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ABSTRACT 

Pipeline blockage, which results from solid and hydrocarbon deposition caused by 

changes in pressure, temperature, or composition, is a critical issue in oil & gas production 

and transportation systems. Sometimes blockage, which extends several miles in the long-

distance pipeline, can be assumed as a new pipe with a smaller diameter. Therefore, it is 

imperative to detect the location and size of blockage in pipelines more accurately and 

efficiently to reduce the number of pipeline accidents. 

This paper explores the distribution of pressure and pressure gradient through the 

pipeline without/with single blockage under different operating conditions. 3-dimensional 

(3D) computational fluid dynamic (CFD) simulations under steady state are carried out to 

examine the effects of blockage location, blockage diameter and blockage length. The 

orthogonal array testing technique is applied to study the extent to which factor affects the 

pressure drop most. 

The dimensionless parameters like dimensionless blockage location, dimensionless 

blockage diameter, dimensionless blockage length and dimensionless pressure drop, are 

introduced to evaluate the relationship among the pressure drop and blockage 

characterizations. Three fitting formulas of dimensionless parameters distribution are 

proposed and could be used to locate the pipeline blockage and estimate its diameter and 

length as well.
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Finally, laboratory experiments were run to validate the blockage prediction model. 

The fluid frictional apparatus is modified by replacing part of the pipe with a section of 

small diameter pipe to simulate the actual partial blockade pipeline. The obtained 

deviations of pressure drop between the lab experiment result and the prediction model is 

limited to under 30%. Therefore, the deviation should be taken into account while assessing 

the blockage through the pipeline based on the blockage prediction model, which also 

allow the operator to assess partial blockage efficiently and economically. 
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CHAPTER Ⅰ 

INTRODUCTION 

1.1 General Background 

The unintentional deposition of fluid in the process of pipeline transportation is 

characterized as blockage. Pipeline blockage, may result from, bad operating conditions, 

any reason due to sudden changes of pressure, temperature, composition, corrosion action, 

or lack of maintenance. In most cases, the deleterious effects associated with the occurrence 

of blockages may present serious problems. Especially as the boom of the Bakken shale 

reservoirs production, more new pipelines are constructed to meet the transportation 

requirement of ever-increasing crude oil and natural gas, refined products, carbon dioxide, 

and produced water. At the same time, the original pipe networks are aging. New pipelines 

as well as the original pipe networks will inevitably experience more blockage problems 

during operation, which also increases the need for more intelligent blockage detection 

methods to better evaluate and locate blockage. It is therefore no surprise that pipeline 

blockages must be quickly detected, estimated, located and repaired. 

1.2 Main Causes of Pipeline Blockage 

Pipeline blockage can be caused by a number of different factors. Some examples 

include the formation such as asphaltene, wax, or gas hydrate because of operating 

conditions like high pressure or low temperature. Also blockage can form by some 

inorganic causes like sand deposition or scaling. Due to the incompatibility of chemical or 

well streams. Other common factors that generate blockage are mechanical causes like 
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 stalled pigs, collapsed pipe or failed valves. Due to its variety formation conditions, 

pipeline blockage can and does occur anywhere from the sand surface to the export pipe 

networks (Bukkaraju, 2016). From the field operation and flow assurance engineering 

experience, some of the following events suggest the partial pipeline blockage: 

 Increased pressure drop along the flow path from the inlet to the outlet. 

 Reduced flow rate suddenly or complete loss of the fluid. 

 Increased difference in temperature along the pipeline from original value because 

of the cooling or heating effect. 

 Presence of small hydrate, wax presence, or sand in the routine pigging returns. 

Existence of a pipeline blockage poses serious risks. Pipeline blockage can not only 

reduce the operation efficiency of pipe network, but also may cause a safety problem if the 

blockage has not been detected accurately and removed quickly. The accident can reduce 

the profit of project or delay the project significantly (Rui et al., 2017a, 2017b, and 2017c). 

It is believed that accurate location of pipeline blockage can reduce the risks by appropriate 

detection methods. While before any detection method is taken, it is necessary to make 

appropriate assessments of the nature and severity of the pipeline blockage. Blockage 

characterization is assessed in several aspects including fluid characterization, operating 

condition and pipe system assessment.  

(1) Fluid characterization 

Understanding the produced fluid characteristics and the propensity to fluid 

mechanisms, are of critical importance to estimate the potential risk of generating blockage 

in pipeline system. Pipeline blockage varies due to the difference between the fluids being 

transported. The major threats for flow assurance are proposed by Sampath K. (2016) that 
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include hydrate, wax and asphaltenes. Hydrate blockage, always found in gas pipelines, 

has not only high dependency on low temperature or high pressure, but also on water 

presence. Wax blockage in crude oil pipeline is formed when the fluid flow cools down, 

especially wax crystals are usually transported and deposited on the pipe wall during winter. 

Asphaltenes presence in reservoir fluid are usually dependent on system pressure changes, 

with the risk of plugging the reservoir perforations. Fluid compositional analysis (e.g. 

water-cut, gravity, GOR), fluid properties analysis (e.g. viscosity, dew point), hydrate/ 

wax/ asphaltene characterization, fluid assurance state analysis (e.g. steady state or 

transient state), and fluid mechanics can be of benefit for blockage characterization. 

(2) Operating condition 

Tracking the pipeline system operating parameters helps greatly in assessing the 

nature of the blockage. Simulation and fluid modeling also help estimate the fluid 

characteristics. Operating pressure, temperature and fluid conditions along the pipeline 

system need to be known in order to effectively estimate with higher accuracy the nature 

of the blockage. High pressure and low temperature-driven pipeline blockages such as 

hydrate/ wax/ asphaltenes may occur simultaneously at some certain conditions, but can 

require different methods to detect and estimate. Besides, under some operating conditions 

not only the partial blockage is present, but some multiphase blockages or multiple 

blockages will be present especially for the pipeline over long distance. Flow assurance 

and operation experience have shown that in many field cases once the operating conditions 

are misunderstood, and wrong methods for blockage detection and remediation are 

undertaken subsequently. This may be further increasing the risk of accidents and 

economic cost because of excessive operating pressure. 
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(3) Pipe system assessment 

Fluid phase change is not the only cause of blockage formation, the mechanical 

failures of various components of pipe systems can also lead to pipeline blockage. 

Understanding the pipe system is critical important to detect the at risk potential blockage 

locations. Estimating the possibility of blockage formation includes several factors like 

pipeline layout and all fitting distributions. Flow back points, stalled pigs, defective valves, 

umbilical lead connections, or ruptures in the internal pipeline system are the typical 

locations that the blockages can form. On the other hand, most of the blockages will form 

again although they have been mechanically removed, it is of great importance to study 

historical operating data such as daily production rates, operating conditions, and prior 

blockage intervals which are variables at the time of blockage formation. Hydrates in gas 

pipeline are studied to form and deposit in hours, for instance, while the wax or asphaltenes 

blockage would take several weeks to form under the corresponding operating conditions. 

