
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

5-2002

A BDI Agent Software Development Process A BDI Agent Software Development Process

Jeffrey M. Einhorn

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Einhorn, Jeffrey M., "A BDI Agent Software Development Process" (2002). Theses and Dissertations.
2511.
https://commons.und.edu/theses/2511

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/2511
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=commons.und.edu%2Ftheses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2511?utm_source=commons.und.edu%2Ftheses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

ABDI AGENT SOFTWARE DEVELOPMENT PROCESS

by

Jeffrey M. Einhorn
Bachelor of Arts, University of St. Thomas, 1999

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
May
2002

This thesis, submitted by Jeffrey M. Einhorn is partial fulfillment of the
requirements for the degree of Master of Science from the University of North Dakota,
has been read by the Faculty Advisory Committee under whom the work has been done
and is hereby approved.

This thesis meets the standards for appearance, conforms to the style and format
requirements of the Graduate School of the University ofNorth Dakota, and is hereby
approved.

11

PERMISSION

Title An Agent BDI Software Development Process

Department Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate
degree from the University of North Dakota, I agree that the library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by the professor who supervised my
thesis work or, in his absence, by the chairperson of the department or the dean of the
Graduate School. It is understood that any copying or publication or other use of this
thesis or part thereof for financial gain shall not be allowed without my written
permission. It is also understood that due recognition shall be given to me and to the
University of North Dakota in any scholarly use, which may be made of any material in
my thesis.

Signature

Date

lll

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ... v

LIST OF TABLES ... vi

ACKNOWLEDGEMENTS .. vii

ABSTRACT ... viii

CHAPTER

I. INTRODUCTION ... 1

II. BACKGROUND ... 5

III. BDI AGENT DEVELOPMENT PROCESS ... 16

IV. CONCLUSION .. 53

REFERENCES .. 56

lV

LIST OF ILLUSTRATIONS

Figure

1. BDI Agent Model .. 18

2. BDI Agent Software Development Process ... 19

3. Conceptual Agent Relation Diagram ... 30

4. System Services Interaction Diagram45

5. N oticeManager. CreateN otice() Interaction Diagram46

6. S ystemManager. Start() Interaction Diagram .. .4 7

7. Delivery. Create() Interaction Diagram4 7

8. NoticeManger.ViewNotice() Interaction Diagram48

V

LIST OF TABLES

Table

1. Candidate Agent List ... 35

Vl

ACKNOWLEDGEMENTS

There are many people I owe thanks for aiding me in my research. First and

foremost I would like to thank my advisor, Dr. Jo, for sharing his valuable time and

experience in this research. Without Dr. Jo's continued patience, logical thinking and

constant advice my thesis would have never reached completion. Special thanks are due

to Dr. Thomas Wiggen and Dr. Thomas O'Neil for being my research committee

members and for their comments and suggestions regarding this thesis.

I would like to thank the rest of the Computer Science faculty for making the

Computer Science Department an excellent place for higher learning and intellectual

growth. Special thanks go to Julie Kosmatka and Linda Kilichowski for helping with all

my special requests that I needed in order to complete my graduate degree.

In addition I would like to thank Douglas Rand and Steve Etzell for providing

their valuable time in previewing preliminary drafts of my thesis. I would like to thank

the all people at Meridian for creating a company that values higher education.

Finally I would like to express my sincere gratitude to my wife Kristi for her love

and understanding during my research. I would like to thank my parents for raising me in

an environment that encourage learning and for their continued support of my goals.

Vll

i:j

ABSTRACT

As computer software continues to grow increasingly complex with each passing

year, researchers continue to try and develop means to simplify software development.

In this thesis, we propose a BDI agent software development process as the next

evolution in software development. The goal of this research is to develop a process,

which can be used to enable the creation of agent-based systems.

This thesis strives to present a practical software development process, which is

useful to today's software engineer, by building upon current agent research and proven

software engineering practices. Our BDI agent software development process is a

systematic process, which enables the decomposition of a system into agents. The

Belief-Desire-Intention Model is a fundamental ingredient to our development process.

We utilize BDI as a natural method for describing agents in our development process.

Our software development process utilizes several forms of use cases, which are useful

for defining the architecture of a system in our process. We have also leveraged many

other existing software development tools such as CRC cards, patterns and the Unified

Development Process. We have made modifications to many of these existing tools so

they can be used for agent-based development. These are just some of the tools that

provide valuable insight into the development of our BDI agent software development

process.

In addition to describing our software development process, we will also provide

a case study to clarify the description of our BDI agent software development process.

Vlll

Basically, our BDI agent software development process strives to model both the

dynamic and static structure of the agents that make up the system. Once we have

modeled the stmcture, which makes up the agents in the system the stmcture can then be

created in software.

lX

CHAPTER I
INTRODUCTION

In this chapter we will describe why there is a need for our research and what we

hope to accomplish with our research.

Reason for Research

The field of Software Engineering has continued to evolve ever since the first

programming language was developed. The first software systems that were developed

were relatively simple and could only accomplish simple tasks. A large reason for the

simplicity of the software was because of the limitations of the hardware. The software

developer had to be very creative to get the most out of the limited hardware resources.

There were very few techniques to aid a software developer in creating software systems.

Most programming was done in assembly language or other low level languages and

there was very little code reuse. However, as each generation of computer hardware has

become more powerful, more has been expected of the software. New software

engineering techniques were developed, as a response to the increased demands for more

complex software systems. These new tools were better able to leverage the increased

capacities of the new computers. In addition these new tools helped manage the

complexity of developing larger and increasing complex systems by allowing the

software developer to work at a higher level of abstraction. Higher-level languages like

FORTRAN were developed, which allowed scientists to focus more on the problem at

hand and less on the low level details that were essential with previous languages. The

1

2

development of programming languages, such as C, PL/1, COBOL, allowed

programmers to leverage the advantages ofreusable libraries that increase programmer

productivity. However, users continued to demand more complicated software, so new

software engineering practices such as strnctured programming were developed to help

manage these complex systems. Strnctured programming tried to divide large systems

into smaller blocks based on the systems functions. Still software became too complex to

manage easily and thus, object-oriented software engineering practices were developed,

so that software could be encapsulated into reusable pieces that commlmicated with each

other by passing messages. Even object technologies could not keep the ever-growing

software complexity under control. So new techniques such as Use Cases [Cockburn

2001], CRC Cards [Bellin and Simone 1997], Patterns [Gamma et al. 1995], UML

[Fowler 2000] and Unified Development Process [Booch et al. 1999] were developed to

try and keep the complexity in check. It is clear from looking at the past trends that the

software development tools will continue to evolve to leverage the advances provided by

new generations of hardware.

Today we stand on the horizon of the next generation of software development

methodologies. Agent-based software engineering will provide the next step forward in

the effort to provide better tools for developing software that must meet the increasing

demands, expectations and changes from customers. Agent-based software engineering

decomposes a system into agents. These agents have control over both their state and

behavior. Systems will contain many agents that can cooperate with other agents to

provide the system's functionality. Any agent-based software engineering process must

increase programmer productivity if it is ever to have any success. When we say it

3

should increase programmer productivity this includes providing a process that allows

software developers to more readily construct complex systems. The research in the

following chapters will describe our new agent-based software development process.

Our agent-based software development process does not seek to reinvent the wheel, but

rather to build upon and expand proven existing tools and methodologies for use in our

process.

Research Goal

The goal of this thesis is to provide a software development process that software

developers can use as a tool for constructing agent-based systems. Much work has been

done on theory, but many of the theoretic approaches do not provide enough

consideration to the desires of the software developers that will use this teclmology. In

our approach we seek to balance the needs of the software developer with a solid

approach to building agent-based systems.

Systems built from agents provide a natural way to describe and build complex

systems [Jem1ings 2000]. It has been noted in a paper [Wooldridge and Jem1ings 1999]

that agents are mostly based in computer science and only have a slight AI element. We

share this idea and thus will build upon existing successful software tools for constructing

our agent-based software development process. This approach will allow us to both

leverage existing research and create a development process that is familiar to practicing

software engineers.

Regardless of what processes are used for developing software, two basics steps

usually take place. The first step in software development is analysis. In analysis we

describe the problem in order to get a clear understanding of what must be done. The

4

second step in software development is design. During design we develop a solution to

the problem we described during analysis. These general concepts can be found in many

of the successful software development processes that have been created. Agent-based

software development processes will also need to provide tools to aid analysis and design

if it is to be successful. The agent-based software development process that we desc1ibe

will provide techniques and methods to aid in both analysis and design of complex

systems.

We propose a systematic agent-based software development process that is

natural for software engineers to use. We will explain each step of our agent-based

development process and provide an example of its use. It is our belief that this research

is easier to understand if we provide real applications after we discuss the theory behind

what should be done. This allows a software engineer to understand each step before

moving on to the next step.

CHAPTER II
BACKGROUND

The key objective of this research is to facilitate the development of an agent­

based software development process. In order to comprehend this research we must first

decide on what exactly defines an agent. This chapter will describe what defines an

agent. We will also describe important tools like use cases in this chapter. We will also

describe the BDI (Belief-Desire-Intention) model briefly. In understanding the tools and

methods that we propose will allow us lay groundwork for our agent-based development

process. Finally, we will describe and compare other research that we found useful to our

own research.

