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ABSTRACT 

As computer software continues to grow increasingly complex with each passing 

year, researchers continue to try and develop means to simplify software development. 

In this thesis, we propose a BDI agent software development process as the next 

evolution in software development. The goal of this research is to develop a process, 

which can be used to enable the creation of agent-based systems. 

This thesis strives to present a practical software development process, which is 

useful to today's software engineer, by building upon current agent research and proven 

software engineering practices. Our BDI agent software development process is a 

systematic process, which enables the decomposition of a system into agents. The 

Belief-Desire-Intention Model is a fundamental ingredient to our development process. 

We utilize BDI as a natural method for describing agents in our development process. 

Our software development process utilizes several forms of use cases, which are useful 

for defining the architecture of a system in our process. We have also leveraged many 

other existing software development tools such as CRC cards, patterns and the Unified 

Development Process. We have made modifications to many of these existing tools so 

they can be used for agent-based development. These are just some of the tools that 

provide valuable insight into the development of our BDI agent software development 

process. 

In addition to describing our software development process, we will also provide 

a case study to clarify the description of our BDI agent software development process. 
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Basically, our BDI agent software development process strives to model both the 

dynamic and static structure of the agents that make up the system. Once we have 

modeled the stmcture, which makes up the agents in the system the stmcture can then be 

created in software. 
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CHAPTER I 
INTRODUCTION 

In this chapter we will describe why there is a need for our research and what we 

hope to accomplish with our research. 

Reason for Research 

The field of Software Engineering has continued to evolve ever since the first 

programming language was developed. The first software systems that were developed 

were relatively simple and could only accomplish simple tasks. A large reason for the 

simplicity of the software was because of the limitations of the hardware. The software 

developer had to be very creative to get the most out of the limited hardware resources. 

There were very few techniques to aid a software developer in creating software systems. 

Most programming was done in assembly language or other low level languages and 

there was very little code reuse. However, as each generation of computer hardware has 

become more powerful, more has been expected of the software. New software 

engineering techniques were developed, as a response to the increased demands for more 

complex software systems. These new tools were better able to leverage the increased 

capacities of the new computers. In addition these new tools helped manage the 

complexity of developing larger and increasing complex systems by allowing the 

software developer to work at a higher level of abstraction. Higher-level languages like 

FORTRAN were developed, which allowed scientists to focus more on the problem at 

hand and less on the low level details that were essential with previous languages. The 
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development of programming languages, such as C, PL/1, COBOL, allowed 

programmers to leverage the advantages ofreusable libraries that increase programmer 

productivity. However, users continued to demand more complicated software, so new 

software engineering practices such as strnctured programming were developed to help 

manage these complex systems. Strnctured programming tried to divide large systems 

into smaller blocks based on the systems functions. Still software became too complex to 

manage easily and thus, object-oriented software engineering practices were developed, 

so that software could be encapsulated into reusable pieces that commlmicated with each 

other by passing messages. Even object technologies could not keep the ever-growing 

software complexity under control. So new techniques such as Use Cases [Cockburn 

2001], CRC Cards [Bellin and Simone 1997], Patterns [Gamma et al. 1995], UML 

[Fowler 2000] and Unified Development Process [Booch et al. 1999] were developed to 

try and keep the complexity in check. It is clear from looking at the past trends that the 

software development tools will continue to evolve to leverage the advances provided by 

new generations of hardware. 

Today we stand on the horizon of the next generation of software development 

methodologies. Agent-based software engineering will provide the next step forward in 

the effort to provide better tools for developing software that must meet the increasing 

demands, expectations and changes from customers. Agent-based software engineering 

decomposes a system into agents. These agents have control over both their state and 

behavior. Systems will contain many agents that can cooperate with other agents to 

provide the system's functionality. Any agent-based software engineering process must 

increase programmer productivity if it is ever to have any success. When we say it 
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should increase programmer productivity this includes providing a process that allows 

software developers to more readily construct complex systems. The research in the 

following chapters will describe our new agent-based software development process. 

Our agent-based software development process does not seek to reinvent the wheel, but 

rather to build upon and expand proven existing tools and methodologies for use in our 

process. 

Research Goal 

The goal of this thesis is to provide a software development process that software 

developers can use as a tool for constructing agent-based systems. Much work has been 

done on theory, but many of the theoretic approaches do not provide enough 

consideration to the desires of the software developers that will use this teclmology. In 

our approach we seek to balance the needs of the software developer with a solid 

approach to building agent-based systems. 

Systems built from agents provide a natural way to describe and build complex 

systems [Jem1ings 2000]. It has been noted in a paper [Wooldridge and Jem1ings 1999] 

that agents are mostly based in computer science and only have a slight AI element. We 

share this idea and thus will build upon existing successful software tools for constructing 

our agent-based software development process. This approach will allow us to both 

leverage existing research and create a development process that is familiar to practicing 

software engineers. 

Regardless of what processes are used for developing software, two basics steps 

usually take place. The first step in software development is analysis. In analysis we 

describe the problem in order to get a clear understanding of what must be done. The 
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second step in software development is design. During design we develop a solution to 

the problem we described during analysis. These general concepts can be found in many 

of the successful software development processes that have been created. Agent-based 

software development processes will also need to provide tools to aid analysis and design 

if it is to be successful. The agent-based software development process that we desc1ibe 

will provide techniques and methods to aid in both analysis and design of complex 

systems. 

We propose a systematic agent-based software development process that is 

natural for software engineers to use. We will explain each step of our agent-based 

development process and provide an example of its use. It is our belief that this research 

is easier to understand if we provide real applications after we discuss the theory behind 

what should be done. This allows a software engineer to understand each step before 

moving on to the next step. 



CHAPTER II 
BACKGROUND 

The key objective of this research is to facilitate the development of an agent­

based software development process. In order to comprehend this research we must first 

decide on what exactly defines an agent. This chapter will describe what defines an 

agent. We will also describe important tools like use cases in this chapter. We will also 

describe the BDI (Belief-Desire-Intention) model briefly. In understanding the tools and 

methods that we propose will allow us lay groundwork for our agent-based development 

process. Finally, we will describe and compare other research that we found useful to our 

own research. 

Definition of an Agent 

There has been much debate on the definition of an agent or even an intelligent 

agent. The simplest definitions of an agent usually are described as an object with a goal 

or an entity that acts upon the environment it exists in [Wooldridge 2000]. Wooldridge 

and Jennings describe agents as having autonomy, pro activeness, reactivity and social 

ability [Wooldridge and Jennings 1995]. In particular autonomy requires that agents 

have their own thread of control. Agents need to be able to function independently of 

any other agents in the system. Thus any agent system will be fundamentally 

multithreaded, which means agents will have their own thread of control. Agents are 

proactive in the sense that they have a goal and can modify their behavior in order to 
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achieve that goal. Agents must be able to react and respond to changes in the 

environment. Agents do not just pursue their goals in a bubble, but must work in a 

constantly changing envirom11ent. It is clear that agent-based systems will have many 

agents. In order for agent-based systems to work, agents must be able to communicate 

and work with other agents. 

This research will focus on providing software solutions by building software 

systems made up of agents. We will provide a simple definition of an agent for our 

research. Entities become agents when we can assign beliefs, desires and intentions to 

them. From this point on in this research we will refer to beliefs, desires and intentions 

as BDI [Bratman 87]. 

In the analysis phase of our agent-based software development process will strive 

to discover potential agents and the BDI's that make up our system. Defining the BDI's 

does border on design instead of analysis because we are describing how something will 

be done. In the design phase of our agent-based software development process we will 

assign the BDI's to software agents. 

For the purpose of our research it is necessary to provide a definition of an agent­

based system. In our research an agent-based system is a system that is made up of 

agents [Jo 2001]. Each agent is defined by a set ofBDI. In addition agents have control 

over both their state and behavior. At this time it is important to make the distinction that 

we do not require all the agents that make up our system to be intelligent agents. 

Our development process builds upon successful strategies that can be found in 

object-oriented development. We propose new methods for use in agent-based software 

development whenever previous tools found in other development processes prove 
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inadequate for agent-based development. It is useful to compare the differences between 

objects and agents, before we propose our agent-based development process. 

Objects are described as having state and behavior. Objects have control over 

their state in the sense that it can change, but their behavior remains constant. Agents can 

also be described as having state and behavior. However, agents have control over both 

their state and their behavior [Weiss 1999]. Thus, Agents can change both their state and 

behavior at any time. We will use the belief-desire-intention (BDI) model [Rao 1995] to 

help define agents in our system. 

We take a goal-oriented approach in our agent development process because it is 

a natural extension of object-oriented software development. We can readily describe the 

functions or services that our system should provide. In our agent-based development 

process we describe a goal or set of goals that will provide the service for the system. 

The Unified Development Process [Booch et al. 1999] is a tested tool [Larman 

2002] for building robust object-oriented systems and we studied many of the successful 

strategies like use cases and UML that are described in the Unified Development Process 

[Booch et al. 1999]. Due to the differences between object-oriented development and 

agent-based development the artifacts found in Unified Development Process often 

require modification for use in agent-based development. We use the term artifact to 

describe the items that are created during the different steps of a development process. 

When object-oriented tools prove inadequate we create new agent-based tools that better 

describe the software system. 

