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ABSTRACT 

Spectroscopy is the scientific technique of quantifying and measuring electromagnetic, or light, 

reflectance or absorption. Atoms emit and/or absorb light when light passes through. The excitations 

provide specific energy signatures that relate to the element that is emitting or absorbing the light. Non-

invasive biosensors monitor physical health properties such as heart rate, oxygen saturation, and tissue 

blood flow as a result of spectroscopy. Several attempts have been made to non-invasively detect 

metabolic chemical, or analyte, concentration with various spectroscopic techniques. The primary 

limitation is due to signal-to-noise ratio. This research focuses on a unique method that combines 

emission spectroscopy and machine learning to non-invasively detect glucose and other metabolic 

analyte concentrations. Artificial neural network is applied to train a predictive model that enables the 

remote sensing capability. The data acquisition requires capturing digital images of the spectral 

reflectance. Image processing and segmentation determines discrete variables that correlate with the 

metabolic analytes. The clinical trial protocol includes n=90 subjects, and a venipuncture 

comprehensive metabolic panel blood test within two minutes prior to a non-invasive spectral reading. 

Results indicate a strong correlation between the spectral system and the clinical gold standard, relative 

to metabolic analyte concentration. 
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1.      INTRODUCTION 

Non-invasive (NI) biosensor devices offer promise for continuously monitoring a subject’s 

health [1]. The technological advancement aims to provide greater efficiency in the delivery of 

quality health care. Currently, NI health monitoring solutions integrate an optical sensor to detect 

physical parameters (e.g. heart rate) and tests such as an electrocardiogram (ECG). The optical 

sensor beams a light through the skin, which some of the light is absorbed. Changes in the portion 

of light that is reflected back to the sensor returns the information for interpretation, a process 

known as photo plethysmography (PPG). Advances in complimentary technology (i.e., digital 

signal processing and machine learning), resulting from an increase in computing power, enable 

the optical sensor technology to be scaled down to the size of a wrist watch for the purpose of 

tracking certain physical health and fitness parameters. The advancement also opens avenues for 

diverse biomedical sensor applications [2, 3]. This research aims to expand the NI detection 

capability to the 14 health parameters found in a comprehensive metabolic panel (CMP) clinical 

blood test. The CMP test measurers blood sugar (i.e. glucose) level, electrolyte and fluid balance, 

kidney function, and liver function. The CMP test is routinely preformed to assess overall health, 

diagnose, and guide treatment of numerous diseases. The CMP blood test is the second most 

reimbursed blood test in the United States with over 40 million tests performed in 2015, based on 

Medicare payments [4, 5, 6]. This thesis focuses on combining optical sensor technology with 

machine learning to enable the NI detection capability of a CMP blood test. 
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1.1 Motivation 

Given the aging population, wearable and NI biomedical monitoring applications are in 

demand [7]. NI point-of-care health monitoring leads to convenient and timely access to vital 

information that is important in the diagnostic decision-making process. The applications, or 

effects, of this type of technological advancement in medicine include remote health monitoring, 

early detection, and increase compliance activity; therefore, potentially curbing the rising cost of 

healthcare [8]. More importantly, the innovation can positively impact patient lives. 

Today, the CMP blood test requires drawing a vial of blood to conduct the analysis. This 

venipuncture method poses a challenge in the case of neonatal, elderly, and hemophobic patients. 

Moreover, the NI solution is of particular interest because the application enables continuous 

monitoring of the subject’s health status. For example, diabetes management requires regular 

glucose monitoring to maintain optimal health. Monitoring drug efficacy is another area in which 

continuous measurements is of great importance. 

Real-time vital information, as a result of NI health monitoring, allows individuals to 

change their lifestyle to maintain optimal health status. NI chemical sensors, unlike physical 

sensors for monitoring vital-signs (e.g., heart rate, ECG, etc.), are still in their infancy. 

Electrochemical biosensors detect electrolytes and metabolites in sweat, tears, or saliva through 

the use of transducers. Several optical techniques (e.g., Raman spectroscopy, near/mid-infrared 

absorption, and florescence) have been attempted to detect metabolic analytes [9, 10]. Previous 

attempts involving optical techniques to detect metabolic chemistry levels fail to generate reliable 

results however. The challenge in developing a NI optical biosensor capable of detecting human 

biological chemistry includes identifying significant predictors that relate to the imaging technique 

and the metabolic analytes of interest to develop a reliable model. Our focus in this thesis is the 
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development of a novel NI optical imaging clinical blood testing application capable of detecting 

the concentration of metabolic chemistry analytes. 

 

1.2 Thesis Outline  

1.2.1 Chapter 2: Literature Review 

In this chapter, we introduce previous non-invasive analyte, particularly glucose, 

concentration detection methods. The significance, causes of failure with respect to unsuccessful 

previous attempts, and the differentiating factors relating to prior attempts and the current method 

are described. This section also provides background information pertaining to the innovative 

machine learning approach, image processing, and statistical analysis to substantiate and validate 

the device development. 

 

1.2.2 Chapter 3: Materials and Procedure 

This chapter discusses the custom hardware, software, and clinical trial relating to the NI 

CMP (NICMP) device. It provides an overview of the Institutional Review Board (IRB) approved 

protocol to cross-validate the NI device against the standard venipuncture CMP test. This section 

also describes the specific machine learning technique to develop the predictive model to enable 

the NI feature. Moreover, this section discusses the binary image thresholding and conversion 

process necessary to analyze the fundamental aspect by determining the underlying error 

distribution. 
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1.2.3 Chapter 4: Results 

This chapter provides a summary of the NICMP predictive model results, including mean 

squared error, correlation, covariance, and correlation coefficient. Additionally, the predictive 

model coefficient of determination generalizes the overall correlation, relative to the venipuncture 

method. Graphical representation of the results with respect to each metabolic parameter are 

available in this section. This section also provides the analysis relating to the binary image, or 

underlying, error distribution. 

 

1.2.4 Chapter 5: Discussion 

This chapter interprets the statistical analysis of the NICMP device. The section discusses 

the accuracy of the NICMP predictive model, underlying error distribution, and the relationship 

between the CMP analyte concentrations and certain biological factors. 

 

1.2.5 Chapter 6: Conclusion 

This section provides the study outcome, and further considerations regarding the NICMP 

predictive model development. It outlays enhancements to potentially increase the device 

reliability and accuracy. Finally, this chapter also discusses the NICMP limitations. 
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2.      LITERATURE REVIEW 

2.1 Previous Non-Invasive Analyte (Glucose) Monitoring Attempts 

NI analyte monitoring has been attempted through several different methods throughout 

the years. This section will have an emphasis on the glucose analyte. This particular analyte is 

important in mitigating diabetes mellitus. Diabetes is considered a pandemic and affects 

approximately 8.3% of the world’s population, or 380 million people. This figure is anticipated to 

rise to 592 million people by 2035 [11]. Diabetes is a medical condition that occurs when an 

individual’s glucose, or blood sugar, is too high. The pancreas is responsible for producing the 

insulin hormone. Insulin helps the glucose from food enter your cells and convert it into energy. 

The common types of diabetes are type 1, type 2, and gestational diabetes. Type 1 diabetes occurs 

when your body does not produce insulin, and usually is diagnosed in children and young adults. 

This is a result of the immune system attacking and destroying cells in the pancreas that make 

insulin. Type 2 diabetes occurs when your body does not make or use insulin well. Type 2 diabetes 

most commonly affects middle-aged and older people, and is the most common type of diabetes. 

Both type 1 and type 2 diabetes can affect individuals at any age however. Gestational diabetes 

affects some women during pregnancy. This type of diabetes usually goes away after the baby is 

born. Women with gestational diabetes have a greater chance of developing type 2 diabetes later 

in life [12]. Individuals diagnosed with diabetes must closely monitor the prevalent chronic disease 

by controlling glucose level to mitigate severe health risk. Current methods to control blood 

glucose and assist with insulin intervention include venipuncture, finger-stick, and invasive 

continuous glucose monitoring devices. 
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2.1.1 Methods Attempted 

Electrochemical transducers dominate the role in clinical diagnostics. This technology 

enables hand-held analyzers to detect metabolic analytes. These sensors rely on blood samples, 

which inhibits diverse biomedical applications. This presents an opportunity for clinical translation 

of NI systems to address unmet clinical needs [13]. 

Glucose can be found in different parts of the body, including interstitial fluid, saliva, tears, 

urine, and sweat. Several attempts have been made to detect glucose with NI biosensors through 

these mediums [14]. Figure 1 summarizes the various NI glucose measurement techniques that 

have been investigated. We will focus on NI optical techniques for the purpose of comparison. 

Commercial attempts to develop an optical NI glucose monitor include Raman spectroscopy, near-

infrared (NIR) spectroscopy, and radio wave spectroscopy. 

 

 

Figure 1. Blood Glucose Measurement Techniques [10] 
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The basis of Raman spectroscopy is on the detection of scattering light resulting from the 

rotation of molecules interacting with a laser. The vibration and rotation of a molecule correlates 

to its concentration. Raman bands between 8,333 nm to 11,111 nm are specific to glucose in vitro 

[15]. Animal models in vivo prove good correlation with respect to glucose concentration mainly 

on the eye [16, 17]. Raman spectroscopy on humans indicate 92% of the values within the A and 

B zones of the Clarke Error Grid, suggesting potential clinical usefulness. (95% of values should 

be within zone A, and no more than 5% of the values in zone B to be clinically acceptable.) 

Limitations concerning lipid structure on human skin causes different results however. Better 

calibration and mathematical models are necessary to eliminate the limitations due to other 

compounds. The approach is impractical due to the size of the device and its limitations [18]. 

NIR spectroscopy concept involves transmitting a band of NIR light through a vascular 

area (finger, ear, tongue, etc.). Certain calculations provide glucose concentration in vivo from the 

information obtained at the receiver [19, 20]. Producing corresponding glucose measurements is 

done by combining the NIR spectroscopy technique with certain multivariate analysis techniques. 

In fact, this method produces glucose measurements in complex biological matrices and synthetic 

mixtures [21, 22, 23]. The NIR spectroscopy method through the skin has been unsuccessful due 

to sensitivity concerns, and environmental variations that result in a number of factors that interfere 

with the glucose measurements however [24]. 

The radio wave spectroscopy method entails transmitting a low-powered radio signal 

through the area between the thumb and forefinger via two facing patch antennas. The permittivity 

changes across the signal transmission path depends on analyte concentration. The sensing system 

operates at 60 GHz on the millimeter wave band to function as a spectroscopic method for material 

characterization. One unique feature is the ability for this method to detect very low levels of 
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glucose. It can detect glucose concentration in controlled water-based samples as low as 24.42 

mg/dL, and 72.07 mg/dL in humans. This method is currently still in development [25]. 

The spectroscopy approach to generating a signal with either a laser or LED light source 

in the visible to NIR frequency range for analysis with respect to certain physical health parameters 

is clinically proven. The approach generates a reliable application to remotely detect physical 

health parameters such as heart rate, blood pressure, and oxygen saturation by PPG processing. 

Clinical PPG systems to monitor certain vital signs normally require direct contact with the skin 

in the form of a finger clip. An evolutionary version of the spectroscopic PPG has been developed 

to function without direct contact with the tissue through a camera-based imaging approach [26]. 

This particular advancement indicates the versatility of spectroscopy. Furthermore, it validates the 

image-based method of data acquisition for the purpose of developing a NICPM biosensor. It is 

clear why researchers have attempted to detect glucose analyte concentration with spectroscopy. 

The technology has proven useful in providing NI, continuous, and real-time measurement of 

arterial pressure with infrared light transmitted through a finger. Implementing the aforementioned 

technology to detect analyte concentration poses a challenge however. The attempts involving 

spectroscopy have come close by identifying correlations, with respect to glucose concentration, 

in various biological compartments through different spectroscopic techniques (i.e., absorption, 

transmission, and reflectance) and wavelengths. 
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2.1.2 Primary Cause of Failure 

The main reason for the unsuccessful attempts is particularly due to unfavorable signal-to-

noise ratio (SNR) [27]. The SNR issues with regards to NI optical methods are primarily due to 

environmental factors including body temperature, skin moisture, skin thickness and motion. 

These factors cause interference with the excitation path of the light in an optical system [28]. One 

application combined three physical properties to develop a multi-sensor unit, which includes 

ultrasound, conductivity, and heat capacity. This multi-sensor approach increased sensitivity by 

simultaneously activating each sensor, reducing the contribution of noise, to improve the SNR. 

