

31

TXN (Transaction). This set has a PoP certificate (TALA key) issued by an original Asset Owner

for permitting another interested party to either rent or own or rent-to-own the asset within a

CommLedger Network Nodes set.

The base concepts of set theory are used to establish a CommLedger Network node(s)

membership. ADAM block(s) creation is based on Set theory. This generation of blocks begins

with a fundamental binary relation between an object “o” (The Data Element provided by a

CommLedger User to be stored in a Blob that later is added in a CommLedger Block) and set

“A”, where “A” is a CommLedger Network Nodes set. If “o” is a member (or element) of “A”,

the notation “o ∈ A” is used. Because sets are objects, the membership relation can also relate to

sets.

A derived binary relation between two sets is the subset relation and is called set

inclusion. If all the members of set “A” are also members of set “B”, then “A” is a subset of “B”,

denoted “A ⊆ B”. For example, {1, 2}is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not; this

means ‘1’ and ‘2’ have the PoP Certificate issued to be transacted; however, there is no 4 Block

with this CommLedger Network. As insinuated from this definition, a set is a subset of itself. For

cases where this possibility is unsuitable or would make sense to be rejected, the term proper

subset is defined. A is called a proper subset of B if and only A is a subset of B, but A is not

equal to B. Note also that 1, 2, and 3 are members (elements) of the set {1, 2, 3} but are not

subsets of it. The given Figure 2 shows the use of PoP. The Blocks architecture of the

transactions (TXN – to – TXN) are created by the utilization of an established Service Oriented

Architecture (SOA 3.0) [26] [27].

32

Figure 2. Use of Proof of Permission (PoP).

ADAM Block

The TALA key generation process works with cached data sets to put the data with the

TALA key in a blob form in the CommLedger Block. When all the synopses of these data sets

are collected, an ADAM block is then sent to all the nodes in the CommLedger Blockchain

Network nodes. To speed up the process of referencing the CommLedger Node(s) record stored

within the corresponding differential records, we use the TALA key to convert these differential

records individually into a compressed illustration that provides easy access to both records of

the CommLedger stored records.

To understand the construction and working of the Tiered Asynchronous Locking

Algorithm, consider the following example. Consider CommLedger Network Nodes as a Set

A = {a1, a2,…,an} of n Blocks, where a1 is an ADAM block. CommLedger gets the PoP by its

nodes (organizational users who issue PoP Certificate[s]) that describe the CommLedger

33

Membership information of A using a bit vector V of length m. For this, k hash functions, h1,

h2,….,hk with hi : X -> {1..m} , are used as described below.

To summarize and verify large datasets in the ADAM block blobs, an efficient data structure

called a binary hash tree (also known as a Merkle tree) is used for the TALA key generation

processing. Furthermore, it is a tree structure in which each leaf node is a hash of a block of data,

and each non-leaf node is a hash of its children and used in disseminated data classifications for

data authentication. The application of this structure is one of the efficient ways it uses hashes

instead of full files.

Figure 3. The Hash calculated for TALA key generation processing.

In Figure 3, we have Blocks B1-B4 that are then hashed, and these hashed files are

combined. The decision analytics associated with CommLedger can trace the time of the

transactions within an organizational CLN in a secure way, which they can embed in their

decision support systems. The application of timeseries in analyzing both cyclical and seasonal

trends can allow an organization using CLN to create Robotic Process Automation for their

advanced analytics needs.

34

CommLedger Network

Let us consider an example of having a large database and the data in the database is

stored in the form of a Merkle tree. Also consider that the root of the Merkle tree is publicly

known and trusted. If a CLN user wants to perform a key value lookup on the CommLedger

Stored data sets, then the CLN user can ask for Merkle proof and on receiving the proof, he/she

can identify whether the lookup is correct or not. It also allows a mechanism for validating a

small number of Blocks in a CLN, like a hash, to be extended to also validate large databases of

potentially unbounded size.

The initial application of these Merkle trees is in the Bitcoin introduced by Satoshi

Nakamoto [28]. With the help of Merkle trees and Merkle proofs instead of downloading every

transaction and every block, it allows the light client to download the chain of 80n byte block

headers and contains the five most important characteristics of a block: (a) a hash of the previous

header, (b) a timestamp, (b) mining difficulty value, (c) a PoW nonce, and (d) a root hash of the

Merkle tree.

Although a Merkle tree has merits, it also has limitations. One major drawback is that

though the user can prove the inclusion of transactions, he/she cannot prove anything about the

current state, for example digital asset holdings, name registrations, and the status of financial

contracts.

