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ABSTRACT 

Configuration interaction (CI) is a post Hartree–Fock method that is commonly used for solving 

the nonrelativistic Schrödinger equation for quantum many-electron systems of molecular scale. 

CI includes instantaneous electron correlation and it can deal with the ground state as well as 

multiple excited states. 

The CI matrix is a sparse matrix, and the bigger the CI matrix, the more electron correlation 

can be captured. However, due to the large size of the CI sparse matrix that is involved in CI 

computations, a good amount of the time spent on the eigenvalue computations is associated with 

the multiplication of the CI sparse matrix by numerous dense vectors, which is basically known as 

Sparse matrix-vector multiplication (SpMV). 

Sparse matrix-vector multiplication (SpMV) can be used to solve diverse-scaled linear systems 

and eigenvalue problems that exist in numerous and varying scientific applications. One of the 

scientific applications that SpMV is involved in is Configuration Interaction (CI). 

In this work, we have developed a new hybrid approach to deal with CI sparse matrices. The 

proposed model includes a newly-developed hybrid format for storing CI sparse matrices on the 

Graphics Processing Unit (GPU). In addition to the new developed format, the proposed model 

includes the SpMV kernel for multiplying the CI matrix (proposed format) by a vector using the 

C language and the CUDA platform. The proposed SpMV kernel is a vector kernel that uses the 

warp approach. We have gauged the newly developed model in terms of two primary factors, 

memory usage and performance. 

Our proposed kernel was compared to the cuSPARSE library and the CSR5 (Compressed 

Sparse Row 5) format and already outperformed both. Our proposed kernel outperformed the 

CSR5 format by 250.7% and the cuSPARSE library by 395.1% 

Keywords— CI, SpMV, Linear System, GPU, Kernel, CUDA.
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CHAPTER 1 

INTRODUCTION 

Configuration Interaction (CI) is a post Hartree–Fock method that is commonly used for solving 

the nonrelativistic Schrödinger equation for quantum chemical multi-electron systems. CI has the 

advantage of dealing with the ground state beside multiple excited states as opposed to other 

methods that deal only with the ground state. 

Whether we perform a full CI or only a limited CI, we must be able to express the Hamiltonian 

in a matrix form so that we can diagonalize it and obtain the eigenvectors and eigenvalues of 

interest to us. Figure 1 is a simple representation of the CI sparse matrix that shows the two major 

components of the matrix, namely the Reference Region and the Expansion Space region. 

 

Fig. 1. The Configuration Interaction (CI) Matrix 

The Hamiltonian or the CI matrix is a sparse matrix that can be very huge in size, as the CI 

matrix gets bigger, more electron correlation can be captured from it. Nonetheless, due to the large 

size of the CI sparse matrix that is involved in CI computations, a good amount of the time that is 

spent on the eigenvalue computations is already associated with the multiplication of the huge CI 

sparse matrix by numerous dense vectors, this process is commonly known as Sparse matrix-vector 
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multiplication (SpMV). Figure 2 is a simple representation of the SpMV operation for CI sparse 

matrices. 

 

Fig. 2. Sparse matrix-vector multiplication (SpMV) for CI Matrices 

 
Sparse matrix-vector multiplication (SpMV) is one of the most common operations in scientific 

and high-performance applications. Achieving a good and high SpMV performance is challenging 

because performance is heavily affected by the density of nonzero entries or their sparsity pattern. 

As processors are getting increasingly diverse and complex, optimizing SpMV becomes much 

harder. 
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CONTRIBUTIONS 

 Before the proposed format and the proposed kernel were developed, we were working on 

designing and developing other algorithms that helped us design and implement the proposed 

model appropriately. We started out by designing the algorithms and also the C code for the 

following sparse matrix formats: 

1. The Compressed Sparse Row (CSR) or Compressed Row Storage (CRS) Format. 

2. The ELLPACK (ELL) Format. 

3. The ELLPACK-R (ELL-R) Format. 

4. The Sliced ELLPACK (Sliced ELL) Format. 

5. The Sliced ELLPACK-R (Sliced ELL-R) Format. 

 

 We also worked on developing the algorithms for the GPU SpMV kernels for each of the 

previously mentioned SpMV formats. Then, we developed the GPU SpMV kernels for those 

algorithms. 

 

 In this study, a new storage format for storing CI sparse matrices on the GPU was implemented. 

The proposed format compresses the sparse matrix in a way that saves a considerable amount 

of GPU memory. Besides, we have developed the SpMV kernel for the proposed format on 

the GPU. The proposed SpMV kernel is a single SpMV vector kernel that assigns a warp to 

each single row in the Reference region (ELLPACK format) and assigns another warp to each 

single row in the Expansion Space region (CSR format). We used the C language [16] and the 

CUDA platform [9] [10] for implementation. The C language is considered a fast high 

performance computing programming language as well as easy to use. Numerous 

programming languages as well as operating systems are built using the C language. The C 

language supports system calls more conveniently than FORTRAN. The two factors that we 

are interested in assessing and evaluating are the amount of used memory and performance [5]. 

 

 Generally, the use of double-precision is very common in quantum chemistry. Double 

precision generates more accurate results in addition to smaller errors [63]. The proposed CI 
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SpMV kernel was first developed using single precision as most of the SpMV kernels are 

single-precision kernels. Then, we converted the proposed CI SpMV kernel into double-

precision for the sake of getting more accurate results. 

 

 Our proposed kernel was compared to the cuSPARSE library and the CSR5 (Compressed 

Sparse Row 5) format and already outperformed both. Our proposed kernel outperformed the 

CSR5 format by 250.7% and the cuSPARSE library by 395.1%. 
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STRUCTURE OF THE DISSERTATION 

Chapter 1 is the introductory part to our work. In Chapter 2, we will be reviewing some basic 

concepts, such as GPU, CUDA, and SpMV. In Chapter 3, we will be discussing different ways 

that are used to solve the Schrödinger equation, with an emphasis on Configuration Interaction 

(CI). In Chapter 4, we will be discussing some common/conventional storage formats that are 

used to store sparse matrices. In Chapter 5, we will be reviewing some related work to Sparse 

matrix-vector multiplication (SpMV). In Chapter 6, we will be discussing the proposed model, 

more specifically, we will be talking about the proposed storage format and the developed SpMV 

kernel. In Chapter 7, we will be discussing the experimental results of comparing the proposed 

model to the cuSPARSE library and the CSR5 (Compressed Sparse Row 5) format and show how 

the proposed model outperformed both of them. In Chapter 8, we will be discussing Quaternions 

and show how they relate to Quantum Chemistry in general and also relate to Configuration 

Interaction specifically. Quaternions can be integrated with Configuration Interaction (CI) since 

they are optimized to deal with objects that have more interior structure, i.e., CI sparse matrices. 

The structure of the CI sparse matrix can be more compact using quaternionic representation, thus 

memory access time will be less. The real challenge that we will deal with when using quaternions 

for CI matrices is performance. Chapter 9 will include the conclusions and prospective future 

work, including the use of quaternions in lieu of real scalar coefficients; a detailed overview of 

features and widely-used functions. 
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TERMINOLOGIES 

CI: Configuration Interaction. 

SpMV: Sparse matrix-vector multiplication. 

GPU: Graphics Processing Unit. 

CUDA: Compute Unified Device Architecture. 

CC: Coupled Cluster. 

CSR: Compressed Sparse Row. 

CRS: Compressed Row Storage. 

ELL: ELLPACK. 

ELL-R: ELLPACK-R. 

Sliced ELL: Sliced ELLPACK. 

Sliced ELL-R: Sliced ELLPACK-R. 

CSB: Compressed Sparse Blocks. 
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THE PROBLEM STATEMENT 

One of the main issues in CI computations is the immensely huge size of the CI sparse matrix 

[13]. The construction of the CI sparse matrix is itself expensive. Some of the elements of the CI 

matrix are hard to calculate or recreate and some aren’t. Different parts of the CI sparse matrix can 

be calculated using different ways, therefore we have two approaches. One approach would be to 

pre-calculate the sparse matrix once at the beginning [13]. This option fits some parts of the CI 

sparse matrix that are hard to recreate. Adopting this approach will be limited by the GPU memory. 

The other approach would be to calculate the elements of the CI sparse matrix on the fly. This 

option fits some parts of the CI sparse matrix that are easy to recreate. It’s worth mentioning that 

CPUs are faster than the GPUs when calculating the elements on the fly since CPUs have more 

complex chips than GPUs. GPUs do branch prediction in a slower fashion than CPUs. CPUs have 

better caching and more caches than GPUs, whereas GPUs have only global memory (slow), 

constant memory, local memory, shared memory, and registers. Modern CI calculations are often 

done on the fly, but this doesn’t mean that the entire problem should be done on the fly. Based on 

the pre-mentioned information, we are going to develop a hybrid approach in order to deal with 

the CI sparse matrix elements. 

We developed a new storage format for storing CI sparse matrices on the GPU. In addition to 

that, we have implemented on the GPU the SpMV kernel that is based on the newly-developed 

storage format. The newly-implemented SpMV kernel is a single SpMV vector kernel that 

dedicates a single warp to every single row in the CI matrix’s Reference region and dedicates 

another warp to every single row in the CI matrix’s Expansion Space region. The CSR format is 

very efficient with regard to using memory (storage space) since it does not require zero-padding 

like the ELLPACK format. Also, the CSR format provides high performance for SpMV operations 

on CPUs that have multiple cores [2]. On the other hand, the CSR format provides lower 

performance than the ELLPACK format on GPUs when it comes to SpMV because of the lack of 

coalesced access to global memory on the GPU. The ELLPACK format provides higher 

performance than the CSR format on the GPU [2]. 
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The Reference region of the CI matrix represents most of the electronic structure and 

performance is an important factor in this part, consequently we are going to store the Reference 

region in the ELLPACK format. The Expansion Space region that occupies the rest of the CI 

matrix has a noticeable high sparsity, so storage space is crucial and critical in this part. The CSR 

format is very powerful regarding storage space, therefore the Expansion Space region will be 

stored in the CSR format. If we tried to store the Expansion Space region in the ELLPACK format, 

we will end up with a huge amount of zero-padding especially if one or more rows in the Expansion 

Space region was not/were not as sparse as the other rows in the same region. 

The proposed model can be further extended to be a quaternion-based model. Quaternions (fully 

described in Chapter 8) are 4-dimensional objects that extend complex numbers and they can be 

looked at as complex numbers whose components are complex numbers. Quaternions can be 

integrated with CI since they are optimized to deal with objects that have more interior structure, 

i.e., CI sparse matrices; they can be used to display objects that have more structure than the point-

like nuclei. The structure of the CI sparse matrix can be more compact using quaternionic 

representation, thus memory access time will be considerably less. 

 



 
 

9 
 

CHAPTER 2 

BACKGROUND 

GPU: 

A Graphics Processing Unit (GPU) is an electronic chip that is designed for extremely fast 

parallel computations and processing of data. GPUs are more efficient and faster than CPUs at 

manipulating and processing data, especially computer graphics, because of their highly parallel 

structure and their capabilities to execute thousands of threads in parallel. A GPU is a specialized 

electronic chip that is designed to rapidly manipulate and alter memory to speed up the creation of 

images in a frame buffer intended for output to a display device. GPUs are used in many scientific 

and technical areas, i.e., embedded systems, mobile phones, personal computers, workstations, and 

game consoles. Modern GPUs are very efficient at manipulating computer graphics and image 

processing. 

NVIDIA introduced the first GPU (GeForce 256) in August, 1999. A CPU includes a few cores 

that can handle a few threads at a time; on the other hand, a GPU is composed of hundreds of cores 

that can handle thousands of threads simultaneously in parallel, the matter that leads to faster and 

more efficient data computations. 

Most GPUs are designed for a specific usage, real-time 3D graphics or other mass calculations: 

1. Gaming 

 GeForce GTX 

 nVidia Titan X[disambiguation needed] 

 Radeon HD 

 Radeon RX 

2. Cloud Gaming 

 nVidia Grid 

 Radeon Sky 

3. Workstation 

 nVidia Quadro 
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 nVidia Titan X 

 AMD FirePro 

 Radeon Pro 

4. Cloud Workstation 

 nVidia Tesla 

 AMD FireStream 

5. Artificial Intelligence Cloud 

 nVidia Tesla 

 Radeon Instinct 

6. Automated/Driverless car 

 nVidia Drive PX 

The GPU architecture is different from the CPU architecture in terms of memory. The GPU has 

multiple memory types (or levels). The global memory is the slowest memory and it’s a read/write 

memory. The global memory can be accessed by all the threads within the grid. The constant 

memory is a read-only memory and it’s faster than global memory. The constant memory can be 

accessed by all the threads within the grid, just like the global memory. The shared memory is 

defined for each block. The shared memory can be accessed by all the threads within the block. 

Automatic variables are stored in registers. Registers are faster than the shared memory. Registers 

can be accessed only by the current thread. The compiler sometimes places automatic variables in 

the local memory; for example: an array created within the kernel is likely to be stored in the local 

memory. The local memory space resides in the global memory, however other threads can't access 

it. Local memory accesses have the same high latency and low bandwidth as global memory 

accesses, so local memory is rarely used. The local memory is only accessible from the current 

thread. Registers are faster than the shared memory. The shared memory is faster than the constant 

memory. The constant memory is faster than the global memory. Figure 3 illustrates the memory 

hierarchy of the GPU: 
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Fig. 3. The GPU Memory Hierarchy [21] 
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CUDA: 

Compute Unified Device Architecture (CUDA) [9] [10] is often mistaken for a programming 

language, or it might be thought of as an Application Programming Interface (API). In fact, CUDA 

is more than that. CUDA is a general purpose parallel computing platform created by NVIDIA in 

2006. It aids software developers by allowing the compute engine in NVIDIA GPUs to solve a 

variety of complex problems faster and more efficient than Central Processing Units (CPUs). 

CUDA allows the software developer to parallelize some portions of the program's code in order 

to make the program run faster [20]. A kernel is a function (serial program) that will run on the 

GPU. The CPU launches the kernel on parallel threads. 

