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ABSTRACT 

As the preferential flow channels in the shale reservoir, the fracture systems including the natural 

micro-cracks and hydraulic fractures have received great attention from the whole energy industry 

worldwide. However, it is challenging to quantify the fracture systems in the shale rocks precisely 

because most of well-developed “histogram-based” image processing techniques cannot handle 

the case of small target segmentation. Because the fracture apertures are very thin, the over-

segmentation or insufficient segmentation would lead to significant error in the quantification, 

including the fracture porosity, aperture, length, tortuosity etc., which would lead to serious 

mistakes to the property calculation. 

In this research, two novel image processing methods are proposed. The self-adaptive image 

enhancement method employs incomplete beta function and simulated annealing algorithm to 

modify the grayscale intensity histogram. The contrast between the target and the background of 

the transformed gray image reaches the maximum. Also, “self-adaptive” means the enhancement 

process is specified by the input images. The comparison of segmentation results before and after 

the image enhancement show that the target becomes more obvious to the naked eyes and the 

precise fracture porosity of the test image is 4.02 %. 

The multi-stage image segmentation (MSS) method combines the global and local information 

of the image to finish the segmentation. The generated three-dimensional model provides 

visualization of the fracture systems existing in the core. Also, the important parameters of the 

fractures can be obtained, including aperture, length, tortuosity, and porosity. Compared with the
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real permeability from the core-flooding experiments, the permeability calculated from the MSS 

method has the minimum error of 22.1 %.  The results show that the proposed methods in this 

research can be effective tools for the precise quantification of the thin fracture systems. 
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CHAPTER I 

INTRODUCTION 

With the depletion of conventional energy resources, the unconventional resources will become 

more and more important around the world as new sources of energy (Hoffman & Shoaib, 2014; 

Jia et al., 2019; Lee, 2008). During the last two decades, with the rapid development of advances 

in horizontal drilling and hydraulic fracturing, unconventional oil reservoir (Miller et al., 2008), 

including the Bakken Formation in North Dakota and Montana, the Eagle Ford in Texas, and the 

Niobrara in Colorado and Wyoming, have become the leading oil production areas in North 

America. Although there are some differences among these reservoirs, the common aspect is that 

they have extremely low porosity and low permeability (Todd & Evans, 2016). Therefore, the 

primary recovery factor remains very low, about 5 - 10 % (Jia et al, 2018).  

Although Bakken formation is a famous as shale reservoir, it has a dolomitic siltstone lithology 

originally. The Bakken formation includes three main members (Flannery & Kraus, 2006): (1) 

Upper Bakken formation – Organic-rich black pyritic shale, (2) Middle Bakken formation – Fine-

grained sandstone or middle silty dolostone ,about 15 ft thick, and (3) Lower Bakken formation – 

Organic-rich black pyritic shale. The total organic content of the upper shale has been measured 

up to 40 % (Kumar & Hoffman, 2013). Due to the absence of an adjacent high-permeability 

formation, internal fluid pressures rose during the conversion of kerogen to oil and created natural 

fractures in the shale. Also, the treatment of multi-stage fracturing create a better reservoir 

connection and inner link of the natural or existing facture systems (Miller et al., 2008; Jia et al,   
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 2018). 

Not like the conventional large-scale reservoirs that have been characterized through many 

methodologies, shale formation has not yet undergone advanced characterization, and much 

remains to be done (Tahmasebi et al, 2015). The fracture systems in the shale reservoir, including 

the natural micro-cracks and the visible hydraulic fractures, serve as the preferential flow conduits 

and always dominate the mass transfer in geological materials. The most commonly precise 

fracture quantification techniques are the imaging logging (Lai et al, 2017) and core data analysis 

(Jia et al, 2017). However, these techniques have obvious drawbacks: First, the current methods 

ignore the inherent micro-cracks, which will lead to the conductivity ability of the geological 

model is much lower than the real reservoir condition (Dewhurst & Siggins, 2006). For most of 

the fracture modellings, the engineers use the implicit fracture modelling to offset the absence of 

the natural micro-cracks, which is entirely based on the statistical properties set by the users to 

match the historical data, not the real geological information (Xu & Dowd, 2010). Also, the core 

data analysis in the lab is time-consuming and expensive, which will cost days or even weeks to 

operate the lab experiments (Jia et al, 2018). Besides, some experiments will destroy the original 

structure of the cores, which means these experiments are one-time events. All these factors 

determine that some core data analysis experiments have very poor repeatability.  

Considering the problems about current fracture quantification techniques, the researchers 

proposed effective novel visualization solutions using digital rock theory, which are non-

destructive to the cores. The high-resolution scanning technique provides high-quality two-

dimensional images, which show the structure of micro-cracks and three-dimensional models 

consisting of rock matrix and fracture system. With the obvious advantages of digital rock 
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technologies, the researchers have finished some micro-level studies in the field of petroleum 

engineering, geochemistry, geophysics etc.   

1.1 Literature Review 

A substantial experimental data is a cornerstone of most geophysical interpretation and reservoir 

simulation, because any transformation from remotely measured quantities, such as EM-derived 

resistivity or seismic impedance, to the reservoir properties, including permeability, porosity, 

saturation, should be either an experimental regression or a theoretical model, which is calibrated 

and verified by experimental data (Dvorkin et al., 2008).  

Compared with the traditional lab experiments using real rock samples (cores, pluggings, and 

cuttings), the digital rock simulation experiments have some obvious advantages including: 

(1) Lower cost: 

Avoiding the problemic process of sample coring, transportation, and pre-processing phase 

and expensive real experimental apparatus, digital rock theory can save money and time for the 

researchers. 

(2) More feasible and applicable: 

The simulation using the digital rock can be repeated in acceptable time span for many times 

and the experimental conditions can be set by the users, which means some complicated 

experimental conditions can be achieved. 

(3) Better Micro-level Description: 

Most of the lab experiments are established based on the Darcy’s law, which can’t be used for 

micro-level study. Digital rock makes the micro-level characterization possible, which provides a 

novel prospective to study the micro-seepage-theory.  
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Because of these advantages, the digital rock theory, as a novel perspective to observe the inner 

structure of the rock sample and obtain the experimental data, has been studied, developed, and 

applied to different research fields. The key procedure of digital rock is the three-dimensional 

model reconstruction. For different research sample, different reconstruction methods were 

proposed and test. Also, the concerning application of digital rock theory in this research is the 

fracture quantification techniques. 

1.1.1 Digital Rock Theory 

Digital rock is the concept of discretization of the real rock sample, including rock matrix and 

pores, into numerous pixels, whose length is determined by the resolution of scanning image. 

Using digital rock with high resolution, researchers can observe the inner structure of the 

microporous media precisely, which builds the foundation of high-accuracy simulation of fluid 

flow, distribution, and storage (Andrä et al., 2013).  

The computational methods used to simulate the fluid flow in the digital rock are very sensitive 

to the size of the digital rock or how many pixels contained in the model. The simulation time will 

increase drastically with the increase of the size of the digital rock. The huge computation brought 

by high-resolution pixels has been restricting the development of digital rock technology. There 

are two effective ways to solve this problem: (1) Develop an advanced computer with stronger 

computational ability, (2) Develop a simplified model based on the digital rock – the pore network 

model (Zhang, 2015). A good pore network model can be used to study the distribution and 

conductivity of fluids in the rock sample precisely, and more importantly, save the computing time 

greatly. Taking the pore network model as a study object, the researchers have solved some micro-
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level problems, including the seepage law and distribution of water and oil phases in water flooding, 

the change of oil properties caused by surfactant in chemical flooding etc.  

In different research fields, including petroleum engineering, geophysics, geochemistry etc., 

digital rock modelling has been applied widely. For reservoir description and modelling, the 

characterization of the complex pore network in the rock sample is the most direct application of 

digital rock, from nanometer to centimeter, then to understand and predict rock properties at the 

sub-plug scale (Blunt et al., 2002; Bakker & Øren, 1997). As a novel core analysis method at sub-

plug scale, digital rock has been proven to provide significant commercial values (Lopez et al., 

2010).  

Geometrical, petrophysical, and multi-phase flow properties depend strongly on the scale of 

the research target. However, the traditional characterization methods of rock samples are limited 

to mm-scale (Wu et al., 2007; Wu et al., 2008). It is necessary to characterize the rock 

heterogeneity of different rock types at micro-scale or even nano-scale, which can help to 

recognize which rock type has more important effects on fluid flow properties, especially for multi-

phase flows. For multi-phase flow, it is important to understand how heterogeneities interact with 

fluid forces, including gravity, capillary, and viscous, acting on different scales (Kalam et al., 

2012). Lopez et al. (2012) applied the multi-scale imaging and modelling method to characterize 

heterogeneity and predicted the petrophysical properties at different scales for more than 100 core 

samples. In that work, multi-scale X-ray computed micro-tomography imaging and three-

dimensional rock modelling succeeded characterizing the heterogeneity, dominant pore size, and 

rock types, from micritic facies (nm-scale), intergranular porosity (μm-scale), vuggy porosity 

(mm-scale) to whole rock core (cm-scale). Then, some petrophysical properties, including porosity, 
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permeability, m-exponent, n-exponent, and primary drainage were calculated and compared with 

available core analysis data of same rock samples, which did match the calculation results very 

well. 

The capillary pressure relationships are the most important parameters, which can be used to 

provide supplementary data for relative permeability estimates; estimation of fluid contacts, 

transition zones, and reservoir initial fluid saturations; evaluation of sealing pressure and 

displacement pressure. There are three traditional methods to determine capillary pressure curves: 

the centrifuge method (CM) (Hassler & Brunner, 1945), the porous plate (PP) (Leverett, 1941), 

and the mercury intrusion porosimetry (MICP) (Purcell, 1949). In general, the multi-speed 

centrifuge method (CM) is the most common choice for routine core analysis, because of the 

comprehensive consideration of speed and accuracy. However, how to set the rotational speed 

schedule is a long-standing problem. Shikhov and Arns (1997) use the digital rock to assist in the 

estimation of experimental equilibrium times and act as a useful tool in speed schedule design. 

Permeability is another important parameter to predict the oil and gas production in the 

reservoir, contaminants migration in aquifers and soils, etc. The traditional method, which is the 

direct measurement of permeability in the lab, is accurate, but time-consuming and expensive. 

Also, the preparation of rock sample limits the application of the direct approaches. In recent years, 

the Kozeny-Carman relation (Dullien, 2012), based on the simple cylindrical pore geometry, has 

been applied widely. The advantage of Kozeny-Carman relation is the easy use. Mavko and Nur 

(2004) used the Kozeny-Carman relation to predict the permeability from the 2D thin image, and 

the results matched the lab experiments very well. However, the disadvantages of this method are 

also very obvious. The models used in the Kozeny-Carman relation are empirical, which means 



 

7 

 

the models give little insight into the relationship between permeability and pore geometry. Also, 

some parameters, including the formation factors and the specific surface area, should be calibrated 

with experimental data. As a result, the Kozeny-Carman correlation can not be applied to the 

porous media with complex pore system. Blair et al. (1993) improved the models, and the results 

are highly sensitive to the resolution of thin section images. In recent years, with the development 

of the three-dimensional scanning techniques, the applications of the Lattice-Boltzmann (L-B) 

method to predict permeability yielded excellent results. Keehm et al. (2004) reconstructed the 3D 

model using sequential indicator simulation and simulated the permeability. The results showed 

that the Lattice-Boltzmann method can handle the porous media with complex pore network very 

well.  

