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ABSTRACT 

Many reproductive strategies exist all with the same goal to maximize fitness. Because 

reproductive strategies affect fitness directly, there is interest to understand how they are 

utilized within a population. The two main strategies we focus on for this work related to 

Common Eiders (Somateria mollissima) are the utilization of conspecific brood 

parasitism as an alternative tactic beyond simply nesting and their ability to shift timing 

of breeding to align young with the best opportunity for survival. To accomplish studying 

our two reproductive strategies we monitored the Mast and WaWao Common Eider 

colonies located within Wapusk National Park, Manitoba. Our first aim was 

understanding conspecific brood parasitism or brood parasitism, which is the act of 

laying ones eggs (parasitizer) in the nest of another female (host), within the same 

species. Our objectives were to estimate the rate of brood parasitism using microsatellite 

loci, identify if non-random spatial and genetic distributions exist in our colonies, and if 

the relatedness between hosts and parasitizers are more related on average than females 

nesting in the general vicinity. We estimated the overall rate of brood parasitism to be 

22.7% (176 of 775 offspring) with 50.7% (104 of 205 nests) of all nests containing at 

least one parasitic egg. We found a correlation between pairwise distance and relatedness, 

but it varied by year and colony. In addition, we did observe some cases of positive local 

autocorrelation between a focal female and her four nearest neighbors, but we observed 

negative local autocorrelation as well. Therefore, evidence of kin grouping is present, but 
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not strong. The average pairwise relatedness of hosts and parasitizers, in 2016 (0.083), 

did not exceed the smallest spatial scale group’s average pairwise relatedness (0.152). 

However, average pairwise relatedness of host-parasitizer’s, in 2017 (0.308), was higher 

when compared to even the smallest spatial scale of 0-10 meters (-0.003). This indicates 

females potentially shift their preference to parasitize kin annually, which could be 

altered based on other environmental stressors. Our second aim was focused on the 

timing of breeding in Common Eiders, by understanding if weather affects the timing of 

breeding and if the timing of breeding was a predictor of breeding success. Our 

objectives were to identify weather related factors that affect timing of nest initiation and 

examine the effects spatial and temporal variables have on daily survival rate, one of 

which was date of nest initiation. We found Common Eiders date of nest initiation was 

correlated with the last day of snowmelt, but not other weather variables. However, date 

of nest initiation was not a predictor of daily survival rate in Common Eiders, but the day 

within the breeding season and the incubation stage of the female were, which we suggest 

could be consequences of the timing of predator arrival. In addition, using estimates from 

our top model, we found it could be more beneficial to nest later in the season versus 

earlier, in certain years. However, the caveat of only using daily survival rate as an index 

of success was we have no estimate of post-hatch success indices (brood survival or 

recruitment), which may be impacted by timing differently.  
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CHAPTER 1 

 

TIMING AND REPRODUCTIVE STRATEGIES OF THE COMMON EIDER 

(SOMATERIA MOLLISSIMA SENDENTARIA) 

 

Reproductive Strategies in Birds 

Animal behaviors are fascinating because they can come in many forms or 

strategies, all to serve the same purpose of maximizing fitness of the individual. In birds, 

many behaviors are variable within a single species such as, foraging tactics (e.g. Barta et 

al. 2004) or migration patterns (e.g. Ely and Meixell 2016) and selection of one strategy 

versus another will affect fitness. Specifically, behaviors related to reproduction are of 

interest because they have a direct effect on fitness of the individual.  

In birds, timing of reproduction will typically dictate the success of the offspring 

(e.g. Elmberg et al. 2005). In most migratory bird species, the length of the breeding 

season is constrained due a period where resources are available, leading to wide-scale 

synchrony (Renfrew et al. 2013). Failure to nest within the appropriate window will lead 

to offspring mismatching the resources required for their survival (Lehikoinen et al. 

2006).  

Because birds are constrained by time each year relative to breeding, they must 

have some plasticity in their reproductive tactics. Sometimes nesting within the optimal 

time window is unfeasible for reasons such as, poor body condition or lack of nesting 

sites (Devries et al. 2008, Semel and Sherman 2001). If so, utilization of alternative 

reproductive tactics must be considered as a salvage strategy where the female will avoid 
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having no reproductive output for a given year (Lyon and Eadie 2008). Conspecific brood 

parasitism is one reproductive behavior that allows female birds flexibility in how to 

allocate their reproductive output each year. Below we discuss the many strategies 

associated with conspecific brood parasitism as well as the consequences of timing in 

reproduction, both of which are reproductive behaviors with direct fitness consequences. 

 

Conspecific Brood Parasitism as an Evolutionarily Stable Strategy 

Egg-laying species exhibit a wide variety of reproductive strategies and will shift 

strategies throughout their lifetime (Lyon and Eadie 2008). For example, many bird 

species utilize a behavior known as conspecific brood parasitism, hereafter brood 

parasitism. This behavior takes place when one individual (parasitizer) lays an egg(s) in 

the nest of conspecifics (hosts). Brood parasitism allows females to select one of four 

reproductive strategies each breeding season: Parasitize, Nest, Nest and Parasitize, or No 

Breeding (Lyon and Eadie 2008, Sorenson 1991). It is not understood why females 

choose a certain reproductive strategy, but it is hypothesized that age and resource 

availability are large factors (Lank et al. 1989, Tiedemann et al. 2011, Sorenson 1991). 

Brood Parasitism not Parasitic? 

Optimal clutch size is dependent on many factors and will vary given the age and 

condition of the individual (Devries et al. 2008). When the clutch size of an individual is 

below its optimal clutch size, it could become more beneficial to increase the clutch size 

to increase hatching success (Andersson 2017) although biological relevancy is lacking 

for this hypothesis (e.g. Rockwell et al. 1987). 
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If young and old aged birds have average clutch sizes below the optimal clutch 

size for a given species, there is an opportunity to increase their clutch size by allowing 

others to parasitize their nest until a more optimal clutch size is achieved. However, the 

only scenario that this act would appear beneficial is cases where host and parasitizer are 

closely related. Tiedemann et al. (2011) demonstrated this in Common Eiders (Somateria 

mollissima) where young and old females had the greatest proportion of nest parasites. 

Although they attribute this to older females “helping out” their younger relatives, it does 

not explain the large proportion of young females with parasitic eggs.  

Another hypothesized explanation for why females choose one of the four 

reproductive strategies has been attributed to the relationship between females breeding 

in the same area (Waldeck et al. 2007). This hypothesis proposes that females are either 

preferentially parasitizing or avoiding parasitism of relatives based on the benefit of the 

act. Negative effects from brood parasitism are more pronounced in altricial birds where 

offspring hatch, but require their mother to provide additional care through feeding and 

incubation (Yom-Tov 2001). In contrast, precocial birds have offspring that are born 

almost entirely independent of the mother, which has called attention to whether brood 

parasitism places the same level of responsibility on the host female relative to altricial 

birds (Andersson and Eriksson 1982). Therefore, it is plausible that the energetic cost to 

the host is offset by a genetic-relatedness fitness benefit (Andersson and Eriksson 1982, 

Lyon and Eadie 2008, Andersson 2017). Yom-Tov (2001) provided additional evidence 

to this argument by observing brood parasitism more commonly in precocial species 

compared to altricial. Although the metaanalysis provided by Yom-Tov (2001) only 
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focused on species that are observed to have brood parasitism, it highlights an important 

question as to why brood parasitism is found more commonly in precocial species. 

Inclusive fitness models created to describe brood parasitism behavior 

demonstrate how brood parasitism will always cause an inclusive fitness loss towards the 

host (Zink 2000), while other models illustrate certain parameters that would create an 

inclusive fitness gain scenario (Lopez-Sepulcre and Kokko 2002, Andersson 2017). The 

models that demonstrate an inclusive fitness gain required three things: 1) the host and 

parasitizer share some level of relatedness, 2) the parasitic eggs increase the clutch size to 

a more optimal size, therefore increasing hatch success, and 3) there must be strong kin 

recognition to avoid parasitism from non-kin (Lopez-Sepulcre and Kokko 2002, 

Andersson 2017).  

In addition to not fully understanding the mechanisms regulating brood 

parasitisms persistence, the models that quantify the inclusive fitness of hosts and 

parasitizers have not been tested on actual populations of birds engaging in brood 

parasitism. The model values are based on general life history traits of different bird 

species, but until we test these models directly on a population, we will not understand 

how inclusive fitness values of hosts and parasitizers change over time and under varying 

environmental conditions.  

The Role of Kin Recognition 

Kin recognition has become the hypothesized mechanism that allows brood 

parasitism to persist (Andersson 2001, Andersson 2017). Without kin recognition, 

females would choose to parasitize as their reproductive strategy rather than nest. 

However, when Andersson and Eriksson (1982) first proposed that there is the possibility 
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of an inclusive fitness gain (when host and parasitizer are related), they hypothesized that 

the persistence of brood parasitism was due to female philopatry rather than kin 

recognition. They assumed that brood parasitism could persist in species with female 

philopatry because the result would be closely related kin groups breeding near each 

other while also parasitizing each other questioning the importance of kin recognition, for 

brood parasitism (Andersson and Eriksson 1982). 

Two hypothesized mechanisms of kin recognition are visual and olfactory, in 

avian species (Andersson et al. 2015, Rymesova et al. 2017). Andersson et al. (2015) 

used camera monitoring and found interactions between host and parasitizer were 

“tolerant” between related individuals. The findings were attributed to, “learning 

phenotypes during a period of close association” (Andersson et al. 2015). However, it is 

unknown if the selective advantage of learning phenotypes for kin recognition is to reject 

non-kin from parasitizing, help maintain crêches post hatch, or form kin groups at the 

onset of nesting (Andersson et al. 2015). McKinnon et al. (2006) found Common Eiders 

arriving, nesting, and departing in groups shared higher pairwise relatedness than what 

would be expected by random chance. However, the average relatedness was lower 

between females nesting compared to arrival and departure. Kin recognition could drive 

the close association of females during pre and post hatching period, but nest site 

selection could be driven by other factors such as nest site availability, suitability, and 

fidelity.  

Visual recognition of kin is hypothesized to occur through association (Waldeck 

et al. 2007). It is hypothesized visual recognition of kin take place at brood 

amalgamations where many broods are combined and are not kin-based (Öst et al. 2005). 
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This could lead to error in assignment of kin through visual association and a proposed 

idea for why kin recognition is imperfect (Sonsthagen et al. 2010). Additionally, if non-

kin deposit brood parasites, then association between nest mates could also lead to 

imperfect kin discrimination.  

The second form of kin recognition, which has received little attention relative to 

brood parasitism, is olfactory stimulus. Historically, few avian species were thought to 

have any useful form of olfactory senses, but recent work has provided a new perspective 

on a broader range of avian taxa utilizing olfactory senses (Caro et al. 2015, Rymesova et 

al. 2017, Leclaire et al. 2017). Specifically, it is the Major Histocompatability Complex 

(MHC) that is identified as the gene region responsible for birds and other vertebrates to 

recognize kin (Waldman 1988, Zelano and Edwards 2002). Primarily, MHC is under 

selection from immune response to diseases. Therefore, selecting a mate with dissimilar 

alleles promotes offspring with greater resilience against diseases while simultaneously 

maintaining genetic diversity. The result of highly polymorphic MHC loci has taken on a 

secondary use (i.e. pleiotropic) by allowing closely related individuals to recognize 

similar or dissimilar alleles through olfaction (Rymesova et al. 2017). In birds, the 

uropygial gland in particular is believed to secrete preening oils with chemical signals 

unique to that individual, which is available for detection by others through olfaction 

(Mardon et al. 2011). 