CUDA can be viewed as a layer that enables software developers to access the GPU for the 

sake of executing compute kernels. CUDA is designed to work with various programming 

languages: i.e., C, C++, C#, FORTRAN, Java, Python, etc. [20]. This makes it possible for 

software developers who are experts in diverse programming languages to use the CUDA platform 

comfortably. 

CUDA has numerous advantages over traditional general-purpose computation on GPUs. Some 

of these advantages are: 

 Faster downloads and readbacks to and from the GPU. 

 Scattered reads. 

 Unified memory (CUDA 6.0 and above). 

 Full support for integer and bitwise operations. 

 Unified virtual memory (CUDA 4.0 and above). 

 Shared memory – CUDA exposes a fast shared memory region that can be shared among 

threads. 

As already stated, CUDA is a general purpose parallel computing platform created by NVIDIA. 

One example of using CUDA kernels is given in the following steps: 

1. The CPU allocates storage on the GPU (using cudaMalloc()). 
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2. The CPU copies input data from the CPU to the GPU (using cudaMemcpy()). 

3. The CPU launches on the GPU multiple copies of the kernel on parallel threads to 

process the GPU data. A kernel is a Function (Serial program) that will run on the GPU. 

The CPU launches the kernel on parallel threads. 

4. The CPU copies results back from the GPU to the CPU (using cudaMemcpy()). 

5. Use or display the output. 

CUDA GPU Support: 

 CUDA SDK 6.5: Last Version with support for Compute Capability 1.x (Tesla) 

 CUDA SDK 7.5 support for Compute Capability 2.0 – 5.x (Fermi, Kepler, Maxwell) 

 CUDA SDK 8.0 support for Compute Capability 2.0 – 6.x (Fermi, Kepler, Maxwell, 

Pascal), last version with support for Compute Capability 2.x (Fermi) 

 CUDA SDK 9.0 support for Compute Capability 3.0 – 7.x (Kepler, Maxwell, Pascal, 

Volta). 

Code1 in Appendix 1 is a simple GPU kernel called AddArrays that is used to add two integer 

arrays. In this case, the CPU launches on the GPU multiple copies of the AddArrays kernel on 

parallel threads (one kernel per thread) in order to perform the addition operation. Code 2 in 

Appendix 1 illustrates how to call the AddArrays kernel that was mentioned before. 

Code 3 in Appendix 1 is a host function (a function that runs on the CPU) that is called 

PrintDeviceProperties(). This function can be used in order to list the GPU properties. 

 Code 4 in Appendix 1 shows how to call the previous function. The for loop is used to call the 

PrintDeviceProperties() function for each device. 

Although CUDA allows us to run millions of threads or more, programs that run on the GPU 

aren’t million times faster than the CPU for multiple reasons: 
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 It takes time to copy data from the CPU to the GPU and vice versa. 

 CUDA doesn’t allow all the threads to run simultaneously on the GPU since it depends on 

the architecture of the GPU. 

 Kernel threads are accessing global memory which is implemented in DRAM (slow and 

there is a lookup latency). 

The following definitions summarize what we have described above: 

Host: CPU. It runs the main program. 

Device: GPU. 

Kernel: Function (Serial program) that will run on the GPU. The CPU which launch the kernel on 

parallel threads. 

GPU: Graphics Processing Unit. 

CUDA: Compute Unified Device Architecture. 

blockDim.x: The number of threads within the block in the x dimension. 

gridDim.x: The number of blocks within the grid in the x dimension. 

threadIdx.x: The thread index within the block in the x dimension (0 to (blockDim.x - 1)). 

blockIdx.x: The block index within the grid in the x dimension (0 to (gridDim.x - 1)). 

 

In order to compile a CUDA program, run the following command: 

nvcc 1.cu -o 1.out (c and c++) 

In order to run a CUDA program, run either of the following commands: 

./1.out 



 
 

15 
 

cuda-memcheck ./1.out 

In order to run a CUDA program that accepts 3 arguments, namely arg1, arg2, and arg3, run either 

of the following commands: 

./1.out arg1 arg2 arg3 

cuda-memcheck ./1.out arg1 arg2 arg3 

If you want to compile and run a CUDA program in just a single step, run the following command: 

nvcc 1.cu -run 

If you want to compile and run a CUDA program that accepts 3 arguments, namely arg1, arg2, 

and arg3 in a single step, run the following command: 

nvcc 1.cu -run -run-args arg1,arg2,arg3 
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SpMV: 

Sparse matrix-vector multiplication (SpMV) is a substantial computational kernel that has 

numerous applications in a wide variety of scientific areas and fields. SpMV is the main step of 

some iterative solvers such as Conjugate Gradient (CG) and Generalized Minimum Residual 

(GMRES) that can be used to solve sparse linear systems. SpMV has the form of Ax = y [8], where 

A is an m by n (m rows and n columns) sparse matrix, x is a dense vector of length n, y is a dense 

vector (The result of SpMV) of length m. A sparse matrix is a matrix in which most of its elements 

are zeros. A dense vector is a vector in which most of its elements are non-zeros. The sparsity of 

the matrix is the number of zero-valued elements divided by the total number of elements in the 

matrix (1 minus the density of the matrix, the sum of the sparsity and the density should equal 

100%). SpMV itself isn't a complex algorithm [4], but it might take a huge amount of time 

especially when we deal with big matrices. When matrices are sparse, the algorithm wastes a great 

deal of time trying to multiply zero elements by vector elements and the more sparse the matrix is 

(increasing sparsity), the more time is wasted. 

A linear system (system of linear equations) is a collection of two or more linear equations that 

include the same set of variables. SpMV can be effectively used to solve small-scale to large-scale 

linear systems [1] [3] (systems of linear equations) and eigenvalue problems. Eigenvalue problems 

in which only a subset of eigenvalues and eigenvectors are nearly ubiquitous targeting a subset of 

eigenspace in a big variety of scientific applications. Large eigenvalue problems are solved by 

iterative techniques which necessitates the need to efficiently improve the SpMV operation on the 

CPU and the GPU as well. As a matter of fact, improving the SpMV operation is extremely critical 

to the performance of a variety of scientific applications. 

 

 



 
 

17 
 

CHAPTER 3 

CONFIGURATION INTERACTION (CI) 

The Schrödinger Equation: 

The Schrödinger equation is a mathematical equation that can be used to study non-relativistic 

(NR) quantum mechanical systems. It was named after Erwin Schrödinger, a scientist who deduced 

the equation in 1925. Although there are other formulations of Quantum Chemistry (e.g., Bohmian 

Mechanics), it is the case that most NR quantum mechanical system of interest to chemical physics 

and physical systems are most readily described and represented. Hence, the Schrödinger equation 

is considered the core of any quantum mechanical system of interest. 

The Time-independent Schrödinger equation is illustrated below: 

2

2[  ( )] ( )  ( )
2

h
V r r E r

m
    

 

Where r is a 3N-Dimensional vector of the coordinates of particles. 

 ^ 

H ψ = E ψ (General Form) 

Where: 

h: Planck's constant (6.62607004 x 10-34 J.s). 

h  = h / 2 π. 

m: Generalized Mass. 

∇2: Second Derivative (Laplacian). 

V: Potential Energy. 

ψ: Wavefunction. 
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There are multiple techniques and methods that have been used to solve the Schrödinger 

equation (i.e., figuring out the wavefunction and the energy) for a quantum system. Mean field 

methods, Hartree-Fock (HF) [17] and density function field (DFT) methods, aka the self-consistent 

field (SCF) methods are, approximation methods that are widely used to determine the 

wavefunction and the energy of a quantum system. In the HF method, there is an assumption that 

the wavefunction can be approximated using a single Slater determinant (A representation of the 

wavefunction). DFT also uses a single determinant, but is more properly classified as an effective 

potential method, and as such the HF solution is considered a starting point for many methods that 

deal with many-electron systems. 

Hartree-Fock Method: 

F C = S C E 

Where: 

F: Fock operator. 

C: Matrix (a wavefunction) of expansion coefficients. 

S: Overlap matrix. 

E: Energy. 

The electrons are repelled by mean fields of each other. 

Post-Hartree-Fock methods are considered a group of methods that were created in order to 

improve the Hartree-Fock results. Electron correlation is the interaction among electrons in the 

electronic structure of a quantum system. Electron correlation is an accurate way of including the 

repulsions among electrons. Electron correlation is considered by post-Hartree-Fock methods as 

opposed to the Hartree-Fock method, where repulsions are averaged. 

Consequently, it is convenient to define 

Ecorr = ɛo – Eo 
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Ecorr: Electron Correlation Energy. 

ɛo: True (exact) ground state energy. 

Eo: HF energy. 

Coupled Cluster (CC) method [18] [60] is another numerical method that is used to describe 

many-body systems. The CC method is considered the most accurate post-Hartree-Fock method 

for solution to the Schrödinger equation for the ground electron state of molecules near their 

equilibrium geometries. Instead of the linear expansion of the wavefunction used by Configuration 

Interaction, CC uses an exponential expansion. CC takes the Hartree-Fock method and builds 

multi-electron wavefunctions by using the exponential cluster operator to account for electron 

correlation. One can think of CC as the product of excitations, while Configuration Interaction is 

the sum of excitations. 

Perturbation Theory: 

The Møller-Plesset (MP) treatment of electron correlation is based on an approach that is used 

to treat complex systems that are nearby, in a function space absolutely to a solvable simpler 

system, called perturbation theory [61]. In perturbation theory, we have: 

 ^      ^       ^ 

H = Ho + V 

E = E0 + E1 + E2 + … 

Where: 

H: Perturbed Hamiltonian. 

Ho: Unperturbed Hamiltonian. 
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Configuration Interaction: 

Turning attention to Configuration Interaction (CI), which is a very useful method in Quantum 

chemistry has made important contributions to understanding environmental fates of pollutants. 

Quantum mechanical calculations of molecular electronic structure contribute to the greening of 

many chemical practices [51]. This could be done via replacing experiments with computation as 

a variety of complex chemical species and reactions, including the green alternative. Configuration 

Interaction [19] is a linear method for solving the nonrelativistic Schrödinger equation for quantum 

chemical multi-electron systems. Relativistic wave equations are applicable to massive particles 

at high energies and high velocities comparable to the speed of light. Unlike other techniques and 

methods that can only deal with the ground state, the CI method can deal with the ground state as 

well as multiple excited states. The term “Configuration” basically refers to the linear combination 

of Slater determinants that are used for the wavefunction. The term “Interaction” refers to mixing 

many-electron basis functions. CI uses a linear combination of configuration state functions 

(CSFs), of which Hartree-Fock method uses only one. The CI approach suffers the size-extensivity 

problem, which has significantly reduced the use of the CI approach. Although its unique 

capabilities for excited states, the bigger the CI matrix, the more electron correlation can be 

captured. However, due to the large size of the CI sparse matrix that is involved in CI 

computations, a good amount of the time spent on the eigenvalue computations is associated with 

the multiplication of the CI sparse matrix by numerous vectors which is basically known as SpMV. 

The trial CI wave function is written as a linear combination of determinants with the expansion 

coefficients determined by requiring that the energy should be a minimum. The MOs (Molecular 

Orbitals) used for building the excited Slater determinants are often taken from a Hartree–Fock 

calculation. Determinants can be Singly, Doubly, Triply, etc., excited from relative to the HF 

configuration. 
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The CI Matrix Elements: 

The CI matrix elements Hij can be calculated by a strategy similar to that employed for 

calculating the energy of a single determinant used for deriving the Hartree–Fock equations [57]. 

In the CI case, this will involve expanding the determinants in a sum of products of Molecular 

Orbitals, consequently making it possible to express the CI matrix elements in terms of MO 

integrals. There are some general features that make many of the CI matrix elements equal to zero. 

When the HF wave function is a singlet, this excited determinant often contains 2 more open 

shells than the reference. The corresponding CI matrix element can be written in terms of integrals 

over MOs, and the spin dependence can be separated out. If there is a different number of α and β 

spin-MOs, there will always be at least one integral 〈a|b〉 = 0. That matrix elements between 

different spin states are zero may be fairly obvious. If we are interested in a singlet wave function, 

only singlet determinants can enter the expansion with non-zero coefficients. However, if the 

Hamiltonian operator includes for example the spin–orbit operator, matrix elements between 

singlet and triplet determinants are not necessarily zero, and the resulting CI wave function will 

be a mixture of singlet and triplet determinants. 

The usual non-relativistic Hamiltonian operator does not contain spin, thus if two determinants 

have different total spin, the corresponding matrix element is zero. This situation occurs not only 

the obvious case if an electron is excited from an α spin-MO to a β spin-MO, but also when an 

excitation is reducible to a sum of functions of spin states. 

If the system contains point group symmetry, there are additional CI matrix elements that 

become zero. The symmetry of a determinant is given as the direct product of the symmetries of 

the MOs. The Hamiltonian operator always belongs to the totally symmetric representation, thus 

if two determinants belong to different irreducible representations, the CI matrix element is zero. 

This is again fairly obvious if the interest is in a state of a specific symmetry, only those 

determinants that have the correct symmetry can contribute. 

The excited Slater determinants are generated by removing electrons from occupied orbitals, 

and placing them in virtual orbitals. The number of excited Slater Determinants (SDs) is thus a 
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combinatorial problem, and therefore increases factorially with the number of electrons and basis 

functions. Consider for example a system such as H2O with a 6-31G(d) basis. There are 10 

electrons and 38 spin-MOs, of which 10 are occupied and 28 are empty.  

The number of SDs = 38! / [10! (38 - 10)!] 

The number of determinants (or CSFs) that can be generated grows wildly with the excitation 

level! Even if the C2V symmetry of H2O is employed, there is still a total of 7536400 singlet CSFs 

with A1V symmetry. 