Use cases are another tool that will be fundamental to our agent-based software 

development process. Use cases are a proven tool that helps drive the development 
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process forward and helps capture the requirements of a system [Cockburn 2001]. Use 

cases are an essential paii of successful object-oriented software development processes 

like the Unified Development Process [Booch et al. 1999]. Use cases provide a 

functional approach to gathering requirements. Object-oriented software systems can be 

described by using a functional approach. This has been proven by Craig Lannan's 

software development process [Lannan 2002]. Jem1ings also supports functional analysis 

by describing it as more natural than data or object type analysis [Jem1ings 2001]. The 

functional approach will also be useful when building agent-based systems because it is 

necessary to gather requirements for agent-based systems. We will use a modified use 

case called an external use case for discovering the functions or services that our systems 

should provide. 

Use cases are not object-oriented or even agent-oriented in nature, but they 

provide valuable insight into the requirements of a problem. We will provide some slight 

modifications to the use cases to increase their usefulness to our agent-based software 

development process. We will use the modified use cases to discover the requirements of 

our system. Once we understand the systems requirements we can use them to design an 

agent-based system. 

It is important to assign the proper responsibilities to objects when developing an 

object-oriented system. Describing the objects and their interactions is a fundamental 

need in OOA/D. In our agent-based development process we will first identify the 

services that our system should provide. The system can be thought of as an agent, since 

we will describe our entire system as an encapsulated entity, which will have state and 

behavior. After we have identified the services that our system will provide we can then 
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identify the goals that are necessary to provide each service. Identifying the proper goals 

and assigning them to agents becomes a major focus of the agent-based software 

development process. In the following chapters we will describe our agent-based 

software development process and give a case study demonstrating its use. 

Belief Desire Intention (BDI) 

We will use BDI [Bratman 87] [Rao et al. 95] as a tool for defining agents in our 

development process. The discovery of the BDI that will characterize each agent 

provides us with several advantages. First of all the BDI provides a natural way to 

describe an agent. Secondly there are existing systems that successfully use BDI 

[Wooldridge 2000]. There is a large amount ofBDI research that can be leveraged in the 

creation of agent-based systems [Bratman 87] [Rao et al. 95] [Wooldridge 2000]. 

The BDI model provides a set of guidelines for describing an agent. We will 

describe our interpretation of the BDI guidelines for the purpose of this research. An 

agent's beliefs correspond to the knowledge an agent has about its environment. The 

desires of an agent can be described as the goals an agent can choose to achieve. Finally, 

an agent's intentions are the plans that will allow the fulfillment of a goal. In our agent­

based software development process we define an agent as an entity that we can assign 

BDI to. In our development process we will identify the possible agents and the goals 

that will provide the system's functionality. In the process of discovering goals we will 

also assign beliefs and intentions to each goal. We define the software agents in the 

system as we assign BDI to candidate agents. 
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Other Research 

In studying the research that was been done in the area of agent software systems 

we have found two general types of works to be useful. The first is the research that has 

been done to solve problems from a software engineering perspective. Research into 

such tools as CRC cards [Bellin and Simone 1997], UML diagrams [Fowler and Scott 

2000], use cases [Cockburn 2001] and software patterns [Gamma et al. 1995] [Larman 

2002] have been invaluable for use in constructing object-oriented systems [Booch 1994]. 

In our research we have modified several of the tools that have proved successful for 

object-oriented software construction for use in agent-based software systems. The 

second area ofresearch is in the agent theory. Jem1ings, Wooldridge and others 

[Wooldridge and Jennings 1995, Iglesias et al. 1998, Wooldridge and Jemlings 1999, 

Wooldridge et al. 1999, Wooldridge 2000, Depke 2001, Jennings 2001, Jo 2001, Petrie 

2001], provide research into the theory of agent software development. Both of these 

types of research proved useful in developing our agent-based software development 

process. 

Grady Booch's book "Object-oriented Analysis and Design with Applications" 

provides a detailed description of object-oriented analysis and design for software 

development [1994]. While object-oriented software development provides many new 

tools to abstract problems into individual objects, large systems are still difficult to 

manage. In our research we looked to understand the advantages of object-oriented 

software development first in order to suggest improvements and changes for use in the 

agent-based software development process. 
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Kent Beck [Beck 2000] provides a new software development process that centers 

on building software from the progranm1er's prospective. Many programmers don't feel 

they have the time to learn complex development processes. Kent Beck addresses this 

issue by presenting a type of development process based on the activity of writing code, 

which is fundamental to the creation of software systems. A software process that 

provides techniques that aid in creation of code appeals to software developers who 

spend most of their time creating code. Kent Beck's extreme programming process 

combines several different practices in order to provide a way to build software 

successfully [Beck 2000]. Some of the key features found in the extreme programming 

process are progra1mning in pairs, writing test cases first and implementing only a few 

features at a time [Beck 2000]. We found Kent Beck's research interesting because he 

takes a fresh approach to the development process. Kent tries to identify some of the key 

hurdles to software development and then explains how his process deals with these 

obstacles. In our research we tried to capture the spirit of Kent Beck's software 

development process by creating a process that also kept the needs of the software 

developer in mind. 

David Bellin and Susan Simone describe the use of CRC cards to assist in the 

discovery of classes in an object-oriented system [Bellin and Simone 1997]. Their 

research provides an extremely detailed discussion of the use of CRC cards as aids, 

which allow teams to use CRC cards for class discovery. We feel that the CRC cards 

lack enough structure to be used as a reliable tool for the discovery of software objects or 

agents. CRC cards are useful for describing the static structure of an agent or object. In 

our process we have developed a modified CRC type artifact called a BDI agent card, for 
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use in our agent-based software development process. The BDI agent card can clearly 

represent the static structure of an agent in our process. 

Alistair Cockburn's book "W1iting Effective Use Cases" explains the use of use 

cases for software development [2001] in great detail. Use cases are useful tools that 

allow software developers to naturally identify the functions of a system. Use cases are 

neither object-01iented nor agent-based, but are functional in nature. We have created 

modified versions of use cases for use in our agent-oriented development process. These 

modified agent use cases will help discover the possible goals and services that we will 

need in our system. 

"Applying UML and Patterns", by Craig Larman, describes a development 

process for constructing object-oriented systems. His research provides a process that 

can be followed by developers to construct object-oriented systems. Lannan's 

development process leverages many tools to aid in software development such as use 

cases, UML and patterns. Our development process attempts to provide the same type of 

practical development process for building agent-oriented systems. 

The Gang of Four research on design patterns describes solutions to common 

problems encountered in developing software [Gamma et al 1995]. They provide three 

general categories of design patterns based upon their purposes. The three types of 

designed patterns presented by the GOF are Creational, Strnctural and Behavioral. 

Creational patterns provide solutions for object creation. Structural patterns provide 

guidelines for laying out the proper structure of objects and behavioral patterns can be 

used to help design object interactions properly. These design patterns provide a way for 

software developers to leverage the previous experience of other software developers. 
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We suggest some basic patterns for agent-based software development in this research. 

Patterns are pa1iicularly useful when solving complex problems and they are useful for 

managing complexity in our agent-oriented development process. Whenever the same 

problem is solved over and over again we will try and develop a pattern that can be used 

to solve that problem. 

The research paper "A Catalog of Agent Coordination" proposes the use of 

patterns in agent-oriented development [Hayden et al. 1999]. They provide a brief 

description of a broker agent pattern. We feel that a pattern similar to a broker agent may 

be useful in agent-oriented development. In our research we try to discover other several 

common patterns that we could apply to our case study. 

The paper "Improving the Agent-Oriented Modeling Process by Roles" takes the 

approach of describing a system using roles [Depke et al. 2001 J. It provides a brief 

description of a development process based on roles. They also make the necessary 

additions to UML in order to provide diagrams to describe their process. We find their 

role-based process is difficult too follow. Wooldridge, Jennings and Kinny [1999] also 

talk about defining a system based upon its organization. They state by looking at the 

roles played by agents in the system you can then model the system based upon those 

roles. Currently it seems unlikely that a system based on constantly changing roles can 

be easily described or implemented. In our process we have tried to provide a natural 

way of decomposing a software system into agents. Instead of focusing on roles we 

focus on describing the beliefs, desires and intentions for each agent. 

"Analysis and Design ofMultiagent Systems using MAS-CommonKADS" 

[Iglesias et al. 1998] is a paper that discusses software development process based upon 
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knowledge engineering. The knowledge-base approach they present lacks the rigid 

approach that we feel a software developer needs in order for a process to be valuable to 

them. In our research we describe the problem using agents that have beliefs, desires and 

intentions. We feel that the knowledge enginee1ing research could be leveraged in 

describing the beliefs of an agent. Further more, we seek to present a process such that 

each successive artifact builds upon the previous artifacts. 

Michael Wooldridge has published several research documents on agent software 

development techniques [Woold1idge and Jennings 1995, Wooldridge and Jennings 199, 

Wooldridge 2000, Wooldridge et al 1999]. His approach is based in agent theory. In his 

book "Reasoning about Rational Agents" Wooldridge presents a detailed BDI 

architecture, which is designed for building BDI agent systems [Wooldridge 2000]. 