Other hypotheses question whether there need be genetic cues for kin recognition 

(Lyon and Zink 2018), while others suggest there could be loci specifically for kin 

recognition (Holman et al. 2013). The concern is how kin recognition loci remain highly 

polymorphic when rare alleles have on average greater selective disadvantage against 
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more common alleles. This is Crozier’s Paradox, where individuals with common kin 

recognition alleles will “freeload” from non-kin, but share the same common alleles. The 

result is selection against rare alleles and overall low allelic richness (Crozier 1986). 

Pleotropic genes are one solution to Crozier’s Paradox (i.e. MHC), but others have shown 

when individuals use disassortative mating systems to avoid inbreeding, kin recognition 

loci will maintain high allelic richness without being pleotropic (Holman et al. 2013). 

Understanding if genetic cues are used for kin recognition (visual and olfactory 

phenotypes) will help us determine how brood parasitism has persisted overtime and the 

role kin recognition plays. 

Management Implication of Brood Parasitism 

Although the theoretical and evolutionary considerations are the central focus of 

brood parasitism, there are still direct applications of brood parasitism to conservation 

and management. For example, cavity-nesting waterfowl such as wood ducks (Aix 

sponsa) have a higher reproductive success when parasitism and population density is 

relatively low (Haramis and Thompson 1985). However, when population density 

increases, competition for nesting sites also increases and females without a nest cavity 

will seek out nesting females to parasitize. The result is many parasitized nests with 

clutch sizes well above what is feasible to incubate, leading to a crash in reproductive 

output (Haramis and Thompson 1985).  

Further, artificially increasing the number of nest sites for wood ducks lead to an 

increase in brood parasitism followed by a decrease in overall nest success (Haramis and 

Thompson 1985). This is a direct result of considering what is assumed to be best for 

maximizing reproductive output (increased number of nesting sites), but ignoring the 
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behavioral ecology of the species, which resulted in increases in brood parasitism and an 

overall decrease in reproductive output.  

In addition, we do not typically measure the true reproductive output of a female 

because we only give her credit for what was laid, in her nest. However, many studies 

have shown that females are willing to incubate others eggs through brood parasitism and 

may even engage in fecundity enhancement (Sorenson 1991), which would result in a 

female having a much greater reproductive output than we give her credit for. 

Some may argue that knowing the true reproductive capabilities of an individual 

female is less important at the scale of fecundity estimates for overall population trends. 

However, we argue that understanding each females true reproductive potential is highly 

understudied or even considered, and therefore our understanding of its variation in a 

population is also limited. Relative to life history characteristics, we know age and 

condition are the greatest driver of reproductive output (Andersson 2017; Devries et al. 

2008 respectively), but by understanding the true variation in reproductive output in a 

population, we may find there are distinct groups with higher or lower reproduction, 

independent of condition or age. 

 

Consequences of Timing and Reproduction 

In addition to brood parasitism, timing of reproduction is another behavioral 

strategy utilized by avian species for reproduction. There are two major hypotheses why 

nesting females time their breeding. Either females will attempt to align their hatch date 

with resources as they become available (mismatch hypothesis) or they will attempt to 
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synchronize their nest with the rest of the colony surrounding them (breeding synchrony 

hypothesis). 

 The mismatch hypothesis applies directly towards migratory waterfowl, which 

must align their arrival to breeding grounds and initiation of nest with resources as they 

become available later. Typically, birds that nest earlier tend to have higher brood 

success compared to later nesting birds (e.g. Elmberg et al. 2005). However, age, 

condition, and nest site availability of the nesting females are also associated with early 

and late initiation making it difficult to disentangle the true relationship (Martins 1995, 

Devries et al. 2008, Love and Gilchrist 2010). 

 Another hypothesis surrounding the timing of nest initiation is colony synchrony. 

In lesser snow geese (Anser caerulescens), there is a reduction in nest success when 

nesting before and after the peak nest initiation date (Findlay and Cooke 1982). Aligning 

date of nest initiation with the rest of the colony allows females to reduce their 

probability of predation by over saturating the landscape with available prey for common 

nest predators.  

 

The Common Eider as a Model for studying Brood Parasitism and Timing of 

Reproduction 

Brood Parasitism in Common Eiders 

Over 200 bird species engage in brood parasitism, most of which are colonial 

nesting species (Yom-Tov 2001). The majority of the species that engage in brood 

parasitism are found to belong to the order of Anseriformes. We selected Common Eiders 
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as our study species, which engages in brood parasitism and is a colonial nesting 

waterfowl species.  

Common Eiders are one of the most well studied sea ducks and are a model 

species for brood parasitism (Table 1). They have a circumpolar distribution with seven 

distinct subspecies. The Hudson Bay Common Eider (Somateria mollissima sedentaria) is 

the subspecies studied for this work. 

The rate of parasitism in Common Eiders ranges from 2% to 55% of all nests 

(Waldeck et al. 2004, Waldeck et al. 2011, Waldeck and Andersson 2006, Lusignan et al. 

2010, Tiedemann et al. 2011,  Hario et al. 2012, but see Table 1 for rates of brood 

parasitism). In addition, due to their lower reproductive value, older females willingly 

accept more parasitic eggs when compared to younger hosts, and there are usually high 

levels of relatedness between the host and parasitizer (Tiedemann et al. 2011, Waldeck et 

al. 2007). The rate of nests containing parasitic eggs is of interest for this specific colony 

of Common Eiders that have had estimates taken in 1991 (42.4%) and 2002 (31%), which 

identified parasitic events using different methodologies (Robertson et al. 1992, Waldeck 

and Andersson 2006 respectively). Revisiting the rate of parasitism will provide new 

estimates and a greater understanding of variation between estimates when using 

alternative methods. 

Common Eiders nest in kin groups, but it is still unknown whether this is the 

result of female philopatry or selecting nest sites near relatives (Waldeck et al. 2007, 

Sonsthagen et al. 2010). Female Common Eiders exhibit strong philopatry with estimates 

of 98% of females returning to their natal grounds (Coulson 1984, Swennen 1990). 
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Further, it is observed that 22% of females return to nest on the same island of previous 

years and 70% nest within 135 meters of previous nest sites (Reed 1975).   

In addition, the parental care of Common Eiders makes them interesting to study 

relative to brood parasitism. Common Eiders are uniparental caregivers where only the 

female remains to attend the nest. This not only limits the number of recess events taken 

throughout incubation, but also places all responsibilities of nest and brood defense on 

the incubating female justifying why Common Eiders engage in brood parasitism as a 

cooperative breeding strategy more than other waterfowl species that have biparental care 

where both the male and female participate in parental care. 

Timing and Reproduction in Common Eiders 

Regardless of the strategy for nest initiation, annual weather patterns will be a 

constraint altering bird’s ability to nest at a preferred time each year. Multiple long-term 

datasets on Common Eider nesting exist (e.g. Lehikoinen et al. 2006, Iles et al. 2013), 

making them suitable candidates for understanding the drivers of nest initiation as well as 

the consequences of nesting early or later in the breeding season. Previous studies 

associate a suite of weather variables with breeding success (Jónsson and Lúovíksson 

2013, Iles et al. 2013), while others seek to understand the connection between both 

breeding success and time of nesting to weather variables (Lehikoinen et al. 2006, Love 

and Gilchrist 2010). 

Pertaining to weathers impact on breeding success, Lehikoinen et al. (2006) found 

years with later dates of ice break up resulted in a reduction in clutch size and fledgling 

success and milder winters were associated with an increase in body condition. Iles et al. 

(2013) found a reduction in daily survival rate when early spring conditions were either 
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wet and cold or warm and dry, while wet and warm conditions in late spring increased 

daily survival rate. Love and Gilchrist (2010) found increased temperature allowed 

additional females to nest, but the conditions of these females are unknown and assumed 

to be in poor condition bringing to question the true success of the nesting events. 

Jónsson and Lúovíksson (2013) did not find any relation between weather and apparent 

survival, in Common Eiders. 

Summarizing previous studies, milder temperatures are associated with Common 

Eiders nesting earlier and having more flexibility in the date of initiation resulting in an 

increase in success (Lehikoinen et al. 2006, Iles et al. 2013, Love and Gilchrist 2010, but 

see Jónsson and Lúovíksson 2013). However, making direct comparisons between studies 

is difficult given multiple indices of breeding success and weather variables.  

 

Objectives and Major Hypotheses 

Chapter 2 Objectives and Hypotheses 

The primary aim of chapter 2 is to understand utilization of cooperative breeding 

tactics in Common Eider, through brood parasitism and kin grouping. For our primary 

aim, we have three objectives: 

1) Estimate the rate of brood parasitism in two Common Eider colonies 

2) Classify the level of relatedness between nesting females at different spatial scales (kin 

grouping) 

3) Identify if the host-parasitizer relatedness is greater than Common Eider nesting in close 

proximity to each other (preference to parasitize kin). 

Primary Hypotheses 
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The rate of brood parasitism is well documented in Common Eiders and is 

generally agreed to occur consistently across years (Table 1). We anticipate the rates of 

parasitism for our study should be comparable. However, the utilization of brood 

parasitism as a cooperative breeding strategy is still debated (Andersson 2017, but see 

Zink 2000). Here we define the four most plausible scenarios for both the presence of kin 

grouping and host’s preference for parasitizing kin. We do consider the possibility of kin 

avoidance, but previous literature suggests it is unlikely in our study species (e.g. 

McKinnon et al. 2006, see Figure 1 for all possible scenarios). 

 

(1) Kin grouping observed and host-parasitizer relatedness is greater than what is 

expected due to kin grouping 

Here, we predict both kin grouping and parasitizer’s preference for closely related 

hosts. Kin grouping is well established in other colonies of Common Eiders (McKinnon 

et al. 2006, Waldeck et al. 2007, Sonsthagen et al. 2010). In addition, the average 

relatedness between host and parasitizer was beyond what was observed between closely 

nesting individuals when nesting in kin groups (Waldeck et al. 2007).  

 

(2) Kin grouping is not observed, but host-parasitizer relatedness is beyond what is 

expected even in absence of kin grouping. 

Here, we predict there will be no spatial trend relative to relatedness in nesting 

females, while parasitizer’s will still maintain a preference to parasitize kin. Interestingly, 

the only study of Common Eiders not found to nest in kin groups came from the same 

colony studied for this work (Andersson and Waldeck 2007). In addition, this study also 
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found the average relatedness between host-parasitizers to be beyond the average 

relatedness observed at small spatial scales (Andersson and Waldeck 2007). 

 

(3) Kin grouping is observed, but host-parasitizer relatedness is not beyond what is 

expected by kin grouping. 

Here, we predict the presence of kin grouping, but the average relatedness 

between host-parasitizers is not exceedingly greater than what would be expected from 

kin grouping. In this scenario, Common Eiders are preferentially nesting near one 

another, but parasitizers are parasitizing at random rather than preferentially seeking kin 

to parasitize. Although this scenario is not observed for the Common Eider thus far, it is 

possible for Common Eiders to utilize kin grouping as a cooperative breeding strategy 

with no preference to parasitize kin.  

 

(4) Neither kin grouping nor host-parasitizer relatedness appear to be the result of kin 

selection. 

Here, we predict the absence of kin grouping and preference to parasitize kin. The 

absence of kin grouping can occur when females are selecting nest sites without 

consideration of distance to relatives. This scenario would demonstrate Common Eiders 

prioritizing other nest site characteristics over distance to relatives, while also not having 

a preference to parasitize kin versus non-kin. No kin preference could be caused by years 

with high competition for nesting sites where individuals will nest with no consideration 

of distance to relatives. Under these same circumstances, parasitizers would be pressured 
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to parasitize as a “best of a bad job” scenario and will parasitize opportunistically as 

strategy to salvage a portion of her reproductive output (Sorenson 1991).  