The following procedure builds an m bits TALA key that, corresponds to a CommLedger

Network Nodes set A and uses h1, h2,….,hk hash functions, as depicted in Figure 3.3:

Procedure TALA_Key_Gen(set A, hash_functions, integer m)

 returns key

 key = allocate m bits initialized to 0

35

 foreach ai in A:

 foreach hash function hj:

 key[hj(ai)] = 1

 end foreach

 end foreach

 return key

Therefore, if ai Block is present in the a CommLedger and is a member of a

CommLedger Network Nodes set A, in the resulting TALA key V all bits attained conforming to

the hashed values of ai are set to 1. Testing for CommLedger (CL) Network Node membership

of an ADAM block ADAM is equivalent to testing that all corresponding bits of V are set:

Procedure CL_Node_MembershipTest (ADAM, key, hash_functions)

returns yes/no

 foreach hash function hj:

 if key[hj(ADAM)]! = 1 return No

 end foreach

 return Yes

The primary features of the TALA key_Gen process are that they grow incrementally

when a new Block is added to the set. Combining two different sets is done by performing a

simple OR operation to the TALA key generation process of the two different sets. The TALA

key allows organizations to use the Public Key for the CommLedger associated miners to resolve

and lock the transaction within the CommLedger. These miners can be either bind with a

transaction-associated fee, set by the organization(s) or the miners can generate an UNDCoin as

they find the resolve of the TALA key using their computer.

36

The math behind the TALA key generation process allows us to observe that the probability

of finding a bit is “0” after inserting “n” keys into a TALA key of size “m” using “k” hash function

remains as:

.

The probability of a false positive is given by

perr is minimized when hash functions.

Due to the uniformity in the computational overhead of each supplementary function and

the reduction in the incremental advantage of each additional hash function after a certain

threshold, only a few numbers of hash functions are used, and this forms the basis for generating

a TALA key.

CommLedger Potential Use-Case

 The following is a test use-case, that elaborates the use of CommLedger in an industrial

setting.

Figure 4. Three business entities (Restaurants, Big Data as a Service providers, RnD Firm).

m

knkn

e
m

p
−

−







−= 1

1
10

()
k

m

kn
k

kn

k

err e
m

pp













−






















−−=−=

−

1
1

111 0

2ln
n

m
k =

37

As depicted in the Figure 4, there are three diverse sets of organizations using the CommLedger

PBL (Permissioned Blockchain Ledger). Next Figure 5 illustrates the use of SmartContract

between entities. As it is a known fact that Blockchain is immutable, our depicted restaurants are

to store their everyday transactions using CommLedger and the ADAM block using TALA keys

to store their assets in the Big Data as a Service (BDaaS) provisioning organizational storage

clusters.

Figure 5. Use of SmartContract.

CommLedger permissioned Blockchain utilizes Proof of Permission and permits multi-

chain utilization by other organizations. We can see in Figure 6, that the RnD firm uses a

SmartContract for extracting the stored blocks to conduct Decision Analytics to create RnD

reports to provide their users within this cryptonomy.

38

Figure 6. The extraction of stored Blockchain for Decision Analytics research.

In the following Figure 7, smartcontract’s execution process is depicted by the

CommLedger’s associated miners by utilizing the resolution of TALA keys to instantiate ADAM

blocks.

Figure 7. The CommLedger associated miners.

39

The generation of UNDCoin is presented in Figure 8, this is used by the organizations as

transaction validation payment for the miners.

Figure 8. Creation of UNDC (UNDCoin) by the resolution of TALA key by miners

Figure 9. A complete CommLedger Network utilization in a nutshell.

The unique differentiator of CommLedger over available Hyperledger and associated

fabric is the use of Proof of Permission protocol for a consensus establishment using

Decentralized Miners for the Distributed Ledger Technology users using TALA key generation

and an ADAM block.

44

Figure 11. Ethereum fake node for test net.

❖ This is a test network presented for a visual understanding of a base Ethereum fake node

with a GUI display for standard Ethereum transactions.

❖ Ganache starts a new Ethereum node in memory. It has the network identifier 5777as

shown in the yellow lined box.

❖ This fake Ethereum node has:

o 10 accounts with 100.00 ETH as shown in the balance in the blue lined box.

o The current block is zero (0) as seen in the picture in the green circle.

CommLedger utilizes a cryptocurrency smartcontract of any sort, as the differentiator

from the standard Hyperledger instead of using chaincode. The other most important information

that the fake node as shown in Figure 11 shares for development purposes is MENMONIC; it is

the seed, Ganache uses to generate the first account. We establish CommLedger using the given

45

development setup, and CommLedger mimics the behavior of cryptocurrency transactions by

using the later given setup.

➢ Open Windows PowerShell and run:

o > node -v

Figure 12. Object not found.

➢ The same result we will get for > npm -v

➢ Now we download

o https://nodejs.org

▪ 11.0.0 is the latest as of October of 2018

Figure 13. Latest versions of node and NPM.