Wooldridge's research describes agent theory in great detail. In our research we try to 

apply modem software engineering principles to the agent theory presented by 

Wooldridge, Jennings and others. In integrating the theory described by Wooldridge and 

modem software engineering principles we describe a practical development tool that 

software developers can use for the creation of agent-based systems. 

Rao and Georgeff [Rao and Georgeff 1995] provide a paper describing a BDI 

architecture for use in building agents. They formalize their work using BDI logic and 

provide a model that can be used to describe BDI agents. Their research provides us with 

a better understanding ofBDI and how it can be formally described. 

Nicholas Jennings has published several research documents that support the 

advantages of agent-based software engineering [Jennings 2000, Jennings 2001]. This 

research lays the foundation for building agent-based systems. Jennings argues that 
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agent-based systems provide a natural and useful way to build complex systems. In our 

research we provide the beginnings of a process that can be used to develop agent­

oriented systems. 



--

CHAPTER III 
BDI AGENT DEVELOPMENT PROCESS 

This chapter describes our BDI agent development process in detail. A sample 

case study is included, which will clarify the explanation for each aiiifact. 

Brief Process Description 

A salient point in our research is the use ofBDI [Rao et al. 1995] for describing 

agents. BDI provides us with a clear view of what makes up an agent. We will assign 

beliefs, desires and intentions to each agent. Our process will provide the tools that will 

be necessary to systematically build agent-based software systems. Figure 1 provides a 

high level view of how we will use BDI in our agent-based development process. 

Figure 1 describes a general approach of how an agents BDI attributes are 

discovered in our BDI agent software development process. In the beginning of our 

development process we use external use cases, which are general plans indicating how a 

specific service can be provided from an external point of view. We then refine these 

plans into goals using internal use cases. The internal use cases decompose a service into 

one or more goals. In addition the internal use cases also provide a more precise 

description of each goal and its corresponding plan. After we have discovered a goal and 

described a plan for each goal we need to discover the beliefs that will be necessary for 

each goal to be completed. The beliefs are determined for each goal by analyzing each 

goal's plans and determining what beliefs will be necessary for its completion. Now that 

16 
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we have described a complete BDI we can assign it to an agent. 
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We use standard external use cases, 
in order to get the basic intentions 
needed to provide the services for 
our system. 

Desires 
(Goals) 

We use internal use cases to define 
the goals that will be needed to 
provide a service for our system. 
We will also discover more 
intentions during goal discovery. 

Beliefs 
(State) 

By studying the plans for each 
desire we can obtain the knowledge 
that will be needed in order to 
fulfill the desire. 

Figure 1. BDI Agent Model. 

I 

DI 

BDI 



Initial Problem Statement 
(What needs to be solved?) 

External Use Cases 
(Describe the system :fi.mctions 
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Enterprise Software 
Assessment 

1-------1""~ (How does this fit in with the 
~ 

current enterprise?) 

from an external point of view.) ... ~------1 

Brief External Use Cases 
( Choose the functions the 
system should provide.) 

Conceptual Agent List 
(Begin to identify possible 
agents in our system.) 

Brief Internal Use Cases 
(Decompose a system function 
into goals that can be assigned 
to agents.) 

Internal Use Cases 
(Provide a detailed plan to 
achieve each goal.) 

BDI Agent Cards 
(Capture the static strncture of 
an agent.) 

Agent Relation Diagram 
(Provide a high level view of 1------~- how the system could work 
when decomposed as 
conceptual agents.) 

Candidate Agent List 
(Apply patterns to the Agent 
Relation Diagram and 
conceptual agent list to identify 
possible software agents.) 

Agent Belief List 
(Identify the beliefs required to 

1--------1 .... .i complete each goal.) 
~ 

Agent Interaction Diagrams 
(Assign goals to agents and 
capture agent communications.) 

Agent Software Guidelines 
(Provide guidelines for creating 
the agents in software.) 

Figure 2. BDI Agent Software Development Process. 
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Before we discuss each step of our development process in detail it is useful to 

take a high level view of the entire BDI agent software development process. Our 

process stresses a goal-oriented approach for developing agent-based systems. Use cases 

play an impo1iant role in discovering the goals that will be necessary to provide the 

services for our system. 

Figure 2 is a diagram of the artifacts that will be create during our BDI agent 

development process. The aITows show the general order of creation for the artifacts in 

our process. It is impo1iant to understand that the artifacts can be created in any order 

that is useful to the developer. The aITows represent a loose order that we suggest for 

artifact creation at this time. The BDI agent software development process begins with 

the initial problem statement, which describes what the system should do. Next we create 

the enterprise software assessment in order to discover how this problem fits within the 

scope of the current enterprise. Then the brief external use cases are created to define the 

services that the system should provide. At this point in the process we have defined, 

from an external point of view, the services that our system is required to provide. 

External use cases present scenarios that provide plans, from an external 

viewpoint, that will provide the services for our system. By analyzing the artifacts we 

have created so far we create the conceptual agent list. Next an agent relation diagram is 

created for any external use cases that may provide insight into how a conceptual system 

might work. By looking at our conceptual agent list and our agent relation diagram we 

can apply agent patterns to create the candidate agent list. During this phase of 

development we will discover a majority of the possible agents that our system can be 
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decomposed into. At this point in the development process we are begi1ming to shift 

from analysis to design. 

The brief internal use cases decompose a system service into one or more goals 

that can then be assigned to agents. Next we create the internal use cases, which provide 

a detailed plan for achieving each goal. The agent belief list is created by studying each 

goal's plan and identifying the beliefs that will be required in order for that plan to be 

completed. At this point in our development process we have described each belief, 

desire and intention in detail. 

The final phase in our development process centers on describing the agents in 

such a way that they can be created in software. The assignment of each BDI to agents 

becomes a fundamental activity during this phase. Agent interaction diagrams are 

created to facilitate the assignment of each BDI to agents in our system. It is important to 

note that many agent interaction diagrams may be created before we decide upon a BDI 

agent relationship. During the creation of the agent interaction diagrams we may 

discover new insight into our system, which may require us to modify the internal use 

cases to reflect this new understanding. 

The agent interaction diagrams are a useful tool for describing the dynamic 

structure or communication that takes place between agents. BDI agent cards are created 

to capture the static structure for each agent. The BDI agent cards and the agent 

interaction diagrams can be created in parallel. It is imperative that both the BDI agent 

cards and the agent interaction diagrams share a consistent architecture of the system. 

Thus a major change in the agent interaction diagrams can often lead to a major change in 

the corresponding BDI agent cards and vice versa. We have now created the artifacts that 
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will be used to create the agents in software. The actual creation of the agents in software 

is beyond the scope of this ctment research, but represents an interesting problem to 

study in the future. 

We have taken a brief tour of the complete BDI agent software development 

process. We will now systematically describe our process in much greater detail. The 

following section will analyze each artifact in the order that is presented in Figure 2. We 

will present a detailed discussion of each artifact that can be created in our process and 

provide a case study providing a practical view of an actual artifact once it is created. 

Initial Problem Statement 

The initial problem statement is the first step in our BDI agent software 

development process. The initial problem statement describes the problem that needs to 

be solved by the system. Software developers should create the initial problem statement 

based upon talking with the customer and by reading any documents describing the 

problem. Both the customer and the developer should discuss the initial problem 

statement together. It is important that both customers and developers agree upon a high 

level view of the system. Customer and developer agreement, upon the initial problem 

statement, provides a solid start to the development process. Without customer and 

developer agreement, the system may not meet the needs of the customer and the system 

will be doomed to failure from the start. 

The proper creation of the initial problem statement will help the developer 

understand exactly what the system should do from the customer's standpoint. The 

following case study is an example of an initial problem statement for a Notice 

Management System. 
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Case Study: Initial Problem Statement 

A customer would like to receive special notices of certain types of 
weather events. The business will direct the forecasters that they need to create 
these new notices. We need to develop a tool that will aid the forecasters in 
providing notices to districts inside a state. The system should be able to provide 
notices for a variety of events (frost, severe-weather, freezing rain). The customer 
wishes to use these notices as a warning that they may need to take action in order 
to respond to an event. Our business would like the interface to be fast and easy 
to use in order to minimize both the time and cost to the forecaster in creating the 
notices. We do not want the forecaster to have to worry about the delivery of the 
notices. Instead we would like to develop a system that will automatically deliver 
the notices to the districts once they are created. The forecasters job is identifying 
when to create a notice. The forecaster will use an interface to create the notices. 
The system should be able to format and deliver the notices, created by the 
forecasters, as needed. The customer often wants the notices delivered in a 
variety of formats (web pages, faxes or both). The customers usually want the 
notices delivered to each district where the notice is valid. 

Enterprise Software Assessment 

The enterprise software assessment provides a brief overview of how a possible 

solution would fit in with an enterprise's current systems. We should ask ourselves two 

different questions during the enterprise software assessment. First we should ask what 

environment would the system most likely be deployed in. Then we should ask how 

could we leverage existing software to aid in the development of the system. When 

looking at the software that exists we should first consider the software that is already 

readily available to customer. Just one of the many advantages of using software that 

already exists is the existing software most likely already works properly in the 

enterprise. Another important advantage for using existing software is that any software 

we will create will probably require maintance. Once we have identified the existing 

software we can propose how our system will fit in with the existing software. It is cost 

prohibitive to the customer to have software developed from scratch. As a result 

l 



24 

software developers should strive to maximize any software that has already been 

created. If software needs to be created from scratch it is imp01iant to develop software 

that will work with the other software already available in the enterprise. If people must 

use the software it should behave similarly to cmTent software to reduce the amount of 

training necessary for the new software. 