Chapter 3 Objectives and Hypotheses 

The primary aim of chapter 3 is to determine if a connection exists between 

environmental drivers of nest initiation and its impact on nest success using a long-term 

data set of the Mast River Common Eider Colony. For our primary aim, we have three 

objectives: 

1) Use a suite of weather variables to predict when Common Eiders will initiate their nests 

2) Understand if there are consequences relative to daily survival rate when initiating early 

versus late 

3) Identify other predictors of daily survival rate in addition to date of initiation 

Primary Hypotheses 

The impact of weather on breeding success is documented, but ambiguous, due to 

studies using different weather variables and indices of success (Iles et al. 2013 versus 

Lehikoinen et al. 2006). Here we define the most plausible scenarios for the effect 

temperature will have on date of initiation and the effect date of initiation will have on 

daily survival rate. 

 

(1) Milder spring seasons are associated with earlier date of initiation compared to less 

mild springs and date of initiation is a predictor of daily survival rate 

Here we predict Common Eiders will initiate their nests earlier in response to 

milder springs. This can occur when mild spring temperatures allow nesting sites to 

become available earlier for a given year and is supported in Common Eiders (Love and 
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Gilchrist 2010) and other bird species (Langford and Driver 1979, Drever and Clark 

2007). We also hypothesize that date of initiation will have a negative relationship with 

daily survival rate. Weather factors known to alter timing in breeding are associated with 

many indices of success such as, clutch size, fledgling success, body condition, and daily 

survival rate (Lehikoinen et al. 2006, Iles et al. 2013). Under this hypothesis, spring 

conditions will have an indirect effect on daily survival rate through alteration of date of 

initiation. 

 

(2) Milder springs show an association with date of initiation compared to less mild 

spring, but date of initiation is not a predictor of daily survival rate  

Similar to above, we predict Common Eiders will initiate their nests earlier in 

response to milder springs. However, many other factors independent of date of initiation 

will be associated with daily survival rate (e.g. nest predators). Under this hypothesis, 

spring conditions will not have an indirect effect on daily survival rate through alteration 

of date of initiation. 

 

(3) Milder springs show no association with date of initiation compared to less mild 

springs eliminating the connection between spring condition’s indirect effects on daily 

survival rate 

Here we predict that earlier date of initiation is not associated with milder springs. 

This could occur if Common Eiders are timing their nests due to other abiotic or biotic 

factors, which have been observed in other studies on Common Eiders (Lehikoinen et al. 

2006). Under the mismatch hypothesis, Common Eiders would prioritize matching date 



 

17 

 

of initiation with the availability of resources post-hatch, independent of spring 

conditions, which was supported in other Arctic nesting birds (Smith et al. 2010). 

Therefore, if Common Eider date of initiation is independent of spring conditions, then 

the relationship between daily survival rate and date of initiation cannot be made.
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Figure 1. Hypothetical scenarios for relatedness at spatial scales intervals (grey) relative 

to the average relatedness between host and parasitizers (black), in Common Eiders 

(Somateria mollissima). 
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Table 1. Rates of conspecific brood parasitism by method, location, and year(s) of study, in Common Eiders (Somateria 

mollissima). The rate of parasitism is represented as either the percent of total eggs of parasitic origin (egg) or the percentage 

of nests containing at least one parasitic egg (nest). Superscript letters by location represent multiple studies from different 

years at the same site location.  

 

Source Method Location 
Rate 

(egg) 

Rate 

(nest) 

Year(s) of 

Study 

Robertson 1998* Laying sequence Canadaa 6-10% 20-42% 1991 

Bjorn and Eriksson 1994 Laying Sequence Norwayb 2-13% 2-21% 1989-1990 

Waldeck et al. 2004 Protein Banding Finland 1-14% 4-55% 2001-2002 

Waldeck and Andersson 2006 Protein Banding Canadaa 6-10% 22-39% 2002 

Lusignan et al. 2010 Protein Banding Canada 19% 55% 2007 

Andersson et al. 2015* Protein Banding Norwayb 6% 18% 2007-2009 

Hario et al. 2012 Microsatellites Finland 34% 51% 2001-2003 

Tiedemann et al. 2011 Microsatellites Denmark 16-17% 30-38% 1998-2001 

*but see, Robertson et al. 1992 

*but see, Waldeck et al. 2011 
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CHAPTER 2 

 

COOPERATIVE BREEDING TACTICS OF THE COMMON EIDER 

 

Abstract 

Conspecific brood parasitism or brood parasitism is the act of laying ones eggs in the nest 

of another female, within the same species. Brood parasitism allows females to have 

some flexibility in their reproductive tactics by exploiting other female’s nests when 

nesting may not be an option or as a way to enhance reproductive output by nesting and 

parasitizing. Many question brood parasitism as a truly parasitic act and under the right 

scenario, it could be utilized as an inclusive fitness gain strategy. If the cost to incubate 

and brood young has a low energetic investment (e.g. precocial relative to altricial) and 

the individual parasitizing the host is closely related, an inclusive fitness gain scenario 

seems plausible. Here we seek to understand if female Common Eiders (Somateria 

mollissima) prefer to parasitize kin, non-kin, or have no preference. In addition, we re-

estimated the rate of brood parasitism and extra-pair paternity for the Mast and WaWao 

colonies using a non-invasive molecular technique. We also discuss the efficacy of 

sampling different sources of genetic material. We used microsatellite loci as the 

molecular marker to identify parasitic eggs and their biological mother’s relation to the 

host female. In addition, Common Eiders exhibit strong nest site fidelity. To determine 

that relatedness between hosts and the female laying the parasitic egg is truly from kin 

preference and not an artifact of nest site fidelity, we estimated the degree of relatedness 

at different spatial scales between nesting females in both the Mast and WaWao Common 
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Eider Colonies. Both feather (19.4% loss) and hatch membrane (26.6% loss) were 

suitable sources of genetic material, but eggshells (100% loss) did not provide any viable 

genotypes. The overall rate of brood parasitism was 22.7% (176 of 775 offspring) and 

50.7% (104 of 205 nests) of all nests contained at least one parasitic egg. The estimate of 

brood parasitism is larger than previous estimates, which we propose is due to using a 

molecular marker with a greater probability of inclusion. We found a correlation between 

pairwise distance and relatedness, but it varied by year and colony. In addition, we did 

observe some cases of positive local autocorrelation between a focal female and her four 

nearest neighbors, but we observed negative local autocorrelation as well. The average 

pairwise relatedness of hosts and parasitizers, in 2016 (0.083), did not exceed the smallest 

spatial scale group’s average pairwise relatedness (0.152). However, average pairwise 

relatedness of host-parasitizer’s, in 2017 (0.308), was higher when compared to even the 

smallest spatial scale of 0-10 meters (-0.003). This indicates females potentially shift 

their preference to parasitize kin annually, which could be altered based on other 

environmental stressors.    

 

Introduction 

 Conspecific brood parasitism (also known as intraspecific nest parasitism) is the 

act of placing one’s egg(s) in the possession of a conspecific. Conspecific brood 

parasitism, hereafter brood parasitism, is classified as parasitic because the individual 

placing eggs (parasitizer) is removing all energetic investment required for parental care 

and placing it upon the individual now in possession of the parasitic eggs (host). Brood 

parasitism allows avian species flexibility in the reproductive strategy they use in a given 
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breeding season such as, parasitize, nest, nest and parasitize, or no breeding (Sorenson 

1991). Andersson (2017) proposed a model of brood parasitism in which both host and 

parasite could benefit through inclusive fitness if they were sufficiently closely related to 

each other. However, there is debate whether brood parasitism is a realistic mechanism to 

gain inclusive fitness (Lopez and Kokko 2002, Andersson 2001, Andersson 2017, but 

see, Zink 2000). Precocial species have the potential to gain inclusive fitness from brood 

parasitism because their parental care is minimal compared to altricial species. However, 

there must be some level of relatedness shared between host and parasites, strong kin 

recognition, and the additional egg(s) does not exceed the host’s optimal clutch size 

(Andersson 2001, Lopez and Kokko 2002, Andersson 2017). 

 Although it was assumed that strong kin recognition was required to prevent 

individuals from solely parasitizing rather than nesting, it is possible to have high rates of 

brood parasitism between related individuals as an artifact of female philopatry and 

strong nest site fidelity (Andersson and Erikkson 1984). There is evidence to support 

visual and olfactory mechanisms to discriminate between kin and non-kin in avian 

species (Andersson et al. 2015, Rymesova et al. 2017). However, to understand if females 

are preferentially parasitizing kin, we must also understand what the background genetic 

structure is within the colony (Waldeck et al. 2007, Andersson and Waldeck 2007).  

To estimate background genetic structure, there are two mechanism that will drive 

a non-random geographic and genetic distribution of nests 1) strong nest site fidelity and 

2) preference to nest near kin. It is near impossible to truly disentangle the two 

mechanism that drive a non-random distribution in nesting females. However, estimating 
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the geographic and genetic distribution allows us to understand if parasitic acts are truly 

utilized as form of kin selection or are an artifact of non-random distribution of nests. 

Historical and Current Methods of Studying Conspecific Brood Parasitism 

Methodologies in molecular ecology are constantly changing and are leading to 

exploiting new sources of genetic material. Originally, fresh tissue was required for 

studies using protein electrophoresis and resulted in the lethal removal of the organism 

(e.g. Lewontin 1991). With the discovery of PCR, the source of genetic material (i.e., 

hair, feces, hatch membranes) and its quality became less important and was the 

beginning of true non-invasive sampling methodologies.  

Many studies that asses the efficacy of non-invasively obtained sources of genetic 

material, do not take into consideration the possibility of applying this methodology to a 

study with many samples. For example, the process to chemically and mechanically 

breakdown and extract DNA from genetic material is time consuming and/or expensive 

rendering it as an unfeasible method for large-scale datasets (Egloff et al. 2009; 

Stausberger and Ashley 2001). In addition, the goal of certain studies did not intend to 

apply their methodology to a larger scale, but their findings provide additional evidence 

on how to extract DNA from a certain source of genetic material (Oskam et al. 2010). 

Specifically, in avian species there is interest in collecting tissue samples at the nest 

where both maternal and offspring DNA are available. Examples of potential studies 

include, nest site fidelity, the spatial structure of kin grouping, or the rate of brood 

parasitism.  

Historically, parasitic eggs were determined by studying the laying sequence of 

the host and identifying the eggs that did not align with the timing of the host’s natural 
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laying cycle. In addition, the morphometrics and color of an egg that deviated 

significantly from the host’s other eggs also were considered parasitic (Robertson et al. 

1992, Bjorn and Erickstad 1994, Drugger and Blums 2001), requiring nests were visited 

daily forcing females from their nests potentially increasing the level of stress. Genetic 

based methods are currently used to identify acts of brood parasitism either through the 

use of protein banding or microsatellites (Waldeck and Andersson 2006, Tiedemann et al. 

2011, respectively). Protein banding methods require puncturing a small hole in the egg 

to retrieve albumin, but this method is proven to have no effect on hatchability 

(Andersson and Åhlund 2001) and in most scenarios will lead to a greater sample size 

when compared to DNA methods. However, protein banding will have a lower 

probability of inclusion and gives no genetic information on the male(s) siring the clutch 

(Andersson and Åhlund 2001). Microsatellite methods require DNA, which has been 

sampled invasively by blood draws (Tiedemann et al. 2011). However, other non-

invasive techniques have been developed to collect both maternal and offspring DNA 

from nest after completion to avoid any contact with the incubating female (Kreisinger et 

al. 2010). 

