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ABSTRACT 

 

Oil production from tight formations such as the Bakken Formation has experienced a 

boom in the last decade with recent breakthroughs in horizontal drilling and hydraulic 

fracturing. However, despite the technological progress, the oil recovery is still less than 10 

percent, leaving a considerable amount of potentially recoverable oil. While miscible flooding 

is well understood in the conventional reservoir, it is not fully explored in unconventional 

reservoirs. Therefore, it is essential to evaluate different enhanced oil recovery techniques 

potential in tight shale plays. 

In this thesis, the research studies CO2 and ethane interactions with oil at reservoir 

conditions through laboratory experiments and examined their effects on the ultimate oil 

recovery. Due to the scarcity of CO2, the study concentrates on the potential of using ethane as 

an alternative to CO2 because the results showed CO2 as a good candidate for EOR in the 

Bakken. Also, we have done an extensive digital rock analysis on a Berea sandstone in order 

to learn how to incorporate the process into EOR simulations. Several core flood experiments 

were run using CO2 and ethane as the EOR agents and their results were compared. Next, 

Digital rock analysis and numerical simulation was employed to model the process. 

In this work, the potential of different EOR processes was investigated, Digital rocks 

analysis and simulations were run to help better choose optimal EOR techniques and 

methodologies.  It was observed that ethane was the best EOR agents for the Bakken and digital 

rock analysis can provide accurate reservoir characterisation of rock sample. 

Keywords: oil production, DRA, CO2, EOR, digital rock analysis, oil field, reservoir  
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CHAPTER 1 

INTRODUCTION 

 

Enhanced oil recovery (EOR) is the basic implementation of various techniques for 

increasing the amount of crude oil that can be extracted from an oil field. Enhanced oil recovery 

is also called tertiary oil recovery as following the primary and secondary recovery. According 

to the US Department of Energy, there are three fundamental techniques for EOR: Thermal 

recovery, Gas Injection, and chemical injection. Sometimes the term quaternary recovery is 

used to refer to more advanced, speculative, EOR techniques. The effectiveness of oil recovery 

from the oil-bearing formation using modern industrial method is considered unsatisfactory in 

all producing countries, while the consumptions of petroleum products are growing worldwide 

every year. Average ultimate oil recovery in different countries and region is ranging from 15 

to 45 percent (Tzimas et al.,2005). For examples, 24-27 percent, in Latin America and southeast 

16-17 percent in Iran, and 33-37 percent in the USA, Canada, and Saudi Arabia. Modern 

geological proven oil reserves in all known deposits in the world are reaching more than 500 

billion tons, also, over 300 billion tons are classified as unrecoverable resources by many 

modern industrial methods of field development (Green et al., 1998). The remaining oil 

reserves removal rate range on average between 10-15 percent, which equals 30-40 billion tons. 

It may even be reached using enhanced oil recovery methods that are currently applied. 

Therefore, the remaining oil reserves in known deposits represent a significant source of 

supplies for increasing recoverable reserves and essential target for implementation of EOR 

methods. 

Interest toward enhanced oil recovery method is increasing every year all over the world 

and researchers aimed at finding a scientific approach for choosing the most effective EOR are 

developing rapidly. To improve the economic efficiency of oil field development and to reduce  
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direct capital investments for the entire period of the oil field is usually divided into three main 

stages 

1. At the first stage of oil production (primary production), the natural energy of an oil 

field is used as much as possible (see figure 1). This driving force is mostly the elastic 

energy, the energy of the dissolved gas, the energy of the gas cap, and the potential 

energy of gravitational forces. 

2. The second stage methods to maintain reservoir pressure by injecting water or gas are 

implemented. These means were called methods of secondary production. 

3. At the third stage-enhanced oil recovery methods are used to improve the production 

efficiency. This stage is generally associated with the alleged tertiary production. 

 

Figure 1. Wellhead from primary production 

EOR Classification 

Thermal recovery 
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This method is usually used for a reservoir with very high API such as reservoirs seen in 

Canada with tar sand and heavy oil. Amongst the thermal EOR methods use there are: 

1. Steam Flooding 

a. Steam flooding is a method where heat is introduced to the reservoir by a 

continuous steam injection. A huge amount of hydrocarbon reserves worldwide 

is heavy oil. The drawback for this type of oil in production is that it has very 

has viscosity and therefore and bad mobility in-situ (Zhu et al., 2011). Using a 

continuous steam injection improve the mobility and further improve the 

production by cleaning the near-wellbore zone. 

2.  Cyclic steam stimulation 

a. Cyclic steam flooding is an EOR method is more favourable for massive oil 

extraction not only for heavy oil but for the naturally fractured reservoir as well 

as the heat introduced to the reservoir will reduce oil viscosity and improve 

recovery (Mollaei, Maini, & Jalilavi, 2007). This approach also was known as 

huff and puff consist of three phases: injection period, the soaking period and 

the return to production. The Huff and Puff method is currently also used for 

gas injection in the unconventional reservoir such as the Bakken North Dakota 

(Yu et al., 2014) (See Figure 2).  
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Figure 2. Cyclic stimulation (DOE.gov) 

 

3. In-Situ Combustion 

a. In-situ combustion also called fire flooding had been used for more than 90 

years successfully. However, it is considered a high-risk method due to its 

application to a weak candidate reservoir. It is called fire flooding because it 

reflects the movement of oil front burning in the basin. This method could be 

either forward or reverse as the combustion front can be moving toward or 

against the air flow. One of the main advantages of this methods is that it can 

be used in a wide range of reservoir which is pretty unique for a thermal EOR 

method (Wu et al.,1971). 

4. Hot Water Flooding 
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Hot water flooding is the least expensive methods for thermal EOR. It works like a 

typical water flooding with the difference that it the water used is hot. The means are mostly 

used for heavy oil such as some types found in certain Canadian reservoirs (Torabi et al., 2012). 

Gas Injection EOR 

Air injection for Light hydrocarbons reservoirs. Air injection is an EOR method 

used to for light hydrocarbons reservoirs. It works by injecting air into the reservoir under 

pressure (Teramoto et al., 2006). The primary mechanism is the burning process caused by the 

mixture of the oxygen found in the injected air and the in-situ oil in place. This oxidation will 

start propagating through the reservoir. 

Carbon dioxide injection. At the temperature above 31°C carbon dioxide is in a 

gaseous state under any pressure, if the temperature is below 31°C, it goes into the liquid state. 

However, under the pressure, less than 1044 psi carbon dioxide evaporates. The physical 

essence of the method is based on the excellent carbon dioxide miscibility in the reservoir 

fluids, providing volumetric expansion of oil in 1.5 ~1.7 times, miscibility with oil (elimination 

of capillary forces), oil viscosity reduction and consequently increasing the oil displacement 

coefficient for up to 0.95. However, the use of CO2 as any other low viscosity agent associated 

with lower sweep efficiency (5~15 percent), that is why oil recovery factor can increase only 

by 7 to 11 percent. Nevertheless, there are cases where the recovery factor reaches 85 percent. 