The enterprise software assessment addresses the issues of what enviromnent the 

system will be deployed in and suggests how existing software could be leveraged in the 

creation of a new system. By looking at the previous issues we gain a better idea of how 

the system might be implemented for the customer. The following case study is an 

example of a current business outlook for our Notice Management System. 

Case study: Enterprise Software Assessment 

We currently have a system that stores all our weather products in a 
database. The notices could be added to a database as a new weather product. 
Once a notice is received in the database we could provide another process that 
will handle the delivery and formatting of a notice. We currently have an internal 
system set up called the notifier that can watch the database for different kinds of 
weather products to be inserted. We can use the notifier to signal the system 
when new notices are created. 

Brief External Use Cases 

The brief external use cases are used to identify the services that our system 

should provide. The creation of the brief external use cases is a valuable tool that can be 

used in the creation of the external use cases. We will most likely create many brief 

external use cases before we decide on the ones that best represent the services that our 

system should provide from an external point of view. When we talk about an external 

point of view, we mean that we consider the system as a black box and we focus on the 

users, also known actors, interaction with this encapsulated system. The format for a 
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brief external use case is fairly simple. Each brief external use case is identified by a 

"name" and is followed by a "description" that describes a scenario for this use case. The 

following case study lists the brief external use cases that where created for the Notice 

Management System. 

Case study: Brief External Use Cases 
Name: CreateNotice 
Description: 

A forecaster identifies the need to submit a notice or notices in a region. 
The forecaster starts the notice interface. The forecaster selects the state to submit 
notices in. The forecaster then selects the districts to submit notices to. The 
forecaster then creates and submits the notice to the system. The system 
recognizes that a notice needs to be delivered. The system formats the notice 
properly for delivery and then delivers the notice properly. 

Name: ViewNotice 
Description: 

A forecaster wishes to view the notices that are currently valid. The 
forecaster starts the interface and selects the region to view notices in. The 
forecaster is able to easily see where valid notices are and can bring up the details 
of a notice as desired. 

Name: Start 
Description: 

The system manager needs to start the system. 

Name: Stop 
Description: 

The system manager needs to be able to stop the system. 

Detailed External Use Cases 

We will use a drill down approach throughout our development process as we 

create artifacts to provide detailed descriptions of previous artifacts. The drill down 

approach allows us to manage the complexity of a system by focusing on a small number 

of items at a time. When we need to look at a potentially complex problem like all of the 

services our system should provide, we use a simple artifact like the brief external use 
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case, which lets us focus on what services our system should provide instead of the 

details on how such services should work. The external use cases then focus on one 

service at a time providing a detailed description, from an external viewpoint, of how a 

service could be provided. 

In the brief external use case section we decided what services our system should 

provide and we gave a brief description of each service. Now we must explore each 

service in more detail in order to discover a plan that would provide the service. When 

choosing a service to analyze in greater detail it is impo1iant to consider a variety of 

items. The following two sentences are an example of the types of questions we found 

useful when deciding which services to analyze. Is this service critical to the success of 

the system? Will this service help us understand any architectural requirements that our 

system might have? We want to focus on the difficult and important services early in the 

development process. Focusing on the complex services allows us to identify major 

stumbling blocks early in the development process. It is a well-accepted software 

engineering view that it is easier to make major architecture changes during the 

beginning phases of software development. 

The external use cases are based on the fully dressed use cases described by 

Larman [2002]. We use the distinction "external" because the external use cases are 

oriented around the external actors and their interaction with the system. By developing 

an external use case we gain a better understanding of how the each service could be 

provided. The external use cases provide a description of how a service will be provided 

from an external actor's viewpoint. We will create an external use case for each service 

that we feel the need to understand better. 
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h1 the following case study we have created external use cases for the services 

createNotice, viewNotice and staii. At this time there was no need to create an external 

use case for stop because we did not feel that the external use case for stop would provide 

any new insight into the operation of the system. 

Case study: External Use cases 

External use case: CreateNotice 
P1imary Actors: Forecaster, System, District 
Stakeholders: 
-Forecaster wants fast and accurate entry of the notices. 
-Customer wants accurate and timely delivery of the warnings to districts 
-Districts are interested in taking appropriate action for each warning. 
-Company wants to satisfy customer interests in a cost effective mam1er. 
Preconditions: Forecaster has identified a need to submit a severe weather 
warning for an area. 
Sucess/Postcondition: A notice is delivered to the district and a copy is saved. 
Scenario: 
1) A customer requests, from the company, that they receive notices of certain 
kinds of weather events. 
2) The company directs the forecaster to create the notices for the customers. 
3) A Forecaster recognizes the need to create a notice. 
4) Forecaster starts the notice creation interface. 
5) Forecaster selects the proper customer to issue a notice for. 
6) Forecaster creates the text of the notice. 
7) Forecaster submits the finished notice to the system. 
8) The system recognizes that a notice needs to be delivered. 
9) The system formats the product for delivery. 
10) The notice is delivered in the proper format to each district. 
11) Forecaster repeats steps 5-6 as needed. 

Extensions: 
a) System fails: 
-any work that hasn't been submited by the forecaster should be lost. 
-restart the interface and recreate the notice. 

Special Requirements: 
-Once the system is loaded it must have a very quick response time (less than a 
sec or two from the forecasters perspective) 

External use case: ViewNotice 
Primary Actors: Forecaster, System 
Stakeholders: 
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-Forecaster wants view current valid notices. 
-Company wants forecaster to be able to easily view the valid notices. 
Preconditions: Forecaster decides to view a notice. 
Sucess/Postcondition: Forecaster is able to view the contents of a notice. 
Scenaiio: 
1) The forecaster wants to view cmrent valid notices. 
2) The forecaster sta1is the view notice interface. 
3) The forecaster selects the customer to view notices for. 
4) The interface indicates to the forecaster what distiicts have valid notices. 
5) The forecaster can choose a district and view the valid notice for that district. 

Extensions: 
Sa) 
-If if we try and view a notice in a distiict that currently doesn't have any valid 
notices, then we should get a message, which says "No valid notice available". 

External use case: Start 
Primary Actor: System Administrator, System 
Stakeholders: 
-The System Administrator wants to be able to start and stop the notice delivery 
system as desired. 
-Company wants System Administrator to be able to easily manage the system. 
Preconditions: System Administrator decides to start the system. 
Sucess/Postcondition: The system is started. 
Scenario: 
1) The System Administrator wishes to start the notice management and delivery 
system. 
2) The System Administrator starts the notice management and delivery system. 
3) The System starts the proper components to enable management and notice 
delivery. 

Conceptual Agent List 

After we finish creating an external use case we should update our conceptual 

agent list. If this is our first external use case then we will need to create a conceptual 

agent list. We find conceptual agents by using linguistic analysis [Abbot 83]. We 

identify the nouns and words, that could possibly be used as nouns, in our written 

artifacts for the system. The artifacts include any external use cases, brief external use 
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cases, enterprise software assessments, initial problem statements and any other 

documents describing the system. 

Our conceptual list will contain many nouns that may not be agents. They may be 

only objects or nothing at all. The simplest definition of an agent is an object with a goal. 

In our software development process conceptual agents only become agents when they 

are assigned BDI. While we are only interested in decomposing the system into agents, it 

is useful to identify all the possible nouns, since they will prove useful in providing a 

starting point for the possible agents that may participate in the system. It is also very 

likely that we may undercover new agents during the development process. Whenever 

we find a new conceptual agent we should add it our list. The following case study lists 

the conceptual agents of the Notice Management System. 

Notice 
Notifier 
System 
Forecaster 
Customer 

Case Study: Conceptual Agent List 

Weather 
District 
Web Page 
Fax 
Delivery 

Conceptual Agent Relation Diagram 

The conceptual agent relation diagram (CARD) provides a conceptual view of 

how a service might be provided for a system. The conceptual agent relation diagram 

shows some conceptual agents and their possible relationships with each other in the 

system. Agents that are represented by an oval are external to a system and agents 

represented in a rectangle are internal agents. The arrows in the diagram describe the 

direction of communication and the label near the arrows indicates the goal of the 

communication. The key purpose of the conceptual agent relation diagram is to give the 
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developer insight into what some of the internal agents might be. However, the 

conceptual agents do not directly map to the software agents of the system. By looking at 

the conceptual agent diagram and by applying the agent software patterns we can create 

an updated conceptual agent list, which we will call the candidate agent list. 

Service: createNotice 

Creates 
Notice 

Watches for 

Notifier 

Asks for notices Hands a notice to 

Delivers a notice 
Delivery 

Figure 3. Conceptual Agent Relation Diagram. The conceptual agent relation diagram 
provides a conceptual view of a possible system. The oval circles represent external 
agents and the boxes represent internal agents. There is a large rectangle that surrounds 
all thee internal agents, which represents the system boundary. 

We only create conceptual agent relation diagrams for services that we feel will 

provide insight into the possible software agents that may exist in our system. In the 

following case study we create an agent relation diagram for the service createNotice. 