Definition of an Agent

There has been much debate on the definition of an agent or even an intelligent

agent. The simplest definitions of an agent usually are described as an object with a goal

or an entity that acts upon the environment it exists in [Wooldridge 2000]. Wooldridge

and Jennings describe agents as having autonomy, pro activeness, reactivity and social

ability [Wooldridge and Jennings 1995]. In particular autonomy requires that agents

have their own thread of control. Agents need to be able to function independently of

any other agents in the system. Thus any agent system will be fundamentally

multithreaded, which means agents will have their own thread of control. Agents are

proactive in the sense that they have a goal and can modify their behavior in order to

5

6

achieve that goal. Agents must be able to react and respond to changes in the

environment. Agents do not just pursue their goals in a bubble, but must work in a

constantly changing envirom11ent. It is clear that agent-based systems will have many

agents. In order for agent-based systems to work, agents must be able to communicate

and work with other agents.

This research will focus on providing software solutions by building software

systems made up of agents. We will provide a simple definition of an agent for our

research. Entities become agents when we can assign beliefs, desires and intentions to

them. From this point on in this research we will refer to beliefs, desires and intentions

as BDI [Bratman 87].

In the analysis phase of our agent-based software development process will strive

to discover potential agents and the BDI's that make up our system. Defining the BDI's

does border on design instead of analysis because we are describing how something will

be done. In the design phase of our agent-based software development process we will

assign the BDI's to software agents.

For the purpose of our research it is necessary to provide a definition of an agent­

based system. In our research an agent-based system is a system that is made up of

agents [Jo 2001]. Each agent is defined by a set ofBDI. In addition agents have control

over both their state and behavior. At this time it is important to make the distinction that

we do not require all the agents that make up our system to be intelligent agents.

Our development process builds upon successful strategies that can be found in

object-oriented development. We propose new methods for use in agent-based software

development whenever previous tools found in other development processes prove

7

inadequate for agent-based development. It is useful to compare the differences between

objects and agents, before we propose our agent-based development process.

Objects are described as having state and behavior. Objects have control over

their state in the sense that it can change, but their behavior remains constant. Agents can

also be described as having state and behavior. However, agents have control over both

their state and their behavior [Weiss 1999]. Thus, Agents can change both their state and

behavior at any time. We will use the belief-desire-intention (BDI) model [Rao 1995] to

help define agents in our system.

We take a goal-oriented approach in our agent development process because it is

a natural extension of object-oriented software development. We can readily describe the

functions or services that our system should provide. In our agent-based development

process we describe a goal or set of goals that will provide the service for the system.

The Unified Development Process [Booch et al. 1999] is a tested tool [Larman

2002] for building robust object-oriented systems and we studied many of the successful

strategies like use cases and UML that are described in the Unified Development Process

[Booch et al. 1999]. Due to the differences between object-oriented development and

agent-based development the artifacts found in Unified Development Process often

require modification for use in agent-based development. We use the term artifact to

describe the items that are created during the different steps of a development process.

When object-oriented tools prove inadequate we create new agent-based tools that better

describe the software system.

Use cases are another tool that will be fundamental to our agent-based software

development process. Use cases are a proven tool that helps drive the development

8

process forward and helps capture the requirements of a system [Cockburn 2001]. Use

cases are an essential paii of successful object-oriented software development processes

like the Unified Development Process [Booch et al. 1999]. Use cases provide a

functional approach to gathering requirements. Object-oriented software systems can be

described by using a functional approach. This has been proven by Craig Lannan's

software development process [Lannan 2002]. Jem1ings also supports functional analysis

by describing it as more natural than data or object type analysis [Jem1ings 2001]. The

functional approach will also be useful when building agent-based systems because it is

necessary to gather requirements for agent-based systems. We will use a modified use

case called an external use case for discovering the functions or services that our systems

should provide.

Use cases are not object-oriented or even agent-oriented in nature, but they

provide valuable insight into the requirements of a problem. We will provide some slight

modifications to the use cases to increase their usefulness to our agent-based software

development process. We will use the modified use cases to discover the requirements of

our system. Once we understand the systems requirements we can use them to design an

agent-based system.

It is important to assign the proper responsibilities to objects when developing an

object-oriented system. Describing the objects and their interactions is a fundamental

need in OOA/D. In our agent-based development process we will first identify the

services that our system should provide. The system can be thought of as an agent, since

we will describe our entire system as an encapsulated entity, which will have state and

behavior. After we have identified the services that our system will provide we can then

9

identify the goals that are necessary to provide each service. Identifying the proper goals

and assigning them to agents becomes a major focus of the agent-based software

development process. In the following chapters we will describe our agent-based

software development process and give a case study demonstrating its use.

Belief Desire Intention (BDI)

We will use BDI [Bratman 87] [Rao et al. 95] as a tool for defining agents in our

development process. The discovery of the BDI that will characterize each agent

provides us with several advantages. First of all the BDI provides a natural way to

describe an agent. Secondly there are existing systems that successfully use BDI

[Wooldridge 2000]. There is a large amount ofBDI research that can be leveraged in the

creation of agent-based systems [Bratman 87] [Rao et al. 95] [Wooldridge 2000].

The BDI model provides a set of guidelines for describing an agent. We will

describe our interpretation of the BDI guidelines for the purpose of this research. An

agent's beliefs correspond to the knowledge an agent has about its environment. The

desires of an agent can be described as the goals an agent can choose to achieve. Finally,

an agent's intentions are the plans that will allow the fulfillment of a goal. In our agent­

based software development process we define an agent as an entity that we can assign

BDI to. In our development process we will identify the possible agents and the goals

that will provide the system's functionality. In the process of discovering goals we will

also assign beliefs and intentions to each goal. We define the software agents in the

system as we assign BDI to candidate agents.

10

Other Research

In studying the research that was been done in the area of agent software systems

we have found two general types of works to be useful. The first is the research that has

been done to solve problems from a software engineering perspective. Research into

such tools as CRC cards [Bellin and Simone 1997], UML diagrams [Fowler and Scott

2000], use cases [Cockburn 2001] and software patterns [Gamma et al. 1995] [Larman

2002] have been invaluable for use in constructing object-oriented systems [Booch 1994].

In our research we have modified several of the tools that have proved successful for

object-oriented software construction for use in agent-based software systems. The

second area ofresearch is in the agent theory. Jem1ings, Wooldridge and others

[Wooldridge and Jennings 1995, Iglesias et al. 1998, Wooldridge and Jemlings 1999,

Wooldridge et al. 1999, Wooldridge 2000, Depke 2001, Jennings 2001, Jo 2001, Petrie

2001], provide research into the theory of agent software development. Both of these

types of research proved useful in developing our agent-based software development

process.

Grady Booch's book "Object-oriented Analysis and Design with Applications"

provides a detailed description of object-oriented analysis and design for software

development [1994]. While object-oriented software development provides many new

tools to abstract problems into individual objects, large systems are still difficult to

manage. In our research we looked to understand the advantages of object-oriented

software development first in order to suggest improvements and changes for use in the

agent-based software development process.

11

Kent Beck [Beck 2000] provides a new software development process that centers

on building software from the progranm1er's prospective. Many programmers don't feel

they have the time to learn complex development processes. Kent Beck addresses this

issue by presenting a type of development process based on the activity of writing code,

which is fundamental to the creation of software systems. A software process that

provides techniques that aid in creation of code appeals to software developers who

spend most of their time creating code. Kent Beck's extreme programming process

combines several different practices in order to provide a way to build software

successfully [Beck 2000]. Some of the key features found in the extreme programming

process are progra1mning in pairs, writing test cases first and implementing only a few

features at a time [Beck 2000]. We found Kent Beck's research interesting because he

takes a fresh approach to the development process. Kent tries to identify some of the key

hurdles to software development and then explains how his process deals with these

obstacles. In our research we tried to capture the spirit of Kent Beck's software

development process by creating a process that also kept the needs of the software

developer in mind.

David Bellin and Susan Simone describe the use of CRC cards to assist in the

discovery of classes in an object-oriented system [Bellin and Simone 1997]. Their

research provides an extremely detailed discussion of the use of CRC cards as aids,

which allow teams to use CRC cards for class discovery. We feel that the CRC cards

lack enough structure to be used as a reliable tool for the discovery of software objects or

agents. CRC cards are useful for describing the static structure of an agent or object. In

our process we have developed a modified CRC type artifact called a BDI agent card, for

12

use in our agent-based software development process. The BDI agent card can clearly

represent the static structure of an agent in our process.

Alistair Cockburn's book "W1iting Effective Use Cases" explains the use of use

cases for software development [2001] in great detail. Use cases are useful tools that

allow software developers to naturally identify the functions of a system. Use cases are

neither object-01iented nor agent-based, but are functional in nature. We have created

modified versions of use cases for use in our agent-oriented development process. These

modified agent use cases will help discover the possible goals and services that we will

need in our system.

"Applying UML and Patterns", by Craig Larman, describes a development

process for constructing object-oriented systems. His research provides a process that

can be followed by developers to construct object-oriented systems. Lannan's

development process leverages many tools to aid in software development such as use

cases, UML and patterns. Our development process attempts to provide the same type of

practical development process for building agent-oriented systems.