Objectives 

To inform our overarching question we had three objectives: 1) estimate the rate of 

brood parasitism in two Common Eider colonies nesting along the western Hudson Bay, 

2) classify the level of relatedness between nesting females at different spatial scales, and 

3) identify if the host-parasitizer relatedness is greater than Common Eiders nesting in 

close proximity to each other. 
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As discussed in chapter 1, Common Eiders are an ideal study species for studying 

brood parasitism because the behavior is well documented (Chapter 1: Table 1). Further, 

in the Mast River Common Eider Colony the previous estimate of brood parasitism was 

7.8% of all eggs were parasitic using laying sequence and morphometrics of eggs 

(Robertson 1998), while 8.2% of all eggs were parasitic using protein banding (Waldeck 

and Andersson 2006). Because we have estimates of brood parasitism using different 

methods on the same colony, we can observe how estimates of brood parasitism may be 

affected by the method used. 

In addition, we will use non-invasively sampled genetic material to address the 

objectives above. Our final objective is to determine the methodological feasibility of 

three sources of genetic material (feather, eggshell, and hatch membrane). 

 

Methods 

Study area 

We studied nesting Common Eiders based out of the field station, Nestor 2, 

located approximately 40km east of Churchill, MB. The remoteness of Nestor 2 allows 

researchers to study wildlife in their natural environment with little influence from 

anthropogenic factors.  Two Common Eider colonies near Nestor 2 are located where the 

Mast River (58°43'38.4"N 93°28'21.2"W) and Wawao Creek (58°42'25.7"N 

93°27'10.1"W) enter into La Pérouse Bay. This region consists of small islands ranging 

from 1 to 300m2. Islands utilized by the Common Eiders have a mixture of birch (Betula 

glandulosa) and willow (Salix spp.) with vegetation height ranging from 0.6 to 2m 

(Schmutz et al. 1982). 
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Sampling Design 

Nest searches begin during the first week of incubation. Each year we attempt to 

locate all nests within the colony, but there are still nests that could be unaccounted for 

either from female Common Eiders nesting later than the average initiation date or if a 

nest is placed outside of the historic colony boundaries. Once nests are found, GPS 

coordinates are recorded, which allow us to measure distance between nests and where 

high, medium and low nest density areas are within the colony. We candle each egg 

during the first nest visit to determine the developmental stage (Weller 1956) and the date 

of nest initiation.  

Sampling Genetic Material 

We collected up to four feathers lining the nest bowl during the first nest visit. 

Eggshell and hatch membranes were obtained from each nest bowl shortly after fate of 

nest (either predation or hatch). Eggshell and hatch membranes were attached to one 

another for a single egg and were carefully removed, cleaned, dried and stored, shortly 

after removing from the field.  

DNA Extraction 

Feather- We removed the calamus from each feather sample and made a single 

cut targeting the superior umbilicus indicated by a red dot where blood commonly clots 

(see Hovarth et al. 2005 for detailed description; see Figure 1 for the location of superior 

umbilicus for Common Eider nest bowl feathers). Eggshell-Approximately 70mg of 

eggshell was removed from hatch membrane carefully to avoid cross contamination from 

hatch membrane. We removed any remaining membrane or debris from the inner section 

of the shell and placed it into a 1.5mL tube. There is not any section of the eggshell that 
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is known to increases the probability of extracting DNA (Oskam et al. 2010) and for our 

study, determining the exact area an eggshell fragment originated from was not feasible. 

Hatch Membrane- We removed approximately 25mg of hatch membrane targeting 

chorionic vessels containing embryonic DNA (Kreisinger et al. 2010; see Figure 2 for an 

example of hatch membrane sample). 

Once each tissue type was isolated, it was placed into a 1.5mL with 5 ceramic 

beads and 500µL genomic lysis buffer. We placed the 1.5mL tubes into a TissueLyserII 

(Qiagen Inc.) for 15 minutes at 1800 oscillations/min to simultaneously breakdown tissue 

mechanically and chemically. Rather than testing multiple single sample extraction 

protocols that ranged in the time spent on individual samples given their condition, we 

tested our tissue types using a high throughput DNA extraction method. The DNA 

extraction was performed using a 96-well silica based spin column kit (Zymo Research 

Corporation) following the blood and whole serum extraction protocol. 

We calculated the percent loss into three categories: Field Loss-Sample loss 

during sample collection, in the field. Predation or hatch membranes being removed from 

the nest by an attending female caused sample loss for eggshell and hatch membranes. In 

addition, if a nest failed early in incubation before the attending female lined her nest 

bowl with down, feather samples were not collected. Preprocessing Loss- Sample loss 

while cleaning and placing into 1.5mL tubes. Closer visualization of each sample allowed 

us to determine if samples were unfit for DNA extraction. Either unfit samples could be 

from lack of necessary region for DNA extraction (superior umbilicus and chorionic 

vessels) or the sample was degraded to a level unsuitable for DNA extraction. Extraction 

Loss- Samples with less than six genotyped loci were considered an extraction loss. 
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Extraction loss can come from many sources such as, poor quality of sample (either low 

volume of DNA or poor quality DNA), failed DNA extraction, failed PCR (1st or 2nd 

round), or failed bridge amplification on the flow cell of the the Mi-Seq High-Throughput 

Sequencing System (Illumina, Inc.). We calculated the total sum of samples for each 

stage of processing samples: 1) Starting sample 2) Collected sample 3) Extracted Sample 

and 4) Genotyped Sample. We ran a preliminary run and determined eggshells produced 

no viable genotypes. Therefore, total loss for the eggshell tissue type was estimated for 

the extraction loss category based on 22 preliminary samples. 

Molecular Methods 

To genotype microsatellites, we first amplified (refer to Darby et al. 2016 for 

details on PCR amplification and library prep) and then sequenced on the Mi-Seq High-

Throughput Sequencing System (Illumina, Inc.) at the University of North Dakota 

Medical School. Microsatellites used for analysis were Sfiµ1, Sfiµ3 (Fields and Scribner 

1997), Sfiµ9 (Öst et al. 2005), Smo1, Smo4, Smo6, Smo7, Smo8, Smo9, Smo10, and 

Smo12 (Paulus and Tiedemann 2003, but see Table 1.a for description of each locus). 

We used a two round PCR methodology (Darby et al. 2016). 1st round (Locus-

specific amplification) PCR conditions: PCR was carried out in 20µL volumes per well in 

96-well PCR plates, containing 1X DreamTaqTM Green Buffer (contains KCL, (NH-

4)SO4, and 2mM MgCl2), 200µM dNTP, 0.2µM for both forward and reverse primers, 0.5 

U DreamTaq Hot Start Polymerase (Thermo Scientific). Amplifications were performed 

in Applied Biosystems SimpliAmp Thermal Cycler with the following reaction profile: 

one cycle 95 °C 1 min; 30 cycles 95 °C 30 sec, 55 °C 30 sec, 72 °C 30 sec; one cycle 72 

°C 5 min. 
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2nd round (Adapter-indexing amplification) PCR conditions: Five µL from each 

multiplex group plate (total of 20µL) were pooled into a single plate and run through 

PCR clean up kit using 96-well silica based spin column kit (Zymo Research 

Corporation). PCR of pooled PCR product from 1st round amplification was carried out in 

20µL volumes per well in 96-well PCR plates, containing 1X DreamTaqTM Green Buffer 

(contains KCL, (NH4)SO4, and 2mM MgCl2), 200µM dNTP, 0.2µM for both forward and 

reverse primers, 0.5 U DreamTaq Hot Start Polymerase (Thermo Scientific). 

Amplification were performed in Applied Biosystems SimpliAmp Thermal Cycler with 

the following reaction profile: one cycle 95 °C 1 min; 20 cycles 95 °C 30 sec, 55 °C 30 

sec, 72 °C 30 sec; one cycle 72 °C 5 min. 

This method of genotyping microsatellites by sequencing instead of by capillary 

electrophoresis allowed us to submit a high number of samples in a single run (937 

samples on a single MiSeq Run) and resolved a greater number of alleles (e.g. through 

SNPs and variable repeat motifs) than through length alone (Darby et al. 2016).  Paired-

end sequencing reads were merged into one read, de-replicated, and assigned to their 

respective locus with the - fastq_mergepairs -fastq_filter -fastx_uniques commands of 

USEARCH v11 (Edgar 2010). A custom Python/Biopython script was used to sort reads 

by locus and enumerate the frequency of each unique read for each specimen, thus 

providing the genotype (i.e. allele) for each specimen at each locus. We re-genotyped 

approximately 5% of the total sampled population to obtain estimates of marker error 

from allelic drop out, null alleles. 

Parasite Assignment 
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We used a conservative criterion adopted from Kreisinger et al. (2010) to identify 

brood parasitism. Young were considered parasites if either 1) at least one locus did not 

match the putative mother of the nest that could not be explained as the result of allelic 

drop out or null alleles (i.e., both female and young heterozygous at locus), or 2) at least 

two loci did not match the putative mother of the nest that could be explained as the 

results of allelic drop out or null alleles. 

We identified cases of extra-pair paternity by taking the remaining young not 

attributed to brood parasitism and used their genotypes with the putative mother of the 

nest to reconstruct the paternal genotype. Paternal genotypes were reconstructed using 

GERUD 2.0 (Jones 2005). Because this type of analysis does not accept missing 

genotypes, we used three loci to identify cases of extra-pair paternity (Smo06, Smo07, 

and Smo08). Loci used to identify extra-pair paternity were selected by having a high 

probability of exclusion (see Table 1.b) and few missing genotypes for young and 

mother. Of the cases of mismatch between mother and young that could be the result of 

allelic dropout or null alleles (only four cases), we estimated the second allele of the 

mother or young by selecting the allele of the highest frequency that would eliminate the 

mismatch. 

Estimate of Kin Grouping 

 We estimated kin grouping by identifying if spatial autocorrelation of pairwise 

genetic relatedness existed at different spatial scales. To accommodate multiple loci, we 

used a multivariate approach calculated within GenAlEx, where the pairwise genetic 

distance and spatial distance pairwise comparisons are correlated with each other across 

predefined distance classes (Smouse and Peakall 1999). Distance classes were 
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determined based on previous studies on Common Eiders conducting similar analyses 

(Andersson and Waldeck 2007). Within each distance class, a null distribution of 

relatedness was created through random permutations to compare against the observed 

average pairwise relatedness. Relatedness values above zero represent distance classes 

where relatedness exceeds what is expected by random chance, while values below zero 

represent scenarios where relatedness is lower than what is expected by random chance 

(Smouse and Peakall 1999). Significance of kin grouping was determined using a 

heterogeneity test in GenAlEx (Smouse et al. 2012). In addition, we tested for a spatial 

trend between relatedness and distance between nests using a non-parametric approach. 

To calculate pairwise relatedness, we used ML RELATE (Kalinowski et al. 2006) and 

tested for significance of the trend relative to pairwise distance using Spearman rank 

correlation rs.  

 To measure fine-scale genetic clustering of nests, we also measured the two-

dimensional spatial autocorrelation of nests relative to their genetic structure, 

implemented in GenAlEx as described by Double et al. (2005, but see Sonsthagen et al. 

2010 for kin grouping details). We anticipate local autocorrelation under non-random 

distributions of nesting females due to breeding site fidelity. However, if females are 

faithful to a nest site rather than close association to kin, then no local autocorrelation 

should be observed. To estimate local autocorrelation, we took the four closest 

neighboring nests for each females and compared those pairwise genetic and geographic 

distances in GenAlEx (10,000 permutations). We used a two-tailed test detect both 

positive (kin grouping) and negative (kin avoidance) autocorrelation scenarios.  

Host-Parasitizer Relatedness 
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Of the parasites identified, we assigned pairwise relationships with the rest of the 

nesting population of females using program COLONY (Wang 2004). COLONY uses a 

maximum likelihood method to assign inferred mothers to offspring in the sampled 

population with a probability of the relationship. GenAlEx was used to calculate the 

relatedness between hosts and parasitizer’s, and was compared to the average relatedness 

observed at different distance classes mentioned above. If host-parasitizer relatedness 

exceeded the background levels of relatedness observed at all spatial scales, this would 

indicate parasitizers are preferentially parastizing closely related females beyond random 

chance. 