Carbon dioxide can be injected in gaseous with full miscible pressure or liquid state combined 

with water flooding (see figure 3). 
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Figure 3. CO2 EOR (DOE.gov) 

 

Nitrogen and other natural gas injection. Nitrogen and additional natural gas 

injection could be a very viable EOR method for a specific reservoir candidate. Injections of 

natural gases (see figure 4) create a miscible front with the in-situ oil in place. It considered 

being a good candidate for a standard reservoir with a high content of ethane through hexane. 
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Figure 4.  Nitrogen Flooding (DOE.gov) 

 

Chemical Injection 

Surfactant flooding (Foam Including). The method is based on the ability of the 

surfactant to reduce the interfacial tension at the boundary of oil and water, change oil-water-

rock surface wettability and properties of adsorption layers that are formed at the boundary 

between oil-water and oil-rock surface. It uses dilute non-ionic surfactant solutions. 

Polymer flooding. The method is based on the ability of the dissolved in water high 

chemicals polymers, even in small concentrations significantly increase water viscosity, reduce 

mobility and thereby improve sweep efficiency. When the concentration of water equals 0.01-

0.1% its viscosity increases to 3-4 MPa. This led to a significant reduction of oil and water 

viscosity ratio in the reservoir and the suppression of liquid breakthrough. 

Alkaline water flooding. The injection employs the term alkaline flooding into the 

reservoir of reagent, solvent, which are alkaline. The preferable concentration of the solution 

ranges from 0.05 to 5 percent, and in some cases can reach 25-30 percent. The most potent 
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chemical reaction has a NaOH and Na2SIO3. These substances are recommended as essential 

reagents to enhanced oil recovery. They both actively interact with acidic components of oil, 

harden ions that water can contain (reservoir and injected) and the rock collector. Application 

of alkaline acting based on the interaction of alkaline liquids (reservoir and injected) and the 

rock fraction, which resulted in a change in the surface characteristics of the system oil-water-

rock conditions and therefore oil displacement by water. The main factors that determine the 

oil recovery increase are to lessen the interfacial tension, oil emulsification, and reduction of 

rock wettability. 

Acid displacement. The method of sulfuric acid injection is based on the formation of 

acid in the watered zone which in turn should be surfactant friendly and water-soluble. The 

primary mechanism is to reduce water permeability of washed areas, increase sweep efficiency, 

and reduce interfacial tension. The first process is to use sulfuric acid with a concentration of 

90 percent, and the second corresponds to the use of acid of 80 percent concentration called 

alkylated sulfuric acid (ASA) (Griesinger et al.,1951). 

Chemical reagent displacement (micellar-polymer flooding including). The 

micellar solution is an excellent dispersed colloidal system of hydrocarbon liquids (from LPG 

to light hydrocarbon), water, and a water-soluble surfactant which was stabilized by 

alcohol(isopropyl, butyl). Micellar flooding provides a reduction of interfacial tension in the 

reservoir for the optimal composition almost to zero (less than 0.001mN/m) (Green et al.,1998). 

According to some published data, micellar-polymer flooding can lead to a recovery of 80-90 

percent (Green et al.,1998).  

Microbiological treatment. This technique consists of injecting micro-organism 

inside the reservoir to produce surfactants which will help in oil production. The success of 

this method has been controversial and have not been applied in commercial scale yet. 

Hydrodynamic EOR 
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Amongst the different hydrodynamic EOR there are: 

● Integrated displacement technologies 

● Development of by-pass oil reserves 

● Barrier flooding 

● Non-stationary flooding 

● Accelerated production 

● Stepwise thermal flooding 

Combined EOR 

In most cases where combined EOR methods are implemented there are different 

combinations of hydrodynamic and thermal, hydrodynamic and physico-thermal, thermal and 

physicochemical and other methods. Plasma-pulse technology (see figure 5) is the newest 

technique used in the USA as of 2013 (Patel et al.,2018). The technology originated in the 

Russian Federation at the St. Petersburg state mining university.  
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                                                Figure 5. Plasma Pulse (Novas Energy) 

 

Production Intensification 

There are also some locally applied methods which are usually attributed to a particular 

group called oil production intensification methods. It would not be entirely correct to associate 

these methods with EOR methods. Since while increasing the recovery for some period it does 

not increase the ultimate oil recovery rate as EOR methods would. The mainly applied oil 

production intensification methods are as follows: 

1. Hydraulic Fracturing and Horizontal Wells 

a. Hydraulic fracturing (see figure 6) is a technique used to bypass formation 

damage and stimulate the zone of interest. The method consists of fracturing the 

rock injecting a pressurized fluid. This method was developed a commercial 

scale since 1946 and has been since employed worldwide. (Coulter et al., 1976). 
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Figure 6. Hydraulic fracturing with horizontal well (motherearthnews.com) 

                

Horizontal Wells 

b. Drilling horizontal wells usually have more than 85 degrees; it improves the 

reservoir performance by having a more extended contact area with the 

reservoir. This method combined with hydraulic fracturing have allowed the 

industry to exploit formation that was non-economically exploitable (Prasad et 

al., 1990). 

2. Wave Treatment 

a. This method consists of directing wave energy to the region of intersect in a 

hydrocarbon reservoir. (Jeon et al., 2015). 

3. Acid stimulation 

a. Acid stimulation also called acid fracturing is the hydraulic fracturing method 

were the fluid used is acid instead of water. This type of treatment can be 

deployed in different stages (see figure 7) (Rafie et al., 2014). 

 

Figure 7. Multi-stage hydraulic fracturing (Rafie et al., 2014) 



 

22 
 

The drilling and exploration method are critical to the successful production of oil. Besides, it 

determines whether an organization in the field will achieve its goals and mission. 

Consequently, it is imperative to review the nature of the oil field in question and select the 

most appropriate approach to use.  
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                                                                          CHAPTER 2 

                                   RESERVOIR CHARACTERISATION OF BAKKEN 

 

The Williston Basin is a critical intra-cratonic region made up of sedimentary deposit 

extending from the Southern parts of Dakota, all the way to North Dakota, Montana, and the 

Canadian provinces of Alberta, Manitoba, and Saskatchewan. Over the years, a lot of 

exploration work has been done in the region. However, since the mid-2000s the attention of 

explorers has been focused on the Bakken Formation (See figure 8). Shared by the U.S and 

Canada. It is located in North Dakota and Montana in the United States, and Saskatchewan and 

Manitoba share it on the Canadian territory (Sorensen et al.,2015). The Bakken petroleum 

system consists of Three Forks Formation, Lower, Middle, and the Upper Bakken Members 

(LeFever et al., 2011). The four members are known to be rich reservoirs of carbonates and 

mixed siliciclastic substances (Egenhoff et al, 2011). In recent years, they took place among 

the most important oil-producing regions. The development of these reservoirs started in 1953 

with the discovery of the Antelope fields that extended from North Dakota. 