1.1.2 Three-dimensional Model Reconstruction 

The key point of digital rock is the three-dimensional model construction. Based on the different 

methods proposed by the researchers, the three-dimensional model reconstruction techniques can 

be divided into 2 categories: Direct method and indirect way. 

Experimental Physical Method – Direct Method 

There are many tools available to image rocks with different resolutions. Among them, 

computerized tomography (CT) and other X-ray scanning technologies are popularly used to create 

three-dimensional rock images that show the internal pore structures, their connectivity and 

mineral compositions. 

There some common types of scanning techniques, including the followings: 

 Conventional CT (millimeter resolution) 

 Micro-CT (between 1 and 5 μm resolution) 
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 Laser Scanning Fluorescence Microscopy (submicron, approximately 250 nm resolution) 

 Transmission Electron Microscopy (TEM) (approximately 100 nm resolution) 

 Scanning Electron Microscope (SEM) (approximately 5 nm resolution) 

 Atomic Force Microscopy (AFM) (approximately 10 nm resolution) 

 Focused Ion Beam-Scanning Electron Microscope (FIB-SEM, three-dimensional images, 

between 1 and 5 nm resolution) 

Based on the imaging results, the scanning techniques are briefly reviewed below: 

(1) Focused Ion Beam–Scanning Electron Microscope (FIB-SEM) 

FIB-SEM is a new 3D scanning technique, which is based on the serial-section imaging method 

and uses the focused-ion-beam (FIB) technology. First of all, generate the 2D image of the surface 

of the rock sample. Then, accelerated gallium (Ga+) will be used to sputter the atoms from the 

sample surface, and a 2D image of the new surface will be generated. Repeat this process until the 

whole rock sample is scanned. At last, all the 2D images will be stacked in serial sequence to 

reconstruct the 3D model. The milling layer can be as thin as 10 nm (Tomutsa et al., 2007).  

The application of FIB-SEM is very extensive. First of all, FIB is the most common method to 

mill the rock sample. Also, in the field of earth science, Vogel and Roth (2001) used pore-network 

generated by FIB-SEM to study the pore geometry and transport processed (Pore-size distribution 

and connectivity function) in soil. In the field of microelectronics, to verify the design, analyze 

failure, and modify the circuit, Orloff et al. (2004) used FIB-SEM to access individual components 

with nanoscale accuracy. In the field of material science, the sectional images generated by FIB-

SEM used by Kubis et al. (2004) to analyze the alloy components. In the field of petroleum 

engineering, the major application of FIB-SEM is to analyze the micro-pore structure.  
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Lymberopoulos and Payatakes (1992) obtained the topological, geometrical, and pore-size 

correlation properties of porous materials. Tomutsa et al. (2007; 2003; 2004) solved the fluid flow 

in the tight gas sands, diatomite and chalk using FIB-SEM to obtain pore structure with a 

submicron-scale resolution.  

The advantage of FIB-SEM is its high resolution and the three-dimensional result. However, 

it carries some shortcomings. Because the processes of milling and polishing rock sample take a 

very long time, and it destroys the structure of the rock sample, it is not very practical. 

(2) Computed Tomography Scanning 

In the early 1980s, Elliott et al. (1995) invented the first computed tomography machine. Then 

CT was widely used in the field of medicine. Coming to the 21st century, Dunsmuir et al. (1991) 

discovered the potential of CT scanning to characterize the inner structure of porous media. With 

the development of CT scanning techniques, its applications in the field of petroleum engineering 

and geo-material has become very common now. There are some kinds of CT machines used in 

the field of petroleum engineering: conventional CT, micro-CT and synchronic powered 

transmission CT (Dong, 2007; Zhang, 2015).  

The resolution of images generated by the synchronic CT is much higher than the conventional 

CT. As a result, conventional CT is used to characterize the weakly cemented porous media, such 

as loose carbonate, and the synchronic CT can be used to generate the 3D model of tight media, 

such as shale rock [44]. However, the expense of synchronic CT scanning is very high and the 

processing time is too long, which lead to the limited applications of synchronic CT.  

(3) Laser Scanning Confocal Microscopy Scanning 
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FIB-SEM and CT scanning are commonlu used to generate the 3D model of the rock sample. 

Another method to generate the 3D model was introduced by Fredrich et al. (1992). In this method, 

first, inject an epoxy doped with a fluorochrome with fluorescent wavelength matching the 

excitation wavelength. Then, use the laser scanning confocal microscopy to generate the three-

dimensional pore structure of geological materials. The advantage of this method is the high-

resolution of the image, however, restricted to the pre-process – injection of epoxy, it can only be 

applied to the thin rock slice modelling, whose size is very small. Also, for the tight rock samples, 

such as tight carbonates or shale rocks, it is difficult to determine whether the saturation process 

is finished or not, and the saturation process is very time-consuming. 

(4) Scanning Electron Microscope 

SEM is an effective scanning technique to generate 2D images with high resolution, which can 

be 5 nm. The scale of SEM output images is perfect for the tight rock sample, like shale rock. It 

can show both the large and small round pores in mature kerogen (darker area) of the rock samples 

(Curtis et al., 2010), which exist in the Upper and Lower Bakken formation. Fig. 1-1 is the example 

of SEM image for a tight shale rock sample. The size of the sample is 2 μm and the resolution is 

about 2.9 nm. The pores and the kerogen inside can be observed clearly.  

 

Fig. 1-1 Example of SEM Output Image 
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Numerical Reconstruction Method – Indirect Method 

Numerical reconstruction method is based on the scanning images, using some different statistical 

methods or rock formation simulation to reconstruct the digital rock. Until now, the traditional 

reconstruction methods include Gaussian Simulation Method, Simulated Annealing Method, 

Process-based Simulation Method, and Markov Random Reconstruction Method. 

First proposed by Joshi (1974), Gaussian simulation method is based on the statistical 

parameters from the image analysis of rock slice and generate a dataset, composed of the individual 

Gaussian variables. Then, operate a linear transformation to the dataset, which can make the 

individual variables under the constraints of porosity and two-point correlation function. The last 

step is to transform the Gaussian field to digital rock by the nonlinear transformation. Quiblier 

(1984) extended the model from two-dimension to three-dimension. Adler et al. (1990) improved 

previous models by incorporating the periodic boundary conditions, establishing the three-

dimensional pore network of Fontainebleau sandstone sample. Some later researchers ameliorated 

the algorithms. Ioannidis et al. (1999) introduced Fourier transformation to make the speed faster. 

Hilfer (1991) introduced porosity distribution and seepage probability distribution function to 

describe the characterization of pore space. Torquato & Lu (1993) and Levitz (1998) used chord-

length distribution function to improve the model. However, the connectivity of the reconstructed 

model was poor. 

To make the reconstructed model more similar to the real rock sample, especially the pore 

connectivity, Hazlett (1997) proposed a simulated annealing method to consider more information 

about rock properties. The target function (System energy) of simulated annealing is the sum-of-

squared-difference between statistical properties of reconstruction and real sample. By updating 
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the system, when the system energy reaches the minimum, the digital rock is obtained. The results 

show that the reconstruction can reflect the properties involved in the modelling effectively. Hidjat 

et al. (2001) combined Gaussian simulation method and simulated annealing by using the result of 

the Gaussian simulation method as the input of the simulated annealing method, which made the 

speed faster.  

Unlike the modelling methods above, Bryant & Blunt (1992) proposed the idea that the 

simulation process should follow the process of the rock formation (sedimentation, compaction, 

and diagenesis) because the pore distribution is not random, but related. The new model can predict 

the pore connectivity precisely. Later, Bakke and Øren (1997) improved this method by 

considering the influence of the particle size and they also involved the properties of rock from the 

analysis of rock slice. The reconstruction can reflect the geometric property and connectivity very 

well. 

Later, some researchers applied improvement on process-based simulation methods. More 

particle shapes were considered, including sphere, eliptic and non-sphere were considered. The 

type of clay as the filling material was not limited to feldspar, but also chlorite and illite were also 

considered. Pilotti (2000) and Coelho et al. (1997) proved that by these improvements, the output 

model could reflect the heterogeneity and connectivity of the real rock sample. However, for the 

rock with complex pore network, the process of the rock formation is too difficult to simulate.  

Okabe & Blunt (2005) proposed another novel method – Multi-point statistical method. This 

method uses the geostatistical techniques of pixel-based representations to reproduce large-scale 

patterns. The two-dimensional thin images can provide multi-point statistics, describing the 

statistical relation between multiple spatial locations, to generate the three-dimensional pore space 



 

13 

 

reconstruction. Wu et al. (2004) based on the Markov random filter statistical model, uses two-

points and five-point local templates to obtain the characterization of the interface between the 

rock matrix and pore and involve the characterization in the model. The three-dimensional model 

from this method has a pore system with excellent connectivity and fast modelling speed.  

Compared with other reconstruction methods, the multi-point statistical method and Markov 

random reconstruction method can model any rock types or any diagenetic process. However, the 

modelling is based on the assumption that the rock is isotropic, which is the biggest disadvantage 

of these two methods. 

According to the features of different reconstruction methods, researchers applied the three-

dimensional reconstruction techniques to different study target in different research fields. Ni et 

al. (2017) studied pore-fracture system in the coal reservoir to simulate gas migration. Because the 

traditional methods to obtain the structural characteristics in coal, such as low-temperature liquid 

nitrogen adsorption, carbon dioxide adsorption, and mercury intrusion method, are relatively poor 

in describing the connectivity of pore and fracture, it will lead into large error in predicting the 

permeability (Hao, 1987; Xue et al., 2012). For coal reservoir, FIB-SEM could damage the coal 

sample easily during peeling, the scope of observation from nano-CT is too small, and micro-CT 

can not reflect detailed information about the pore-fracture system. The authors used different 

scanning electron microscopes and optical microscope to get images of different scales and extract 

microscopic fracture information in different scales of pore-fracture network using image 

processing. The three-dimensional model was reconstructed using Monte Carlo methods. Finally, 

the authors predicted the permeability precisely and studied the contribution of the pore-fracture 

network to permeability.  
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Karimpouli and Tahmasebi (2016) proposed a novel reconstruction method – Cross-correlation 

based simulation (CCSIM). The main idea of this method is to use a crosscorrelation function 

along a one-dimensional raster path and to combine it with efficient strategies to honor the 

continuity and pattern reproducibility to generate realizations of the porous medium that match the 

image (Tahmasebi et al., 2012; Tahmasebi et al., 2015). This work provided a novel idea to study 

high heterogeneity and variability. Implementing the laboratory approach, which measures a 

significant number of samples, the authors studied the trends by subsampling of a large digital 

samples. Operate cross-correlation based simulation to reconstruct the three-dimensional model of 

subsamples, and the subsequent steps remain as standard digital rock physics, including 

segmentation and rock physical property calculation. Verified by the results of the laboratory 

measurements and the standard digital rock physics, they obtained results which described the rock 

heterogeneity very well.  

Yeong and Torquato (1998) applied the simulated annealing method to reconstruct the 

structure of general random heterogeneous media from limited morphological information. They 

reconstructed some one-dimensional and two-dimensional model microstructures and the real 

sandstone image using morphological information, which contained in the lineal-path function, 

two-point correlation function or both of them. Also, the authors extended the procedure form two-

dimensional slices to reconstruct three-dimensional isotropic structure, and more complex media, 

like anisotropic structures and comparison between the reference system and reconstructed 

systems, showing good match of the results. Manwart et al. (2000) employed the simulated 

annealing algorithm to generate a stochastic model for a Fontainebleau and a Berea sandstone, 

with the pre-set lineal-path function, two-point probability function, and pore size distribution 
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function. The authors found that when the temperature of annealing decreases quickly enough, the 

isotropic and percolating configuration can be yielded. The results showed that the match between 

the original sandstones and the reconstructions was very good. Also, the mean survival time of a 

random walker in the pore space was reproduced with good accuracy.  

