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ABSTRACT 
 
 

Taxonomic studies of asteroids have been ongoing for more than fifty years without a 

clear understanding of the class parameters. The current method of Principal Component 

Analysis is computationally expensive and leaves ambiguous results. In this study, I selected 

the machine learning algorithm, k-Nearest Neighbor in combination with the current Bus-

DeMeo (DeMeo, et al. 2009) taxonomic classification schema to test if machine learning can 

take the place of Principal Component Analysis.  Using a dataset of spectrophotometric color 

indices derived from combined visible and near-infrared (NIR) observations and paired with 

Bus-DeMeo taxonomic class, I created a training dataset for the model to learn.  The results 

support the visible wavelength region as more diagnostic of spectral slope and the NIR 

wavelength region as more diagnostic for surface mineralogy.  The overall accuracy scores 

(>80%) of the machine learning test dataset validate the methodology, but fall short of the 

threshold necessary to replace current methods of classification (>95%). The overall 

robustness of the Bus-DeMeo taxonomy is corroborated through the relatively similar 

grouping structure between the C-, S-, and X-complexes in both wavelength ranges, 

suggesting an overall relationship between slope and qualities present across multiple 

wavelength regimes. This is possibly due to spectral features being closely tied to surface 

mineralogy and spectral reddening of the slope believed to be tied to the effects of space 

weathering. 



 1 

 
 
 

 1   MOTIVATION 
 
 

1.1 Why Asteroids? 
 

There are currently over a half million numbered and catalogued asteroids in our solar 

system. A little over two hundred years ago, there were none.  It was not until 1801 when 

Giuseppe Piazzi was searching for the elusive planet theorized to be between Mars and Jupiter 

(Kepler 1596; Bode 1772), that he discovered (1) Ceres. In the following years (2) Pallas, (3) 

Juno, and (4) Vesta were all discovered around the same orbital distance. The gap between 

Mars and Jupiter had been filled, not by a single large planet, but seemingly by multiple smaller 

bodies. The theory was soon developed that these smaller bodies were the broken pieces of a 

fragmented planet (Olbers 1803). It was such a captivating proposal that it took over a century 

for a new idea to gain traction. In the mid-1900s, Otto Schmidt proposed that asteroids were 

not the result of a catastrophic collision, but rather a failure of a planet to fully aggregate. The 

current understanding of asteroid formation is that they are the original building blocks of our 

solar system and studying them offers us a window back in time to the early days of our planet’s 

formation. 

The theory of solar system formation began when a large cloud of molecular gas and dust 

became massive enough to trigger gravitational collapse.  The majority of the mass in the cloud 

went to the center, where the Sun formed, and the rest flattened into a protoplanetary disk 

(Mizuno 1980; Pollack 1984; Boss 1997, 1998). It was from this disk that the planets and the 

asteroids formed (Chambers & Wetherill, 1998). The early inner solar system was mostly 

rocky material, while the outer solar system was cold enough for volatiles and ices to condense 

on to aggregating bodies. This led to the primary divide in the main asteroid belt, where 
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siliceous S-type asteroids dominant the inner region of the main asteroid belt and carbonaceous 

C-type asteroids dominate the outer areas of the Main Belt (Fisher 1941, Kitamura 1959, Wood 

& Kuiper 1963, Chapman et al. 1971, Chapman et al. 1975).  

The two panels on Figure 1-1 represent the asteroid population of the inner solar system. 

The majority of the asteroids are in the Main Belt, located between Mars and Jupiter, (1.52-

5.20 AU), but there are also significant asteroid populations around the orbit of Jupiter 

(Trojans) and near Earth’s orbit as well (near-Earth asteroids, or NEAs). Compare the area 

around Earth’s orbit in the left panel of Figure 1-1 to that in the right panel of Figure 1-1. The 

NEA population is sparse compared to the Main Belt, but there are thousands of catalogued 

bodies for us to investigate in our cosmic backyard.   

 

 
Figure 1-1: Plots showing the known asteroids and comets, as of April 18, 20191. Green circles 
represent Main Belt asteroids, red circles represent NEAs, blue circles are Jupiter Trojans, and 
comets are shown as blue squares. The Sun is represented by the yellow star in the center. The 
left panel depicts the solar system out to the orbit of Jupiter, with the orbits of the five 
innermost planets shown. The right panel provides a better view of the NEA population, 
extending out to the orbit of Mars. 
 

                                                
1 https://cgi.minorplanetcenter.net/iau/lists/MPLists.html 
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Asteroids are of great scientific value as they allow scientists to study the early solar 

system, but there are more reasons to pay attention to asteroids. The general definition of an 

asteroid is a rocky small solar-system body that orbits the Sun at heliocentric distances ranging 

from interior to Earth’s orbit to Jupiter’s orbit (IAU 2006).  While the general asteroid 

distribution of volatile rich outer-belt asteroids and rocky, thermally processed inner-belt 

asteroids gives us clues as to the conditions of the early solar system, there is still much we do 

not understand about how the orbital properties of asteroids evolved over time. Assigning 

asteroid families is one way to try to determine dynamical origins and migrations of asteroids. 

Asteroid families are believed to be the product of the collisional breakup of a progenitor body 

(Hirayama 1918). This breakup results in many smaller asteroids, which can be traced back to 

their parent body through orbital dynamics. To further assign an asteroid as a member of a 

family, its spectra can be used to genetically link members together (Farinella et al. 1992). A 

homogeneous progenitor would result in compositionally similar family members, but if the 

progenitor was a differentiated body, there should be family members of varying compositions 

and taxonomic classifications, making family classification more complex.  

Of great importance to these dynamical studies is trying to understand and predict how 

asteroids migrate inwards, potentially towards Earth. NEAs are asteroids with perihelion 

distances less than or equal to 1.3 AU and aphelion distances greater or equal to 0.983 AU.  In 

an effort to associate an impact risk factor with orbital properties, NEAs have been subdivided 

into four classes: Atiras are NEAs whose orbits are entirely encompassed within the orbit of 

Earth.  Atens are NEAs with Earth-crossing orbits but a semi-major axis less than Earth’s. 

Apollos are NEAs with Earth-crossing orbits that have semi-major axes greater than Earth’s. 

Finally, Amors are NEAs whose orbits are outside of Earth’s but within 1.3AU of the Sun at 

perihelion.  Asteroids whose Minimum Orbit Intersection Distance with Earth is equal to or 
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less than 0.05 AU are known as Potentially Hazardous Asteroids (PHAs).  The IAU currently 

lists 724 NEAs with non-negligible probabilities of impacting Earth (IAU 2019). One such 

PHA is Bennu, currently being visited by the OSIRIS-REx spacecraft. 

 

 
 

Figure 1-2: Compilation of eight images of asteroid Bennu taken with OSIRIS-REx’s 
PolyCam instrument on 12/02/2018 (NASA/Goddard/University of Arizona). 

 

What makes NEAs a threat to Earth is also what makes them prime for scientific study: 

proximity. Asteroids do not emit significant amounts of their own light in the visible and near-

infrared (NIR), so spectroscopic and photometric studies use the reflected light from the Sun, 

which I will discuss in Section 2. They also tend to be faint and difficult to observe. NEAs are 

closer than the majority of asteroids located in the Main Belt, and therefore relatively brighter. 

They are also the topic of the new field of space resource allocation (Fieber-Beyer & Gaffey 

2019). Asteroids formed from the same protoplanetary disk as Earth, and so the majority have 

a low relative inclination (Lecar & Franklin 1973). In addition to a low inclination, NEAs are 

close to Earth’s orbit, making them the easiest targets to visit for scientific and resource 
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utilization (Yarnoz et al. 2013). Motivating this study is the desire to better understand the 

properties of these asteroids through remote sensing and modern computational tools. 

 
 
1.2 Statement of Purpose 
 

The primary objective of this paper is to further the understanding of the relationship 

between asteroid classifications and observational properties by combining historical tools and 

perspectives with the computational capabilities of the present. To meet this objective, I will 

apply a machine learning algorithm to derived spectrophotometric data and compare to current 

classification efforts through the Bus-DeMeo taxonomy (DeMeo, et al. 2009).  

 
1.3 Outline 
 

Section 2 will examine the relevant background and historical information necessary to 

support the motivation behind this work. Section 2 outlines why scientists strive to classify 

observations into groups, so it only follows that Section 3 explores the techniques commonly 

used to justify these classifications.  Section 4 defines the observations and describes the steps 

followed to implement a machine learning routine using derived spectrophotometry.  Finally, 

Sections 5 and 6 discuss the results, conclusions, and future work that can utilize this method. 
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2 BACKGROUND 
 
 

2.1 Reflectance Spectroscopy 

Reflectance spectroscopy is an effective measurement for the physical characterization of 

asteroids.  Reflectance spectroscopy studies light that has been reflected, refracted, or scattered 

from a material, as a function of wavelength.  For example, a mineral on the surface of an 

asteroid is hit by incident photons. Some photons will be absorbed by the mineral, some will 

be transmitted through the grains, while others will be scattered via reflection and refraction. 