Results 

Success of Non-Invasive Sampling 

 Sample loss was lower in feathers (19.4% total loss) relative to hatch membrane 

samples (26.6% total loss). However, of the eggshells tested, none produced viable 

genotypes (Table 2, Figure 3). The average proportion of hatch membranes sampled from 

total nest failure clutches was 0.30, while successful nests (at least one egg hatched) had 

on average 0.81 (Figure 3). The proportion feather samples genotyped from total nest 

failure clutches was 0.72 (64 of 89 nests), while successful nests had 0.85 (173 of 204 

nests; Figure 3). 

Rates of Parasitism and Extra-Pair Paternity 

 Of the samples we could compare nesting female to young in nest, we found an 

overall rate of 22.7% (176 of 775 offspring) were of parasitic origin and 50.7% (104 of 

205 nests) of all nests contained at least one parasitic egg. We estimated the rate of 

parasitism in 2016 to be 18.8% (87 of 464 offspring) and 44.3% (54 of 122 nests) of all 
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nests contained at least one parasitic egg. We estimated the rate of parasitism in 2017 to 

be 28.6% (89 of 311 offspring) and 60.2% (50 of 83 nests) of all nests contained at least 

one parasitic egg. 

 Of the 164 clutches we observed (after removing parasites and nests that we were 

unable to score for extra-pair paternity), we found four clutches containing offspring 

resulting from extra-pair paternity (2.4%). We found three of the 101 nests to have extra-

pair paternity and one of the 62 nests to have extra-pair paternity in 2016 and 2017, 

respectively.  

Kin Grouping and Host-Parasitizer Relatedness 

 We observed kin grouping, but the significance of the trend varied by year and 

colony (Figure 4, but see Table 3 for all Spearman’s correlation combinations). In 

addition, we observed evidence of kin grouping relative to distance class, in 2016 (p < 

0.001), but not in 2017 (p = 0.048, Figure 5). We observed both positive and negative 

autocorrelation of focal nests to its four nearest neighbors, which varied by year and 

colony (Figure 6, Table 4). However, visual observation of the location of positive and 

negative autocorrelation indicates autocorrelation was not held to a specific site across 

years. 

Because parasitizers from WaWao colony were found parasitizing females in the 

Mast Colony in both 2016 and 2017, we combined both colonies average pairwise 

relatedness for different spatial scales, for both years. The average pairwise relatedness of 

hosts and parasitizers, in 2016 (0.083), did not exceed the smallest spatial scale group’s 

average pairwise relatedness (0.152, Figure 5). However, average pairwise relatedness of 
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host-parasitizer’s, in 2017 (0.308), was higher when compared to even the smallest 

spatial scale of 0-10 meters (-.003, Figure 5). 

  

Discussion 

Considerations for Non-Invasive Sampling 

 Both feather and membrane were viable sources of genetic material for this 

project. Previous work has shown eggshells contain nuclear DNA (Egloff et al. 2009). 

However, here we show when attempting to process many samples using high-throughput 

methods, the success rate is much lower. We strongly caution future studies using non-

invasive sources of genetic material to consider the amount of time and money that will 

be required for a successful extraction.  

 We also caution that the source of genetic material could be present one year, but 

not in others. For example, the success of genotyping hatch membranes was much higher 

in successful nests versus failed. This is primarily due to predators removing the entire 

egg with no tissue to collect or the sample failed early into development with lack of 

chorionic vessels to isolate for extraction. Both 2016 and 2017 had relatively high nest 

success, but had this sample collection occurred during a high failure year, sample size 

would be greatly reduced.  

Historical Estimates of Conspecific Brood Parasitism versus Current 

We found higher rates of brood parasitism relative to previous estimates of brood 

parasitism in the Mast and WaWao Common Eider Colonies (Figure 7, Robertson 1998, 

Waldeck and Andersson 2006). The difference in estimates could be in response to 

environmental conditions or variation in colony size between years (Robertson 1998).  
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Microsatellite markers are highly polymorphic and in general have greater 

probability of inclusion relative to less polymorphic molecular markers (i.e. protein 

banding) and non-molecular methods. It is most plausible that the higher rate of brood 

parasitism detected is not a change in brood parasitism across years, but instead a 

consequence of a more accurate method to identify parasites from biological offspring. 

This is further supported by the two of the three highest estimates of brood parasitism 

were found in studies using microsatellites (Chapter 1: Table 1, but see Tiedemann et al. 

2011, Hario et al. 2012). 

Rates of Conspecific Brood Parasitism and Extra-Pair Paternity 

 The rate of brood parasitism was higher in 2017 (28.6%) when compared to 2016 

(18.8%). Our overall estimate of 22.7% brood parasitism is higher than the 16–17% 

estimated by Tiedemann et al. (2011) and lower than the 34.2% rate of brood parasitism 

estimated by Hario et al. (2012) both using microsatellites to estimate brood parasitism in 

Common Eiders.  

Factors that could cause different rates of brood parasitism between years for our 

study were dates of initiation and daily survival rate. However, we found similar dates of 

initiation between both years and the daily survival rate had similar trends relative to time 

within breeding season (see chapter three). This indicates there were no major temporal 

or nest failure based differences between years that would pressure Common Eiders to 

parasitize as a “best of a bad job” scenario (Lyon and Eadie 2008).  

Another consideration is the age of the nesting females. Tiedemann et al. (2011) 

provided evidence, which suggests older females with a lower reproductive value are 

parasitized more often when compared to other age groups. From 2009-2015, we 
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observed a high rate of nesting failure for the Mast River Common Eider Colony. If there 

was a substantial decrease in recruitment from these years of high nest failure, then we 

would anticipate a shift in the average age of nesting females to increase in years 

following. Although we lack information on the age of individuals within our Common 

Eider colonies, if we assume the ratio of older birds are increasing, we also should see an 

average increase in brood parasitism overtime supporting our finding. 

 Forced copulation occurs across in many waterfowl species. However, the success 

of these forced copulations are understudied in Common Eiders (Waltho and Coulson 

2015). Here we provide estimates of low extra-pair paternity in Common Eiders in both 

years of our study. Male Common Eiders will aggressively pursue females on the 

breeding ground. These males are assumed to lack a pair-bond and will use forced 

copulation as a last attempt to reproduce (Waltho and Coulson 2015). However, we find 

that the success of late breeding forced copulations by males may be mostly unsuccessful 

or may not commonly occur within this colony.  

Alternative Reproductive Tactics 

 Of the 176 nest parasites we identified, 60 (34.1%) were identified to another 

female nesting within either the Mast or WaWao colonies supporting the idea of females 

enhancing their fecundity beyond their own nest (Lyon and Eadie 2008). American coots 

(Fulica americana) are also shown to engage in fecundity enhancement, but there are 

tradeoffs to the strategy (Lyon 1998). If the parasitizer lays eggs in conspecific’s nest, she 

has in turn reduced her own clutch size making it available for parasitism. In Common 

Eiders, it is not understood if fecundity enhancement is truly the best reproductive option 

for females or if it the response of already being parasitized and adjusting the clutch to 
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avoid a suboptimal size. Andersson (2017) suggests Common Eiders may benefit from 

parasitism even in the absence of relatedness if the parasitic act raises the clutch to a 

more optimal size. Further studies tracking the distribution of parasitic acts and their 

timing will allow us to understand if parasitism is in response to pure parasites followed 

by fecundity enhancers readjusting their clutch size or if fecundity enhancement truly 

represents females with the highest reproductive output. 

Of the 294 potential nests to sample genetic material from, we obtained genotypes 

for 237 nests of them (80.6%, Table 2). It is plausible that the 57 nests not sampled could 

be biological mothers of the remaining 116 parasites not attributed to another female in 

the Mast or WaWao colonies. If we assume not all of 116 parasites are from other nesting 

females, this shows both pure parasites (non-nesting parasitizer) and fecundity enhancer 

(nesting parasitizer) strategies are present in Common Eiders.  

In addition, we found female Common Eiders parasitizing nests over 4km from 

the location of their nests (Figure 4). It appears unlikely that females are seeking out nests 

to parasitize at such a great distance, but an alternative explanation for these scenarios are 

cases of nest takeover. Nest takeovers occur when a female begins nesting with a portion 

of her clutch laid before being removed from the nest by another female who then lays 

her own clutch (Waldeck and Andersson 2006). The result would still appear parasitic, 

but the initial incubating female now needs to seek out another nest site to lay the 

remainder of her clutch. 

 

Management Implications 
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The rate and utilization of brood parasitism is important to consider when 

estimating reproductive output of avian species. Clutch size is one estimate of success 

and an index of health for the population, but our findings demonstrate that 50% of nests 

will contain at least one parasitic egg. This drastically alters our understanding of what 

the true reproductive capabilities of nesting females are and supports others skepticism in 

using clutch size as an index of fecundity (Etterson et al. 2011). Additional studies will 

be necessary to understand what the true variation of clutch size is within a population 

along with the reproductive tactic of the nesting female. 

Kin Grouping 

 Our findings support the hypothesis that kin grouping is present in 2016, but not 

2017 (Figure 5). This coincides with previous estimates of kin grouping observed in other 

colonies (McKinnon et al. 2006, Waldeck et al. 2007, Sonsthagen et al. 2010), but 

presence of kin grouping contradicts what other have observed for this specific colony 

(Andersson and Waldeck 2007, but see Robertson et al. 1995). This is interesting given 

other studies suggest strong nest site fidelity of Common Eiders (Franzman 1983, Bailie 

and Milne 1989, Swennen 1990).  

 When we observe the two-dimensional local autocorrelation of Common Eiders 

nesting, we observe cases of both positive and negative autocorrelation beyond what is 

expected. The location of positive and negative autocorrelation are not held constant over 

years, indicating females are less faithful to a specific breeding site and are possibly have 

greater preference to nest near kin (Figure 6). In addition, given there was an equal 

magnitude of negative local autocorrelation, it is hard to determine the true biological 

significance of the cases where positive local autocorrelation occurred (Table 4). 
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Andersson and Waldeck (2007) suggested the lack of kin grouping is due to 

Common Eiders prioritizing other attributes associated with nest site quality before 

considering nesting near kin. Other colonies of Common Eiders that rely on the amount 

of driftwood for nesting have a higher genetic clustering of nesting females on islands 

with greater nest site availability (Sonsthagen et al. 2010). The hypothesis that kin 

grouping will increase in response to increased number of nest sites is not supported here. 

We observed that high water levels at the onset of the breeding season reduced the 

number of islands available for nesting in 2016 (Rockwell personal observation), which 

had more support for the presence of kin grouping relative to the 2017 breeding season 

(Figure 5).   

