhos/cm

Ca Mg K Na SO,4 Cl
ppm

DS30 June (4)* 8.28 .89 97 53 56 16 833 22.0

August (4) 8.38 1.54 260 61 58 19 975 13.7

NB15 June (4) 8.21 5.36 344 107 58 1125 3650 17.2

August (4) 8.16 5.74 219 94 56 1462 3700 13.8

G5 June (4) 8.35 4.52 198 81 58 1000 2376 18.7

August (4) 8.54 4.11 199 76 58 940 2438 20.3

NB1 June (4) 8.16 4.62 240 126 50 962 2675 13.7

August (4) 8.36 5.13 210 117 62 1185 3188 18.3

( )* - number of samples
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Table 24. Trace elements of spoils surrounding strip-mine ponds - water saturation and NH^OAc extracts

Sample site Li Mn Sr Zn Fe Ca Mg Na K Sr Mn Li

Water
ppm
saturation NH.4

ppm
OAc extract

DS30 June (4)* .07 .12 1.48 .08 .11 4756 1444 70 370 74 5.80 .19

August (4) .11 .21 3.82 .06 .13 4988 1606 71 360 72 8.22 .24

NB15 June (4) .16 .16 5.17 .08 .10 4850 1025 2600 283 62 6.60 .35

August (4) .18 .08 5.39 .04 .07 3141 825 2594 285 70 7.56 .35

G5 June (4) .22 .13 3.05 .06 .08 4238 981 1924 345 59 6.93 .44

August (4) .22 .25 2.76 .04 .14 4281 1000 1756 329 60 6.34 .40

NB1 June (4) .23 .19 5.21 .05 .05 3638 1069 1524 283 62 8.46 .41

August (4) .25 .14 5.85 .05 .08 3093 706 1846 319 71 9.86 .43

( )* - number of samples

9V
T



Table 25. Trace elements of spoils surrounding strip-mine ponds - EDTA extractable.

Sample site A1 B Cd Cr Cu Fe Li Mn Mo Ni Pb Si Sr Zn
PFU1

DS30 June (4) 5.25 1.11 .30 .012 6.95 154.7 .12 114.1 .013 3.12 3.81 16.1 9.0 7.5

August (4) 8.62 2.01 .28 .018 7.88 287.2 .15 167.8 .011 3.81 4.12 21.9 10.5 10.5

NB15 June (4) 1.38 .57 .33 .021 10.38 191.2 .22 55.6 .036 4.31 3.50 15.7 11.8 13.2

August (4) 1.32 .89 .30 .013 9.04 134.7 .26 43.1 .032 3.19 3.25 19.4 14.4 12.6

G5 June (4) .44 1.37 .30 .016 6.46 107.2 .30 132.8 .018 2.12 2.88 16.4 8.2 5.7

August (4) 1.06 1.53 .28 .013 5.66 118.1 .28 47.6 .026 2.06 3.00 15.6 7.8 6.2

NB1 June (4) 1.25 .73 .28 .013 6.58 219.4 .28 63.8 .024 2.88 3.31 18.1 9.6 8.4

August (4) 1.12 .67 .24 .007 5.36 136.9 .24 38.4 .026 2.19 2.38 11.8 11.8 8.1

( )* - number of samples
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Table 26. Density and biomass values for 
and B = Biomass (g/m^).

invertebrates at selected strip-mine ponds, D = density (ind/m^

HAY JUNE JULY AUGUST TOTAL MEAN

I. NEMATOMORPHA

DS30 D

B

NB15 D

B

NB1 D 29 38 67 16.8

B .043 .058 .101 .025

NBUN D

B

II. ANNELIDA

DS30 D 10 19 29 7.3

B .016 .023 .039 .010

NB15 D 8 10 18 6.8

B .017 .010 .027 .007
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Table 26 (continued)

MAY JUNE JULY

NB1 D

B

NBUN D 25 32 55

B .227 .044

III. HYDRACARNIA

DS30 D 67 133 108

B .045 .145 .094

NB15 D 386 1168 471

B .239 1.088 .308

NB1 D 183

B .154

NBUN D 25 71 28

B .013 .072 .018

AUGUST TOTAL MEAN

121 233 58.3

92 400 100

.082 .366 .091

333 2358 589.6

.169 1.805 .451

33 217 * 54.2

.004 .150 .040

17 140 35

.008 .112 .028
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Table 26 (continued)