What we are detecting when we observe that asteroid are the scattered photons, leaving an 

absorption band feature in the spectra where the absorbed photons are missing from the 

continuum (Burns 1970).  

The absorbed photons are converted to heat and re-emitted as thermal radiation (McCord 

& Adams 1977), which will affect the flux received from the asteroid. Also, the Sun’s peak 

emission (~0.5 µm) is located within the wavelength region included in this study (0.8-2.5 

µm), so reflectance will be maximized. Additionally, Earth’s atmosphere is relatively 

transparent in the visible band, with telluric corrections applied to the NIR band, making the 

visible-NIR the ideal wavelength region to study asteroid spectroscopy.  

 

2.2 Spectral-Altering Surface Properties 

There are multiple factors contributing to the alteration of an asteroid’s spectrum: chemical 

composition, space weathering, particle size, temperature, and albedo (Burns 1970; Adams 

1974; Adams & McCord 1971; Hiroi et al. 1994; Lebofsky et al. 1986). This is why asteroid 
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surface characterization and diagnostic taxonomic classifications are so difficult using remote 

sensing techniques. We can only speculate the surface mineralogy of asteroids through 

observational spectra alone. 

2.2.1 Mineralogical Composition 

The most diagnostic wavelength region for mineralogy of silicate-based compounds is 

in the NIR spanning the 0.8 – 2.5 µm range (across the 1 and 2 µm absorption bands of olivine 

and pyroxene).  Studies of the spectral properties of minerals in the NIR region have 

concentrated primarily on olivine and pyroxene (Clark 1957; Burns 1970; Adams 1974; King 

& Ridley 1987; Cloutis & Gaffey 1991).  Minerals are characterized by a unique reflectance 

spectrum with different spectral features. The features specific to a certain mineral come from 

the electronic and vibrational transitions within the molecules. At what wavelengths these 

features will appear in the spectrum depends on the chemical species involved and the structure 

of the mineral (Burns 1970).  

Olivine and pyroxene appear to be the two most abundant minerals on the surface of 

asteroids, but the possibility that you can obtain a similar spectrum through the combination 

of various minerals cannot be ignored. The primary diagnostic features of olivine is comprised 

of three overlapping individual bands located in the ~1 µm region, while the primary diagnostic 

features in pyroxenes are two distinct absorption bands located near 0.9 µm and 2 µm (Clark 

1957; Burns 1970). Section 3 will discuss how to use these band features to distinguish the 

mineralogical subtypes of the S-class asteroids. To that end, Gaffey et al. (1993) developed a 

classification scheme based on the ratios of olivine to pyroxene in the spectra. An advantage 

of exploring mineralogical sub-types is that the effects of space weathering (see section 2.2.2) 

are virtually nonexistent, making the classification system sensitive to only composition 

(Gaffey et al. 2010). Figure 2-1 depicts the seven mineralogical subtypes along the olivine-



 8 

orthopyroxene mixing line from olivine-dominated at S(I)-type to pyroxene-dominated at 

S(VII)-type.

 

Figure 2-1: Plots of the Band I center vs. the Band II/Band I area ratio. (A) General 
representation of the mineralogical zones of the S-type subgroups. (B) The corresponding 
subgroups labelled S(I) – S(VII). Adapted from Figure 1E and 1F of Gaffey et al. 1993. 
 
 
2.2.2 Space Weathering 

An essential step in our comprehension of asteroids requires the understanding of the 

processes resulting in space weathering.  All airless bodies in the solar system are affected by 

space weathering, including asteroids.  Effects of space weathering are induced through solar 

ion irradiation, including solar wind, solar flares, and coronal mass ejections, galactic cosmic-

ray ion irradiation, and micrometeoroid bombardment (Clark & Johnson 1996; Moroz et al. 

1996; Hapke, 2001; Sasaki et al. 2001).  Figure 2-2 in displays these processes and the resulting 

sputtering, displacement, and vaporization of asteroidal surface particles, which we observe as 

space weathering effects. 

Space weathering was first predicted to occur on the lunar surface (Gold, 1955), and 

return samples from the Apollo program confirmed that space weathering of the lunar regolith 

caused its spectra to exhibit weaker features and a redder continuum (Adams & McCord 1971; 

Pieters et al. 2000; Noble et al. 2001; Taylor et al. 2001). Extrapolating this theory to asteroids, 

A B 
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it becomes apparent that space weathering may alter the appearance of remote sensing 

observations and can explain the missing link between ordinary chondrite meteorites and their 

S-type asteroid parent bodies, which plagued planetary scientists for decades (Bell et al. 1989). 

 

 
 

Figure 2-2: Depiction of the general space weathering processes occurring on asteroidal 
surfaces. Adapted from Figure 1 of Pieters & Noble 2016. 

 

Irradiation from solar wind or galactic cosmic rays can alter the surface grains through 

high-energy interactions that result in sputtering or chemical alteration (Keller & McKay 

1997). Solar wind particles and galactic cosmic rays both primarily consist of hydrogen ions. 

The flux of solar wind impacts is much higher than the galactic cosmic ray flux, but the galactic 

cosmic rays are much more energetic and so cannot be discounted (Brunetto et al., 2015). 

Brunetto and Strazzulla (2005) describes an experiment where samples of silicate-rich rock 

were irradiated with various ions (H+, He+, Ar+, Ar2+) at energies ranging from 60 to 400 keV, 
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to simulate space weathering on asteroids.  The reflectance spectra were both reddened and 

darkened in the 0.25 – 2.7 μm range, but Brunetto and Strazzulla believe that while ion 

irradiation may dominate in the inner solar system, micrometeoroid bombardment could be the 

main contributor to space weathering in the asteroid belt. 

 
2.2.3 Particle Size 

The particle size distribution of the surface regolith of asteroids can also impact its 

reflectance spectrum.  Figure 2-3 compares the reflectance spectra between Vesta and a 

Howardite EET87503 of different grain sizes, ranging from less than 25 µm to 125 µm (Hiroi 

et al. 1994). 

 
Figure 2-3: Vesta’s normalized reflectance spectra compared to a Howardite EET85703  
of varying particle size across the visible and NIR. Figure 2 from Hiroi et al. 1994. 
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We can see that fine particles fit the spectrum of Vesta well, indicating that the surface of Vesta 

is covered with a fine regolith. Also of note is how the spectrum changes as the grain size 

increases. The overall slope becomes bluer and the absorption band depths increase.   Grain 

size does not affect the NIR as much as the mid-IR because the mid-IR region is dominated by 

thermal emission, which is more strongly affected by changes in surface grain structure 

(Hargrove, 2009). The Dawn spacecraft gave us a close-up view of Vesta and its regolith 

(Russell et al. 2012, 2013).  Material excavated from large craters on Vesta indicates that the 

regolith is more than 1-kilometer-thick in some places (Denevi et al. 2016), supporting the 

hypothesis of a thick, fluffy layer of regolith fines.  

 

2.2.4 Temperature and Albedo 

Surface temperatures of asteroids can vary wildly depending on heliocentric distance. As 

noted in Section 1, asteroids are defined as small bodies from within Earth’s orbit to Jupiter’s 

orbit. This means the surface temperature of airless bodies at these semi-major axes ranges 

from about 120 K for the Trojans to over 300 K for near-Earth asteroids (Hinrichs et al., 1999).  

The surface temperature of asteroids is also linked to albedo (Lebofsky et al. 1986): 

                                                          𝑇	 = 	 $ (&'()*
h+,-./0

1                                                      (2-1) 

where T is the equilibrium surface temperature, A is the bolometric Bond albedo, L is the 

luminosity of the Sun, h is the “beaming parameter" describing rotational and thermal inertia 

properties, e is the emissivity of the asteroid in the infrared, and r is the asteroid’s heliocentric 

distance.  
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Temperature can affect the spectra of asteroids because the depth and width of absorption 

bands of olivine and pyroxene can change at different temperatures (Roush, 1984; Singer & 

Roush, 1985; Burbine et al. 2009), and therefore, to a lesser degree, with different albedos. 

Changes in the shape of these absorption features can affect the mineralogical interpretation of 

the asteroid spectra (Lucey et al., 1998; Moroz et al., 2000). Work done by Burbine et al. 

(2009), Reddy et al. (2012), Sanchez et al. (2012) and Sanchez et al. (2014) have developed 

correction factors for temperature changes, as well as for effects introduced by changes in 

phase angle, for meteorite analogs of the V-type, S(IV)-type, and A-type asteroids, but more 

work is needed on meteorite analogs with dominant mineralogies other than olivine or 

pyroxene. 

 

2.3 Taxonomy 

Asteroid taxonomy is a means by which to identify statistically significant similarities (or 

differences) amongst a collection of asteroid spectra. It should be noted that taxonomy is not 

diagnostic of surface mineralogy of asteroids. Asteroid classes are based on observational 

spectral information only. While it is likely that asteroids of different spectral classes will be 

found to be compositionally different, the assumption that members of the same taxonomic 

group will be found to be similar is not valid. Over the last five decades, more than ten asteroid 

taxonomies have been suggested (Chapman, Morrison & Zellner 1975; Bowell et al. 1978; 

Gradie & Tedesco 1982; Tholen 1984; Barucci et al. 1987; Tedesco et al. 1989; Gaffey et al. 