Figure 3 is the agent relation diagram for the createNotice service. The diagram of the 
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createNotice service provides a general view of how a conceptual system might provide 

the createNotice service. 

Agent Patterns 

Agent patterns help leverage previous experience in system development and 

apply it to our cmTent system. Our agent patterns will build upon the object-oriented 

design pattern work done by Gang of Pour [Gamma et al. 1995] and Lannan [2002]. We 

have also looked at agent design patterns by Hayden, Carrick and Yang [ 1999] and 

Aridor and Lange [ 1998]. We will talk about three general types of agent patterns. 

The first category of agent patterns is agent identification patterns. Agent 

identification patterns help us discover what additional software agents the system may 

require in addition to the conceptual agents that we have already discovered. The second 

category of agent patterns is the agent creational pattern. The creational patterns are 

based upon the creational patterns discussed by the Gang of Pour [Gamma et al. 1995]. 

These agent creational patterns help provide guidelines for who should create the agents. 

The last type of agent pattern is the agent goal assignment patterns. The agent goal 

assignment patterns will provide guidelines for assigning goals to agents. 

In proposing agent identification patterns we try to identify common agents that 

will be found in agent software systems. We will talk about three different agent 

identification patterns. The first agent identification pattern is the manager agent pattern. 

The manager agent proposes that we abstract the interaction between internal and 

external agents to a single manager agent. The manager agent can handle any 

communication between the internal and external agents. The manager agent can locate 

the proper internal agent based on its interaction with the external agents. The manager 

...., 
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agent also removes the need for the external agents to know detailed infonnation about 

internal agents. Large software systems may use several manager agents to communicate 

with the different subsystems that make up the system. When a system has multiple 

manager agents it is often useful to create a special kind of manager agent know as a 

delegation agent. The delegation agent simply receives external agents' messages and 

forwards them to the proper internal manager agent. The second identification pattern is 

the service pattern. The service pattern provides an agent to represent a certain kind of 

service that needs to be available to the entire system. An example of a service pattern 

might be a system, which needs to provide database access to the internal agents in the 

system. Since several different agents need access to the database we can create a single 

database agent to provide database service to the internal agents. The third type of 

identification agent we would like to talk about is the broker pattern [Hayden et al.]. The 

broker pattern suggests a broker agent can be used to abstract a service from the agent 

that provides that service. If we have several different agents that provide similar 

services they can register their services with the broker agent. Agents that want to use 

those services then communicate with the broker agent. The broker agent will choose the 

proper service agent to handle the agent's request. 

Agent creational patterns suggest who should create an agent. The first agent 

creational pattern is the long-lived agent. The long-lived agent needs to be available 

whenever the system is running. The long-lived agent should be created when the system 

is started and shutdown when the system quits. The following creational patterns are 

based upon the design pattern work done by Larman [2002]. An agent A should be 

created by agent B if agent A is the only used by agent B. An agent A should be created 
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by B if agent B has agent A's initialization data. Agent B should create agent A if it 

aggregates, contains, records or closely uses Agent A. 

The last category of agent patterns that we will describe is agent goal assignment 

patterns. One could argue that agent creation patterns are really agent goal assignment 

patterns because we are describing who has the responsibility to create an agent. 

However, creation of agents is such an important and difficult step we feel that it 

deserves its own classification of patterns and we have separated agent creational patterns 

from agent goal patterns. 

The following agent goal assignment patterns are based upon the design patterns 

described by Larman [2002]. The low coupling pattern suggests that we should try to 

assign goals so coupling between agents remains low. By keeping the coupling between 

agents low, we increase the self-sufficiency of the agents, which reduces the complexity 

of the system by abstracting behavior into a single agent. It is also desirable for our 

agent's goals to exhibit high cohesion. Our agent's goals should be similar in nature. An 

agent with vastly different goals can be a sign of an overly complex agent and may 

indicate the need for the agent to be decomposed into several smaller agents. The notifier 

pattern is based upon work done by Aridor and Lange [1998]. The notifier pattern 

suggests that it is common for agents to ask other agents to notify them of events. The 

notifier agent will watch for a certain events and notify the proper agents. 

Candidate Agent List 

The candidate agent list contains all the potential agents that we can use in 

designing our system. We may do several iterations of creating an agent relation 

diagram, applying agent identification patterns and then creating brief internal use cases, 
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in order to discover the possible agents for the system. It is impmiant to look at the 

conceptual agent list and think about what patterns may be applied to other agents that we 

didn't include in our agent relation diagrams. By applying the patterns to agents in our 

conceptual agent list we may discover a better architecture for our system that otherwise 

we may have been missed. The candidate agent list contains all the conceptual agents in 

addition to the new agents we discover. It is important to note that not every agent we 

may discover will become a software agent in our final system. This candidate agent list 

is developed as a resource to be used when creating the internal use cases and in the 

creation of the agent interaction diagrams. 

After looking at Figure 3, the agent relation diagram for createNotice, and 

applying our agent identification patterns we discover a number of potential agents. We 

see that we have two external actors that interact with our internal agents and we suggest 

manager agents that handle the interaction between the internal and external agents. We 

also discover that the delivery agent wants to be notified of any new notices and we 

would create a notifier agent, but we have already discovered that agent. We notice that 

several of our agents will need to interact with the database and add the database agent to 

our list. Upon further review the Delivery agent may need help in delivering notices, so 

we suggest a deliveryservice agent. We think that it may be possible that we want 

several different agents to register their delivery services with a broker agent. For 

example the Web Page and Fax agents may want to provide their services through a 

DeliveryBroker agent. Table 1 describes the candidate agent list for our Notice 

Management System. 



35 

Table 1. Candidate Agent List. 
Agent Reason 
Notice Conceptual Agent List 
Weather Conceptual Agent List 
Notifier Conceptual Agent List 
District Conceptual Agent List 
System Conceptual Agent List 
Web Page Conceptual Agent List 
Forecaster Conceptual Agent List 
Fax Conceptual Agent List 
Customer Conceptual Agent List 
Delivery Conceptual Agent List 
N oticeManager By studying the agent relation diagram for 

the createNotice service we can see that the 
external Forecaster agent is communicating 
directly with the notice agent. By applying 
the manager pattern, we identify the 
possible need for a NoticeManager. 

DeliveryManager We recommend this agent based on 
applying the manager pattern. 

Database We discover this agent by applying the 
service pattern. The service pattern 
provides a single agent that is available to 
all the internal agents in our system. Many 
agents will need to get and store 
information in the database and we may 
provide a single database agent to handle 
this. 

DeliveryService We recommend this agent based on 
applying the service pattern. 

Deli very Broker We identify this possible software agent 
based on the broker pattern. We have 
several possible agents such as Fax and 
Web page, which provide the function of 
delivering notices to the districts. The 
broker could provide a single agent that 
decides which agent to use for notice 
delivery. 

SystemManager This agent is recommended from looking at 
the start brief internal use case. The system 
manager will ensure the proper agents are 
created at the systems initialization. 
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Brief Internal Use Cases 

The brief internal use cases attempt to decompose a service into one or more 

goals. They are also the first step in preparing to create the internal use cases. In order to 

create the brief internal use cases we read the external use cases and identify potential 

goals and a simple plan to complete each goal. These goals are used to provide the 

services for the system. 

We recommend creating many different brief internal use cases when trying to 

decompose a service. The brief internal use cases can be quickly created and provide an 

excellent tool for discovering the architecture for the system. After deciding on the brief 

internal use cases for the system any extraneous brief internal use cases can be discarded. 

The main purpose of the brief internal use cases is to define a decomposed service as one 

or more manageable goals, which can then be assigned to the proper agents in our 

system. 

When deciding on the creation of goals we need to keep in mind that agents can 

only communicate with each other through goals. Thus whenever agents must 

communicate with each other we must create goals for them to do so. Ideally we would 

like the goals to be as abstract as possible because fewer goals are usually easier to work 

with. However, the goals should not provide too much functionality because they should 

be reusable as well. The goal assignment patterns provide a general description of what 

is desirable in a properly decomposed goal. 

The following case study lists the brief internal uses cases for our Notice 

Management System. The brief internal use cases are grouped under the service that they 

l 
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should provide. The service name is in bold in order to easily distinguish which brief 

internal use cases belong to which service. 

Case Study: Brief Internal Uses Cases 

Service: CreateNotice 
Name: CreateNotice 
Description: 
The forecaster has identified a need to submit a notice for an region. The 
forecaster starts the notice interface. The forecaster selects the proper state to 
issue a notice for. The forecaster enters the notice text. The notice is formatted 
and submitted and is stored in the database. 

Name: WatchForNoticesToDeliver 
Description: 
The notifier is started and asked to watch the database for new notices. When a 
new notice arrives it is handed to the interested party. 

Name: DeliverNoticesToDistricts 
Description: 
A notice arrives for delivery. The notice contains the information about whom it 
should be delivered to. The database is checked on how to properly fonnat the 
notice for delivery. The database is checked on how to fonnat the notice 
properly. The notice could be delivered as a fax, web page or both. We also want 
to add the ability to deliver the notice in new fonnats. 