➢ Now download the Truffle Framework

o https://truffleframework.com

https://nodejs.org/
https://truffleframework.com/

46

Figure 14. Truffle installation process.

Now we will install a program script editor. We are using the opensource editor Atom for

the CommLedger.

➢ https://github.com/atom/atom/releases/tag/v1.23.2

➢ Download AtomSetup-x64.exe

Figure 15. Installed Blockchain script editor for CLTN/CLN.

Because we are using the base cryptocurrency Ethereum for our CommLedger, we will

install the language packages for it using the Atom Package Manager (APM).

o > apm install language-ethereum

Now we install Git for version control of our CommLedger Network programming.

➢ https://git-scm.com/download/win

This is where our CommLedger TestNet (CLTN) is now completed. Next we will start the

CLTN private node using Ethereum as the base Cryptocurrency. The use of CommLedger with a

Crypto is the prime differentiator from Hyperledger.

https://github.com/atom/atom/releases/tag/v1.23.2
https://git-scm.com/download/win

47

CommLedger Test-Net Operational Overview

Now let us look at a running CLTN Ethereum based network. The commands are applied

using Windows PowerShell alongside Atom to view the ADAM block creation as the genesis

block of Ethereum Blockchain for asset transfer between more than one user.

➢ Open Windows Power Shell

o > mkdir -p CLTN/private

o > puppeth

Because we are using Ethereum as the base cryptocurrency for our CLTN to transact

assets to and from a sender-receiver base, we use Geth, the tool we have installed, which

includes “Puppeth” to generate the genesis block. Because we are implementing CommLedger,

we will name our test network for development purpose, as: CommLedger

Figure 16. CommLedger Test Network Initiation.

48

CommLedger Differentiator

As Hyperledger does not work with Proof of Work or Proof of Stake, this is where

CommLedger comes into the picture by using Proof of Work and later by adding Proof of

Permission to transact assets between two organizations. The CLTN can be configured using

Network ID 4224, which is the Kovan faucet. The Kovan network faucets provide Kovan Ether

to assist CommLedger in deploying and testing smartcontracts on the Kovan network. This

allows CommLedger to add the Proof of Permission TALA key that is generated separately by

the CLTN/CLN permitted users to use the faucets for preventing malicious actors from obtaining

large amounts of Ether in case CommLedger users are using Ethereum as the base

cryptocurrency.

Figure 17. CommLedger Successful Initiation.

49

Figure 18. CommLedger Ethereum genesis block created.

➢ Now Press CTRL + C to exit the Windows Power Shell

Each CLTN User is provided a “Proof of Permission Tiered Asynchronous Locking

Algorithm” to generate the (POP-TALA) key. The program is provided in the addendum. The

CLTN User needs to run “POP-TALA.exe” within their organizational domain (e.g., VPN) to

generate the TALA key to add in CommLedger.JSON,

Figure 19. Proof of Permission TALA key gen process to add in CommLedger.JSON.

50

➢ The given Figure 20 provides a snapshot view of CommLedger.JSON. The complete

JSON file is available in the Addendum.

Figure 20. CommLedger.JSON Snapshot.

➢ Now we open Windows Power Shell and run the following command with POP-TALA

key within the config of CommLedger.JSON

➢ geth --datadir . init .\CommLedger.json

Figure 21. Writing of the custom genesis block with POP-TALA key completed.

51

 This completes the process of starting a permissioned Blockchain using the CLTN used

for transactions between two organizations. The section provides detail of the creation of

organizational users, as well as miners. This is the differentiating point that CommLedger has

associated miners, whereas Hyperledger does not have any associated Miners. This genesis block

contains a POP-TALA key and within CLTN/CLN it is used as an ADAM block.

CommLedger Account Creation Process

 Because we are using the standard Geth command structure with the Proof of Permission

protocol using the Tiered Asynchronous Locking Algorithm we now need to have two accounts

named “Sender” and “Receiver” as well as “Miner” to mine the blocks from the aforementioned

ADAM block at the time of the CommLedger.JSON configuration file.

➢ Open Windows Power Shell:

o > geth –datadir . account new

o Each new account created in this CommLedger will have a private key in

addition to the POP-TALA key that the CLTN user already has as an extra

Blockchain security layer. This private key is also protected by a Passphrase.

o Passphrase: cltn1234

Figure 22. CommLedger new account generation.

➢ We will run this account twice more to create two more accounts.

52

Figure 23. Creation of three CommLedger accounts.

➢ Test network for CommLedger now has three accounts created, as seen in Figure 4.14.

Figure 24. The keystore to obtain CLTN accounts data storage.