The Gang of Four research on design patterns describes solutions to common

problems encountered in developing software [Gamma et al 1995]. They provide three

general categories of design patterns based upon their purposes. The three types of

designed patterns presented by the GOF are Creational, Strnctural and Behavioral.

Creational patterns provide solutions for object creation. Structural patterns provide

guidelines for laying out the proper structure of objects and behavioral patterns can be

used to help design object interactions properly. These design patterns provide a way for

software developers to leverage the previous experience of other software developers.

13

We suggest some basic patterns for agent-based software development in this research.

Patterns are pa1iicularly useful when solving complex problems and they are useful for

managing complexity in our agent-oriented development process. Whenever the same

problem is solved over and over again we will try and develop a pattern that can be used

to solve that problem.

The research paper "A Catalog of Agent Coordination" proposes the use of

patterns in agent-oriented development [Hayden et al. 1999]. They provide a brief

description of a broker agent pattern. We feel that a pattern similar to a broker agent may

be useful in agent-oriented development. In our research we try to discover other several

common patterns that we could apply to our case study.

The paper "Improving the Agent-Oriented Modeling Process by Roles" takes the

approach of describing a system using roles [Depke et al. 2001 J. It provides a brief

description of a development process based on roles. They also make the necessary

additions to UML in order to provide diagrams to describe their process. We find their

role-based process is difficult too follow. Wooldridge, Jennings and Kinny [1999] also

talk about defining a system based upon its organization. They state by looking at the

roles played by agents in the system you can then model the system based upon those

roles. Currently it seems unlikely that a system based on constantly changing roles can

be easily described or implemented. In our process we have tried to provide a natural

way of decomposing a software system into agents. Instead of focusing on roles we

focus on describing the beliefs, desires and intentions for each agent.

"Analysis and Design ofMultiagent Systems using MAS-CommonKADS"

[Iglesias et al. 1998] is a paper that discusses software development process based upon

14

knowledge engineering. The knowledge-base approach they present lacks the rigid

approach that we feel a software developer needs in order for a process to be valuable to

them. In our research we describe the problem using agents that have beliefs, desires and

intentions. We feel that the knowledge enginee1ing research could be leveraged in

describing the beliefs of an agent. Further more, we seek to present a process such that

each successive artifact builds upon the previous artifacts.

Michael Wooldridge has published several research documents on agent software

development techniques [Woold1idge and Jennings 1995, Wooldridge and Jennings 199,

Wooldridge 2000, Wooldridge et al 1999]. His approach is based in agent theory. In his

book "Reasoning about Rational Agents" Wooldridge presents a detailed BDI

architecture, which is designed for building BDI agent systems [Wooldridge 2000].

Wooldridge's research describes agent theory in great detail. In our research we try to

apply modem software engineering principles to the agent theory presented by

Wooldridge, Jennings and others. In integrating the theory described by Wooldridge and

modem software engineering principles we describe a practical development tool that

software developers can use for the creation of agent-based systems.

Rao and Georgeff [Rao and Georgeff 1995] provide a paper describing a BDI

architecture for use in building agents. They formalize their work using BDI logic and

provide a model that can be used to describe BDI agents. Their research provides us with

a better understanding ofBDI and how it can be formally described.

Nicholas Jennings has published several research documents that support the

advantages of agent-based software engineering [Jennings 2000, Jennings 2001]. This

research lays the foundation for building agent-based systems. Jennings argues that

15

agent-based systems provide a natural and useful way to build complex systems. In our

research we provide the beginnings of a process that can be used to develop agent­

oriented systems.

--

CHAPTER III
BDI AGENT DEVELOPMENT PROCESS

This chapter describes our BDI agent development process in detail. A sample

case study is included, which will clarify the explanation for each aiiifact.

Brief Process Description

A salient point in our research is the use ofBDI [Rao et al. 1995] for describing

agents. BDI provides us with a clear view of what makes up an agent. We will assign

beliefs, desires and intentions to each agent. Our process will provide the tools that will

be necessary to systematically build agent-based software systems. Figure 1 provides a

high level view of how we will use BDI in our agent-based development process.

Figure 1 describes a general approach of how an agents BDI attributes are

discovered in our BDI agent software development process. In the beginning of our

development process we use external use cases, which are general plans indicating how a

specific service can be provided from an external point of view. We then refine these

plans into goals using internal use cases. The internal use cases decompose a service into

one or more goals. In addition the internal use cases also provide a more precise

description of each goal and its corresponding plan. After we have discovered a goal and

described a plan for each goal we need to discover the beliefs that will be necessary for

each goal to be completed. The beliefs are determined for each goal by analyzing each

goal's plans and determining what beliefs will be necessary for its completion. Now that

16

17

we have described a complete BDI we can assign it to an agent.

18

We use standard external use cases,
in order to get the basic intentions
needed to provide the services for
our system.

Desires
(Goals)

We use internal use cases to define
the goals that will be needed to
provide a service for our system.
We will also discover more
intentions during goal discovery.

Beliefs
(State)

By studying the plans for each
desire we can obtain the knowledge
that will be needed in order to
fulfill the desire.

Figure 1. BDI Agent Model.

I

DI

BDI

Initial Problem Statement
(What needs to be solved?)

External Use Cases
(Describe the system :fi.mctions

19

Enterprise Software
Assessment

1-------1""~ (How does this fit in with the
~

current enterprise?)

from an external point of view.) ... ~------1

Brief External Use Cases
(Choose the functions the
system should provide.)

Conceptual Agent List
(Begin to identify possible
agents in our system.)

Brief Internal Use Cases
(Decompose a system function
into goals that can be assigned
to agents.)

Internal Use Cases
(Provide a detailed plan to
achieve each goal.)

BDI Agent Cards
(Capture the static strncture of
an agent.)

Agent Relation Diagram
(Provide a high level view of 1------~- how the system could work
when decomposed as
conceptual agents.)

Candidate Agent List
(Apply patterns to the Agent
Relation Diagram and
conceptual agent list to identify
possible software agents.)

Agent Belief List
(Identify the beliefs required to

1--------1i complete each goal.)
~

Agent Interaction Diagrams
(Assign goals to agents and
capture agent communications.)

Agent Software Guidelines
(Provide guidelines for creating
the agents in software.)

Figure 2. BDI Agent Software Development Process.

l
I

20

Before we discuss each step of our development process in detail it is useful to

take a high level view of the entire BDI agent software development process. Our

process stresses a goal-oriented approach for developing agent-based systems. Use cases

play an impo1iant role in discovering the goals that will be necessary to provide the

services for our system.

Figure 2 is a diagram of the artifacts that will be create during our BDI agent

development process. The aITows show the general order of creation for the artifacts in

our process. It is impo1iant to understand that the artifacts can be created in any order

that is useful to the developer. The aITows represent a loose order that we suggest for

artifact creation at this time. The BDI agent software development process begins with

the initial problem statement, which describes what the system should do. Next we create

the enterprise software assessment in order to discover how this problem fits within the

scope of the current enterprise. Then the brief external use cases are created to define the

services that the system should provide. At this point in the process we have defined,

from an external point of view, the services that our system is required to provide.

External use cases present scenarios that provide plans, from an external

viewpoint, that will provide the services for our system. By analyzing the artifacts we

have created so far we create the conceptual agent list. Next an agent relation diagram is

created for any external use cases that may provide insight into how a conceptual system

might work. By looking at our conceptual agent list and our agent relation diagram we

can apply agent patterns to create the candidate agent list. During this phase of

development we will discover a majority of the possible agents that our system can be

21

decomposed into. At this point in the development process we are begi1ming to shift

from analysis to design.

The brief internal use cases decompose a system service into one or more goals

that can then be assigned to agents. Next we create the internal use cases, which provide

a detailed plan for achieving each goal. The agent belief list is created by studying each

goal's plan and identifying the beliefs that will be required in order for that plan to be

completed. At this point in our development process we have described each belief,

desire and intention in detail.

The final phase in our development process centers on describing the agents in

such a way that they can be created in software. The assignment of each BDI to agents

becomes a fundamental activity during this phase. Agent interaction diagrams are

created to facilitate the assignment of each BDI to agents in our system. It is important to

note that many agent interaction diagrams may be created before we decide upon a BDI

agent relationship. During the creation of the agent interaction diagrams we may

discover new insight into our system, which may require us to modify the internal use

cases to reflect this new understanding.

The agent interaction diagrams are a useful tool for describing the dynamic

structure or communication that takes place between agents. BDI agent cards are created

to capture the static structure for each agent. The BDI agent cards and the agent

interaction diagrams can be created in parallel. It is imperative that both the BDI agent

cards and the agent interaction diagrams share a consistent architecture of the system.

Thus a major change in the agent interaction diagrams can often lead to a major change in

the corresponding BDI agent cards and vice versa. We have now created the artifacts that

22

will be used to create the agents in software. The actual creation of the agents in software

is beyond the scope of this ctment research, but represents an interesting problem to

study in the future.

We have taken a brief tour of the complete BDI agent software development

process. We will now systematically describe our process in much greater detail. The

following section will analyze each artifact in the order that is presented in Figure 2. We

will present a detailed discussion of each artifact that can be created in our process and

provide a case study providing a practical view of an actual artifact once it is created.