Up to the 1970s, explorers limited their work to the Antelope filed because of the poor 

reservoir characteristics like low permeability and porosity in the Bakken Formations (LeFever 

et al., 1998). The development and exploration of the Bakken formation hit a higher gear with 

the completion of the first-ever horizontal well within North Dakota (Lindsay et al., 1988). The 

success of this particular well motivated the relevant stakeholders to look for new targets with 

the Bakken as well as the Three Forks Formations. Despite the poor reservoir characteristics, 

advances in well-drilling and completion methods resulted in the dramatic increase in 

exploration activities in the Bakken Formation in the mid-2000s. 
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                                                    Figure 8.Bakken Map (EERC) 

 

The Bakken Formation is regarded to be among the most productive regions of the 

Williston Basin and one of the richest low-permeability reservoirs found in North America 

(Nordeng & Helms, 2010; Pedersen & Christensen, 2007; Sorensen et al., 2015). Researchers 

contend that reservoir characterization has also helped in understanding the flow of oil in the 

matrix pores and fractures (see figure 9). Moreover, it was useful in conducting forecast 

modelling operations and the analysis of pressure depletion (Pedersen & Christensen, 2007). 

The lower and upper members of the Bakken Formation are made up of a mixture of massive 

and fissile organic-rich shale rocks (Nordeng & Helms, 2010). The shales act as an important 

source bed for the Bakken’s Middle Member and other formations such as the Mission Canyon 

and Three Forks. It is also imperative to state that the lower and upper members are organic-

rich regions with total organic carbon that range from about 12 to 26 percent of the total weight. 

Both of these formations have shales that are characterized by high Type II kerogen 
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concentration. The Middle member is known to be poor in organic content with the total 

organic carbon ranging from about 0.1 to 0.3 percent of the weight. Despite this being the case, 

the member contains different substances and rocks like sandstone, dolostone, and shale that 

are critical to the production processes. 

In 2015, 4.9 million barrels were produced in the U.S per day from unconventional 

reservoirs alone (Mansour et al., 2017). However, the OOIP of Bakken is estimated to be from 

100 to 900 billion barrel (Sorensen et al., 2015) with a low recovery factor ranging from 3% to 

7% (Sorensen et al.,2014; Mansour et al.,2017; Sorensen et al., 2015). Therefore, an increase 

of 1% of the recovery factor could lead to 1.6-9 billion barrels of additional oil (Yu et al., 

2015). The reservoir has been used to produce millions of barrels every year in an attempt to 

meet the demands of the country and its citizens. 

Most of the production target zone is in the non-shale Middle Bakken and the Three 

Forks zone (Jin et al., 2017). The Upper and Lower Bakken have shown from good logs to 

content an important oil content as they are the hydrocarbon source rocks with a Total Organic 

Carbon averaging 26.5% (Tran et al., 2011), but the transport phenomenon has yet to be well 

understood (Jin et al.,2017). On the other hand, the Middle Bakken is poorly organic with a 

TOC averaging 0.2wt% (Price,1999) which rock characteristics vary widely from classics 

(shale, silt, and sandstone) to carbonates (primarily dolomite) with five different lithofacies 

distinguished in North Dakota (Mansour et al.,2017).  

The Bakken is overpressured with a pressure gradient that goes up to 0.73psi/ft 

(Meissner, 1978) with a matrix in shale made up of a combination of macropore bigger than 

50 nm in diameter, mesopores varying from 2 to 50 nm in diameter and micropores with a 

diameter smaller than 2nm (Kuila et al.,2011). And such small pore sizes lead to high capillary 

pressure in the matrix and make the fluid flow harder to impossible (Jin et al.,2017). The 

average porosity of the middle Bakken is around 6% while its permeability ranges from 0.001 
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to 0.01 mD (Pu et al.,2015) with a water saturation which varies from 25 to 50% (Cherian et 

al.,2012).  The Average gravity is around 42°API (Yu et al., 2014), gas/oil ratio varying from 

507 to 1712 SCF/bbl. and the bubble point pressure ranges from 1617 to 3403 psi (Nojabaei et 

al.2013). With such complex properties, where the oil-wet kerogen surface increases the 

difficulty of EOR agent in sweeping oil molecules from it (Jin et al.,2017). 

 

Figure 9.Conceptual steps for gas EOR in fracture networks (Hawthorn et al.,2013) 
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                                                                       CHAPTER 3 

DIGITAL ROCK ANALYSIS WITH PORE SPACE STUDY ON BEREA SANDSTONE  

 

Introduction  

Over the years, digital rock analysis (DRA) has evolved into a critical and powerful 

tool that can assist in the modeling of rock samples. DRA is applied to stone formations that 

are scanned using a wide range of methods that include X-ray computed tomography (see 

figure 8) and three-dimensional imaging approaches. It is also imperative to state that the digital 

rock analysis method allows for the characterization of simple and complex stone structures. 

The process entails looking at various properties such as the relative permeability, absolute 

permeability, pore network, porosity, and texture. Researchers and experts used DRA to save 

time and resources that could have otherwise been spent on other methods such as laboratory 

core tests. The digital rock technology method has been applied to simple rocks to predict and 

determine porosity, permeability, pore distribution, and conductivity. In other cases, advances 

in the imaging and computing approaches have allowed for the use of the technology to study 

the elastic properties and relative permeability of various types of rocks such as sandstone, 

shales, and carbonates. In these regards, DRA is a valuable tool that complements laboratory 

tests and assists in the understanding and visualization of rocks. In this work, we have run a 

throughout digital rock analysis using a Berea sandstone. 

Even though digital rock technology is regarded as a promising tool, the application is 

still linked with specific challenges especially when it comes to the study of rock properties. 

The main limitation lies in the high cost of creating and modeling the high-resolution rock 

structures with high accuracy. Results from different types of models show that high-resolution 

images can capture detail rock structures. It is for this reason that experts and researchers 

always focus on creating and obtaining high-resolution images (see figure 12). There is a wide 

range of imaging techniques that are capable of scanning resolutions that range from hinders 
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of micrometres to the desired nanometres. However, the costs of creating such images remain 

a challenge and a concern to experts and researchers. Although different imaging techniques 

have been developed and advanced over the years, it is only a few experts and researchers who 

can afford to buy and use the high-resolution imaging tools when conducting the digital rock 

analysis. In other instances, it takes a lot of time to prepare the samples (see figure 11) and scan 

the detailed structure of the sample with high resolution. Considering the small size of the 

sample, it would require running analysis on many samples to have a realist properties map of 

the region of interest. These challenges can complicate the process of conducting an accurate 

analysis. It is also imperative to state that even when high-resolution images have been 

developed, the simulations and analysis of large datasets can be challenging. 

 

Figure 10. Micro-CT scan (Courtesy of NDSU) 
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Figure 11. Core sample prepared for CT scan 
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Figure 12. High-resolution image sample 

 

 

In such instances, high central processing unit capacity and processing power are 

needed. These challenges notwithstanding, digital rock analysis remains a valuable and suitable 

tool for examining rock properties. Besides, it enables us to use high-resolution images to get 

an accurate picture of the nature of the rock samples and analyse its features. It is essential to 

make excellent decisions regarding both the sample size and the resolution to achieve accurate 

and acceptable analysis result within affordable costs. Previous tests and research have 

examined the manner in which resolution and sample size affected the outcomes of the analysis 

and revealed that they are critical to the process of digital rock modeling (see figure 12). 