Excitation Level (n) Total number of CSFs 

1 71 

2 2556 

3 42596 

4 391126 

5 2114666 

6 7147876 

7 15836556 

8 24490201 

9 29044751 

10 30046752 

TABLE 1: The number of singlet CSFs as a function of excitation level for H2O with a 6-

31G(d) basis [57] 

For the sake of developing a computationally tractable model [57], the number of excited 

determinants in the CI expansion has to be reduced. Truncating the excitation level at one (CI with 

Singles (CIS)) does not give any improvement over the HF result as all matrix elements between 

the HF wave function and singly excited determinants are zero. CIS is of the same accuracy as HF 

for the ground state energy, although higher roots from the secular equations may be used as 

approximations to excited states. Only doubly excited determinants have matrix elements with the 

HF wave function different from zero; thus the lowest CI level that gives an improvement over the 

HF result is to include only doubly excited states, yielding the CI with Doubles (CID) model. 

Compared with the number of doubly excited determinants, there are relatively few singly excited 

determinants, and including these gives the CISD method. Computationally, this is only a marginal 

increase in effort over CID. Although the singly excited determinants have zero matrix elements 
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with the HF reference, they enter the wave function indirectly as they have non-zero matrix 

elements with the doubly excited determinants. 

Configuration State Functions (CSFs) are a linear combination of Slater Determinants [58]. 

Molecular Orbitals (MO) are one dimensional objects that are used to create N-dimensional Slater 

Determinants (or superposition of Slater Determinants) [59].  If we have a product of MOs and 

apply the anti-symmetrizer operation to it, you will create a single N-dimensional SD. 

Small systems, but larger than the 6-31G(d) model problem used above, at the CISD level result 

in millions of CSFs. The variational problem is to extract one or possibly a few of the lowest 

eigenvalues and eigenvectors of a matrix the size of millions squared. This cannot be done by 

standard diagonalization methods where all the eigenvalues are found. There are iterative methods 

for extracting one, or a few, eigenvalues and eigenvectors of a large matrix. 

The CI Matrix: 

In this section, the CI matrix is considered in more depth [60]. We will take a linear 

combinations of Slater Determinants. 

0 0|   | | | ...r r rs rs

a a ab ab
ar arb

C C          
 

Where: 

|Φo>: CI wave function. 

|Ψo>: Hartree-Fock wave function. 

C: Some coefficient that describes amplitude of a specific Slater Determinant (Ψ). 

All the possible single excitations. An electron is excited from orbital a to orbital r: 

|r r

a a
ar

C  
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All the possible double excitations: 

|rs rs

ab ab
arb

C  
 

..: All the way up to n excitations (excite n electrons). 

If we take that to N-electron excitations, then we will have what is called Full CI. In the case 

of Full CI, we have every single electron and every possible Slater determinant using all the 

orbitals available to us. Full CI is the exact solution to the nonrelativistic Schrödinger equation 

within the basis set. If we truncate at Single Excitations, then we will have what’s called CIS, if 

we have Double Excitations, then we will have CISD, and this will continue until we reach Full 

CI. 

The Slater determinant is one such basis function i.e., it represents no electron excitation from 

the reference. The Hamiltonian is expressed in the basis of these Slater determinants. So, we will 

diagonalize the Hamiltonian matrix and get the lowest eigenvalue from that to be our ground state. 

H c = E c 

The Hamiltonian matrix (CI matrix, H) will act on a vector of all of our coefficients (c) which 

will give the energy out (E) and the coefficients back. So, what does the Hamiltonian matrix look 

like? It looks like the following: 

H = 

[
 
 
 
 
 
 
< Ψo|H|Ψo > < Ψo|H|S > < Ψo|H|D > ⋯

< S|H|Ψo >  < S|H|S >  < S|H|D > ⋯
< D|H|Ψo >  < S|H|D >  < D|H|D > ⋯

 .                         .                          .        
 .                         .                           .        
 .                          .                          .       
  .                          .                          .        ]

 
 
 
 
 
 

 

 

And, if there is no truncation, this will continue all the way to N Full Excitations <N|H|N> 

<Ψo|H|S> is the reference function interacting with single excitations. 



 
 

25 
 

<Ψo|H|D> is the reference function interacting with double excitations. 

For single excitations, if we have N electrons and K basis functions, the number of single 

excitations we will have will be: 

(
N
1
) (

2K − N
1

) = [N! / ((N - 1)! * 1!)] * [(2K - N)! / ((2K – N – 1)! * 1!)] 

The previous value can be very large depending on the number of electrons you have (N) and 

the number of basis functions you have. The total number of Slater Determinants you will get is: 

(
2K − N

N
) 

For double excitations, if we have N electrons and K basis functions, the number of double 

excitations we will have will be: 

(
N
2
) (

2K − N
2

) 

So, our task is to calculate these matrix elements and then diagonalize this matrix [62] for the 

lowest eigenvalue which will be the ground state energy. We have to figure out what the energy 

of a linear combination of Slater determinants is. 

If we have 2 Slater determinants which are exactly identical, for every pair of orbitals, the 

orbitals can be lined up exactly. 

|…m n … > 

|…m n … > 

This matrix element will be Σi<i|h|i> + ½ Σij <i j||i j>. This is the same for Hartree–Fock ground 

state. 

If we have 2 Slater determinants that are different by 1 electron. One electron is in orbital m 

and one electron is in orbital p. 

|…m n … > 
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|…p n … > 

This matrix element will be <m|h|p> + Σi <m i||p i> 

If we have 2 Slater determinants that are different by 2 electrons. 

|…m n … > 

|…p q … > 

This matrix element will be <m n||p q> - one 2-electron composite integral made from 2 usual 

integrals. 

If we have 3 or more electrons different => 0 

Example: 

Let take H2 as an example. It has one S orbital on each of the hydrogen atoms. In this case, the 

smallest basis set will contains only 2 functions and a small number of electrons (2). There are 

only 6 possible Slater determinants. We will include these 6 Slater determinants in the CI matrix 

and in this case, the CI matrix will be a 6 by 6 matrix. 

2 2 2 2 22

0 1 11 1 11
|   |   |   |   |   |          

 
 

               S                  S                      T                   S                     T                     S 

                    (Eliminated)  (Eliminated)   (Eliminated)  (Eliminated)               

  
 

              Before we do that, we can exclude some of them. Our ground state is a singlet. If we have 

a triplet, it is not going to mix with our ground state determinant. When we integrate out the spins, 

we will get 0 for that matrix element. So, anything that is a triplet is going to be eliminated since 

we are concerned with the ground state energy right now. In the ground state, we have 2 electrons 

that are in the σg orbital, g * g gives you the g ground state, so the g ground state is not going to 

mix with the excited state. The only thing that is left is the double excitation (the first one from the 

right). The CI matrix will be: 



 
 

27 
 

H = 

[
 
 
 0 0| |H               

22

0 11
| |H   

22

011
| |H   

         
22 22

11 11
| |H   

 
]
 
 
 

 

Expressing the matrix elements in terms of integrals: 

0 0 11 11

11 11

11

22 22

1 1 22 221 1

| | 1| |1 1| |1 11||11 2

                             ( )            ( )

11||11 11||11 11||11

                     ( )            (0)

| | 2

H h h h j

h h

j

H h J

 

 

         

     

  
 

22

0 12 1211
| | 11|| 22 11| 22 12 ||12 0H K K         

 

The results are in the following 2 X 2 Hamiltonian matrix 

H = [
11 112h j                  12k

12k             22 222h j
] 

 

Because this matrix is so small, the lowest eigenvalue of this matrix will be the Full CI energy. 

If we subtract out the energy of the Hartree-Fock determinant (2h11 + J11), then we will get the 

correlation energy. 

H – Eo1 = [0                 12k

12k             2
] 
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2 Δ = (2h22 + J22) – (2h11 + J11) 

[
0 corrE                  12k

12k             2 corrE
] = 0 

 

2

12

2 2

12

2

2 2

12

2

12

(2 ) 0

2 0

2 4 4

2

corr corr

corr corr

c

corr

orr

E k

E E k

E E k

k
E

    

   

    

   


 

                                    

So Ecorr is the correlation energy within the basis set. 

In general, Full CI [55] [56] is very expensive. The scaling for Full CI is on the order of O(N!), 

where N is the number of electrons. Full CI is exponential with the number of electrons and also 

with the basis set size. Generally, both the number of electrons and the number of basis functions 

affect computational costs, but the number of basis functions is usually the limiting factor. The 

number of basis functions that we use depends on and scales with the number of atoms and the 

types of atoms. A small calculation would have 14 basis functions per carbon atom. A big 

calculation on Chromium might have 93 basis functions per atom. 
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CHAPTER 4 

COMMON FORMATS 

The format in which the matrix is stored in the CPU memory or the GPU memory affects both 

the performance of the SpMV operation and the amount of memory used. In this section, we will 

be discussing some of the features of various sparse matrix storage formats that are used for storing 

sparse matrices on the CPU or the GPU. We will also be discussing the SpMV kernel that is used 

along with each format. Besides, we will take a look at the pros and cons of each single storage 

format in terms of performance and the amount of used memory. 

1. The Compressed Sparse Row (CSR) or Compressed Row Storage (CRS) Format [2][11]: 

The CSR format compresses a sparse matrix into three vectors: 

 The Value vector: contains all the non-zero entries. 

 The Column vector: contains column index of each non-zero entry. 

 The RowPtr vector: contains the index of the first non-zero entry of each row in the "Value" 

vector. We add the number of non-zero entries in the sparse matrix as the last element of 

the RowPtr vector. 

In terms of memory, the CSR format is very powerful and efficient since no zero-padding [7] 

is needed. 

In terms of performance, the CSR format is efficient for SpMV operations implemented on 

CPUs with multiple cores [2]. On the other hand, on the GPU, the CSR format isn't as efficient as 

the ELLPACK format and shows a worse throughput than the ELLPACK format when it comes 

to SpMV due to the lack of coalesced access to global memory on the GPU [2]. 

Example: 

Consider the following 6 by 5 sparse matrix A, where: 
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A = 

[
 
 
 
 
 
1       0       0       0       0
0       0       2       0       3
0       4       0       0       5
0       0       6       0       0
0       0       0       7       0
0       0       0       0       8]

 
 
 
 
 

 

The three vectors will be: 

Value = 1, 2, 3, 4, 5, 6, 7, 8 

Column = 0, 2, 4, 1, 4, 2, 3, 4 

RowPtr = 0, 1, 3, 5, 6, 7, 8 

Algorithm 1 describes the SpMV kernel for the CSR format. 

____________________________________________________________________________ 

Algorithm 1 is the SpMV kernel for the CSR format. 

Input: 

 Value Vector: All the non-zero entries. 

 Column Vector: The column index of each non-zero entry. 

 Vector: The vector that the matrix will be multiplied by. 

 RowPtr: The index of the first non-zero entry of each row in the "Value" array. 

Output: 

 Result: The result of the SpMV process 

 

SpMV_CSR(Value, Column, Vector, RowPtr, Result) 

 for i ← 0 to ROWS - 1 do 

   Start ← RowPtr[i] 

   End  ← RowPtr[i + 1] 

   for j ← Start to End - 1 do 

     Temp ← Temp + (Value[j] * Vector[Column[j]])  

   Result[i] ← Temp 

   Temp      ← 0.00 

Algorithm 1. The SpMV kernel for the CSR format 

2. The ELLPACK (ELL) Format [2]: 

In the ELLPACK (ELL) format, each single row will have the same number of elements. If a 

row contains fewer non-zero elements, then it will be padded with zeros in order to reach the length 

of the longest non-zero entry row. For example, consider a 10 by 10 diagonal matrix (or an identity 
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matrix) with the last row full of non-zero entries. In this case, each single row in the matrix except 

the last row will be padded with 9 zeros in order to reach the length of the longest non-zero entry 

row. Thus, instead of storing 19 elements in memory, we store 100 elements in memory. 

[
 
 
 
 
 
 
 
 
 
1       0       0       0       0       0       0       0       0       0
0       1       0       0       0       0       0       0       0       0
0       0       1       0       0       0       0       0       0       0
0       0       0       1       0       0       0       0       0       0
0       0       0       0       1       0       0       0       0       0
0       0       0       0       0       1       0       0       0       0
0       0       0       0       0       0       1       0       0       0
0       0       0       0       0       0       0       1       0       0
0       0       0       0       0       0       0       0       1       0
1       1       1       1       1       1       1       1       1       1]

 
 
 
 
 
 
 
 
 

 

A 10x10 Identity Matrix with the last row full of non-zero entries 

The ELLPACK (ELL) format compresses a sparse matrix into two matrices: 

 The NonZerosEntries matrix: All the non-zero entries. 

 The Column matrix: The column index of each non-zero entry. 

In terms of memory, the ELLPACK format introduces a noticeable redundancy since zero-

padding [7] is needed in order to reach the length of the longest non-zero entry row. So, the 

ELLPACK format is less efficient than the CSR format from the memory standpoint. 

In terms of performance, the ELLPACK format achieves better performance on the GPU than 

on the CPU due to the coalesced access to global memory on the GPU [2]. To ensure coalesced 

global memory access on the GPU, the number of rows has to be a multiple of the block size. This 

can be achieved by adding extra rows with zero entries [2]. 

Example: 

Consider the following 6 by 5 sparse matrix A, where: 



 
 

32 
 

A = 

[
 
 
 
 
 
1       0       0       0       0
0       0       2       0       3
0       4       0       0       5
0       0       6       0       0
0       0       0       7       0
0       0       0       0       8]

 
 
 
 
 

 

 

The two matrices will be: 

NonZerosEntries = 

[
 
 
 
 
 
1       0
2       3
4       5
6       0
7       0
8       0]

 
 
 
 
 

 

Column = 

[
 
 
 
 
 
0  − 1
2       4
1       4
2  − 1
3  − 1
4  − 1]

 
 
 
 
 

 

Algorithm 2 describes the SpMV kernel for the ELLPACK format (thread per row) [6]. 
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______________________________________________________________________________ 

Algorithm 2 is the SpMV kernel for the ELLPACK format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries. 

 Column Matrix: The column index of each non-zero entry. 

 Vector: The vector that the matrix will be multiplied by. 

 MaxNonZeros: The length of the longest non-zero entry row. 

Output: 

 Result: The result of the SpMV process. 