1.1.3 Fracture Quantification 

After the generation of the high-resolution reconstructed grayscale images, the next step is its 

application. For this research, the application of digital rock in the fracture quantification is the 

most concerning problem, which can be used for property calculation, rock characterization, and 

reservoir simulation. 

Iacoviello et al. (2017) used micro- and nano- X-ray CT imaging techniques to study organic-

rich, finely laminated mudstones as the source and reservoir of unconventional gas. A big problem 

in the gas production in shale reservoir is that the productivity decreases sharply in gas recovery 

or low rates of gas production in the 4 to 6 years after the fracturing, which means there are large 

volumes of gas left in the reservoir. The declined curve is the signal of bad interconnectivity in the 

pore and fracture system, which caused by the inefficient stimulation measurements. Pores existing 

at mineral boundaries and with organic matter are very small, whose size is between a few microns 

and hundreds of nanometers. Micro- and nano-CT scanning provide a valuable tool to study the 

three-dimensional distribution and connectivity network of the pore and fracture system, which 

act as the routes for the trapped gas from the reservoir to the borehole.  

Lai et al. (2017) studied fracture analysis of tight gas sandstone – the Lower Cretaceous 

Bashijiqike sandstone, using industrial computed tomography. The high-resolution industrial X-

ray CT provided a three-dimensional quantitative characterization of the fracture geometries. 
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Using the two-dimensional slice analysis, the authors obtained the corresponding fracture area, 

length, aperture, fracture porosity, and fracture density. Then, they created the three-dimensional 

image using the volume-rendering software. In the three-dimensional model, they colored the vug 

(open fracture) in cyan and calcite-filled fractures in magenta. By three-dimensional counting, the 

surface area, volume, porosity, and aperture can be calculated or estimated. Finally, they 

determined the connectivity of fractures is by comparing fracture parameters with permeability. 

The key technique of fracture quantification is image segmentation, where the pixels are 

classified into void space and mineral phases. Segmentation techniques for images of porous media 

were established and generated (Wildenschild et al., 2002; Wildenschild et al., 2013). 

The most common image segmentation techniques are histogram thresholding algorithms, 

which rely on the identification of a single grayscale value to partition intensities into different 

categories. Ketcham et al. (2010) used X-ray CT to image fractures in the solid samples. In their 

research, they proposed an improved method for fracture segmentation – the Inverse Point-spread 

Function (IPSF). The results showed that on CT scans of homogeneous natural samples show that 

IPSF methods provide more precise results than others. Porter and Wildenschild (2010) hired the 

image analysis algorithms, including voxel counting, two-point correlation functions, and the 

porous media marching cubes to study the identification of phases and estimation of porosity, 

saturation, solid surface area, and interfacial area between fluid phases from grayscale X-ray 

microtomographic image data. Elliot and Heck (2007) used a histogram thresholding method – 

Low variance voxel segmentation techniques, to study that three-dimensional consideration should 

be used in the analysis of CT and intact soil columns.  
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Another group of segmentation algorithms, including edge detection and region-grow, used 

spatial information about local variation in grayscale intensity (Nikolaidis & Pitas, 2000). Noiriel 

et al. (2013) studied the effects of reactive transport on fracture geometry and fluid flow through 

an integrated experimental and modelling approach. They used the synchrotron X-ray micro-

tomography experiments to obtain the images of fracture geometry under different conditions. 

Also, the edge detection was used to extract the aperture and fracture walls from three-dimensional 

images. The experimental measurements, including fluid chemistry, hydraulic tests, and 

computation of Navier-Stokes flow verified the accuracy of the algorithm. More sophisticated 

methods have also been developed, by using additional criteria or by combining more than one 

basic segmentation scheme, such as active contour method (Yushkevich et al., 2005; Frangi et al., 

1998). 

1.2 Research Statement 

After overview of the scanning techniques, we chose high-resolution SEM to generate the two-

dimensional images of the natural micro-cracks in the shale slices because its resolution can be 

nano-scale. Also, we chose X-ray CT scanning to generate the three-dimensional image of the 

hydraulic fracture systems because it is indispensable for non-destructive observation of the 

geometry of fractures and its resolution can be micro-scale. In this research, we proposed two 

novel image processing methods – self-adaptvie image enhancement method and multi-stage 

image segmentation method. The self-adaptive image enhancement can modify the grayscale 

intensity histogram of the two-dimensional SEM scanning images by using incomplete beta 

function as transformed operator. The optimization process of the parameters in incomplete beta 

function is finished using simulated annealing and only determined by the input data, that is why 
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this method is “self-adaptive”. The multi-stage image segmentation method can combine the 

global information and local information of the whole image, which employs the entropy function 

and indicator kriging to classify the boundary pixels.  

1.2.1 Research Significance 

For the result images generated by various high-resolution scanning techniques, the fracture 

systems is the small target compared with the background. The image segmentation of small target 

has been a challenging topic. Although over the past decades, the application of advanced scanning 

techniques to the three-dimensional visulization and quantification of the rock sample has received 

great success, most of the well-developed methods are mainly used for the carbonate reservoir, 

where the pores and the fracture systems are obvious when compared with the background. Most 

of image processing techniques are based on the Otsu’s method (Otsu, 1979; Christe et al, 2011; 

Baker et al, 2012), which are “histogram-based” image segmentation techniques using the global 

threshold value. The information of the small target cannot be reflected in the grayscale intensity 

histogram because the contrast between the target and the background is not strong enough. The 

application of “histogram-based” image segmentation techniques would lead to insufficient 

segmentation results. Also, the uneven illumination on the whole image would cause the problem 

of partial over-segmentation or partial insufficient segmentation because only the global 

information is considered. Because the fracture apertures are commonly very small, any over-

segmentations and insufficient segmentations would cause big error in property calculation. To 

quantify the thin fracture systems in the shale rock precisely, novel image processing methods that 

can enhance the small target and employ the global and local information of the images are needed. 
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1.2.2 Research Objectives 

In this research, two novel image processing methods are proposed, whose goal is to make the 

fracture quantification more precise. For the self-adaptvie image enhancement method, the 

research target would be the high-resolution SEM scanning images with natural micro-cracks, 

whose grayscale intensity histograms are highly concentrated distributed. This method is expected 

to optimize the parameters used in the trasformed operator for each specific input image, to make 

the contrast between the small target and the background the maximum. After the image 

enhancement, the fracture systems should be more obvious to the naked eyes and the distribution 

of the corresponding grayscale intensity histogram should be wider to include more information 

into the following image segmentation. For multi-stage image segmentation method, the research 

target would be the X-ray CT images with thin hydraulic fractures. This method is expected to 

combine the global and local information to segment the fractures, which is the improvement 

especially for the boundary pixel calssification. The segmentation results should match the core-

flooding data in an acceptable error with acceptable running time, which means the quantification 

is precise. 
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CHAPTER II 

METHODOLOGY 

From the review of previous work on image processing, the self-adaptive image enhancement 

method and multi-stage image segmentation method are proposed in this research. This chapter 

describes the detailed theories and methods related to these novel image processing methods and 

the experimental equipments and samples: Section 2.1 – scanning electron microscope and image 

enhancement method, Section 2.2 – X-ray Computed Tomography and multi-stage image 

segmentation method,  Section 2.3 – Kozeny-Carman relation for permeability calculation, and 

Section 2.4 – Data acquisition and pre-processing. 

2.1 Scanning Electron Microscope and Image Enhancement Method 

This section focuses on the high-resolution SEM scanning technique and two-dimensional image 

processing, mainly on image enhancement. To quantify the natural micro-cracks in the shale rock 

slices from Bakken Formation, the contrast between the image background – rock matrix, and the 

target – micro-cracks should be enhanced. In this section, the basic knowledge of SEM scanning 

is introduced, which is section 2.1.1. Section 2.1.2 explains the theories related to the self-adaptive 

image enhancement technique, including Otsu’s method, incomplete beta function and simulated 

annealing algorithm.  

2.1.1 Introduction to Scanning Electron Microscope
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The scanning electron microscope (SEM) is the type of electron microscope. Using a focused beam 

of electrons to scan the surface, the SEM produces images of the sample surface. The electrons 

interact with the atoms on the sample surface, generating different signals which contain 

information on the topography and composition of the sample surface. The electron beam is 

scanned in a raster scan pattern. The combination of the detected signals and the beam’s position 

produces an image. SEM can achieve 1-nanometer resolution. For conventional SEM, the 

specimens can be observed in a high vacuum, and for variable pressure or environmental SEM, 

specimens can be observed in low vacuum or wet conditions. With some specialized instruments, 

the condition can be at a wide range of cryogenic or elevated temperatures. 

Busch (1926) found that symmetric Electric and Magnetic fields can act as a particle lens and 

Broglie et al. (2007) developed the concept of corpuscle wave. Equation (1) gives the wavelength 

of an electron: 

                                            λ =
h

p
=

h

mov
=

h

√2m0eU
=

1

√1+
eU

2m0c2

                                       (1)                                              

Where, λ – Electron wavelength, m; h – Planck’s constant, about 6.6×10-34 m2·kg/s; m0 – Mass 

of an electron, about 9.1×10-31 kg; e – Electron charge, about 1.6×10-19 C; c – Speed of light, about 

3.0×108 m/s; U – Electric potential of the source, V.  

Scanning a beam of electrons, SEM focuses on a fine spot (as small as 1 nano-meter in diameter) 

across the surface of the sample. As a result of the interaction, various types of signals are 

generated, including secondary electrons (SE), characteristic X-rays and light (CL), reflected or 

back-scattered electrons (BSE), and absorbed current and transmitted electrons. Fig. 2-1 shows the 

mechanisms of different signals and PE means the primary electron. 
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All these signals can be measured and monitored through detectors to form an image. Different 

signals can reveal different information of the sample: (1) SE: the secondary electrons are emitted 

in the very close distance with the sample surface. The number of electrons, which depends on the 

specimen topography, can be detected. By scanning the sample and collecting the secondary 

electrons that are emitted using the special detector, a high-resolution image of the sample surface 

can be produced. The details can be 1 nm in size. (2) BSE: the reflected or back-scattered electrons 

are beams reflected from the sample by elastic scattering. They occur from deeper locations of the 

specimens compared with the locations of SE, which lead to less resolution of BSE images. 

However, because of the strong relation to the atomic number of the specimen, associated with 

spectra from the characteristic X-rays, BSE signals are always used in the analytical SEM. The 

result images can provide information about the distribution of different elements in the sample. 

(3) Characteristic X-rays: the X-ray signals are emitted when the electron beam removes an inner 

shell electron from the sample, generating higher-energy electron to fill the shell and release 

energy. The signals can be used to identify the composition and measure the abundance of elements 

in the sample.  

                                 

                       (a)                                        (b)                                         (c) 

Fig. 2-1 Mechanism of Emission of Different Signals 

(a) Secondary Electron; (b) Back-scattered electron; (c) Characteristic X-ray 
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Secondary electron signal is the most commonly used, and its detectors are standard equipment 

in all SEMs. However, it is rare that the detectors for all these signals are in one single machine. 