➢ Now let’s look at the account index, where account 0 (Zero) will get rewards in terms of

reward permitted in the allocation section of CommLedger.JSON

o > geth – datadir . account list

Figure 25. Private CommLedger Test-Network with accounts index list

53

CommLedger Network Initiation (Test Start)

 We have successfully completed all related processes of a CLTN environment. Now we

will write a script using our opensource text editor Atom to get the CLTN started.

➢ Open Windows Power Shell

o > atom cltnstart.cmd

➢ The entire structure of the following commands should be in one straight line, otherwise

all the next lines will be ignored by the CommLedger Test-Network

o geth --networkid 4224 --mine --minerthreads 1 --datadir "./" --nodiscover --rpc --

rpcport "8545" --port "30303" --rpccorsdomain "*" --nat "any" --rpcapi

eth,web3,personal,net --unlock 0 --password ./password.sec

o Now create a new file using the Atom menu and name it “password.sec”, where

we have to enter the passphrase we set for our Miner Node: cltn1234

o Save this file and open Windows PowerShell, type “ls” for the list of files.

Figure 26. The CLTN Tool Box.

Now let’s start our CLTN to generate the blocks for Blockchain. At this step the

CLTNTest Network needs to be restarted and our miner starts mining blocks for any potential

54

Blockchain Transactions that the CLTN users can do. Now we look at the process of attaching

the Java Script console to our CommLedger Blockchain. These processes are beyond the scope

of this research and are only provided here for reviewers’ future test needs.

Figure 27. Successful deployment of CLTN.

➢ Open a new Windows PowerShell by right clicking on the PowerShell icon.

o > geth attach ipc:\\.\pipe\geth.ipc

55

o Make sure no other nodes, except CLTN, are running on this device, as this is for

development deployment purposes only.

o > eth.accounts

o > eth.coinbase

o > eth.getBalance(eth.coinbase)

o > eth.getBalance(eth.accounts[1])

Figure 28. CommLedger accounts health check.

o > web3.fromWei(eth.getBalance(eth.coinbase), “ether”)

Now let us look into opening the accounts of CLTN Users, so they can transact. We will

open the accounts for 300 seconds (5 minutes) using the following commands.

o > personal.unlockAccount(eth.accounts[1], “cltn1234”, 300)

We can also use the Java Script console to open the account, by typing the following

command and answering the Passphrase in the Windows PowerShell.

o >personal.unlockAccount(eth.accounts[2])

o Now enter the passphrase we set as: cltn1234

56

o The default duration to open the account using the Java Script console will be 10

minutes.

Figure 29. CommLedger Test Network successful transfer of tokens.

As shown in Figure 4.20, we can see that 20 Ethers have successfully been transferred from

the Coinbase using CLTN cryptocurrency, which we have coined the term UNDCoin (UN-

Digitization Coin) from the Coinbase where the blocks are being mined and Ether is submitted to

the Coinbase account to be used when needed for a Blockchain transaction.

Figure 30. Sealing the Block process depiction.

In this figure, we can see a submitted transaction and a successfully sealed block in the

Ledger. Because we performed two transactions, the next figure shows the balances in each

account.

57

Figure 31. Shows the account balances of each CLTN user.

Summary

This chapter detailed the creation of an ADAM block within a CLTN to start the mining

process to create CommLedger’s own token or in other words, the cryptocurrency to be

transferred back and forth within a CLTN/CLN. We initialized three accounts to conduct the

Blockchain transactions. We started the CLTN and later attached the Geth console. We also

checked the list of accounts, conducted a transaction of sending and received the cryptocurrency

between CLTN users, by later confirming the successfully sealed blocks using the CLTN miner

node. This cannot be achieved in Hyperledger as it does not allow the use of any

Cryptocurrency; however, in the business world most contracts include both a transfer of assets

(goods, ownership, rent, etc.) and the associated monitory transfers for payments. CommLedger

provides total control to individuals and businesses to manage their transactions within CLTN to

create a Proof of Concept and later to deploy it in CLN for their everyday use.

58

CHAPTER V

CONCLUSION AND FUTURE WORK

As described in this dissertation, though there are advantages in using Blockchain and

Distributed Ledger Technology (DLT) based systems, there are yet many realistic problems

which must be solved such as organizational transactional structures to align according to key-

value pair structures and transaction transitioning methodologies for both within and without the

organization enterprise system architectures. This type of transactional transitions with several

Blockchains needs a faster cryptic key generation, as data blocks are rapidly moving between

sender and receiving entities. This research sheds light on a few of the issues and the proposed

CommLedger as a solution dealing with DLT oriented business solutions.