1993; Howell et al. 1994; Birlan et al. 1996; Bus & Binzel 2002ab; DeMeo 2009), focusing on 

spectral properties such as color, albedo, absorption bands, and slope in UV, visible and, later, 

NIR regions to classify asteroids. Each successive taxonomy can be seen as a progression from 
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previous efforts, and as higher-resolution spectroscopic data becomes available, this effort 

continues (Usui et al. 2019). 

 
2.3.1 Early Classifications 

The first asteroid taxonomy was comprised of only two classes, C and S, with unusual 

spectra being categorized under U (Chapman, Morrison, and Zellner 1975). The link between 

the classifications and the S-class’s absorption features were similar to olivine and pyroxene, 

and the C-class’s relatively flat, featureless spectra were similar to that of the carbonaceous 

chondrites. Chapman, Morrison, and Zellner (1975) stated that the classes were not based on 

inferred surface compositions, but rather on the observed spectral features of the U-B and B-

V colors. 

David Tholen created a commonly used taxonomy based on color and albedo (Tholen, 

1984).  Tholen generated 14 classes, the most abundant of which were the C-class asteroids 

and the S-class asteroids.  Other classes included the A, B, D, F, G, and T based on spectral 

features, and the additional E, M, and P classes that were featureless (Tholen, 1984).  The 

remaining three classes: Q, R, and V were created each for a specific asteroid that could not be 

classified into one of the other eleven. Tholen’s (and subsequently Bus’s and Bus-DeMeo’s) 

taxonomy is based on principal components of their spectra, which groups the asteroids with 

similar spectral features, not composition. Tholen’s taxonomy was not challenged until the 

arrival of charge-coupled devices (CCDs) and the Small Main-Belt Asteroid Spectroscopic 

Surveys, SMASS (Xu et al. 1995; Xu et al. 1996) and SMASSII (Bus & Binzel 2002a; Bus & 

Binzel 2003). These surveys resulted in a visible spectra database three times the size of that 

used by Tholen. 

The Bus taxonomy (Bus & Binzel 2002ab) was the first major asteroid taxonomic 

overhaul since Gaffey et al. (1993) introduced the concept of using a mineralogical 
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classification scheme. Unfortunately for Bus and Binzel, given the constraint on wavelength 

region from 0.44 – 0.92  µm, they were unable to probe any of the NIR absorption features. 

They used a Principal Component Analysis to try and maintain consistency with Tholen. Their 

first principal component was a linear fit to the overall slope and the second principal 

component was intended to be sensitive to the presence of a 1 µm olivine or pyroxene feature, 

but it is unclear if there is any compositional diagnostics in their classification or if it is 

primarily due to space weathering. Figure 2-4 shows the boundary regions for the three largest 

complexes, where slope represents the first principal component. 

 

Figure 2-4: Principal Component Analysis plot showing the boundaries for the three main  
Bus taxonomic complexes. Figure 1 from Bus & Binzel 2002a. 

 

2.3.2 Bus-DeMeo Taxonomy 
 
The Bus-DeMeo (DeMeo et al., 2009) taxonomy expands on the Bus taxonomy by 

using 371 reflectance spectra in the NIR. The same general techniques were used, but the slope 

was removed from the spectra prior to the Principal Component Analysis in an attempt to 
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diagnostically extract information from the spectral features. Section 3 will discuss Principal 

Component Analysis in more detail. Figure 2-5 shows examples of the average spectrum of 

each of the 24 taxonomic classes, highlighting the sub-classes of the three main complexes, 

and Table 2-1 lists the classes and sub-classes with a short description on each. In this paper, I 

have assigned Bus-DeMeo classifications to the observations in my analysis and utilize them 

as the known outcomes for training and testing the machine learning algorithm. 

 

 
Figure 2-5: Average visible and NIR spectra of each of the 24 Bus-DeMeo taxonomic  
classes. Adapted from Figure 15 of DeMeo et al. 2009. 
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Class Description 
A Deep and extremely broad absorption band with a minimum near 1 µm, may or may not 

have shallow 2-µm absorption band; very highly sloped 
B Linear, negatively sloping often with a slight round bump around 0.6 µm and/or a slightly 

concave up curvature in the 1- to 2-µm region. 
C Linear, neutral visible slope often a slight rough bump around 0.6 µm and low but positive 

slope after 1.3. May exhibit slight feature longward of 1 µm. 
Cb Linear with a small positive slope that begins around 1.1 µm. 
Cg Small positive slope that begins around 1.3 µm and pronounced UV dropoff. 
Cgh Small positive slope that begins around 1 µm and pronounced UV dropoff similar to Cg 

also includes a broad, shallow absorption band centered near 0.7 µm similar to Ch. 
Ch Small positive slope that begins around 1.1 µm and slightly pronounced UV dropoff also 

includes a broad, shallow absorption band centered near 0.7 µm. 
D Linear with very steep slope, some show slight curvature or gentle kink around 1.5 µm. 
K Wide absorption band centered just longward of 1 µm, the left maximum and the minimum 

are sharply pointed and the walls of the absorption are linear with very little curvature. 
L Steep slope in visible region leveling out abruptly around 0.7 µm. There is often a gentle 

concave down curvature in the infrared with a maximum around 1.5 µm. There may or 
may not be a 2-µm absorption feature. 

O Very rounded and deep, “bowl” shape absorption feature at 1 µm as well as a significant 
absorption feature at 2 µm. 

Q Distinct 1-µm absorption feature with evidence of another feature near 1.3 µm; a 2-µm 
feature exists with varying depths between objects. 

R Deep 1- and 2-µm features; the 1-µm feature is much narrower than a Q-type, but slightly 
broader than a V-type. 

S Moderate 1- and 2-µm features. The 2-µm feature may vary in depth between objects. 
Sa Has a deep and extremely broad absorption band at 1 µm; has similar features to A-types 

but is less red. 
Sq Has a wide 1-µm absorption band with evidence of a feature near 1.3 µm like the Q-type, 

except the 1-µm feature is more shallow for the Sq. 
Sr Has a fairly narrow 1-µm feature similar to but more shallow than an R-type as well as a 2-

µm feature. 
Sv Has a very narrow 1-µm absorption band similar to but more shallow than a V-type as well 

as a 2-µm feature. 
T Linear with moderate to high slope and often gently concaving down. 
V Very strong and very narrow 1-µm absorption and as well as a strong 2-µm absorption 

feature. 
X Linear with medium to high slope. 
Xc Low to medium slope and slightly curved and concave downward. 
Xe Low to medium slope similar to either Xc- or Xk-type, but with an absorption band feature 

shortward of 0.55 µm. 
Xk Slightly curved and concave downward similar to Xc-type but with a faint feature between 

0.8 to 1 µm. 
 
Table 2-1: Descriptions of the spectral classes and sub-classes in the Bus-DeMeo taxonomy. 

Adapted from Table 5 of DeMeo et al. 2009. 



 17 

 
 
 

3 SPECTRAL ANALYSIS TECHNIQUES 

 

3.1 Principal Component Analysis 

Principal Component Analysis is an analytical tool used to reduce the dimensions of a 

dataset in a way that retains most of the information in the original dataset through coordinate 

transformations. The difficulty of classifying asteroids into similar groups is a problem with 

high dimensionality when each wavelength becomes a dimension. Principal Component 

Analysis has been a popular method of determining asteroid taxonomy (Tholen 1984; Bus & 

Binzel 2002b; DeMeo et al. 2009). While the goal of asteroid taxonomy is to group asteroids 

in ways that are meaningful to their properties, Principal Component Analysis does not 

distinguish the asteroid’s compositional information. Instead, the goal of Principal Component 

Analysis is to reduce the number of variables in such a way that retains interpretable 

information through transforming a group of correlated variables into another group of 

uncorrelated variables; the resulting variables are labeled as Principal Components. 

Tholen (1984) was the first to apply Principal Component analysis to asteroid taxonomy. 

He used the transformation equation:  

                                                        PC = E(F – B)                                                  (3-1) 

where PC is the principal component, E is the vector of the covariance matrix of color indices, 

and (F – B) represent the normalized color indices. Tholen reduced the dimensionality to just 

two principal components, PC1 and PC2, correlated to the depths of the 0.3 and 1.1 µm features 

(U-V and V-X colors), respectively, as seen in Figure 3-1.  This figure shows the fourteen 

classes Tholen derived from ~500 asteroid observations using the Eight Color Asteroid Survey  
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Figure 3-1: PCA projection of the 7-dimensional tree cluster structure that Tholen used to 
derive his taxonomy. Figure 8 from Tholen 1984. 

 
 
(ECAS) (Zellner et al. 1985). The axes on Principal Component Analysis plots do not have 

physical meanings, but it is generally understood that the horizontal axis represents the first 

Principal Component. In this plot we can see clear groupings of the S-, C-, X-, and D-types 

that are still seen in taxonomic studies today. 