Pipeline blockage can be partially or fully formed based on its cause and the nature 

of the blockage. The appropriate assessment of the nature of pipeline blockage is 

ascertained through fluid characterization, which can help select the proper detection 

method to estimate the location and severity of the pipeline blockage. 

1.3 Literature Review on Blockage Detection 

An accurate estimation, including the location, size and severity of pipeline 

blockage, would lead to savings in cost and time for the operator. Although some blockage 

detection methods have been available for years, with continuing development, they are 

becoming high tech and sophisticated. Based on the detection equipment needed or not, 
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the detection methods developed so far can be broadly classified into the following two 

main groups: (a) physical inspection methods and (b) mathematical models. 

1.3.1 Physical inspection methods 

The objective of physical inspection methods is to estimate and locate the blockage 

by corresponding detection equipment, primarily including isotope tracking inspection, 

densitometry measurement, and acoustic reflectometry. 

(1) Isotope tracking inspection 

According to the fluid continuity equation, the area with higher velocity indicates 

restriction. This technology involves the injection of an isotope into the pipeline and 

subsequently their movements are tracked using the detecting device. The operating data 

recorded by the tracking device actually indicates the velocity of the isotope along with the 

fluid which in return indicates the possible location and diameter of the blockage. This 

isotope method was firstly used by Maclntyre (1959), Wagner et.al. (1961) to visualize the 

cardiac blood pool. After decade’s development, the isotope inspection method has become 

popular tools in industry. Charlton et.al. (1981) helped find the outstanding isotope that 

much easier to be tracked for the detecting device. Kasban (2010) also applied the isotope 

method for detecting blockage or leakage along the pipeline. 

(2) Densitometry method 

Base on the assessment of the blockage characterization, the densities of blockage 

formed by hydrate, wax, asphaltene, or scales are of great difference between each other. 

Densitometry method is that detecting the density of the fluid at some pipeline intervals or 

cross sections by the specific scanning device. The differences in the densities along the 

flow path indicates the possible location of the blockage. While the differences in densities 
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between the blockage and the transported fluid also affect the accuracy of this detection 

method. For example, the density of hydrate blockage is close to the density of water which 

may be difficult to differentiate these two kinds of blockages (Detta et.al, 2016).  However, 

engineering field experience coupled with the information about the fluid property and 

operating parameters would help in estimating the existence and location of the blockage. 

(3) Acoustic reflectometry 

This technology involves the introduction of a pulse of sound in to the pipeline by 

the acoustic pulse generator. When the acoustic pulse encounters the blockage, reflection 

is produced and passes along the pipe. The pulse signal is measured by acoustic sensors 

that are installed outside of the pipe, and then the information can be used to plot a noise 

profile along the whole pipe. Deviations from the baseline profile indicate the location of 

pipeline blockage. Theoretical and experimental work about acoustic reflectometry was 

first proposed by Parker (1981) who studied the correlation between acoustic pulse and 

background noise, hence developed approach that very small acoustic signals to noise ratio 

could be detected even for long-distance pipeline. Acoustic techniques were originally used 

for leakage detection in pipeline (Watanabe et. al. 1986, 1987a). Koyama et.al. (1990) 

applied acoustic technique for the location and severity of blockage in the pipeline. Also 

Wang et.al. (2009) performed an experiment in 16-m long PVC pipeline by acoustic 

methods to detect blockage. The reflected acoustic signals were recorded using matched 

filters to overcome the influence of background noise. 

Apart from these detection techniques, other physical inspection methods such as 

diameter measurement, radar and sonar technology, thermography method and gamma ray 

scanning are also used in the detection of the blockage. Physical inspection method can 
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estimate the existence and locate the position of blockage directly and accurately by 

detecting devices while in return it increases the operating cost significantly at the expense 

of possible shutting down operation and cannot monitor the pipeline network operating 

continuously. 

1.3.2 Mathematical models 

Mathematical model utilizes the mass conservation, momentum conservation, 

energy balance equation coupled with the operating parameters such as temperature, 

pressure, flow rate to estimate the existence and location of blockage. Compared with 

physical inspection methods, mathematical models have the advantage of quick evaluation 

at lower cost and can monitor the pipeline continuously without interrupting pipeline 

operations especially in some harsh environments like deep water, polar area or areas with 

higher difficulty in accessing. Mathematical models primarily include backpressure 

technology, pressure transient pulse technology, frequency response method and 

dimensionless method. 

(1) Backpressure technology 

This method involves a multi-flowrate experiment undertaken which establishes a 

baseline profile of pressure drop versus flow rate. Deviations from this profile indicates the 

possible existence and location of blockage. This technology has long been recognized as 

an efficient method for detecting blockages in pipeline. Scott and Satterwhite (1998) 

considered the application of backpressure method as a method monitoring the growth of 

blockage in gas pipeline and firstly proposed the blockage factor to estimate the location 

of blockage. Scott and Yi (1999) also applied this method in liquid flow lines while this 

method only helps in rough estimation because the effects of length and size of the 
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blockage are coupled together. Liu and Scott (2000, 2001) proposed the average pressure 

method based on backpressure technology to locate the partial blockage in the pipeline. 

This new method requires three different tests: steady-state back pressure test that is 

identical to backpressure method taken to determine the blockage factor; simultaneous 

shut-in test to obtain the average pressure; bleed-off test to determine the volume factor 

that indicates the location of pipeline blockage. 

(2) Pressure transient technology 

This technology involves the generation and transmission of pressure pulse through 

the liquid medium along the pipeline. The time delay between the pressure pulse and the 

echoes received by the topside receiver is used to locate the position of blockage with 

reasonable precision. Vitkovsky (2003) sent an impulse generated by the movement of the 

valve shut down the pipeline to detect the location of blockage which also can be used for 

leakage detection. Adewumi et.al. (2003) proposed a one-dimensional model based on the 

pressure transient method to describe the propagation of a pressure pulse through a pipe 

under different scenarios like no blockage, single blockage and multiple blockages cases. 

Chen et al. (2007) proposed a 1D representation model to investigate the characteristics of 

the pressure wave propagation process through a pipe with blockage. Besides, this model 

can be applied to estimate the blockage location, length and severity in single or multiphase 

pipeline. Adeleke et al. (2012) proposed a single phase, isothermal gas model that taking 

viscous effects into account when detecting blockage. The viscous losses have no effect on 

blockage length and location prediction accuracy but has significant impact on the accuracy 

of blockage severity predictions. 