Conclusion

CommLedger a permissioned Blockchain distributed ledger technology has been

proposed in this doctoral dissertation. The proposition is a combination of several techniques for

the potential use of CommLedger that, incorporates smartcontract as a service in an

organizational virtual private cloud. This is a distinctiveness of seamlessly transmitting secured

and immutable data within permissioned Blockchain. Once the proof of concept within the

organization is completed, it is deployed as a CLN. The exponential growth of Blockchain has

provided clear evidence of the establishment of decentralized cryptocurrencies and the

adaptation of permissioned distributed ledger technology This dissertation also presents novel

59

propositions of CLN (CommLedger) using PoP (Proof of Permission), ADAM (Authenticated

Data Acceptance Marker) block and TALA (Tiered Asynchronous Locking Algorithm) key.

CommLedger Differentiating Factors

Table 1 provides a comparison between two famous cryptocurrencies and two DLTs

based on Blockchain. The information sheds light on the aspects these artifacts utilization by

individual users and industrial adaptation.

Table 1. The use of Blockchain in cryptocurrencies and DLT.

Type Bitcoin Ethereum Hyperledger CommLedger

Language

Characteristics

and Network

System

Bitcoin is written in

C++. It is

decentralized and is a

jurisdiction-less

entity. It has a peer-

to-peer network

without the need for

intermediaries.

Ethereum is

written in the

Turing complete

language that

includes several

different

programming

languages (C++,

Ruby, Rust, Go,

Python, Java,

JavaScript,

Solidity).

Hyperledger uses

“Chaincode”. A

Chaincode typically

handles business logic

agreed to by members

of the network, so it

may be considered as a

smart contract. These

Chaincodes are written

in Golang, a

programming language

created by Google. It is

decentralized

CommLedger uses a

“SmartContract” for

its Cryptocurrency

UNDCoin, and a

“Chaincode” can be

incorporated to

conduct business asset

transfer. The

languages used are

C++, JavaScript.

Basic Build BTC Ether (ETC,

ETH)

 UNDCoin

Blockchain

Network

It has peer-to-peer

network without the

need for

intermediaries. It is

anti-bank - rather than

sending funds via

their bank, BTC

holders can send

transfers to one

another.

Ethereum

Blockchain not

only stores the

transaction list

of the

Blockchain but

is also the most

recent state of

the network

Hyperledger is a

software for people to

develop their own

personalized

blockchains tending to

the needs of their

businesses.

Proof of Permission

(PoP), TALA key

generation and the

creation of an ADAM

block are required for

both permissioned and

un-permissioned

Blockchain

adaptations.

Supply Style They have a fixed

supply and are

deflationary.

Inflationary. Permissioned

Blockchain will bind

organizations to have

a Hard Cap.

Un-permissioned

crypto tokens will

have a Hard Cap of 28

Million.

60

Table 1 cont.

Type Bitcoin Ethereum Hyperledger CommLedger

Consensus Proof of Work (PoW)

Reward is given to

Miners

Proof of Work

(PoW) & Proof

of Stake (PoS)

In PoS there is a

Transaction Fee

given to Miners

No Consensus or the

use of Agreement

Protocol using Practical

Byzantine Fault

Tolerance (PBFT)

Proof of Permission

(PoP), Transaction

Fee for Miners

Scaling Bitcoin's blocks contain

the transactions on the

Bitcoin network. The

on-chain transaction

processing capacity of

the Bitcoin network is

limited by the average

block creation time of 10

minutes and the block

size limit. These jointly

constrain the network's

throughput. The

transaction processing

capacity maximum is

estimated between 3.3

and 7 transactions per

second.

15 Transactions

per second.

Hyperledger has a fine-

grained control over

consensus and

restricted access to

transactions which

results in improved

performance scalability

and privacy.

CommLedger allows

the Permissioned

Blockchain to

construct their own

Transaction

Processing time.

UNDCoin however

has a speed of Mining

for the Block

Authentication

throughput between

(in CLTN) 2 to 5 per

second.

Liquidity Bitcoin is one of the

most liquid

cryptocurrencies with

42.51% dominance in

the overall crypto

market.

It is on more

than 400

Crypto-

Exchanges and

is quite liquid.

Hyperledger Fabric

enables real-time

visibility on the

liquidity of Nostro

accounts, easing

reconciliation and

allowing liquidity

savings.

UNDCoin will be

quite liquid.

Implementation Bitcoin Core

considered Bitcoin's

reference

implementation.

Bitcoin Core serves as

a bitcoin node (the set

of which form the

bitcoin network) and

provides a bitcoin

wallet which fully

verifies payments.

The Ethereum

Virtual Machine

(EVM) is the

runtime

environment for

smart contracts

in Ethereum.

Smartcontracts

are high-level

programming

abstractions

compiled down

to an EVM

bytecode.

Hyperledger solves

performance scalability

and privacy issues by

application of

permissioned mode of

operation and fine-

grained access control.