It is based on the investigations that suggestions have been made regarding the ideal 

representative element volume (REV) (Harris et al, 2015).  It refers to the smallest sample 

volume over which the measurements give a representation of the macroscopic properties of 

the rock. The selection of the right REV coupled with the use of the appropriate degree of 

resolution will affect the outcomes of the analysis. Furthermore, the two variables affect the 
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ability to examine a wide range of rock properties such as the voxel size and permeability. In 

addition, it helps in analysing how these features vary from one source to another. 

The modeling was done in this thesis (see figure 13) showed that rock property analysis 

is a valuable method for understanding different characteristics. The tool helps in the 

determination of porosity, Pore Size Distribution, Mercury Injection Capillary Pressure, and 

permeability.  

 

Figure 13. Visualization of digital rock 

 

There are instances where these features are calculated through the conventional or 

laboratory methods. In some circumstances, it is done through indirect techniques such as the 

inversion of the seismic waves. In some instances, such as the current study, digital simulation 

and calculations are used to predict and determine the value of the rock properties.  The digital 
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images help in highlighting the desired rock properties at a microscale. Besides, it gives an 

avenue through which we can visualize the shape of the pores in the selected sample.  

Results and discussions 

Pore space analysis 

One of the important parts of the digital rock analysis is that it helps us visualize the 

pore and grain space (see figure 14, 15). After acquiring CT-Scans images (see figure 12) and 

building a digital rock (see figure 13) with those images we have run some pore space analysis. 

 

 

Figure 14. Visualization of grain space 
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Figure 15. Visualization of the pore space 

 

The pore space analysis is an area in which the digital rock technology has been 

employed to determine the pore spaces properties. In this case, a rigorous numerical analysis 

was done to measure and determine the critical throat radius, the total resolved porosity as well 

as the connected resolved porosity in the x, y and z direction. (See table 1). The approach 

complements the lab measurements and can be used to improve the capability of the 

geoscientists and petroleum engineer to characterize the pores and rocks under investigation. 

The trend is attributed to the fact that digital experiments can be done in real time and on small 

rock fragments like the drill cuttings which is not the case if we were to use a coreflood 

apparatus.  

Table 1. Pore Space Properties 

Total Resolved Porosity [%] Connected Resolved Porosity [%] Critical Throat Radius 

       X              Y                Z             X       Y      Z 

          19.3       18.6          18.6           18.6 [μm]     6.0    10.0 6.0 

[Voxel] 3.0     5.0    3.0 
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In the modern world, permeability and porosity are critical petrophysical features that 

help experts to carry out their work within the petroleum sector. At the moment, it is not easy 

to conduct and determine permeability distributions in-situ. Besides, various laboratory data 

analysis that has been done over the years have not yielded robust and universal details and 

standards related to features such as rock porosity and texture as petroleum reservoir specially 

shale’s have a very high level of heterogeneity. The trend is linked to the significant variability 

in the pore space topology in many rocks and materials. Two primary factors cause the 

differences. The first variable is the deviations and variations in a deposition. The second case 

is the variations in the diagenesis. Therefore, the most reliable method of determining 

permeability and pore space is digital rock analysis. The modeling process involves using 

numerical and virtual experimental data to represent the pore spaces. Using this methodology 

allowed us to find the pore size distribution of the sample (see figures 16, 17). 

 

Figure 16.Pore Size Distribution in µm 
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Figure 17. Pore size distribution in voxels 

 

There are several advantages of using the digital rock analysis method to characterize 

the pore spaces. First, it is a non-destructive approach for conducting a physical examination 

on the rocks. In this case, the focus is on creating a three-dimensional representation of the 

samples and using them as the basis of understanding the features of the foundation under 

consideration. Second, the three-dimensional spaces can be reconstructed and analyses from 

the sidewall plug can be done which may not be applicable in the case of physical permeability 

measurement. Moreover, the numerical representation created through the digital analysis 

method helps in understanding the variations in sorting and diagenesis. In this regard, DRA 

provides an important avenue through which we can fully characterize rock samples and 

determine the size and distribution of pores. Another advantage of the digital rock analysis, it 

is that it provides resolved porosity profile throughout the sample (see figure 18) in the x, y 

and z direction. 
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                                       Figure 18. Resolved Porosity Profile 

 

 

 

This type of data can be very hard to obtained using conventional physical laboratory analyses. 

However, this gives us a good insight into the variability of the properties throughout the rock 

sample. Using this tool can lead us to better understand uncertainties in shale reservoirs such 

as the Bakken. Furthermore, we can obtain a subdomain analysis giving us details about 

porosity change by size growing and space filling as seen in the figure below (see figure 19).  

 



 

37 
 

 

Figure 19. Subdomain analysis 
  

 

To be better understand the later terms (see figure 20). The size growing and size filling in 

digital rock analysis means that for the size growing we analyse the digital rock sample 

properties from a small part of the sample, we usually start in the center of the sample and we 

start analysing larger samples until we have analysed the all sample (see figure 20 (a)). For the 

size filling, however, we divide the sample in the nth amount of part and we analyse each 

component separately (see figure 20 (b)). This make a huge difference especially for very 

heterogeneous samples, these capabilities make DRA even more valuable for reservoir such as 

the Bakken. 

a)  b)  

Figure 20. size growing and size filing 
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It is also important to mention that the hydraulic properties of rock formation are very 

critical when it comes to evaluating the economic viability of petroleum and gas reservoirs. 

The process entails examining and investigating factors such as flow mechanisms and porosity 

in the rocks. Digital rock analysis has proved to be an accurate and efficient method for 

evaluating porosity, permeability, as well as the matrix within conventional and 

unconventional reservoirs. We believe that it is an important and emerging technology within 

the oil and gas sector that can be used to solve and analyze problems that could not be tackled 

using traditional laboratory approaches. During our investigations, we have found that high-

resolution data may be acquired from different samples such as shale, carbonates, and 

sandstone lithologies utilizing nano or micro computed tomography. In other cases, focused 

ion scanning/ beaming electron microscopes can be used as well to gather data needed to 

analyse the rocks.  The extracted data can be analysed statistically through various tools such 

as digital rock workflow equipment. With this technique with have the ability to come up with 

a skeleton network of the pore throats, generate the distance map of the pore throat channels, 

and create values for the relevant pore surface areas. By comparing the statistical analysis 

outcomes for every lithology, significant differences may be noted and correlated to the 

reservoir characteristics. 