Service: ViewNotice 
Name: ViewNotice 
Description: 
The forecaster decides to view notices and starts the view notice interface to do 
so. The NoticeManager provides a view notice interface to the forecaster. The 
forecaster indicates the state it wishes to view valid notices in. The interface 
indicates which districts have valid notices to the forecaster. The forecaster 
selects a district to view a valid notice for. The valid notice is retrieved from the 
database and displayed to the forecaster. 

Service: Start 
Name: Start 
Description: 
The System Administrator decides to start the notice delivery system. The 
SystemManager creates the proper agents that will be needed in order for the 
system to allow management and delivery of notices. 

Service: Stop 
Name: Stop 



38 

Description: 
The System Administrator decides to shutdown the system. 

Detailed Internal Use Cases 

The internal use cases focus on describing the detailed plan for each goal that will 

provide the service we are currently looking at. Each internal use case name represents a 

conceptual goal. Every goal has a plan that can include other goals, which in tum have 

their own plans. 

The main goal of the internal use case is the detailed description of goals and the 

plans that will complete each goal. The internal use cases follow a standard use case 

format with a few modifications. The internal use cases all belong to a particular service 

that they are providing. In an internal use case the service that each goal belongs to is 

indicated by the service line, which is in bold so it can be easily identified. In addition to 

belonging to a service internal use cases can have intentions that are actually goals with 

their own plans called sub-goals. 

Sub-goals are essentially the same as goals in all regards, except a sub-goal helps 

provide a goal instead of a service like regular goals. The creation of these sub-goals 

often occurs during the creation of the internal use cases because the internal use case 

construction provides the developer with a better understanding of the architecture of the 

system. The increased knowledge of system allows the developer to suggest the creation 

of sub-goals that provide a better decomposition of the service they provide. The sub­

goals are advantages because they describe an intention in more detail, but still keep the 

goals they extend from becoming over complicated. 
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We describe a sub-goal as extending from its parent goal. These sub-goals are 

goals the parent goal can use in order to meet their own goal. A sub-goal is noted in an 

internal use case by the "extends" identifier. Immediately after the extends identifier is 

the name of the parent goal it belongs to and the intention or intentions it expands upon. 

We can create sub-goals whenever we feel it is advantageous to do so. When creating a 

sub-goal we must balance encapsulating functionality in its own sub-goal verses 

providing so many sub-goals that they are cumbersome to work with. It is often difficult 

to create every internal use case until we begin to create the agent interaction diagrams. 

During the creation of the agent interaction diagrams new goals or sub-goals can 

be discovered. It is especially common to discover creational goals during the creation of 

agent interaction diagrams. When these new goals are discovered during the creation of 

the agent interaction diagrams it is useful to go back and create or update the internal use 

cases to reflect the decisions made when creating the agent interaction diagrams. This is 

useful because the internal use cases are used to define much of the static structure that is 

found in the BDI agent cards. 

The following case study lists the internal use cases for our Notice Management 

System. The internal use cases are structured similarly to the brief internal use cases. 

Some of these internal use cases where not created until after the creation of some of the 

agent interaction diagrams. The Create goal that can be found under the start service in 

our internal use cases is an example of new use case that was discovered during the 

creation of the agent interaction diagrams. 

Case Study: Internal Use Cases 

Service: CreateNotice 
Internal use case: CreateNotice 
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Actors: NoticeManager, Forecaster, Notice 
Stakeholders: 
-Forecaster wants fast and accurate creation of the notices. 
-NoticeManager handles the interaction with the forecaster and desires proper 
creation and maintenance of notices. 
-Notice contains all the information about a notice. 
Preconditions: Forecaster has identified a need to submit a notice for an area. 
Postcondition: Notice is delivered/saved to the database. 
Scenario (intentions): 
1) Forecaster asks the NoticeManager agent to create a Notice. 
2) The NoticeManager agent provides an interface to the forecaster for notice 
creation. 
3) NoticeManager agent properly fo1mats and submits the notice to the database. 

Internal use case: Create 
Extends: CreateNotice, intention 2 
Actors: NoticeManager, Notice 
Preconditions: We need to create a notice. 
Success/Postconditions: A notice is created. 
Scenario (intentions): 
1) The notice interface is started for notice creation. 
2) The NoticeManager gets the State from the user. 
3) The NoticeManager gets the district from the user. 
4) The N oticeManager gets the notice text from the user. 
5) The NoticeManager passes the Districtids and the notice text to the Notice. 
6) A new notice is created. 
7) The N oticeManager now has a notice. 

Internal use case: Submit 
Extends: CreateNotice, intention 3 
Actors: NoticeManager, Database 
Preconditions: The database receives a notice to save. 
Success/Postconditions: The notice is saved. 
1) The NoticeManager sends a notice to the database to be saved. 

Internal use case: WatchForNoticesToDeliver 
Actors: Notifier, Delivery, DeliveryService 
Stakeholders: 
-The notifier watches the information that is inserted into the database. 
-The delivery agent wants to know when/what/who it should deliver. 
-The deliveryservice agent will format the notice as specified and deliver it. 
Preconditions: The system needs to recognize when notices should be delivered. 
Sucess/Postcondition: The system recognizes that a notice should be delivered. 

Scenario (intentions): 
1) The delivery agent creates the notifier. 
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2) The delivery agent asks the notifier to watch the database for notices, which are 
a type of weather product. 
3) The delivery agent listens to notifier for notices. 
4) The notifier watches the database for notices to be entered. 
5) The notifier gives the delivery agent a notice. 
6) The delivery agent sends a request to the delivery service agent to deliver the 
notice. 

Internal use case: DeliverNoticesToDistricts 
Actors: DeliveryService, Notice 
Preconditions: DeliveryService agent has received a notice to be delivered and 
how it should be delivered. 
Sucess/Postcondition: The notice is delivered in the proper format to the proper 
districts. 
Scenario (intentions): 
1) The deliveryservice agent checks the notice for who it should be delivered too. 
2) The deliveryservice agent then checks the database on how to properly fonnat 
the notice for delivery. 
3) The deliveryservice agent formats the notice for delivery. 
4) The deliveryservice agent delivers the notice as a fax, web page or both. 

Service: ViewN otice 
Internal use case: ViewNotice 
Service: ViewNotice 
Actors: NoticeManager, Forecaster, Notice 
Stakeholders: 
-Forecaster wants fast viewing of valid notices. 
-NoticeManager handles the interaction with the forecaster and desires proper 
valid notice viewing. 
-Notice contains all the information about a notice. 
Preconditions: Forecaster desires to view a notice area. 
Postcondition: Forecaster is able to view the contents of a valid notice. 
Scenario (intentions): 
1) Forecaster asks the NoticeManager agent to view a Notice. 
2) The NoticeManager agent provides an interface to the forecaster for notice 
v1ewmg. 

Internal use case: View 
Extends: ViewNotice, intention 2 
Actors: NoticeManager, Notice, Forecaster, Database 
Preconditions: We need to view a notice. 
Success/Postconditions: A notice is viewed. 
Scenario (intentions): 
1) The notice interface is started for notice viewing. 
2) The NoticeManager gets the State from the user. 
3) The NoticeManager gets the valid notices from the database. 
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4) The NoticeManager provides an interface with the districts that have valid 
notices. 
5) The Forecaster selects a district to view a notice for. 
6) The NoticeManager displays the notice contents to the Forecaster. 

Internal use case: GetValidNotices 
Extends: viewNotice, intention 3 
Actors: NoticeManager, Database 
Preconditions: The database receives a request for valid notices in a state. 
Success/Postconditions: All the valid notices are returned. 
Scenario (intentions): 
1) The NoticeManager requests all the valid notices for a state from the Database. 

Service: Start 
Internal use case: Start 
Actors: SystemManager, Database, Delivery 
Preconditions: The system is staiied. 
Success/Postconditions: The proper services are started to enable management 
and notice delivery. 
1) The SystemManager creates the database to provide database access to the 
various agents of the system. 
2) The SystemManager creates the delivery agent to enable the delivery of 
notices. 

Internal use case: Create 
Extends: Start, intention 2 
Actors: System.Manager, Delivery, Notifier, DeliveryService 
Preconditions: The delivery agent is created. 
Success/Postconditions: The proper agents are created which allow the delivery 
agent to deliver notices. 
1) The delivery agent creates the Notifier so it can be notified of new notices. 
2) The delivery agent creates the DeliveryService agent, which it will hand the 
notices that need to be delivered to. 
3) The delivery agent gives a list of notices to the Notifier, which it wishes to be 
notified for. 
4) When the delivery agent receives a notice from the Notifier it hands the notice 
to the DeliveryService for delivery. 

Agent Belief List 

The agent belief list provides a list of beliefs that are needed to carry out each 

goal and sub-goal that is listed in our internal use case scenario or plan. Our BDI agent 

software development process centers on the idea of goal discovery and the assigning of 
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those goals and their con-esponding beliefs and intentions to agents. At this point in the 

development process we have defined the goals and each goal's intentions. In addition to 

assigning goals to agents we must discover the beliefs that are needed to complete each 

goal. 

Goals require certain knowledge in order to be fulfilled, we call this needed 

knowledge beliefs. The agent belief list shows what beliefs each goal requires in order to 

be fulfilled. The agent belief list contains the name of every goal in our system, which is 

then followed by the beliefs and a reason describing why each belief is necessary. We 

order each set of beliefs under the bold title of service that each goal provides. The 

reason we group the beliefs by service is to limit conflicts that may occur from two 

different services that have similarly named goals. The following case study lists the 

beliefs that are needed for each goal in our Notice Management System. 