The Principal Component Analysis method employed by DeMeo et al. (2009) began by 

removing the overall slope of the spectrum prior to further analysis. Bus and Binzel (2002b) 

determined that the slope was the first principle component in their taxonomy. DeMeo et al. 

(2009) tested this and found that the slope accounted for 88.4% of all the variance in the data. 
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DeMeo wanted the Principal Component Analysis to be sensitive to other features. Prior to the 

Principal Component Analysis, DeMeo also utilized a mean centering method, where the 

average value in each wavelength channel was subtracted from the dataset, leaving each 

channel with a mean value of zero. The wavelength channel at 0.55 µm was also removed, as 

that was the value normalized to unity, reducing dimensionality further prior to the analysis. 

DeMeo (2009, Equation 2) transposed the mean-subtracted data set through: 

 𝑃𝐶4 = 	 [𝐸47][𝐷7]	                                                    (3-2) 

where 𝑃𝐶4 is the principal component of index x, Ex is eigenvector of index x, and D is the 

reflectance spectral values of each asteroid. This is fundamentally similar to the method used 

in Tholen (1984). 

 
 
3.2 Band Parameters 

NIR reflectance spectra of S-type asteroids contain two absorption features near 1 and 2 

µm that are diagnostic of mineralogy (Gaffey et al. 1993). Band I (BI) refers to the 1 µm feature 

and Band II (BII) refers to the 2 µm feature. The presence of iron-bearing silicate minerals is 

what causes the BI and BII absorptions (Burns et al. 1972; Adams 1974). In Figure 3-2, the 

spectra of olivine and low-Ca pyroxene (Clark et al. 2007) are shown, normalized and off-set 

so that the combined olivine and pyroxene 1 µm features that make up BI can be seen. The 

tangential lines running over the maximum reflectance are used to determine the band areas 

for the Band Area Ratio (BAR). 

Cloutis et al. (1986) proposed a mineralogical method to probe these absorption bands by 

taking the ratio of the orthopyroxene over the sum of the orthopyroxene and olivine. To 

calculate this, we need to find the ratio of BII to BI. We can see in Figure 3-2 that we would  
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Figure 3-2: Plot of the offset reflectance spectra of olivine and low-Ca pyroxene with BI and 
BII areas shown. Figure 3 from Burbine 2016. 
 
 
expect a maximum to be located ~0.7 µm, a minimum to be located ~1 µm, another maximum 

to be located ~1.3-1.7 µm, and another minimum ~2 µm. A tangential line is then fit from the 

first maximum to the second maximum and from the second maximum to the end of the 

spectra. Caution should be used when approaching the red edge of the spectra. The sensitivity 

at 2.50 µm may not be acceptable and a shorter wavelength cutoff should be considered.  The 

spectrum is divided by the two tangential lines, removing the continuum. Now all the spectral 

information that remains pertains to the absorption features. The area calculated under these 

tangential lines gives the BI area and BII area, respectively. The ratio of BII area to BI area is 

known as the Band Area Ratio (BAR) (Cloutis et al. 1986).  The BAR can be used to calculate 

the ratio of the orthopyroxene over the sum of the orthopyroxene and olivine using the 

Equation 1 from Fornasier et al. (2003): 

                                                       :;<
:;<=:*

= 0.4187	 ×	(𝐵𝐴𝑅 + 0.125)                          (3-3) 

where OPX stands for orthopyroxene and OL is olivine.  
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3.3 Machine Learning 

Machine learning, at its core, is another form of statistical analysis we can apply to asteroid 

classification, with an emphasis on the use of computational power. The benefit of machine 

learning over other statistical methods is that it can predict outcomes of new datasets based on 

its learning algorithm. The drawback is that the model requires training to learn; however, once 

a machine learning algorithm has completed its training, it can be made publicly available for 

others to benefit from this time-consuming training.  

Machine learning algorithms are made up of a development algorithm, a minimization 

function, a model, and a dataset. This concept is best summarized by Mitchell (1997): “A 

computer program is said to learn from experience E with respect to some class of tasks T and 

perform measure P, if its performance at tasks in T, as measured by P, improves with 

experience, E.”  In the case of asteroid classification, the task (T) is classifying, so the machine 

learning algorithm contains a training dataset of previously classified asteroids (experience E), 

and if it has successfully learned, it will accurately predict future classifications (performance 

measure, P).  The application of this concept is described in Section 4. 

The idea of applying a machine learning model to asteroid spectra is not a new one. In the 

early 1990s there were several papers devoted to using low resolution spectroscopy for 

classification purposes (Ninomiya & Sato, 1990; Hepner et al. 1990; Howell et al., 1994; 

Merenyi et al., 1996). Howell et al. (1994) used Artificial Neural Networks to accurately 

classify the Tholen taxonomy (Tholen, 1984) from the 8-color asteroid survey (Zellner et al., 

1985), but recommended changes to Tholen’s S-class representation when he incorporated the 

52-color asteroid survey (Bell et al., 1988) into his supervised training model. This suggested 

for the first time that Artificial Neural Networks may be more a more sensitive classifier than 

Principal Component Analysis; however, most statistical asteroid spectral analyses are still 
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performed with Principal Component Analysis more than two decades later. The application 

of machine learning in this paper stems from the work in Howell et al. (1994)’s original 

approach and Mommert et al. (2016)’s more modern approach to machine learning. 

Mommert et al. (2016) used various machine learning algorithms in an attempt to rapidly 

characterize new asteroid observations being taken with the Wide Field Camera for the United 

Kingdom Infrared Telescope (UKIRT) (WFCAM, Casali et al. 2007), across four bandpasses 

(Z, J, H, K) in the NIR. Mommert et al. (2016) utilized the Python module, scikit-learn 

(Pedregosa et al. 2011), which is the same module I include in my analysis in Section 4.  Figure 

3-3 is a flowchart of the various machine learning algorithms for a given dataset.  There is a 

red box around the k-Nearest Neighbor algorithm, as it is the algorithm I implemented in this 

analysis.  Classification machine learning algorithms take advantage of the binary nature of 

the output and employ supervised learning through the use of known training dataset outputs. 

The other commonly used method of assigning asteroid classifications, Principal Component 

Analysis, is located within dimensionality reduction subdivision of the machine learning 

flowchart. Principal Component Analysis reduces the number of dimensions through linear 

feature projection prior to running the machine learning algorithm to avoid the curse of 

dimensionality. Figure 3-3 only recommends using Principal Component Analysis when you 

are trying to explore the data, not make predictions. 

The k-Nearest Neighbor algorithm learns parameter space from the training dataset and 

then applies a minimum distance calculation from the test point to the training dataset to 

determine classification.  Figure 3-4 shows an example of the k-Nearest Neighbor method 

using radial distance. The k-value is the number of neighbors the method will look at when 

determining which classification group to put the test data point in. A higher k-value helps to 

eliminate outliers, but can be detrimental to the algorithm’s ability to classify when using 
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Figure 3-4: Example of k-Nearest Neighbor classification method with regions of k=1 and 
k=5 shown. The training dataset consists of the blue circles, purple squares, and green 
triangles, while the yellow star represents the test data. 

 

using smaller training sets.  In Figure 3-4, the yellow star represents the test data point to be 

classified and the green triangles, blue circles, and purple square represent the training dataset 

already “learned”. If k = 1, the test data point would be classified as a green triangle, as a green 

triangle is the singular nearest training dataset point. If the classifier extended to encompass 

five neighbors, the algorithm would choose the blue circle class, as it has three neighbors in 

the distance region compared to one from the green triangle class and one from the purple 

square class. 

 A classification algorithm can be considered self-consistent if it can correctly predict 

which class the test data points should belong to based only on the information from the 

training dataset.  It is imperative that these test data points have known outcomes, but not be 
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included in the training set. A technique for smaller datasets is sometimes to train the algorithm 

on all available data points and then remove one point to use as a test data point. This 

invalidates the self-consistent approach; independent test datasets should always be utilized. 

In the case of small sample sizes, a system of weights can be used and tests for the k-value that 

maximize accuracy across various test set sample sizes should be implemented. 

 
 
 
 

4 OBSERVATIONS AND DATA ANALYSIS 
 
 

The first step toward applying a machine learning technique to asteroid spectrophotometry 

is to build the training and test datasets that will teach the model.  Larger training and test 

datasets typically result in more robust and accurate models. To that end, I obtained 

spectroscopic observations consisting of 277 observations of 241 asteroids from the Planetary 

Data System2, to form an initial dataset for the analysis. 

 
4.1 Observations 
 
4.1.1 Near-Infrared Spectra 

 
Five NIR datasets were selected from the Planetary Data System, all of which utilized 

the low- to medium-resolution SpeX (Rayner et al. 2003) cross-dispersion spectrograph and 

imager, part of NASA’s 3-meter Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii.  

Datasets using SpeX were chosen for their 0.8 – 2.5 µm wavelength coverage and ability to 

detect spectral features associated with surface composition and mineralogy. 

                                                
2 https://pds.nasa.gov/ 
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The first dataset (Hardersen 2016), observed from 2001-2015, consists of NIR 

reflectance spectra for 68 Main Belt asteroids. The second dataset (Fieber-Beyer 2015), 

observed from 2006-2015, consists of NIR reflectance spectra for 52 Main Belt asteroids. 