Pore size analysis 

Pore system analysis is critical because it generates important insights that can help in 

assessing flow and volume characteristics in various reservoirs. In some cases, the analysis 

creates lithologically distinct features that may be used in determining the representative 

elemental volumes. The process entails looking at the pore throat sizes both in 2D and 3D (see 

figures 21,22).and using curve fitting functions that are unique to the sample under 

consideration 
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Figure 21.visualisation of the pore size 
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Figure 22. Pore size distribution plane view in z direction 
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The results are significant as they are distinct for every kind of lithology. Consequently, 

they can be used by explorers in determining the specific correlation between the parameter 

that is appropriate for every type of rock as well as the differences in the conventional and 

unconventional oil fields. Taking these factors into account, it is apparent that DRA is a critical 

technology that assists in conducting pore system analysis. Furthermore, it generates data 

regarding oil and gas volumes, flow capabilities as well as the reservoir formations. With such 

data in place, we are in a position to assess the economic viability of reservoirs formations and 

determine the best methods that should be used in the extraction process. Furthermore, the 

statistics generated from the process can be used to compare different reservoirs in a particular 

formation with the intention of coming up with appropriate plans for the development and 

extraction processes. The following subdomain profile was obtained after running a pore size 

analysis. (see figures 23,24). 

       

Figure 23. Subdomain analysis-size growing voxel 
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Figure 24. Subdomain analysis-size growing log 

 

From the later analysis, we can see the variation in pore volume fraction as we analyse the 

different size of the same sample. We can note that the smallest sample B77 being the smallest 

box as we can recall previously (see figure 20) sample and B617 being the all sample. This is 

again another advantage of DRA which gives us a very good variation between the different 

effect of the size and pore volume. Running the same analysis using space filling (see figure 

25) we can see another good variation and correlation of the pore volume fraction variation. 
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Figure 25. Subdomain analysis-space filling 

 

Flow field 

Digital rock analysis method has exhibited strong ability and potential in creating and 

visualizing flow fields (see figures 26,27,28) which allows us to run further analyses such as 

the permeability. The process entails coming up with geological microstructure images that 

help in understanding the transport systems and mechanisms in underground rocks, especially 

those obtained from unconventional resources like shale. The development of new technologies 

and methods that are capable of gathering high-resolution data has created new avenues for 

understanding flow fields and conducting DRA. While the advancements may require 

significant investments in equipment, they create high-quality data that are central to the oil 

and gas exploration processes and eventually implementing those data into a field scale model 

would allow us to understand and design better EOR processes. In some cases, we need to 

change the digital resolutions of the reconstructed digital sample and use micro-computed 

tomography (CT) scanned information to predict permeability and field flow for in field scale.  

In addition, the digital data gathered from the process helps in determining the representative 

element volume of the rocks, performing pore-scale modeling, and examining the critical 
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sample sizes. These are processes that provide vital data on the field flow (see figure 26) and 

the features of the reservoirs. 

 

 

 

 

 

Figure 26. Velocity field visualization in z direction 
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Figure 27. Velocity field visualization in x direction 
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Figure 28. Velocity visualization in y direction 
 

 

 

 

 

 

Space-filling analysis 

 

DRA is a robust computation tool and method that is capable of tackling complex 3D space-

filling analysis and examining velocity parameters. The operations can be done without 

changing the free parameter within the procedure. Using the statistical description of fluid flow 

phenomena. The technology creates a model of the sample in question. In our case, the analysis 

process shows that there is a very significant difference between the correlation of permeability 
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and porosity in x, y, and z-direction but furthermore DRA allows us to quantify this relationship 

and such data would be very hard to obtained using conventional rock analysis (see figures 

29,30,31). 

 

Figure 29. subdomain analysis in z-direction 
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Figure 30. Subdomain analysis in x-direction 

 

 

Figure 31. Subdomain analysis in y-direction 
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The trend is attributed to the small size of the individual particles making up the rocks as well 

as the large specific surface area. In addition, the pore spaces and filling capabilities of the 

samples contribute to the permeability. Information gathered from the analysis process also 

provide an avenue for performing cutting-based velocity estimations in situ. By comparing 

velocity data from different sources and samples, it is possible to understand the specific 

features of reservoirs and detect potential areas of divergence. This feature allows for the 

analysis and computation of permeability (see figures 32, 33, 34) in the x, y, and z-direction 

and to exploit the relationship between permeability and connect porosity. Eventually, DRA 

allows us not only to quantify the relationship between porosity and permeability but also to 

measure permeability and porosity in x, y and z-direction with will be time-consuming to 

obtained using conventional laboratory experiments. In our case, the permeability found in z-

direction was 8.49 mD with a porosity of 18.26%, in y-direction was 302 mD with a porosity 

of 17.93% and in the x-direction was 242 mD with the same porosity of 17.93 percent. 

 

Figure 32. Subdomain analysis: space filling in z-direction 
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Figure 33. Subdomain analysis: space filling in x-direction 

 

 

 

 

 
Figure 34. subdomain analysis: space filling in the y direction 

 

 

There are other instances where the DRA technology has been combined with other high 

quality and powerful microscopy tools such as SEM to create avenues for analysing complex 

rock properties like porosity and velocity. The analysis is usually done from rock fragments, 

drill cuttings as well as the sidewall plugs. In addition, the methods can be utilized to create 
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accurate images of the samples at the site and compared the relevant petrophysical 

measurements that are key to the exploration and reservoir development process. 

The other method that has been used in analysing the digital features of rock samples is the 

mercury injection capillary pressure (MICP) tests (see figure 35). This approach has been used 

in conducting accurate investigations into the porosity, pore throat sizes, pore distribution, and 

the injection pressure of the samples. In addition, the tool assists in comparing the mercury 

saturation of different types of rocks in a reservoir setting.  

 
 

Figure 35. Mercury Injection Capillary Pressure (MICP) 

 

 

Analysts and experts contend that the mercury capillary pressure tool was created to assist in 

determining the relationship between the saturation and capillary pressure in rock samples. The 

tests can only be done on samples that have been cleaned and dried. The core samples are often 

placed into an evacuated core chamber to allow for the measuring of differential pressure across 

the sides. The process continues until the injection pressure gets to the desired value. Based on 



 

52 
 

the data collected, we were able to develop drainage curves and analyse the critical features of 

the rock sample (see figure 35). The primary advantage of the method is that it reduces the time 

spent determining the properties of the sample. Despite this being the case, the data obtained 

from the fully-wet and fully-non-wet phases may differ for the rock samples. Moreover, the 

permanent loss of the pore samples is a concern when using conventional laboratory analysis. 

We can conclude by saying that digital analysis is a pioneer approached in 

characterizing rock properties. DRA if meshed and upscale accurately can be used to create 

more accurate geological model on a field scale and develop more efficient EOR method. 

                                                           CHAPTER 4 

ETHANE INJECTION AS AN ALTERNATIVE OF CO2 INJECTION IN THE 

BAKKEN 

 

Over the last few years, many studies have shown promising results from CO2 injection 

in tight formations which may lead to a significant increase in the recovery factor. However, 

the disadvantages of CO2 injection include equipment corrosion, reaction with formation of 

minerals, limited gas sources, and high costs. Ethane production in Bakken has drastically 

increased together with the massive oil production. It may become a viable enhanced oil 

recovery (EOR) solvent due to its advantage in miscibility, solubility, operation, and local 

supplies from the development of Bakken and other unconventional formations. Therefore, it 

is essential to study the feasibility of this cost-effective alternative EOR agent in the Bakken 

formation.  