(3) Frequency response method 
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This method involves the introduction of pressure pulse generated by opening and 

closing a valve periodically. The procedure is repeated for a range of frequency and the 

amplitude of the pressure fluctuations at the location of the oscillating valve is analyzed by 

using the transfer matrix method. The comparison between peak pressure frequency 

responses indicates the location and size of partial blockage. A frictionless model based on 

frequency response was proposed by Mohapatra (2006) to characterize the location and the 

size of blockage. Especially when the pre- and post-frequency development of a pipeline 

is known, this model can be used to detect the location and the size of additional partial 

blockage. Lee et.al. (2008)   found that discrete blockages were influenced by the frequency 

peaks on an oscillatory pattern by analyzing the behavior of the pipeline in the form of a 

frequency response diagram. He also pointed out this method can be extended to situations 

that some with unknown operating parameters. Duan et al. (2011) proposed a detection 

model of blockages in water pipeline by analyzing the occurrence of the resonant peaks in 

the frequency axis. 

1.3.3 Comparison of detection methods 

The merits and demerits of these above-mentioned methods are also discussed in 

Table 1.1. And the comparison of applicability of different methods is given in Table 1.2.



10 

 

Table 1.1 Merits and demerits of different detection methods  

Detection methods Merits Demerits 

Physical 

Inspection 

methods 

Isotope tracking 

inspection 

 Be effective in detecting the locations and sensitivity 

of blockages in partially blocked pipelines. 

 Be more challenging based on the pipeline design, 

i.e. pipe in pipe or for buried pipelines are similar to 

those noted for the densitometry technique. 

Densitometry 

method 

 This method can be repeated multiple times  to predict 

the blockage location with an increased level of 

confidence. 

 Be more challenging based on the pipeline design, 

i.e. pipe in pipe, buried pipes. 

 The density of some of the typical pipeline contents 

are very close. 

Acoustic 

reflectometry 

 Methodology is economical, proficient to identify 

blockages and holes in pipe as small as 1% of its 

diameter 

 To monitor longer pipelines, a large number of 

acoustic sensors are needed. 

 Small blockages whose acoustic signal is small and 

only differ slightly from the background noise cannot 

be detected. 

Mathematical 

models 

Backpressure 

technology 

 This method can be used to provide important 

information for monitoring chemical inhibition 

programs, scheduling pigging, assessing risk for 

pigging and planning other intervention procedures. 

 The higher pressure drop is more preferable to a 

lower overall pressure drop for locating the blockage 

because with limitation of pressure gauge the 

location result may be questionable. 

 The subtle difficulty in using this method lies in the 

establishment of the baseline, which requires a time-

consuming multi-rate test. 

Pressure 

transient 

technology 

 This method is remote, non-intrusive and efficient. 

 No additional instrument other than a dynamic 

pressure gauge is needed. 

 In the case of hydrate blockages, the addition of 

liquid head and pressure pulsing may aggravate the 

blockage situation. 
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 The blockage severity is usually underestimated. 

Frequency 

response method 

 The flow variables at only one location are sufficient to 

predict the blockage. 

 The methodology is simple and is economical. 

 The PPFR can be used to estimate the location and the 

size of the blockage. 

 Decision on the range of frequencies should take into 

account the safety of the system and constraints on 

valve operation. 

 Valve operation continuous opening and closing may 

require specialized instrumentation. 

 The fluctuation of valve opening should be kept low, 

say about 0.1 so that the linearity assumption is not 

violated. 

 

Table 1.2 Applicability of different methods  

Detection methods 

Type of fluid 

Nature of blockage 

Blockage Diagnosis 

High density(e.g. 

Water) 

Medium 

density(e.g. Oil) 

Low density 

(e.g. Gas) 
Location length diameter 

Isotope tracking 

inspection 
√ √ √ All √ √  

Densitometry method √ √ √ All √ √ √ 

Acoustic reflectometry √ √ √ All √ √  

Backpressure 

technology 
√ √ √ All √ √  

Pressure transient 

technology 
√ √ √ Non-hydrate blockages √ √ √ 

Frequency response 

method 
√ √ √ 

All including Single and 

two blockages 
√ √  
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1.4 Objectives and Organization of the Thesis 

Pipeline blockage can occur anywhere in the pipeline and is of higher difficulty to 

be detected accurately in the pipe over long distance. Early assessment of pipeline blockage 

can improve the effectives and the reliability of pipeline operation. Therefore, the 

objectives of this research are: 

(1) To analyze the relationship between the pressure distribution through the 

pipeline and the blockage characterizations based on computational fluid dynamic (CFD) 

simulations. 

(2) To study the effects of blockage characterizations including blockage inner 

diameter, blockage length and blockage location on the pressure drop through the pipeline. 

(3) Based on the orthogonal array testing (OAT) technique and the introduction 

dimensionless parameters like dimensionless pressure drop, dimensionless inner diameter, 

dimensionless length and dimensionless location, a prediction mathematical model of 

pipeline blockage detection is proposed and could be used to get the first evaluation of 

pipeline blockage like location and length with much lower cost compared with physical 

inspection method. 

(4) To validate this prediction model, lab experiments under various blockage 

characterizations were run. 

This thesis is laid out as follows. After this introduction, the relevant CFD 

simulation method and corresponding pressure distribution through the pipeline 

without/with the blockage are introduced in Chapter Ⅱ. This is followed by the 

investigation of effects of blockage characterizations on the pressure drop through pipeline 

and the introduction of blockage prediction model based on the dimensionless analysis in 



13 

 

Chapter Ⅲ. Chapter IV describes the set-up procedure of lab experiment and the 

corresponding results which could be used to validate the blockage prediction model. 

Finally, the main conclusions and future works are drawn in Chapter V. 
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CHAPTER Ⅱ 

CFD SIMULATION METHOD OF PIPELINE BLOCKAGE 

Numerical simulation can provide information on the hydrodynamics of pipeline 

fluid in detail, which is not easy to obtain by laboratory experiments (Yadav, 2013; Arpino. 

F, 2009; Jalilinasrabady, 2013). Therefore, ANSYS (R.18.1) CFD (computational fluid 

dynamic) package is used to investigate the pressure distribution through the pipeline 

with/without the blockage.  

2.1 Governing Equations 

Oil is treated as an incompressible fluid. And there is no phase change and no-slip 

between fluids at the interface of the fluids. The flow of fluid is governed by the RANS 

(Reynolds-Averaged-Navier-Stokes) equations, including the mass and momentum 

equations written as follows: 

2.1.1 Mass conservation 

This equation is the general form of the mass conservation equation and is valid for 

incompressible as well as compressible flow. The source 𝑆𝑚  is the mass added to the 

continuous phase from the dispersed second phase (for example, due to vaporization of 

liquid droplets) and any user-defined sources. 