In the process of scanning, the SEM creates a focused beam of electrons, using an electron 

optical column where an electron gun can fire the electrons via an array lens to focus the beam. In 

this research, the value of electric potential used in rock scanning is about 10 kV and as the 

calculation of equation (2), means the electron velocity is about 5.94×107 ms-1. 

                                                                v = √
2eU

m0
                                                        (2)                   

Where v – Velocity of the electron, ms-1; e – Electron charge, about 1.6×10-19 C; U – the 

Electric potential of the source, V; m0 – Mass of an electron, about 9.1×10-31 kg. Because of the 

high velocity, the electrons would collide with the gas particle, which would render the SEM 

completely inefficient. As a result, the optical column should maintain different degrees of vacuum 

throughout the entire device to guarantee the electrons can propagate to the sample, and back to 

the detector.  

The resolution of SEM can achieve sub-nm, which is far higher than the resolution of any other 

optical devices. The equation (3) defines resolution. 

                                                           2d =
λ

n sin θ
=

λ

NA
                                                  (3) 

Where d – Resolution, m; n – Refractive index of the medium; NA – Numerical aperture; θ – 

Half angle subtended by the objective lens; λ – Electron wavelength, m.  

When the interaction of the sample and the primary electron beam happens, because of 

repeated random scattering and absorption within interaction volume, the electrons lose energy. 

The interaction volume is a teardrop-shaped volume of the specimen and extends from less than 
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100 nm to about 5 µm into the surface. The electron’s landing energy, the specimen’s density, and 

the atomic number of the specimen decide the size of the interaction volume. 

Different with optical and transmission electron microscopes, whose magnification is a 

function of the power of the objective lens, the SEM has a condenser and objective lenses, whose 

function is to focus the beam to a spot, not to image the specimen. The SEM can control its 

magnification over a range of about 6 orders, from about 10 to 500,000 times. For an SEM in the 

scanning probe microscope, the ratio of the dimensions of the raster on the specimen and the raster 

on the display device result in the magnification. Under the condition of fixed size of the display 

screen, the reducing size of the raster on the specimen leads to higher magnification results and 

vice versa. Therefore, it is the current supplied to the x, y scanning coils, or the voltage supplied 

to the x, y deflector plates, not the objective lens power that controls the magnification.  

2.1.2 Self-adaptive Image Enhancement Method 

This section includes a well-developed image segmentation algorithm – Otsu's method, a 

histogram modification algorithm – Incomplete beta function, and an optimization algorithm – 

Simulated annealing method. 

Otsu’s Method 

Image segmentation is one of the most important image processing techniques, which can extract 

the objects from the background by selecting a proper threshold of grey level. As an easy and well-

developed image segmentation method, Otsu’s method is a nonparametric and unsupervised 

method of automatic threshold selection for image segmentation. Otsu (1987) proposed this 

method from the viewpoint of discriminant analysis, providing a method to select the optimal 

threshold automatically and evaluate the “goodness” of the selected threshold. 
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In this research, the pixels of the images are represented by the  grayscale intensity from 0 to 

255. Let ni  denote the number of pixels with the grayscale intensity i, and the total number of 

pixels is N = ∑ ni. Normalize the histogram as a probability distribution with equation (4). 

                                                       pi =
ni

N
, pi ≥ 0 and ∑ pi = 1                                              (4) 

The pixels in the images can be classified into two categories: Co as the Objective -- micro-

cracks in the scanning images, and CB as the background or the matrix. The threshold which 

separates these two categories is k, which means Co denotes the pixels with grayscale intensity 

from 0 to k and CB denotes the pixels with the pixels with grayscale intensity from k+1 to 255. 

The probability of category occurrence can be given by equation (5) and (6): 

                                                        ωo = ∑ pi
k
i=0                                                                   (5) 

                                                        ωB = ∑ pi
255
i=k+1                                                                (6) 

Correspondingly, the mean grayscale intensity of each category are given by equation (7) and 

(8) respectively: 

                                            μo = ∑ iPr(i|Co) = ∑
ipi

ωo

k
i=0

k
i=0                                                   (7) 

                                            μB = ∑ iPr(i|CB) = ∑
ipi

ωB

255
i=k+1

255
i=k+1                                          (8) 

ωo , ωB  and µo , µB  are the zeroth-order and the first-order cumulative moments of the 

histogram up to k-th grayscale intensity. For any grayscale intensity of k, the following equation 

(9) can be verified: 

                                           ωoμo + ωBμB = μT, ωo + ωB = 1                                                   (9) 

Where µT -- overall mean grayscale value. 
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The variances of each category, which are the second-order cumulative moments of the 

histogram, can be given by equation (10) and (11): 

                                     σo
2 = ∑ (i − μo)2 Pr(i|Co) = ∑

(i−μo)2pi

ωo

k
i=0

k
i=0                                     (10) 

                                   σB
2 = ∑ (i − μB)2 Pr(i|CB) = ∑

(i−μB)2pi

ωB

255
i=k+1

255
i=k+1                             (11) 

As the measures in the class separability used in the discriminant analysis (Fukunaga, 2013), 

the “goodness” evaluation parameters are given by equation (12): 

                                                λ =
σ1

2

σ2
2 ,         κ =

σ3
2

σ2
2 ,         η =

σ1
2

σ3
2                                                   (12) 

Where σ1
2  -- the within-class variance; σ2

2  -- the between-class variance; σ3
2  -- the total 

variance, which are defined by the equation (13), (14), and (15) respectively: 

                                                 σ1
2 = ωoσo

2 + ωBμB
2                                                        (13) 

               σ2
2 = ωo(μo − μT)2 + ωB(μB − μT)2                                                      

                                                      = ωoωB(μo − μB)2                                                  (14) 

                                                 σ3
2 = ∑ (i − μT)2pi

255
i=0                                                     (15) 

Then the problem of selecting the best threshold of grayscale intensity has been transferred to 

an optimization problem of the threshold to make one of the “goodness” parameters maximum. 

From the basic relations among the evaluation parameters, given by equation (16), these three 

evaluation parameters are not independent.  

                                                    κ = λ + 1,   η =
λ

λ+1
                                                    (16) 

Maximizing one of the evaluation parameters means maximizing all the evaluation parameters. 

It is noticed that the within-class variance and the between-class variance depend on the selection 
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of threshold value, but the total variance does not. Also, the within-variance is based on the second-

order statistical property, and the between-class variance is based on the first-order statistical 

property. As a result, η is the simplest and best parameter to evaluate the “goodness” of the 

threshold value selection.  

Based on the equation (14), for the possible range of optimal threshold value ([0, 255]), the 

optimal threshold value must exist. Because ωo ≥ 0 and ωB ≥ 0, the minimum value of the 

between-class variance is 0 when k = 0 and k = 255, or all pixels belong to one single category. 

Search all the threshold value and select the optimal k value – koptimal, which makes η maximum, 

and equivalently makes the within-class variance maximum, described by equation (17). 

                                    σ2
2(koptimal) = max[σ2

2(k)] , 0 ≤ k ≤ 255                                (17) 

From the introduction of Otsu's method, for the ideal case of image segmentation using this 

method, there should be a sharp and deep valley between the two peaks in the grayscale intensity 

histogram, which stands for the object and background respectively. But for most of the cases, the 

valleys are broad and flat, even imbued with noise or the two peaks are extremely unequal in height, 

which causes that it is difficult to detect the valley bottom precisely.  

Incomplete Beta Function 

The incomplete beta function is one of the histogram modification operators, which belongs to the 

image enhancement techniques. The purpose of image enhancement is to improve the image 

quality and in this research, to enhance the contrast between target and background, which improve 

the chance of success image segmentation finally.  

For histogram modification techniques, the basic procedure can be summarized as: Let G =

 {gij} denote the original image, where gij denotes the grayscale intensity at the pixel (i, j). The 
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objective of the transformed operator gij
, = F(gij) to rescale the grayscale intensity histogram. The 

incomplete beta function is context-sensitive because it depends on the original image G. Some 

researchers used different parametric functions to operate the modification procedure: Cocklin et 

al. (1983) used a finite Rayleigh distribution, which is a special class of the gamma distribution 

function and Wang et al. (1983) used the regular gamma function. Although these functions allow 

for the variable shape of the histogram of the grayscale value and determined by the pre-set 

parameters, these functions are positive on the positive real line, which means truncation is needed 

to fit the grayscale value.  

Tubbs (1987) proposed the incomplete beta function as transformed operator of the grayscale 

value distribution curve in 1987. Equation (18) is the probability density function: 

                                                     f(u) =
uα(1−u)β−1

B(α,β)
                                                        (18)                                   

Where, u =
gij−L

U−L
; U – Upper limit of the grayscale intensity, 255; L – Lower limit of the 

grayscale intensity, 0; 0 ≤ u ≤ 1, α > 0, β > 0, and B(α, β) =  
Γ(α)Γ(β)

Γ(α+β)
. 

Based on equation (18), the definition of the incomplete beta function is given by equation 

(19): 

                                                 F(u, α, β) =
∫ xα−1(1−x)β−1dx

u

0

B(α,β)
                                                      (19) 

There are two parameters to determine this transformed operator:α and β. Different values of 

α and β will lead to different function curve. Fig. 2-2 shows the curve shape for different α and β 

values. 
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Fig. 2-2 Incomplete Beta Function Curve with Different α,β Values 

(Blue: α > β; Green: α = β = 0.5; Red: α = β = 1; Green: α = β > 1; Cyan: α < β) 

The influence of α, β on the incomplete beta transformed curve can be described briefly: 

1. α = β = 1, the transformed curve is a straight line, passing (0, 0) and (1, 1); 

2. α = β > 1, the transformed curve is an ‘S’ shaped curve, passing (0, 0), (1, 1), and (0.5, 

0.5).  

3. α = β < 1, the transformed curve is a reverse ‘S’ shaped curve, passing (0, 0), (1, 1), and 

(0.5, 0.5). 

4. α < β, the transformed curve is upward-bulged, passing (0, 0) and (1, 1). The operator will 

amplify the contrast at lower grayscale value range. 

5. α > β, the transformed curve is downward-bulged, passing (0, 0) and (1, 1). The operator 

will amplify the contrast at higher grayscale value range. 

Simulated Annealing Algorithm 

After analyzing the characteristics of incomplete beta function, the problem is transferred to a 

combinatorial optimization, whose aim is to find the extreme values of a function of multi-
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variables. The simulated annealing method, which was proposed by Kirkpatrick et al. (1983), 

provides a possible solution for this optimization problem. The key point of the simulated 

annealing method is an analogy with thermodynamics, specifically with the way liquids freeze and 

crystallize, or metals cool and anneal. At high temperature, the molecules can move freely, and 

when the temperature is lowered slowly, the molecules line up in crystals gradually, which means 

the system is reaching the minimum energy state. Because of the enormous number of molecules 

in any natural system, only the most probable behaviour of the system in thermal equilibrium at a 

given temperature can be observed (Deutsch & Journel, 1994; Metropolis et al., 1953). The 

phenomena can be characterized by the average and small fluctuations about the average behaviour 

of the system when the average is taken over the ensemble of identical systems introduced by 

Gibbs. The free energy can be presented by equation (20): 

                                                           E = EI − TS                                                          (20)                              

Where EI – Internal Energy; T – Temperature; S – Entropy. 

In this ensemble, each configuration, defined by the set of molecule positions – {ri}, of the 

system is weighted by its Boltzmann probability factor – exp (
−E{ri}

kBT
), where E{ri} stands for the 

energy of the system, kB – Boltzmann’s constant, and T – System temperature. 