In this this thesis, we conducted core flooding experiments on a Middle Bakken and 

sandstone core samples, we injected the samples with both CO2 and ethane separately. Oil 

recovery factors are recorded for each displacement experiment. A core scale simulation model 

was built up to mimic the injection process of the experiment. After that, we used the core 

properties to calibrate our simulation models to further evaluate the efficiency and behaviour 
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of ethane versus CO2 as EOR agents in the Bakken. Finally, we provide a brief economic 

evaluation of using both gases as injectants in the Bakken reservoir. 

The results of our study show that ethane is a better choice than CO2 as an EOR agent. 

Ethane injection achieved a higher recovery factor than CO2 injection. Ethane minimum 

miscible pressure was lower than CO2 with the Bakken in-situ oil. Ethane is more available in 

the Bakken than CO2. The use of locally produced ethane is safer than CO2 in terms of corrosion 

and management but will also help to reduce global warming caused by flaring. 

This combined work of both experimentation and simulation provides a pioneer study 

in evaluating the performance of ethane injection in Bakken formation. The experiments give 

clear insight into the differences in recovery factors and recovery efficiency that we can expect 

from injecting CO2 and ethane into the Bakken formation. Our experimental study provides 

details of oil composition change when injecting each gas. By laying the theoretical ground for 

ethane injection, this work offers data and proof for engineers and researchers to design more 

economically profitable EOR strategies.  

Introduction 

Since the 2000s, unconventional petroleum resources have seen a drastic growth in 

production with the emergence of multistage hydraulic fracturing and horizontal drilling 

(Zhang, 2016; Ostadhassan et al., 2018; Khatibi et al., 2018a, b). This breakthrough led the 

Bakken Formation in North Dakota (see figure 36) to become one of the major oil-producing 

plays in the US with average daily production growth from 175 bbl. of oil in December 1953 

to 1,106,836 bbl. in March 2018 (DMR,2018). While the Oil Initially in Place (OIIP) for the 

Bakken is estimated to be around 900 billion barrels (Sorensen et al., 2015), the ultimate 

recovery factor is still approximately 7 percent (Mansour et al., 2017; Sorensen et al., 2014). It 

has been observed that many wells experience a 70 percent production decline within the first 

year and 50 percent more within the next two years before stabilizing (Jin et al., 2017) (see 
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figure 37). This is due to the complexity of the Bakken Petroleum System (BPS) (Ding et al., 

2014; Yolo et al., 2018). 

 

 

Figure 36. Bakken map (Khatibi et al., 2018c) 

 

 

Figure 37. Typical Bakken well production 
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There are two known flow regimes in the Bakken petroleum system. In fracture 

networks with high permeability, the variation of velocity within the fluid called the viscous 

flow is the primary mechanism while diffusion dominates the flow in the low permeability 

matrix with permeability ranging from 0.0005 to 0.2md (Jin et al., 2017). Improving the 

recovery by even 1 percent could lead up to 9 billion barrels more (Yu et al., 2015). To enhance 

the recovery from unconventional plays, EOR methods can be employed. The ultra-low 

permeability of the Bakken is inadequate for waterflooding which requires a minimum of 1md 

threshold (Joslin et al., 2017; Jin et al., 2017). Studies have shown the efficiency of CO2-EOR 

in unconventional reservoirs (Ding et al., 2014; Jin et al., 2017; Meyer, 2012). However, 

affordable CO2 for EOR is not always available. Therefore, it becomes a challenge to use it on 

a field scale (McGuire et al., 2016). Increased production from unconventional reservoirs such 

as the Bakken has resulted in higher volumes of associated natural gas production, with ethane 

being the second most abundant component (Table 3). This, in turn, has led in more flaring at 

production sites in the Bakken where 300 million cubic feet of gas were flared in 2014 (EERC, 

2015).   

 

Table 3-Typical Bakken gas 

composition 

 

COMPONENT MOL % 

H2O (water) 0.02 

N2 (nitrogen) 5.21 

CO2 (carbon dioxide) 0.57 

H2S (hydrogen 

sulphide) 

0.01 

C1 (methane) 57.67 

C2 (ethane) 19.94 

C3 (propane) 11.33 

i-C4 (isobutane) 0.97 
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n-C4 (n-butane) 2.83 

i-C5 (n-pentane) 0.38 

n-C5 (n-pentane) 0.55 

C6 (hexane) 0.22 

C7 0.09 

C8 0.04 

C9 0.01 

C10
+ 0.00 

 

From a pricing point of view, the increase in gas production from unconventional 

reservoirs caused a drastic drop in the US ethane commodity price (see figure 38) and to be 

listed as fuel instead of petrochemical feedstock. (McGuire et al., 2016). The low cost and 

availability of ethane make it a good candidate as an EOR solvent. However, with a commodity 

price of 25c/gal, an MT of ethane is about $190 while pipelined CO2 is reported to be in the 

$9-26/MT region. Even though low ethane price will still make it a viable EOR solvent, from 

a commodity price perspective ethane is several times more expensive than CO2. Nevertheless, 

the oversupply of the local ethane production and the lack of infrastructures which makes it 

difficult for the locally produced ethane to reach the market led the amount of natural gas being 

flared in the Bakken shale to reached 222 million of cubic feet per day in June 2017(see figure 

39) which is more than a billion dollars in loss of this valuable gas per year, and with the current 

near oil production record this number is expected to go much higher. Investing in local small-

scale ethane processing plants with the capacity of turning the unwanted gas to liquid valuable 

end product will help monetize the flared gas while enhancing oil production. From an 

environmental standpoint flaring more than 222 million of cubic feet of gas with 57 percent of 

methane and 19 percent of ethane per day drastically contributes to the global warming, 

therefore, this shows the urge of using the Bakken produced gas as instead of flaring it. 
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The mechanisms of oil displacement using ethane include viscosity and interfacial 

tension reduction as well as oil swelling just as with CO2 but also ethane solubility in water is 

poor compared to CO2 since ethane doesn’t exhibit significant polarity, whereas CO2 does. 

Injectivity of ethane into the water-bearing area would be expected lower than CO2, therefore 

the ethane’s low solubility in water will lead it to be more available to oil than CO2 as a 

considerable amount of CO2 would dissolve into the water-bearing areas instead of the oil 

zones (Hamouda and Tabrizy, 2013).  

 

Figure 38. Historical ethane price (King., 2015) 

 

 

Figure 39. Bakken flaring (King., 2017) 
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Gas injection EOR has accounted for up to 2 percent of the US oil production (Dhuwe 

et al., 2016). Although CO2 injection has been used since 1975 to help produce 1.4 billion 

barrels of oil (Hill et al., 2013), it is not the most efficient EOR solvent (Dhuwe et al., 2016). 