_____________________________________________________________________________ 

 

SpMV_ELLPACK(NonZerosEntries, Column, Vector, Result, MaxNonZeros) 

 for r1 ← 0 to ROWS – 1 do 

   for r2 ← 0 to MaxNonZeros – 1 do 

     if Column[r1][r2] = -1 then 

     exit loop 

     Temp = Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]) 

   Result[r1] ← Temp 

   Temp       ← 0.00 

Algorithm 2. The SpMV kernel for the ELLPACK format (thread per row) 

3. The ELLPACK-R (ELL-R) Format: 

The performance of the SpMV operation can be further improved by adding an extra vector that 

includes the number of non-zero entries in each row (NonZerosCount vector). In this case, No 

iterations will be wasted in the loop since only non-zero entries will be involved in calculations 

[7]. 

Example: 

Consider the following 6 by 5 sparse matrix A, where: 

A = 

[
 
 
 
 
 
1       0       0       0       0
0       0       2       0       3
0       4       0       0       5
0       0       6       0       0
0       0       0       7       0
0       0       0       0       8]

 
 
 
 
 

 

The three matrices will be: 
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NonZerosEntries = 

[
 
 
 
 
 
1       0
2       3
4       5
6       0
7       0
8       0]

 
 
 
 
 

 

Column = 

[
 
 
 
 
 
0  − 1
2       4
1       4
2  − 1
3  − 1
4  − 1]

 
 
 
 
 

 

RowLength = 

[
 
 
 
 
 
1
2
2
1
1
1]
 
 
 
 
 

 

Algorithm 3 describes the SpMV kernel for the ELLPACK-R format (thread per row). 

______________________________________________________________________________ 

Algorithm 3 is the SpMV kernel for the ELLPACK-R format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries. 

 Column Matrix: The column index of each non-zero entry. 

 Vector: The vector that the matrix will be multiplied by. 

 NonZerosCount: The count of the non-zero entries per row. 

Output: 

 Result: The result of the SpMV process. 

 

SpMV_ELLPACK_R(NonZerosEntries, Column, Vector, NonZerosCount, Result) 

 for r1 ← 0 to ROWS – 1 do 

   End ← NonZerosCount[r1] 

   for r2 ← 0 to End – 1 do 

     Temp ← Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]) 

   Result[r1] ← Temp 

   Temp       ← 0.00 

Algorithm 3. The SpMV kernel for the ELLPACK-R format (thread per row) 
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4. The Sliced ELLPACK (Sliced ELL) Format: 

The Sliced ELLPACK Format was introduced in order to reduce the redundancy that is inherent 

in the ELLPACK Format. In this format, the matrix has to be divided first into submatrices (slices) 

and then each slice is stored in the ELLPACK format. Therefore, the number of extra zero entries 

(zero-padding) will be determined by the length of the longest non-zero entry row in each slice, 

rather than in the whole sparse matrix, so we will have less zero-padding, which definitely saves 

memory. 

Example: 

Consider the following 6 by 5 sparse matrix A, where: 

A = 

[
 
 
 
 
 
1       0       0       0       0
0       0       2       0       3
0       4       0       0       5
0       0       6       0       0
0       0       0       7       0
0       0       0       0       8]

 
 
 
 
 

 

Slice1 = [
1       0       0       0       0
0       0       2       0       3

] 

Slice2 = [
0       4       0       0       5
0       0       6       0       0

] 

Slice3 = [
0       0       0       7       0
0       0       0       0       8

] 

NonZerosEntries1 = [
1       0
2       3

] 

Column1 = [
0  − 1
2       4

] 

NonZerosEntries2 = [
4       5
6       0

] 

Column2 = [
1       4
2  − 1

] 
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NonZerosEntries3 = [
7
8
] 

Column3 = [
3
4
] 

Notice that we have one column in matrices, NonZerosEntries3 and Column3 instead of two, 

in other words, no zero-padding has occurred. Algorithm 4 describes the SpMV kernel for the 

Sliced ELLPACK format (thread per row). 

_____________________________________________________________________________ 

Algorithm 4 is the SpMV kernel for the Sliced ELLPACK format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries. 

 Column Matrix: The column index of each non-zero entry. 

 Vector: The vector that the matrix will be multiplied by. 

 Rows: The number of rows in the slice. 

 Cols: The length of the longest non-zero entry row in the slice. 

Output: 

 Result: The result of the SpMV process. 

 

SpMV_SlicedELLPACK(NonZerosEntries, Column, Vector, Result, Rows, Cols) 

 for r1 ← 0 to Rows – 1 do 

   for r2 ← 0 to Cols – 1 do 

     if Column[r1][r2] = -1 then 

     exit loop 

     Temp ← Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]) 

   Result[r1] ← Temp 

   Temp       ← 0.00 

Algorithm 4. The SpMV kernel for the Sliced ELLPACK format (thread per row) 

5. The Sliced ELLPACK-R (Sliced ELL-R) Format: 

It’s worth mentioning that the Sliced ELLPACK format can be even further extended to be 

Sliced ELLPACK-R. In this case, the performance of the SpMV operation will be improved by 

adding an extra vector that counts the number of non-zeros in each row (NonZerosCount vector), 

just like the ELLPACK-R format. Algorithm 5 describes the SpMV kernel for the Sliced 

ELLPACK-R format (thread per row). 
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______________________________________________________________________________ 

Algorithm 5 is the SpMV kernel for the Sliced ELLPACK-R format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries. 

 Column Matrix: The column index of each non-zero entry. 

 Vector: The vector that the matrix will be multiplied by. 

 NonZerosCount: The count of the non-zero entries per row in the slice. 

 Rows: The number of rows in the slice. 

Output: 

 Result: The result of the SpMV process. 

 

SpMV_SlicedELLPACK_R(NonZerosEntries, Column, Vector, NonZerosCount, Result, 

Rows) 

 for r1 ← 0 to Rows – 1 do 

   End ← NonZerosCount[r1] 

   for r2 ← 0 to End – 1 do 

     Temp ← Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]) 

   Result[r1] ← Temp 

   Temp       ← 0.00 

Algorithm 5. The SpMV kernel for the Sliced ELLPACK-R format (thread per row) 

6. The Compressed Sparse Blocks (CSB) Format: 

The Compressed Sparse Blocks (CSB) format [12] [13] [14] is used for storing sparse matrices. 

The CSB format partitions the n X n matrix into n2/z2 equal-sized z X z square blocks using a block 

size parameter z. The CSB format consists of the following:  

 The Value vector: The Value vector is of length nnz. It stored all the non-zero elements of 

the sparse matrix.  

 The row_idx and col_idx vectors: They track the row index and the column index of each 

non-zero entry inside the Value vector with regard to the block, not the whole entire matrix. 

So row_idx and col_idx range from 0 to z – 1.  

 The Block_ptr vector: It stores the index of the first non-zero entry of each block inside the 

Value vector. 
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A comparison among the common formats in terms of memory and performance on the GPU 

is illustrated in the following table (Table 2). Note that the information in the following table might 

be different depending on the nature of the matrix and the sparsity pattern of it. 

Format Memory Performance 

CSR Good Bad 

ELLPACK (ELL) Bad (Zero Padding) Good 

ELLPACK-R (ELL-R) Bad (Zero Padding) Better than ELLPACK 

Sliced ELLPACK Bad (Zero Padding), but better than ELLPACK  Good 

Sliced ELLPACK-R Bad (Zero Padding), but better than ELLPACK  Better than ELLPACK 

TABLE 2: Common Formats 

In the proposed model, we stored the CI Reference region, which is more dense in the 

ELLPACK format instead of the ELLPACK-R format although the ELLPACK-R format is 

generally faster than the ELLPACK format. We applied the warp technique to the proposed SpMV 

kernel, we assigned a warp to each single row in the Reference region and in order to efficiently 

do that, each row has to be a multiple of 32, consequently we padded the rows in the Reference 

region with zeros in order to achieve that, therefore, we used the ELLPACK format for the 

Reference region instead on the ELLPACK-R format. We did not use the Sliced ELLPACK format 

or the Sliced ELLPACK-R format since there will be an added overhead that is caused by adding 

the sub-results of the submatrices (slices) in order to get the final result. The Expansion Space 

region that is extremely sparse, is stored in the CSR format that uses memory very efficiently. 

 



 
 

39 
 

CHAPTER 5 

RELATED WORK 

SpMV is noticeably a rich area of research that is heavily studied. A lot of work that has been 

done with regard to SpMV wasn’t designed specifically for CI sparse matrices. CI sparse matrices 

are a special case of sparse matrices in terms of the structure of the sparse matrix as well as the 

sparsity pattern of the non-zero elements inside the matrix. 

In this section, we will review some of the related work to SpMV, some of these studies 

generally apply to the majority of sparse matrices and others apply to special types of sparse 

matrices. 

F. Vázquez and et al. [22] proposed a new format called ELLR-T. This format is an extension 

of the ELLPACK-R (ELL-R) format (The ELLPACK-R format was discussed in part 3 of the 

COMMON FORMATS section). In the ELLR-T format, there is a preprocessing step that has to 

be performed first [2]. The elements of the NonZerosEntries matrix and the Column matrix are 

permuted. Also, each row has to be a multiple of 16. In the ELLR-T format, multiple threads (T = 

1, 2, 4, 8, 16, 32) operate on single row while executing the SpMV operation. The value T (number 

of threads per row) can change in order to obtain the best performance with different types of 

sparse matrices. The ELLR-T format achieves a higher overall performance due to the coalesced 

and aligned access to global memory. 

Due to the fact that SpMV kernels are heavily used in scientific computing, M. M. Baskaran 

[23] tried to optimize SpMV kernels on GPUs. They tried to evaluate various issues and challenges 

that deal with and relate to developing robust and high performance kernels for the SpMV 

operation on NVIDIA GPUs using the CUDA platform. They have proposed a framework that 

includes both compile-time and run-time optimizations. The compile-time optimizer applies the 

following optimizations to SpMV kernels that execute on the GPU: exploiting synchronization-

free parallelism, optimized thread mapping, optimized global memory access, and exploiting data 

reuse. There is an optional runtime optimizer. They have created a new blocked storage format for 

storing and accessing the elements of a sparse matrix in an optimized manner from the GPU 
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memories. They evaluated their optimizations over two classes of NVIDIA GPU chips, namely, 

GeForce 8800 GTX and GeForce GTX 280 using a large set of sparse matrices derived from real 

applications. They compared the performance of their approach with that of existing parallel 

SpMV implementations. Their optimization techniques resulted in significant performance 

improvements on both GPUs over existing parallel SpMV implementations by a factor of 2 to 4. 

Using this framework, they were able to achieve peak SpMV performance that is 70% of the 

performance observed for SpMV computations using dense matrices stored in sparse format. 

M. R. Hugues and et al. [24] proposed an evaluation of several sparse matrix formats that are 

used by the GPU SpMV kernel. They analyzed the performance when having multiple sparse 

matrices with a strong distribution of non-zero elements. The sparse matrices that have been used 

in the study are from the University of Florida. These sparse matrices have different sizes as well 

as different number of non-zeros. The best results were obtained by using the ELL format for 

sparse matrices, however various formats that deal with sparse matrices that have a strong 

distribution of non-zero elements achieve approximately the same performance (2.0 GFLOPS) 

which is considered poor performance. This study concluded that the performance of SpMV 

computation depends on the format of the sparse matrix as well as the data structure of the sparse 

matrix. 

B. Neelima and et al. [25] proposed a new format for storing square sparse matrices on the 

GPU. The newly-developed format can give 2x to 5x performance improvement compared to the 

CSR format. The CSR format doesn't benefit from global coalescing feature of the GPU. Also, the 

GPU is underutilized if the number of non-zero elements per row is less than 32 (warp size). The 

proposed format (CSPR format) reduces the SpMV operation to a constant time and it uses a single 

data structure (ind vector) as it embeds the row information into column information, hence it can 

also optimize the memory transfer between the CPU and the GPU. Generally, the CSPR format 

can be applied to any sparse matrix, but better performance can be achieved when using sparse 

matrices with a large number of rows with a minimum number of non-zero elements per row and 

few dense rows distributed in the center. The proposed format can get 2x to 54x performance 

improvement compared to other sparse matrix formats (CSR, COO, and CSR vector). 
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A. Monakov and et al. [26] proposed a new storage format that adapts to different sparse 

matrices in order to improve the performance of the SpMV operation on the GPU. The storage 

format is called sliced ELLPACK. This format takes parameter S which represents the slice size. 

The sparse matrix is partitioned into strips (slices or partitions) of length S (S adjacent rows) and 

each strip is stored in the known ELLPACK format. Sparse matrices that have big variations with 

regard to the number of non-zero elements per row have less padding (extra zeros) than the 

ELLPACK format and hence, use less memory. This format uses a single SpMV kernel as opposed 

to the hybrid ELLPACK/COO format [15], therefore it achieves more performance. The ability to 

allocate a variable number of threads per row helps to adapt to various different matrices. It's 

possible to allocate one thread per row in extremely sparse matrices or allocate multiple threads 

per row. 

Some of the developed formats are actually built on one of the conventional (common) formats. 

For example, J. L. Greathouse and et al. [27] proposed a storage format called the CSR-Adaptive 

format that is based on the common CSR format (good at memory storage) that maps well to GPUs. 

The CSR format is frequently used in order to store sparse matrices on the GPU, nonetheless when 

it comes to the SpMV kernel on the GPU, this format has poor performance because of accessing 

memory in irregular patterns. The CSR-Adaptive format achieves an average speed up of 14.7x 

over the conventional CSR format. 

F. Vázquez and et al. [28] and J. a Mart and et al. [30] proposes a new storage format for storing 

sparse matrices on NVIDIA GPUs. This format is called ELLPACK-R. They also implemented 

the SpMV kernel based on the newly-developed format. The ELLPACK-R format doesn't include 

conditional branches since it includes the rl (row length) array, in other words the ELLPACK-R 

format gets rid of useless computations since only non-zero elements of each row in the sparse 

matrix are considered. They compared the ELLPACK-R format to a variety of other sparse matrix 

storage formats using different test matrices. Although the performance depends on the pattern of 

the sparse matrix, the implementation based on ELLPACK-R format achieves noticeable higher 

performance. The ELLPACK-R format achieves the highest performance when it deals with 
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matrices of high dimensions, nonetheless the performance gets lower with sparse matrices of small 

dimensions. 