Case Study: Agent Belief List 

Service: CreateNotice 
Goal: CreateNotice 
Belief: NoticeDB 
Reason: We need to know the database to submit notices to. 

Goal: Create 
Belief: StateDB 
Reason: Agent needs to provide a list of districts for a state to the user. 

Goal: Submit 
Belief: NoticeDB 
Reason: Agents needs access to the Notice DB to insert new notices. 

Goal: WatchForNoticesToDeliver 
Belief: N oticeDB 
Reason: Agent needs to watch for new notices entering the NoticeDB. 

Goal: DeliverNoticesToDistricts 
Belief: StateDB 
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Reason: Agent fo1mats the notice for delivery based upon how the states desire it 
delivered. 

Service: ViewNotice 
Goal: ViewNotice 
Belief: StateDB 
Reason: We need a district id for the notice we wish to view. 

Goal: View 
Belief: Notice 
Reason: We need a notice to view. 

Goal: Get V alidN otices 
Belief: StateDB, NoticeDB 
Reason: We need a list of district ids to check for valid notices for those districts. 

Service: Start 
Goal: Start 
Belief: Delivery, Database 
Reason: This goal needs to know which delivery and database services to start. 

Goal: Create 
Belief: Notifier, DeliveryService 
Reason: This goal needs to know, which Notifier and DeliveryService agents to 
staii. 

Agent Interaction Diagrams 

During the creation of the agent interaction diagrams we assign goals to agents 

and describe how the agents communicate with each other in order to provide a service. 

The internal use cases give us a rough idea of what agents might work together to provide 

the services for the system. The agent interaction diagrams are different than the internal 

use cases in the fact that we are now focused on assigning goals to agents or who will do 

what, instead of understanding how it will be done, which is the focus of the internal use 

case. If we make changes in the interaction diagrams that change how the internal use 

cases work, we must update the internal use cases to reflect these changes. When 

assigning goals to agents we can use the agent goal assignment patterns to aid us. 
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Agents are depicted by the words that are at the top of the ve1iical lines in our 

agent interaction diagrams. Agent communication is depicted by lines with arrows and 

labeled with goal that is being invoked. Internal agents are represented with rectangles 

and external agents are represented with ovals. 

System 
Administrator 

Start() 

Stop() 

Figure 4. System Services Interaction Diagram. 

System 

ViewN otice() 

CreateN otice() 

Figure 4 is a variation of the agent interaction diagram that shows the services that 

will be provided by our system. The services that our system should provide can be 

extracted from the titles of the brief external use cases. This system service interaction 

diagram provides the developer with a visual picture of the external services that the 

system will provide. In our notice management case study we have described the 

CreateNotice, ViewNotice and Start services in detail. We choose not to provide a 

detailed documentation of the Stop service because it does not seem to provide any useful 

insight into the system architecture. 

., 
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N oticeManager Notice Database 

CreateN otice() 

Create( districts, text) 

Submit(N otice) 

Figure 5. Agent Interaction Diagram: NoticeManager.CreateNotice(). The Forecaster 
invokes the CreateNotice goal of the NoticeManager. The NoticeManager then uses the 
Notice.Create() goal in order to create a Notice. The NoticeManager uses the 
Database.Submit(Notice) goal in order to store the notice in the database. 

The agent interaction diagram in Figure 5 describes the internal actions that take 

place when an external agent (a Forecaster in this case) invokes the CreateNotice goal 

that can be found in Figure 4. The internal use cases for the CreateNotice goal are used 

for the creation of Figure 5. The CreateNotice goal should not be confused with the 

CreateNotice service. The CreateNotice service embodies all the goals listed under the 

CreateNotice service in our brief internal use cases. 

Figure 6 details the internal actions that take place when the Start goal is invoked. 

We choose to have the SystemManager create both the Database agent and the Delivery 

agent in Figure 6. The Database agent meets the description of the long-lived agent 

pattern because it needs to be available to many different agents inside our system and it 

needs to be available for the entire life of the system. We have the SystemManager 

create the Delivery agent because we want notices to be delivered as soon as the system 

is started. 
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SystemManager Database Delivery 

Start() 

Create() 

Create() 

Figure 6. Agent Interaction Diagram: SystemManager.Start(). When the 
SystemManager.Start(} goal is invoked by the SystemAdministrator then the 
SystemManager invokes the Create() goals for the Database and Delivery agents. 

Delivery Notifier DeliveryService 

Create() 

Create() 

Create() 

W atchF orN otices(N oticeList) 

DeliverN oticeToDistricts(N otice) 

Figure 7. Agent Interaction Diagram: Delivery.Create(). When the Delivery agent 
receives a create request from the SystemManager it invokes the Notifier.Create(), 
DeliveryService.Create() and Delivery.WatchForNotices(NoticeList) goals. The Notifier 
will transparently pass new notices to the Delivery agent, described by the 
WatchForNotices(NoticeList) goal, which will then invoke the 
DeliveryService.deliverNoticeToDistricts(Notice) goal. 
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Figure 7 is a more detailed desc1iption of the actions that take place when the 

SystemManager invokes the Create goal of the Delivery agent in Figure 6. The Delivery 

agent creates the Notifier agent, so it can be receive new notices from the system. The 

Delivery agent creates the Delive1yService agent, which it will use to deliver any notices 

it receives. The Notifier.WatchForNotices(NoticeList) goal is invoked which tells the 

Notifier which notices we wished to be notified of. The 

DeliveryService.DeliverNoticeToDistricts(Notice) goal is invoked whenever a notice is 

received from the Notifier. 

N oticeManager Notice Database 

View Notice() 

GetValidN otices(State) 

View() 

Figure 8. Agent hlteraction Diagram: NoticeManger.ViewNotice(). The 
NoticeManager.ViewNotice() goal is invoked by the Forecaster. The NoticeMangar 
invokes the Database.GetValidNotices(State) goal and receives a list of Notices. The 
NoticeManager can then invoke the Notice.View() on each Notice. 

Figure 8 is an agent interaction diagram that provides a more detailed description 

of what happens when an external agent invokes the systems ViewNotice goal. The 

Database.GetValidNotices(State) allows the NoticeManager to get the list of valid notices 

for a state from the database. The Notice.View() goal allows the NoticeManager to view 

the contents of each notice. 
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BDI Agent Cards 

The BDI agent cards can be created in parallel with the Agent Interaction 

Diagrams. We can use the BDI agent cards as a way to bring all the different parts of an 

agent together into a single entity. The BDI agent cards are based upon the object­

oriented design cards called CRC cards [Bellin et al. 1997]. The BDI agent cards and the 

agent interaction diagrams represent the architecture of the system. 

The BDI agent cards document the static architecture of the system and the agent 

interaction diagrams detail the dynamic collaboration between the agents of our system. 

By creating the BDI agent cards we are able to describe the static structure of the agents 

in a single artifact. Describing an agent's static structure with a single artifact provides a 

valuable tool that can be used for constructing the agent in software. After the creation of 

the BDI agent cards and the agent interaction diagrams all the goals will be assigned to 

agents. 

During this phase in the development process a key action will be making sure 

both the BDI agent cards and the agent interaction diagrams reflect the same architecture 

for the system. Often a change to one BDI agent card or agent interaction diagram will 

cause a change in the other and vice versa. The BDI agent cards and agent interaction 

diagrams completely define the architecture of our system, which can then be used to 

create our system in software. The following case study lists the BDI agent cards that we 

created for our Notice Management System. 

Case Study: BDI Agent Cards 



Agent: N oticeManager 
BDI list: 
1) Desire: CreateNotice 
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Pre-condition: Forecaster decides to create a Notice. 
Belief: NoticeDB 
Post-condition: Notice is saved in the database. 
Collaborators: Forecaster ( external), Notice 
Intentions: 
1) Forecaster asks the NoticeManager agent to create a Notice. 
2) The NoticeManager agent provides an interface to the forecaster for notice 
creation. 
3) NoticeManager agent properly formats and submits the notice to the 
database. 

2)Desire: ViewNotice 
Pre-conditions: Forecaster desires to view a notice area. 
Belief: StateDB 
Post-condition: Forecast is able to view the contents of a valid notice. 
Collaborators: Forecaster ( external) 
Intentions: 
1) Forecaster asks the NoticeManager agent to view a Notice. 
2) The NoticeManager agent provides an interface to the forecaster for notice 
viewmg. 

Agent: Notice 
BDI list: 
1 )Desire: Create 

Pre-condition: NoticeManager needs to create a new notice. 
Belief: StateDB 
Post-condition: Notice is created. 
Collaborators: NoticeManager, Database 
Intentions: 
1) The notice interface is started for notice creation. 
2) The NoticeManager gets the State from the user. 
3) The NoticeManager gets the district from the user. 
4) The N oticeManager gets the notice text from the user. 
5) The NoticeManager passes the Districtlds and the notice text to the Notice. 
6) A new notice is created. 
7) The NoticeManager now has a notice. 