This particular method performs better than several previous NI approaches and attempts [29]. 

Research suggests that advancements in transducers and de-noising algorithms can overcome the 

challenges in the development of a NI optical glucose analyte measurement instrument. 

The development of a NICMP involving reflectance spectroscopy through imaging aims 

to provide a discrete signal for analysis. The common theme relative to previous NI attempts 

include measurements relating to coefficients from various spectroscopic approaches (e.g., heat, 

ultrasound, NIR transmission, etc.). The method herein involves capturing images of laser 

reflectance with a CCD or complementary metal-oxide semiconductor photo (CMOS) detector. 

These type of image sensors convert light into electrons. This particular optical approach allows 

identifying variables that are discrete, and significantly correlate with various analyte 

concentration. The digital images, as a result of capturing laser reflectance with a CCD or CMOS 

photo detector, provide discrete intensity values between 0 and 255, relative to certain features. 

The discrete values are computed as the input variables, or predictors, in machine learning analysis 

to generate an algorithm, or predictive model, to detect glucose and other metabolic analyte 

concentration. The primary objective of this method is to address the problem concerning SNR. 
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2.2 Laser Speckle Contrast Imaging 

2.2.1 Background 

Spectroscopy is an integral part in the development of most fundamental theories, including 

physics and quantum mechanics. Because its techniques are extremely sensitive, spectroscopy is 

also applicable in several science and technology fields [30]. Because of the research of spectra in 

different chemical elements in flames, we know each element produces a set of certain 

characteristics. Thus, spectra can help identify individual elements. For example, astronomers 

apply spectroscopy to determine the chemical composition of matter (e.g., stars and planets) in the 

universe [31, 32]. Another application is magnetic resonance spectroscopy (MRS), and magnetic 

resonance imaging (MRI). MRS provides an analysis relating to the concentrations of different 

chemical components within a tissue such as hydrogen ions or protons. MRI provides an anatomic 

image of the brain to detect the location of a tumor. These particular spectroscopic techniques 

include a magnet and radio waves to enable the non-invasive analysis [33]. We will focus on 

optical (i.e., visible light and NIR) spectroscopy, and its clinical application. This NICMP research 

involves applying machine learning to optical spectroscopy, and training a predictive model for 

future analysis. This optical spectroscopy approach is an emission, or reflectance, application that 

detects the reflecting spectral flux with a photo detector. Currently, NIR optical spectroscopy 

provides a clinical tool to non-invasively monitor microvascular perfusion, or tissue blood flow. 

Techniques such as Laser-Doppler Flowmetry (LDF), Scanning Laser Doppler Imaging (SLDI), 

and Laser Speckle Contrast Imaging (LSCI) represent the evolution of optical emission 

spectroscopy with respect to its NI clinical application to continuously monitor microvascular 

perfusion. 
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2.2.2 Emission Spectroscopic Techniques  

LDF utilizes the Doppler shift principle. It is a reliable and accurate method to measure the 

total microcirculation changes in tissue. A low power laser light is led by an optical fiber to a 

measuring head, or probe, that beams the laser light through the tissue. The light reflects off the 

red blood cells (RBC) and the frequency changes as a result of the moving objects (i.e. RBC). 

Hence, the light undergoes a Doppler shift. Measuring depth depends on the wavelength, and on 

the distance between the illumination source and the detector. Surrounding tissue also reflects the 

laser light. This particular reflectance is unshifted however. The illumination reflectance includes 

an unshifted light and a Doppler signal. Moreover, the magnitude of Doppler shift is a function of 

the number of moving RBC and their velocity. LDF is also applicable in early determination of 

burn depth [34, 35]. 

 

  

Figure 2. LDF probe and blood capillaries [43] 
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SLDI performs a high-definition topography that involves LDF scanning an area of tissue. 

This particular scanning method provides a real-time full field technique to assess microvascular 

perfusion. SLDI allows continuous videos of perfusion to be acquired while covering a wide area, 

relative to LDF, coherence tomography, and photo-acoustic tomography. SLDI also enables 

monitoring microvascular perfusion in the retina. It is a sensitive, proven, and reliable method to 

assess microvascular related health issues [36, 37]. 

LSCI provides a microvascular perfusion visualization method that combines high 

resolution and speed, based on the principle of LDF. LCSI generates an interference, or speckle, 

pattern by illuminating the tissue and capturing the changes of backscattered light overtime. The 

contrast between the static and dynamic interference, or unshifted and Doppler shift respectively, 

is known as speckle contrast. The contrast is the ratio between the standard deviation of intensity 

and the mean of the intensity. LCSI provides a method which produces excellent spatial and 

temporal resolution. Similar to SLDI, LSCI can detect RBC relative mean velocity and 

concentration. The main difference between SLDI and LSCI is that LSCI is faster at producing the 

results [38, 39]. Moreover, M. Roustit el al research findings outlay the inter-day reproducibility 

of post-occlusive reactive hyperemia (PORH) and local thermal hyperemia (LTH) performance by 

LDF, SLDI, and LSCI. The researcher experiments also gauges whether microcirculatory 

assessment by LDF and LSCI correlate to each other. Reproducibility of PORH is better with LSCI 

than LDF. Inter-day reproducibility of LTH is better with LSCI or SLDI than LDF. LSCI technique 

produces very good inter-day reproducibility for assessing PORH and LTH. Additionally, LSCI 

significantly correlates with single-point LDF for PORH [40]. This research indicates that LSCI 

is a reliable method of determining microvascular reactivity, given different conditions (i.e., post-
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occlusion and heat). The NICMP development involves applying digital image processing and 

machine learning to LSCI technique to determine analyte concentration. 

 

2.2.3 Equipment 

The equipment to perform NI microvascular monitoring requires an illumination light 

source such as a laser in the red or NIR radiation spectrum, a photo detector (i.e. camera) to capture 

the reflectance, and software to display the perfusion activity. Illuminating the skin surface with a 

laser is considered safe. In fact, laser illumination in the red frequency range induces cell healing. 

Research determines that cells irradiated with 5 J/cm2 at 632.8 nm shows complete wound closure, 

and an increase in viability and basic fibroblast growth factor expression. It is important to note 

that not all wavelengths or combination of multiple wavelengths, nor dosage, produce similar 

results. Different wavelengths, combinations, and energy dosage can cause a negative effect with 

respect to cell healing [41]. In addition to red laser illumination inducing cell healing, another 

unique aspect of LSCI is its ability to perform consistently with different equipment grades. For 

example, a consumer-grade webcam can be used as the photo detector to visualize microvascular 

perfusion. Thus, inexpensive instrumentation can be used to image microcirculatory flows with 

accuracy comparable to a traditional LSCI system. The accuracy of a webcam against a high 

performance monochrome CCD camera indicates excellent agreement both in vitro and in vivo 

[42]. 

 

2.2.4 Advantages of Laser Speckle Contrast Imaging 

LSCI offers an in vivo evaluation of microcirculation by coherent light scattering. 

Moreover, LSCI measures blood perfusion within the skin by evaluating the dynamics of the laser 

speckle pattern. The laser beam forms a spot on the skin with a diameter of approximately 1.5 mm, 
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and penetrates the skin. Part of the light is scattered back to the surface by the RBC in the 

capillaries [43]. Investigations in patients with leg ulcers show that measurements in open wounds 

utilizing LSCI technique is practical, and the ability to define different degrees of burns. The main 

benefits of spectroscopy and its LSCI application includes reliable NI monitoring of microvascular 

RBC relative volume and perfusion velocity, nonscanning full-field detection, and a consistent 

Doppler signal during burn wound scenarios. The nonscanning feature enables the analysis with a 

single target area which eliminates the need to scan an area of tissue to capture the data. The burn 

wound analysis indicates that the Doppler signal is consistent, given different textures, artifacts, 

or obtrusions on the skin surface that could potentially obscure the signal, because detection of 

different degrees of burns and depth is plausible. This raises the research question, can LSCI and 

statistical methods remotely detect and predict metabolic analyte concentration? 

 

2.3 Digital Image Processing and Machine Learning 

2.3.1 Background 

Image processing with regards to the digital images that represent laser emission reflectance is 

necessary to 1) quantify image intensity features, and 2) analyze the underlying linearity between 

certain image characteristics and metabolic analyte concentration. Image segmentation (i.e. feature 

extraction) and binary threshold conversion are the image processing techniques relevant to the 

NICMP research. A Gray Level Co-Occurrence Matrix (GLCM) extracts and quantifies certain 

image feature values from the reflectance images which describe the image. Moreover, the GLCM 

analysis provides the input variables and their corresponding image intensity values for the 

predictive model development. Secondarily, the original reflectance images are gray scale. The 

digital images require conversion to their binary equivalent to assess the correlation on a 

fundamental level. The binary conversion technique involves applying certain thresholds to 
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convert the individual gray scale pixel values to either 1 or 0. The threshold techniques include 

adaptive, Otsu, and averaging thresholds. These particular threshold techniques are useful to 

convert the original spectral grayscale image intensity to binary values. This procedure enables 

assessing the underlying linearity between the binary image values and metabolic analyte 

concentration. Additionally, digital image processing is typically relevant to improve image data 

by removing unwanted distortions, and/or by enhancing image features for further processing. For 

example, pre-processing methods include pixel brightness enhancement, geometric 

transformations, and image restoration using knowledge about the entire image. Other image pre-

processing methods exist. Because this NICMP research involves the development of a proof-of-

concept device version, the image processing methods (i.e., segmentation and conversion) 

considers the raw images, thus pre-processing methods are not applied. 

The predictive modeling approach involves a technique referred to as classification, which 

is a type of supervised machine learning. The process of classification in machine learning involves 

training an algorithm with externally supplied instances (i.e., predictor or feature data) and 

corresponding responses to make predictions about future instances. Machine learning consists of 

several different types of classification algorithms. The type of algorithm relevant to the NICMP 

research is the artificial neural network (ANN). ANN gathers knowledge by detecting the patterns 

and relationships in data. This process is also known as pattern recognition, or prediction [44]. 

 

2.3.2 Digital Image Processing 

Research indicates that grayscale textural-features are good input, or predictor, variables 

in a broad range of image-classification applications [45]. GLCM enables the measurement of 

texture of an image. The GLCM calculates how often pairs of pixel with specific values and in a 
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specified spatial relationship occur in an image to extract statistical measures from the matrix. The 

NI imaging device incorporates a LABVIEW developer toolkit to perform a texture analyses 

utilizing GLCM function to quantify the texture features of the grayscale reflectance images. This 

process allows the quantification of certain texture features, and generate numeric values that 

describe the reflectance image texture. Given 𝑷(𝒊, 𝒋) is the operator, or matrix of relative 

frequencies, each (i,j)th entry in the matrix represents the probability of transferring from one pixel 

with a gray level of in to another with a grey level of jn under a preordained distance and angle. 

Specifically, the digital image process requires initially normalizing the GLCM to extract the 

numerical values that represent the texture features, or Haralick values. Normalizing procedures 

requires certain computations, given the following definitions: 

𝑵𝒈 is the number of distinct gray levels in the image post-quantization. 𝒑𝒙 and 𝒑𝒚 are the i-th and 

j-th entry in the marginal-probability matrix obtained by summing the rows and columns of 𝑝(𝑖, 𝑗), 

respectively. 

𝑝𝑥(𝑖) = ∑
𝑁𝑔

𝑗=1
𝑝(𝑖, 𝑗)                  (1) 

𝑝𝑦(𝑗) = ∑ 𝑝𝑦(𝑗) = ∑
𝑁𝑔

𝑖=1
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1
𝑝(𝑖, 𝑗)             (2) 

𝑝𝑥+𝑦(𝑘) = ∑
𝑁𝑔

𝑖=1
∑

𝑁𝑔

𝑗=1
𝛿𝑖+𝑗,𝑘𝑝(𝑖, 𝑗), 𝑘 = 2,3, . . . ,2𝑁𝑔          (3) 

𝑝𝑥−𝑦(𝑘) = ∑
𝑁𝑔

𝑖=1
∑

𝑁𝑔

𝑗=1
𝛿|𝑖−𝑗|,𝑘𝑝(𝑖, 𝑗), 𝑘 = 0,1, . . . , 𝑁𝑔 − 1        (4) 

where the Kronecker delta function 𝛿𝑚,𝑛 is defined by  

𝛿𝑚,𝑛 = {
1 when 𝑚 = 𝑛
0 when 𝑚 ≠ 𝑛

                 (5) 

Subsequently, normalizing procedures require the following operations:  

Sum all elements, or neighboring resolution cell pairs, of the co-occurrence frequency matrix to 

formulate the normalizing constant. 
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𝑅 = ∑
𝑁𝑔

𝑖=1
∑

𝑁𝑔

𝑗=1
𝑃(𝑖, 𝑗)               (6) 

Normalize the frequency matrix to probabilities by dividing each cell by R to generate the (i,j)th 

entry in the normalized gray-tone spatial dependence matrix. 