X. Liu and et al. [29] proposed a new SpMV kernel on Intel Xeon Phi Coprocessor that is called 

Knights Corner (KNC). First, they tested the architecture with a CSR kernel. They got several 

performance bottlenecks. Then, they designed a new sparse matrix format called ELLPACK 

Sparse Block (ESB) that is tuned for KNC. The new format adds several features to the ELLPACK 

format, for example: 1. finite-window sorting in order to improve the SIMD efficiency of the 

kernel. 2. A bit array to encode nonzero locations to reduce the bandwidth requirement. 3. Column 

blocking to improve memory access locality. In addition to that, in order to deal with the load 

balancing problem, they proposed 3 load balancers for the SpMV kernel on KNC. The proposed 

kernel is 1.85x faster than other kernels that use the CSR format. Speaking of architecture, the 

SpMV kernel on KNC is 3.52x faster than on dual-socket Intel Xeon Processor E5-2680 and is 

1.32x faster than on NVIDIA Tesla K20X. 

J. W. Choi and et al. [31] proposed a performance model-driven framework for auto-tuning the 

SpMV kernel (more specifically, BELLPACK and BCSR kernels) on the GPU. They started out 

by implementing the blocked CSR (BCSR) format. The BCSR format led them to developing a 

new sparse matrix storage format called the blocked ELLPACK (BELLPACK) format. Using 

BELLPACK, they obtained up to 29.0 GFLOP/s in single-precision and 15.7 GFLOP/s in double-

precision. Additionally, they worked on tuning the BELLPACK format. They developing a 

performance model-driven framework for auto-tuning the SpMV kernel for the BELLPACK 

format using some tuning parameters. This proposed framework is applicable only to matrices with 

small dense block sub-structures and to BELLPACK and BCSR kernels only. 

P. Guo and et al. [32] proposed an auto-tuning framework that can calculate and select CUDA 

parameters for SpMV kernels in order to attain the optimal performance on the GPU. The proposed 

framework was tested on GeForce 9500 GTX and GeForce GTX 295 NVIDIA GPUs. The CUDA 

parameters that they used were the number of threads, the block size, and the warp size. They 

researched how these parameters can affect the performance of SpMV kernels. The auto-tuning 
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framework has 237% and 33% performance improvements on average for GeForce 9500 GTX and 

GeForce GTX 295 GPUs compared to SpMV kernels without the auto-tuning framework. 

D. Grewe and et al. [33] proposed a representation language that is used for sparse matrix 

formats. The input will be a description of the sparse matrix format, then the compiler will 

automatically generate code for the SpMV kernel on the GPU. They used six sparse matrix 

formats: CSR, DIA, ELL, HYB, sliced ELLPACK and blocked ELLPACK. The automatically-

generated code provides the same performance and occasionally better performance compared to 

the current hand-written kernel code for the SpMV operation. In addition to that, the automatically-

generated SpMV code is automatically tuned in order to improve the performance of the SpMV 

operation. Besides, the description of the sparse matrix format can be used in order to automatically 

generate vectorized code. 

A. Ashari and et al. [34] proposed a new algorithm for the SpMV kernel on the GPU. This 

algorithm is called Adaptive CSR (ACSR) and it’s well-suited for graph processing applications 

and it uses the CSR format. It reduces thread divergence by putting rows that almost have the same 

number of non-zero elements into groups called bins. It overcomes the CSR problem when the 

deviation in the number of non-zero elements per row is high. This algorithm’s preprocessing is 

limited to scanning the lengths of rows. The ACSR algorithm outperforms implementations from 

the NVIDIA CUSP and cuSPARSE libraries using a set of sparse matrices representing power-

law graphs. They demonstrates the use of the ACSR algorithm for the analysis of dynamic graphs 

and showed great improvements over existing approaches. They demonstrated the benefits of the 

ACSR algorithm using several data analytics applications that utilize SpMV frequently. 

X. Yang and et al. [35] developed optimizations for the SpMV kernel that runs on the GPU and 

they studied the effects of these optimizations with regard to graph mining. They tiled the matrix 

using texture cache. Their approach of using tiling uses the texture cache very efficiently. These 

optimizations consider the architecture of the GPU as well as the features of graph mining 

applications. Their work attained noticeable performance improvement on graphs by parameters 

tuning. They developed a performance model in order to automatically tune the developed tile-
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composite kernel. They extended the use of their optimizations for the sake of dealing with web 

graphs on an MPI-based cluster. 

The sparseness pattern of sparse matrices differs from one sparse matrix to another. Therefore, 

a storage format which is ideal to store one sparse matrix might not be ideal for another sparse 

matrix. K. K. Matam and et al. [36] proposed a technique in order to understand the pattern and 

nature of sparse matrices or what's called, preprocessing the sparse matrix and subsequently select 

the appropriate storage format for the sparse matrix in order for this storage format to be used in 

the SpMV process. They combined both the CSR format and the ELLPACK format into one 

storage format. If the number of non-zero elements in a row is more than a predefined threshold, 

the whole entire row will be stored in the CSR format. If the number of non-zero elements in a 

row is less than the same predefined threshold, the whole entire row will be stored in the 

ELLPACK format. After their implemented SpMV kernel used their storage format, the 

performance of the SpMV operation on NVidia Tesla GPU (C1060) was boosted up to 80% in 

some cases and 25% on average. They applied the proposed SpMV kernel to the conjugate gradient 

method and they obtained an average performance improvement of 20% when they applied the 

proposed kernel to the conjugate gradient method than applying the SpMV kernel using the HYB 

format to the conjugate gradient method. 

The ELLPACK-R format is a common format for storing sparse matrices. A problem with the 

ELLPACK-R format is that when the maximum number of non-zero elements per row doesn't 

differ significantly from the average, the thread will suffer from load imbalance. W. Cao and et al. 

[37] proposed a new sparse matrix storage format called ELLPACK-RP. This format is a 

combination of two formats: the ELLPACL-R format and the JAD format [38]. They also 

implemented the SpMV kernel on the GPU using the proposed format. Firstly, they store the matrix 

in the ALLPACK-R format then they perform row permutation by sorting the rows of the matrix 

in a descending order based on the number of non-zero elements in each row. The RL array has to 

be permuted as well. The array (Permu) is used to keep track of the original positions of the rows. 

The proposed format obtains a better average performance than the ELLPACK-R format due to 
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the fact that the proposed format decreases the degree of load imbalance of the ELLPACK-R 

kernel. 

X. Feng and et al. [39] proposed a new sparse matrix storage format called CSR with Segmented 

Interleave Combination (SIC). The proposed format combines certain amounts of the CSR rows 

to form a new SIC row. Segmented processing is considered in the proposed format. They also 

developed an automatic SIC-based kernel that applies to any matrix. The CSR storage format 

allows a variable number of nonzero entries per row, which is considered an advantage, 

nevertheless, this introduces thread divergence especially when we deal with a matrix with a high 

variable number of nonzero elements per row, in this case, many threads within the warp will 

remain idle while the thread that works on the longest row is still working. To lessen thread 

divergence, they assigned half of the warp to work on each row. To reduce imbalance between 

warps, Compressed Sparse Row is reordered and segmented. The proposed storage format 

outperforms the CSR vector kernel. Besides, it gives a comparable performance to the Hybrid 

format as well. 

P. Guo and et al. [40] proposed a performance modeling and optimization analysis tool in order 

to predict as well as optimize the performance of the SpMV kernel on the GPU. Their model is 

platform-independent, since it doesn't depend on the programming language used or on the 

architecture of the GPU. They used analytical modeling in order to predict the execution times of 

the CSR, ELL, COO, and HYB SpMV kernels. They used NVIDIA Tesla C2050 GPU for their 

experiments. They reported that for 77 out of 82 cases, the differences between the measured and 

the predicted execution times in terms of performance were less than 9 percent, for the remaining 

cases, the differences were between 9 and 10 percent. For the CSR, ELL, COO, and HYB SpMV 

kernels, the average differences were 6.3, 4.4, 2.2, and 4.7 percent, respectively. They developed 

an auto-selection algorithm in order to automatically select the best solution in terms of storage 

format and execution time for the sparse matrix. 

A. Ashari and et al. [41] developed a new sparse matrix storage format called blocked row-

column (BRC). The proposed format improves load balancing by partitioning rows into blocks 

with the same number of non-zero elements. The proposed format reduces thread divergence by 
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reordering and grouping the rows of the sparse matrix that almost have the same number of non-

zero entries in the same warp. They developed an auto-tuning technique in order to optimize the 

performance of the proposed format. The proposed format is adaptive to the matrix characteristics. 

Based on the sparsity features of the matrix, the size of the block is selected. The proposed format 

outperforms NVIDIA CUSP and cuSPARSE libraries, JDS, and other formats as well. They 

researched the two main formats that comprise the hybrid format (COO and ELLPACK). They 

proved that the proposed format can improve the COO format part that slows down the hybrid 

format. 

F. Vázquez and et al. [42] focused on the ELLR-T kernel [22]. They proposed a model in order 

to auto-tune the ELLR-T kernel that is used to perform the SpMV operation on the GPU. The 

performance of the ELLR-T kernel mainly depends on 2 parameters: the number of threads per 

row and the block size (number of threads per block). The proposed model was developed on 

GeForce GTX285 and Tesla C2050 GPUs and was applied to a large set of test sparse matrices 

.When the proposed model is considered, the ELLR-T kernel attains 92% of the optimal 

performance on GeForce GTX285 and 94% of the optimal performance on Tesla C2050. Applying 

the proposed model to the ELLR-T kernel will have a superior performance compared to the other 

approaches that are developed so far. The average performance when applying the proposed model 

to the ELLR-T kernel will be close to optimum. 

W. Liu and et al. [43] proposed a new sparse matrix storage format called CSR5 (Compressed 

Sparse Row 5). The proposed format is insensitive to the sparsity structure of the input matrix. The 

proposed format provides high performance for the SpMV operation on the CPU, the GPU, and 

Xeon Phi. Converting the CSR format to the proposed format has low overhead and also very fast. 

They implemented the proposed format on the CPU, NVidia GPU, AMD GPU, and Intel Xeon 

Phi. They evaluate the CSR5 format in both isolated SpMV tests and also iteration-based scenarios. 

The SpMV algorithm that is based on the proposed format was compared to other algorithms that 

are based on other storage formats using regular and irregular matrices. The SpMV based on the 

proposed storage format achieves better or comparable performance to the existing storage 

formats. 
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M. Kreutzer and et al. [44] proposed a new matrix storage format called padded JDS (pJDS). 

The proposed format can be used for the SpMV kernel on the general purpose GPU (GPGPU). 

The proposed format might allow us to save a significant amount of memory space. The 

performance of the proposed format is comparable to or better than the ELLPACK-R format. They 

came up with a condition for the average number of non-zero elements in each matrix row that 

guarantees a beneficial performance benefit of GPGPU-based spMVM in comparison to standard 

server nodes. The proposed format takes the overall spMVM memory footprint down on the 

GPGPU by up to 70%. The proposed format attains 91% to 130% of the ELLPACK-R format 

performance. They extended previous work on distributed-memory parallel spMVM in order to 

present a scalable hybrid MPI-GPGPU code. 

J. Godwin and et al. [45] proposed a new sparse matrix storage format that takes advantage of 

the diagonal structure of the sparse matrix for stencil operations on structured grids. The storage 

format is optimized for block-diagonal sparse matrices that come from structured grid 

computations with multiple degrees of freedom. They also developed the SpMV kernel of the 

proposed format on the GPU using CUDA. They implemented their kernel on NIVIDIA GTX 280, 

Quadro Plex S2200 S4, Tesla C2050, and GTX580. They dealt with sparse matrices that come 

from structured grid problems with high degrees of freedom at each grid node. They focus on 

sparse matrices that have a block structure. Thus, other storage formats such as the CSR format or 

the DIA format won't be beneficial and efficient for this type of sparse matrices. They optimized 

for the case of higher degrees of freedom, where other formats (i.e., DIA) are forced to include 

many zero entries in the matrix. The performance of the developed kernel that is based on the 

proposed storage format exceeds the performance of other kernels that are based on other formats 

(CSR and DIA) for more than one degree of freedom. 

W. Xu and et al. [46] focused on tuning the performance of the SpMV operation on the GPU. 

In this paper, they proposed a cache blocking technique (storage format) in order to improve the 

performance of the SpMV kernel on the GPU. In the proposed format, the sparse matrix is divided 

into sub-blocks and each sub-block is stored in the CSR format. Each element of the vector will 

be stored in the cache, so it can be reused by different blocks, thus, reduced the global memory 
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access time. The developed kernel of the proposed format was implemented on GeForce GTX 480 

that is a Fermi GPU. It consists of a 16K/48K configurable cache on each SM. The developed 

kernel is 5x faster than the unblocked CSR kernel. 

Z. Wang and et al. [47] were working on optimizing the SpMV operation/kernel on NIVIDIA 

GPUs. They tried to optimize the sparse matrix vector multiplication kernel on NIVIDIA GPUs 

using the CUDA parallel computing platform. They tried to research the basic challenges with 

regard to performance in SpMV kernels. They focused on 3 main optimization factors that 

considered the application and the architectural characteristics: optimizing the CSR sparse matrix 

storage format, optimizing thread mapping, and avoiding divergence judgment. They implemented 

the developed optimizations on GeForce 9600 GTX GPU. They compared their approach to 

NVIDIA's SpMV library and NVIDIA's CUDDP library. Optimizing the SpMV kernel on 

NIVIDIA GPUs gained noticeable higher performance over other SpMV implementations. 

Accessing the memory in SpMV applications happens very frequently, that is why improving 

the performance of these applications is a challenging task. B. Neelima and et al. [48] proposed a 

model that can be used in order to detect and choose the best storage format for a sparse matrix. 