            
𝜕𝑝

𝜕𝑡
+ ∇ ∙ (𝜌𝑣⃗) = 𝑆𝑚                                                    (1) 

2.1.2 Momentum conservation 

Conservation of momentum is an internal reference frame is described by:
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𝜕

𝜕𝑡
(𝜌𝑣⃗) + ∇ ∙ (𝜌𝑣⃗𝑣⃗) = −∇𝑝 + ∇ ∙ (𝜏̿) + 𝜌𝑔⃗ + 𝐹⃗                             (2) 

where 𝑝  is the static pressure, 𝜌𝑔⃗  and 𝐹⃗  are the gravitational body force and 

external body force, respectively. 𝜏̿ is the stress tensor which described by this equation: 

𝜏̿ = 𝜇[(∇𝑣⃗ + ∇𝑣⃗𝑇) −
2

3
∇ ∙ 𝑣⃗𝐼]                                             (3) 

where 𝜇 is the molecular viscosity, 𝐼 is the unit tensor, and the second term on the right-

hand side is the effect of volume dilation. 

2.1.3 Transport equations for the standard k-ε model 

The standard k-ε model is a model based on transport equations for the turbulence 

kinetic energy (𝑘) and its dissipation rate (𝜀). In the derivation of the k-ε model, the 

assumption is that the flow is fully turbulent, and the effects of the molecular viscosity are 

negligible. The standard k-ε model is therefore valid only for fully turbulent flows. The 

kinetic energy, 𝑘, and its rate of dissipation, 𝜀, are obtained from the following equations: 

       
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌𝜀 + 𝑆𝑘                (4) 

                
𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀𝐺𝑘

𝜀

𝑘
− 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀             (5) 

where the turbulent (or eddy) viscosity, 𝜇𝑡, is calculated by combining k and 𝜀 as follows: 

                            𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
                                                                  (6) 

𝐺𝑘 represents the generation of turbulence kinetic energy due to the mean velocity 

gradients, calculated as described by: 

                                         𝐺𝑘 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ 𝜕𝑢𝑗

𝜕𝑥𝑖
                                                            (7) 

𝑆𝑘 and 𝑆𝜀 are user-define source terms. 𝐶1𝜀, 𝐶2𝜀 and 𝐶𝜇 are constant. 𝜎𝑘 and 𝜎𝜀 are 

the turbulent Prandtl numbers for 𝑘 and 𝜀, respectively. In the standard k-ε model, all these 

constants have the following default values (Rodi, 2017): 
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𝐶1𝜀 = 1.44, 𝐶2𝜀 = 1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3 

2.2 Computational Domain and Mesh 

Under the action of the fluid, the calculations are considered to simulate turbulent 

flow inside the pipe. Therefore, three-dimensional flow simulation is applied to capture the 

dynamic features. Figure 2.1 shows the sketches of the geometry for computational domain 

of the pipeline without/with the blockage studied in this paper. The whole simulation is 

investigated in a 3D pipeline with a length of 80 in. and the ID of 3/4 in. The blockage part 

has a smaller diameter (1/2 in.) compared with the whole pipe and it starts from the 24 in. 

position (0.3 location) away from the pipe inlet. The detail of the computational parameters 

is shown in Table 2.1. 

 

(a) 

 

(b) 

Figure 2.1 3D computational domain: (a) pipeline without blockage; (b) pipeline with 

blockage 

 

Table 2.1 CFD computational domain parameters  

Pipeline without the blockage Pipeline with the blockage 

Pipe Diameter/in. 3/4 Pipe Diameter/in. 3/4 

Pipe Length/in. 80 Pipe Length/in. 80 
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Blockage Diameter/in. -- Blockage Diameter/in. 1/2 

Blockage Length/in. -- Blockage Length/in. 4 

Blockage Location/in. away 

from the pipe inlet 
-- 

Blockage Location/in. away 

from the pipe inlet 
24 

 

Design Modeler and Mesh modules in ANSYS Workbench are employed to 

generate the geometry generation and meshing separately. The fluid occupying region is 

discretized with pyramidal cells and the progressive mesh is used to capture the near-

blockage flow properties. A proper grid density is reached by repeating calculations until 

a suitable independent grid is found. At last, the number of mesh cells used in simulation 

is about from 350,000 to 440,000. For the quality parameters of mesh grid, it is 

recommended to use orthogonal quality or skewness value as quality criteria. It is believed 

the mesh grid is good while the orthogonal quality is larger than 0.2 or the skewness is less 

than 0.8. As shown in Figure 2.2, the skewness value of most of the mesh grids are less 

than 0.22. Therefore, it should be excellent for the 3D CFD simulation. 

 

Figure 2.2 3D computational meshing  
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2.3 Solution Method and Boundary Conditions 

The present calculations are performed using ANSYS 18.1 and utilizing the 

standard k-ε model. For comparing simulation results with lab experimental results, all the 

simulations are carried out using water instead of crude oil. In calculations, coupled 

algorithm is applied to solve the pressure-velocity coupling to satisfy the conservation laws 

of momentum and mass. In order to obtain better simulation results through the blockage, 

a second order upwind scheme in space is considered to avoid numerical errors and to 

ensure accurate numerical solution. The pipe inlet velocity is defined as v = 0.6 m/s at z=0 

and the pressure outlet at the end of the pipe is set to 13,800 Pa. The convergent residual 

in the simulation volume for each equation is smaller than 10-5. 

2.4 Simulation Results and Discussion 

In order to avoid pipe erosion, the velocity in water pipeline should be less than 3 

m/s. The operating line pressure varies between 0.1 to 5 bars. Due to the investigation of 

the pressure distribution and the flow behavior along the pipeline blockage, the line 

pressure is varied because of various operating conditions in this case. The following 

results are based on the steady-state CFD simulations. 

2.4.1 CFD simulation validation 

In order to validate the 3D CFD model, more than twenty-four 3D steady state 

simulations under different blockages conditions have been carried out to study the effect 

of pressure drop on pipeline flow rate under different pipeline blockage sizes. The 

simulation result is shown in Figure 2.3. For the four different blockage diameters and 

lengths, the results indicate that the pipeline flow rate is a function of the square root of the 

pressure drop (pressure drop coefficient 𝑏 ≈ 0.5) as 𝑄 = 𝑎(∆𝑃)𝑏  where the 𝑄 is the pipeline 
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flow rate in L/s, ∆𝑃 is the pressure drop along the whole pipe in bars and a is a constant. 

This agrees with the theoretical and experimental single choke flow equation. As the inlet 

pressure increases for a pipeline with a specific blockage, the pressure drop along this pipe 

increases and compresses more fluid into the pipeline which results in higher pipeline flow 

velocity. Besides, as the blockage grows serious (blockage thickness as well as blockage 

length increases), the pressure drop through the whole pipeline increases because of the 

decrement of flow area, and the flow rate decreases as the flow area decreases which 

indicates lower flow rate while the pipeline blockage size increases. 

 

Figure 2.3 CFD simulation of the effect of the pressure drop on pipeline flow rate under 

different blockage sizes.  