𝑝(𝑖, 𝑗) =
𝑃(𝑖,𝑗)

𝑅
                   (7) 

Post-normalization, the relevant Haralick value extraction computations are as follows:  

Angular Second Moment or Energy,  𝑓1, is a measure of the sum of squared elements in the GLCM. 

𝑓1 = ∑
𝑁𝑔

𝑖=1
∑ (

𝑁𝑔

𝑗=1

𝑃(𝑖,𝑗)

𝑅
)2 = ∑𝑖 ∑𝑗 𝑝(𝑖, 𝑗)2           (8) 

The contrast,  𝑓2, is the difference moment of the P matrix and is a measure of the contrast or the 

amount of local variations present in the image. 

𝑓2 = ∑
𝑁𝑔−1

𝑘=0 𝑘2{∑
𝑁𝑔

𝑖=1
∑

𝑁𝑔

𝑗=1
𝛿|𝑖−𝑗|,𝑘𝑝(𝑖, 𝑗)} = ∑

𝑁𝑔−1

𝑘=0 𝑘2𝑝𝑥−𝑦(𝑘)      (9) 

Correlation,  𝑓3, measures the linear dependency, or joint probability, of gray levels of neighboring 

pixels. 

𝑓3 =
∑

𝑁𝑔
𝑖=1

∑
𝑁𝑔
𝑗=1

(𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦
               (10) 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 are the means and standard deviations of 𝑝𝑥 and 𝑝𝑦 

Entropy, 𝑓4, gives a measure of complexity of the image. Complex texture values tend to have 

higher entropy. 

𝑓4 = − ∑
𝑁𝑔

𝑖=1
∑

𝑁𝑔

𝑗=1
𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))            (11) 

Homogeneity, 𝑓5, measurers the closeness of the distribution of elements in the GLCM to the 

GLCM diagonal. 

𝑓5 = ∑
p(i,j)

1+|i−j|i,j                   (12) 

Standard deviation, σ, measurers the dispersion of the data set relative to its mean. 



18 
 

σ2 = ∑
(𝑥𝑖−µ)2

𝑤

n−1
i=0                  (13) 

where x is the input sequence, σ2 is the variance, µ is the mean, and w is n when weighting is set 

to population and (n-1) when weighting is set to sample [46]. 

Texture feature extraction is necessary to quantify the grayscale images to provide input 

values for predictive modeling, and thus enable the NI detection capability. The second digital 

image processing technique includes binary conversion. This method is essential to convert the 

grayscale reflectance images to binary images. The purpose of the conversion process is to assess 

the underlying error distribution between binary image values and analyte concentration on a 

fundamental level. The image intensity values as a result of the GLCM analysis provide numeric 

values that represent certain pixel relationships, given individual pixel intensity values. Thus, the 

GLCM analysis is a function of image intensity values. The binary conversion involves applying 

certain thresholds to convert the grayscale image to binary and assess the linearity with a basic 

method of determining the image value. The three threshold techniques including adaptive, 

average, and Otsu to binarize the image. The adaptive approach uses first-order statistics to choose 

the threshold based on the local mean intensity in the neighborhood of each pixel [47]. The 

averaging method requires calculating the sum of grayscale intensity values and dividing the 

amount by the total number of pixels in the image to determine the threshold value. The Otsu’s 

methods minimizes the intraclass variance of the black and white pixels by computing a global 

threshold from histogram counts [48]. 

 

2.3.3 Artificial Neural Network 

ANN and artificial intelligence (AI) simulate the way the human brain works by connecting 

thousands of processing elements. This is similar to the neural structure of the brain, which 
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contains approximately 100 billion neurons. The human brain is an excellent classification and 

prediction tool. It learns patterns through experience, and has the ability to recognize objects as a 

result. AI is not as powerful as the human brain when it comes to pattern recognition because the 

brain has many more neurons than AI has processing elements. ANNs are still able to process large 

amounts of data to make accurate predictions however. The type of classification system relevant 

is a supervised network containing an input layer, output layer, and hidden layers in between.  

 

 

Figure 3. NARX neural network graphical diagram with 5 delays and 7 processing elements in the hidden layer 

 

Supervised learning algorithms involve sample input and output, or target responses, data 

pairs in the training set. Conversely, unsupervised learning include only input data and not output 

variables. Unsupervised learning requires the system to figure out how to classify the input data 

features to predict future outcomes. Supervised learning is an excellent method for classification 

and prediction purposes [49]. Moreover, the applicable ANN supervised learning technique to 

predict outcomes is the nonlinear autoregressive network with exogenous inputs (NARX). NARX 

is a time series recurrent dynamic network model. The nonlinear dynamic model considers the 

input and output target values to be not proportional overtime. In other words, the changes in the 

relationship between the variables overtime may seem chaotic or unpredictable, thus opposite of 

linear systems. The time series analysis involves the use of a model to predict future values by 
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considering the internal structure (e.g., autocorrelation, trend, etc.) of previous observations. The 

equation defining NARX is the following [50]: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛𝑢))   (14) 

Bayesian Regularization is the specific algorithm relevant to the machine learning NARX 

technique for the purpose of this research. It is a backpropagation algorithm training technique that 

enables improving the generalization of a predictive model. This is possible by modifying the 

performance function to include the mean of the sum of squares (MSE) with regards to the network 

weights and biases. This technique minimizes a combination of squared errors and weights to 

determine the correct combination to produce a network that generalizes well [51, 52]. 

 

2.4 Input Variable Transformation 

Variable transformation techniques are useful in the fundamental statistical analysis 

portion to determine the linearity relative to the spectral image features and the CMP parameters. 

The objective of the input variable transform is to assess the residual error distribution from the 

binary conversion technique with regards to normality. This method can ensure the reliability of 

the machine learning model predictions. The transformations to assess the error distribution 

include reciprocal, logarithm, cube root, square root, and square. The initial three transformation 

are most common in statistical analysis. If the standard deviation is proportional to the mean 

squared, then a reciprocal transformation is meaningful. Logarithmic transformation is ideal if the 

standard deviation is proportional to the mean. Square root transformation is typical if the variance 

is proportional to the mean. This transformation method considers a broad range of arithmetical 

formulations to transform the data and assess the relationship between the given input variables 

and prediction error [53, 54]. 

 



21 
 

2.5 Summary 

LSCI is a reliable spectroscopic technique for continuous blood flow monitoring. The 

application is proven to display excellent inter-day reproducibility under PORH and LTH 

conditions, making it a reliable method to capture blood cell reflectance spectral images. The 

method instrumentation can be inexpensive to implement while maintaining a level of accuracy 

comparable to traditional LSCI systems. The technique is also effective in burn wound scenarios, 

penetrating the tissue to reflect the corresponding speckle pattern to the skin surface for analysis. 

This feature is important to maintain consistency when the skin is discolored, mutated, or when 

other objects are present making for undesired imperfections. Diabetic wounded cells respond best 

with a wavelength illumination of 632.8 nm as compared to other frequencies, thus serving as the 

initial wavelength of choice for developing the NI system. The method under investigation 

involves capturing spectral texture features and images reflecting from capillary blood cells with 

a 630 nm (+-5 nm) laser and analyzing the images to determine a correlation between the texture 

analysis and glucose/metabolic levels. LSCI is proven in the clinical application of continuous 

blood flow monitoring and might also be practicable in remote sensing analyte concentration. It 

provides much higher spatial resolution than that of laser Doppler perfusion imaging. This NICMP 

research involves classifying LSCI image features to remotely detect and predict analyte 

concentration with a coherent light source and digital image processing. The approach addresses 

the problem concerning SNR by providing a discrete signal for machine learning predictive 

modeling. 
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3.      MATERIALS AND PROCEDURE 

3.1 Introduction 

The initial NICMP device development stage involved spectral image and CMP data 

collection. The spectral images were processed to extract texture features that characterize the 

grayscale images. The values derived from the feature extraction stage served as input variables to 

train the predictive model, given the known CMP data as output variables. The predictive model 

output was cross-validated to determine the NICMP accuracy, relative to the CMP test data. 

 

 

  

Data 
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Figure 4. NICMP development method overview 
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3.2 Non-Invasive Imaging Device 

3.2.1 Introduction 

A custom LSCI device was developed to collect individual subject’s spectral data. The 

device optical sensor, comprised of a red laser and a CCD camera, was configured to penetrate the 

palm area of either hand. The light reflectance generated from the laser was recorded via the 

camera, thus a video (i.e., multiple frames) was captured each instance the device was utilized. 

The laser and camera angle was arbitrarily configured. A predetermined angle was not considered 

because the camera and laser placement was consistent in the stationary device throughout the 

experiment. The custom device software visualized the laser generated reflectance, and quantified 

the spectral image to output numerical data to further describe perfusion activity. The quantified 

data was generated via a developer toolkit embedded in the custom application to construct a 

GLCM on the image, and extract the Haralick values. The individual frames of the speckle pattern 

video were automatically saved as .PNG images on the computer hard disk. The quantified data 

that describes the speckle pattern was also stored on the hard disk in the form of a text file. 

 

  

Figure 5. Custom LSCI device and subject palm placement to capture NI spectral data 
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3.2.2 Configuration 

The spectral device optical sensor was comprised of a Balser ACA640-100GM camera 

with an Edmund Optics 58000 8.5mm F/1.3 lens, and an Edmund Optics NA090325027 635 nm 

laser. The spectral images were captured at 100 pixels x100 pixels at the rate of 100 frames-per-

second. Each digital image sample captured with the device included 100-200 frames, which 

represented 1-2 seconds of the subject’s microvascular perfusion. The custom application and 

interface was developed with LABVIEW (National Instruments Corp.) Haralick values module 

embedded in the application, and performed the GLCM on the images to extract and output 

quantified Haralick values.  

 

 

Figure 6. LSCI device optical sensor (i.e., laser and camera) arbitrarily configured 
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Figure 7. LSCI application interface displayed microvascular perfusion spectral images and Haralick values 

 

3.3 Clinical Data Collection 

3.3.1 Introduction 

Determined by the Food & Drug Administration (FDA), the clinical trial was classified as 

a nonsignificant risk device study. The clinical trial included a cross-sectional study design. 

Subjects were recruited at random by distributed IRB approved marketing material. The primary 

objective of the standardized clinical trial was to cross-validate the NICMP output against the CMP 

test results to evaluate the accuracy of the NI system. 

 

3.3.2 Clinical Trial Protocol 

The clinical study was overseen by the University of North Dakota and Altru Health 

System IRBs, and included n=90 subjects. The study protocol excluded pregnant women, minor 

children, and any patients diagnosed with a chronic disease that requires routine medical attention. 
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The protocol included volunteers from the community under non-fasting conditions. The study 

procedure involved a CMP blood test and spectral data collected with the custom LSCI device. 

Spectral data was captured within two minutes after the CMP blood draw was performed. The 

CMP blood test was drawn from either arm. Additionally, spectral data was captured from the 

center of either palm. Both regions of interest were based on the individual subject’s preference. 

The CMP blood test and spectral data was performed by clinical specialists after the subject’s 

consent to participate in the research study was obtained. The clinical trial and CMP labs were 

executed and resulted at Altru Health System. The clinical data collection outcome included 90 

CMP blood test results and spectral data that corresponded (< 2 min.) with the blood tests. In other 

words, the clinical study resulted in n=90 CMP and related spectral endpoints. Each subject 

participated in the clinical study once. 

 

3.4 Innovative Approach  

3.4.1 Introduction 

The NICMP device predictive model was programmed with data collected from subjects as their 

own control. The predictive model was used to describe the relationship between the CMP and 

spectral data intended to predict outcomes in the future, given a different set of input (i.e. spectral) 

data. The spectral data produced by the NI device was programmed into the machine learning 

analysis as input values, while the CMP results were considered the target output values. 

Moreover, two NICMP predictive models were developed to determine how an increase in the 

number of training data endpoints affected the test results. The NICMP predictive model beta was 

developed to serve as reference model, and contains fewer training data endpoints for comparison. 