MAY JUNE

IV. AMPHIPODA

DS30 D 533 650

B .240 .382

NB15 D 1693 1766

B 1.064 .620

NB1 D

B

NBUN D 607 1540

B .465 .921

V. HEMIPTERA

DS30 D 42 770

B .276 2.062

NB15 D 33 650

B .242 1.638

JULY

913

.242

3856

1.204

8
.004

2616

.852

425

1.110

408

1.497

AUGUST TOTAL MEAN

1654 3750 937.6

.798 1.662 .415

2595 9910 2477.6

.838 3.727 .932

8 16 4

.004 .008 .002

2862 7625 1906.2

1.644 3.882

558 1783 445.7

6.087 9,534 2.384

316 1408 352.0

.411 3.789 .947
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Table 26 (continued)

MAY JUNE JULY

NB1 D 96 133

B .308 2.75:

NBUN D 42 517 325

B .050 1.332 1.241

VI. EPHEMEROPTERA

DS30 D 408 25

B .745 .011
NB15 D 389 28

B .497 .009

NB1 D 38 25

B .078 .030

NBUN D 231 17

B .547 . .099

AUGUST TOTAL MEAN

285 487 121.9

1.960 5.020 1.255

550 1433 358.3

4.140 6.768 1.692

1936 2369 592.3

1.972 2.728 .682

569 985 246.3

.530 1.036 .259

63 15.6

.108 .027

1742 1990 497.5

1.483 2.129 .532
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Table 26 (continued)

MAY JUNE JULY

VII. ODONATA

DS30 D 192 2059 752

B .628 6.390 2.155

NB15 D 200 1727 952

B .797 4.283 1.585

NB1 D - -

B .024 .035

NBUN D 633 1033 600

B 1.603 3.837 1.684

VIII . TRICOPTERA

DS30 D 82 91

B .108 .120

NB15 D 8 8 17

B .010 .010 .013

AUGUST TOTAL MEAN

1866 4869 1217.3

8.022 17.194 4.299

1221 4102 1025.6

7.006 13.671 3.418

.318 .377 .094

1532 3798 949.5

3.655 10.779 2.695

102 275 68.8

.144 .372 .093

25 58 14.6

.029 .063 .016
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Table 26 (continued)

NB1

NBUN

DS30

NB15

NB1

MAY JUNE JULY

D

B

D 42 139 336

B .143 .178 .389

IX. COLEOPTERA

D 75 476 192

B .108 .641 .123

D 50 175 158

B .349 .503 .824

D 42 25

B .046 .039

D 58 358 430

B .215 .513 .230

NBUN

AUGUST TOTAL MEAN

8 8 2.1

.010 .010 .003

409 926 231.4

.747 1.456 .364

192 934 233.6

.321 1.193 .298

83 467 116.6

.042 1.717 .429

61 127 31.9

.077 .163 .041

235 1082 270.5

.392 1.349 .337
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Table 26 (continued)

MAY JUNE JULY

X. DIPTERA

DS30 D 1819 4540 4691

B 1.886 3.704 4.424

NB15 D 529 670 634

B .471 1.075 .662

NB1 D 17 195 1803

B .023 .123 .117

NBUN D 680 3326 1213

B .615 1.378 .676

XI. MOLLUSCA

DS30 D 1661 5125 3467

B 65.1 146.5 139.4

NB15 D 355 1082 344

B 1.83 6.63 1.95

AUGUST TOTAL MEAN

9907 20.958 5239.5

6.249 16.263 4.066

1265 3098 774.6

1.710 3.857 .964

1891 3906 976.5

.499 .763 .191

3327 8546 2136.5

2.134 4.803 1.201

6425 16,679 4169.7

108.4 459.4 114.9

1406 3187 796.7

3.50 13.90 3.50
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Table 26 (continued)

MAY JUNE JULY

NB1 D

B

NBUN D 1033 7719 4102

B 38.1 114.6 90.7

AUGUST TOTAL MEAN

38 38 9.6

.23 .23 .06

4717 17,571 4392

107.7 351.1 87.8
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Table 27. Species Diversity: ANOVA for species number (s),

MAY JUNE JULY AUGUST

DS30 27 52 29 43

NB15 30 41 31 36

NB1 6 16 13 20

NBUN 40 61 48 55

SUMMARY TABLE

Source of Variation df SS MS F

Months 3 697.5 232.5 13.7

Sites 3 2852.5 950.8 55.9

Error 9 153.0 17.0

Total 15 3703.0
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Table 28. Species Diversity: ANOVA for Shannon^Wiener Diversity 
Index (H’),

MAY JUNE JULY AUGUST

DS30 2.26 2,68 2.32 2.87

NB15 2.05 2.57 1.81 2.51

NB1 1.33 2.38 1.78 1.74

NBUN 2.70 2.75 2.71 2.94

SUMMARY TABLE

Source of Variation df SS MS F

Months 3 .83 .28 5.6

Sites 3 1.94 .65 13.0

Error 9 .42 .05

Total 15 3.19
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