Reddy was the principal observer for the remaining three datasets, spanning observations from 

2001-2012. Reddy & Sanchez (2016) consists of NIR reflectance spectra for 90 Main Belt 

asteroids, Reddy (2010) for 40 near-Earth asteroids, and Reddy & Sanchez (2017) for 27 near-

Earth and Mars-crossing asteroids. 

 

4.1.2 Visible Spectra 
 
Most of the spectral features associated with composition are in the NIR part of the 

spectrum, but, as described in Section 2, the visible wavelength range is also crucial to 

classification. I utilized existing visible-wavelength datasets, where available, for the 241 

asteroids in our dataset and removed those without complementary visible and NIR 

observations from the analysis.   

The Planetary Data System contained corresponding visible spectra for 208 of our 

initial observations from a combination of the 24-Color Asteroid Survey (Chapman, Gaffey, 

& McFadden 1993; Chapman & Gaffey 1979; McFadden et al. 1984), SMASS (Xu et al. 1995; 

Xu et al. 1996), the second phase of the Small Main-Belt Asteroid Spectrographic Survey 

(SMASSII) (Bus & Binzel 2002a; Bus & Binzel 2003), and the Small Solar System Objects 

Spectroscopic Survey (S3OS2) (Lazzaro et al. 2004; Lazzaro et al. 2006).  

The visible spectra, at minimum, contain data in the range from 0.49 – 0.92 µm, 

allowing the corresponding visible and NIR observations to be merged over the common 0.8 

– 0.9 µm region and normalized to 0.55 µm. Figure 4-1 gives an example of the spectra for 

this dataset. 
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Figure 4-1: The concatenated visible and NIR spectra of (4) Vesta. The blue represents the  
data and the green is the 1-s error region. The spectrum is normalized at 0.55 µm. 

 

4.1.3 Assigning Bus-DeMeo Classes: c2 Thresholds 
 

I used the online Bus-DeMeo taxonomy tool3 to assign spectral classes to each of the 

remaining 208 observations in my dataset. To ensure a reasonable goodness of fit for each 

spectrum, I implemented a derivation of the c2 test (Bevington & Robinson 1992) to minimize 

the standard deviation of the errors: 

                                                β = 	 &
L
	$∑ ((𝑥O −	𝜇O) − (𝑥 − 	𝜇RRRRRRRR))SL

O                                    (4.1) 

                                                
3 http://smass.mit.edu/busdemeoclass.html 



 28 

where β is the quantity to minimize (the standard deviation of the errors), N is the number of 

variables, 𝑥O and 𝜇O are the values of the asteroid and mean taxonomic class, respectively, at 

each wavelength, 𝑖, and 𝑥 − 	𝜇RRRRRRRR is the mean of the set of errors, 𝑥O −	𝜇O. 

The data are well described when	β à 0, so I set a cutoff threshold of β	 ≤ 0.01, using 

a polynomial curve to smooth the spectra where necessary. Twenty-five observations, across 

the S-, X-, and C-complexes, with β values over the threshold were removed from the final 

dataset. See Table 4-1 for information on the 183 members of the final dataset. 

 

Asteroid Wavelength 
(µm) 

𝛃 Bus-DeMeo 
Classification 

(1) Ceres 0.43-2.54,8 0.0033 Ch 
(2) Pallas 0.43-2.54,8 0.0002 B 

(4) Vesta 0.43-2.504,8 0.0056 V 

(9) Metis 0.33-2.501,8 0.0025 S 
(12) Victoria 0.43-2.54,8 0.0022 S 
(16) Psyche 0.43-2.54,6 0.0036 X 
(20) Massalia 0.43-2.54,8 0.0016 S 
(21) Lutetia 0.43-2.54,6 0.0001 Xe 

(22) Kalliope 0.43-2.54,8 
0.43-2.544,6 

0.0014 
0.0029 

X 
X 

(30) Urania 0.43-2.504,8 0.0005 S 
(37) Fides 0.43-2.504,8 0.0002 S 
(41) Daphne 0.43-2.504,8 0.0004 Ch 
(44) Nysa 0.43-2.504,8 0.0005 T 
(45) Eugenia 0.43-2.504,8 0.0028 C 
(46) Hestia 0.43-2.504,5 0.0085 Cb 
(51) Nemausa 0.43-2.484,8 0.0056 Cgh 

(55) Pandora 0.43-2.504,6 0.0004 T 
(56) Melete 0.43-2.504,8 0.0004 Cg 
(63) Ausonia 0.43-2.504,8 0.0087 Sw 
(64) Angelina 0.43-2.504,8 0.0002 T 
(66) Maja 0.43-2.504,8 0.0003 Ch 

(69) Hesperia 0.43-2.504,6 
0.43-2.504,6 

0.0006 
0.0013 

Xc 
Xk 
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(71) Niobe 0.43-2.504,6 0.0007 Xe 
(77) Frigga 0.43-2.504,6 0.0010 X 
(84) Klio 0.43-2.504,8 0.0002 Ch 
(87) Sylvia 0.43-2.504,8 0.0010 X 

(97) Klotho 0.33-2.441,6 
0.33-2.471,6 

0.0046 
0.0049 

Xc 
Xc 

(101) Helena 0.43-2.54,8  0.0003 S 
(105) Artemis 0.43-2.54,8 0.0002 Cgh 

(110) Lydia 
0.43-2.54,6 
0.43-2.44,6 
0.43-2.54,6 

0.0040 
0.0070 
0.0095 

Xk 
Xk 
Xk 

(113) Amalthea 0.43-2.54,8 0.0059 S 
(121) Hermione 0.43-2.54,8 0.0003 Ch 
(125) Liberatrix 0.43-2.54,6 0.0003 X 

(129) Antigone 0.43-2.54,6 
0.43-2.54,6 

0.0033 
0.0005 

X 
X 

(130) Elektra 0.43-2.54,8 0.0003 Cgh 

(132) Aethra 0.43-2.54,6 
0.43-2.54,6 

0.0087 
0.0082 

A 
A 

(135) Hertha 0.43-2.54,8 
0.43-2.54,6 

0.0005 
0.0006 

Xk 
Xk 

(136) Austria 0.43-2.54,6 0.0022 Xe 
(138) Tolosa 0.48-2.53,8 0.0008 S 
(167) Urda 0.43-2.54,8 0.0010 S 
(170) Maria 0.43-2.54,8 0.0015 S 

(182) Elsa 0.43-2.434,8 0.0013 S 

(184) Dejopeja 0.43-2.54,8 
0.43-2.484,6 

0.0003 
0.0007 

X 
X 

(192) Nausikaa 0.43-2.54,8 0.0036 Sq 
(198) Ampella 0.43-2.54,5 0.0035 Sv 

(201) Penelope 
0.43-2.54,6 
0.43-2.54,6 
0.43-2.54,6 

0.0015 
0.0003 
0.0006 

Xc 
Xc 
X 

(213) Lilaea 0.43-2.54,8 0.0014 C 
(214) Aschera 0.43-2.54,8 0.0071 T 

(216) Kleopatra 0.43-2.54,6 
0.43-2.54,6 

0.0033 
0.0078 

Xe 
Xe 

(224) Oceana 0.49-2.462,6 0.0084 X 
(233) Asterope 0.43-2.54,8 0.0003 Xk 
(243) Ida 0.43-2.54,8 0.0006 S 
(248) Lameia 0.47-2.503,5 0.0018 Xc 
(250) Bettina 0.43-2.474,6 0.0011 X 
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(253) Mathilde 0.43-2.44,8 0.0034 C 
(255) Oppavia 0.49-2.502,8 0.0024 X 
(256) Walpurga 0.49-2.503,8 0.0004 X 
(264) Libussa 0.43-2.504,8 0.0027 S 
(273) Atropos 0.49-2.502,8 0.0008 X 
(283) Emma 0.49-2.502,8 0.0003 C 
(289) Nenetta 0.43-2.504,8 0.0078 A 
(292) Ludovica 0.45-2.503,5 0.0053 S 
(306) Unitas 0.43-2.504,8 0.0027 S 

(308) Polyxo 0.43-2.504,8 0.0006 T 
(317) Roxane 0.43-2.504,8 0.0005 T 
(323) Brucia 0.49-2.502,9 0.0013 S 
(325) Heidelberga 0.33-2.501,6 0.0021 X 
(329) Svea 0.49-2.502,5 0.0002 Cb 
(335) Roberta 0.43-2.504,5 0.0045 B 
(338) Budrosa 0.43-2.504,6 0.0003 Xk 
(347) Pariana 0.33-2.441,6 0.0008 X 
(349) Dembowska 0.43-2.504,8 0.0053 S 
(355) Gabriella 0.43-2.504,5 0.0076 S 
(379) Huenna 0.43-2.504,8 0.0027 C 
(389) Industria 0.43-2.504,8 0.0011 S 
(391) Ingeborg 0.43-2.504,9 0.0027 S 
(403) Cyane 0.43-2.504,8 0.0006 S 
(413) Edburga 0.43-2.484,6 0.0029 X 