NICMP predictive model one includes more training data endpoints and represents the initial 
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predictive model iteration that produced test results within a certain range, relative to regulatory 

guidance. 

 

3.4.2 Machine Learning 

A Neural Net Times Series (NNTS) analysis was conducted in MATLAB to develop a 

predictive model through machine learning to predict future outcomes. The NNTS was configured 

to conduct the analysis with a NARX algorithm. The spectral values were inserted as the training 

data; the CMP values were set as the test data. The training and test data set was formatted in 

matrix row, given the layout of the collected data endpoints. The data was then randomly divided 

into a training, validation, and testing groups, also known as timesteps. The data set percent 

allocated for each timestep, relative to NICMP predictive models beta and one for each of the 

biological parameters in the CMP blood test, are displayed in Table 1 and 2, respectively. The 

timesteps are configured in MATLAB based on the percentage values. The configured network 

architecture settings are also displayed in Table 1. Included variables are time delays and 

processing elements, or neurons, and were configured in MATLAB prior to model development. 

The predictive model was trained with the Bayesian Regularization algorithm for each CMP blood 

level parameter. The training epoch consisted of up to 1,000 iterations to generate the “best-fit” 

model for each of the parameters in the CMP. 
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TABLE I 

BETA TIMESTEP SETTINGS 

CMP Parameter Training (%) Validation (%) Testing (%) Neurons Delays 

BUN 70 10 20 20 2 

Sodium 70 10 20 10 2 

Potassium 70 10 20 20 2 

Chloride 70 10 20 20 4 

CO2 70 10 20 20 2 

Glucose 70 10 20 15 2 

Creatinine 70 10 20 15 2 

Calcium 70 10 20 15 2 

Anion Gap 70 10 20 20 2 

Albumin 70 10 20 20 2 

Alkaline 

Phosphatase 
70 10 20 2 2 

AST 70 10 20 2 2 

ALT 70 10 20 2 2 

Bilirubin Total 70 10 20 2 2 

Protein Total 70 10 20 2 2 

Table 1. Machine learning timesteps configured in MATLAB to generate the NICMP beta predictive model 

 

TABLE II 

ONE TIMESTEP SETTINGS 

CMP Parameter Training (%) Validation (%) Testing (%) Neurons Delays 

BUN 90 5 5 20 2 

Sodium 90 5 5 10 2 

Potassium 90 5 5 20 2 

Chloride 90 5 5 20 4 

CO2 90 5 5 20 2 

Glucose 60 35 5 15 2 

Creatinine 90 5 5 15 2 

Calcium 90 5 5 15 2 

Anion Gap 90 5 5 20 2 

Albumin 90 5 5 20 2 

Alkaline 

Phosphatase 
90 5 5 2 2 

AST 90 5 5 2 2 

ALT 90 5 5 2 2 

Bilirubin Total 90 5 5 2 2 

Protein Total 90 5 5 2 2 

Table 2 Machine learning timesteps configured in MATLAB to generate the NICMP one predictive model 

 



29 
 

3.5 Statistical Analysis 

3.5.1 Introduction 

The analysis included a statistical summary of the NICMP predictive model, covariance 

and correlation coefficient analysis, and an underlying analysis with respect to the original 

grayscale spectral images converted to binary with three different threshold techniques applied. 

The predictive model summary statistics were generated via MATLAB. The grayscale spectral 

image intensity values were converted to binary values via a custom MATLAB script. Moreover, 

the predictive model summary described the accuracy in terms of error and correlation. One 

grayscale image per sample was converted to binary to determine the underlying error distribution. 

 

3.5.2 Predictive Model Summary 

The machine learning model considered the averaged grayscale Haralick values, or texture, 

performed via LABVIEW. The predictive model analysis involved an MSE minimized approach. 

The machine learning method required a validation parameter to minimize error with each 

subsequent iteration until good generalization occurred. The applied machine learning technique 

generated the MSE and correlation figures that described the predictive model performance, and 

direction of the relationship (i.e., positive or negative). The coefficient of determination figure was 

calculated to determine the overall strength of the minimized error model. The predictive model 

statistical analysis is imperative to determine the prediction capability of the NICMP device, given 

the machine learning approach. The covariance and correlation coefficient was also determined to 

assess the interrelationships between any pair of metabolic analytes, given the digital image 

processing technique. Positive values with respect to covariance implies that the variables, or 

analytes in this case, move together in the same direction while negative values mean the analytes 
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move inversely, relative to each other. The correlation coefficient is a function of covariance, and 

also describes the degree to which any two analytes are related. For example, a correlation 

coefficient of -1 implies that the analytes move inversely, a value of 0 indicates an interrelationship 

does not exist, and a value of 1 implies the analytes move together in the same direction. Sample 

data was considered for the covariance while the population was considered for the correlation 

coefficient to increase the analysis cross-section. Statistical analyses involving sample data usually 

considers 1 degree of freedom, and is the case for this research. 

 

3.5.3 Binary Image Error Distribution 

The binary analysis involved conversion of one grayscale spectral image from each sample 

with three different threshold techniques applied. The original grayscale images were converted to 

binary by averaging, adaptive, and Otsu threshold techniques. The outcome included three binary 

image values per grayscale image. The binary values were transformed and processed as input 

variables in the MATLAB regression learner app, given the CMP values as the target data. The 

regression model types included linear regression, regression trees, support vector machines, 

Gaussian process regression, and ensemble of trees. Each regression model type also included 

multiple sub-types. The analysis considered all regression model types and sub-types to train the 

regression models. This produced the root mean squared error for each binary image. The error 

values were compared to the standard deviation of the mean to determine the distribution of error, 

given the binary image values.  
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4.      RESULTS 

4.1 Machine Learning Model 

4.1.1 Predictive Model Statistical Analysis 

Figure 8 displays the original grayscale spectral image from a sample of 100-200 images. 

The predictive model development considers the average Haralick values and additional statistics, 

given the total number of images in the sample and the CMP analyte concentration as the target 

output. Table 3 displays the average Haralick values and statistics of the sample pertaining to the 

representative image. 

 

 

Figure 8. Original grayscale spectral image representative of a sample containing 100-200 images 

 

TABLE III 

GRAYSCALE SPECTRAL IMAGE TEXTURE FEATURES AND VALUES 

Entropy Contrast Homogeneity Correlation Energy 
Standard 

Deviation 

8.332874 4.406495 0.618372 0.865251 0.050193 45.0444 

Table 3 Original grayscale spectral image average texture values given the total number of images in the sample 

 

The results of the cross-validation trial includes the analysis describing the NICMP 

machine learning predictive model as it relates to the venipuncture CMP. Moreover, the results 
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compare the testing data against the target output data. The test data set does not include endpoints 

included in the training data set during model development. The method of comparison includes 

the MSE and correlation to determine the accuracy and strength of the model. The machine 

learning approach provides a comprehensive analysis as it considers the image intensity values 

during perfusion (i.e., 1-2 seconds). The objective is to develop a model capable of predicting 

future observations. The statistical analysis provides a reliable method to determine the 

repeatability of the device. Tables 4 and 5 indicate the clinical data descriptive statistics and the 

performance of NICMP predictive model beta (B) and one with regards to the venipuncture CMP 

results, respectively. 

 

TABLE IV 

CLINICAL DATA SAMPLE DATA DESCRIPTIVE STATISTICS
1 

CMP Parameter N Minimum Maximum X S 
CIµ/95 

(+/-) 

BUN 90 4.0 24.0 13.0 3.8 0.79 

Sodium 90 135.0 143.0 139.0 1.8 0.36 

Potassium 90 3.4 5.6 4.1 0.4 0.07 

Chloride 90 99.0 109.0 105.0 1.9 0.39 

CO2 90 19.2 32.1 25.8 2.4 0.49 

Glucose 90 61.0 157.0 98.0 17.0 3.51 

Creatinine 90 0.6 1.3 0.9 0.2 0.03 

Calcium 90 8.6 10.9 9.5 0.4 0.08 

Anion Gap 90 2.9 13.1 8.1 1.6 0.32 

Albumin 90 3.9 5.2 4.4 0.3 0.05 

Alkaline 

Phosphatase 
90 13.0 165.0 70.0 22.8 4.70 

AST 90 9.0 94.0 20.0 9.7 2.00 

ALT 90 7.0 82.0 21.0 11.8 2.44 

Bilirubin Total 90 0.2 1.7 0.6 0.3 0.07 

Protein Total 90 6.2 8.3 7.2 0.4 0.09 

Table 4 Clinical data descriptive statistics 

 

  

 
1  The CPM parameter refers to the comprehensive metabolic panel analyte of interest. “N” refers to the sample 

size. The minimal and maximum values are indicative of the analyte concentration range in the clinical study. X-bar 

references the sample mean. The lowercase “s” represents the sample standard deviation. CIµ/95 indicates the 95% 

confidence interval of the population mean. 
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TABLE V 

PREDICTIVE MODEL SUMMARY STATISTICS
2 

CMP 

Parameter 
MSE(B) R(B) R2(B) MSE R R2 

BUN 9.1 0.41 0.2 1 -1.00 1.0 

Sodium 3.7 0.42 0.2 1 -1.00 1.0 

Potassium 0 0.34 0.1 0 -1.00 1.0 

Chloride 1.3 0.40 0.2 1 0.70 0.5 

CO2 4 -0.40 0.2 0 -1.00 1.0 

Glucose 124 0.27 0.1 5 -0.90 0.8 

Creatinine 0.02 0.44 0.2 0 -1 1.0 

Calcium 0.2 -0.45 0.2 0 -1 1.0 

Anion Gap 3.3 -0.51 0.3 0 1 1.0 

Albumin 0.09 -0.5 0.3 0 1 1.0 

Alkaline 

Phosphatase 
182.5 0.3 0.1 20 1 1.0 

AST 19 0.36 0.1 1 1 1.0 

ALT 45 0.3 0.1 4 0.9 0.8 

Bilirubin 

Total 
0.05 0.4 0.2 0 1 1.0 

Protein Total 3.8 -0.41 0.2 0 1 1.0 

Table 5 Statistical analysis for NICMP predictive models beta and one (n=90) 

 

The covariance and correlation coefficient is taken into consideration for the CMP actual 

measurements and NICMP predictive model output, or predictions. NICMP predictive models beta 

and one includes n=18 (20%) and n=5 (5%) cross-validation endpoints, respectively. Therefore, 

the same number of CMP actual measurements are taken into consideration to compare the 

correlation coefficients, relative to the predictive models. The n=18 cross-validation endpoints 

differ from the n=5 endpoints. Table VI displays the percent of positive and negative values, given 

the covariance and correlation coefficient matrices. 

  

 
2  MSE refers to the predictive model mean squared error, relative to the test output. The R values refers to the 

predictive model correlation. The R-squared value refers to the predictive model coefficient of determination. Note: 

(B) indicates the NICMP beta predictive model summary statistics. 