The decrease of E and increase of S are beneficial factors to reduce the free energy of the 

system. With different T, the weight of these two factors is different: At higher temperature, the 

change of entropy is dominating; At the lower temperature, the change of internal energy takes 

over. Also, for a faster simulation process, Metropolis et al. (1953) proposed that in every step, the 

‘molecule’ can be given a small displacement, and if the displacement leads to lower energy, the 
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displacement is accepted 100%. If the energy increases, it is accepted with a probability, which 

decreases with the decrease of temperature. 

Correspondingly, the procedure and the parameters used in the simulated annealing method of 

this paper can be described as: 

1. Initialize the parameters: 

The initial temperature – T0 , 1500 °C; Initial acceptance probability – P0 , 0.9; Cooling 

parameter – C, 0.85; Maximum iteration step – N, 35; Maximum iteration numbers in one step – 

M, 1600; Initial value of α = 1 with bound of [0.5, 10] and β = 1 with bound of [0.5, 10].  

2. Disturb the system: 

Generate the disturbance to the solution and calculate the objective function. The difference of 

objective function after the disturbance: ∆f = fnew − fold. There are two possible conditions: 

a. If ∆f < 0, the new solution will be accepted and it is the starting point for the next iteration 

step. 

b. If ∆f > 0, the new solution will be accepted with an acceptance probability, which is defined 

by equation (21): 

                                                        P = e
−

∆f

KBT                                                               (21) 

Where kB – Boltzmann Constant; T – Temperature. Because ∆f is always positive, with the 

decrease of T, the acceptance probability will decrease. Repeat this step until the maximum 

iteration numbers in one step M is achieved. 

3. Lower the temperature: 

The ending point of the last step is the starting point for the new step and  Tk+1 = Tk × C, 

which make the acceptance probability lower and lower. Repeat step 2 until the simulation is over. 
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4. Stop the simulation: 

If one of these two conditions is satisfied, stop the iteration and output the best α, β values: 

a. Maximum iteration number N is achieved; 

b. The difference between two steps is close enough to 0. 

Operate the simulated annealing method and select the evaluation parameter η, mentioned in 

equation (16), as the objective function.  

2.2 X-ray Computed Tomography and Multi-stage Image Segmentation 

This section focuses on the X-ray Computed Tomography scanning and image segmentation. This 

chapter aims to quantify the geometric parameters of the hydraulic fractures in cores from Bakken 

Formation. Section 2.2.1 introduces the basic knowledge of X-ray computed tomography. Section 

2.2.2 explains the methods used in multi-stage image segmentation method, including entropy-

based mask method, indicator kriging method, and Hessian fracture filtering. 

2.2.1 Introduction to X-ray Computed Tomography 

From the second-generation medical CT, which uses multiple detectors in a translate/rotate 

configuration, to the fourth-generation medical CT, which uses a fan-beam geometry with source 

rotating within a fixed ring of high-efficiency detectors, they are satisfactory for petroleum 

engineering applications because they have adequate X-ray energy and dose for scanning core 

material (Wellington & Vinegar, 1987). The basic quantity measured in each pixel of a CT image 

is the linear attenuation coefficient --μ, which is defined by equation (22): 

                                                                  
I

I0
= exp (−μh)                                                         (22) 
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Where, I0 – The incident X-ray intensity; I – The intensity remaining after the X-ray passes 

through a target. The linear attenuation coefficient depends on both electron density (bulk density) 

-- ρ and atomic number -- Z, which can be presented by equation (23): 

                                                     μ = ρ(a +
bZ3.8

E3.2 )                                                         (23) 

Where a – nearly energy-independent coefficient called the Klein-Nishina coefficient; b – 

constant. The first term of equation (23) represents Compton scattering, which is predominant at 

X-ray energies (about 100 kV) where medical CT scanners normally operate. The second term of 

equation (23) is the photoelectric absorption, which is more important at X-ray energies well below 

100 kV. 

One image proportional only to bulk density and another proportional only to the atomic 

number can be obtained by scanning at high and low X-ray energies and solving equation (23) on 

a pixel basis. Dual-energy CT scanning is achieved by a change in the acceleration voltage applied 

to the X-ray tube, by X-ray filters placed in the beam, or by a combination of these methods. 

When a mixture of atomic species is present, the photoelectric absorption is proportional to the 

effective atomic number -- Ze, which is defined by equation (24): 

                                                    Ze = (∑ fiZi
3.8)1/3.8                                                          (24) 

Where fi – The fraction of electrons on the ith atomic number species. From the equation, the 

effective atomic number measured by CT is heavily weighted towards components of the higher 

atomic number. It is worth mentioning that the strong dependence of photoelectric absorption on 

the atomic number can be used to enhance the attenuation contrast between multiple fluid phases 

and thus improve the accuracy of saturation determination.  
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CT attenuation data are normally presented on a standardized scale called Hounsfield units that 

are defined by air at -1000 H and water at 0 H. Thus, each Hounsfield unit represents a 0.1 % 

change in density. For CT measurement on rock sample, it is more convenient to calibrate and to 

apply beam-hardening corrections with a SiO2 standard, such as fused quartz (bulk density = 2.20 

g/cm3). A change of ±1 H is thus equivalent to a fractional density change of ±0.5 × 10−3 (
∆ρ

ρ
) 

for the rock sample. A similar procedure with appropriate standards and beam-hardening 

corrections is used to calibrate the density scale for different samples of rock type. All the CT 

scanner have some beam-hardening corrections to compensate for the preferential absorption of 

the low-energy portion of the X-ray beam spectrum as it traverses the object. CT image can be 

reconstructed from sequential cross-sectional slices taken as the sample is moved through the 

scanner. 

2.2.2 Multi-stage Image Segmentation Method 

This section includes the methods or the theories used in the multi-stage image segmentation 

method: entropy-based masking technique, indicator kriging estimation, and Hessian fracture 

filtering. 

Entropy-based Mask 

For dealing with the represented information, the information theory provides basic tools – 

Entropy function (Shannon, 1948), to quantify a region’s information represented by expected 

value. For an 8-bit grayscale image, each pixel contains any number from 0 to 255 or for 16the -

bit grayscale image, each pixel contains any number from 0 to 65535. Based on the assumption 

(Gonzalez & Woods, 2002) that the intensity of all the pixels of all the pixels is statistically 

independent, the amount of information using the relative frequency of intensity occurrence in the 
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image is estimated. Equation (25) defines the entropy, which is the average of the information at 

a given region. 

                                               H = − ∑ p(i)log2p(i)n
i=1                                                   (25) 

Where, p(i) – The relative frequency of intensity occurrence in the region of an image, which 

is termed as the entropy-estimating window; n – the number of intensity occurrence in the window.  

The basic idea of entropy-based masking method is to select the pixels with more information 

than the others. For a given pixel, the window around is first defined by considering a square 

neighbourhood, whose size is N×N, depending on the thickness of the feature. The entropy of each 

window is calculated using equation (25) and assigned to the central pixel of the window. Also, 

for the pixels around the boundary of the image, the symmetric padding is used to avoid that the 

window cover beyond the image and the padded values are based on the mirror reflections of a 

sub-image inside the window, located either in the horizontal or vertical direction, or both of them. 

Higher entropy indicats that the intensity of pixels inside the window is more randomly 

distributed, which means that intensity values change greatly inside the window. Therefore, the 

pixel with a higher entropy value may be located close to a boundary between void and matrix 

phase.  

One of the most important statistical distribution – Gaussian distribution is used to select 

important pixels. First, calculate the entropy values of all the pixels and represent them with an 

entropy histogram. Then the distribution of entropy values is determined using a Gaussian 

distribution. The reason for using Gaussian distribution is because its easy operation and other 

statistical distribution can also be used. Last, the pixel with the entropy of two deviations away 

from the mean, corresponding to the top 2.5 % of the high-ranking entropy inside the discrete 
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distribution, is selected. Also, the appropriate size of the entropy-estimation window can ensure 

the success of the entropy-based mask method. The purpose of the entropy-based mask method is 

to extract the border between the objects and the backgrounds, which means the size of the window 

should be large enough to cover both the objects and the background.  

Indicator Kriging Estimation 

The theory of regionalized variables is the fundament of the geostatistical methodologies, which 

states that the attributes within an area exhibit both random and spatially structured properties 

(Journel & Huijbregts, 1978). The kriging estimation method is an optimal valuation method, 

which is considered as the best linear unbiased estimator. Estimate and model the sample 

variograms, which is the function of their separation distance, to quantify the spatial variability of 

random variables (Antunes & Albuquerque, 2013). The variogram is computed using equation 

(26): 

                                γ(h) =
1

2N(h)
{∑ [z(ui + h) − z(ui)]2N(h)

i=1 }                                      (26) 

Where γ(h) – the variogram for a distance lag h; N(h) – the number of data pairs for that lag 

h; z(ui) and z(ui + h) – the values of the regionalized variable of interest at locations ui and 

ui + h respectively. 

Then γ(h) will be modelled by different theoretical models, including: 

(1) The linear model, as equation (27) shows: 

                     {
γ(h) =

ah2

3L2
(3L − h)             0 < h < L

γ(h) = a (h −
L

3
)                            L ≤ h

                                       (27) 

(2) The exponential model, as equation (28) shows: 
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                                      γ(h) = C(1 − e
−h

a )                                                        (28) 

(3) The logarithmic model, as equation (29) shows: 

                                 {
γ(h) = 3αloge(h)                               h < L

γ(h) = 3α (loge
h

L
+

2

3
)                      h > L

                                (29) 

Also, there are some other theoretical models, such as Gaussian model, spherical model, 

combination models etc. In this research, only the linear model, the exponential model, and the 

logarithmic model are considered. 

Indicator kriging is a non-parametric geostatistical method for estimation of the probability of 

exceeding a specific threshold value -- zk (0.5 in this research), at a given location. In indicator 

kriging, the stochastic variable – Z(u), is transformed into an indicator variable with a binary 

distribution, as the equation (30) shows: 

                                     I(u|zk) = {
1,          Z(u) > zk, k = 1,2, … , n

0,          Z(u) ≤ zk, k = 1,2, … , n
                                        (30) 

The expectation of I(u, zk), which is determined by n surrounding data, can be calculated by 

equation (31): 

                                               E[I(u|zk)] = Prob{Z(u) ≤ zk}                                               (31) 

Also, the expectation is equal to the value of the conditional cumulative distribution function 

of Z(u) for a threshold zk. For an unsampled location -- u0, the indicator kriging estimation is 

calculated by equation (32): 

                                                I∗(u0|zk) = ∑ λi
n
i=1 (zk)I(ui, zk)                                              (32) 

Where I(ui, zk)  – the values of the indicator at sampled locations, i = 1,2,…,n; λi  – the 

weighted of I(ui, zk) in the estimation of I(u0, zk).  



 

38 

 

There are two advantages, which are the conditions as well of the estimator: unbiased and 

minimum estimation error variance, expressed by equation (33) and equation (34): 

                                                      E[I∗(u0|zk) − I(uo|zk)] = 0                                                  (33) 

                                        Var[I∗(u0|zk) − I(uo|zk)] = minimum Var.                                   (34) 

Fulfil both conditions by computing the weights -- λi, which can be solved from the equation 

(35): 

                                  {
∑ λi(zk)γ(ui, uj|zk) − μ(zk) = γ(uj, u0|zk)n

i=1

∑ λi(zk) = 1                               i = 1,2, … , n  n
i=1

                                  (35) 

Where, μk – the Lagrange multiplier; γ(ui, uj|zk) – the variogram value between the indicator 

variables at the sampled location of ui and uj; γ(uj, u0|zk) – the variogram value between the 

indicator variables at the sampled location of ui and the unsampled location of u0. 