Most of the massive natural deposits of CO2 have already been developed, with some 3500 

miles of high-pressure CO2 transport pipelines, finding additional CO2 for EOR will become 

more challenging. Natural and industrial CO2 sources will become insufficient (McGuire et al., 

2016; Dhuwe et al., 2016; Meyer, 2012; Ning et al., 2018). Advanced Resources International 

(2012) report shows a demand of 25 billion tonnes of CO2 for EOR and that the supply is short 

(see figure 40). 

 

 

Figure 40. Next generation demand (Advanced Resources International, 2012) 
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Theory and Method  

The success of an EOR method depends a lot on the availability of a low-price solvent 

(McGuire et al., 2016). With the drop in natural gas prices, ethane appears to be a good 

candidate. However, in a complex system like the Bakken, the fluid flow mechanism that we 

know from conventional reservoirs will not always apply. Sorensen et al. (2014) proposed a 

miscible EOR mechanism for unconventional reservoirs (see figure 41). The Bakken is a tight 

formation with a viscous flow in the fractures and diffusion-controlled flow in the matrix (Jin 

et al., 2017). The viscous flow wouldn't apply in the Bakken matrix due to its very low 

permeability and high heterogeneity (Ding et al., 2014). To explore diffusivity as a mechanism 

of oil recovery, the use of different solvents is a must for EOR investigation in unconventional 

plays (Kanfar et al., 2017). 

 

Figure 41. EOR Mechanism (Sorensen et al., 2014) 

 

LABORATORY EXPERIMENT  

Coreflood experiment 
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Due to the heterogeneity and low permeability of the matrix, most of the injected gas 

only moves fast through the fractures and not the matrix (Hawthorne et al., 2017; Yolo et al., 

2018). To investigate the efficiency of CO2 vs. ethane we have used a sandstone with a 

permeability of 44 md and porosity of 15 percent, and then used a core sample from the Middle 

Bakken with a permeability of 0.002 md and porosity of 8 percent to measure the recovery of 

CO2 vs. ethane. For these experiments, we have first flooded our sandstone with both ethane 

and CO2 and have measured the recovery then we have soaked our middle Bakken core sample 

with both ethane and CO2 for 8 hours then we have measured the recovery. A detailed 

procedure of core-flood experiments (see figure 42) for both conventional and unconventional 

rock sample is described in our previous work (Yolo et al., 2018). 

 

Figure 42. Coreflood apparatus (Yolo et al., 2018) 

 

Core model description 

In this work, a dual-porosity compositional model (see figure 51) was created to 

characterize our 2.5-inch long and 1.5-inch diameter Bakken core plug to mimic core-flood 
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experiments using both ethane and CO2. We have populated our model with the core sample 

properties (Table 3) that we took from the file number 21884 at 11314.4 ft which are the depth 

at which our core sample was extracted. The different recoveries were then compared. 

Table.3 Core properties   

Property Unit Value 

Permeability millidarcie

s 

       0.003 

Porosity percent        5.6 

Water Saturation percent        38.5 

Oil Saturation percent        30.9 

Total Saturation percent        69.4 

 

Results and Discussion 

The first observation we make from our study using the online Engineering ToolBox is 

that CO2 is more soluble than ethane in water (see figure 43). However, ethane is more soluble 

in oil than CO2 (McGuire et al., 2016) and we know from reservoir properties (Table 3) that 

the water saturation of the Bakken is 38.5 percent which represents a significant amount of 

formation water considering that the Bakken has an estimated total reserve of 100 to 900 billion 

of Bbl. We also can see from (see figure 44) a significant amount of water being produced. 

This leads us to assume that ethane would outperform CO2 in terms of solubility information 

water, as we would need to consider injecting more CO2 than ethane because more CO2 will 

dissolve in the formation water than ethane would 
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Figure 43. The solubility of CO2 and Ethane in water vs. temperature 

 

 

 

 

 

 

 

 

 

 

 

 

The second mechanism that we learned from our experimental flooding of sandstone 

with ethane is that ethane injection would lead not only to a higher recovery than CO2 (see 

figure 45) but will produce incremental oil with a higher proportion of lighter hydrocarbon 

fractions (see figure 46) than the CO2 would which will make the produced oil more valuable 

on commodity markets because when transformed by an oil refinery it will generate more diesel 

and gasoline fuel.  

 

Figure  SEQ Figure \* ARABIC 42.North Dakota Bakken Water and 

oil production in Bakken (EERC, May 2017) 

Figure 44. North Dakota Bakken Water and oil production in 

Bakken (EERC, May 2017) 
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Figure 45. The proportion of light hydrocarbon fractions by ethane injection 

 

  

 

 

Figure 46. MMP value for a typical Bakken crude (Hawthorne et al., 2017) 

 

From our core flood experiment on a sandstone sample, we have used the average Bakken 

reservoir pressure of 4,500 psi as our confining pressure and a 0ature of 220 F. We have then 

injected ethane through our core sample that we saturated with Bakken oil for 72 hours at 300 

psi for both experiments. We have used a constant flow rate of 1 cc/minute to inject separately 

ethane and CO2 in two different trials then measured the recovery for both experiments. We 
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have cleaned our core sample after each experiment using a dean stark apparatus. The 

outperformance of ethane vs. CO2 is evident, with ethane recovering 98.68 percent of oil while 

CO2 recovered 80.68 percent (see figure 47). Knowing that most of the oil in the Bakken 

Petroleum System flows through the fractures where a viscous flow would apply and not the 

matrix we believe that ethane would outperform CO2 as the fluid behaviour in the Bakken 

fractures will be similar to conventional reservoirs. 

 

Figure 47. Comparison of oil recovery of ethane and CO2 injection 

 

 

The following step was to perform a CO2 vs. methane injection on a Middle Bakken 

core sample with a porosity of 5.6% and permeability of 0.003mD with fractures. After 

saturating the core sample for 2 weeks, we have seen that the fluid was not getting into the 

matrix but in the fractures, this confirmed what many researchers have mentioned, that in 

unconventional reservoir like the Bakken the fluid flows through the fracture and not the matrix 
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(Jin et al., 2017; Hawthorne et al., 2017). To study this phenomenon, we put a Middle Bakken 

core sample in an oil saturator for 2 weeks at 300 psi, and we retrieved it (see figure 48a). 

Following our 2weeks saturation process, we have polished and cut the rock to see if the matrix 

was indeed saturated. By looking at the core sample, we were able to see that the fluid was 

saturating only the fractures and proximal fractures zone of the rock (see figure 48b-f) and not 

the matrix itself. Doing so allowed us to study the recovery of hydrocarbons through the 

fractures and not the matrix as most of the oil in the Bakken Petroleum system flow through 

the fractures.  