34 
 

TABLE VI 

COVARIANCE AND VARIANCE RELATIONSHIP PERCENT SUMMARY 

 Positive/Negative (%) 

CMP 1 (n=18) 65/35 

NICMP predictive model beta 57/43 

CMP 2 (n=5) 57/52 

NICMP predictive model one 52/48 

Table 6 Ratio of positive and negative covariance and correlation coefficient values 

 

Tables 7-14, the covariance and correlation coefficient matrices, indicate the distribution of 

positive and negative values, relative to the covariance and correlation coefficient for the CMP 

measurements and NICMP predictive model outputs. The average correlation coefficient for CMP 

1 (n=18) and NICMP beta predictive model is 0.1169 and -0.396, respectively. The average 

correlation coefficient for CMP 2 (n=5) and NICMP predictive model is -0.0624 and 0.0085, 

respectively. 
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TABLE VII 

CMP 1 COVARIANCE 

 

Table 7 Covariance of CMP actual measurements (n=18) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -0.35294 0.258824 -0.52941 0.894118 -13.2353 0.111765 0.129412 -0.71765 0.535294 -11.6471 -0.29412 4.764706 -0.02941 0.194118

Sodium -0.35294 -0.37843 1.735294 0.231373 9.676471 0.036275 -0.02451 1.121569 0.079412 10.80392 2.362745 3.77451 0.009804 0.223529

Potassium 0.258824 -0.37843 -0.15882 0.095033 -2.22157 -0.00876 -0.00203 -0.31464 -0.02961 -2.07582 0.363399 0.847712 0.009085 -0.03098

Chloride -0.52941 1.735294 -0.15882 -0.71765 -15.6765 -0.06765 -0.36765 -2.04706 -0.17353 21.41176 4.911765 5.852941 0.041176 -0.27059

CO2 0.894118 0.231373 0.095033 -0.71765 7.233333 0.01817 0.148497 -0.22771 0.01549 -0.7183 0.10719 0.675817 0.026209 -0.1449

Glucose -13.2353 9.676471 -2.22157 -15.6765 7.233333 0.769608 2.783333 18.11961 1.097059 -23.451 -7.12745 -32.6569 0.643137 1.247059

Creatinine 0.111765 0.036275 -0.00876 -0.06765 0.01817 0.769608 0.021993 0.085752 0.028333 0.786928 0.458497 1.04281 0.004183 0.038431

Calcium 0.129412 -0.02451 -0.00203 -0.36765 0.148497 2.783333 0.021993 0.194641 0.049314 -1.03595 0.468954 0.761111 0.018562 0.059804

Anion_Gap -0.71765 1.121569 -0.31464 -2.04706 -0.22771 18.11961 0.085752 0.194641 0.237451 -9.88954 -2.65621 -2.75425 -0.05758 0.63902

Albumin 0.535294 0.079412 -0.02961 -0.17353 0.01549 1.097059 0.028333 0.049314 0.237451 -1.2549 0.159804 0.812745 0.00451 0.114118

Alkaline_Phosphatase-11.6471 10.80392 -2.07582 21.41176 -0.7183 -23.451 0.786928 -1.03595 -9.88954 -1.2549 36.49673 55.69281 0.588889 -1.99804

AST -0.29412 2.362745 0.363399 4.911765 0.10719 -7.12745 0.458497 0.468954 -2.65621 0.159804 36.49673 93.52614 0.922222 0.813725

ALT 4.764706 3.77451 0.847712 5.852941 0.675817 -32.6569 1.04281 0.761111 -2.75425 0.812745 55.69281 93.52614 1.224183 2.131373

Bilirubin_Total-0.02941 0.009804 0.009085 0.041176 0.026209 0.643137 0.004183 0.018562 -0.05758 0.00451 0.588889 0.922222 1.224183 0.013137

Protein_Total0.194118 0.223529 -0.03098 -0.27059 -0.1449 1.247059 0.038431 0.059804 0.63902 0.114118 -1.99804 0.813725 2.131373 0.013137

(x)
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TABLE VIII 

CMP 1 CORRELATION COEFFICIENT 

 

Table 8 Correlation coefficient of CMP actual measurements (n=18) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -0.06172 0.211499 -0.0767 0.253305 -0.21025 0.212826 0.146699 -0.11967 0.516429 -0.15864 -0.01171 0.112417 -0.06011 0.115185

Sodium -0.06172 -0.5726 0.465491 0.121372 0.284625 0.127902 -0.05145 0.34631 0.14186 0.272488 0.174121 0.164896 0.037098 0.245596

Potassium 0.211499 -0.5726 -0.19908 0.232944 -0.30534 -0.1443 -0.01987 -0.45397 -0.24715 -0.24464 0.125138 0.17305 0.160638 -0.15905

Chloride -0.0767 0.465491 -0.19908 -0.31186 -0.38199 -0.19759 -0.63928 -0.52362 -0.2568 0.447371 0.299861 0.211823 0.129077 -0.24629

CO2 0.253305 0.121372 0.232944 -0.31186 0.344675 0.103788 0.504945 -0.1139 0.044828 -0.02935 0.012797 0.04783 0.160665 -0.25792

Glucose -0.21025 0.284625 -0.30534 -0.38199 0.344675 0.246497 0.530691 0.508222 0.178021 -0.05373 -0.04771 -0.1296 0.221066 0.124463

Creatinine 0.212826 0.127902 -0.1443 -0.19759 0.103788 0.246497 0.50268 0.288316 0.551136 0.216117 0.367923 0.49607 0.172357 0.45979

Calcium 0.146699 -0.05145 -0.01987 -0.63928 0.504945 0.530691 0.50268 0.389577 0.571036 -0.16937 0.224019 0.215536 0.455303 0.425929

Anion_Gap -0.11967 0.34631 -0.45397 -0.52362 -0.1139 0.508222 0.288316 0.389577 0.404481 -0.23784 -0.18666 -0.11474 -0.20777 0.6695

Albumin 0.516429 0.14186 -0.24715 -0.2568 0.044828 0.178021 0.551136 0.571036 0.404481 -0.17461 0.064969 0.19588 0.094145 0.691711

Alkaline_Phosphatase-0.15864 0.272488 -0.24464 0.447371 -0.02935 -0.05373 0.216117 -0.16937 -0.23784 -0.17461 0.209491 0.189508 0.173565 -0.17099

AST -0.01171 0.174121 0.125138 0.299861 0.012797 -0.04771 0.367923 0.224019 -0.18666 0.064969 0.209491 0.929882 0.794204 0.203474

ALT 0.112417 0.164896 0.17305 0.211823 0.04783 -0.1296 0.49607 0.215536 -0.11474 0.19588 0.189508 0.929882 0.624971 0.315942

Bilirubin_Total-0.06011 0.037098 0.160638 0.129077 0.160665 0.221066 0.172357 0.455303 -0.20777 0.094145 0.173565 0.794204 0.624971 0.168676

Protein_Total0.115185 0.245596 -0.15905 -0.24629 -0.25792 0.124463 0.45979 0.425929 0.6695 0.691711 -0.17099 0.203474 0.315942 0.168676

(x)
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TABLE IX 

NICMP BETA PREDICTIVE MODEL COVARIANCE 

 

Table 9 Covariance of NICMP beta predictive model output (n=18) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN 1.1176471 -0.18903 9.326797 1.266687 -144.503 -0.02593 -0.88226 6.855133 -0.76506 -60.7908 121.281 -60.4314 1.084482 8.213423

Sodium 1.117647 0.49956 -0.85294 2.070812 -121.029 -0.18886 0.700125 -0.50152 -0.25473 107.9118 35.79412 4.352941 0.728563 -0.53224

Potassium -0.18903 0.49956 0.170087 1.173859 18.55775 -0.03341 0.258793 -0.03985 -0.07171 -9.50195 -5.0857 6.509822 0.055193 0.888851

Chloride 9.326797 -0.8529412 0.170087 -4.57394 97.5719 0.112148 0.528958 -4.48538 0.177639 -97.1601 -30.9771 -20.7451 0.796648 1.057858

CO2 1.266687 2.0708116 1.173859 -4.57394 -45.6652 -0.20132 1.322084 -6.61983 -0.45092 229.5513 -49.1251 -6.50583 -0.91882 6.321637

Glucose -144.503 -121.02941 18.55775 97.5719 -45.6652 0.126611 14.2929 -75.9947 3.16909 -3913.9 -1130.79 -1326.08 7.190852 88.88134

Creatinine -0.02593 -0.1888572 -0.03341 0.112148 -0.20132 0.126611 -0.0492 -0.26607 0.00802 -12.843 -1.00665 -0.76822 -0.00313 -0.16331

Calcium -0.88226 0.7001246 0.258793 0.528958 1.322084 14.2929 -0.0492 -0.56553 -0.00259 38.13427 -4.92831 2.142205 0.079793 0.469473

Anion_Gap 6.855133 -0.5015208 -0.03985 -4.48538 -6.61983 -75.9947 -0.26607 -0.56553 -0.46385 136.0326 86.32295 107.9449 -0.05321 2.281317

Albumin -0.76506 -0.2547283 -0.07171 0.177639 -0.45092 3.16909 0.00802 -0.00259 -0.46385 4.431514 -1.47335 -3.91986 -0.05739 -0.08442

Alkaline_Phosphatase-60.7908 107.91176 -9.50195 -97.1601 229.5513 -3913.9 -12.843 38.13427 136.0326 4.431514 1970.141 1127.549 -13.5502 -70.7631

AST 121.281 35.794118 -5.0857 -30.9771 -49.1251 -1130.79 -1.00665 -4.92831 86.32295 -1.47335 1970.141 219.6275 -1.27534 -11.1407

ALT -60.4314 4.3529412 6.509822 -20.7451 -6.50583 -1326.08 -0.76822 2.142205 107.9449 -3.91986 1127.549 219.6275 2.677918 -4.55343

Bilirubin_Total1.084482 0.7285627 0.055193 0.796648 -0.91882 7.190852 -0.00313 0.079793 -0.05321 -0.05739 -13.5502 -1.27534 2.677918 -0.19016

Protein_Total8.213423 -0.5322409 0.888851 1.057858 6.321637 88.88134 -0.16331 0.469473 2.281317 -0.08442 -70.7631 -11.1407 -4.55343 -0.19016

(x)
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TABLE X 

NICMP BETA PREDICTIVE MODEL CORRELATION COEFFICIENT 

 

Table 10 Correlation coefficient of NICMP beta predictive model output (n=18) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN 0.0272371 -0.02388 0.273232 0.02083 -0.15305 -0.01458 -0.11465 0.13683 -0.19571 -0.03593 0.361002 -0.12999 0.197441 0.263323

Sodium 0.027237 0.187733 -0.07433 0.101298 -0.38132 -0.31588 0.270649 -0.02978 -0.19384 0.189714 0.31694 0.027853 0.394577 -0.05076

Potassium -0.02388 0.1877334 0.076836 0.297664 0.303089 -0.28965 0.518598 -0.01227 -0.28289 -0.08659 -0.23343 0.215929 0.154951 0.439431

Chloride 0.273232 -0.0743305 0.076836 -0.26896 0.369542 0.225486 0.245807 -0.32015 0.162497 -0.20533 -0.32972 -0.15957 0.518648 0.121278

CO2 0.02083 0.1012985 0.297664 -0.26896 -0.09708 -0.22721 0.344862 -0.26523 -0.23154 0.272312 -0.29351 -0.02809 -0.33578 0.406817

Glucose -0.15305 -0.3813182 0.303089 0.369542 -0.09708 0.009203 0.240127 -0.1961 0.104807 -0.29904 -0.43515 -0.36877 0.169253 0.368396

Creatinine -0.01458 -0.3158791 -0.28965 0.225486 -0.22721 0.009203 -0.43879 -0.3645 0.140798 -0.52093 -0.20565 -0.11341 -0.03905 -0.35934

Calcium -0.11465 0.2706485 0.518598 0.245807 0.344862 0.240127 -0.43879 -0.17906 -0.01051 0.357495 -0.2327 0.073094 0.230439 0.238753

Anion_Gap 0.13683 -0.0297785 -0.01227 -0.32015 -0.26523 -0.1961 -0.3645 -0.17906 -0.2891 -0.2891 0.195876 0.565724 -0.0236 0.1782

Albumin -0.19571 -0.1938402 -0.28289 0.162497 -0.23154 0.104807 0.140798 -0.01051 -0.2891 0.081779 -0.13694 -0.26328 -0.32625 -0.08451

Alkaline_Phosphatase-0.03593 0.1897139 -0.08659 -0.20533 0.272312 -0.29904 -0.52093 0.357495 0.195876 0.081779 0.423046 0.174966 -0.17796 -0.16366

AST 0.361002 0.3169403 -0.23343 -0.32972 -0.29351 -0.43515 -0.20565 -0.2327 0.626038 -0.13694 0.423046 0.171649 -0.08436 -0.12977

ALT -0.12999 0.0278533 0.215929 -0.15957 -0.02809 -0.36877 -0.11341 0.073094 0.565724 -0.26328 0.174966 0.171649 0.128012 -0.03833

Bilirubin_Total0.197441 0.3945766 0.154951 0.518648 -0.33578 0.169253 -0.03905 0.230439 -0.0236 -0.32625 -0.17796 -0.08436 0.128012 -0.13548

Protein_Total0.263323 -0.05076 0.439431 0.121278 0.406817 0.368396 -0.35934 0.238753 0.1782 -0.08451 -0.16366 -0.12977 -0.03833 -0.13548

(x)
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TABLE XI 

CMP 2 COVARIANCE 

 

Table 11 Covariance of CMP actual measurements (n=5) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -1.9 0.07 0.35 0.46 1.65 0.14 0.2 -2.71 0.525 -62.3 -113.25 -61.35 1.1 -0.02

Sodium -1.9 -0.11 0.45 -0.38 -1.95 -0.02 -0.1 0.63 -0.025 1.9 16.25 7.55 2.08E-17 -0.14

Potassium 0.07 -0.11 -0.11 0.089 -1.315 -0.004 0.04 -0.089 -0.025 -1.22 2.2 0.11 -4.2E-17 0.037