Hessian Fracture Filtering 

The key point of Hessian fracture filtering is the Hessian matrix (Voorn et al., 2013), which is a 

3×3 symmetric matrix for the 3D image, which contains the second order partial derivatives of the 

input image data I(x, y, z), represented by equation (36): 

                                                              H = [

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

]                                                      (36) 

Therefore, the Hessian matrix state the second order structure of intensity variation around 

each point of the 3D image (Sato et al., 1997). Also, the Hessian matrix can describe the local 

curvature of the data in a small neighbourhood surrounding each pixel because the second order 

information can reflect the curvature.  
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Taking the method of determining the elements of the Hessian matrix into account can interpret 

above better. A commonly applied approach comes from the linear space, stating that the second 

derivative of an image can be obtained by convolving the original image with the derivatives of 

Gaussians. For a single element of the Hessian matrix, the equation (37) can work as an example: 

                                                Ixx = (B ∙
∂2

∂x2
G(x, y, z, s)) × I(x, y, z)                                         (37) 

Where, B --  Factor for normalization; s – Factor of scale, in this research, set s = 8; G – 

Gaussian function. The Gaussian function in one dimension can be defined by equation (38): 

                                                               G(x, s) = C ∙ e
−

x2

2s2                                                        (38) 

Where, C – Factor for normalization. Fig. 2-3 shows the second derivative of this Gaussian 

function. The second derivative of this Gaussian function represents a probe kernel for contrast in 

the image. Simply speaking, when operating the convolution of equation (38), the image data I is 

compared to the probe kernel, which is the second derivative of G. Therefore, the highest positive 

response which means the peak is 1, is recorded for a dark feature on a brighter background. The 

high negative response, which means the slope is -1, is recorded for a bright feature on a darker 

background. Also, the curve with the extreme value is less than 1 or more than -1 reflects the lesser 

contract features, narrower features, and broader features, which are dependent on the parameters 

of equation (38). 
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Fig. 2-3 One-dimensional Second Derivative of the Gaussian Curve 

The next step is to extend this concept to three dimensions. Operate the convolution in multiple 

directions, and determine all elements of the Hessian matrix. It is worth noting that the second-

order nature of the Hessian matrix makes it invariant to grayscale value offsets, scaling and linear 

grayscale variations throughout a dataset, which means only the local contrast is assessed, not the 

actual grayscale value. For example, a feature with grayscale 50 on a background of 100 has the 

same result with the feature with grayscale value 150 on a background 200. 

Then, after the definition of all the Hessian matrix elements, the eigenvectors describing the 

principal local directions of the curvature, and the eigenvalues describing their magnitude, of the 

matrix can be determined. The eigenvalues thus represent the magnitude of the largest local 

contrast change, as well as the magnitudes of the local contrast changes in the other two, orthogonal 

principal directions (Lorenz et al., 1997). The eigenvalue decomposition of the Hessian matrix can, 

therefore, be used to distinguish between blob-like, tube-like and plane-like features in a dataset. 

For the narrow fractures with low intensity on a brighter background, the case should be that one 
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eigenvalue has a high and positive magnitude, and the other two have a small magnitude. The 

corresponding eigenvector corresponding to this largest eigenvalue is then the normal to the planar 

feature. 

2.3 Kozeny-Carman Relation 

The Kozeny-Carman relation is the most common equation to calculate the permeability from the 

porosity, the tortuosity, and the grain size. Traditionally, the Kozeny-Carman equation relates the 

absolute permeability -- kab, to the porosity -- ∅ and the grain size – d, as the equation (39) shows: 

                                                                      kab~∅3d2                                                              (39) 

Equation (39) is the classical form, which is frequently employed to mimic the permeability 

vs porosity evolution. During this calculation, the grain size – d will be kept constant. There are 

two inconsistencies in this approach: (1) the Kozeny-Carman equation is derived with a solid 

medium with pipe conduits, rather than with a granular medium; (2) the variation of grain size 

doesn’t affect the results a lot because the porosity almost keeps constant.  

Equation (40) defined the basic law of absolute permeability – kab of porous media (Lorenz et 

al., 1997; Darcy, 1856): 

                                                                 Q = −kab
A

μ

dP

dx
                                                              (40) 

Where, Q – the volume flowing through the porous media, m3/s; A – the cross-sectional area 

of the porous media, m2; μ – the dynamic viscosity of fluid Pa∙s; dP/dx – the pressure gradient 

along the direction of fluid flow, Pa/m.  

Equation (41) is for laminar viscous flow in a pipe of the radius b: 

                                                                
∂2u

∂r2 +
1

r

∂u

∂r
=

1

μ

dP

dx
                                                            (41) 
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Where, u – the velocity of the fluid in the axial direction; μ – the dynamic viscosity of fluid 

Pa∙s; dP/dx – the pressure gradient in the axial direction, Pa/m; r – the radial coordinates; x – the 

axial coordinates. The general solution of Equation (41) is represented by equation (42): 

                                                           u = A + Br2 + C + lnr                                                     (42) 

Where, A, B, and C are constants. Also, A, B, and C will follow the derivative of the equation 

(42), as the equation (43) and equation (44) show: 

                                                                   
∂u

∂r
= 2Br +

C

r
                                                              (43) 

                                                                  
∂2u

∂r2 = 2B −
C

r2                                                                   (44) 

Substitute the expression of equation (44) into equation (42), we get the equation (45): 

                                                                     B =
1

4μ

dP

dx
                                                                   (45) 

Another condition is to keep the equation (42) - (44) feasible, which lead to the solution that 

C = 0. The next step is to employ the boundary condition that there is no slip at the outer boundary, 

which means u = 0 at r = b. Equation (46) gives the solution of A, and u can be expressed by 

equation (47): 

                                                               A = −
1

4μ

dP

dx
b2                                                                     (46) 

                                                          u = −
1

4μ

dP

dx
b2(1 −

r2

b2)                                                         (47) 

Also, the flow volume through the pipe can be expressed by equation (48): 

                                                                q = −
πb4

8μ

∆P

l
                                                                       (48) 
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Where, l – the length of the pipe; ∆P – the pressure drop along the whole pipe. 

Now, assume that the porous phase in the media is made of N identical parallel round pipes 

embedded in the solid with an angle – α to its horizontal direction. The relationship between the 

length of each pipe inside the block -- l and the length along the horizontal direction -- L can be 

expressed by equation (49): 

                                                                   l =
L

sinα
= Lτ                                                                         (49) 

Where, L – the horizontal length of the media; τ – the tortuosity and τ = sin−1α. 

Substitute the equation (49) into equation (48), and obtain equation (50): 

                                                            Q = Nq = −N
πb4

8μ

∆P

Lτ
                                                                 (50) 

The porosity can be expressed by the parameters mentioned above, as equation (51) shows: 

                                                              ∅ =
Nπb2l

AL
=

Nπb2τ

A
                                                                  (51) 

Substitute the equation (51) into equation (50), and obtain the equation (51): 

                                                                Q = −∅
b2

8τ2

A

μ

∆P

Lτ
                                                                       (51) 

Introduce the concept of the specific surface area – s, and it is defined by equation (52): 

                                                                 s =
2Nπbl

AL
=

2∅

b
                                                                         (52) 

Therefore, the final calculation of absolute permeability expressed by the porosity, the 

tortuosity, and the specific surface area is as equation (53) shows: 

                                                                    kab =
1

2

∅3

s2τ2                                                                       (53) 
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Kozeny-Carman relation is one of the most classical methods to calculate the permeability of 

the porous media with simple porous phase. For the case in this research, where the research target 

is one or two obvious fracture existing in the tight matrix, whose permeability can be ignored (0.04 

md on average), the K-C relation can work very well with good accuracy and computational 

efficiency. 

2.4 Data Acquisition and Pre-processing 

This section includes the experimental samples, equipment, and procedures. Also, the pre-

processing of the input data, mainly about the data selection is also a part of the section. All the 

contents will be introduced based on different experiments: Section 2.4.1 – High-resolution SEM 

scanning experiment, section 2.4.2 – X-ray CT scanning experiment and section 2.4.3 – Core-

flooding experiment. 

2.4.1 High-resolution SEM Scanning Experiment 

The research target of the high-resolution SEM scanning experiments are the natural micro-cracks 

existing in the shale rock samples. There are three rock samples from Upper Bakken shale 

formation are selected for the scanning experiments, and there are two imaging points for each 

rock sample, as Fig. 2-4 shows. There are six imaging points: A-a, A-b, B-a, B-b, C-a, and C-b. 

The procedure of SEM scanning experiment can be explained below: 

1. Prepare sample: 

(a) There are two sample types in the SEM scanning experiments: conductive and non-

conductive. For the non-conductive samples like shale, coat the sample with carbon under 4.2 V 

for 6 s.  
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(b) Then secure the sample on a proper sample holder and ground the non-conductive sample 

with conductive tape.  

(c) Use the air spray to clean the sample from dust and other contaminants. 

2. Put a sample into the vacuum chamber: 

(a) Charge the nitrogen gas into the chamber. Then, open the chamber and secure the sample 

on the stage when it is ready. Take a top-view image of the sample, which will be used as a 

reference for the following scanning region selection.  

(b) Close the chamber slowly and bring the sample chamber to a high vacuum. In the process 

of pumping, double-click the user’s interest spots to center it on the Nav-cam image. Lift the 

highest of the sample to the ’10 mm’. ’10 mm’ is set by the user, which can guarantee the safety 

distance between the sample and the lens.  

(c) Set the beam conditions as the recommendation. Click ‘Beam On’ on the beam page, and 

click the ‘Pause’ button on the toolbar. Focus the image by using the final focus knob on the control 

panel. Click ‘link sample Z to working distance’ on the toolbar. 

3. Optimize output image: 

(a) Click the ‘Auto-contrast button’ to set the best contrast by the system. Then double-click 

the interesting spot to center it. Click ‘Reduced area’ on the toolbar to get a small area to optimize 

image quality, and repeat this step until a high-quality image is obtained. Then, check the dwell 

time is proper or not. The shorter the dwell time is, the higher the output image will be. Usually, 3 

µs is good enough. Also, the brightness and contrast can be adjusted using the corresponding knobs 

on the control panel.  
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(b) Use the fine knob on the control panel to get the sharpest image. Use the stigmata X&Y to 

refine it. Repeat this step until a satisfying image is obtained. 

Fig. 2-5 shows  the equipment used in this part is FEI Quanta 650 FEG SEM in the IES, UND. 

The scanning images of the six imaging points are as Fig. 2-6 shows with the resolution of 50 nm. 

 

Fig. 2-4 Rock Sample for SEM Experiments (Red points: imaging points) 

 

Fig. 2-5 FEI Quanta 650 FEG SEM 
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B-a 
C-a 

A-b 

B-b C-b 
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                                    A-a                                                                      A-b 

      

                                    B-a                                                                      B-b 

      

                                    C-a                                                                      C-b 

Fig. 2-6 SEM Scanning Images 

Pyrite 
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Pore 

Fracture 

Micro-cracks 
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Fig. 2-7 The Region of Interest for Image Enhancement 

Fig. 2-6 show the strong function of SEM to reflect the sample surface at nano-scale, including 

the pore structure, mineral phase (Pyrite commonly), obvious fractures, and micro-cracks. Based 

on the research target of this part, the image of point B-b is selected, and its region of interest (ROI) 

is as Fig. 2-7 shows. The selected image and data will be used to operate the image enhancement 

techniques. 