Host-Parasitizer Relatedness 

 Host-parasitizer relatedness was within the range of average pairwise relatedness 

at the smallest spatial scale (0-10m), in 2016. This indicates that Common Eiders had no 

preference in who they were parasitizing. In contrast, a difference was observed between 

average pairwise relatedness of host-parasitizers when compared to the smallest spatial 

scale, in 2017 (Figure 5). This contradicts previous literature, which suggests parasitic 

acts occur between kin at a higher frequency than what would be expected under kin 

grouping (Andersson and Waldeck 2007, Waldeck et al. 2007). However, here we 

suggest that Common Eiders may switch preference of whom they parasitize annually 

given other potential stressors. For example, we mentioned 2016 experienced a flooding 

event where the number of available nest sites were unavailable during a part of the 

laying period. This environmental factor of limited nest sites could drive females to 

prioritize parasitism with no kin preference over kin preference in years where options 
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for reproductive output is limited. Although full support for this hypothesis is lacking 

given the rate of parasitism in 2016 (18.8%) was lower than what was observed in 2017 

(28.6%).
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Figure 1. Photograph of Common Eider (Somateria Mollissima) feather collected from 

nest bowl. Black box outlines the superior umbilicus where blood clots commonly form 

making them the target area for DNA isolation. Each grid cell is 1X1 inches for scale. 
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Figure 2. Photograph of Common Eider (Somateria mollissima) hatch membrane 

collected from nest post-hatch. This hatch membrane contains chorionic vessel, which are 

isolated for DNA extraction of embryonic DNA.  
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Figure 3. For both the Mast and WaWao Common Eider (Somateria mollissima) Colony 

(2016 & 2017), the total number of samples of feather, hatch membrane, and eggshell 

samples available relative to the total sample across all steps. The number of samples 

genotyped for eggshell samples was estimated from a preliminary run where no viable 

genotypes were obtained (see methods). 
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Figure 4. Pairwise relatedness and pairwise distance of Common Eiders (Somateria 

mollissima) by year, colony and host-parasitizer groupings. The relatedness coefficient 

ranges from unrelated (0) to identical (1). Significance (p < 0.05) is indicated by panels, 

which contain an rs and p-value. 
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Figure 5. Average pairwise relatedness at different distance classes and host-parasitizer of Common Eiders (Somateria 

mollissima), in 2016 (A) and 2017 (B). Relatedness coefficient calculated in GenAlEx and pairwise distances are in meters. 

Mast and WaWao colonies were not separated for analysis because a subset of the sample contained females from one colony 

parasitizing females from another.
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Figure 6. Two-dimensional local autocorrelation (lr) of Common Eiders (Somateria 

mollissima) of the Mast and WaWao Colonies in both 2016 and 2017. Small filled black 

dots represent each Common Eider nest. Circle (negative lr) and triangle (positive lr) size 

is proportional to the degree of local autocorrelation. We determined significance of 

positive and negative lr for values within the 5% tails of the permutated distribution, 

generated from a focal female and her four nearest neighbors.  
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Figure 7. Mast River Common Eider (Somateria mollissima) Colony size and rate of 

conspecific brood parasitism by year. Conspecific brood parasitism estimated with laying 

sequence and morphometrics in 1991–1993, protein banding in 2002, and microsatellites 

in 2016-2017. 
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Table 1.a. Common Eider (Somateria mollissima) microsatellite loci summary table. Tandem repeat with accession number for further 

information and multiplex groups used for PCR. 

 

Name Sequence GenBank accession no. Repeat sequence Multiplex group 

Sfi1F* TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACAAGGAAGCATGACCTCAGAA  [TA]10[CA]8 2 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCATGCCTCCTGTTAGTCATCT     

Sfi3F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATTCCAATATTCTGCAGGGAGG U63682&U63683 [GA]3N5[GA]6 2 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCAAGTTAATCAATTATCTGAT     

Sfi9F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCCTTCCAACCCAAGACATTC AF180499 [CT]N 4 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAACTTCCAACCATTCTTCAAGG     

Smo1F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTAAGGTATTGTGCTTTATA AJ 427841 [GA]17 1 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGGTCCAAAGGGTGTTCTCAGAA     

Smo4F* TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTTTCCACAGCCTCTTTCACAA  [AG]18A 1 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACAGTGTTTGTCAATGGAT       

Smo6F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGGTGGGAAAGAAGCAGTTTAG AJ 427846 [TG]18T4 2 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTGGGACTTTGAAAGTGGCTC     

Smo7F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTTCACCCAGTTCACTTCAGCC AJ 427847 [GT]12 1 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTCAAATTTGCCGCAGGATTA     

Smo8F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCTTATAGGATGTCACTCTTC AJ 427848 [TG]11 4 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAAATACTATGCTCGTTTCAAAA     

Smo9F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTGGAGTTTGGAGTTCGTGGGG AJ 427849 [TG]11[TTTG]2 3 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTTCCCTGCAAAACTTACGGCA     

Smo10F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCTAGCGACAGCAATTCTAATG AJ 427850 [TG]31 4 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATTGTTCATTGTTTCTTCTTCA       

Smo12F* TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGGTGGGATAGGTTTAAAATG  [TG]9T11 3 

R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTTCATCAAAAGCAGAGAGG     

*Redesigned primers 
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Table 1.b. Common Eider (Somateria mollissima) microsatellite loci summary table. 

Name No.Genotyped 

No. of 

alleles Allele size 

Same Length 

Alleles He Ho F PI Pisibs PE 

Sfi1F* 960 25 95-128 16 0.482 0.158 0.671 3.0E-01 5.8E-01 1.3E-01 

R                     

Sfi3F 1128 18 114-131 10 0.490 0.453 0.075 3.0E-01 5.8E-01 1.3E-01 

R                     

Sfi9F 1127 12 122-140 6 0.737 0.732 0.007 1.1E-01 4.1E-01 3.3E-01 

R                     

Smo1F 1058 8 116-142 4 0.696 0.227 0.674 1.5E-01 4.4E-01 2.7E-01 

R                     

Smo4F* 796 47 135-199 25 0.905 0.472 0.478 1.6E-02 3.0E-01 6.8E-01 

R                     

Smo6F 1130 14 104-130 3 0.710 0.751 -0.057 1.2E-01 4.3E-01 3.1E-01 

R                     

Smo7F 1147 15 179-195 11 0.599 0.574 0.042 2.0E-01 5.0E-01 2.0E-01 

R                     

Smo8F 1143 12 92-108 7 0.680 0.669 0.016 1.5E-01 4.5E-01 2.8E-01 

R                     

Smo9F 1058 10 132-158 3 0.513 0.488 0.048 3.3E-01 5.8E-01 1.3E-01 

R                     

Smo12F* 1127 19 75-101 10 0.669 0.669 0.000 1.5E-01 4.5E-01 2.6E-01 

R                     
No. Genotyped: Number of genotypes generated in total per locus 

No. Alleles: Allelic richness per locus, the range of allele sizes 
Same length alleles: detected through HTS (undetected using traditional fragment analysis by capillary electrophoresis)  

(He) Expected heterozygosity  

(Ho) Observed heterozygosity  
F (fixation index): Ranges from -1 to 1 where highly positive values indicate inbreeding or undetected null alles, values close to zero indicate typical heterozygosity in a randomly mating system, highly 

negative values indicate an overrepresentation of heterzygous individuals under the assumption of random mating in the system. 

PI (Probability of Inclusion): Estimate of the average probability that two independent samples will have the same identical genotype. 
PIsibs: Same as PI, but corrected for closely related sample populations. 

PE (Probability of Exclusion): estimate of the probability of exclusion for one putative parent when the genotype of the other parent's genotype is known. 
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Table 2. Total samples collected for both the Mast and WaWao Common Eider 

(Somateria mollissima) Colonies for each tissue type (2016 & 2017 combined). See 

methods for detailed description of each sampling step. 

 

Tissue  

Type 

Starting 

Sample 

Collected 

Sample 

Extracted 

Sample 

Genotyped 

Sample 

Feather 293 249 244 237 

Membrane 1216 1005 916 893 

Eggshell 1216 966 964 0 

 

 

Table 3. Outputs of Spearman’s rank correlation test for pairwise relatedness and 

pairwise distance in Common Eider (Somateria mollissima) for 2016 and 2017 in the 

Mast and WaWao Colonies including Host-Parasitizer groups. 

 

Pairwise Group Year p-value rs 

All Both 0.164 -0.012 

Mast Both 0.064 -0.020 

WaWao Both 0.653 -0.017 

Mast & WaWao Both 0.703 -0.005 

        

All 2016 0.158 -0.012 

Mast 2016 0.120 -0.014 

WaWao 2016 0.477 -0.007 

Mast & WaWao 2016 0.680 0.004 

        

All 2017 0.139 -0.012 

Mast 2017 0.130 -0.015 

WaWao 2017 0.047 -0.028 

Mast & WaWao 2017 0.002 -0.035 

        

Host-Parasitizer Both 0.029 -0.412 

Host-Parasitizer 2016 0.735 -0.003 

Host-Parasitizer 2017 0.007 -0.041 
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Table 4. Fine scale genetic structure of Common Eiders (Somateria mollissima) in the 

Mast and WaWao Colonies for both 2016 and 2017. Positive and negative local 

autocorrelation (lr) and their proportions within the colony are presented with the range 

of distances (meters) and the median distance, in parentheses. See methods for further 

detail on local autocorrelation. 

 

  2016 2017 

Mast     

   Positive lr 0.157-0.366 0.186-0.187 

  13% (n=14/108) 3% (n=2/74) 

   Distance (m) 75-617 73-435 

  (75) (285) 

   Negative lr -0.181 to -0.203 -0.170 to -0.248 

  6% (n=6/108) 9% (n=7/74) 

   Distance (m) 8-937 43-584 

  (105) (188) 

WaWao     

   Positive lr 0.120-0.305 0.113 

  6% (n=2/33) 5% (n=1/21) 

   Distance (m) 2-30 680-1057 

  (13) (850) 

   Negative lr -0.178 to -0.201 -0.190 

  6% (n=2/33) 5% (n=1/21) 

   Distance (m) 1-287 2-122 

  (6) (60) 
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CHAPTER 3 

 

IMPLICATIONS OF WEATHER AND PHENOLOGY TO BREEDING SUCCESS 

OF COMMON EIDERS 

 

Abstract 

The timing of bird species nesting annually are constrained by multiple factors, including 

variable weather patterns at the onset of the breeding season. It has been well 

documented that timing of nest initiation can affect breeding success, in birds. However, 

making the connection between spring condition’s effect on timing of breeding and 

timing of breeding effect on nest success receives less attention. Common Eiders have a 

declining population at a circumpolar scale and understanding drivers of reproductive 

success are of upmost importance. Our objective was to identify weather related factors 

that affect timing of nest initiation in Common Eiders (Somateria mollissima). In 

addition, we examined the effects spatial and temporal variables have on daily survival 

rate, one of which was date of nest initiation. We found Common Eiders date of nest 

initiation was correlated with the last day of snowmelt. However, date of nest initiation 

was not a predictor of daily survival rate in Common Eiders. Instead, day within breeding 

season and the days into incubation of the nest were included in the top model as 

predictors of daily survival rate. These results suggest that spring snowmelt conditions 

influence the timing of breeding and Common Eiders become more synchronized in date 

of initiation in late nesting years. However, date of initiation did not appear in our top 

model as a predictor of daily survival rate. We found, it could be more beneficial to nest 
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later in the season versus earlier. However, the caveat of only using DSR as an index of 

success was we have no estimate of post-hatch success indices (brood survival or 

recruitment), which may be impacted by timing differently. 

 

Introduction 

 Interest in species’ ability to match their reproduction with foraging opportunities, 

for themselves and offspring, in the face of climate change, is increasing. With climate 

change, temperatures are predicted to not only increase, but also become more variable 

(Hansen et al. 2012). This is concerning relative to biological systems, which 1) may lack 

the ability to adapt in a relatively short period of time or 2) lack the phenotypic plasticity 

to overcome biological constraints related to increasing and variable climate (Merilä and 

Hendry 2014). The inability to match timing of reproduction to resources is also known 

as the mismatch hypothesis and is seen in both invertebrates and vertebrates (See Dunn et 

al. 2011). 