 

2.4.2 Pressure distribution through the pipeline without blockage 

For the pipeline without blockage, the pressure distribution along the centerline is 

shown in Figure 2.4. The pressure decreases gradually from 14.4 kPa to 13.3 kPa. When it 
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comes to pressure gradient distribution, its value almost remains stable as shown in Figure 

2.5. Therefore, the reason of pressure drop through the pipeline is mainly resulted from the 

friction loss. 

 

Figure 2.4 Pressure distribution through the pipe centerline without blockage  

 

Figure 2.5 Pressure gradient distribution through the pipe centerline without blockage  

 

2.4.3 Pressure distribution through the pipeline with blockage 

For the pipeline with a blockage, the pressure distribution along the centerline of 

the pipe is shown in Figure 2.6. It is known that the large pressure differences are located 

around the inlet and the outlet parts of pipeline blockage. The pressure drop for the whole 

pipeline is nearly 1.6 kPa, which is larger than the pressure drop of pipeline without 
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blockage. And there is a dramatic drop of line pressure at the blockage part, which is larger 

than the pressure drop for the whole pipeline. This feature can also be seen in the pressure 

gradient distribution. As shown in Figure 2.7, the maximum value of pressure gradient 

could be -3600 Pa/in which greatly threatens the safety operation of pipeline. 

 

Figure 2.6 Pressure distribution through the pipe centerline with blockage  

 

Figure 2.7 Pressure gradient distribution through the pipe centerline with blockage  

 

In order to visualize the pressure distribution around the pipeline blockage, taking 

three more lines parallel to the centerline and positioned 1, 2 and 5 mm directly below the 

blockage boundary. The figure is shown in Figure 2.8. This figure presents that the pipeline 

pressure begins to decrease dramatically very close to the blockage inlet from 150 kPa to 



22 

 

135 kPa, then, increase downstream pressure of the blockage reaching back to 140 kPa. 

Besides, a sudden decrease in pressure is followed by a slight increase in the blockage inlet 

part. As one moves from the centerline to the line below 1 mm the blockage boundary, this 

pressure distribution kink is becoming more noticeable. This kink is directly caused by the 

blockage. On the basic of Bernoulli’s equation, a sudden increase in the pressure 

distribution is usually caused by a sudden reduction of the flow area. 

 

Figure 2.8 Pressure distribution along lines below the blockage boundary 

 

Another way to visualize the pressure kink through the pipeline blockage is to look 

at the pressure gradient as shown in Figure 2.9. This figure presents the pressure gradient 

contour of blockage inlet part in the x-y plane and shows values of pressure gradient 

ranging from around 8.5×10-3 to around 1.4×103 Pa/in. 
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Figure 2.9 Zoom-in view of pressure gradient contour of blockage inlet part.  

 

 

Figure 2.10 Pressure gradient distribution along lines below the blockage boundary  
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In order to show the variations of pressure gradient along the whole pipe, lines 

parallel to the centerline and positioned 1, 2 and 5 mm directly below the blockage 

boundary are chosen to present the pressure gradient, as shown in Figure 2.10. It turns out 

that this pressure gradient is almost constant along the pipe except the blockage section. 

The pressure gradient decreases sharply once entering the blockage and the pressure 

gradient becomes greater as it is close to the blockage boundary. While reaching the 

blockage outlet, the pressure gradient increases a little bit compared with the blockage inlet 

part. Hence, considering a non-intrusive method to measure the pressure or the pressure 

gradient through the pipeline, could make it possible to sense the existence of blockage and 

detect its location. 

The kinetic energy of turbulence was calculated for studying the influence of 

blockage on the fluid turbulence. Figure 2.11 shows the contours around the blockage inlet 

part. It presents that the kinetic energy in vicinity of the blockage is almost 400 times in 

comparison to the normal levels across the pipe. This shows a high increase of turbulence 

in vicinity of the blockage. 

 

(a) 
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(b) 

Figure 2.11 Contours of turbulent kinetic energy around the block age 
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CHAPTER Ⅲ 

EFFECTS OF BLOCKAGE CHARACTERIZATION ON PRESSURE 

DISTRIBUTION AND DIMENSIONLESS ANALYSIS 

By conducting a series of CFD simulations, effects of blockage location, blockage 

ID (inner diameter) and blockage length on the pressure distribution through the pipeline 

are examined. Then, the Orthogonal Array Testing (OAT) technique is applied to study the 

net impact of every blockage factor on the pipeline pressure distribution. Finally, several 

dimensionless parameters are introduced to describe the blockage prediction model. 

3.1 Effects of the Blockage Characterizations on Pressure Distribution 

3.1.3 Effect of blockage location in vicinity of the blockage 

To study the effect of blockage location, a set of CFD simulations are executed to 

investigate the effect of blockage length on the pressure and its gradient distribution along 

the whole pipeline. In order to facilitate comparative analysis, four different blockage 

locations, 8 in, 24 in, 40 in and 56 in away from the pipeline inlet, are taken in CFD 

simulations while the rest parameters remain same as those in Table 2.1. Figure 3.1 

illustrates the results of pressure distribution at different locations. It can be noted that there 

is no significant difference at pressure drop even though the pressure distribution varies at 

different locations. In order to present the details, the pressure gradient distribution through 

the pipeline blockage was calculated and was shown in Figure 3.2. It is noted that pressure 

gradients almost stay same expect for the distributed location.
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Figure 3.1 Pressure distribution through the pipeline with blockage in various locations  

 

Figure 3.2 Zoom in pressure gradient distribution through blockage in various locations 
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3.1.1 Effect of blockage diameter in vicinity of the blockage 

A systematic study has been carried out using the 3D steady CFD model to 

investigate the effect of the blockage diameter on the pressure distribution along the whole 

pipeline. The inner diameters of blockage are taken as 0.24 in, 0.34 in and 0.5 in while the 

rest parameters shown in Table 2.1 keep same in comparing cases. 

As can be seen in Figure 3.3, the relative pressure variations for different inner 

diameters are increasing along with the decrease of diameter. Since the flow area is 

becoming smaller, it is expected that the pressure drop will be affected due to the increase 

of pressure loss. On the other hand, based on the observation obtained from the Figure 3.4, 

the pressure gradient distributions through pipeline blockage are clear and they become 

more pronounced as the blockage diameter is increased. Especially the pressure gradient 

varies between -2×105 to around 5×104 Pa/in in vicinity of 0.24 in. blockage diameter. 

 

Figure 3.3 Pressure distribution through the pipeline with blockage in various inner 

diameters 
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Figure 3.4 Zoom in pressure gradient distribution through blockage in various inner 

diameters 

 

3.1.2 Effect of blockage length in vicinity of the blockage 

To analyze the effect of blockage length on the pressure distribution through the 

pipeline, six different blockage lengths, 0.8 in., 2.4 in., 4 in., 8 in., 16 in. and 40 in., are 

chosen in the CFD simulations while leaving other parameters same as those in Table 2.1. 