Initial Problem Statement

The initial problem statement is the first step in our BDI agent software

development process. The initial problem statement describes the problem that needs to

be solved by the system. Software developers should create the initial problem statement

based upon talking with the customer and by reading any documents describing the

problem. Both the customer and the developer should discuss the initial problem

statement together. It is important that both customers and developers agree upon a high

level view of the system. Customer and developer agreement, upon the initial problem

statement, provides a solid start to the development process. Without customer and

developer agreement, the system may not meet the needs of the customer and the system

will be doomed to failure from the start.

The proper creation of the initial problem statement will help the developer

understand exactly what the system should do from the customer's standpoint. The

following case study is an example of an initial problem statement for a Notice

Management System.

23

Case Study: Initial Problem Statement

A customer would like to receive special notices of certain types of
weather events. The business will direct the forecasters that they need to create
these new notices. We need to develop a tool that will aid the forecasters in
providing notices to districts inside a state. The system should be able to provide
notices for a variety of events (frost, severe-weather, freezing rain). The customer
wishes to use these notices as a warning that they may need to take action in order
to respond to an event. Our business would like the interface to be fast and easy
to use in order to minimize both the time and cost to the forecaster in creating the
notices. We do not want the forecaster to have to worry about the delivery of the
notices. Instead we would like to develop a system that will automatically deliver
the notices to the districts once they are created. The forecasters job is identifying
when to create a notice. The forecaster will use an interface to create the notices.
The system should be able to format and deliver the notices, created by the
forecasters, as needed. The customer often wants the notices delivered in a
variety of formats (web pages, faxes or both). The customers usually want the
notices delivered to each district where the notice is valid.

Enterprise Software Assessment

The enterprise software assessment provides a brief overview of how a possible

solution would fit in with an enterprise's current systems. We should ask ourselves two

different questions during the enterprise software assessment. First we should ask what

environment would the system most likely be deployed in. Then we should ask how

could we leverage existing software to aid in the development of the system. When

looking at the software that exists we should first consider the software that is already

readily available to customer. Just one of the many advantages of using software that

already exists is the existing software most likely already works properly in the

enterprise. Another important advantage for using existing software is that any software

we will create will probably require maintance. Once we have identified the existing

software we can propose how our system will fit in with the existing software. It is cost

prohibitive to the customer to have software developed from scratch. As a result

l

24

software developers should strive to maximize any software that has already been

created. If software needs to be created from scratch it is imp01iant to develop software

that will work with the other software already available in the enterprise. If people must

use the software it should behave similarly to cmTent software to reduce the amount of

training necessary for the new software.

The enterprise software assessment addresses the issues of what enviromnent the

system will be deployed in and suggests how existing software could be leveraged in the

creation of a new system. By looking at the previous issues we gain a better idea of how

the system might be implemented for the customer. The following case study is an

example of a current business outlook for our Notice Management System.

Case study: Enterprise Software Assessment

We currently have a system that stores all our weather products in a
database. The notices could be added to a database as a new weather product.
Once a notice is received in the database we could provide another process that
will handle the delivery and formatting of a notice. We currently have an internal
system set up called the notifier that can watch the database for different kinds of
weather products to be inserted. We can use the notifier to signal the system
when new notices are created.

Brief External Use Cases

The brief external use cases are used to identify the services that our system

should provide. The creation of the brief external use cases is a valuable tool that can be

used in the creation of the external use cases. We will most likely create many brief

external use cases before we decide on the ones that best represent the services that our

system should provide from an external point of view. When we talk about an external

point of view, we mean that we consider the system as a black box and we focus on the

users, also known actors, interaction with this encapsulated system. The format for a

25

brief external use case is fairly simple. Each brief external use case is identified by a

"name" and is followed by a "description" that describes a scenario for this use case. The

following case study lists the brief external use cases that where created for the Notice

Management System.

Case study: Brief External Use Cases
Name: CreateNotice
Description:

A forecaster identifies the need to submit a notice or notices in a region.
The forecaster starts the notice interface. The forecaster selects the state to submit
notices in. The forecaster then selects the districts to submit notices to. The
forecaster then creates and submits the notice to the system. The system
recognizes that a notice needs to be delivered. The system formats the notice
properly for delivery and then delivers the notice properly.

Name: ViewNotice
Description:

A forecaster wishes to view the notices that are currently valid. The
forecaster starts the interface and selects the region to view notices in. The
forecaster is able to easily see where valid notices are and can bring up the details
of a notice as desired.

Name: Start
Description:

The system manager needs to start the system.

Name: Stop
Description:

The system manager needs to be able to stop the system.

Detailed External Use Cases

We will use a drill down approach throughout our development process as we

create artifacts to provide detailed descriptions of previous artifacts. The drill down

approach allows us to manage the complexity of a system by focusing on a small number

of items at a time. When we need to look at a potentially complex problem like all of the

services our system should provide, we use a simple artifact like the brief external use

26

case, which lets us focus on what services our system should provide instead of the

details on how such services should work. The external use cases then focus on one

service at a time providing a detailed description, from an external viewpoint, of how a

service could be provided.

In the brief external use case section we decided what services our system should

provide and we gave a brief description of each service. Now we must explore each

service in more detail in order to discover a plan that would provide the service. When

choosing a service to analyze in greater detail it is impo1iant to consider a variety of

items. The following two sentences are an example of the types of questions we found

useful when deciding which services to analyze. Is this service critical to the success of

the system? Will this service help us understand any architectural requirements that our

system might have? We want to focus on the difficult and important services early in the

development process. Focusing on the complex services allows us to identify major

stumbling blocks early in the development process. It is a well-accepted software

engineering view that it is easier to make major architecture changes during the

beginning phases of software development.

The external use cases are based on the fully dressed use cases described by

Larman [2002]. We use the distinction "external" because the external use cases are

oriented around the external actors and their interaction with the system. By developing

an external use case we gain a better understanding of how the each service could be

provided. The external use cases provide a description of how a service will be provided

from an external actor's viewpoint. We will create an external use case for each service

that we feel the need to understand better.

27

h1 the following case study we have created external use cases for the services

createNotice, viewNotice and staii. At this time there was no need to create an external

use case for stop because we did not feel that the external use case for stop would provide

any new insight into the operation of the system.

Case study: External Use cases

External use case: CreateNotice
P1imary Actors: Forecaster, System, District
Stakeholders:
-Forecaster wants fast and accurate entry of the notices.
-Customer wants accurate and timely delivery of the warnings to districts
-Districts are interested in taking appropriate action for each warning.
-Company wants to satisfy customer interests in a cost effective mam1er.
Preconditions: Forecaster has identified a need to submit a severe weather
warning for an area.
Sucess/Postcondition: A notice is delivered to the district and a copy is saved.
Scenario:
1) A customer requests, from the company, that they receive notices of certain
kinds of weather events.
2) The company directs the forecaster to create the notices for the customers.
3) A Forecaster recognizes the need to create a notice.
4) Forecaster starts the notice creation interface.
5) Forecaster selects the proper customer to issue a notice for.
6) Forecaster creates the text of the notice.
7) Forecaster submits the finished notice to the system.
8) The system recognizes that a notice needs to be delivered.
9) The system formats the product for delivery.
10) The notice is delivered in the proper format to each district.
11) Forecaster repeats steps 5-6 as needed.

Extensions:
a) System fails:
-any work that hasn't been submited by the forecaster should be lost.
-restart the interface and recreate the notice.

Special Requirements:
-Once the system is loaded it must have a very quick response time (less than a
sec or two from the forecasters perspective)

External use case: ViewNotice
Primary Actors: Forecaster, System
Stakeholders:

28

-Forecaster wants view current valid notices.
-Company wants forecaster to be able to easily view the valid notices.
Preconditions: Forecaster decides to view a notice.
Sucess/Postcondition: Forecaster is able to view the contents of a notice.
Scenaiio:
1) The forecaster wants to view cmrent valid notices.
2) The forecaster sta1is the view notice interface.
3) The forecaster selects the customer to view notices for.
4) The interface indicates to the forecaster what distiicts have valid notices.
5) The forecaster can choose a district and view the valid notice for that district.

Extensions:
Sa)
-If if we try and view a notice in a distiict that currently doesn't have any valid
notices, then we should get a message, which says "No valid notice available".

External use case: Start
Primary Actor: System Administrator, System
Stakeholders:
-The System Administrator wants to be able to start and stop the notice delivery
system as desired.
-Company wants System Administrator to be able to easily manage the system.
Preconditions: System Administrator decides to start the system.
Sucess/Postcondition: The system is started.
Scenario:
1) The System Administrator wishes to start the notice management and delivery
system.
2) The System Administrator starts the notice management and delivery system.
3) The System starts the proper components to enable management and notice
delivery.

Conceptual Agent List

After we finish creating an external use case we should update our conceptual

agent list. If this is our first external use case then we will need to create a conceptual

agent list. We find conceptual agents by using linguistic analysis [Abbot 83]. We

identify the nouns and words, that could possibly be used as nouns, in our written

artifacts for the system. The artifacts include any external use cases, brief external use

29

cases, enterprise software assessments, initial problem statements and any other

documents describing the system.

Our conceptual list will contain many nouns that may not be agents. They may be

only objects or nothing at all. The simplest definition of an agent is an object with a goal.