Chloride 0.35 0.45 -0.11 -0.48 -4.7 0.005 -0.075 -0.27 0.175 -28.1 -7 -6.95 0.1 -0.065

CO2 0.46 -0.38 0.089 -0.48 1.405 0.003 0.065 -0.177 -0.045 6.14 -2.15 -0.27 -0.05 0.086

Glucose 1.65 -1.95 -1.315 -4.7 1.405 0.17 -0.475 1.345 -0.025 187.1 -90 11.45 -1.225 0.065

Creatinine 0.14 -0.02 -0.004 0.005 0.003 0.17 -8.9E-18 -0.028 0.0075 -0.49 -1.525 -0.705 0.01 -0.001

Calcium 0.2 -0.1 0.04 -0.075 0.065 -0.475 -8.9E-18 -0.09 -0.0075 -0.95 -0.475 -0.675 0.005 0.025

Anion_Gap -2.71 0.63 -0.089 -0.27 -0.177 1.345 -0.028 -0.09 -0.155 23.86 25.4 14.77 -0.05 -0.161

Albumin 0.525 -0.025 -0.025 0.175 -0.045 -0.025 0.0075 -0.0075 -0.155 -5.6 -6.225 -3.35 0.035 -0.0025

Alkaline_Phosphatase-62.3 1.9 -1.22 -28.1 6.14 187.1 -0.49 -0.95 23.86 -5.6 533.5 428.6 -6.5 -0.53

AST -113.25 16.25 2.2 -7 -2.15 -90 -1.525 -0.475 25.4 -6.225 533.5 584.25 -8.05 0.175

ALT -61.35 7.55 0.11 -6.95 -0.27 11.45 -0.705 -0.675 14.77 -3.35 428.6 584.25 -5.55 0.215

Bilirubin_Total 1.1 2.08E-17 -4.2E-17 0.1 -0.05 -1.225 0.01 0.005 -0.05 0.035 -6.5 -8.05 -5.55 -0.09

Protein_Total -0.02 -0.14 0.037 -0.065 0.086 0.065 -0.001 0.025 -0.161 -0.0025 -0.53 0.175 0.215 -0.09

(x)
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TABLE XII 

CMP 2 CORRELATION COEFFICIENT 

 

Table 12 Correlation coefficient of CMP actual measurements (n=5) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -0.64752 0.073873 0.091101 0.24921 0.053033 0.892607 0.360668 -0.74458 0.669456 -0.54033 -0.93451 -0.96412 0.647003 -0.02111

Sodium -0.64752 -0.48661 0.49099 -0.86297 -0.26272 -0.53452 -0.75593 0.725577 -0.13363 0.069077 0.562085 0.497357 5.13E-17 -0.61932

Potassium 0.073873 -0.48661 -0.37166 0.625877 -0.54863 -0.33104 0.936329 -0.31741 -0.4138 -0.13735 0.235645 0.022439 -3.2E-16 0.506849

Chloride 0.091101 0.49099 -0.37166 -0.83255 -0.48364 0.102062 -0.43301 -0.2375 0.714435 -0.78027 -0.18493 -0.34967 0.188311 -0.21961

CO2 0.24921 -0.86297 0.625877 -0.83255 0.300919 0.127458 0.781094 -0.32406 -0.38237 0.354859 -0.11822 -0.02827 -0.19597 0.60478

Glucose 0.053033 -0.26272 -0.54863 -0.48364 0.300919 0.428496 -0.33864 0.146092 -0.0126 0.641525 -0.2936 0.071136 -0.28485 0.027118

Creatinine 0.892607 -0.53452 -0.33104 0.102062 0.127458 0.428496 -1.3E-15 -0.6033 0.75 -0.33328 -0.98685 -0.86885 0.461266 -0.08276

Calcium 0.360668 -0.75593 0.936329 -0.43301 0.781094 -0.33864 -1.3E-15 -0.54848 -0.21213 -0.18276 -0.08694 -0.23529 0.065233 0.585206

Anion_Gap -0.74458 0.725577 -0.31741 -0.2375 -0.32406 0.146092 -0.6033 -0.54848 -0.66794 0.699342 0.708311 0.784409 -0.09939 -0.57419

Albumin 0.669456 -0.13363 -0.4138 0.714435 -0.38237 -0.0126 0.75 -0.21213 -0.66794 -0.76178 -0.80566 -0.82571 0.322886 -0.04138

Alkaline_Phosphatase-0.54033 0.069077 -0.13735 -0.78027 0.354859 0.641525 -0.33328 -0.18276 0.699342 -0.76178 0.469634 0.718538 -0.40786 -0.05967

AST -0.93451 0.562085 0.235645 -0.18493 -0.11822 -0.2936 -0.98685 -0.08694 0.708311 -0.80566 0.469634 0.931894 -0.48057 0.018745

ALT -0.96412 0.497357 0.022439 -0.34967 -0.02827 0.071136 -0.86885 -0.23529 0.784409 -0.82571 0.718538 0.931894 -0.631 0.043858

Bilirubin_Total0.647003 5.13E-17 -3.2E-16 0.188311 -0.19597 -0.28485 0.461266 0.065233 -0.09939 0.322886 -0.40786 -0.48057 -0.631 -0.68714

Protein_Total-0.02111 -0.61932 0.506849 -0.21961 0.60478 0.027118 -0.08276 0.585206 -0.57419 -0.04138 -0.05967 0.018745 0.043858 -0.68714

(x)
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TABLE XIII 

NICMP PREDICTIVE MODEL COVARIANCE 

 

Table 13 Covariance of NICMP predictive model output (n=5) 

 

  

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -21.2 2.47456 3.75 -20.8292 -6.85 0.878988 -2.92152 23.74367 1.44558 176.1 35.85 -188.65 3.108084 6.136958

Sodium -21.2 -0.8104 1.25 4.650797 -64.9 -0.27609 0.146274 -10.3602 0.766475 -110.6 9.15 91.4 -0.61408 -0.35022

Potassium 2.47456 -0.8103954 -0.35071 -0.9446 -3.06382 0.026004 -0.15804 0.682271 -0.02181 20.75407 2.98993 -5.48136 0.033793 0.112954

Chloride 3.75 1.25 -0.35071 -0.41971 -0.75 0.034791 0.019683 0.526047 0.546029 -62.75 -1.25 -4.25 0.462083 0.83379

CO2 -20.8292 4.6507971 -0.9446 -0.41971 18.22524 -0.26066 1.611008 -7.44696 -0.41881 -193.683 -56.5561 107.2607 -1.64885 -2.34914

Glucose -6.85 -64.9 -3.06382 -0.75 18.22524 0.398492 8.499468 37.82498 -7.59935 -51.8 -239.8 -389.55 0.759378 -8.4047

Creatinine 0.878988 -0.2760938 0.026004 0.034791 -0.26066 0.398492 -0.02802 0.287652 0.009491 2.393622 0.354131 -2.48925 0.035996 0.0614

Calcium -2.92152 0.1462742 -0.15804 0.019683 1.611008 8.499468 -0.02802 -0.5094 -0.10479 -16.6643 -5.82662 4.98481 -0.11464 -0.30073

Anion_Gap 23.74367 -10.36023 0.682271 0.526047 -7.44696 37.82498 0.287652 -0.5094 -0.10723 82.8476 3.509754 -87.0871 1.01065 1.309485

Albumin 1.44558 0.7664751 -0.02181 0.546029 -0.41881 -7.59935 0.009491 -0.10479 -0.10723 -11.0469 2.456909 1.781401 0.109057 0.301882

Alkaline_Phosphatase176.1 -110.6 20.75407 -62.75 -193.683 -51.8 2.393622 -16.6643 82.8476 -11.0469 513.05 -1052.7 4.550328 2.805941

AST 35.85 9.15 2.98993 -1.25 -56.5561 -239.8 0.354131 -5.82662 3.509754 2.456909 513.05 -124.7 3.017693 6.430716

ALT -188.65 91.4 -5.48136 -4.25 107.2607 -389.55 -2.48925 4.98481 -87.0871 1.781401 -1052.7 -124.7 -11.1058 -11.7175

Bilirubin_Total3.108084 -0.6140839 0.033793 0.462083 -1.64885 0.759378 0.035996 -0.11464 1.01065 0.109057 4.550328 3.017693 -11.1058 0.339769

Protein_Total6.136958 -0.3502214 0.112954 0.83379 -2.34914 -8.4047 0.0614 -0.30073 1.309485 0.301882 2.805941 6.430716 -11.7175 0.339769

(x)
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TABLE XIV 

NICMP PREDICTIVE MODEL CORRELATION COEFFICIENT 

 
Table 14 Correlation coefficient of NICMP predictive model output (n=5) 

 

 

BUN Sodium PotassiumChloride CO2 Glucose CreatinineCalcium Anion_GapAlbumin Alkaline_PhosphataseAST ALT Bilirubin_TotalProtein_Total(y)

BUN -0.6317419 0.643094 0.261593 -0.48769 -0.02819 0.976443 -0.66497 0.850187 0.356115 0.324159 0.278351 -0.67533 0.732118 0.804563

Sodium -0.63174 -0.51588 0.213589 0.26673 -0.65423 -0.75127 0.081552 -0.90868 0.46251 -0.49869 0.17402 0.801464 -0.35432 -0.11247

Potassium 0.643094 -0.5158806 -0.52263 -0.47246 -0.26935 0.617089 -0.76845 0.521882 -0.11477 0.816113 0.495922 -0.41918 0.170042 0.316342

Chloride 0.261593 0.2135894 -0.52263 -0.05635 -0.0177 0.221617 0.025689 0.108008 0.771311 -0.66234 -0.05565 -0.08724 0.62413 0.626801

CO2 -0.48769 0.2667302 -0.47246 -0.05635 0.144353 -0.5573 0.705716 -0.5132 -0.19857 -0.68617 -0.84513 0.738999 -0.7475 -0.59273

Glucose -0.02819 -0.6542315 -0.26935 -0.0177 0.144353 0.14975 0.654434 0.458172 -0.6333 -0.03226 -0.62985 -0.47175 0.06051 -0.37275

Creatinine 0.976443 -0.7512701 0.617089 0.221617 -0.5573 0.14975 -0.58245 0.940525 0.213503 0.402337 0.251075 -0.81371 0.774238 0.735037

Calcium -0.66497 0.081552 -0.76845 0.025689 0.705716 0.654434 -0.58245 -0.34126 -0.483 -0.57392 -0.84641 0.333867 -0.50524 -0.73764

Anion_Gap 0.850187 -0.9086819 0.521882 0.108008 -0.5132 0.458172 0.940525 -0.34126 -0.07775 -0.07775 0.448867 -0.9176 0.700693 0.505296

Albumin 0.356115 0.4625101 -0.11477 0.771311 -0.19857 -0.6333 0.213503 -0.483 -0.07775 -0.41177 0.386289 0.129135 0.520191 0.801427

Alkaline_Phosphatase0.324159 -0.4986886 0.816113 -0.66234 -0.68617 -0.03226 0.402337 -0.57392 0.448867 -0.41177 0.602745 -0.57021 0.162182 0.055662

AST 0.278351 0.1740204 0.495922 -0.05565 -0.84513 -0.62985 0.251075 -0.84641 0.080208 0.386289 0.602745 -0.28491 0.453669 0.538073

ALT -0.67533 0.8014643 -0.41918 -0.08724 0.738999 -0.47175 -0.81371 0.333867 -0.9176 0.129135 -0.57021 -0.28491 -0.76979 -0.45204

Bilirubin_Total0.732118 -0.3543169 0.170042 0.62413 -0.7475 0.06051 0.774238 -0.50524 0.700693 0.520191 0.162182 0.453669 -0.76979 0.862485

Protein_Total0.804563 -0.112467 0.316342 0.626801 -0.59273 -0.37275 0.735037 -0.73764 0.505296 0.801427 0.055662 0.538073 -0.45204 0.862485

(x)
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4.1.2 Response and Error 