Furtherore, the modular

architecture allows

Hyperledger to be

customized to a

multitude of

applications, analogous

to a toolbox.

CommLedger

Permissioned

Blockchain allows

RBAC, DBAC fine-

grained control. Un-

permissioned

cryptocurrency will

allow complete

autonomous control

for entities using

UNDCoin for their

everyday Crypto-

Exchange trading.

61

Future Work

We will be looking into DLT evidence theory for our future work, which is so far

unheard of within the Blockchain for business community. There have been several advances in

computational performance in terms of both traditional, and parallel programming aspects in last

three decades. the latest advent of Permissioned Blockchain has reintroduced Solidity and Go

programming to bring us the design and development of Blockchain computing simulation tools

using Ganesh and Hyperledger.

This doctoral dissertation illuminates on how an organization can step into the era of

permissioned Blockchain using CommLedger and associated novel methodologies, by having the

right strategy using the provided TALA. Any strategy, which is good in nature and well thought

out, while in the phase of designing, cannot succeed, if poorly executed. It is vital that the

organizational leadership has a sense of how to execute the strategy. The very beginning for any

organization is to figure out collectively, what the strategic permissioned Blockchain challenges

are that they can face, and which challenge is the biggest. In other words, they don’t implement

CommLedger, the permissioned Blockchain strategy in this dissertation, the leaders will need to

determine what factors critically impact the organization, in terms of marketplace

competitiveness.

Inarguably, we must account for uncertainty even in Blockchain streams, when corrupted

data can also stream, or the chains can get broken due to a fork, such as an Ethereum fork

resulting in ETH and ETC as two parallel cryptocurrencies. Traditionally we have seen that

evidence theory has been utilized to measure uncertainty in terms of the uncertain measures of

belief and plausibility based on whatever data we have. It is also evidenced in the emerging

distributed ledger technology that uses computing communities where Cloud computing must

62

provide a flexible and scalable infrastructure for Blockchain miners and users to grow beyond

contemporary borders not only for organizations, but also the users’ everyday experience with a

Blockchain.

The challenges of the present Blocknomics climate can be resolved by Blockchain

designers, developers and decision makers, by aligning business needs in terms of using a crypto

token either by launching a STO (Security Token Offering), or using a digital coin, such as

UNDCoin (UN-Digitization Coin) as a service component to improve service to their peer

organizations and/or consumers.

The decision analytics based on Big Data analytics [30] can also be associated with

CommLedger is secured by using machine learning and evidence theory algorithms that can give

an organization the uniqueness of its ideas, which they can embed in their decision support

systems. Decision analytics recommended for the organizations adopting CommLedger are the

use of machine learning and cloud computing.

63

APPENDIX

POP-TALA keyGen Algorithm

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Security.Cryptography;

using System.Text;

using System.Threading.Tasks;

namespace PoPTala

{

 public class Program

 {

 static void Main(string[] args)

 {

 try

 {

Console.WriteLine("\n*************** Atif Farid Mohammad CommLedger

Welcome to the TALA key Generator App, each CLTN User is to download this

application in their Laptop/Computer to Generate their POP-TALA_Key

***************");

 Console.Write("\nPlease Enter the Input: ");

 var source = Console.ReadLine();

 string hash = string.Empty;

 using (SHA256 sha256Hash = SHA256.Create())

 {

 hash = GetHash(sha256Hash, source);

 Console.WriteLine();

 Console.WriteLine($"The SHA256 hash of \"{source}\" is: {hash}.\n");

 }

 Console.WriteLine("Do you want to save this hash value into a file?");

 Console.Write("Please Enter your decision [Y/N] : ");

 string saveDecision = Console.ReadLine();

 if (saveDecision.ToUpper() == "Y")

 {

Console.WriteLine("\nYou can provide a Location in your device to save the

Hash value into a Text file.");

Console.WriteLine("Sample Location Input - E:\\Folder1 (or)

D:\\Folder1\\Fodler2 ");

64

Console.WriteLine("Note: If there is already a file with name \"HashFile\" in the

location, it will be overwritten.");

 Console.Write("\nPlease Enter the location: ");

 string location = Console.ReadLine(); //"E:\\Videos\\Dance Videos";

if(location == string.Empty || location == "")

 {

 Console.WriteLine("\nLooks Like you haven't provided any location.");

 location = "C:\\";

 }

 string fileName = "HashFile.txt";

 string path = Path.Combine(location, fileName);

 File.WriteAllText(path, hash);

 Console.WriteLine("\nSaving Hash File to {0}", path);

 Console.WriteLine("\n\n*************** Hash File has been saved

***************");

 Console.WriteLine("\n\nPress any key to close this application.");

 Console.ReadKey();

 }

 else if(saveDecision.ToUpper() == "N")

 {

 Console.WriteLine("\n\nPress any key to close this application.");