 

a) Bakken core sample after 

saturation before trimming 

 

b) Bakken core sample after 

trimming 

 

c) Bakken core sample after 

trimming 

 

d) Bakken core sample after 

trimming  

 

e) Bakken core sample after 

trimming 

 

f) Bakken core sample after 

trimming 

Figure 48. Core sample before and after trimming 

 

After saturation, we had measured the weight of the sample which was 181.056g and compared 

it to the weight of the core sample before saturation which was 175.125 g, and the difference 
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of weight obtained was 5.931g which was the weight of the oil inside our core sample. We 

have then put our core sample in a CO2 bath inside our core holder (see figure 42) for 8 hours 

under 4500 psi to mimic a huff-and-puff on a core scale and then we have measured the ultimate 

recovery by measuring the weight of the sample which was 176.6g after the 8 hours experiment, 

the residual weight was thus 1.475g which was approximately 25 percent of residual oil and 

therefore 75 percent of recovered oil. The following step was to clean the core sample in a stark 

dean apparatus for 72 hours and measure the dry weight of the sample. The dried weight of our 

core sample after cleaning process was 175.010g, and we have used the same saturation process 

for the second experiment and the measured weight after saturation was 180.852g, the 

difference obtained between the two values representing the oil inside the core sample after 

saturation was 5.842g. We have then put our core sample in an ethane bath inside our core 

holder for 8 hours under 4500 psi and measured the weight of the sample after the experiment, 

and we obtained 175.846g, the residual weight was 0.746g which gives us around 13 percent 

of residual oil and 87 percent of the recovery. In experiments, we have used the same core 

sample to avoid the effect of a different sample property on our study. We finally compared 

the results recoveries, we were able to recover 75 percent for CO2 and 87 percent for ethane 

after a soaking period of 8 hours (see figure 49).  
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Figure 49. Recovery CO2 vs Ethane 

 

 

Conclusions  

A comparison study was performed to evaluate ethane and CO2 as candidate EOR 

solvents in the Bakken Formation unconventional reservoir. What we can retain is: 1) Ethane 

is more available than CO2 in the Bakken; 2) Ethane is much simpler to use than CO2 in terms 

of infrastructure, minimum miscible pressure and production problems due to corrosion; 3) 

Ethane is less soluble in water than CO2 which makes it more efficient in terms of volume 

needed for injection; 4) Ethane will diffuse less into the reservoir Nano-pore than CO2 and will 

likely have more contact with the in-situ oil.5) Using produced Ethane will have a less global 

warming effect than flaring.  

                                                             CHAPTER 5 

RECOVERY OF CO2 VS ETHANE FOR BAKKEN SAMPLE USING CORE SCALE 

MODELING  

 

 

CO2 

Ethane 
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The goal of this chapter was to provide a validated core scale model of the laboratory 

experiment of our core. This, in turn, would be used to predict the laboratory outcome of 

different EOR experiment. This chapter explains the software used in the study and the model 

build for this study. The primary goal was of this chapter was not to do a sensitivity analysis 

on a full range but instead to evaluate the performance of CO2 vs ethane if there were used as 

EOR injectant. 

Core model description 

We have built a model to mimic our experiment, to do so, we have used a GEM which 

is dedicated to unconventional reservoirs. We have developed a dual permeability/porosity 

compositional model (see figure 51) to characterize our 2.5-inch long and 1.5-inch diameter 

Bakken core plug to mimic core flood experiments using both ethane and CO2. We have 

populated our model with the core sample properties shown in Table 3. We have also used the 

Diffusion Keyword to activate the diffusion mechanism as we have learned that one of the 

primary fluid flow mechanisms in the unconventional reservoir such as the Bakken is diffusion. 

Therefore, building a model without considering diffusion would not be correct. To mimic the 

experiment, we had to assign a maximum contact area between the EOR injecting gas and the 

core sample. What happened in the experimental part is that we bathed the core sample into 

the desired gas and let the gas soak inside the core for a certain amount of time, and then we 

allowed it flow back. Since this is a dual perm model which considers fractures, we have 

assigned to our model only 1 injection well and 1 production well to simulate a huff-n-puff 

using CO2 and ethane as injectant. We have also used our core properties in this model (see 

Tables 4). For this study, we have only focused on the recovery achievable using CO2 and 

ethane Huff-n-Puff which was discussed earlier. 
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Table 4. Model properties 

properties Unit Value 

Total Bulk Reservoir Volume, RES FT3 4.06267E-04 

Total Pore Volume RES FT3 1.07877E-04 

Total Hydrocarbon Pore Volume RES FT3 9.49316E-05 

Original Oil in Place, OOIP STD BBL 1.04748E-05 

Original Gas in Place, OGIP STD FT3 8.93174E-03 

 

Basic Reservoir Properties 

The following reservoir properties we used: porosity, permeability, diffusion 

coefficient, relative permeability, capillary pressure, and surface tension were obtained from 

both literature and experiments. The PVT value used in our simulation were obtained from 

literature, except the fluid properties such as the viscosity, temperature, specific weight which 
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were measured in the lab. Some interpolations were used for relative permeability and capillary 

pressure. 

 

 

 

 

Figure 50. Core Scale Model 

 

 

Huff and Puff Simulation 

For our simulation, we have injected CO2 and ethane from 1 injection well with the 

production well closed and allowed a soaking period of 8 hours for both ethane and CO2. Next, 

after the 8 hours soaking period we have opened the production well allowing it to flow for a 

period of 45min in order to mimic our laboratory experiment from the chapter 4 of this thesis. 

We obtained a recovery factor of recovery of 79 percent from CO2 injection and 93 percent 

from ethane injection which were close to our experimental investigation (see figure 51). This 

further prove that CO2 Huff-n-Puff in a tight formation such as the Bakken could work on a 

field scale.  
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Figure 51. Recovery CO2 vs Ethane 

                                       

CHAPTER 6 

 CONCLUSION AND RECOMMENDATIONS  

 

What we have learned from this study is that Huff-n-Puff could be the optimum EOR 

method for the unconventional reservoir. We have also agreed with previous others that 

unconventional is control by a Diffusion dominated flow with a “No fracture-No flow." A 

comparison study was performed to evaluate ethane, methane, nitrogen, and CO2 as candidate 

EOR solvents in the Bakken Formation unconventional reservoir, while CO2 outperformed 

methane and nitrogen, ethane exceeded CO2. What we can retain is: 1) Ethane is more available 

than CO2 in the Bakken; 2) Ethane is much simpler to use than CO2 in terms of infrastructure, 

minimum miscible pressure and production problems due to corrosion; 3) Ethane is less soluble 

in water than CO2 which makes it more efficient in terms of volume needed for injection; 4) 

Ethane will diffuse less into the reservoir Nano-pore than CO2 and will likely have more contact 

with the in-situ oil. 5) Using produced ethane will have a less global warming effect than 

flaring. Due to the high organic content of the Bakken, we suggest studying the possibility of 
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a mixed method surfactant-CO2 Huff-n-Puff in Unconventional play. As for our digital rock 

analysis we retain that this tool would be optimum to study small sample such as drilling cutting 

which can be very hard to study using conventional laboratory. Digital rock analysis also gives 

us a very good insight of the variation of properties throughout the sample. 
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