Figure 3.5 illustrates the simulation results. It can be seen that the longer the blockage 

length, the larger pressure drop required for the water to reach the pipe outlet. When it 

comes to the pressure gradient shown in Figure 3.6, the profiles of pressure gradient 

distribution through pipe centerlines are similar expect that the small variations caused by 

the different blockage lengths. The maximum changes are located at the blockage inlet 

section which is about -3600 Pa/in. Hence considering a high-efficient blockage detection 

method, then it is possible to avoid the pipe erosion caused by pressure gradient variations. 



30 

 

 
Figure 3.5 Pressure distribution through the pipeline with  various blockage lengths 

 

Figure 3.6 Pressure gradient distribution through various blockage lengths 
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3.2 OAT (Orthogonal Array Testing) Technique 

To the best of our knowledge, blockage location, blockage ID and blockage length 

are generally considered to be the main factors that influence the pressure drop through 

whole pipeline. Therefore, an orthogonal experiment L9 (3)4 was applied to study the extent 

to which factor affects the pressure drop most. The investigation levels of each factors were 

selected depending on the above simulation results of single-factor. Table 3.1 lists the 

independent factors with three variation levels. 

Table 3.1 Factors and levels for the orthogonal test  

No. (A) Blockage Location/in (B) Blockage ID/in (C) Blockage Length/in 

1 8 1/2 0.8 

2 24 0.34 4 

3 56 0.24 16 

 

The simulation results of orthogonal test, performed by statistical software Minitab 

16.0, are present in Table 3.2. The pressure drop obtained from each test was pretreated 

and quantitatively analyzed. In view of the orthogonal analysis, we use statistical software 

to calculate the values of k and delta. The factors influence the pressure drop through the 

pipeline with a blockage were listed in a decreasing order as follow: B > C > A according 

to the delta value. So the maximum pressure drop was obtained when blockage ID, length 

and location were B3C3A1 (ID 0.24 in., 16 in. length and 8 in. away from the pipe inlet, 

respectively). According to the delta value, we can find the blockage ID was found to be 

the most important determinant of the pressure drop through the pipeline. 

Table 3.2 Analysis of L9 (3)4 test results 

No. (A) Blockage Location/in (B) Blockage ID/in (C) Blockage Length/in Pressure Drop/Pa 

1 1 1 1 1157.3 

2 1 2 2 6318.8 
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3 1 3 3 42808.1 

4 2 1 2 1221.5 

5 2 2 3 8810.6 

6 2 3 1 25276.8 

7 3 1 3 1564.0 

8 3 2 1 5640.2 

9 3 3 2 29030.8 

k1 16761 1314 10691  

k2 11770 6923 12190  

k3 12078 32372 17728  

Delta 4992 31058 7036  

Rank 3 1 2  

 

3.3 Dimensionless Analysis for Blockage Prediction 

3.3.1 Dimensionless parameters 

In order to propose a prediction model for locating and estimating the pipeline 

blockage, several dimensionless parameters whose domains are from 0 to 1 are introduced 

as follow: 

(1) Dimensionless pressure drop: 

           
'
 D

p
P

p





                                                                (8) 

where  DP is the dimensionless pressure drop, 'p  and p  are the pressure drop 

through the pipeline with and without blockage, respectively. 

(2) Dimensionless blockage location:  

          location
D

L
E

L
                                                            (9) 

where 𝐸𝐷 is the dimensionless blockage location, 𝐿𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the length between the 

pipeline inlet and the blockage inlet, and 𝐿 is the total length of pipeline. 
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(3) Dimensionless blockage diameter: 

   
'
 D

D
D

D
                                                                  (10) 

where 𝐷𝐷 is the dimensionless blockage diameter, 𝐷′ and 𝐷 are the inner diameter of 

the blockage and pipeline, respectively. 

(4) Dimensionless blockage length: the ratio of blockage length to the total length 

of pipeline. 
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                                                                 (11) 

where 𝐿𝐷 is the dimensionless pressure length, 𝐿′ and 𝐿 are the length of the blockage 

and the pipeline, respectively. 

3.3.2 Blockage Dimensionless analysis 

Plot dimensionless curves based on data obtained in CFD simulation results as 

above and the fitting curves are obtained as shown in Figure 3.7.  

 

Figure 3.7 Dimensionless pressure drop through pipeline under various parameters  
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The x-axis is dimensionless parameters including dimensionless blockage location, 

dimensionless blockage diameter and dimensionless blockage length whose ranges are all 

from 0 to 1. The y-axis is dimensionless pressure drop through the pipeline. We can clearly 

see that the smaller diameter of the pipeline blockage is, or the longer lengths of the 

pipeline blockage, the smaller dimensionless pressure drop is. According to their fitting 

curves, the blockage distribution model is proposed and is shown in Figure 3.8. 

 

Figure 3.8 Blockage estimation figure based on dimensionless analysis  

 

Based on the fitting curves, the dimensionless location, diameter and length meet 

the exponential distribution, sigmoidal growth and cross distribution well, respectively. 

And the adjust R-squares are all larger than 0.985. The fitting formulas are shown as 

follows: 
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Therefore, the estimation of blockage location, diameter and length could be 

obtained based on this prediction model. Taking Eq. (12) for example, if the normal 

pressure drop is set as 13,000 Pa, the test pressure drop is 30,000 Pa, and the length of 

pipeline is set as 10,000 in, so the estimated location would be calculated as 4500 in. away 

from the pipeline inlet. 
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CHAPTER Ⅳ 

BLOCKAGE PREDICTION MODEL VALIDATION 

4.1 Laboratory Experiment Set-up 

4.1.1 Equipment introduction 

The experimental apparatus for laboratory investigation is a fluid frictional loop 

that shown in Figure 4.1, manufactured by TecQuipment Ltd, which could be used to 

measure the pressure losses for fluid flow in a wide variety of pipes and fittings. The 

equipment has three color coded circuits each fitted with valves, pipes, and pipe system 

components. These allow technicians to examine and compare the different flow, flow 

measurement techniques and pressure losses. A vertical panel holds all the parts for easy 

use. To measure pressure loss across components, technicians use differential pressure 

gauges.  

 

Figure 4.1 The Fluid friction apparatus
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TecQuipment recommends that a hydraulic bench which is used for the circuits 

with a controlled water supply and flow measurement. The TecQuipment H1D volumetric 

hydraulic bench is shown in Figure 4.2. To perform experiments, technicians record the 

temperature of fluid in the hydraulic bench and set the flow rate. They measure pressure 

losses across instruments or components. These parameters determine the relationship 

between the flow rate and pressure differential.  

The experimental setup will be modified for blockage experiment. 