The predicted format by the model is the best high performing format when considering the pre-

processing time, CPU to GPU communication time and SpMV computation time on the GPU. The 

proposed model can predict the best format for any sparse matrix based on the input data that is 

available. The overhead added to the application is very small. The execution time difference 

varies from 7.5% to 159.9% when a random format is compared against a selected optimal format, 

for a few benchmark input matrices. 

P. Guo and et al. [49] proposed a performance model that can be used to predict the execution 

time of the SpMV kernel. They have developed a framework that can be used to partition a sparse 

matrix into multiple partitions and then store each partition in the appropriate storage format based 

on different storage characteristics. They integrated the partitioning framework with their previous 

auto-tuning framework in order to adjust some CUDA parameters so as to improve the 

performance of the SpMV kernels on the GPU. The partitioning approach was evaluated by using 

14 matrices on NVIDIA’s GeForce GTX 295. The developed approach has an average 
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performance improvement of 222%, 197%, and 33% for the CSR vector kernel, ELL kernel, and 

HYB kernel. They plan to improve their currently-developed performance model in order to 

predict matrix partitioning more accurately as well as improving and extending the current 

framework by including more SpMV kernels. 

S. Yan and et al. [50] developed a storage format for storing sparse matrices on the GPU in 

addition to updating the SpMV kernel that is based on the proposed format on the GPU using 

CUDA. The proposed format is called blocked compressed common coordinate (BCCOO). They 

extended the COO with blocking. They partitioned the sparse matrix vertically prior to using the 

proposed format in order to improve the locality for accesses to the vector. They also used a bit 

flag array instead of using the row index array. They developed a powerful matrix-based 

segmented sum/scan for the SpMV operation. They evaluated the proposed approach on 20 sparse 

matrices. The proposed approach outperforms other modern SpMV algorithms. It outperforms the 

vendor tuned CUSPARSE by up to 150% and 42% on average on GTX480 GPUs, by up to 229% 

and 65% on average on GTX680 GPUs. 

The Compressed Sparse Blocks (CSB) format [12] [13] [14] is used for storing sparse matrices. 

The CSB format partitions the n X n matrix into n2/z2 equal-sized z X z square blocks using a 

block size parameter z. The CSB format consists of the following: Value vector of length nnz. It 

stored all the non-zero elements of the sparse matrix. row_idx and col_idx vectors track the row 

index and the column index of each non-zero entry inside the Value vector with regard to the block, 

not the whole entire matrix. So row_idx and col_idx range from 0 to z – 1. Block_ptr vector stores 

the index of the first non-zero entry of each block inside the Value vector. 
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CHAPTER 6 

THE PROPOSED MODEL 

Before we started working on the proposed model, we have started out by implementing the 

most common and knows formats for storing sparse matrices on the CPU as well as on the GPU. 

These formats that have been developed are: 

 The Compressed Sparse Row (CSR) or Compressed Row Storage (CRS) Format. 

 The ELLPACK (ELL) Format. 

 The ELLPACK-R (ELL-R) Format. 

 The Sliced ELLPACK (Sliced ELL) Format. 

 The Sliced ELLPACK-R (Sliced ELL-R) Format. 

Also, we have developed the SpMV kernels for the previously mentioned formats on the CPU 

and on the GPU as well. 

The CI matrix is a sparse matrix that has a greatly-varying dimension length. It can be up to 107 

by 107 or even more. Generally speaking, the CI matrix includes two main regions, namely, the 

Reference region and the Expansion Space region. The Reference region occupies almost 10% of 

the whole CI matrix with sparsity ranging from 70% to 80%. The Reference region starts out from 

the left side of the CI matrix. The Expansion Space region occupies the remaining space of the CI 

matrix with extremely high sparsity, which is around 98% to 99%. 

The Proposed Storage Format: 

The proposed format is a combination of two formats: the ELLPACK format and the CSR 

format. Each single row in the matrix is divided up into two sections based on the value of 

BOUNDARY. For each single row, columns with column indices ranging from 0 to 

(BOUNDARY – 1) will be stored in the ELLPACK format and the rest of the row will be stored 

in the CSR format. The proposed format is illustrated in Figure 4. 
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Fig. 4. The Proposed Format 

The CSR format is very efficient with regard to using memory (storage space) since it does not 

require zero-padding like the ELLPACK format. Also, the CSR format provides high performance 

for SpMV operations on CPUs that have multiple cores [2]. On the other hand, the CSR format 

provides lower performance than the ELLPACK format on GPUs when it comes to SpMV because 

of the lack of coalesced access to global memory on the GPU. The ELLPACK format provides 

higher performance than the CSR format on the GPU [2]. 

The Reference region of the CI matrix represents most of the electronic structure and 

performance is an important factor in this part, consequently we are going to store the Reference 

region in the ELLPACK format. The Expansion Space region that occupies the rest of the CI 

matrix has a noticeable high sparsity, so storage space is crucial and critical in this part. The CSR 

format is very powerful regarding storage space, therefore the Expansion Space region will be 

stored in the CSR format. If we tried to store the Expansion Space region in the ELLPACK format, 

we will end up with a huge amount of zero-padding especially if one or more rows in the Expansion 

Space region was not/were not as sparse as the other rows in the same region. 

As we saw in the previous figure (Fig. 2), the value of BOUNDARY marks the end of the 

Reference region which is stored in the ELLPACK format and the beginning of the Expansion 

Space region which is stored in the CSR format. Algorithm 6 describes the proposed format that 

we have created. 
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______________________________________________________________________________ 

Algorithm 6 is about creating the proposed format. 

Input: 

 Mat: The original matrix. 

 AllNonZerosCount: The count of all the non-zero entries per row. 

Output: 

 NonZerosEntries Matrix: All the non-zero entries that are stored in the ELLPACK format. 

 ELLPACK_Column Matrix: The column index of each non-zero entry that is stored in the 

ELLPACK format. 

 Value Vector: All the non-zero entries that are stored in the CSR format. 

 CSR_Column Vector: The column index of each non-zero entry that is stored in the CSR 

format. 

 StartArr: The index of the first non-zero entry of each row in the "value" array. 

 EndArr: The (index + 1) of the last non-zero entry of each row in the "Value" array. 

 

CreateFormat(Mat, NonZerosEntries, ELLPACK_Column, Value, CSR_Column, 

AllNonZerosCount, StartArr, EndArr) 

for i ← 0 to ROWS – 1 do 

  c = 0 

  GotIt = 0 

  for j ← 0 to COLS – 1 do 

    if Mat[i][j] != 0.00 then 

      if c < BOUNDARY 

        NonZerosEntries[r][c] = Mat[i][j] 

        ELLPACK_Column[r][c]  = j 

        c++ 

      else  

        Value[Index] = Mat[i][j] 

        CSR_Column[Index] = j 

        if GotIt = 0 

          GotIt = 1 

          Start = Index 

        Index++ 

  r++ 

  if AllNonZerosCount[i] > BOUNDARY 

    End = Index 

    StartArr[i] = Start 

    EndArr[i] = End 

Algorithm 6. The proposed format. 
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The proposed model can calculate the amount of allocated memory that the proposed format 

uses. The space allocated to the proposed storage format can be calculated through the following 

equation: 

Storage Space = (3 * ROWS * sizeof(unsigned int)) + (ROWS * BOUNDARY * sizeof(double)) 

+ ROWS * BOUNDARY * sizeof(int)) + (CSRNonZeros * sizeof(double)) + (CSRNonZeros * 

sizeof(unsigned int)). 

Where: 

ROWS: The number of rows in the matrix. 

BOUNDARY: A divider between the Reference region (ELLPACK format) and the Expansion 

Space region (CSR format). It marks the end of the Reference region and the start of the Expansion 

Space region. 

CSRNonZeros: The number of non-zero entries in the Expansion Space region. 

The space allocated to the CSR storage format can be calculated through the following equation: 

Storage Space = (AllNonZeros * sizeof(double)) + (AllNonZeros * sizeof(unsigned int)) + 

((ROWS + 1) * sizeof(unsigned int)). 

Where: 

AllNonZeros: The number of non-zero entries in the matrix. 

ROWS: The number of rows in the matrix. 

The space allocated to the ELLPACK storage format can be calculated through the following 

equation: 

Storage Space = (ROWS * MaxNonZeros * sizeof(double)) + (ROWS * MaxNonZeros * 

sizeof(int)). 
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Where: 

ROWS: The number of rows in the matrix. 

MaxNonZeros: The length of the longest non-zero entry row in the matrix. 

The Sliced ELLPACK Format was created in order to deal with the redundancy problem that 

exists in the ELLPACK Format. In this format, the matrix will be divided into submatrices 

(sometimes called slices) and then each submatrix will be stored in the ELLPACK format. The 

storage spaced that is allocated to the Sliced ELLPACK format will be the sum of the storage 

spaces that are allocated to the submatrices that make up the Sliced ELLPACK format. The sliced 

ELLPACK format takes less storage space than the ELLPACK format. 

The Developed SpMV Kernel: 

The proposed storage format is used by our developed Warp-Based SpMV Kernel. The 

proposed SpMV kernel is a single SpMV vector kernel that assigns a warp to each single row in 

the Reference region and assigns another warp to each single row in the Expansion Space region. 

Although scalar kernels (one thread per row) are relatively straightforward and provide reasonable 

performance, there is a big disadvantage that comes with them, when a thread accesses the 

elements of the storage format (by the storage format, we mean the vector that stores the values 

and the vector that stores the column indices), it accesses them in a sequential way. Every thread 

does not access these vectors simultaneously although they are stored in a contiguous fashion in 

the format, the matter that could have a negative effect on performance. 

We overcame this problem when we developed the proposed SpMV kernel. The proposed 

SpMV kernel is a vector kernel that uses the warp approach, each row in each of the two regions 

of the storage format (Reference and Expansion Space regions) is accessed by a warp (32 threads), 

so in total, we have 2 warps that access each matrix row. The vector kernel eliminates the problem 

that is inherent in the scalar kernel (the threads’ sequential access to the values in the storage 

format). The order that Warps access the memory is difficult to determine and also does not affect 

performance. Also, all warps execute independently in vector kernels, therefore thread divergence 

is less pronounced. 
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Each warp in the proposed SpMV kernel mandates coordination among the 32 threads that are 

within it, we achieved this using the atomicAdd() function. The atomicAdd() function provides a 

level of synchronization to the kernel, it reads a memory location and updates it and then stores 

the result back into the same location. Every thread has to wait on accessing that memory location 

until the atomicAdd() function is finished. 

The proposed format uses a single SpMV kernel although it’s a combination of two different 

formats (The ELLPACK format and the CSR format). Algorithm 7 describes the SpMV kernel for 

the proposed format. 
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_____________________________________________________________________________ 

Algorithm 7 is the SpMV kernel for the proposed format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries that are stored in the ELLPACK format. 

 ELLPACK_Column Matrix: The column index of each non-zero entry that is stored in the 

ELLPACK format. 

 Value Vector: All the non-zero entries that are stored in the CSR format. 

 CSR_Column Vector: The column index of each non-zero entry that is stored in the CSR 

format. 

 StartArr: The index of the first non-zero entry of each row in the "value" array. 

 EndArr: The (index + 1) of the last non-zero entry of each row in the "Value" array. 

 AllNonZerosCount: The count of all the non-zero entries per row. 

 Vector: The vector that the matrix will be multiplied by. 

Output: 

 Result: The result of the SpMV process. 
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SpMV_Hybrid_ELLPACKandCSR(NonZerosEntries, ELLPACK_Column, Value, CSR_Column, 

StartArr, EndArr, AllNonZerosCount, Vector, Result) 

Thread_id ← (blockDim.x * blockIdx.x) + threadIdx.x 

Warp_id ← Thread_id / 32 

Th_Wa_Id ← Thread_id % 32 

define ShMem1[32] // Shared Memory 

define ShMem2[32] // Shared Memory 

initialize ShMem1 

initialize ShMem2 

if Warp_id < ROWS then 

  ShMem1[threadIdx.x] = 0.00 

  for r2 ← 0 + Th_Wa_Id  to BOUNDARY – 1 STEP=32 do 

    ShMem1[threadIdx.x] ← ShMem1[threadIdx.x] + (NonZerosEntries[Warp_id][r2] * 

Vector[ELLPACK_Column[Warp_id][r2]]) 

 

  //Warp-level reduction for the ELLPACK format: 

if Th_Wa_Id  < 16 

    ShMem1[threadIdx.x] ←(SynchronousAdd) ShMem1[threadIdx.x] + ShMem1[threadIdx.x + 16] 

if Th_Wa_Id  < 8 

  ShMem1[threadIdx.x] ←(SynchronousAdd) ShMem1[threadIdx.x] + ShMem1[threadIdx.x + 8] 

if Th_Wa_Id  < 4 

  ShMem1[threadIdx.x] ←(SynchronousAdd) ShMem1[threadIdx.x] + ShMem1[threadIdx.x + 4] 

if Th_Wa_Id  < 2 

  ShMem1[threadIdx.x] ←(SynchronousAdd) ShMem1[threadIdx.x] + ShMem1[threadIdx.x + 2] 

if Th_Wa_Id  < 1 

  ShMem1[threadIdx.x] ←(SynchronousAdd) ShMem1[threadIdx.x] + ShMem1[threadIdx.x + 1] 

  

if AllNonZerosCount[Warp_id] > BOUNDARY then 

  Start ← StartArr[Warp_id] 

  End ← EndArr[Warp_id] 

  ShMem2[threadIdx.x] = 0.00 

  for j ← Start + Th_Wa_Id  to End – 1 STEP=32 do 

    ShMem2[threadIdx.x] ← ShMem2[threadIdx.x] + (Value[j] * Vector[CSR_Column[j]]) 

 

  //Warp-level reduction for the CSR format: 

  if Th_Wa_Id  < 16 

    ShMem2[threadIdx.x] ←(SynchronousAdd) ShMem2[threadIdx.x] + ShMem2[threadIdx.x + 16] 

  if Th_Wa_Id  < 8 

    ShMem2[threadIdx.x] ←(SynchronousAdd) ShMem2[threadIdx.x] + ShMem2[threadIdx.x + 8] 

  if Th_Wa_Id  < 4 

    ShMem2[threadIdx.x] ←(SynchronousAdd) ShMem2[threadIdx.x] + ShMem2[threadIdx.x + 4] 

  if Th_Wa_Id  < 2 

    ShMem2[threadIdx.x] ←(SynchronousAdd) ShMem2[threadIdx.x] + ShMem2[threadIdx.x + 2] 

  if Th_Wa_Id  < 1 

    ShMem2[threadIdx.x] ←(SynchronousAdd) ShMem2[threadIdx.x] + ShMem2[threadIdx.x + 1] 

  if Th_Wa_Id  = 0 

    // Writing the results 

    Result[Warp_id] ← Result[Warp_id] + ShMem1[threadIdx.x] + ShMem2[threadIdx.x] 

Algorithm 7. The SpMV kernel for the proposed format. 
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Thread_id is the index of each thread within the whole entire grid, Warp_id is the index of each 

warp within the grid, and Th_Wa_Id is the index of each thread inside the warp. 