(417) Suevia 0.43-2.54,6 
0.43-2.494,6 

0.0082 
0.0045 

X 
X 

(418) Alemannia 0.49-2.502,6 
0.49-2.502,6 

0.0003 
0.0004 

X 
X 

(419) Aurelia 0.49-2.502,8 0.0001 C 

(434) Hungaria 0.43-2.504,8 0.0002 T 

(441) Bathilde 0.43-2.504,6 0.0042 Xe 
(442) Eichsfeldia 0.43-2.504,8 0.0074 Ch 
(446) Aeternitas 0.43-2.504,8 0.0014 A 
(458) Hercynia 0.43-2.504,8 0.0005 S 
(470) Kilia 0.43-2.504,8 0.0023 S 
(472) Roma 0.49-2.502,8 0.0009 S 
(495) Eulalia 0.45-2.503,5 0.0018 B 
(502) Sigune 0.49-2.502,8 0.0094 S 

(504) Cora 0.49-2.502,8 
0.49-2.472,6 

0.0036 
0.0015 

X 
X 
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0.49-2.502,6 0.0005 X 
(516) Amherstia 0.43-2.504,6 0.0005 X 
(556) Phyllis 0.43-2.504,5 0.0023 S 
(558) Carmen 0.49-2.502,6 0.0011 X 
(569) Misa 0.43-2.504,8 0.0007 Ch 
(619) Triberga 0.49-2.502,5 0.0040 Sv 
(660) Crescentia 0.49-2.502,5 0.0093 S 
(663) Gerlinde 0.49-2.502,8 0.0004 C 
(670) Ottegebe 0.43-2.504,8 0.0010 S 
(695) Bella 0.33-2.501,5 0.0046 S 
(704) Interamnia 0.43-2.504,8 0.0010 B 
(714) Ulula 0.33-2.501,5 0.0011 S 
(739) Mandeville 0.43-2.494,6 0.0098 C 
(741) Botolphia 0.43-2.504,8 0.0013 X 
(758) Mancunia 0.33-2.531,6 0.0099 X 
(762) Pulcova 0.49-2.502,8 0.0008 Cg 
(785) Zwetana 0.43-2.484,6 0.0006 Cb 

(787) Moskva 0.47-2.503,5 0.0006 S 

(796) Sarita 0.43-2.504,6 0.0003 X 

(797) Montana 0.43-2.504,5 0.0004 Sv 

(809) Lundia 0.49-2.502,8 0.0075 V 

(857) Glasenappia 0.49-2.502,6 
0.49-2.502,6 

0.0093 
0.0019 

S 
S 

(858) El Djezair 0.33-2.501,8 0.0018 S 

(860) Ursina 0.43-2.504,6 
0.43-2.504,6 

0.0002 
0.0006 

X 
X 

(863) Benkoela 0.43-2.504,8 0.0048 A 

(872) Holda 0.43-2.504,8 

0.43-2.444,6 
0.0003 
0.0003 

X 
X 

(879) Ricarda 0.48-2.503,5 0.0052 Sv 

(897) Lysistrata 0.43-2.504,5 0.0032 S 

(908) Buda 0.43-2.504,5 0.0007 D 

(951) Gaspra 0.43-2.504,8 0.0059 S 

(1018) Arnolda 0.49-2.52,5 0.0056 S 

(1036) Ganymed 0.33-2.51,9 

0.33-2.51,5 
0.0021 
0.0017 

S 
S 

(1086) Nata 0.44-2.54,8 0.0007 Ch 
(1145) Robelmonte 0.45-2.53,8 0.0020 S 
(1166) Sakuntala 0.45-2.53,5 0.0003 S 
(1215) Boyer 0.49-2.52,5 0.0008 S 
(1251) Hedera 0.43-2.54,8 0.0004 X 
(1284) Latvia 0.43-2.54,8 0.0017 T 
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(1329) Eliane 0.43-2.54,8 0.0075 Sq 
(1358) Gaika 0.45-2.53,5 0.0003 Cg 
(1379) Lomonosowa 0.45-2.53,5 0.0005 S 
(1459) Magnya 0.49-2.52,6 0.0051 V 
(1501) Baade 0.43-2.53,5 0.0005 Sv 
(1587) Kahrstedt 0.43-2.54,5 0.0019 Sr 
(1607) Mavis 0.48-2.53,5 0.0089 Sq 
(1620) Geographos 0.33-2.51,7 0.0010 S 
(1626) Sadeya 0.49-2.53,8 0.0012 Sv 
(1717) Arlon 0.33-2.51,8 0.0062 Sq 
(1722) Goffin 0.49-2.53,5 0.0022 S 
(1727) Mette 0.33-2.51,9 0.0038 S 
(1772) Gagarin 0.45-2.53,5 0.0031 S 
(1830) Pogson 0.43-2.464,8 0.0004 S 
(1854) Skvortsov 0.49-2.53,5 0.0019 S 
(1883) Rimito 0.49-2.52,8 0.0005 S 
(1929) Kollaa 0.43-2.54,8 0.0046 V 
(1980) Tezcatilpoca 0.43-2.52,7 0.0091 Sw 

(2011) Veteraniya 0.49-2.53,8 

0.49-2.543,6 
0.0013 
0.0020 

V 
V 

(2014) Vasilevskis 0.47-2.53,8 0.0018 S 
(2035) Stearns 0.43-2.54,9 0.0006 Xk 
(2045) Peking 0.43-2.54,8 0.0009 V 
(2089) Cetacea 0.43-2.54,5 0.0020 Sq 
(3066) McFadden 0.49-2.502,5 0.0004 S 
(3345) Tarkovskij 0.43-2.504,5 0.0059 C 
(3760) Poutanen 0.49-2.503,5 0.0024 S 

(3782) Celle 0.43-2.544,6 
0.43-2.534,6 

0.0059 
0.0015 

V 
V 

(3849) Incidentia 
0.43-2.544,6 
0.43-2.544,6 

0.0019 
0.0024 

V 
V 

(3999) Aristarchus 0.49-2.503,5 0.0061 C 

(4179) Toutatis 0.49-2.453,7 
0.49-2.503,9 

0.0032 
0.0001 

Sq 
S 

(4954) Eric 0.49-2.542,7 0.0018 S 
Table 4-1: List of the asteroids, observations, β values, and initial Bus-DeMeo classifications 
used in this analysis. 1Chapman, Gaffey, & McFadden 1993; Chapman & Gaffey 1979; 
McFadden et al. 1984. 2Lazzaro et al. 2004; Lazzaro et al. 2006. 3Xu et al. 1995; Xu et al. 
1996. 4Bus & Binzel 2002a; Bus & Binzel 2003. 5Fieber-Beyer 2015. 6Hardersen 2016. 
7Reddy 2010. 8Reddy & Sanchez 2016. 9Reddy & Sanchez 2017. 
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4.2 Spectrophotometry 
 

Asteroid photometry, while lower resolution than spectroscopy, can still provide clues 

about the physical properties and surface composition of asteroids despite not being able to 

distinguish individual spectral features. This section details the methodology applied to derive 

spectrophotometric values from spectroscopic observations. 

 

4.2.1 Photometric Band Selection 
 

As described in Section 2.2, the surface properties of asteroids alter their resulting 

reflectance spectra. Photometric filters can be strategically utilized to identify distinct features 

of asteroid classes in the visible and NIR regions.  Figure 4-2 and Figure 4-3 show normalized   

 

 
Figure 4-2: V, R, and I Johnson-Cousins filters overplotted with the averaged asteroid 
reflectance spectra from the Bus-DeMeo taxonomy, normalized at 0.55 µm. Extracted from 
Figure 2 of Erasmus et al. 2018. 
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Figure 4-3: Z, J, H, and K bandpasses overplotted with the averaged asteroid reflectance 
spectra from the Bus-DeMeo taxonomy, normalized at 0.55 µm. Extracted from Figure 1  
of Mommert et al. 2016. 
 

transmission of common filter bandpasses across the visible and NIR wavelength regions, 

respectively. The three main complexes (S, X, and C) from the Bus-DeMeo taxonomy, as well 

as the D and, for the NIR, V endmembers groups have been overplotted with their mean 

spectral reflectance values.  

In Figure 4-2, the differences between the taxonomic classes can be easily seen from 

one bandpass to another.  There is an increase in slope for all types except the C-complex, 

making that a diagnostic choice for the C-complex.  The D-type has a drastic increase in slope, 

while overall slope may not prove very diagnostic for the X- and S-complexes.  To diagnose 

the X- and S-complexes, the more short-term changes due to the spectral features in the S-

complex that are not present in the X-complex can be noted. A major weakness in relying on 

the overall slope of a spectrum in determining taxonomic class is that it can be affected by 

space weathering and particle size. 
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In Figure 4-3, the same methodology can be applied to the NIR region. In this region, 

the Z-band can diagnose the 1 µm olivine and pyroxene features, while the K-band can 

diagnose the 2 µm pyroxene feature.  The J-band can help to diagnose the overall slope as, 

unlike the other three bands, the slope of all the taxonomic classes shown are relatively 

constant. 