 In avian species specifically, there is some ambiguity over the significance of the 

mismatch hypothesis (Dunn et al. 2011). Avian species have many factors that will 

disrupt their ability to match the timing of reproduction (date of egg laying) to ensure 

their hatch date coincides with the date of maximum resource availability. For example, 

avian species that migrate, must time their reproduction based on arrival to their breeding 

grounds (Both and Visser 2001), which is affected by variable spring conditions 

(Lehikoinen et al. 2006). Although avian species that migrate have the ability to adjust 

their arrival date between years of variable climate (Clermont et al. 2017), there is 

evidence that some avian species lack this flexibility (Møller et al. 2008). 
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 The inability to adjust date of arrival to breeding grounds for avian species is 

concerning due to the direct consequences on reproductive success when nest initiation 

occurs earlier versus later in the breeding season (Dzus and Clark 1998, Guyn and Clark 

1999). Although initiating early is found to be advantageous in most scenarios (Dzus and 

Clark 1998, Guyn and Clark 1999, but see Emery et al. 2005, Drever and Clark 2006), 

avian species are still limited by spring conditions potentially altering individuals’ 

opportunity to nest at optimal times. To understand the relationship between spring 

conditions, date of initiation, and reproductive success, we studied the phenology of a 

long-lived sea duck species the Common Eider (Somateria mollissima), from 2009-2017. 

 To explore the relationship between weather and phenology of Common Eiders, 

we had three objectives. 1) Explore the relationship between a suite of weather variables 

to and timing of Common Eider’s nest initiation. 2) Determine if there are consequences 

relative to daily survival rate when initiating early vs late in the breeding season. 3) 

Identify other predictors of daily survival rate in addition to date of initiation that may 

drive reproductive success in the species. 

 

Methods 

Study area 

We studied Common Eiders at the Mast River Common Eider Colony (N 

58.725388º, W -93.464288º), in Wapusk National Park located approximately 40km east 

of Churchill, MB. We searched for nests where the Mast River enters into La Pérouse 

Bay. This braided river delta includes numerous small islands ranging from 1 to 300 m2.  

Islands utilized by Common Eiders have a mixture of birch (Betula glandulosa) and 



 

67 

    

willow (Salix spp.) with vegetation height ranging from 0.6 to 2 m (For detailed study 

site description see Schmutz et al. 1982). 

Sampling Design 

From 2009–2017, nest searches began during the first week of June. Each year we 

aimed to sample the colony in its entirety, but recognize some nests were not be detected 

or were outside the historic nesting area. When a nest was found, we recorded GPS 

coordinates, distance from the water’s edge to nest, and age by candling each egg (Weller 

1956). We estimated day of initiation and the date of hatch for the nest based on age and 

clutch size (here we assume 4 days to lay and 24 days to incubate (Iles et al. 2013)). We 

rechecked nests in 7-10 day intervals until it either hatched or failed determined by sign 

at the nest. Nests with one or more hatched eggs (presence of hatchlings or hatch 

membranes) were considered successful, while nests with a destroyed clutch or absence 

of eggs/ hatch membranes were defined as failed nests. 

Snowmelt Model 

 Many measures of weather/climate variables can be used as indices of spring 

conditions, which we hypothesize to be related to date of initiation in Common Eiders. 

With the assumption that Common Eiders cannot begin nesting until after snowmelt has 

ended (e.g. Lepage et al. 1996), we calculated the projected last day of snowmelt for each 

spring for 2009-2017.  We calculated the total snow accumulation, the accumulated 

spring degree-days of warming (>0°C), and a combination of the two weather measures 

to estimate time of snowmelt for each year, within our study. To calculate weather 

measures each year, we obtained weather data from the Canadian Government 

(climate.gc.ca) for the Churchill Airport weather station, which was the closest in 
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proximity to our study site (approximately 35km west of the colony). To calculate the 

total snow accumulated (mm) each spring, we summed the days with a precipitation 

event and a maximum temperature below freezing each winter. For accumulated spring 

degree-days of warming, we summed the degree days > 0°C from 1 January – 1 June 

each year. The total degree-days of warming each spring reflects the rate and timing of 

when warming occurs annually. 

 We calculated snowmelt using the equation (Rosa 1956): 

M=CM(Ta-Tb) 

where M is snowmelt (mm/day), CM is the degree-day coefficient representing the 

amount of snow (mm) melted per degree day, Ta is the maximum daily air temperature 

(°C), and Tb is the base temperature of 0 °C. National Resources Conservation Service 

(2004) suggests using 2.74 for CM when little information about snow conditions are 

available, which was the case for our study. Once we determined the snowmelt for each 

day, the accumulation of this snowmelt was summed for each year. We classified 

projected last day of snowmelt for each year when the snowmelt accumulation surpassed 

the snow accumulation (Figure 1). This intersection represents the day where enough 

degree-days above freezing were achieved to melt the accumulated snow. 

Statistical Analysis 

We conducted a Pearson’s correlation test to determine if a significant correlation 

occurred among our weather metrics of total snow accumulation, accumulation of spring 

degree-days of warming, and the projected last day of snowmelt in relation to initiation 

date in Common Eiders. Both mean initiation date and first initiation date for each year 

were included, as well as the variance between initiation dates. 
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We calculated daily survival rate (DSR) and overall nest success for our breeding 

populations with Program Mark (Dinsmore et al. 2002, White and Burnham 1999). Here 

we define DSR as 1-(total number of failed nests/the total number of exposure days) or 

the probability of surviving a one-day interval. Nest success is defined as the probability 

of at least one egg surviving from initiation to hatch, which is the estimate of DSR to the 

power of 28, assuming a four-day laying period plus 24 days of incubation. 

We generated five biological hypotheses to incorporate into our 13 candidate 

models to explain how DSR will vary relative to our covariates. 1) Constant DSR (Null): 

As our null model we allowed DSR to remain constant across the breeding season. 2) 

Year: Year was included as a grouping variable in our model to accommodate for 

environmental stochasticity from one year to the next that may affect DSR. 3) Spatial 

Characteristics: Covariates such as, nest’s distance to nearest neighbor, nest’s distance to 

water, and surrounding nest density are all predicted to make each nest more or less 

detectable to predators and as a result increase or decrease DSR. 4) Temporal 

Characteristics: Covariates such as the age of the nest, the day within the breeding 

season, and date of initiation are all associated with timing. However, nest age and day 

within breeding season allow DSR to vary across time rather than remaining constant. In 

addition, we hypothesized that initiation date was determined by variation in seasonal 

weather patterns, and we wanted to understand if date of initiation was solely a predictor 

of DSR. For day within breeding season, we also allowed a year specific trend to identify 

if the trend in DSR throughout the breeding season varied from one year to the next. 5) 

Global Model: We included Year, spatial, and temporal covariates to set a baseline for 
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other models. We applied quadratic terms to all covariates after exploration of data found 

all trends to be nonlinear relative to DSR.  

To test for goodness-of fit for our models, we first calculated each model’s 

proportional reduction in deviance relative to the null model (Zheng 2000), or the 

deviance reduction measure. To do this, we calculated the ratio of deviance reduction 

“R”, which is the deviance reduction measure of the model of interest divided by the 

deviance reduction measure of the fully saturated model. Our fully saturated model 

consisted of year specific trends for all covariates (117 parameters). R is not a true 

goodness-of-fit test, but allows us to measure each model’s fit the data relative to the 

fully saturated model (see Iles et al. 2013 for detailed description). 

 We used Akaike’s Information Criterion (AIC, Akaike 1973) with a correction 

for small sample size to determine which model had the highest support (AICC, Burnham 

and Anderson 2002). For our top models, we explored parameter estimates over a range 

of values to determine their impacts on DSR.  

To understand what influences DSR across the breeding season, we also wanted 

to calculate the time and rate of nest failure. To accomplish this, we determined the 

availability of nests to be a function of when nests became available (day of nest 

initiation) and the day nests are absent either from nest success or failure. For measuring 

trends in the timing and rate of failure, we calculated the day of failure using the 

Mayfield estimator by finding the halfway interval between the day the nest was last 

checked with eggs present and the day the nest was fated (Mayfield 1961). 

For each year, we compared the day within the breeding season where maximum 

nests (prey) were available to the day within the breeding season that the highest rate of 
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failure (consumption rate by predators) occurred. We also included a one to one trend 

line representing a scenario where the day of highest consumption rate was matched to 

the day of maximum prey availability. If a year is above the one to one line then the day 

maximum consumption rate is occurring after the day of maximum prey availability, 

while if a year is below, then the day of maximum consumption rate is occurring before 

the day of maximum prey availability. 

 

Results 

 We located 1,735 nests over the 9 years.  The proportion of nest failure was 

highly variable from year to year (mean= 70%) ranging from 99% to 15%. Of the failed 

nests, only 1% were due to abandonment (n=17), while the remaining 99% were caused 

by predators (n=1,230). Length and timing of the overall breeding season also varied 

annually (Table 1). Year 2010 and 2015 shared the earliest date of initiation over our 

study (May 30), while 2009 had the latest date of initiation (June 20). 

Snowmelt Model and Nest Initiation 

 The projected last day of snowmelt was correlated (Mean Date: R2=0.758, p-

value=0.002. Date of First: R2=0.874, p-value=<0.001) with the first and mean date of 

initiation for years 2009-2017 (Figure 2). In addition, the variance of initiation date was 

higher in years where the projected last day of snowmelt occurred earlier (R2=0.461, p-

value=0.044).  Lower variance was observed in years where the projected last day of 

snowmelt occurred later (Figure 2). Both snow accumulation and degree-days of 

warming were not correlated to the projected last day of snowmelt (Figures 3 & 4).  
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Daily Survival Rate 

 The DSR of Common Eiders for years 2009-2017 was a function of year, nest 

age, and the day within the breeding season (Table 2). Quadratic terms received higher 

support overall for nest age and day within the breeding season. Year alone improved the 

model substantially compared to the null model (decrease of 749.172 AICc). The addition 

of nest age and day within breeding season (allowing for a year specific trend) was the 

most supported model (Table 2). While DSR had a year specific trend in relation to day 

within breeding season, we observed that as nest age increased so did DSR (Figure 5). 

All spatial characteristics were less supported regardless of a year specific intercept.  

Timing and Rate of Nest Success/ Failure 

The parameter of initiation date did not show high support in our model and there 

is evidence that early and late nesting are more advantageous, dependent on year (Table 

3). Estimated nest success varied across year and was highly variable when the 28-day 

period of incubation occurred during the early, mid, or last portion of the breeding season 

(Table 3).  

To explore why estimated nest success is higher early in the breeding season for 

some but not all years, we visualized nest availability and rate of failure across the 

breeding season. Nest availability varied by year as well as the rate and timing of failure 

(Figure 6). The day of maximum prey availability consistently arrived earlier than the day 

of maximum consumption rate with the exception of 2016 (Figure 7). 
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Discussion 

 We found that the date of nest initiation in Common Eiders was correlated to the 

projected last day of snowmelt. The projected last day of snowmelt was a combination of 

snow accumulation and degree-days of warming, but neither total snow accumulation or 

accumulated degree-days of warming alone were correlated to date of initiation, in 

Common Eiders. This provides evidence that snow and temperature related data alone do 

a poor job of determining date of initiation, in Common Eiders, but when used to inform 

snowmelt models, are quite accurate.  

 The variance of initiation date each year was also correlated to projected last day 

of snowmelt. This would support the idea that in years where snow melts earlier, 

Common Eiders have more flexibility when they initiate their nests and possibly spend 

more time obtaining food resources to support themselves through the incubation period 

when they are thought to fast (Öst and Kilpi 1999, but see Jaatinen et al. 2016). In 

contrast, years where snow does not melt until late in the season results in a synchronized 

date of initiation, within the colony, indicating there is substantial pressure on Common 

Eiders to nest as soon as snow is absent. In addition, the synchrony of nest initiation is 

absent in early nesting years suggesting that Common Eiders are not attempting to 

synchronize their initiation with other nesting females. It is suggested that late breeding 

birds will put their ducklings at higher risk through harsh fall storm exposure and 

increased predation (Love and Gilchrist 2010) supporting our finding of females 

attempting to nest as soon as nest sites become available in years where snow is late to 

melt. However, it was also shown that very early nesters might not maximize their 

duckling recruitment by having a hatch date before sea ice has left the bay (Lepage et al. 
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2000). In early nesting years, we observed females nesting across a wider range of time, 

which supports the idea that females could be aligning their hatch date with optimal 

foraging opportunities for their young.  