In our software development process conceptual agents only become agents when they

are assigned BDI. While we are only interested in decomposing the system into agents, it

is useful to identify all the possible nouns, since they will prove useful in providing a

starting point for the possible agents that may participate in the system. It is also very

likely that we may undercover new agents during the development process. Whenever

we find a new conceptual agent we should add it our list. The following case study lists

the conceptual agents of the Notice Management System.

Notice
Notifier
System
Forecaster
Customer

Case Study: Conceptual Agent List

Weather
District
Web Page
Fax
Delivery

Conceptual Agent Relation Diagram

The conceptual agent relation diagram (CARD) provides a conceptual view of

how a service might be provided for a system. The conceptual agent relation diagram

shows some conceptual agents and their possible relationships with each other in the

system. Agents that are represented by an oval are external to a system and agents

represented in a rectangle are internal agents. The arrows in the diagram describe the

direction of communication and the label near the arrows indicates the goal of the

communication. The key purpose of the conceptual agent relation diagram is to give the

30

developer insight into what some of the internal agents might be. However, the

conceptual agents do not directly map to the software agents of the system. By looking at

the conceptual agent diagram and by applying the agent software patterns we can create

an updated conceptual agent list, which we will call the candidate agent list.

Service: createNotice

Creates
Notice

Watches for

Notifier

Asks for notices Hands a notice to

Delivers a notice
Delivery

Figure 3. Conceptual Agent Relation Diagram. The conceptual agent relation diagram
provides a conceptual view of a possible system. The oval circles represent external
agents and the boxes represent internal agents. There is a large rectangle that surrounds
all thee internal agents, which represents the system boundary.

We only create conceptual agent relation diagrams for services that we feel will

provide insight into the possible software agents that may exist in our system. In the

following case study we create an agent relation diagram for the service createNotice.

Figure 3 is the agent relation diagram for the createNotice service. The diagram of the

31

createNotice service provides a general view of how a conceptual system might provide

the createNotice service.

Agent Patterns

Agent patterns help leverage previous experience in system development and

apply it to our cmTent system. Our agent patterns will build upon the object-oriented

design pattern work done by Gang of Pour [Gamma et al. 1995] and Lannan [2002]. We

have also looked at agent design patterns by Hayden, Carrick and Yang [1999] and

Aridor and Lange [1998]. We will talk about three general types of agent patterns.

The first category of agent patterns is agent identification patterns. Agent

identification patterns help us discover what additional software agents the system may

require in addition to the conceptual agents that we have already discovered. The second

category of agent patterns is the agent creational pattern. The creational patterns are

based upon the creational patterns discussed by the Gang of Pour [Gamma et al. 1995].

These agent creational patterns help provide guidelines for who should create the agents.

The last type of agent pattern is the agent goal assignment patterns. The agent goal

assignment patterns will provide guidelines for assigning goals to agents.

In proposing agent identification patterns we try to identify common agents that

will be found in agent software systems. We will talk about three different agent

identification patterns. The first agent identification pattern is the manager agent pattern.

The manager agent proposes that we abstract the interaction between internal and

external agents to a single manager agent. The manager agent can handle any

communication between the internal and external agents. The manager agent can locate

the proper internal agent based on its interaction with the external agents. The manager

....,

32

agent also removes the need for the external agents to know detailed infonnation about

internal agents. Large software systems may use several manager agents to communicate

with the different subsystems that make up the system. When a system has multiple

manager agents it is often useful to create a special kind of manager agent know as a

delegation agent. The delegation agent simply receives external agents' messages and

forwards them to the proper internal manager agent. The second identification pattern is

the service pattern. The service pattern provides an agent to represent a certain kind of

service that needs to be available to the entire system. An example of a service pattern

might be a system, which needs to provide database access to the internal agents in the

system. Since several different agents need access to the database we can create a single

database agent to provide database service to the internal agents. The third type of

identification agent we would like to talk about is the broker pattern [Hayden et al.]. The

broker pattern suggests a broker agent can be used to abstract a service from the agent

that provides that service. If we have several different agents that provide similar

services they can register their services with the broker agent. Agents that want to use

those services then communicate with the broker agent. The broker agent will choose the

proper service agent to handle the agent's request.

Agent creational patterns suggest who should create an agent. The first agent

creational pattern is the long-lived agent. The long-lived agent needs to be available

whenever the system is running. The long-lived agent should be created when the system

is started and shutdown when the system quits. The following creational patterns are

based upon the design pattern work done by Larman [2002]. An agent A should be

created by agent B if agent A is the only used by agent B. An agent A should be created

33

by B if agent B has agent A's initialization data. Agent B should create agent A if it

aggregates, contains, records or closely uses Agent A.

The last category of agent patterns that we will describe is agent goal assignment

patterns. One could argue that agent creation patterns are really agent goal assignment

patterns because we are describing who has the responsibility to create an agent.

However, creation of agents is such an important and difficult step we feel that it

deserves its own classification of patterns and we have separated agent creational patterns

from agent goal patterns.

The following agent goal assignment patterns are based upon the design patterns

described by Larman [2002]. The low coupling pattern suggests that we should try to

assign goals so coupling between agents remains low. By keeping the coupling between

agents low, we increase the self-sufficiency of the agents, which reduces the complexity

of the system by abstracting behavior into a single agent. It is also desirable for our

agent's goals to exhibit high cohesion. Our agent's goals should be similar in nature. An

agent with vastly different goals can be a sign of an overly complex agent and may

indicate the need for the agent to be decomposed into several smaller agents. The notifier

pattern is based upon work done by Aridor and Lange [1998]. The notifier pattern

suggests that it is common for agents to ask other agents to notify them of events. The

notifier agent will watch for a certain events and notify the proper agents.

Candidate Agent List

The candidate agent list contains all the potential agents that we can use in

designing our system. We may do several iterations of creating an agent relation

diagram, applying agent identification patterns and then creating brief internal use cases,

34

in order to discover the possible agents for the system. It is impmiant to look at the

conceptual agent list and think about what patterns may be applied to other agents that we

didn't include in our agent relation diagrams. By applying the patterns to agents in our

conceptual agent list we may discover a better architecture for our system that otherwise

we may have been missed. The candidate agent list contains all the conceptual agents in

addition to the new agents we discover. It is important to note that not every agent we

may discover will become a software agent in our final system. This candidate agent list

is developed as a resource to be used when creating the internal use cases and in the

creation of the agent interaction diagrams.

After looking at Figure 3, the agent relation diagram for createNotice, and

applying our agent identification patterns we discover a number of potential agents. We

see that we have two external actors that interact with our internal agents and we suggest

manager agents that handle the interaction between the internal and external agents. We

also discover that the delivery agent wants to be notified of any new notices and we

would create a notifier agent, but we have already discovered that agent. We notice that

several of our agents will need to interact with the database and add the database agent to

our list. Upon further review the Delivery agent may need help in delivering notices, so

we suggest a deliveryservice agent. We think that it may be possible that we want

several different agents to register their delivery services with a broker agent. For

example the Web Page and Fax agents may want to provide their services through a

DeliveryBroker agent. Table 1 describes the candidate agent list for our Notice

Management System.

35

Table 1. Candidate Agent List.
Agent Reason
Notice Conceptual Agent List
Weather Conceptual Agent List
Notifier Conceptual Agent List
District Conceptual Agent List
System Conceptual Agent List
Web Page Conceptual Agent List
Forecaster Conceptual Agent List
Fax Conceptual Agent List
Customer Conceptual Agent List
Delivery Conceptual Agent List
N oticeManager By studying the agent relation diagram for

the createNotice service we can see that the
external Forecaster agent is communicating
directly with the notice agent. By applying
the manager pattern, we identify the
possible need for a NoticeManager.

DeliveryManager We recommend this agent based on
applying the manager pattern.

Database We discover this agent by applying the
service pattern. The service pattern
provides a single agent that is available to
all the internal agents in our system. Many
agents will need to get and store
information in the database and we may
provide a single database agent to handle
this.

DeliveryService We recommend this agent based on
applying the service pattern.

Deli very Broker We identify this possible software agent
based on the broker pattern. We have
several possible agents such as Fax and
Web page, which provide the function of
delivering notices to the districts. The
broker could provide a single agent that
decides which agent to use for notice
delivery.

SystemManager This agent is recommended from looking at
the start brief internal use case. The system
manager will ensure the proper agents are
created at the systems initialization.

36

Brief Internal Use Cases

The brief internal use cases attempt to decompose a service into one or more

goals. They are also the first step in preparing to create the internal use cases. In order to

create the brief internal use cases we read the external use cases and identify potential

goals and a simple plan to complete each goal. These goals are used to provide the

services for the system.

We recommend creating many different brief internal use cases when trying to

decompose a service. The brief internal use cases can be quickly created and provide an

excellent tool for discovering the architecture for the system. After deciding on the brief

internal use cases for the system any extraneous brief internal use cases can be discarded.

The main purpose of the brief internal use cases is to define a decomposed service as one

or more manageable goals, which can then be assigned to the proper agents in our

system.