 

Figure 4.2 The H1D volumetric hydraulic bench  

 

4.1.2 Equipment modification for blockage experiment 

To investigate the relationship between the blockage characterizations (like 

blockage location, diameter and length) and the pressure drop through the whole pipe, this 

fluid frictional apparatus is modified by replacing part of the pipe with a section of small-

diameter pipe (red part blockage section), which simulates the actual partial blockade 

pipeline. As shown in Figure 4.3, this new apparatus includes the flow sensor connected 

with the hydraulic bench, the pipe section at the bottom part of this vertical loop connected 
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with pressure transmitters, and the data logging system used for recording pressure and the 

flow rate, automatically.  

 

Figure 4.3 Experimental setup for pipeline bloc kage investigation 

     

(a)                                                         (b)     

Figure 4.4 The Instruments used for the blockage experiments  
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A flow sensor (shown in Figure 4.4 (a)), manufactured by Omega Company, is 

deployed to measure flow rates in water circuits by integrating rugged tangential turbine 

technology with a precision digital to analog conversion circuit hermetically encapsulated 

within the body of the sensor. The pressure transmitters (#1, #2, shown in Figure 4.4 (b)), 

are installed to convert a single positive pressure into a standard 4–20 mA output signal, 

which could be recorded by the data logging module.  

The data logging system (shown in Figure 4.5) which consists of the chassis and 

module from National Instruments is set up to record the pressure point and the flow rate 

change while running experiments. The chassis is mounted on the back of the vertical panel 

board and the corresponding modules are inserted. Wirings are also used to connect the 

pressure transmitters and the flow rate sensor to the appropriate ports in the module. On 

the other hand, the chassis is connected to the computer by wirings. For the data logging 

system, it should be programmed for required drivers by the LabVIEW software. The final 

screen shot of the data logging system is shown in Figure 4.6 and it is set to record the 

pressure signal and the flow rate signal per 0.5 second. And in this software, it is clearly to 

check the value of inlet or outlet pressure and the flow rate. 

 

Figure 4.5 The Data logging system used for the blockage experiments  
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Figure 4.6 LabVIEW Software used for pipeline bloc kage experiment  

 

To investigate the blockage experiment, part of the pipe at the bottom of this apparatus 

is replaced with a smaller-diameter pipe section to simulate the actual blockage. The 

location of the smaller-diameter pipe section will be changed to simulate different locations 

of blockage pipeline. Next, part of pipe sections with the same length but different diameter 

will be replaced to study how blockage diameter influences the distribution of the pressure. 

Finally, part of pipe sections with the same diameter but different lengths will be used to 

study the blockage length effects on the pressure drop through the pipeline. 

4.2 Experiment Investigation 

4.2.1 Standard cases 

Standard cases include the pipeline without blockage and the pipeline with a single 

blockage. The modified apparatus is used to run the first experiment while the pipe at the 

bottom of this apparatus is replaced to a CPVC pipe with 3/4 in. diameter simulated as the 

whole pipe without blockage. In order to obtain the pressure drop through the pipeline, the 
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difference between the values shown on the LabVIEW software which obtained from these 

two pressure transmitters are taken as the pressure drop through the pipeline. Steps to 

investigate the single blockage experiments are similar to the first one while part of bottom 

pipe is replaced with a 0.5 in-diameter pipe section to simulate the blockage. The detail of 

the experiment parameters is shown in Table 4.1. 

Table 4.1 Experiment parameters for standard cases 

Case 
Pipe 

Diameter/in. 

Pipe 

Length/in. 

Blockage 

Diameter/in. 

Blockage 

Length/in. 

Blockage Location/in. 

away from the pipe inlet 

1 3/4 80 -- -- -- 

2 3/4 80 0.5 8 22 

 

4.2.2 Experiments for single blockage at different locations 

Steps to conduct blockage experiments at various locations are similar to the 

standard case with single blockage. The only difference is different locations of the 

blockage are installed. Multiple flow rate tests are run and pressure parameters are recorded 

for all different cases. The detail of the experiment parameters is shown in Table 4.2. 

Table 4.2 Experiment parameters for single blockage at different locations  

Case 
Pipe 

Diameter/in. 

Pipe 

Length/in. 

Blockage 

Diameter/in. 

Blockage 

Length/in. 

Blockage Location/in. 

away from the pipe inlet 

1 3/4 80 0.5 8 15 

2 3/4 80 0.5 8 22 

3 3/4 80 0.5 8 35 

4 3/4 80 0.5 8 37 

5 3/4 80 0.5 8 50 

6 3/4 80 0.5 8 58 

 

4.2.3 Experiments for single blockage with different diameters 

To investigate the influence of blockage diameter on the pressure drop though the 

pipeline, the simulated part of blockage section is replaced with various diameters while 
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keeping the rest parameters same. The details of the experiment parameters are shown in 

Table 4.3. 

Table 4.3 Experiment parameters for single blockage with different diameters 

Case 
Pipe 

Diameter/in. 

Pipe 

Length/in. 

Blockage 

Diameter/in. 

Blockage 

Length/in. 

Blockage Location/in. 

away from the pipe inlet 

1 3/4 80 0.5 8 15 

2 3/4 80 0.34 8 15 

3 3/4 80 0.24 8 15 

4 3/4 80 0.5 8 50 

5 3/4 80 0.34 8 50 

6 3/4 80 0.24 8 50 

 

4.2.4 Experiments for single blockage with different lengths 

Steps to conduct blockage experiments with different lengths are similar to the 

Section 4.2.2 while replacing the blockage section with different lengths of pipe sections. 

Multiple flow rate tests are investigated and pressure parameters are recorded for all 

different cases. The detail of the experiment parameters is shown in Table 4.4. 

Table 4.4 Experiment parameters for single blockage with different lengths  

Case 
Pipe 

Diameter/in. 

Pipe 

Length/in. 

Blockage 

Diameter/in. 

Blockage 

Length/in. 

Blockage Location/in. 

away from the pipe inlet 

1 3/4 80 0.5 4 23 

2 3/4 80 0.5 8 23 

3 3/4 80 0.5 40 20 

4 3/4 80 0.5 72 4 

 

4.3 Experiment Results and Discussion 

In order to validate the blockage prediction model based on CFD simulation results, 

the flow rate was kept as same as the CFD boundary situation and is set to 2.7 GPM in the 

lab experiments. The experiment results are shown in Table 4.5 by following the steps of 
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blockage experiment described in Chapter 4.2. To conveniently present the differences 

between the experiment results and the prediction results, the corresponding dimensionless 

parameters are calculated followed by the equations shown in Chapter 3.3 and are list in 

Table 4.6. The obtained deviations of pressure drop between the experiment results and the 

prediction results show, in a clear way, the experiment results are larger than the prediction 

results. The deviations of pressure drop through the pipeline under different locations vary 

from 7% to 22%. The deviations of pressure drop with different diameters vary from 10% 

to 30%. And the deviations of pressure drop vary from 2% to 22%. Hence the deviation 

should be taken into account while estimating the blockage through the pipeline based on 

the blockage prediction model. 
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Table 4.5 Blockage experiment results  