In addition to statistical analysis describing the predictive model, the error histogram and 

response charts for each metabolic parameter provides the graphical representation of the model 

output. Figures 9-68 displays the NICMP beta and one predictive model error histogram and 

response plots, relative to the target output values. The graphs are a result of the machine learning 

analysis in MATLAB, and relate to the machine learning output data in Table 5. 
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Figure 9. BUN beta error histogram 
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Figure 10 BUN beta response and error plot 
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Figure 11 Sodium beta error histogram 
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Figure 12 Sodium beta repsonse and error plot 
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Figure 13 Potassium beta error histogram 
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Figure 14 Potassium beta response and error plot 
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Figure 15 Chloride beta error histogram 
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Figure 16 Chloride beta response and error plot 
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Figure 17 CO2 beta error histogram 
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Figure 18 CO2 beta response and error plot 
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Figure 19 Glucose beta error histogram 
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Figure 20 Glucose beta response and error plot 
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Figure 21 Creatinine beta error histogram 
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Figure 22 Creatinine beta response and error plot 
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Figure 23 Calcium beta error histogram 
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Figure 24 Calcium beta response and error plot 
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Figure 25 Anion Gap beta error histogram 
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Figure 26 Anion Gap beta response and error plot 
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Figure 27 Albumin beta error histogram 
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Figure 28 Albumin beta response and error plot 
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Figure 29 Alkaline Phosphatase beta error histogram 
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Figure 30 Alkaline Phosphatase beta response and error plot 
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Figure 31 AST beta error histogram 
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Figure 32 AST beta response and error plot 
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Figure 33 ALT beta error histogram 
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Figure 34 ALT beta response and error plot 
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Figure 35 Bilirubin Total beta error histogram 
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Figure 36 Bilirubin Total beta response and error plot 
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Figure 37 Protein Total beta error histogram 
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Figure 38 Protein Total beta response and error plot 
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Figure 39. BUN error histogram 
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Figure 40. BUN response and error plot 
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Figure 41. Sodium error histogram 
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Figure 42. Sodium response and error plot 
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Figure 43. Potassium error histogram 
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Figure 44. Potassium response and error plot 
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Figure 45. Chloride error histogram 
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Figure 46. Chloride response and error plot 
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Figure 47. CO2 error histogram 
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Figure 48. CO2 response and error plot 
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Figure 49. Glucose error histogram 
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Figure 50. Glucose response and error plot 
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Figure 51. Creatinine error histogram 
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Figure 52. Creatinine response and error plot 
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Figure 53. Calcium error histogram 



89 
 

 

  

Figure 54. Calcium response and error plot 
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Figure 55. Anion Gap error histogram 
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Figure 56. Anion Gap response and error plot 
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Figure 57. Albumin error histogram 
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Figure 58. Albumin response and error plot 
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Figure 59. Alkaline Phosphatase error histogram 
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Figure 60. Alkaline Phosphatase response and error plot 
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Figure 61. AST error histogram 
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Figure 62. AST response and error plot 
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Figure 63. ALT error histogram 
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Figure 64. ALT response and error plot 
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Figure 65. Bilirubin Total error histogram 
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Figure 66. Bilirubin Total response and error plot 
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Figure 67. Protein total error histogram 
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Figure 68. Protein Total response and error plot 



104 
 

4.2 Binary Image Error Distribution 

Figure 39 below displays the binary image of the original grayscale spectral image in figure 

8, given certain thresholds. Table 4 includes the binary image values, given the binary threshold 

conversion of the original grayscale spectral image. 

 

 

Figure 69. Certain binary images of the original grayscale spectral image as a result of the threshold conversion 

 

TABLE XV 

BINARY IMAGE VALUES 

Average Adaptive Otsu 

4169 2143 3544 

Table 15 Binary image values of the original grayscale spectral image given the thresholds 

 

Tables 5, 7, and 9 display the regression model types and corresponding errors resulting 

from the binary conversion and input variable transformation analysis. Tables 6, 8, and 10 display 

the binary image regression model errors resulting from the binary conversion and variable 

transform along with the error distribution, relative to the CMP parameter mean standard deviation.  

 



105 
 

TABLE XVI 

AVERAGE THRESHOLD REGRESSION MODEL TYPE AND ROOT MEAN SQUARED ERROR 

CMP Average RMSE Reciprocal RMSE Logarithm RMSE 
Cube 

Root 
RMSE 

Square 

Root 
RMSE Square RMSE 

BUN SVM 3.78100 LR 3.88300 SVM 3.91970 LR 3.84950 SVM 3.77870 SVM 3.88600 

Sodium LR 1.75440 SVM 1.74630 LR 1.79850 LR 1.76410 LR 1.75690 SVM 1.75280 

Potassium Tree 0.34508 SVM 0.35314 LR 0.34202 LR 0.34994 GPR 0.34592 LR 0.35223 

Chloride SVM 1.92050 SVM 1.88360 LR 1.87690 SVM 1.88610 LR 1.89830 SVM 1.88940 

CO2 Tree 2.37430 Tree 2.35910 Tree 2.38980 SVM 2.37210 SVM 2.37560 SVM 2.37920 

Glucose GPR 17.0010 GPR 16.52200 GPR 17.04900 Tree 16.97300 GPR 16.78700 GPR 17.07500 

Creatinine LR 0.14983 GPR 0.15057 GPR 0.15209 LR 0.15112 LR 0.15133 Tree 0.14837 

Calcium GPR 0.37899 Tree 0.37536 GPR 0.37853 LR 0.37596 SVM 0.37555 GPR 0.37564 

Anion Gap LR 1.59040 Tree 1.59340 LR 1.59270 SVM 1.57570 SVM 1.56880 Tree 1.56460 

Albumin GPR 0.25922 SVM 0.25542 Tree 0.26128 Tree 0.25845 LR 0.25954 LR 0.26315 

Alkaline 

Phosphatase 
LR 23.13300 LR 22.75000 Tree 22.62600 SVM 22.62300 LR 22.66300 LR 23.03700 

AST SVM 9.66090 LR 9.76510 SVM 9.64580 LR 9.67490 LR 9.77120 LR 9.72550 

ALT LR 11.82700 SVM 11.84800 LR 12.02300 LR 11.84200 LR 11.77700 SVM 11.83800 

Bilirubin 

Total 
LR 0.32557 LR 0.32023 GPR 0.32110 Ensemble 0.31331 Ensemble 0.31807 GPR 0.31987 

Protein Total LR 0.41947 LR 0.42239 SVM 0.42250 SVM 0.41992 SVM 0.41571 SVM 0.42166 

Table 16. Average binary input transform regression model error (n=90)  
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TABLE XVII 

AVERAGE THRESHOLD ROOT MEAN SQUARED ERROR AND STANDARD DEVIATION COMPARISON 

CMP Average Reciprocal Logarithm Cube Root Square Root Square 1 SD (%) 2 SD (%) 3 SD (%) 

BUN 3.78100 3.88300 3.91970 3.84950 3.77870 3.88600 33 100 100 

Sodium 1.75440 1.74630 1.79850 1.76410 1.75690 1.75280 100 100 100 

Potassium 0.34508 0.35314 0.34202 0.34994 0.34592 0.35223 100 100 100 

Chloride 1.92050 1.88360 1.87690 1.88610 1.89830 1.88940 83 100 100 

CO2 2.37430 2.35910 2.38980 2.37210 2.37560 2.37920 100 100 100 

Glucose 17.00100 16.52200 17.04900 16.97300 16.78700 17.07500 50 100 100 

Creatinine 0.14983 0.15057 0.15209 0.15112 0.15133 0.14837 100 100 100 

Calcium 0.37899 0.37536 0.37853 0.37596 0.37555 0.37564 100 100 100 

Anion Gap 1.59040 1.59340 1.59270 1.57570 1.56880 1.56460 100 100 100 

Albumin 0.25922 0.25542 0.26128 0.25845 0.25954 0.26315 100 100 100 

Alkaline Phosphatase 23.13300 22.75000 22.62600 22.62300 22.66300 23.03700 67 100 100 

AST 9.66090 9.76510 9.64580 9.67490 9.77120 9.72550 50 100 100 

ALT 11.82700 11.84800 12.02300 11.84200 11.77700 11.83800 17 100 100 

Bilirubin Total 0.32557 0.32023 0.32110 0.31331 0.31807 0.31987 0 100 100 

Protein Total 0.41947 0.42239 0.42250 0.41992 0.41571 0.42166 0 100 100 

Standard Deviation Total       67 100 100 

Table 17. Average binary input transform error and standard deviation distribution (n=90)  
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TABLE XVIII 

ADAPTIVE THRESHOLD REGRESSION MODEL TYPE AND ROOT MEAN SQUARED ERROR 

CMP Adaptive RMSE Reciprocal RMSE Logarithm RMSE 
Cube 

Root 
RMSE 

Square 

Root 
RMSE Square RMSE 

BUN Tree 3.87600 SVM 3.81640 SVM 3.81200 SVM 3.89260 SVM 3.85350 SVM 3.83470 

Sodium Tree 1.68440 Ensemble 1.70170 SVM 1.73080 LR 1.69180 Tree 1.69950 LR 1.69290 

Potassium LR 0.35428 Tree 0.35192 LR 0.35640 LR 0.35407 SVM 0.35519 LR 0.35063 

Chloride SVM 1.87390 SVM 1.87390 SVM 1.88650 SVM 1.87240 LR 1.87750 SVM 1.87330 

CO2 SVM 2.36950 SVM 2.35970 SVM 2.33080 SVM 2.35590 SVM 2.36650 SVM 2.34840 

Glucose LR 17.15100 LR 17.28800 LR 17.42600 LR 16.95600 LR 17.48600 LR 17.04200 

Creatinine LR 0.15066 LR 0.15288 GPR 0.15198 LR 0.15080 Ensemble 0.14731 LR 0.15144 

Calcium LR 0.38162 LR 0.37754 LR 0.37489 LR 0.37583 LR 0.37517 SVM 0.36892 

Anion Gap GPR 1.55210 GPR 1.54110 Tree 1.52900 GPR 1.55080 Tree 1.65140 GPR 1.53420 

Albumin Tree 0.25991 LR 0.25779 SVM 0.25774 SVM 0.25949 GPR 0.26071 LR 0.26115 

Alkaline 

Phosphatase 
LR 22.74900 LR 22.71500 SVM 23.14800 LR 22.84200 GPR 23.03900 SVM 22.63000 

AST SVM 9.75170 LR 9.68430 LR 9.79200 LR 9.73460 LR 9.74890 Tree 9.75550 

ALT Tree 11.81000 LR 11.87100 Tree 11.78500 LR 11.88900 GPR 11.86500 GPR 11.97600 

Bilirubin Total LR 0.32360 LR 0.32175 LR 0.32122 LR 0.32470 LR 0.31925 GPR 0.32078 

Protein Total SVM 0.41976 LR 0.42361 LR 0.42005 LR 0.42747 LR 0.42064 LR 0.42293 

Table 18. Adaptive binary input transform regression model error (n=90)  
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TABLE XIX 

ADAPTIVE THRESHOLD ROOT MEAN SQUARED ERROR AND STANDARD DEVIATION COMPARISON 

CMP Adaptive Reciprocal Logarithm Cube Root Square Root Square 1 SD (%) 2 SD (%) 3 SD (%) 

BUN 3.87600 3.81640 3.81200 3.89260 3.85350 3.83470 0 100 100 

Sodium 1.68440 1.70170 1.73080 1.69180 1.69950 1.69290 100 100 100 

Potassium 0.35428 0.35192 0.35640 0.35407 0.35519 0.35063 100 100 100 

Chloride 1.87390 1.87390 1.88650 1.87240 1.87750 1.87330 100 100 100 

CO2 2.36950 2.35970 2.33080 2.35590 2.36650 2.34840 100 100 100 

Glucose 17.15100 17.28800 17.42600 16.95600 17.48600 17.04200 17 100 100 

Creatinine 0.15066 0.15288 0.15198 0.15080 0.14731 0.15144 100 100 100 

Calcium 0.38162 0.37754 0.37489 0.37583 0.37517 0.36892 100 100 100 

Anion Gap 1.55210 1.54110 1.52900 1.55080 1.65140 1.53420 83 100 100 

Albumin 0.25991 0.25779 0.25774 0.25949 0.26071 0.26115 100 100 100 

Alkaline Phosphatase 22.74900 22.71500 23.14800 22.84200 23.03900 22.63000 50 100 100 

AST 9.75170 9.68430 9.79200 9.73460 9.74890 9.75550 17 100 100 

ALT 11.81000 11.87100 11.78500 11.88900 11.86500 11.97600 17 100 100 

Bilirubin Total 0.32360 0.32175 0.32122 0.32470 0.31925 0.32078 0 100 100 

Protein Total 0.41976 0.42361 0.42005 0.42747 0.42064 0.42293 0 100 100 

Standard Deviation Total       59 100 100 

Table 19. Adaptive binary input transform error and standard deviation distribution (n=90)  
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TABLE XX 