When deciding on the creation of goals we need to keep in mind that agents can

only communicate with each other through goals. Thus whenever agents must

communicate with each other we must create goals for them to do so. Ideally we would

like the goals to be as abstract as possible because fewer goals are usually easier to work

with. However, the goals should not provide too much functionality because they should

be reusable as well. The goal assignment patterns provide a general description of what

is desirable in a properly decomposed goal.

The following case study lists the brief internal uses cases for our Notice

Management System. The brief internal use cases are grouped under the service that they

l
11

i'
I

37

should provide. The service name is in bold in order to easily distinguish which brief

internal use cases belong to which service.

Case Study: Brief Internal Uses Cases

Service: CreateNotice
Name: CreateNotice
Description:
The forecaster has identified a need to submit a notice for an region. The
forecaster starts the notice interface. The forecaster selects the proper state to
issue a notice for. The forecaster enters the notice text. The notice is formatted
and submitted and is stored in the database.

Name: WatchForNoticesToDeliver
Description:
The notifier is started and asked to watch the database for new notices. When a
new notice arrives it is handed to the interested party.

Name: DeliverNoticesToDistricts
Description:
A notice arrives for delivery. The notice contains the information about whom it
should be delivered to. The database is checked on how to properly fonnat the
notice for delivery. The database is checked on how to fonnat the notice
properly. The notice could be delivered as a fax, web page or both. We also want
to add the ability to deliver the notice in new fonnats.

Service: ViewNotice
Name: ViewNotice
Description:
The forecaster decides to view notices and starts the view notice interface to do
so. The NoticeManager provides a view notice interface to the forecaster. The
forecaster indicates the state it wishes to view valid notices in. The interface
indicates which districts have valid notices to the forecaster. The forecaster
selects a district to view a valid notice for. The valid notice is retrieved from the
database and displayed to the forecaster.

Service: Start
Name: Start
Description:
The System Administrator decides to start the notice delivery system. The
SystemManager creates the proper agents that will be needed in order for the
system to allow management and delivery of notices.

Service: Stop
Name: Stop

38

Description:
The System Administrator decides to shutdown the system.

Detailed Internal Use Cases

The internal use cases focus on describing the detailed plan for each goal that will

provide the service we are currently looking at. Each internal use case name represents a

conceptual goal. Every goal has a plan that can include other goals, which in tum have

their own plans.

The main goal of the internal use case is the detailed description of goals and the

plans that will complete each goal. The internal use cases follow a standard use case

format with a few modifications. The internal use cases all belong to a particular service

that they are providing. In an internal use case the service that each goal belongs to is

indicated by the service line, which is in bold so it can be easily identified. In addition to

belonging to a service internal use cases can have intentions that are actually goals with

their own plans called sub-goals.

Sub-goals are essentially the same as goals in all regards, except a sub-goal helps

provide a goal instead of a service like regular goals. The creation of these sub-goals

often occurs during the creation of the internal use cases because the internal use case

construction provides the developer with a better understanding of the architecture of the

system. The increased knowledge of system allows the developer to suggest the creation

of sub-goals that provide a better decomposition of the service they provide. The sub­

goals are advantages because they describe an intention in more detail, but still keep the

goals they extend from becoming over complicated.

39

We describe a sub-goal as extending from its parent goal. These sub-goals are

goals the parent goal can use in order to meet their own goal. A sub-goal is noted in an

internal use case by the "extends" identifier. Immediately after the extends identifier is

the name of the parent goal it belongs to and the intention or intentions it expands upon.

We can create sub-goals whenever we feel it is advantageous to do so. When creating a

sub-goal we must balance encapsulating functionality in its own sub-goal verses

providing so many sub-goals that they are cumbersome to work with. It is often difficult

to create every internal use case until we begin to create the agent interaction diagrams.

During the creation of the agent interaction diagrams new goals or sub-goals can

be discovered. It is especially common to discover creational goals during the creation of

agent interaction diagrams. When these new goals are discovered during the creation of

the agent interaction diagrams it is useful to go back and create or update the internal use

cases to reflect the decisions made when creating the agent interaction diagrams. This is

useful because the internal use cases are used to define much of the static structure that is

found in the BDI agent cards.

The following case study lists the internal use cases for our Notice Management

System. The internal use cases are structured similarly to the brief internal use cases.

Some of these internal use cases where not created until after the creation of some of the

agent interaction diagrams. The Create goal that can be found under the start service in

our internal use cases is an example of new use case that was discovered during the

creation of the agent interaction diagrams.

Case Study: Internal Use Cases

Service: CreateNotice
Internal use case: CreateNotice

40

Actors: NoticeManager, Forecaster, Notice
Stakeholders:
-Forecaster wants fast and accurate creation of the notices.
-NoticeManager handles the interaction with the forecaster and desires proper
creation and maintenance of notices.
-Notice contains all the information about a notice.
Preconditions: Forecaster has identified a need to submit a notice for an area.
Postcondition: Notice is delivered/saved to the database.
Scenario (intentions):
1) Forecaster asks the NoticeManager agent to create a Notice.
2) The NoticeManager agent provides an interface to the forecaster for notice
creation.
3) NoticeManager agent properly fo1mats and submits the notice to the database.

Internal use case: Create
Extends: CreateNotice, intention 2
Actors: NoticeManager, Notice
Preconditions: We need to create a notice.
Success/Postconditions: A notice is created.
Scenario (intentions):
1) The notice interface is started for notice creation.
2) The NoticeManager gets the State from the user.
3) The NoticeManager gets the district from the user.
4) The N oticeManager gets the notice text from the user.
5) The NoticeManager passes the Districtids and the notice text to the Notice.
6) A new notice is created.
7) The N oticeManager now has a notice.

Internal use case: Submit
Extends: CreateNotice, intention 3
Actors: NoticeManager, Database
Preconditions: The database receives a notice to save.
Success/Postconditions: The notice is saved.
1) The NoticeManager sends a notice to the database to be saved.

Internal use case: WatchForNoticesToDeliver
Actors: Notifier, Delivery, DeliveryService
Stakeholders:
-The notifier watches the information that is inserted into the database.
-The delivery agent wants to know when/what/who it should deliver.
-The deliveryservice agent will format the notice as specified and deliver it.
Preconditions: The system needs to recognize when notices should be delivered.
Sucess/Postcondition: The system recognizes that a notice should be delivered.

Scenario (intentions):
1) The delivery agent creates the notifier.

41

2) The delivery agent asks the notifier to watch the database for notices, which are
a type of weather product.
3) The delivery agent listens to notifier for notices.
4) The notifier watches the database for notices to be entered.
5) The notifier gives the delivery agent a notice.
6) The delivery agent sends a request to the delivery service agent to deliver the
notice.

Internal use case: DeliverNoticesToDistricts
Actors: DeliveryService, Notice
Preconditions: DeliveryService agent has received a notice to be delivered and
how it should be delivered.
Sucess/Postcondition: The notice is delivered in the proper format to the proper
districts.
Scenario (intentions):
1) The deliveryservice agent checks the notice for who it should be delivered too.
2) The deliveryservice agent then checks the database on how to properly fonnat
the notice for delivery.
3) The deliveryservice agent formats the notice for delivery.
4) The deliveryservice agent delivers the notice as a fax, web page or both.

Service: ViewN otice
Internal use case: ViewNotice
Service: ViewNotice
Actors: NoticeManager, Forecaster, Notice
Stakeholders:
-Forecaster wants fast viewing of valid notices.
-NoticeManager handles the interaction with the forecaster and desires proper
valid notice viewing.
-Notice contains all the information about a notice.
Preconditions: Forecaster desires to view a notice area.
Postcondition: Forecaster is able to view the contents of a valid notice.
Scenario (intentions):
1) Forecaster asks the NoticeManager agent to view a Notice.
2) The NoticeManager agent provides an interface to the forecaster for notice
v1ewmg.

Internal use case: View
Extends: ViewNotice, intention 2
Actors: NoticeManager, Notice, Forecaster, Database
Preconditions: We need to view a notice.
Success/Postconditions: A notice is viewed.
Scenario (intentions):
1) The notice interface is started for notice viewing.
2) The NoticeManager gets the State from the user.
3) The NoticeManager gets the valid notices from the database.

42

4) The NoticeManager provides an interface with the districts that have valid
notices.
5) The Forecaster selects a district to view a notice for.
6) The NoticeManager displays the notice contents to the Forecaster.

Internal use case: GetValidNotices
Extends: viewNotice, intention 3
Actors: NoticeManager, Database
Preconditions: The database receives a request for valid notices in a state.
Success/Postconditions: All the valid notices are returned.
Scenario (intentions):
1) The NoticeManager requests all the valid notices for a state from the Database.

Service: Start
Internal use case: Start
Actors: SystemManager, Database, Delivery
Preconditions: The system is staiied.
Success/Postconditions: The proper services are started to enable management
and notice delivery.
1) The SystemManager creates the database to provide database access to the
various agents of the system.
2) The SystemManager creates the delivery agent to enable the delivery of
notices.

Internal use case: Create
Extends: Start, intention 2
Actors: System.Manager, Delivery, Notifier, DeliveryService
Preconditions: The delivery agent is created.
Success/Postconditions: The proper agents are created which allow the delivery
agent to deliver notices.
1) The delivery agent creates the Notifier so it can be notified of new notices.
2) The delivery agent creates the DeliveryService agent, which it will hand the
notices that need to be delivered to.
3) The delivery agent gives a list of notices to the Notifier, which it wishes to be
notified for.
4) When the delivery agent receives a notice from the Notifier it hands the notice
to the DeliveryService for delivery.