2.4.2 X-ray Computed Tomography Scanning Experiment 

The research target of the X-ray CT scanning experiments is the fracture existing in the shale rock 

samples. There is one rock core after the stimulation treatment from Upper Bakken shale formation, 

as Fig. 21 (a) shows and Fig. 2-8 (b) shows the X-ray scanning equipment -- GE v|tome|x s 

microCT in Electron Microscopy Center, NDSU. Fig. 2-9 shows the scanning results in MyVGL. 

The three-dimensional images are composed of more than 1,000 two-dimensional images, and 

the target of the image processing is the two-dimensional images. Fig. 2-10 (a) shows one slice of 

the two-dimensional images generated by X-ray CT scanning. Because of the boundary effect, 

there is an obvious noise at the boundary of the rock sample, which will cause errors in the 

ROI 
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processing results. Operate the image cropping to cut the noisy region of the image, which is 

outside the red circle and Fig. 2-10 (b) shows the ROI of Fig. 2-10 (a). 

                 

                               (a)                                                                   (b) 
Fig. 2-8 Rock Core and GE v|tome|x s microCT 

 

 

Fig. 2-9 Scanning Result in MyVGL 

Fracture 

Top View Side View 

Side View 3D View 
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                                         (a)                                                                   (b) 

Fig. 2-10 (a) 2D Slice of 3D Images  (b) Region of Interest for Image Segmentation 

2.4.3 Core-flooding Experiment 

The core-flooding experiment provides an effective way to test the property of the  core. It is 

performed in a triaxial cell, which can enable the core to be tested under the condition required by 

the user with confining pressures representative of the average stress under hydrostatic conditions. 

Fig. 2-11 shows the diagram of the core-flooding system (Wang et al., 2018). 

  

Fig. 2-11 The Schematic diagram of the Core-flooding System 
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The confining fluid used in the triaxial cell is silicon oil, and the sample is separated with a 

thin lead foil and then a viton-rubber membrane. Teledyne ISCO 500D syringe pumps are used to 

control the confining pressure and the gas inflow rates with two pumps used for the flue gas studies 

involving nitrogen and carbon dioxide injection. The pore pressure was maintained during the core 

floods using a back pressure control device and the gas rate measured using a Ritter Apparatebau 

MilliGascounter appropriate for the flow rates associated with the tests. 

Because the expected permeability of the fracture is high, and to reduce the influence of the 

confining pressure on the fracture aperture, set the confining pressure of 400 psi and flow rate of 

1 cc/min. The experimental core is the same one used in the X-ray CT scanning experiment. Fig. 

2-12 shows the core-flooding equipment in the lab of the Department of Petroleum Engineering, 

UND. 

 

Fig. 2-12 Core-flooding Experimental Equipment 
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2.5 Summary 

This chapter introduce the basic knowledge of the high-resolution SEM scanning and X-ray CT 

scanning techniques, about their working principles and major functions. There are two novel 

image processing methods proposed in this research – Self- adaptive image enhancement method 

and multi-stage image segmentation method. For self-adaptive image enhancement method, the 

incomplete beta function is employed to be the transformation operator of the grayscale intensity 

histogram and the parameter optimization is finished by simulated annealing algorithm. The “Self-

adaptive” means the enhancement processes are specifically decided by the input image, not the 

users. For multi-stage image segmentation method, different with global threshold segmentation 

method, the usage of entropy-based mask and indicator kriging estimation include the local 

information in the segmentation process. Also, the experimental equipments, samples and the two-

dimensional and three-dimensional result images generated by these scanning techniques are 

shown in this chapter. These images would be the input data and the processing results would be 

in Chapter 3.
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CHAPTER III 

RESULTS & DISCUSSION 

This chapter presents the results of image enhancement and image segmentation of the two-

dimensional SEM scanning images and three X-ray CT scanning images generated in Chapter 2: 

Section 3.1 includes the analysis of the histogram intensity histogram, parameter selection results, 

and the comparison of the segmentation results before and after the image enhancement, which 

shows the improvement of applying the self-adaptive image enhancement method. Section 3.2 

includes the initial image segmentation, the boundary pixel detection, and the final image 

segmentation. Also, the reconstruction of the three-dimensional model of the rock sample, the 

core-flooding result, and calculation permeability based on the three-dimensional model using 

Kozeny-Carman relation are included in section 3.2. 

3.1 Two-dimensional SEM Scanning Image Enhancement Results 

For Otsu’s segmentation method, the separability of features on the grayscale intensity histogram 

is the most important parameter to evaluate the segmentation performance. Fig. 3-1 shows the 

original input image and its grayscale intensity histogram. The micro-cracks is not obvious to the 

naked eyes in Fig. 3-1 (a) compared with the background. From Fig. 3-1 (b), some basic statistical 

parameter of the input image can be obtained: the mean value is 153.47, and the variance is 107.254,  

which indicates that the distribution of the grayscale intensity is highly concentrated in the high-

value region. 
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Fig. 3-2 shows the segmentation result of Fig. 3-1 (a) using Otsu’s method. There is an obvious 

insufficient segmentation in Fig. 3-2 The threshold value is 127, which is the red line in Fig. 3-1 

(b). Based on that threshold value, the separability evaluation parameter – η, which is described in 

section 3.1.2, equals 2.148. The segmentation result lost most of the valuable information about 

micro-cracks. 

 

                                   (a)                                                                         (b) 
Fig. 3-1 (a) Input Image  (b) Grayscale Intensity Histogram 

 

Fig. 3-2 Image Segmentation of Input Image 

T = 127 
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To improve the image quality for more precise segmentation, operate the image enhancement 

techniques to the input image. First, operate two well-developed image enhancement methods – 

Histogram match and histogram equalization. Fig. 3-3 and Fig. 3-4 show the new grayscale 

intensity histogram and the segmentation result. 

From Fig. 3-3, the grayscale intensity histogram is matched by some pre-set distribution. 

Because the key parameters are determined by the main features of the histogram, the information 

of the micro-cracks is not that important in the matching process, which lead to the obvious 

insufficient image segmentation. From Fig. 3-4, the grayscale intensity histogram is equalized into 

the whole range, from 0 to 255. This method successfully enhance the information of the 

background but weaken the information of the target, which cause that the target disappears in the 

segmentation result. 

  

Fig. 3-3 Result of Histogram Match 

T = 120 
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Fig. 3-4 Result of Histogram Equalization 

Then, operate the self-adaptive image enhancement method to the input image, from the 

description in section 2.1.2.2, the key point is the selection of the values of α  and β . The 

optimization algorithm used in this step is the simulated annealing, whose parameters are set as 

section 2.1.2.3 mentions. Fig. 3-5 shows the result of η with different values of α and β. As a result, 

The optimal values of α and β, which is 4 and 2 respectively, are selected when the value of η is 

the maximum, which is 8.6723. Fig. 3-6 shows the optimized transformed curve and the slope of 

the curve. The comparison of Fig. 3-1 (b) and Fig. 3-6 (b) proves that values of α and β are optimal 

for the specific input image: the grayscale intensity is concentrated in the range of [130, 180] and 

the peak of the slope of the transformed curve is also at the same range, which means that the 

modification of the grayscale intensity histogram is more dramatic than other range and the target, 

whose grayscale intensity is low, can be enhanced. Fig. 3-7 shows the grayscale intensity 

histogram and the segmentation result after the self-adaptive image enhancement method. The 

evaluation parameters of these three image enhancement methods are in Table 3-1. 

T = 137 
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Fig. 3-5 Separability Evaluation Parameters with different values of α and β 

(The color intensity stands for the value of η) 

 

                                   (a)                                                                     (b) 
Fig. 3-6 Separability Evaluation Parameters with different values of α and β 
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Fig. 3-7 Result of Self-adaptive Image Enhancement 

Table 3-1 Evaluation Parameters after Different Image Enhancement 

 Original Histogram Match Histogram Equalization Self-adaptive Method 

Mean 153.47 123.20 127.12 87.10 

Variance 107.254 105.98 55806 117.38 

Threshold 127 120 137 67 

η 2.1484 3.0156 1.2856 8.6723 

Porosity 0.0125 0.0193 0.5419 0.0404 

 

3.2 Three-dimensional X-ray CT Scanning Image Segmentation Results 

The three-dimensional X-ray CT scanning image is composed with 1050 two-dimensional images. 

Fig. 3-8 (a) shows the region of the interest from one slice of two-dimensional image (Slice No.: 

#4_0241) and Fig. 3-8 (b) shows its grayscale intensity histogram. For the input image shown in 

Fig. 3-8 (a), the target is not as small as Fig. 3-1 (a), whose information is obvious enough to be 

reflected in the grayscale intensity histogram. 

T = 67 
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                                   (a)                                                                   (b) 
Fig. 3-8 (a) Input Image  (b) Grayscale Intensity Histogram 

From Fig. 3-8 (a), the pixels with low-value grayscale intensity represents the porous phase, 

including the fracture system and the small pores, and the pixels with high-values grayscale 

intensity represents the mineral phase, including pyrite and silica. Based on that description, the 

whole image can be divided into three parts: fracture system, matrix, and mineral phase, which 

obey the Gaussian distribution. The overall distribution of the grayscale value in an image should 

be the sum of three normal distributions, presenting fracture, matrix and mineral phase separately. 

For a single phase, set the fitting curve function as equation (54). 

                                                     Gi  =  ai × e

(x−μi)2

2σi
2

                                                                       (54) 

Where G – grayscale value; µ – mean value; σ2 – Variance; a – constant coefficient; i – three 

phases: fracture, matrix, and mineral phase. Using the least square method to calculate the value 

of all the unknown variables to best fit the frequency distribution of the grayscale value in the 

cross-section of scanning result. Fig. 3-9 shows the fitting curve. The calculation process can be 

finished using MATLAB.  
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Fig. 3-9 Curve Fitting Result 

Curve fitting R-square is 0.9886, which means parameters of three Gaussian distributions to 

fit the grayscale distribution of the gray image is precise enough. Table 3-2 provides the parameters 

of the distribution representing fracture system, matrix, and mineral phase. Set the mean values of 

grayscale intensity distribution as the threshold: The pixels with grayscale below 68 belong to 

posous phase, and pixels with grayscale intensity greater than 117 belong to mineral phase. The 

pixels with a grayscale intensity between 68 and 82 belong to either matrix or boundaries of 

fracture and matrix, and pixels with a grayscale value between 82 and 117, belong to either matrix 

or boundaries of matrix and mineral phase. Figure 3-10 is the threshold value for initial 

segmentation. Figure 3-11 is the initial segmentation result of fracture system and mineral phase. 