OTSU THRESHOLD REGRESSION MODEL TYPE AND ROOT MEAN SQUARED ERROR 

CMP Otsu RMSE Reciprocal RMSE Logarithm RMSE 
Cube 

Root 
RMSE 

Square 

Root 
RMSE Square RMSE 

BUN LR 3.84910 SVM 3.84410 SVM 3.98130 SVM 3.85030 SVM 3.84550 SVM 3.82650 

Sodium GPR 1.78070 GPR 1.78590 Ensemble 1.74020 GPR 1.76640 LR 1.79600 LR 1.75970 

Potassium SVM 0.35473 SVM 0.35176 SVM 0.35003 Tree 0.35232 SVM 0.34870 LR 0.35121 

Chloride SVM 1.87370 SVM 1.87390 LR 1.92680 SVM 1.89280 Tree 1.82260 SVM 1.90510 

CO2 LR 2.39680 SVM 2.35510 Tree 2.40490 Tree 2.39600 LR 2.39110 LR 2.40680 

Glucose SVM 17.00000 LR 17.08200 GPR 17.07200 Ensemble 16.91000 LR 17.43200 SVM 16.86200 

Creatinine GPR 0.15155 GPR 0.15046 LR 0.15052 GPR 0.15183 GPR 0.14827 Tree 0.14885 

Calcium LR 0.37566 LR 0.37826 GPR 0.37877 LR 0.37588 GPR 0.37467 LR 0.38395 

Anion Gap SVM 1.59190 GPR 1.56680 GPR 1.58040 LR 1.57160 LR 1.58770 SVM 1.56330 

Albumin LR 0.25798 LR 0.25740 LR 0.25825 LR 0.25820 LR 0.25734 Tree 0.26336 

Alkaline 

Phosphatase 
SVM 22.89800 Tree 23.20300 LR 22.75500 SVM 22.99000 GPR 22.72500 LR 22.93300 

AST SVM 9.65880 GPR 9.72960 LR 9.64730 GPR 9.67730 SVM 9.75140 LR 9.70550 

ALT LR 11.98500 SVM 12.04800 LR 11.90400 LR 11.81900 GPR 11.86700 LR 11.93100 

Bilirubin Total LR 0.32307 LR 0.32426 LR 0.32261 Ensemble 0.31318 Tree 0.31169 Tree 0.31298 

Protein Total SVM 0.41149 SVM 0.41991 GPR 0.42024 SVM 0.42587 GPR 0.41935 SVM 0.42407 

Table 20. Otsu binary input transform regression model error (n=90)  
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TABLE XXI 

OTSU THRESHOLD ROOT MEAN SQUARED ERROR AND STANDARD DEVIATION COMPARISON 

CMP Otsu Reciprocal Logarithm Cube Root Square Root Square 1 SD (%) 2 SD (%) 3 SD (%) 

BUN 3.84910 3.84410 3.98130 3.85030 3.84550 3.82650 0 100 100 

Sodium 1.78070 1.78590 1.74020 1.76640 1.79600 1.75970 100 100 100 

Potassium 0.35473 0.35176 0.35003 0.35232 0.34870 0.35121 100 100 100 

Chloride 1.87370 1.87390 1.92680 1.89280 1.82260 1.90510 67 100 100 

CO2 2.39680 2.35510 2.40490 2.39600 2.39110 2.40680 67 100 100 

Glucose 17.00000 17.08200 17.07200 16.91000 17.43200 16.86200 33 100 100 

Creatinine 0.15155 0.15046 0.15052 0.15183 0.14827 0.14885 100 100 100 

Calcium 0.37566 0.37826 0.37877 0.37588 0.37467 0.38395 100 100 100 

Anion Gap 1.59190 1.56680 1.58040 1.57160 1.58770 1.56330 100 100 100 

Albumin 0.25798 0.25740 0.25825 0.25820 0.25734 0.26336 100 100 100 

Alkaline Phosphatase 22.89800 23.20300 22.75500 22.99000 22.72500 22.93300 33 100 100 

AST 9.65880 9.72960 9.64730 9.67730 9.75140 9.70550 50 100 100 

ALT 11.98500 12.04800 11.90400 11.81900 11.86700 11.93100 0 100 100 

Bilirubin Total 0.32307 0.32426 0.32261 0.31318 0.31169 0.31298 0 100 100 

Protein Total 0.41149 0.41991 0.42024 0.42587 0.41935 0.42407 0 100 100 

Standard Deviation Total       57 100 100 

Table 21. Otsu binary input transform error and standard deviation distribution (n=90) 
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5.      DISCUSSION 

The machine learning approach considers the average grayscale image texture values, 

given 100-200 frames per sample. The analysis performs the GLCM on each image in the sample 

and averages the values to generate the six spectral feature variables and their corresponding 

values. Subsequently, the approach employs an artificial neural network to train a predictive model 

with the average grayscale texture values as the input variables with known CMP data as output 

variables. This method provides a comprehensive analysis to generate a predictive model capable 

of predicting CMP outcomes, given a different set of input values. NICMP predictive model beta 

produces an accuracy level of 20%, given the predictive model MSE is within 80% of the CMP 

reference values. NICMP predictive model one produces a 95% accuracy level since the MSE is 

within 5%, relative to the reference values. Table 21 displays the FDA’s accuracy key with respect 

to self-monitoring blood glucose test systems as a point of reference [55]. The NI glucose 

measurement average error is five mg/dL (+/-5%), relative to the laboratory result. The NICMP 

average error is two units (+/-5%), relative to the laboratory metabolic blood panel result. The 

NICMP predictive model one coefficient of determination is 0.9 which suggests that the spectral 

data altogether explains 90% of the variations in the output value. Additionally, the accuracy level 

increases faster with subsequent training data, perhaps exponentially, relative to the increase of 

training data. The NICMP predictive model beta training data set includes 80% of the total 

available data, or 72 endpoints, while predictive model one includes 95% of the available data, or 

85 endpoints. This 15% increase in the training data set accounts for a 75% increase in accuracy, 

relative to the test/target data set. Moreover, the ratio and distribution of positive and negative 

values in each of the corresponding covariance and correlation coefficient matrices are equivalent, 

given a cross-sectional approach (i.e., sample covariance and population correlation coefficient). 
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The average correlation coefficient for each of the CMP results and NICMP predictive model 

outputs are very close to 0 which implies that interrelationships between each metabolic parameter 

does not exist. This analysis is expected with regards to the CMP blood test as different reagents 

are used to detect the various metabolic analytes. The machine learning and digital image 

processing technique proves to decouple the respective analyte concentrations, given a single input 

(i.e., grayscale image intensity value). Moreover, the concentration of any one particular analyte 

does not influence image intensity values in such a way that could affect the concentration 

prediction, or outcome, of another analyte with respect to machine learning. This effect might be 

partly attributed to each metabolic analyte being assigned a corresponding predictive model that 

is independent, relative to the predictive models of the other analytes. In other words, the NICMP 

predictive model actually contains separate neural networks that describes the relationship between 

the spectral parameter and the metabolic analyte of interest. This approach is similar to a certain 

reagent being used to detect the presence and concentration of a particular analyte (i.e., one reagent 

can not detect multiple analytes). Each analyte has a certain reagent that is useful for detecting that 

particular analyte, given a blood sample. In the case of non-invasive detection, each analyte has a 

certain predictive model used to detect its concentration. Efficiency is created as multiple neural 

networks, one for each analyte, can detect the concentration of each particular analyte with a single 

grayscale spectral image, and eliminates the need for several reagents. 
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TABLE XXII 

FDA ACCURACY KEY FOR SELF-MONITORING BLOOD GLUCOSE SYSTEMS 

Accuracy key Percentages listed are meter result as 

compared to laboratory results 

Accurate Results Meter result is +/-15% of laboratory result 

More Accurate Results Meter result is +/-10% of laboratory result 

Most Accurate Results Meter result is +/-5% of laboratory result 
Table 22. Qualitative accuracy description for over-the counter blood glucose systems relative to laboratory results 

 

Binary conversion and transformation is useful to further analyze the relationship between the 

spectral image and CMP data. One image was taken from the 100-200 images per sample, from 

each sample, to convert the grayscale image intensity to a binary value. The binary value undergoes 

transformation to analyze the change in the relationship, given multiple types of data transform. 

The binary values along with their corresponding transformations serve as input variables in 

regression modeling techniques with the CMP data as the output variables. The regression learner 

application develops models through a series of different methods to generate the minimal error. 

The error is useful to determine the distribution with respect to the binary conversion, given only 

one image per sample. This analysis considers the fundamental, or underlying, relationship to 

substantiate the machine learning predictive model which considers an average of 100-200 

grayscale images. In accordance to the empirical rule (68-95-99.7), the average binary error 

distribution is normal since 67% of the data is within one standard deviation, and 100% within 2 

standard deviations. The machine learning predictions are reliable because the underlying error 

distribution is normal. 
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The spectral images represent relative RBC mean and velocity. The CMP is a function of 

RBC volume and velocity, since a correlation exists between metabolic analyte concentration and 

the spectral images. This suggests that certain metabolic analyte concentration affects RBC 

production factors (e.g. erythropoietin), influences physiological states that relate to blood 

pressure, and other factors that relate to RBC velocity (e.g. nitric oxide). 

 

6.      CONCLUSION AND FUTURE WORK 

Spectroscopy, specifically LSCI, and machine learning are useful to remotely detect 

metabolic analyte concentration. The predictive model coefficient of determination proves that a 

significant relationship between the spectral Doppler signal and chemical concentration in the 

blood exists. The overall contribution includes the introduction of the innovative approach with 

regards to the application of machine learning to include subjects as their own control, relative to 

the predictive model development. Subsequently, the novel method enables the non-invasive 

capability to detect analyte concentration. This research and methodology serves to contribute to 

an important area of research that has proven to be extremely challenging. Additionally, the 

method is novel in the sense that it is applicable to other clinical testing applications, thus enabling 

diverse and potentially continuous detection medical applications to remotely sense biological 

parameters relevant to clinical evaluation. The next generation version should include a digital 

image monitor to ensure sufficient pressure is applied on the optical sensor by the subject to capture 

consistent spectral data, a correlation coefficient analysis including the entire data set, and a 

spectral reading with both palms to assess the predictive model performance with regards to 

precision. Additionally, digital image pre-processing might be applicable to enhance the grayscale 

spectral images to further improve reproducibility. Future work includes applying the method to 
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certain clinical tests that require needles and venipuncture blood draws (i.e., continuous blood 

pressure monitoring, thyroid hormone stimulating, cholesterol, etc.). The NICMP serves as a 

platform technology, and potentially a predicate device with regards to regulatory approval. Future 

work also includes machine deep learning to extract certain image texture features to generate a 

more accurate and precise model by eliminating or reducing multicollinearity. The current 

predictive model considers six grayscale texture feature variables; which all six feature variables 

are predictors in the machine learning training process. Interference as a result of predictors 

correlating with each other can inhibit the accuracy and performance of the predictive model. 

Additionally, this research considers one to two seconds of blood perfusion with a relatively small 

sample size (i.e. proof of concept). Subsequent releases of the application should consider at least 

three to four seconds of microvascular perfusion to train and develop next generation predictive 

models, and a larger sample size. The particular enhancement regarding perfusion time would 

consider three to four cycles of microvascular perfusion instead of current one to two cycles, given 

an average resting heart rate of 60 beats per minute. This enhancement provides more relevant data 

to train a commercial version predictive model. The predictive model accuracy, precision, and 

reliability are subject to increase, given the enhancements. Moreover, future statistical analysis 

ought to include an error distribution analysis that considers the standard deviation of the 

population, NI glucose measurement response plot via an Error Grid, and error plots via Bland-

Altman plot to determine the bias and limits of agreement. Limitations include a stationary device 

with an analysis on the palm of either hand due to the data collection method. This limitation may 

be overcome and provide a portable sensor (e.g. smartwatch) by including a gamma parameter to 

consider differences in constant spectral values between the initial region of interest and other 

areas such as the wrist. Additionally, previous research indicates that spectral device training data 
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from a particular sample are typically able to produce accurate results with test data that share 

similar characteristics as the training data. In this case, another limitation is that the NICMP results 

are valid only with a “healthy” population. Future releases should contain training data that is more 

representative of the general population. One study indicates that 95% of the world’s population 

has health problems, with over a third having more than five ailments [56]. Subsequent versions 

should collect data from a diagnosed population to be more representative of the global population 

and eliminate the limitation regarding accurate results, relative to a group with similar 

characteristics as the training data set. 
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