The overall memory is efficiently used throughout the use of shared memory. The shared 

memory (so much faster than global memory) is useful if you access the data transferred to it more 

than once (which happens in the proposed model), using good access patterns, to have it help. If 

you access the data once, then the shared memory is not going to be useful. We computed the 

running sum for each thread in the Reference region by copying intermediate results to the shared 

memory (SharedMem1). We did the same thing with the Expansion Space region by copying 

intermediate results to the shared memory (SharedMem2). For the Reference region and the 

Expansion Space region, we had to perform parallel reduction in SharedMem1 and SharedMem2. 

The global memory is not accessed by every thread within the warp, instead we let the first thread 

in the warp (Th_Wa_Id = 0) access the global memory and write the results back to it by copying 

them from the shared memory (SharedMem1 and SharedMem2) to the global memory. 

The proposed model generates some information about the CI matrix itself, i.e., the number of 

non-zero elements in the whole entire matrix, the number of non-zero elements in the Reference 

region (ELLPACK format), the number of non-zero elements in the Expansion Space region (CSR 

format), the number of non-zero elements in each row of the matrix, the number of non-zero 

elements in each row of the Reference region, the number of non-zero elements in each row of the 

Expansion Space region. It also outputs the length of the longest non-zero entry row in the whole 

entire matrix and its order as well. In addition to that, the proposed model calculates the amount 

of allocated memory that is used by the proposed format and the execution time that is consumed 

by the SpMV kernel. In addition to the results of the SpMV operation, the proposed model can 

produce the components of each of the storage formats (The ELLPACK format and the CSR 

format) that compose the hybrid format, if the user wanted to. 

CUDA offers a relatively light-weight alternative to CPU timers via the CUDA event API. The 

CUDA event API includes calls to create and destroy events, record events, and compute the 

elapsed time in milliseconds between two recorded events. CUDA events are of type cudaEvent_t 

and are created and destroyed with cudaEventCreate() and cudaEventDestroy(). In the following 
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example, cudaEventRecord() places the start and stop events into the default stream, stream 0. The 

device will record a time stamp for the event when it reaches that event in the stream. The function 

cudaEventSynchronize() blocks CPU execution until the specified event is recorded. The 

cudaEventElapsedTime() function returns in the first argument the number of milliseconds time 

elapsed between the recording of start and stop. This value has a resolution of approximately one 

half microsecond. 

Example: 

cudaEvent_t Start, End; 

float ExecutionTime = 0.00f; 

cudaEventCreate(&Start); 

cudaEventCreate(&End); 

cudaEventRecord(Start); 

(void) SpMV_Hybrid_ELLPACKandCSR<<<GridDim, BlockDim>>>(d_NonZerosEntries, 

d_ELLPACK_Column, d_Value, d_CSR_Column, d_StartArr, d_EndArr, d_AllNonZerosCount, 

d_Vector, d_Result); 

cudaEventRecord(End); 

cudaEventSynchronize(End); 

cudaEventElapsedTime(&ExecutionTime, Start, End); 

The Sliced ELLPACK Format was created in order to deal with the redundancy problem that 

exists in the ELLPACK Format. In this format, the matrix will be divided into submatrices 

(sometimes called slices) and then each submatrix will be stored in the ELLPACK format. The 

storage spaced that is allocated to the Sliced ELLPACK format will be the sum of the storage 

spaces that are allocated to the submatrices that make up the Sliced ELLPACK format. The sliced 

ELLPACK format takes less storage space than the ELLPACK format. 
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There is a variation of the proposed format that we have already developed. This variation is 

similar to the proposed format except the fact that instead of using the ELLPACK format, we used 

the Sliced ELLPACK format. This variation is a combination of two formats: the Sliced 

ELLPACK format and the CSR format [3]. The matrix has to be divided first into submatrices 

(slices). Each single row in slice_n is divided into two sections based on the value of 

BOUNDARY_n. For each single row in slice_n, columns with column indices ranging from 0 to 

(BOUNDARY_n – 1) will be stored in the Sliced ELLPACK format and the rest of the row will 

be stored in the CSR format. This format is illustrated in Figure 5. 

 

Fig. 5. A Variation of the Proposed Model 

Algorithm 8 describes the SpMV kernel for a variation of the proposed format that we just 

discussed. 
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______________________________________________________________________________ 

Algorithm 8 is the SpMV kernel for a variation of the proposed format. 

Input: 

 NonZerosEntries Matrix: All the non-zero entries that are stored in the ELLPACK format in 

the slice. 

 ELLPACK_Column Matrix: The column index of each non-zero entry that is stored in the 

ELLPACK format in the slice. 

 Value Vector: All the non-zero entries that are stored in the CSR format in the slice. 

 CSR_Column Vector: The column index of each non-zero entry that is stored in the CSR 

format in the slice. 

 StartArr: The index of the first non-zero entry of each row in the "value" array in the slice. 

 EndArr: The (index + 1) of the last non-zero entry of each row in the "Value" array in the 

slice. 

 AllNonZerosCount: The count of all the non-zero entries per row in the slice. 

 Vector: The vector that the matrix will be multiplied by. 

 Rows: The number of rows in the slice. 

 Boundary: A divider between the ELLPACK format and the CSR format in the slice. It marks 

the end of the ELLPACK format and the start of the CSR format in the slice. 

Output: 

 Result: The result of the SpMV process for the slice. 

 

SpMV_Hybrid_SlicedELLPACKandCSR(NonZerosEntries, ELLPACK_Column, Value, 

CSR_Column, StartArr, EndArr, AllNonZerosCount, Vector, Result, Rows, Boundary) 

for r1 ← 0 to Rows – 1 do 

  for r2 ← 0 to Boundary – 1 do 

    if ELLPACK_Column [r1][r2] = -1 then 

    exit for loop 

    Temp ← Temp + (NonZerosEntries[r1][r2] * Vector[ELLPACK_Column[r1][r2]]) 

  if AllNonZerosCount[r1] > Boundary then 

    Start ← StartArr[r1] 

    End   ← EndArr[r1] 

    for j ← Start to End – 1 do 

      Temp ← Temp + (Value[j] * Vector[CSR_Column[j]]) 

  Result[r1] ← Temp 

  Temp       ← 0.00 

Algorithm 8. The SpMV kernel for a variation of the proposed format. 

 

  



 
 

62 
 

CHAPTER 7 

THE EXPERIMENTAL RESULTS 

System Configuration: 

The proposed format and the developed kernel were both developed on Hodor supercomputer. 

Hodor has 33 compute nodes in total. 1 compute node is the head node. 16 out of the 33 compute 

nodes have NIVIDIA K20m GPUs. The remaining 16 compute nodes have Intel® Xeon Phi™ co-

processor. The 16 compute nodes that have NIVIDIA K20m GPUs can be used to process CUDA 

code. Each compute node has the following configurations: 

 2x 3.3 GHZ Sandy Bridge CPU. Each CPU has 4 cores. 

 NIVIDIA K20m GPU card or Intel® Xeon Phi™ co-processor card. 

 64 GB of memory. 

 150 GB RAID 1 7.2 K RPM storage hard drives. 

 Linux Red Hat operating system RHEL 7.0. 

Hodor supercomputer has an external 10 Gbps Ethernet communications network. In addition 

to that, it has an internal 56 Gbps Internal FDR InfiniBand network between the compute nodes. 

CUDA can be used in order to list the GPU properties. Code 3 and Code 4 in Appendix 2 list 

some of the GPU properties on Hodor. The output is illustrated in table 3 below: 
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Name Tesla K20m 

Major revision number 3 

Minor revision number 5 

Maximum memory pitch 2147483647 

Clock rate 705500 

Texture alignment 512 

Concurrent copy and execution Yes 

Kernel execution timeout enabled No 

Number of multiprocessors 13 

The maximum number of threads per multiprocessor 2048 

The maximum number of threads per block 1024 

The maximum sizes of each dimension of a block (x, y, z) 1024, 1024, 64 

The maximum sizes of each dimension of a grid (x, y, z) 2147483647, 65535, 65535 

The total number of registers available per block 65536 

The total amount of shared memory per block (Bytes) 49152 

The total amount of constant memory (Bytes) 65536 

The total amount of global memory (Bytes), (Gigabytes) 4972937216, 4.631409 

Warp size (Threads) 32 

TABLE 3: GPU Properties 

The following figure (figure 6) is an illustration of the Hodor supercomputer. It shows the total 

33 nodes (1 head nodes and 32 compute nodes) in addition to the internal as well as the external 

networks: 



 
 

64 
 

Fig. 6. Hodor Supercomputer 
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The Results: 

We have tested the proposed model with some simple and relatively large sparse matrices. We 

have compared the proposed format to the other common format using different-sized sparse 

matrices. Besides, we have compared the proposed kernel to the cuSPARSE library and the CSR5 

(Compressed Sparse Row 5) format. The comparison was based on two main factors: the amount 

of used memory and performance. 

The output of the proposed model is very inclusive and comprehensive. It gives a lot of details 

about the format that is being used to store the sparse matrix on the GPU as well as the results of 

the SpMV operation. The information presented in the output is very intensive and elaborate. 

The sparse matrices that we used for testing are generated from one of the modules that is a part 

of the UNDMOL package. The dimensions (the number of rows and the number of columns) of 

the CI sparse matrix are the primary parameters to the program for the sake of generating CI sparse 

matrices. The program will ask for the sparsity of the reference region and the sparsity of the 

expansion space region to fully generate CI sparse matrices. The CI sparse matrices that we used 

for testing were generated with different sparsities that led to different number of non-zero 

elements. 

We started out by using 10 CI sparse matrices for testing. Each sparse matrix is a 32768 by 

32768 matrix (32768 rows and 32768 columns). Each single matrix out of the 10 matrices was 

stored in different storage formats, namely the CSR format, the ELLPACK format, the Sliced 

ELLPACK format, and finally, the proposed format. We compared the proposed format to the 

other mentioned formats in terms of memory usage. We also compared the execution time of the 

proposed SpMV kernel to the execution times of the cuSPARSE library and the CSR5 

(Compressed Sparse Row 5) format. 

Table 4 demonstrates some general information about the 10 testing sparse matrices that will 

be stored in the proposed storage format. This information is about the number of non-zero entries 

in the Reference region, the number of non-zero entries in the Expansion Space region, and the 

total number of non-zero entries in the whole entire sparse matrix. 
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The last column of table 4 identifies the length of the longest non-zero entry row, in another 

way, the length of the row that has the largest number of non-zero elements in the whole entire 

sparse matrix. It also identifies the Row_Number of that row. Figure 7 shows the total number of 

non-zero entries in each of the 10 CI sparse matrices in a graphical way. 

Rows: 

Row n: An individual CI sparse matrix. 

Cols: 

Ref. Non-Zeros: The number of non-zero elements in the Reference Region. 

Exp. Space Non-Zeros: The number of non-zero elements in the Expansion Space Region. 

Total Non-Zeros: The total number of non-zero elements in the whole entire sparse matrix. 

Length of the Longest Non-Zero Row - Row No.: The length of the longest non-zero entry row 

– The row number. 

 Ref. Non-

Zeros 

Exp. Space Non-

Zeros 

Total Non-

Zeros 

Length of the Longest 

Non-Zero Row - Row 

No. 

Matrix 1 21,463,040 9,678,327 31,141,367 1074 - 5314 

Matrix 2 21,463,040 9,673,031 31,136,071 1069 - 6144 

Matrix 3 21,463,040 9,666,827 31,129,867 1078 - 22358 

Matrix 4 21,463,040 9,670,529 31,133,569 1068 - 21549 

Matrix 5 21,463,040 9,669,733 31,132,773 1060 - 4233 

Matrix 6 21,463,040 9,673,530 31,136,570 1069 - 28394 

Matrix 7 21,463,040 9,666,857 31,129,897 1079 - 21836 

Matrix 8 21,463,040 9,670,234 31,133,274 1077 - 20148 

Matrix 9 21,463,040 9,661,419 31,124,459 1067 - 12787 

Matrix 10 21,463,040 9,670,316 31,133,356 1064 - 25678 

TABLE 4: The Proposed Storage Format Information 



 
 

67 
 

 

Fig. 7. Total Non-Zeros 

Table 5 has some information about the sparsities of the 10 testing sparse matrices that will be 

stored in the proposed storage format. For each sparse matrix, it presents the sparsity of the 

Reference region, the sparsity of the Expansion Space region, and the overall total sparsity of the 

sparse matrix. Figure 8 shows the total sparsity of each of the 10 CI sparse matrices in a graphical 

way. 

Rows:  

Row n: An individual CI sparse matrix. 

Cols: 

Ref. Region Spar. (%): The sparsity of the Reference region. 

Exp. Space Region Spar. (%): The sparsity of the Expansion Space region. 

Total Spar. (%): The overall total sparsity of the sparse matrix. 
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 Ref. Region 

Spar. (%) 

Exp. Space 

Region Spar. (%) 

Total Spar. 