 
4.2.2 Vega Magnitude Calculation 
 

A value for the photometric flux must be derived to calculate the color magnitudes of 

the asteroids across the desired bandpasses (Mommert et al. 2016; Equation 1): 

                                                   𝐹X = 	∫ 𝑇Z,X	𝐴X	𝑆X	𝜆	𝑑𝜆                                                   (4.2) 

where 𝐹X is the photometric flux across the wavelength range,	𝜆 , 𝑇Z,Xis the transmittance of 

the bandpass filter across 𝜆, 	𝐴X is the reflectance spectrum of the asteroid across 𝜆, and 𝑆X is 

the spectrum of the Sun4 across 𝜆. Table 4-2 lists the bandpasses in this analysis, along with 

the effective wavelength, central wavelength, and standard filter used to calculate the flux. A 

spline interpolation was performed on the solar and asteroid spectra before convolving the 

filter throughput with the product of the two spectra across the wavelength range of the 

bandpass.  

The resulting flux is utilized to calculate the Vega magnitude (Bessell & Murphy 2012): 

𝑉 ab = 	−2.5 log(𝐹X) + 	𝑍𝑒𝑟𝑜	𝑃𝑜𝑖𝑛𝑡                                     (4.3) 

where 𝑉 ab is the Vega magnitude value, 𝐹X is the photometric flux calculated in Equation 4.2, 

and the Zero Point is a correction factor based on the magnitude of the star, Vega5, being zero 

                                                
4 http://kurucz/harvard.edu/stars/Sun/fsunallp.1000 
 
5 http://kurucz.harvard.edu/stars/vega/vegallpr25.1000 
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in all filters.  To calculate the Zero Point, I used Equation 4.2, substituting the spectrum of 

Vega for 	𝑆X and setting 	𝐴X to unity. The resulting magnitudes are used to calculate the color 

indices in the following section. 

 

Standard Filter 𝜆lZZ (µm) FWHM (µm) Reference 

V 0.551 0.088 Johnson (1966) 

R 0.658 0.138 Cousins (1976) 

I 0.806 0.149 Cousins (1976) 

Z 0.905 0.137 Fukugita et al. (1996) 

J 1.220 0.213 Bessell (2005) 

K 2.190 0.390 Bessell (2005) 

Table 4-2: Bandpass values used in this analysis. 

 
4.2.3 Color Indices 
 

An advantage to using color indices for classification in the visible and NIR is the ability 

to probe the information of both the 1 and 2 µm features and the overall slope of the spectrum. 

In the Bus-DeMeo taxonomy, the slope is removed prior to any analysis (DeMeo et al. 2009), 

despite having diagnostic information about particle size and space weathering (Bus et al. 

2002).  Selecting color indices allows meaningful associations across the spectrum to be made.  

In the visible region, I selected V-R and V-I as my two components. V-R probes short-term 

changes in the slope of the spectrum while V-I represents the change in slope across the visible 

wavelength region.  In the NIR region, the two colors chosen are J-K and Z-J.  J-K determines 

an overall change in slope as well as probing the 2 µm feature and Z-J probes for the 1 µm 
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feature and more abrupt changes in slope.  The final correction made before determining color 

values is to correct for the solar colors, listed in Table 4-3. 

 

Color Index Correction Reference 

V-R 0.352 Ramirez et al. (2012) 

V-I 0.702 Ramirez et al. (2012) 

J-K 0.362 Casagrande et al. (2012) 

Z-J 0.369 Mommert et al. (2016) 

Table 4-3: Solar color correction factors. 

 
4.3 Implementing Machine Learning Method using Python 
 
 
4.3.1 Training and Test Dataset Selection 
 

There are two basic ways to setup a machine learning dataset: either for supervised or 

unsupervised learning.  Supervised learning requires a dataset with many features that the 

algorithm explores in order to learn the dataset’s properties, while unsupervised learning 

utilizes a dataset with a labeled outcome. Classification methods, including the one described 

here, use a supervised learning algorithm. To that end, I now have a dataset of 183 

observations, each containing two sets of photometric colors associated with a known Bus-

DeMeo taxonomic class.  This dataset is divided into a training dataset for the model and an 

independent test dataset. A member of the test dataset is one whose outcome is known but was 

not included in the training set (Howell et al. 1994). Given the relatively small sample size, 37 

(20%) observations were used for the test set and the remaining 146 (80%) observations were 

used for the training set. It is important for machine learning algorithms to learn on a large, 

diverse dataset to improve the accuracy but a representative test dataset is crucial as well. Test 
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dataset sizes were explored from 1-90% and the balance between accuracy and a representative 

sample was determined to be 20% of the total dataset. 

 

4.3.2 k-Nearest Neighbor Algorithm 
 

I selected the k-Nearest Neighbor algorithm due to the classification nature of the 

problem, the discrete nature of the outcomes, and the relatively small dataset. The concept of 

the k-Nearest Neighbor algorithm and the scikit-learn Python package are described in Section 

3.3.  

The value of k was selected by sampling values of k = {1…9} and determining which 

value for k maximized the accuracy of the test dataset.  This occurs when the accuracy of the 

testing dataset surpasses the accuracy of the training dataset. Typically, an odd value for k is 

selected to avoid the small possibility of a tie. Figure 4-4 shows the results of the k-varying 

test. The k-value that maximized accuracy for this dataset is k = 5. 

 
Figure 4-4: Results of a sampling test varying the number of neighbors, k, required to select  
a classification outcome. The testing accuracy surpasses the training accuracy at k=5. 
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A weighted distance metric to the closest point to the test point is used to establish 

classification.  In this analysis, a Minkowski distance function was chosen as it tends to be 

more accurate for smaller, discrete datasets. 

                                           𝐷	(𝑋, 𝑌) = 	 (∑ |𝑥O −	𝑦O|qr
Os& )&/q                                  (4.4) 

 

where D is the distance of between points 𝑥O and 𝑦O in sets X and Y with order p. In this 

analysis, I found the best accuracy was obtained with a value of p = 2, resulting in the 

Minkowski distance function behaving as a Euclidean distance function.  Points are weighted 

according to the error on each color. 

 

4.3.3 Interpreting Metrics 

 
The simplest measure of the performance, and therefore error, of the machine 

learning algorithm is the accuracy of the model. Accuracy is the fraction of the test dataset 

for which the model produced the correct output. This is a very straightforward metric, but 

the power of measuring accuracy is that it encompasses all smaller, internal quantities. For 

example, when interpreting the k-Nearest Neighbor algorithm, should the penalty be higher 

for frequent medium-sized mistakes, such as being placed at the boundary of a neighboring 

classification, or for rare large mistakes, such as classifying one member into a completely 

unrelated outcome? Accuracy measurements adequately portray the effectiveness of a 

supervised, discrete, classification algorithm. 

There are other metrics to determine the successfulness of the machine learning 

algorithm. Precision, recall, and the F1 score are also used in statistical analyses when there is 
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binary classification.  Precision refers to the proportion of the positive classifications that was 

correct: 

                                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 7/wl	;xyOzO{ly
7/wl	;xyOzO{ly=|a}yl	;xyOzO{ly

                     (4.5) 
 

 
Recall is the metric of how many true positives were correctly identified: 
 
                                         𝑅𝑒𝑐𝑎𝑙𝑙	 = 	 7/wl	;xyOzO{ly

7/wl	;xyOzO{ly=|a}yl	LlbazO{ly
                  (4.6) 

 
A machine learning algorithm will return a high precision if there are considerably 

more significant results than insignificant ones. Recall is directly related to the amount of 

significant results being returned. The final metric utilized in this work is the F1 score.  The 

F1 score is a way to combine (and weight) the precision and the recall to compute an 

accuracy score based on the harmonic mean of the two: 

 

                                          𝐹& = (1 +	ΦS) 	×	 ;/l�OyOxr	×	�l�a}}
(�0	×	;/l�OyOxr)=�l�a}}

                                   (4.7) 
 

 
where the Φ-parameter determines the weight of precision in the final 𝐹& score. In this 

analysis, the Φ-parameter is unity. 
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5 RESULTS AND DISCUSSION 

 

This chapter contains a discussion of the results of the machine learning classification 

algorithm.  The final dataset contained 27 C-complex asteroids, 70 S-complex asteroids, 57 X-

complex asteroids, 11 V-type asteroids, 5 A-type asteroids, 8 T-type asteroids, 4 B-type 

asteroids, and 1 D-type asteroid.  When asteroids were assigned to a sub-class of a complex: 

Cb, Cg, Cgh, Ch for C-complex, Sa, Sq, Sqw, Sr, Srw, Sv, Sw for S-complex, and Xc, Xe, Xk 

for X-complex, they were simplified into the larger complex. This could lead to a decrease in 

accuracy but was necessary given the size of the dataset. Note: the single asteroid class (D-

type) was not included in the test dataset, but was included in the training dataset for use in 

future studies.  