Agent Belief List

The agent belief list provides a list of beliefs that are needed to carry out each

goal and sub-goal that is listed in our internal use case scenario or plan. Our BDI agent

software development process centers on the idea of goal discovery and the assigning of

43

those goals and their con-esponding beliefs and intentions to agents. At this point in the

development process we have defined the goals and each goal's intentions. In addition to

assigning goals to agents we must discover the beliefs that are needed to complete each

goal.

Goals require certain knowledge in order to be fulfilled, we call this needed

knowledge beliefs. The agent belief list shows what beliefs each goal requires in order to

be fulfilled. The agent belief list contains the name of every goal in our system, which is

then followed by the beliefs and a reason describing why each belief is necessary. We

order each set of beliefs under the bold title of service that each goal provides. The

reason we group the beliefs by service is to limit conflicts that may occur from two

different services that have similarly named goals. The following case study lists the

beliefs that are needed for each goal in our Notice Management System.

Case Study: Agent Belief List

Service: CreateNotice
Goal: CreateNotice
Belief: NoticeDB
Reason: We need to know the database to submit notices to.

Goal: Create
Belief: StateDB
Reason: Agent needs to provide a list of districts for a state to the user.

Goal: Submit
Belief: NoticeDB
Reason: Agents needs access to the Notice DB to insert new notices.

Goal: WatchForNoticesToDeliver
Belief: N oticeDB
Reason: Agent needs to watch for new notices entering the NoticeDB.

Goal: DeliverNoticesToDistricts
Belief: StateDB

44

Reason: Agent fo1mats the notice for delivery based upon how the states desire it
delivered.

Service: ViewNotice
Goal: ViewNotice
Belief: StateDB
Reason: We need a district id for the notice we wish to view.

Goal: View
Belief: Notice
Reason: We need a notice to view.

Goal: Get V alidN otices
Belief: StateDB, NoticeDB
Reason: We need a list of district ids to check for valid notices for those districts.

Service: Start
Goal: Start
Belief: Delivery, Database
Reason: This goal needs to know which delivery and database services to start.

Goal: Create
Belief: Notifier, DeliveryService
Reason: This goal needs to know, which Notifier and DeliveryService agents to
staii.

Agent Interaction Diagrams

During the creation of the agent interaction diagrams we assign goals to agents

and describe how the agents communicate with each other in order to provide a service.

The internal use cases give us a rough idea of what agents might work together to provide

the services for the system. The agent interaction diagrams are different than the internal

use cases in the fact that we are now focused on assigning goals to agents or who will do

what, instead of understanding how it will be done, which is the focus of the internal use

case. If we make changes in the interaction diagrams that change how the internal use

cases work, we must update the internal use cases to reflect these changes. When

assigning goals to agents we can use the agent goal assignment patterns to aid us.

45

Agents are depicted by the words that are at the top of the ve1iical lines in our

agent interaction diagrams. Agent communication is depicted by lines with arrows and

labeled with goal that is being invoked. Internal agents are represented with rectangles

and external agents are represented with ovals.

System
Administrator

Start()

Stop()

Figure 4. System Services Interaction Diagram.

System

ViewN otice()

CreateN otice()

Figure 4 is a variation of the agent interaction diagram that shows the services that

will be provided by our system. The services that our system should provide can be

extracted from the titles of the brief external use cases. This system service interaction

diagram provides the developer with a visual picture of the external services that the

system will provide. In our notice management case study we have described the

CreateNotice, ViewNotice and Start services in detail. We choose not to provide a

detailed documentation of the Stop service because it does not seem to provide any useful

insight into the system architecture.

.,

46

N oticeManager Notice Database

CreateN otice()

Create(districts, text)

Submit(N otice)

Figure 5. Agent Interaction Diagram: NoticeManager.CreateNotice(). The Forecaster
invokes the CreateNotice goal of the NoticeManager. The NoticeManager then uses the
Notice.Create() goal in order to create a Notice. The NoticeManager uses the
Database.Submit(Notice) goal in order to store the notice in the database.

The agent interaction diagram in Figure 5 describes the internal actions that take

place when an external agent (a Forecaster in this case) invokes the CreateNotice goal

that can be found in Figure 4. The internal use cases for the CreateNotice goal are used

for the creation of Figure 5. The CreateNotice goal should not be confused with the

CreateNotice service. The CreateNotice service embodies all the goals listed under the

CreateNotice service in our brief internal use cases.

Figure 6 details the internal actions that take place when the Start goal is invoked.

We choose to have the SystemManager create both the Database agent and the Delivery

agent in Figure 6. The Database agent meets the description of the long-lived agent

pattern because it needs to be available to many different agents inside our system and it

needs to be available for the entire life of the system. We have the SystemManager

create the Delivery agent because we want notices to be delivered as soon as the system

is started.

47

SystemManager Database Delivery

Start()

Create()

Create()

Figure 6. Agent Interaction Diagram: SystemManager.Start(). When the
SystemManager.Start(} goal is invoked by the SystemAdministrator then the
SystemManager invokes the Create() goals for the Database and Delivery agents.

Delivery Notifier DeliveryService

Create()

Create()

Create()

W atchF orN otices(N oticeList)

DeliverN oticeToDistricts(N otice)

Figure 7. Agent Interaction Diagram: Delivery.Create(). When the Delivery agent
receives a create request from the SystemManager it invokes the Notifier.Create(),
DeliveryService.Create() and Delivery.WatchForNotices(NoticeList) goals. The Notifier
will transparently pass new notices to the Delivery agent, described by the
WatchForNotices(NoticeList) goal, which will then invoke the
DeliveryService.deliverNoticeToDistricts(Notice) goal.

48

Figure 7 is a more detailed desc1iption of the actions that take place when the

SystemManager invokes the Create goal of the Delivery agent in Figure 6. The Delivery

agent creates the Notifier agent, so it can be receive new notices from the system. The

Delivery agent creates the Delive1yService agent, which it will use to deliver any notices

it receives. The Notifier.WatchForNotices(NoticeList) goal is invoked which tells the

Notifier which notices we wished to be notified of. The

DeliveryService.DeliverNoticeToDistricts(Notice) goal is invoked whenever a notice is

received from the Notifier.

N oticeManager Notice Database

View Notice()

GetValidN otices(State)

View()

Figure 8. Agent hlteraction Diagram: NoticeManger.ViewNotice(). The
NoticeManager.ViewNotice() goal is invoked by the Forecaster. The NoticeMangar
invokes the Database.GetValidNotices(State) goal and receives a list of Notices. The
NoticeManager can then invoke the Notice.View() on each Notice.

Figure 8 is an agent interaction diagram that provides a more detailed description

of what happens when an external agent invokes the systems ViewNotice goal. The

Database.GetValidNotices(State) allows the NoticeManager to get the list of valid notices

for a state from the database. The Notice.View() goal allows the NoticeManager to view

the contents of each notice.

49

BDI Agent Cards

The BDI agent cards can be created in parallel with the Agent Interaction

Diagrams. We can use the BDI agent cards as a way to bring all the different parts of an

agent together into a single entity. The BDI agent cards are based upon the object­

oriented design cards called CRC cards [Bellin et al. 1997]. The BDI agent cards and the

agent interaction diagrams represent the architecture of the system.

The BDI agent cards document the static architecture of the system and the agent

interaction diagrams detail the dynamic collaboration between the agents of our system.

By creating the BDI agent cards we are able to describe the static structure of the agents

in a single artifact. Describing an agent's static structure with a single artifact provides a

valuable tool that can be used for constructing the agent in software. After the creation of

the BDI agent cards and the agent interaction diagrams all the goals will be assigned to

agents.

During this phase in the development process a key action will be making sure

both the BDI agent cards and the agent interaction diagrams reflect the same architecture

for the system. Often a change to one BDI agent card or agent interaction diagram will

cause a change in the other and vice versa. The BDI agent cards and agent interaction

diagrams completely define the architecture of our system, which can then be used to

create our system in software. The following case study lists the BDI agent cards that we

created for our Notice Management System.

Case Study: BDI Agent Cards

Agent: N oticeManager
BDI list:
1) Desire: CreateNotice

50

Pre-condition: Forecaster decides to create a Notice.
Belief: NoticeDB
Post-condition: Notice is saved in the database.
Collaborators: Forecaster (external), Notice
Intentions:
1) Forecaster asks the NoticeManager agent to create a Notice.
2) The NoticeManager agent provides an interface to the forecaster for notice
creation.
3) NoticeManager agent properly formats and submits the notice to the
database.

2)Desire: ViewNotice
Pre-conditions: Forecaster desires to view a notice area.
Belief: StateDB
Post-condition: Forecast is able to view the contents of a valid notice.
Collaborators: Forecaster (external)
Intentions:
1) Forecaster asks the NoticeManager agent to view a Notice.
2) The NoticeManager agent provides an interface to the forecaster for notice
viewmg.