Case Pipe Diameter/in. Pipe Length/in. Blockage Diameter/in. Blockage Length/in. Blockage Location/in. Pressure Drop/Pa 

NO Blockage 3/4 80 -- -- -- 2600 

Standard Case 3/4 80 0.5 8 22 5250 

Different Locations 

1 3/4 80 0.5 8 15 5300 

2 3/4 80 0.5 8 22 5240 

3 3/4 80 0.5 8 35 4970 

4 3/4 80 0.5 8 37 4720 

5 3/4 80 0.5 8 50 5710 

6 3/4 80 0.5 8 58 4860 

Different Diameters 

1 3/4 80 0.5 8 15 5340 

2 3/4 80 0.34 8 15 17490 

3 3/4 80 0.24 8 15 51200 

4 3/4 80 0.5 8 50 4890 

5 3/4 80 0.34 8 50 19340 

6 3/4 80 0.24 8 50 57600 

Different Lengths 

1 3/4 80 0.5 4 23 4910 

2 3/4 80 0.5 8 23 6240 

3 3/4 80 0.5 40 20 7910 

4 3/4 80 0.5 72 4 8450 
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Table 4.6 Blockage prediction model validation  

Case 
Dimensionless 

Blockage Diameter. 

Dimensionless 

Blockage Length 

Dimensionless 

Blockage Location 

Dimensionless Pressure 

Drop By Experiment 

Dimensionless Pressure 

Drop By Model 
Deviation/% 

Standard 

Case 
0.667 0.1 0.28 0.4961 0.4240 14.53 

Different Locations 

1 0.667 0.1 0.18 0.4905 0.4232 13.71 

2 0.667 0.1 0.28 0.4961 0.4240 14.53 

3 0.667 0.1 0.44 0.5231 0.4250 18.75 

4 0.667 0.1 0.46 0.5508 0.4252 22.82 

5 0.667 0.1 0.62 0.4553 0.4258 6.47 

6 0.667 0.1 0.72 0.5349 0.4261 20.34 

Different Diameters 

1 0.667 0.1 0.18 0.4868 0.4392 9.79 

2 0.453 0.1 0.18 0.1486 0.0987 33.59 

3 0.32 0.1 0.18 0.0507 0.0358 29.36 

4 0.667 0.1 0.62 0.5317 0.4392 17.4 

5 0.453 0.1 0.62 0.1344 0.0987 26.56 

6 0.32 0.1 0.62 0.0451 0.0358 20.53 

Different Lengths 

1 0.667 0.05 0.28 0.5295 0.4031 23.88 

2 0.667 0.1 0.28 0.4167 0.3373 19.04 

3 0.667 0.5 0.19 0.3286 0.3052 7.14 

4 0.667 0.9 0.04 0.3076 0.3037 1.28 
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CHAPTER Ⅴ 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

CFD simulations, for studying pressure distribution through the pipeline 

without/with a single blockage are investigated. Effects of lockage location, blockage 

diameter and blockage length on the pressure drop through the pipeline are examined. And 

fitting formulas are obtained to estimate the corresponding the location, diameter and 

length of the pipeline blockage. Finally, a prediction model of the pipeline blockage is 

proposed and is validated by the corresponding lab experiments. Based on this research, 

the following conclusions are drawn as: 

(1) Pipeline blockage, may result from bad operating conditions or from any reason, 

due to sudden changes of pressure, temperature, corrosion action, composition or lack of 

maintenance. Before any detection methods are implemented, it is important to assess what 

is contributing to the blockage formation. 

(2) For blockage detection methods, mathematical method has the privilege to 

narrow down the possible blockage interval, especially for long-distance pipeline, then 

physical method is applied to locate blockage accurately and evaluate severity confidently. 

Attention needs to be taken at this stage to make sure that the detection method itself would 

not deteriorate the blockage or make it harder to remediate in future work.
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(3) The larger the blockage diameter, the longer the blockage length, or the more 

far away from the pipe inlet, the larger pressure drop through the pipeline is. Based on the 

CFD simulations and the OAT analysis, the factors that influence the pressure drop through 

the pipeline are listed in a decreasing order as blockage diameter, blockage length and 

blockage location.  

(4) The three fitting formulas of dimensionless parameters distribution meet the 

exponential distribution, sigmoidal growth and cross distribution well, respectively. Using 

the formulas, we can locate the pipeline blockage and estimate its diameter and length as 

well. 

(5) Laboratory experiments are investigated under different operations to simulate 

the actual pipeline without/with a single blockage. The experiment results are larger than 

the results calculated by the proposed prediction model. And the deviation is under 30% 

which should be considered while estimating the blockage through the pipeline based on 

the blockage prediction model. 

5.2 Future Works 

Many mathematical models are available to detect pipeline blockages while their 

applicability is limited to single blockage in a pipeline, which just covers a small part of 

pipeline operation circumstances. The future work of detection methods should focus on 

how to detect the multiple blockages in single/multiphase flow in more complicate 

pipelines like parallel/looped pipelines. 
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NOMENCLATURE 

𝜌              =        density of fluid; 

𝑆𝑚           =        the mass added to the continuous phase from the dispersed second phase 

and any user-defined sources; 

𝑝              =        static pressure; 

𝜌𝑔⃗            =        gravitational body force; 

𝐹⃗              =        external body force; 

𝜏̿               =        stress tensor; 

𝜇                =         molecular viscosity; 

𝐼                =         unit tensor; 

𝑘              =        the kinetic energy; 

𝜀               =        kinetic energy rate of dissipation; 

𝜇𝑡             =        the turbulent (or eddy) viscosity; 

𝐺𝑘              =         generation of turbulence kinetic energy due to the mean velocity gradients; 

𝑆𝑘             =        user-define source term; 

𝑆𝜀             =        source term; 

𝐶1𝜀,𝐶2𝜀,𝐶𝜇=        constant; 

𝜎𝑘             =        the turbulent Prandtl number for 𝑘; 

𝜎𝜀             =        the turbulent Prandtl numbers for 𝜀; 

 DP             =         the dimensionless pressure drop; 



49 

 

'p            =         the pressure drop through the pipeline with blockage; 

p             =         the pressure drop through the pipeline without blockage; 

𝐸𝐷             =         the dimensionless blockage location; 

𝐿𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛   =         the length between the pipeline inlet and the blockage inlet; 

𝐿                =         the total length of pipeline; 

𝐷𝐷             =         the dimensionless blockage diameter; 

𝐷′              =         the inner diameter of the blockage; 

𝐷               =         the inner diameter of the pipeline; 

𝐿𝐷             =         the dimensionless pressure length; 

𝐿′               =         the length of the blockage; 

𝐿                =         the length of the pipeline; 
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