 

5.1 Visible Dataset 

Figure 5-1 shows the training dataset for the visible region with the decision boundaries 

determined by the k-Nearest Neighbor algorithm.  There are six distinct boundary regions, 

although the boundary regions are not completely smooth.  Most notably, the T-type boundary 

region is located within the X-type, with other T-type members on the boundary between the 

X- and C-types and X- and S-types. This is indicative that either the T-type asteroids are easily 

misidentified by the Bus-DeMeo taxonomy, or more likely, that the relatively featureless 

spectra are not diagnostic in the visible wavelength region. 
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Figure 5-1: The training dataset using the V-I and V-R features plotted with the resulting 
decision boundaries created by the k-Nearest Neighbors algorithm. For this and following color 
maps, red represents the C-class asteroids, green represents the S-class asteroids, dark blue 
represents the V-type asteroids, light blue represents the A-type asteroids, yellow represents 
the X-class asteroids, silver represents the T-type asteroids, purple represents the B-type 
asteroids, and brown represents the D-type asteroids. 
 

 
 
 There is also a noticeable intrusion of the V-type asteroids into the area of the S-

complex.  This could be due to a misclassification of V-types, or a potential spectral alteration 

effect due to space weathering of surface minerals reddening the slopes. 

 To determine if our machine “learned” successfully, I calculated the metrics described 

in Section 4.3.3; the results are listed in Table 5-1.  The overall accuracy of the test dataset is 

83%. Accuracy scores over 80% are viewed as a successful proof-of-concept, while scores 
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over 95% are viewed as successful for classification.  While a score of 83% implies the method 

is valid, it expects 17% (or ~6 members of our test dataset) to be misclassified. 

 
Metric Average Score 

Precision 0.82 

Recall 0.84 

F1 score 0.82 

Overall Accuracy 0.83 

Table 5-1: Classification report for the visible dataset 

Figure 5-2 shows the results of the test dataset superimposed on the decision boundaries 

determined during the training dataset.  Visually, the test dataset agrees with the decision 

boundaries with ~6 misclassifications near their correct boundaries. The Bus-DeMeo 

taxonomy was performed over the visible and NIR wavelength ranges, but the exclusion of 

slope may be leading to misclassifications in the visible portion of the spectrum. 

There are several small end member class (T, D, B) boundaries within the boundary 

regions of the larger complexes.  This led to the investigation of the S-, C-, and X-classes 

without the smaller end member classes, as seen in Figures 5-3 and 5-4 and Table 5-2.  The 

overall precision increases to 94% when the end members are removed, moving the results 

from just above a proof-of-concept to 1% short of an accurate classification tool. This 

highlights the importance of number of free parameters versus sample size in machine learning. 

A reduction in more than half of the number of parameters with a moderate decrease in the 

sample size led to a substantial increase in accuracy.  However, the exclusion of the end 

members can lead to generalizations and misclassifications of future datasets and such cases 

should be noted appropriately. 
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Figure 5-2: The test dataset using the V-I and V-R features plotted with the decision 
boundaries created by the k-Nearest Neighbors algorithm during the training dataset overlaid. 
 
 
 

 
Figure 5-3: The training dataset using the V-I and V-R features plotted with the resulting 
decision boundaries created by the k-Nearest Neighbors algorithm. Red represents the C-class 
asteroids, green represents the S-class asteroids, and yellow represents the X-class asteroids. 
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Figure 5-4: The test dataset using the V-I and V-R features of the S-, C-, and X-classes plotted 
with the decision boundaries created by the k-Nearest Neighbors algorithm during the training 
dataset overlaid. 
 
 
 
 
 

Metric Average Score 

Precision 0.94 

Recall 0.94 

F1 score 0.94 

Overall Accuracy 0.94 

Table 5-2: Classification report for the visible dataset, using the S-, C-, and X-class asteroids. 
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5.2 NIR Dataset 

Figure 5-5 shows the training dataset for the NIR region with the decision boundaries 

determined by the k-Nearest Neighbor algorithm.  There are seven distinct boundary regions, 

which appear less smooth than in the visible region. The T-types do not have a distinct 

boundary region in the NIR, instead they are in the middle of the X-complex around (0.1, 0.05).  

This is reasonable as the T-type asteroids feature a sharp increase in slope in the visible portion 

of the spectrum, followed by a relative featureless, slightly reddened spectrum in the NIR.  

Therefore, the T-type is diagnostic in the visible portion of the spectrum but not in the NIR. 

The A-types, with their strong olivine feature, and V-types with their distinctive pyroxene 

feature, have very dominant boundary regions. The boundary separation of the A- and V-types 

combined with the complete lack of boundary region for the T-types validates the hypothesis 

that the NIR is more diagnostic of surface mineralogy features. The X-class has a very weak 

boundary region between the S- and C-classes, suggesting again that further investigation into 

the three class regions is necessary. 

Results for the NIR dataset classification report are in Table 5-3.  The overall accuracy of 

the test dataset is 78%, or ~8 members of our test dataset should be expected to be 

misclassified. The visible and NIR reports have similar accuracies, showing that the technique 

and dataset were maximized, and additional increases in accuracy will only come with more 

observations. 

 



 47 

 

Figure 5-5: The training dataset using the Z-J and J-K features plotted with the resulting 
decision boundaries created by the k-Nearest Neighbors algorithm. 
 
 

 
Figure 5-6: The test dataset using the Z-J and J-K features plotted with the decision boundaries 
created by the k-Nearest Neighbors algorithm during the training dataset overlaid. 
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Metric Average Score 

Precision 0.77 

Recall 0.80 

F1 score 0.77 

Overall Accuracy 0.78 

Table 5-3: Classification report for the NIR dataset 

 
 
 The test dataset clusters nicely into the boundary regions in Figure 5-6, except for a 

few data points in the central region. This central clustering of different taxonomic types was 

also seen in the training dataset, so it is not surprising to see in the test dataset. The one A-type 

asteroid in the test set is located within the S-class boundary region, but given the positions of 

the training A- and S-type asteroids, this may not be out of place. The Z-J color is probing the 

1 µm olivine and pyroxene features, so the results of higher Z-J colors for S-complex and A-

type with the highest values for the V-types is expected. The J-K color is probing the 2 µm 

pyroxene feature, and so the relatively vertical structuring of the C-, X-, and S-complexes 

follows this trend. The J-K color variation for the A-types may be due to the shallow 2 µm 

feature, or more likely the abrupt change in spectral slope from very steep to relatively flat.   
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Figure 5-7: The training dataset using the Z-J and J-K features of the S-, C-, and X-classes 
plotted with the resulting decision boundaries created by the k-Nearest Neighbors algorithm. 
 

 

 
Figure 5-8: The test dataset using the Z-J and J-K features plotted with the decision boundaries 
created by the k-Nearest Neighbors algorithm during the training dataset overlaid. 
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Metric Average Score 

Precision 0.92 

Recall 0.91 

F1 score 0.91 

Overall Accuracy 0.91 

Table 5-4: Classification report for the NIR dataset of the S-, C-, and X-classes. 

 
 Examining only the S-, C-, and X-classes improves the overall accuracy from 78% to 

91%, but the boundary region of the X-class is still not well defined. Both the training dataset 

and test dataset for the S-, C-, and X-classes in the NIR (Figures 5-7 and 5-8) show clear 

boundaries between the S- and C-classes, but the X-class shows intrusions of both the S- and 

C- classes. The overall accuracy did improve to satisfy as a proof of concept, which the 

original NIR dataset did not, but it is further removed from use as an accurate classification 

schema than the visible dataset. 
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6 CONCLUSIONS AND FUTURE WORK 

 

The primary goal of this analysis was to increase our understanding of asteroid 

properties through a combination of past perspectives and current analytical techniques. I 

achieved that goal through the implementation of the k-Nearest Neighbor machine learning 

algorithm on a dataset of spectrophotometric color indices derived from combined visible 

and NIR observations and paired with Bus-DeMeo taxonomic classes. The overall accuracy 

scores of the machine learning test dataset validates the methodology, while the results 

support that the visible wavelength region is more diagnostic of spectral slope and the NIR 

wavelength region is more diagnostic for surface mineralogy. However, both the complete 

datasets and reduced S-, C-, and X-complex datasets fall short of the accuracy necessary to 

replace the current method of taxonomic classification with machine learning. The general 

robustness of the Bus-DeMeo taxonomy is corroborated through the relatively similar 

grouping structure between the C-, S-, and X-complexes in both wavelength ranges, 

suggesting an overall relationship between slope and features present across multiple 

wavelength regions. This is possibly due to spectral features being closely tied to surface 

mineralogy and spectral slope alterations believed to be tied to the effects of space 

weathering. 

This project was designed to be a test for the accuracy of the k-Nearest Neighbor 

machine learning algorithm when applied to spectrophotometric datasets.  This technique is 

intended to be applied in the future to build a free, open-source online tool dedicated to 

utilizing machine learning for physical asteroid properties, such as size, albedo, or density as 
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well as applied for additional classification efforts. A focus should be placed on compiling 

and training large datasets of spectroscopic and photometric observations for improving the 

accuracy of these machine learning tools already at our disposal.  By making training sets 

available for the public, the computational cost of statistical analysis could be greatly 

reduced, leading to new ideas and discoveries throughout the field. 
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