2) Desire: View 
Pre-condition: We need to view a notice. 
Belief: Notice 

Post-condition: A notice is viewed. 
Collaborator: NoticeManager 

Intentions: 
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1) The notice interface is started for notice viewing. 
2) The NoticeManager gets the State from the user. 
3) The N oticeManager gets the valid notices from the database. 
4) The NoticeManager provides an interface with the districts that have valid 
notices. 
5) The Forecaster selects a district to view a notice for. 
6) The NoticeManager displays the notice contents to the Forecaster. 

Agent: Delivery 
BDI list: 
1) Desire: Create 

Preconditions: The delivery agent is created. 
Belief: Notifer, DeliveryService 
Success/Postconditions: The proper agents are created which allow the 
delivery agent to deliver notices. 
Collaborators: SystemManager, Delivery, Notifier, DeliveryService 
1) The delivery agent creates the Notifier so it can be notified of new notices. 
2) The delivery agent creates the DeliveryService agent, which it will hand the 
notices that need to be delivered to. 
3) The delivery agent gives a list of notices to the Notifier, which it wishes to 
be notified for. 
4) When the delivery agent receives a notice from the Notifier it hands the 
notice to the DeliveryService for delivery. 

Agent: DeliveryService 
BDI list: 
1) Desire: DeliverNoticesToDistricts 

Pre-condition: We receive a notice that needs to be delivered. 
Belief: StateDB 
Post-condition: Notice is delivered in the proper fom1at to the proper districts. 
Collaborator: Delivery 
Intentions: 
1) The deliveryservice agent checks the notice for which it should be 
delivered too. 
2) The deliveryservice agent then checks the database on how to properly 
format the notice for delivery. 
3) The deliveryservice agent formats the notice for delivery. 
4) The deliveryservice agent delivers the agent as a fax, web page or both. 

Agent: Database 
BDI list: 
1) Desire: Submit 

Pre-condition: The database agent receives a notice to save. 
Belief: NoticeDB 
Post-condition: The database agent stores the notice properly. 
Collaborator: NoticeManager 
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Intentions: 
1) The NoticeManager sends a notice to the database to be saved. 

2) Desire: GetValidNotices 
Pre-condition: The database receives a request for valid notices in a state. 
Belief: NoticesDB, StateDB 
Post-condition: All the valid notices are returned. 
Collaborator: NoticeManager 
Intentions: 
1) The N oticeManager requests all the valid notices for a state from the 
Database. 

Agent: Notifier 
BDI list: 
1) Desire: WatchForNotices 

Pre-condition: The system needs to recognize when notices should be 
delivered. 
Belief: NoticeDB 
Post-condition: Waiting to receive notices. 
Collaborator: Notifier 
Intentions: 
1) The delivery agent creates the notifier. 
2) The delivery agent asks the notifier to watch the database for notices, which 
are a type of weather product. 
3) The delivery agent listens to notifier for notices. 
4) The notifier watches the database for notices to be entered. 
5) The notifier gives the delivery agent a notice. 
6) The delivery agent sends a request to the delivery service agent to delivery 
the agent. 

Agent: SystemManager 
1) Desire: Start 

Pre-condition: The system is started. 
Belief: Database, Delivery 
Collaborator: System Administrator ( external) 
Intentions: 
1) The SystemManger creates the database to provide database access to the 
various agents of the system. 
2) The SystemManager creates the delivery agent to enable the delivery of 
notices. 



CHAPTER IV 
CONCLUSION 

This is the final chapter smmnarizes our research and proposes some potential 

areas of research for the future. 

Summary of Research 

Software developers are continually called upon to develop increasingly complex 

systems. Computer scientists are constantly working on new tools that can aid software 

developers in the creation of these increasingly complex systems. We believe that agent­

base software development will be useful tool for the construction of complex systems. 

This research lays the groundwork for a BDI agent software development process. The 

BDI agent software development process that we propose is designed to be usable by 

today's software developer. Our process is not overly complex, but is designed to be a 

systematic process for developing agent-based systems. In this research we have 

proposed both our BDI agent software development process and provided a case study to 

clarify the use of the process for agent software development. 

There are several salient points in our BDI agent development process. In our 

BDI agent development process we describe agents as those enties that we assign BDI 

too. There are two key activities that place in our BDI agent software development 

process. These key activities are the discovery of agents and the discovery of the BDI for 

each agent. Not only do we use traditional tools like noun phase identification, but we 

also propose new tools like agent patterns to identify the potential agents in our system. 

53 
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In constructing the BDI for each agent we take a goal-oriented approach. By 

using modified use cases we decompose the services for our system into one or more 

goals. Once the goals have been defined we use other aiiifacts like internal use cases to 

define the plan for each goal and agent belief lists to define the beliefs for each goal. We 

discover agents by assigning each goal and its corresponding belief and plan to a 

candidate agent in our process. Agent interaction diagrams and agent patterns are useful 

tools that can aid the assignment of each BDI to the proper agent. 

We define the final architecture of our system with agent interaction diagrams and 

BDI agent cards. The agent interaction diagrams define the dynamic structure of our 

system and the BDI agent cards document the static structure of our system. Once the 

final architecture has been defined with the proper artifacts the system is ready to be 

created in software. 

Future Research 

There are many options for future research. This research is just the first iteration 

in the development of a process for developing agent-based systems. This process can be 

fmiher refined and additions can be made to improve areas that prove difficult to use 

when constructing agent-based systems. Agent patterns represent a promising area of 

research that can aid in building agent-based systems by leveraging solutions to common 

problems found when constructing agent-based systems. A programming language that 

is specifically designed to simplify the creation of agent-based systems in software can be 

created. This BDI agent software development process could also be extended to better 

describe artificial intelligence elements that may be required for creating intelligent 
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agents. The field of agent-based software engineering is still relatively young, but it 

holds great promise for the future development of complex systems. 



REFERENCES 

Beck, K. 2000. Extreme Programming Explained-Embrace Change, Addison-Wesley, 
2000. 

Bellin, David and Simone, Susan, The CRC Card Book, Addison-Wesley, 1997. 

Booch, G., Object-Oriented Analysis and Design with Applications, Addison Wesley, 
1994. 

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process, 
Addison-Wesley, 1999. 

Bratman, M. E., Intention, Plans, and Practical Reason, Harvard University Press, 1987. 

Cockburn, Alistair, Writing Effective Use Cases, Addison-Wesley, 2001. 

Depke, Ralph, Heckel, Reiko, and Kuster, Jochen, hnproving the Agent-Oriented 
Modeling Process by Roles, AGENTS'OJ, 640-647, Jui1e 2001. 

Fowler, Martin and Scott, Kendall, UML Distilled Second Edition: A Brief Guide to the 
to the Standard Object Modeling Language, Addison-Wesley, 2000. 

Gamma, E., r. Helm, R. Jolmson, and J. Vlissides, Design Patterns: Elements of 
Reusable Object Oriented Software, Addison-Wesley, 1995. 

Hayden, Sandra, Carrick, Christina, and Yang, Qiang, A Catalog of Agent Coordination 
Patterns, ACM Press, 412-413, 1999. 

Iglesias C. A., Garijo M, Gonzalez J.C., and Juan R. Velasco, Analysis and Design of 
Multiagent Systems using MAS-CommonKADS, In M.P. Singh, A. Rao, and 
M.J. Wooldridge, editors, Proc. 4th Int. Workshop on Agent Theories, 
Architectures, and Languages (ATAL-97), volume 1365 of LNAI, 313-328, 
Springer-Verlag, July 24-26, 1998. 

J e1mings, Nicholas R., On agent-based software engineering, Artificial Intelligence, 
volume 117, 277-296, February 2000. 

J e1mings, Nicholas R., An Agent-Based Approach for Building Complex Software 
Systems, Communications of the ACM, 44(4), 35-41, April 2001. 

56 



57 

Jo, Chang-Hyun, A Seamless Approach to the Agent Development, ACM SAC 2001, 
Las Vegas, 641-647, March, 2001. 

Lamian, Craig, Applying UML and Patterns: Second Edition, Prentice-Hall, 2002. 

Petrie, Charles, Agent-Based Software Enginee1ing, Agent-Oriented Softvvare 
Engineering, Lecture Notes in AI, Springer-Verlag, 58-76, 2001. 

Rao, Anand S. and Georgeff, Michael P., BDI Agents: From Theory to Practice, 
Australian Artificial Intelligence Institute, April, 1995. 

Weiss G., editor, Multi-Agent Systems, The MIT Press: Cambridge, MA, 1999. 

Wooldridge, M. and Jennings, N. R., Intelligent Agents: Theory and Practice, Knowledge 
Engineering Review, Cambridge Univ. Press, 10(2), 115-152, June 1995. 

Wooldridge, M. and Jennings, N. R., Software Engineering With Agents: Pitfalls and 
Pratfalls, IEEE Internet Computing, 20-27, May-June 1999. 

Wooldridge, M., Je1mings, N. R., and Kinny, D., A Methodology for Agent-Oriented 
Analysis and Design, Autonomous Agents 1999, Seattle, WA, 69-76, 1999. 

Wooldridge, M., Reasoning about Rational Agents, The MIT Press: Cambridge, MA, 
2000. 


	A BDI Agent Software Development Process
	Recommended Citation

	tmp.1568146525.pdf.qSxvE