The next step is the boundary pixel detection using entropy function, whose definition is 

mentioned in section 2.2.2. Set the window size as 9×9 and calculate the entropy of the input 

image. Fig. 3-12 (a) shows the entropy map of the input image and Fig. 3-12(b) is the entropy 

value histogram and corresponding normal distribution fitting. 
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Table 3-2 Normal Distribution Parameters of Different Phases 

Phase, i Constant Coefficient, a Mean, µ Variance, σ2 

Fracture 0.008646 68 12.76 

Matrix 0.02923 82 116 

Mineral Phase 0.007076 117 74.2 

 

 

Fig. 3-10 Threshold Value for Initial Segmentation 

 

  
                                              (a)                                                        (b) 

Fig. 3-11 Initial Image Segmentation Result (a) fracture system (b) Mineral Phase 

T1 = 68 

T3 = 117 

T2 = 82 
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                             (a)                                                                       (b) 
Fig. 3-12 (a) Entropy Map; (b) Entropy Value Count Distribution and Fitting Curve 

The mean and variance of the normal fitting curve are µ = 3.5 and σ2 = 0.2893. The pixels with 

high entropy value are potential boundary pixels. The top 2.5 % is considered as high entropy 

value, which means the pixels with H > µ + 2σ = 4.576 maybe belong to the boundaries between 

different phases. Fig. 3-13 shows the filtering result. In the result, the white pixels are with H > 

4.576 (Potential Boundary Pixels) and black pixels are with low-valued entropy. 

              

Fig. 3-13 High-value Entropy Filtering Result 
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Combine the boundary pixel detection results from the initial image segmentation and the high 

entropy value filtering, Fig. 3-14 shows the boudary pixels between fracture and matrix and Fig. 

3-15 shows the boundary pixels between mineral phase and matrix. 

       

Fig. 3-14 Boundary Pixels between Fracture and Matrix 

     

Fig. 3-15 Boundary Pixels between Mineral Phase and Matrix 



 

64 

 

 

Fig. 3-16 Semivariogram Curve 

After the initial segmentation of the gray image and boundary pixel detection, the whole image 

is divided into two parts: Clearly classified parts, including fracture, matrix and mineral phase; 

Unclassified part: Boundaries of fracture and matrix, matrix and mineral phase. The next step is to 

use kriging method, whose theory is explained in section 2.2.2.2, to estimate the classification of 

the unclassified part. The classified pixels can be used to generate the variogram model. Fig.3-16 

shows the semivariogram model of the indicator. Use exponential semivariogram model to fit. The 

range is about 35-pixel distance. 

The model equation is as equation (55) shows: 

                                          γ(h) = 0.004244 + 0.00872 × (1 − e−
h

35)                                       (55) 

where h is the distance between two pixels.  

With the kriging result, the boundary pixels can be classified into fracture, matrix and mineral 

phase and the final segmentation is finished. Repeat this process to all the two-dimensional gray 

images and generate the three-dimensional models of fracture and mineral phase. Fig. 3-17 shows 

the top view and the side view of the three-dimensional mineral phase. Fig. 3-18 shows the top 

view and the side view of the three-dimensional fracture system.  
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From Fig. 3-17, most of the pyrites are in small aggregates and distributed randomly in the 

whole rock sample. Also, there are one big aggregate in the bottom half of the rock sample. The 

volume fraction of the pyrites are about 1.29 %. 

From Fig. 3-18, there are three fractures in the rock sample, which are highlighted. Fracture 1 

is through the whole rock sample and fracture 2 and 3 are isolated. As a result, only the fracture 1 

can serve the function as the flowing channel. The diagram of the fracture systems is shown in Fig. 

3-19. Fracture 1 is divided into fracture 1-a and fracture 1-b. Table 3-3 shows the parameters of 

these three fractures, including length, aperture, horizontal and vertical tortuosity, specific surface 

area, and porosity. 

               

                                         (a)                                                                      (b) 
Fig. 3-17 Three-dimensional Image of Mineral Phase (a) Top View of  (b) Side View 

Aggregate 
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                                 (a)                                                                          (b) 
Fig. 3-18 Three-dimensional Image of Fracture System (a) Top View of  (b) Side View 

 

 

Fig. 3-19 Fracture System Diagram 

 

 

Fracture 1 

Fracture 3 

Fracture 2 

Water Injection 
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Table 3-3 Parameters of the Fracture System 

 Length/cm Aperture/µm Tortuosity Width/cm Porosity 

Frac. 1-a 4.03 46.4 1.041 2.012 0.25 % 

Frac. 1-b 2.95 68.49 1.085 1.613 0.16 % 

Frac. 2 3.96 34.6 1.001 1.782 0.19 % 

Frac. 3 1.38 16.4 1.001 0.924 0.06 % 

 
Table 3-4 Fracture Parameters from Different Segmentation Method 

 Multi-stage Segmentation Otsu’s Method MHF Filtering 

 Frac. 1-a Frac. 1-b Frac. 1-a Frac. 1-b Frac. 1-a Frac. 1-b 

Length/cm 4.03 2.95 4.04 2.95 3.99 2.91 

Aperture/µm 46.4 68.5 70.2 104.6 22.5 30.8 

Tortuosity 1.041 1.085 1.040 1.085 1.035 1.070 

Width/cm 2.0 1.52 2.04 1.54 1.89 1.32 

Porosity 0.25 % 0.16 % 0.52 % 0.3 % 0.11 % 0.07 % 

Calculate the permeability of fracture 1-a and fracture 1-b using Kozeny-Carman relation, 

which explained in section 2.3. The permeability of fracture 1-a and 1-b is 1080.68 mD and 502.87 

mD, respectively. Because the fracture 1-a and 1-b belong to a series system, the fracture of 

fracture 1 is about 836.47 mD. As the comparison, the parameters calculated from the image 

segementation using Otsu’s method and multi-scale Hessian fracture filtering are shown in Table 

3-3. 

From Table 3-4, compared with multi-stage segemntation method proposed by this research, 

the results using Otsu’s method show over-segmentation and the results using MHF filtering show 

insufficient segmentation. Table 3-5 shows the calculated permeability of fracture 1 using different 

sets of parameters. 

Talbe 3-5 Calculated Permeability (mD) using Different Sets of Parameters 

 Multi-stage Segmentation Otsu’s Method MHF Filtering 

Frac. 1-a 1080.67 2134.79 533.66 

Frac. 1-b 502.87 899.95 284.52 

Frac. 1 836.47 1612.72 428.36 
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The next step is to use core-flooding data to verify the accuracy of processing results using 

different image segemtation methods. Fig. 3-20 shows the injection pressure with the injection 

time when the injection rate is 10 cc/min. When the pressure becomes stable, record the pressure 

value P. For injection rate equals 10 cc/min, the stable injection pressure is 0.0232 MPa. Repeat 

this process by setting the injection rate as 15, 20, 25, 30, 35, 40 and 50 cc/min and record the table 

injection pressure. The results are shown in Table 3-6 and Fig. 3-21. 

From the Table 3-6 and Fig. 3-20, the core-flooding data shows that the permeability of the 

rock sample is about 1074.13 mD. The calculated permeability using multi-stage segmentation 

method is the closest, with the minimum error of 22.1 %. 

 

Fig. 3-20 Injection Pressure with Time (Injection Rate = 10 cc/min) 

Table 3-6 Stable Injection Pressure with Different Injection Rate 

Injection 

Rate/ cc∙min-1 
10 15 20 25 30 35 40 50 

P/0.1 MPa 0.232 0.355 0.441 0.681 0.689 0.810 1.03 1.10 
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Fig. 3-21 Injection Pressure with Pressure Rate 

 

3.3 Summary 

This chapter showed the processing results using self-adaptive image enhancement method and 

multi-stage image segmentation method step by step.  

For the processing result of two-dimensional images, after the image enhancement using 

incomplete beta function as the transformed operator, the small target becomes more clear to the 

naked eyes and the information of the target becomes more obvious in the grayscale intensity 

histogram when comparing Fig. 3-2, 3-3, 3-4 and 3-7. Also, from Table 3-1, the grayscale intensity 

of the whole image is reduced after the processing, with the mean value reducing from 153.47 to 

87.10. The distribution of the grayscale intensity is wider, with the variance increasing from 

107.254 to 117.38. Also, the separability of the target and background becomes better, with η 

increasing from 2.1484 to 8.6723. The precise volume fraction of the micro-cracks is 4.02 %, 

which is much higher than the original fraction of 1.25 %.   
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For the processing result of three-dimensional image, from the comparison of the segmentation 

results using different methods, the results using Otsu’s method show obvious over-segmentation 

because there some noise existing in the scanning images, including the mineral phase, which can 

increase the threshold value. The results using MHF filtering show insufficient segemtation 

because this method only consider the fracture satisfyin the pre-set fracture template. The volume 

fraction of fractures estimated by the multi-stage segmentation (MSS) method is about 0.66 %, 

with the results from Otsu’s method of 1.29 % and MHF filtering 0.30 %. The apertures from MSS 

of fracture 1-a and 1-b are 46.4 and 68.5 µm, with the results from the Otsu’d method of 70.2 and 

104.6 µm, and the results from MHF of 22.5 and 30.9 µm. For the tight rock with the fracture 

aperture, which is under 100 µm, such difference will lead to big difference in permeability 

calculation. The permeability calculated from the results using MSS is 836.47 mD, with the error 

of about +22.1 %, the permeability calculated using Otsu’s method is 1612.72 mD, with the error 

of about +50.1 %, and the permeability calculated using MHF filtering is 428.36 mD, with the 

error of about -60.1 %. All the comparisons mentioned above show that the multi-stage 

segmentation method proposed in this research can do a better job of image segmentation. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

In this research, we proposed two image processing methods – self-adaptive image enhancement 

method and multi-stage image segmentation method. The experimental samples are the shale rock 

slices and cores from the Bakken formation. The related theories and detailed methods included in 

the methods are presented and the processing results of each step are shown and compared with 

the results using some well-developed methods. The results show that the novel image processing 

methods proposed in this research have the capability of dealing with the problem of small target 

segmentation. The key and detailed conclusions of this research are listed below: 

(1) The self-adaptive image enhancement method can maximum the contrast between the small 

target and the background of the two-dimensional SEM scanning images. Furthermore, the 

parameters are determined by the input data, not the users, which is self-adaptive and can reduce 

the error caused by human disturbance. It is an effective tool for the small target enhancement. 

(2) For the testing image, the natural micro-cracks become more obvious to the naked eyes and 

the evaluation parameter increase from 2.15 to 8.67 after the modification. Also, the mean value 

from 153.47 to 87.10 and variance from 107.3 to 117.4 of the grayscale intensity histogram also 

show that after the modification, more information of the image can be employed for the following 

image processing.
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(3) The multi-stage image segmentation method can combine the global information and local 

information to finish the segmentation process, which can classify the boundary pixels precisely. 

The three-dimensional fracture systems can be observed and the geometric parameters can be 

calculated. The comparison between the simulation results and experimental data shows that it can 

segment the thin fracture in the X-ray CT images with small error. 

(4) For the testing three-dimensional model with hydraulic fracture systems, we can observe 

there are three fractures existing in the core and the fracture No. 1 serve as the flow channel of the 

fluids. The detailed parameters are as Table 3-3 shows. The simulated permeability from the 

segmentation results is 836.47 mD, with the minimum error of -22.1 % error comparing with the 

experimental data, about 1074.13 mD.  

This study leads into several new ideas that can be followed as continuation of this work. Some 

of these potential future research studies are listed here:  

(1) Most of the well-developed image processing algorithms are limited to one specific 

problem, which means that it is hard for any single image processing method to handle multi-target 

segmentation in one image. However, machine learning has shown great potential with the multi-

target segmentation effectively, including k-means clustering, supported vector machine, and 

artificial neural network etc. How to apply the machine learning to precise multi-target 

segmentation would be the future work. 

(2) The Kozeny-Carman relation used to calculate the permeability in this research belongs to 

the empirical formulas, which is not applicable to the natural micro-cracks with complex 

structures. So using molecular dynamics to simulate the fluid flow, especially in the nanoscale, 

would be another future work.  
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