 Console.ReadKey();

 }

 else

 {

 Console.WriteLine("\n\n\nLooks Like you have selected a different option");

 Console.WriteLine("\nThanks for using the app");

 Console.WriteLine("\n\nPress any key to close this application.");

 Console.ReadKey();

 }

 }

 catch(Exception Ex)

 {

 Console.WriteLine("\n*************** Expection Occurred ***************\n");

 Console.WriteLine("Exception: {0}", Ex.Message);

 Console.WriteLine("\n\nPress any key to close this applcation and try again by

providing correct values");

 Console.ReadKey();

 }

 }

 private static string GetHash(HashAlgorithm hashAlgorithm, string input)

 {

 // Convert the input string to a byte array and compute the hash.

 byte[] data = hashAlgorithm.ComputeHash(Encoding.UTF8.GetBytes(input));

65

 // Create a new Stringbuilder to collect the bytes

 // and create a string.

 var sBuilder = new StringBuilder();

 // Loop through each byte of the hashed data

 // and format each one as a hexadecimal string.

 for (int i = 0; i < data.Length; i++)

 {

 sBuilder.Append(data[i].ToString("x2"));

 }

 // Return the hexadecimal string.

 return sBuilder.ToString();

 }

 }

}

CommLedger JSON

{

 "config": {

 "chainId": 4224,

 "homesteadBlock": 1,

 "eip150Block": 2,

 "eip150Hash":

"0x00",

 "eip155Block": 3,

 "eip158Block": 3,

 "byzantiumBlock": 4,

 "PoPTalaKey": "f8cf6036e75084ec2d17db6d1e83cda18e9f501f3b54394ec74a0f354bfa70e3",

 "ethash": {}

 },

 "nonce": "0x0",

 "timestamp": "0x5bd91c2a",

 "extraData":

"0x00",

 "gasLimit": "0x47b760",

 "difficulty": "0x80000",

 "mixHash":

"0x00",

 "coinbase": "0x00",

 "alloc": {

 "00": {

 "balance": "0x1"

66

 },

 "0000000000000000000000000000000000000001": {

 "balance": "0x1"

 },

 "0000000000000000000000000000000000000002": {

 "balance": "0x1"

 },

 "0000000000000000000000000000000000000003": {

 "balance": "0x1"

 }

67

REFERENCES

[1] Marko Vukolić. Rethinking Permissioned Blockchains. BCC '17 Proceedings of the

ACM Workshop on Blockchain, Cryptocurrencies and Contracts Pages 3-7. 2017

[2] G DeCandia, D Hastorun, M Jampani. Dynamo: Amazon’s highly available key-value

store. dl.acm.org ACM SIGOPS operating, 2007

[3] Androulaki, E., Barger, A., Bortnikov, V. Hyperledger fabric: a distributed operating

system for permissioned blockchains. EuroSys '18 Proceedings of the Thirteenth EuroSys

Conference, April 2018

[4] Kaiwen Zhang, Roman Vitenberg. Deconstructing Blockchains: Concepts, Systems, and

Insights. Proceedings of the 12th ACM International Conference on Distributed and

Event-based Systems. Pages 187-190. New Zealand, June 2018

[5] Karanveer Singh Jhala, Rajvardhan Oak, Mrunmayee Khare, "Smart Collaboration

Mechanism Using Blockchain Technology", Cyber Security and Cloud Computing

(CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable

Cloud (EdgeCom) 2018 5th IEEE International Conference on, pp. 117-121, 2018.

[6] Fabrice Benhamouda, Shai Halevi, Tzipora Halevi. Supporting Private Data on

Hyperledger Fabric with Secure Multiparty Computation. IEEE International Conference

on Cloud Engineering (IC2E). Orlando, FL, USA, May 2018

[7] Linux Foundation Announces Hyperledger [online] Available:

https://www.Hyperledger.org/announcements/2016/02/09/linux-foundations-

Hyperledger-project-announces-30-founding-members-and-code-proposals-to-advance-

Blockchain-technology

[8] Shivam Bajpayi, Pedro Moreno-Sanchez, Donghang Lu, and Sihao Yin. Exploring

Confidentiality Issues in Hyperledger Fabric Business Applications. The Summer

Undergraduate Research Fellowship (SURF) Symposium, Aug 2018

[9] Harish Sukhwani, José M. Martínez, Xiaolin Chang, Kishor S. Trivedi, Andy Rindos.