Agent: Notice
BDI list:
1)Desire: Create

Pre-condition: NoticeManager needs to create a new notice.
Belief: StateDB
Post-condition: Notice is created.
Collaborators: NoticeManager, Database
Intentions:
1) The notice interface is started for notice creation.
2) The NoticeManager gets the State from the user.
3) The NoticeManager gets the district from the user.
4) The N oticeManager gets the notice text from the user.
5) The NoticeManager passes the Districtlds and the notice text to the Notice.
6) A new notice is created.
7) The NoticeManager now has a notice.

2) Desire: View
Pre-condition: We need to view a notice.
Belief: Notice

Post-condition: A notice is viewed.
Collaborator: NoticeManager

Intentions:

51

1) The notice interface is started for notice viewing.
2) The NoticeManager gets the State from the user.
3) The N oticeManager gets the valid notices from the database.
4) The NoticeManager provides an interface with the districts that have valid
notices.
5) The Forecaster selects a district to view a notice for.
6) The NoticeManager displays the notice contents to the Forecaster.

Agent: Delivery
BDI list:
1) Desire: Create

Preconditions: The delivery agent is created.
Belief: Notifer, DeliveryService
Success/Postconditions: The proper agents are created which allow the
delivery agent to deliver notices.
Collaborators: SystemManager, Delivery, Notifier, DeliveryService
1) The delivery agent creates the Notifier so it can be notified of new notices.
2) The delivery agent creates the DeliveryService agent, which it will hand the
notices that need to be delivered to.
3) The delivery agent gives a list of notices to the Notifier, which it wishes to
be notified for.
4) When the delivery agent receives a notice from the Notifier it hands the
notice to the DeliveryService for delivery.

Agent: DeliveryService
BDI list:
1) Desire: DeliverNoticesToDistricts

Pre-condition: We receive a notice that needs to be delivered.
Belief: StateDB
Post-condition: Notice is delivered in the proper fom1at to the proper districts.
Collaborator: Delivery
Intentions:
1) The deliveryservice agent checks the notice for which it should be
delivered too.
2) The deliveryservice agent then checks the database on how to properly
format the notice for delivery.
3) The deliveryservice agent formats the notice for delivery.
4) The deliveryservice agent delivers the agent as a fax, web page or both.

Agent: Database
BDI list:
1) Desire: Submit

Pre-condition: The database agent receives a notice to save.
Belief: NoticeDB
Post-condition: The database agent stores the notice properly.
Collaborator: NoticeManager

52

Intentions:
1) The NoticeManager sends a notice to the database to be saved.

2) Desire: GetValidNotices
Pre-condition: The database receives a request for valid notices in a state.
Belief: NoticesDB, StateDB
Post-condition: All the valid notices are returned.
Collaborator: NoticeManager
Intentions:
1) The N oticeManager requests all the valid notices for a state from the
Database.

Agent: Notifier
BDI list:
1) Desire: WatchForNotices

Pre-condition: The system needs to recognize when notices should be
delivered.
Belief: NoticeDB
Post-condition: Waiting to receive notices.
Collaborator: Notifier
Intentions:
1) The delivery agent creates the notifier.
2) The delivery agent asks the notifier to watch the database for notices, which
are a type of weather product.
3) The delivery agent listens to notifier for notices.
4) The notifier watches the database for notices to be entered.
5) The notifier gives the delivery agent a notice.
6) The delivery agent sends a request to the delivery service agent to delivery
the agent.

Agent: SystemManager
1) Desire: Start

Pre-condition: The system is started.
Belief: Database, Delivery
Collaborator: System Administrator (external)
Intentions:
1) The SystemManger creates the database to provide database access to the
various agents of the system.
2) The SystemManager creates the delivery agent to enable the delivery of
notices.

CHAPTER IV
CONCLUSION

This is the final chapter smmnarizes our research and proposes some potential

areas of research for the future.

Summary of Research

Software developers are continually called upon to develop increasingly complex

systems. Computer scientists are constantly working on new tools that can aid software

developers in the creation of these increasingly complex systems. We believe that agent­

base software development will be useful tool for the construction of complex systems.

This research lays the groundwork for a BDI agent software development process. The

BDI agent software development process that we propose is designed to be usable by

today's software developer. Our process is not overly complex, but is designed to be a

systematic process for developing agent-based systems. In this research we have

proposed both our BDI agent software development process and provided a case study to

clarify the use of the process for agent software development.

There are several salient points in our BDI agent development process. In our

BDI agent development process we describe agents as those enties that we assign BDI

too. There are two key activities that place in our BDI agent software development

process. These key activities are the discovery of agents and the discovery of the BDI for

each agent. Not only do we use traditional tools like noun phase identification, but we

also propose new tools like agent patterns to identify the potential agents in our system.

53

54

In constructing the BDI for each agent we take a goal-oriented approach. By

using modified use cases we decompose the services for our system into one or more

goals. Once the goals have been defined we use other aiiifacts like internal use cases to

define the plan for each goal and agent belief lists to define the beliefs for each goal. We

discover agents by assigning each goal and its corresponding belief and plan to a

candidate agent in our process. Agent interaction diagrams and agent patterns are useful

tools that can aid the assignment of each BDI to the proper agent.

We define the final architecture of our system with agent interaction diagrams and

BDI agent cards. The agent interaction diagrams define the dynamic structure of our

system and the BDI agent cards document the static structure of our system. Once the

final architecture has been defined with the proper artifacts the system is ready to be

created in software.

Future Research

There are many options for future research. This research is just the first iteration

in the development of a process for developing agent-based systems. This process can be

fmiher refined and additions can be made to improve areas that prove difficult to use

when constructing agent-based systems. Agent patterns represent a promising area of

research that can aid in building agent-based systems by leveraging solutions to common

problems found when constructing agent-based systems. A programming language that

is specifically designed to simplify the creation of agent-based systems in software can be

created. This BDI agent software development process could also be extended to better

describe artificial intelligence elements that may be required for creating intelligent

55

agents. The field of agent-based software engineering is still relatively young, but it

holds great promise for the future development of complex systems.

REFERENCES

Beck, K. 2000. Extreme Programming Explained-Embrace Change, Addison-Wesley,
2000.

Bellin, David and Simone, Susan, The CRC Card Book, Addison-Wesley, 1997.

Booch, G., Object-Oriented Analysis and Design with Applications, Addison Wesley,
1994.

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process,
Addison-Wesley, 1999.

Bratman, M. E., Intention, Plans, and Practical Reason, Harvard University Press, 1987.

Cockburn, Alistair, Writing Effective Use Cases, Addison-Wesley, 2001.

Depke, Ralph, Heckel, Reiko, and Kuster, Jochen, hnproving the Agent-Oriented
Modeling Process by Roles, AGENTS'OJ, 640-647, Jui1e 2001.

Fowler, Martin and Scott, Kendall, UML Distilled Second Edition: A Brief Guide to the
to the Standard Object Modeling Language, Addison-Wesley, 2000.

Gamma, E., r. Helm, R. Jolmson, and J. Vlissides, Design Patterns: Elements of
Reusable Object Oriented Software, Addison-Wesley, 1995.

Hayden, Sandra, Carrick, Christina, and Yang, Qiang, A Catalog of Agent Coordination
Patterns, ACM Press, 412-413, 1999.

Iglesias C. A., Garijo M, Gonzalez J.C., and Juan R. Velasco, Analysis and Design of
Multiagent Systems using MAS-CommonKADS, In M.P. Singh, A. Rao, and
M.J. Wooldridge, editors, Proc. 4th Int. Workshop on Agent Theories,
Architectures, and Languages (ATAL-97), volume 1365 of LNAI, 313-328,
Springer-Verlag, July 24-26, 1998.

J e1mings, Nicholas R., On agent-based software engineering, Artificial Intelligence,
volume 117, 277-296, February 2000.

J e1mings, Nicholas R., An Agent-Based Approach for Building Complex Software
Systems, Communications of the ACM, 44(4), 35-41, April 2001.

56

57

Jo, Chang-Hyun, A Seamless Approach to the Agent Development, ACM SAC 2001,
Las Vegas, 641-647, March, 2001.

Lamian, Craig, Applying UML and Patterns: Second Edition, Prentice-Hall, 2002.

Petrie, Charles, Agent-Based Software Enginee1ing, Agent-Oriented Softvvare
Engineering, Lecture Notes in AI, Springer-Verlag, 58-76, 2001.

Rao, Anand S. and Georgeff, Michael P., BDI Agents: From Theory to Practice,
Australian Artificial Intelligence Institute, April, 1995.

Weiss G., editor, Multi-Agent Systems, The MIT Press: Cambridge, MA, 1999.

Wooldridge, M. and Jennings, N. R., Intelligent Agents: Theory and Practice, Knowledge
Engineering Review, Cambridge Univ. Press, 10(2), 115-152, June 1995.

Wooldridge, M. and Jennings, N. R., Software Engineering With Agents: Pitfalls and
Pratfalls, IEEE Internet Computing, 20-27, May-June 1999.

Wooldridge, M., Je1mings, N. R., and Kinny, D., A Methodology for Agent-Oriented
Analysis and Design, Autonomous Agents 1999, Seattle, WA, 69-76, 1999.

Wooldridge, M., Reasoning about Rational Agents, The MIT Press: Cambridge, MA,
2000.

	A BDI Agent Software Development Process
	Recommended Citation

	tmp.1568146525.pdf.qSxvE