 Although the projected date of last snowmelt was accurate at predicting the date 

of initiation, each year the difference in date of the projected last snowmelt and date of 

first or mean initiation did not match one another. This could be due to varying snow 

conditions where snowpack is denser than what was predicted using the standard 

snowmelt coefficient (CM). In addition, Common Eiders in this colony were found 

nesting within shrub-like vegetation, which is taller relative to surrounding vegetation 

(salt and freshwater marshes). The taller and denser vegetation could hold snow more 

efficiently than the surrounding area and lead to prolonged unavailability of nest sites. 

Although the snowmelt model did well to predict the date of initiation, in Common 

Eiders, there are additional variables such as snow condition, snow depth at specific 

locations, and albedo that could be incorporated in the future to increase overall 

prediction accuracy. In addition, the Mast River experiences wide fluctuations in water 

levels during spring melt, which will also delay nesting in years of extreme flooding. 

Other non-abiotic factors such as the physiology of the Common Eider must also be 

considered. Common Eiders are primarily capital breeders (Jaatinen et al. 2016). 

Therefore, females arriving to the breeding grounds in different body conditions will 

have different strategies related to the timing of initiation (Hennin et al. 2019). 

 Year, nest age, and day within breeding season were all included in the top model 

for DSR, in Common Eiders. Initiation date was not found in the top model for DSR and 

suggests that although it is correlated to annual weather patterns it is not a predictor of 
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DSR, in Common Eiders. This becomes more apparent when calculating nest success for 

an early, mid, and late-season nesting female for each year of the study based on the 

estimated DSR values (Table 3).  

 It is suggested that the best strategy of waterfowl species is to begin initiation of 

their nest to match offspring’s hatch date with resources as they become available (Dzus 

and Clark 1998, Love and Gilchrist 2010). However, when only using DSR as index of 

success here we find there are certain years where it could be more beneficial to nest later 

in the season versus earlier. The caveat of only using DSR as an index of success is we 

have no estimate of post-hatch success indices (brood survival or recruitment), which 

could be impacted differently depending on when hatch date occurs (Etterson et al. 2010, 

Spear and Nur 1994). Further, considerations such as, sea ice conditions (post-hatch 

foraging) and timing of predators, may better predict overall (post-hatch or nest) success. 

Studies using estimates of nest success have found similar conclusions to this study 

(Emery et al. 2005, Drever and Clark 2006), while others using brood survival and 

recruitment as their index of success contrast this finding by stating an earlier initiation 

date will result in higher success (Dzus and Clark 1998, Guyn and Clark 1999). This 

reaffirms the importance of understanding the limitations in one index of reproductive 

success over another and should be interpreted with caution (Etterson et al. 2010). 

 Because day within breeding season was allowed to have a year specific trend, 

years 2017, 2016, and 2014 had a high DSR at the beginning of the season, and DSR 

decreased towards the end of the season. In contrast, all other years observed a different 

trend where DSR “dipped” at some point during the breeding season. The severity of this 

“dipping” in DSR varied from one year to the next and in how many days it spanned. In 
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addition to the varying trends in DSR relative to day within breeding season, we found 

that DSR increased as the nest was farther into incubation. However, the overall 

biological significance in the change of DSR relative to nest age appear negligible. There 

could be behavioral changes such as decreased number of recess events later in 

incubation, in nesting females that are causing DSR to increase later in incubation. 

However, this was unlikely given females typically increase the number of recess events 

late in incubation when their body fat reserves are depleted (Wiebe and Martins 1997). 

Most likely, it is an artifact of predator arrival and the rate they consume nests. 

 We suggested a biological connection between temporal factors (day within 

breeding season and nest age) and DSR by identifying the days nests were available and 

at what point during the season failures occurred (Figure 6). Assuming nest failures are 

the result of nest predation (excluding abandoned nests); it becomes apparent that the 

timing and rate of predation vary across years. The rate of predation, in most years, 

increases rapidly across a 3–4 day interval, which usually comes after the day of 

maximum prey availability (Figure 7). The timing of maximum prey consumption always 

occurred after the day of maximum prey availability and could be the result of imperfect 

detection in day of failure used by the Mayfield estimator. Imperfect failure date 

detection is the result of many nests checked on the same day and biasing multiple nests 

to have an estimated fail date of the same day. However, with the exception of our lowest 

nest failure year (2016), a biological explanation for this trend could be in most years 

when predation is relatively high, predators time their foraging pressure to align directly 

on the day of maximum nest availability or shortly after. In years with low failure such as 
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2016, nest predators could be switching prey away from Common Eiders and matching 

foraging pressure with alternative prey (Iles et al. 2013).   

Future studies should seek to understand how predator communities are also 

impacted by annual weather patterns and if they are not impacted in a similar fashion to 

colonial nesting waterfowl, what affect will this have on the overall success of waterfowl 

nesting? Having multiple predator species arriving asynchronously to one another in one 

year, but potentially having multiple predator species overlapping in others may increase 

the overall nest predation pressure within a colony. 
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Figure 1. Visual representation of the intersection in snow accumulation (gray line) and snow melt (black line) of the Mast 

River Common Eider (Somateria mollissima) Colony Region. Snow accumulation is the sum total of days with a maximum 

daily temperature below freezing and with a precipitation even (mm). For snowmelt accumulation, refer to the subsection 

Snowmelt model under methods. 



 

83 

    

 

Figure 2. Correlation between measures of initiation date in Common Eiders (Somateria 

mollissima) and the projected last day of snowmelt. Mean date of Common Eider 

initiation date (top), first date of initiation (middle), and variance in date of initiation 

(bottom) for 2009-2017 relative to the last day of snowmelt (Pearson’s correlation test: 

Mean Date: R2=0.758, t=4.679, p-value=0.002. Date of First: R2=0.874, t=6.976, p-

value=<0.001. Variance of Initiation: R2=0.461, t=-2.447, p-value=0.044).  
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Figure 3. Correlation between measures of initiation date in Common Eiders (Somateria 

mollissima) and the total snow accumulation for 2009-2017. Mean date of Common 

Eider initiation date (top), first date of initiation (middle), and variance in date of 

initiation (bottom) for 2009-2017 relative to the total snow accumulation (Pearson’s 

correlation test: Mean Date: R2=0.139, t=1.061, p-value=0.324. Date of First: R2=0.098, 

t=0.872, p-value=0.412. Variance of Initiation: R2=0.024, t=0.416, p-value=0.690).  
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Figure 4. Correlation between measures of initiation date in Common Eiders (Somateria 

mollissima) and the accumulated degree days (above 0°C) each Spring. Mean date of 

Common Eider initiation date (top), first date of initiation (middle), and variance in date 

of initiation (bottom) for 2009-2017 relative to the accumulated degree days each spring 

(Pearson’s correlation test: Mean Date: R2=0.387, t=-2.103, p-value=0.074. Date of First: 

R2=0.405, t=-2.183, p-value=0.065. Variance of Initiation: R2=0.034, t=0.499, p-

value=0.633). 
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Figure 5. Daily survival rate of Common Eiders (Somateria mollissima) across the breeding season (Day 1=May 30, Day 60= 

July 29), as a function of year, day within breeding season, and nest age (black dot = nest age 1, grey dot = nest age 15).
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Figure 6. The proportion of available prey (grey bars) on each day within the breeding 

season as a function of when Common Eiders (Somateria mollissima) initiate their nests 

for the beginning of prey availability and when nests either succeed or fail for the loss of 

prey availability. Accumulation of initiation (green), successful nests (blue), and failed 

nests (red) across 2009-2017. Day 1=May 30, Day 60= July 29. 
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Figure 7.  Maximum prey availability and prey consumed for 2009–2017. Prey 

availability was calculated from Common Eider (Somateria mollissima) date of initiation 

and when nests became absent either from failure or success. Day of maximum prey 

consumed was the day of highest rate of failure for each year. Multiple years had more 

than one day where maximum prey availability was present and the first of those days 

were selected. Dashed line represents the hypothesis where predators should match their 

highest rate of consumption on the same day as when maximum prey are available. Day 

1=May 30, Day 45= July 14. 
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Table 1. Proportion of nest failure and length of breeding season for Common Eiders 

(Somateria mollissima) from 2009-2017. First and last days of the breeding season are 

based on Day 1 = May 30, which was the earliest nest initiation date in our 9-year 

dataset. 

 

Year 

Proportion 

of  Nest 

Failures 

Number of 

Nests 

First Day of 

Nest 

Initiation 

Last 

Day of 

Nesting 

Season 

Length 

(days) 

2009 0.951 61 22 73 51 

2010 0.525 322 1 62 61 

2011 0.994 177 9 46 37 

2012 0.818 286 6 47 41 

2013 0.734 387 2 57 55 

2014 0.994 154 2 39 37 

2015 0.857 154 1 59 58 

2016 0.154 117 8 57 49 

2017 0.299 77 6 47 41 
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Table 2. Summary of model selection results ranked using AICc for the daily survival rate of Common Eiders (Somateria 

mollissima) from 2009-2017. wi is the model weight, K is the number of parameters, Dev is model deviance, and R is the relative 

model reduction in deviance when compared to the fully saturated model (not included in this table). SGlobal incorporates all 

covariates into a single model while also maintaining biological relevancy. S(.) only assumes a constant DSR throughout the 

breeding season and is our null model. All spatial and temporal predictors were given quadratic terms.  

Model AICc Δ AICc wi K Dev. R 

SYear+Age+Age^2+T+T*Year+T^2+T^2*Year 3858.25 0.00 1 29 3800.16 0.86 

SYear+Age+Age^2+T+T^2 4029.91 171.67 0 13 4003.89 0.70 

SYear+Init+Init^2+Age+Age^2+T+T^2 4033.23 174.99 0 15 4003.21 0.70 

SGlobal 4040.25 182.00 0 21 3998.20 0.71 

SYear+T+T^2 4054.98 196.73 0 11 4032.96 0.68 

SYear+Init+Init^2 4142.96 284.71 0 11 4120.95 0.62 

SYear+Age+Age^2 4161.70 303.46 0 11 4139.69 0.60 

SYear 4182.93 324.68 0 9 4164.92 0.58 

SYear+Water+Water^2 4183.51 325.26 0 11 4161.49 0.58 

SYear+NN+NN^2 4184.69 326.45 0 11 4162.68 0.58 

SYear+Density+Density^2 4186.74 328.49 0 11 4164.73 0.58 

SYear+SpatialPredictors^2 4189.72 331.47 0 15 4159.69 0.59 

S(.) 4932.10 1073.85 0 1 4930.10 0.00 
 

  

*Predictors in model: Temporal- Nest Age (Age), Day within breeding season (T), Date of nest initiation (Init). Spatial- Nest’s 

distance to water (Water), Nest density of surrounding area (Density), Nest’s distance to nearest neighbor (NN).
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Table 3. Probability of nest success of Common Eiders (Somateria mollissima) 

calculated from estimates of DSR for each year (assumes a 28 day period including both 

laying and incubation). Column headers indicate if a Common Eider were to initiate 

nesting on the first day possible (First), median value between first and last day possible 

to initiate (Middle), and the last day possible to initiate a nest (Last) for each given year. 

 

Year First Middle Last 

2009 0.008 0.023 0.266 

2010 0.209 0.243 0.903 

2011 <0.001 <0.001 0.001 

2012 0.051 0.016 0.014 

2013 0.123 0.045 0.357 

2014 <0.001 <0.001 <0.001 

2015 0.064 0.022 0.180 

2016 0.747 0.604 0.040 

2017 0.554 0.324 0.045 
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