Performance Modeling of PBFT Consensus Process for Permissioned Blockchain

Network (Hyperledger Fabric). IEEE 36th Symposium on Reliable Distributed Systems

(SRDS). October 2017

[10] Chen.T,Li. X, Wang. Y, Chen. J, Li. Z, Luo. X, Ho. M, Zhang. A. An Adaptive Gas Cost

Mechanism for Ethereum to Defend Against Under-Priced DoS Attacks. Information

Security Practice and Experience. pp 3-24, ISPEC 2017

68

[11] Ojamaa. A, Düüna.K. Assessing the security of Node.js platform. 2012 International

Conference for Internet Technology and Secured Transactions. Dec, 2012

[12] Benhamouda. F, Halevi. S, Halevi.T .Supporting Private Data on Hyperledger Fabric

with Secure Multiparty Computation. 2018 IEEE International Conference on Cloud

Engineering (IC2E), April 2018

[13] A. E. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, "Hawk: The blockchain model

of cryptography and privacy-preserving smart contracts", 2016 IEEE Symposium on

Security and Privacy, pp. 839-858, May 2016

[14] Hyperledger Blockchain vs Ethereum Blockchain [online] Available:

https://etherworld.co/2017/10/01/Hyperledger-Blockchain-vs-Ethereum-Blockchain/

[15] Proof of Work vs Proof of Stake: Basic Mining Guide [online] Available:

https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

[16] What is Practical Byzantine Fault Tolerance? [online] Available:

https://blockonomi.com/practical-byzantine-fault-tolerance/

[17] D. Vujičić, D. Jagodić, & S. Ranđić, "Blockchain technology, bitcoin, and Ethereum: A

brief overview," 2018 17th International Symposium INFOTEH-JAHORINA

(INFOTEH), East Sarajevo, pp. 1-6, 2018.

[18] H. Halpin, & M. Piekarska. Introduction to Security and Privacy on the Blockchain. Euro

S&P 2017 - 2nd IEEE European Symposium on Security and Privacy, Workshops, Apr

2017, Paris, France. IEEE, Security and Privacy Workshops (EuroS&PW), 2017 IEEE

European Symposium, pp.1-3, 2017.

[19] S. Singh & N. Singh, "Blockchain: Future of financial and cyber security," 2016 2nd

International Conference on Contemporary Computing and Informatics (IC3I), Noida, pp.

463-467, 2016.

[20] M. Bartoletti,.S. Lande, L. Pompianu, & A. Bracciali. A general framework for

Blockchain analytics. SERIAL '17 Proceedings of the 1st Workshop on Scalable and

Resilient Infrastructures for Distributed Ledgers. Article No. 7, 2017.

[21] L. Bahack, Theoretical Bitcoin Attacks with less than Half of the Computational Power.

IACR Cryptology ePrint Archive, 868. 2013.

[22] Y-A. de Montjoye, E. Shmueli, S. S. Wang, & A. S. Pentland, "openpds: Protecting the

privacy of metadata through safeanswers", PloS one, vol. 9, no. 7, pp. e98790, 2014.

[23] Atif Farid Mohammad. Pre-Blockchain Semi/Un-Structured Data Storage. GSTF Journal

on Computing (JoC), [S.I.}, v. 6, n. 2, p. 6. ISSN 2010-2283, 2018

69

[24] Z. Bao, W. Shi, D. He, & K.R Choo, IoTChain: A Three-Tier Blockchain-based IoT

Security Architecture. CoRR, abs/1806.02008. 2018

[25] M. Mihaylov, I. Rázo-Zapata, & A. Nowé, "NRGcoin - A Blockchain-based Reward

Mechanism for Both Production and Consumption of Renewable Energy," in

Transforming Climate Finance and Green Investment with Blockchains, ISBN: 978-

0128144473, Elsevier, 2018.

[26] Atif Farid Mohammad, Emanuel S Grant. Cloud Computing, SaaS, and SOA 3.0: A New

Frontier. Cloud Computing and Virtualization 2010 International Conference, Singapore

May 2010

[27] Atif Mohammad, Emanuel Grant. Use of SOA 3.0 in Private Cloud Security Gateway

Service Design: In the Era of Big Data. Proceedings of International Conference on

Computer Games, Multimedia & Allied Technology (CGAT). 2014

[28] Sumangali, K., Borra, L., Mishra, A.S. A Comprehensive review on the open source

hackable text editor-ATOM. IOP Conf. Ser.: Mater. Sci. Eng. 263 042061, 2017

[29] E. Ben Hamida, K. L. Brousmiche, H. Levard, & E. Thea. Blockchain for Enterprise:

Overview, Opportunities and Challenges. The Thirteenth International Conference on

Wireless and Mobile Communications (ICWMC 2017), France. 2017.

[30] Hamid Mcheick, Atif Farid Mohammad. The Evident use of Evidence Theory in Big

Data Analytics using Cloud Computing. 2014 IEEE 27th Canadian Conference on

Electrical and Computer Engineering (CCECE). DOI: 10.1109/CCECE.2014.6901158