(%) 

Matrix 1 80.0110 98.9985 97.0997 

Matrix 2 80.0110 98.9990 97.1002 

Matrix 3 80.0110 98.9997 97.1008 

Matrix 4 80.0110 98.9993 97.1005 

Matrix 5 80.0110 98.9994 97.1005 

Matrix 6 80.0110 98.9990 97.1002 

Matrix 7 80.0110 98.9997 97.1008 

Matrix 8 80.0110 98.9993 97.1005 

Matrix 9 80.0110 99.0002 97.1013 

Matrix 10 80.0110 98.9993 97.1005 

TABLE 5: Matrices Sparsities Information 

 

 

Fig. 8. Matrices Total Sparsities Information 

Table 6 compares the amount of memory used (in MB) by the proposed format to the amount of 

memory used by the CSR format, the ELLPACK format, and the Sliced ELLPACK formats. 

Figure 9 presents the same previous information (memory usage) in a graphical way. 
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Cols: 

CSR: The amount of memory used by the CSR format. 

ELL: The amount of memory used by the ELLPACK format. 

Sliced ELLPACK: The amount of memory used by the Sliced ELLPACK format. 

Pro. Model: The amount of memory used (in MB) by the proposed format. 

 CSR ELL Sliced ELLPACK Pro. Model 

Matrix 1 356.439 407.250 397.125 356.759 

Matrix 2 356.460 398.25 395.062 356.699 

Matrix 3 356.387 405.75 404.437 356.628 

Matrix 4 356.488 403.875 397.031 356.670 

Matrix 5 356.394 399.375 395.062 356.661 

Matrix 6 356.381 399.75 397.593 356.704 

Matrix 7 356.446 400.875 396.937 356.628 

Matrix 8 356.510 401.25 396.562 356.667 

Matrix 9 356.433 402.75 398.25 356.566 

Matrix 10 356.437 405 403.125 356.667 

Average 356.438 402.413 398.118 356.665 

TABLE 6: Memory Usage 

 

Fig. 9. Memory Usage 
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In the following sections, performance will be the main point. We will discuss and analyze the 

performance of the proposed kernel and compare it to the other kernels. 

The number of threads per block (block size) you choose can and does effect the performance 

of the code that is running on the hardware. How each code behaves will be different and the only 

right way to quantify it, is by careful benchmarking and profiling. You should be aware that the 

block size you choose can and does have an impact on how fast your code will run, but it depends 

on the hardware you have and the code you are running. The number of threads per block should 

be a multiple of the warp size, which is 32 on all current hardware. In CUDA, in order to get the 

warp size for device number DevNo, you can use the following pseudocode: 

cudaDeviceProp DeviceProp_var 

cudaGetDeviceProperties(DeviceProp_var, DevNo) 

Print DeviceProp_var.warpSize 

We are planning on using different values for the size of the block and then run our proposed 

CUDA SpMV kernel. Next, we will try to pick the block size that has the highest performance on 

the GPU. We tried 3 different block sizes for testing: 16, 32, and 64. Finally, we will compare the 

proposed SpMV kernel with the best block size to the cuSPARSE library and the CSR5 

(Compressed Sparse Row 5) format. 

We used nvprof [54] which is a visual profiler developed by NIVIDIA, in order to analyze and 

view some performance data from the command line. We ran the proposed SpMV kernel with a 

block size (blockDim) of 16 and analyzed the performance using the nvprof tool. We used the 

nvprof tool while running the SpMV kernel using block sizes of 32 and 64 as well. 

A subset of the output from the nvprof tool when we ran the proposed SpMV kernel using a 

block size of 16 is illustrated in table 7. We had run the nvprof visual profiler 5 times. 

  



 
 

71 
 

Rows: 

Each row presents a single test case. 

Cols: 

min: The min time (in ms) that the profiler uses for running the kernel using a block size of 16. 

max: The max time (in ms) that the profiler uses for running the kernel using a block size of 16. 

avg: The avg time (in ms) that the profiler uses for running the kernel using a block size of 16. 

 

Block Size min max avg 

16 4.8877 ms 4.8877 ms 4.8877 ms 

16 4.8884 ms 4.8884 ms 4.8884 ms 

16 4.8891 ms 4.8891 ms 4.8891 ms 

16 4.8882 ms 4.8882 ms 4.8882 ms 

16 4.8870 ms 4.8870 ms 4.8870 ms 

Average 4.8881 ms 

TABLE 7: Running the nvprof profiler with a Block Size of 16 

Table 8 illustrates a subset of the output from the nvprof tool when we ran the proposed SpMV 

kernel using a block size of 32. We had run the nvprof visual profiler 5 times. 

Rows: 

Each row presents a single test case. 

Cols: 

min: The min time (in ms) that the profiler uses for running the kernel using a block size of 32. 

max: The max time (in ms) that the profiler uses for running the kernel using a block size of 32. 

avg: The avg time (in ms) that the profiler uses for running the kernel using a block size of 32. 
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Block Size min Max avg 

32 3.2847 ms 3.2847 ms 3.2847 ms 

32 3.2838 ms 3.2838 ms 3.2838 ms 

32 3.2843 ms 3.2843 ms 3.2843 ms 

32 3.2834 ms 3.2834 ms 3.2834 ms 

32 3.2859 ms 3.2859 ms 3.2859 ms 

Average 3.2844 ms 

TABLE 8: Running the nvprof profiler with a Block Size of 32 

Table 9 illustrates a subset of the output from the nvprof tool when we ran the proposed SpMV 

kernel using a block size of 64. We had run the nvprof visual profiler 5 times. 

Rows: 

Each row presents a single test case. 

Cols: 

min: The min time (in ms) that the profiler uses for running the kernel using a block size of 64. 

max: The max time (in ms) that the profiler uses for running the kernel using a block size of 64. 

avg: The avg time (in ms) that the profiler uses for running the kernel using a block size of 64. 

Block Size min max avg 

64 3.5451 ms 3.5451 ms 3.5451 ms 

64 3.5424 ms 3.5424 ms 3.5424 ms 

64 3.5437 ms 3.5437 ms 3.5437 ms 

64 3.5410 ms 3.5410 ms 3.5410 ms 

64 3.5448 ms 3.5448 ms 3.5448 ms 

Average 3.5434 ms 

TABLE 9: Running the nvprof profiler with a Block Size of 64 

In the previous experiments, we used the nvprof visual profiler while executing the proposed 

SpMV kernel and we considered different block sizes or different number of threads in each block. 

We tried 3 different block sizes, 16, 32, and 64. When the block size was set to 16, the average 

performance of the proposed SpMV kernel using the nvprof visual profiler was 4.8881 ms. When 

the block size was set to 32, the average performance of the proposed SpMV kernel using the 

nvprof visual profiler was 3.2844 ms. When the block size was set to 64, the average performance 
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of the proposed SpMV kernel using the nvprof visual profiler was 3.5434 ms. The information 

presented in Table 7, Table 8, and Table 9, show that using the nvprof visual profiler while running 

the proposed SpMV kernel using a block size of 32 gives us the best performance, so we will 

consider this block size for testing. 

In the next section, we tried to compare our proposed kernel to the cuSPARSE [52] library and 

the CSR5 (Compressed Sparse Row 5) format [53]. The cuSPARSE library was developed by 

NIVIDIA in order to perform linear algebra operations on matrices and vectors. It has already 

implemented subroutines that deal with the SpMV operation and it is easy to use. The cuSPARSE 

library supports multiple data types, i.e., float, double, cuComplex, and cuDoubleComplex. The 

cuSPARSE library supports multiple matrix data formats, i.e., the CSR format, the CSC format, 

the COO format, and the hybrid format which is a combination of 2 formats, the COO and the 

ELLPACK formats. 

We used the cusparseDcsrmv() subroutine of the cuSPARSE library for the SpMV operation. 

The “D” portion in the subroutine name refers to the data type of the sparse matrix’s elements and 

the vector’s elements, which is double “double precision“, the “mv” portion refers to the fact that 

we multiply a matrix by a vector. If the elements of the sparse matrix and the vector are of type 

float “single precision”, then we can use the cusparseScsrmv() subroutine. The subroutines 

cusparseCcsrmv() and cusparseZcsrmv() deal with single precision and double precision complex 

numbers. The cuSPARSE library also supports matrix-matrix multiplication throughout the 

cusparseDcsrmm() subroutine that multiplies a sparse matrix (commonly a flat sparse matrix) by 

a dense matrix (commonly a tall dense matrix). 

The CSR5 format [53] is insensitive to the sparsity structure of the sparse matrix. The SpMV 

kernel of the CSR5 format has high throughput on various platforms (CPU, the GPU, and Xeon 

Phi). 

Table 10 compares the performance (in millisecond “ms”) of the proposed SpMV kernel to the 

performance of the cuSPARSE library and the CSR5 format. In this case, the block size 

(blockDim) is set to 32 for our proposed SpMV kernel, which means that each block will contain 



 
 

74 
 

32 threads. We ran the 3 SpMV kernels on the GPU and listed the results in the following table 

(Table 10). Figure 10 presents the same previous information (performance with a block size of 

32) in a graphical way. 

Rows: 

Row n: An individual CI sparse matrix. 

Cols: 

cuSPARSE: The performance (in millisecond “ms”) of the cuSPARSE library. 

CSR5: The performance (in millisecond “ms”) of the CSR5 format. 

The Prop. Model: The performance (in millisecond “ms”) of the proposed SpMV kernel. 

 cuSPAR

SE 

CSR5 The Prop. 

Model 

Matrix 1 12.6567 7.3672 3.3661 

Matrix 2 12.8334 8.1694 3.3573 

Matrix 3 12.1227 7.8954 3.4127 

Matrix 4 13.1043 8.2654 3.5434 

Matrix 5 13.4352 8.1489 3.8167 

Matrix 6 12.3672 8.2336 3.1884 

Matrix 7 13.2559 8.3962 3.3655 

Matrix 8 13.1655 7.3672 3.3784 

Matrix 9 12.8985 8.5934 4.1836 

Matrix 10 13.3568 7.8349 3.3471 

Average 12.9196 8.0272 3.3661 

TABLE 10: Performance with a Block Size of 32 
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Fig. 10. Performance with a Block Size of 32 

Since block size of 32 showed better performance, we tried to use it with bigger matrices. 

Subsequently, we tried to execute the proposed SpMV kernel using bigger matrices (1048576 by 

1048576). We used the same block size which is 32. Table 10 compares the performance (in second 

“s”) of the proposed SpMV kernel to the cuSPARSE library and the CSR5 format using 10 

different 1048576 by 1048576 CI sparse matrices. We ran the proposed SpMV kernel, the 

cuSPARSE library, and the CSR5 format on the GPU and listed the results in table 11. Figure 11 

presents the same previous information (performance in seconds with a block size of 32 using 10 

different 1048576 by 1048576 CI sparse matrices) in a graphical way. 

Rows: 

Row n: An individual CI sparse matrix. 

Cols: 

cuSPARSE: The performance (in millisecond “ms”) of the cuSPARSE library. 

CSR5: The performance (in millisecond “ms”) of the CSR5 format. 

The Prop. Model: The performance (in millisecond “ms”) of the proposed SpMV kernel. 
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 cuSPARSE CSR5 The Prop. Model 

Matrix 1 11.9564 7.8736 3.1583 

Matrix 2 12.3787 8.2376 2.9672 

Matrix 3 12.4513 9.5462 3.1987 

Matrix 4 13.5645 7.9456 2.7761 

Matrix 5 12.6587 7.9348 3.3762 

Matrix 6 12.7457 7.1764 2.9376 

Matrix 7 12.4874 7.3672 2.8729 

Matrix 8 12.4138 7.6327 3.6534 

Matrix 9 12.0845 8.3432 3.6249 

Matrix 10 13.0198 7.7482 3.2653 

Average 12.5761 7.9806 3.1831 

TABLE 11: Performance with a Block Size of 32 Using 10 Different 1048576 by 1048576 CI 

Sparse Matrices 

 

 

Fig. 11. Performance with a Block Size of 32 Using 10 Different 1048576 by 1048576 CI Sparse 

Matrices 

In general, with regard to memory usage, the proposed format used less memory than the 

ELLPACK format and the Sliced ELLPACK format and was too close to the CSR format. In terms 

of performance, the proposed kernel gained better performance than the cuSPARSE library and 

the CSR5 (Compressed Sparse Row 5) format when we used a block size of 32. The proposed 

SpMV kernel outperform the other kernels and we already showed that. If we tried to use the scalar 

ELLPACK kernel for our proposed model, the performance would have been very low since the 
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number of non-zero entries in each row of the sparse matrix is not the same, the matter that leads 

to slowing the performance down significantly on the GPU. In the proposed model, the number of 

non-zero entries in each row of the ELLPACK format is guaranteed to be close, since each row 

starts out with the ELLPACK format’s (Reference region) elements followed by the CSR format’s 

elements, hence this guarantees high performance. 

The CI sparse matrices are a special type of square sparse matrices that have a greatly-varying 

dimension length, they can be up to 107 by 107 or even more. CI sparse matrices have the same 

structure in terms of having 2 regions (the Reference Region and the Expansion Space Region) 

with 2 different sparsities. We used 20 matrices for testing, the first 10 matrices were 32768 by 

32768, and the other 10 matrices were 1048576 by 1048576. For the first 10 matrices, they have 

different number of non-zero elements as illustrated in table 3. The sparsities in table 4 look close 

because these matrices have a huge number of elements (1073741824) and when dividing the 

number of zero elements by that number in order to get the total sparsity of each CI sparse matrix, 

the resulting percentages will look very close which holds true for most CI matrices. 

In the previous part, we compared the performance of the proposed kernel to the performance 

of the cuSPARSE library and the CSR5 format. Generally speaking, the value of the generated 

error when we deal with different applications might not be the same even if all the applications 

use double precision. This applies to our case since we are comparing our proposed kernel to 2 

different kernels (or applications) that use double precision, however the SpMV problem is 

considered an eigenvalue problem and the error in energy will always be ε2 not ε. 
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CHAPTER 8 

QUATERNIONS 

Quaternions were created by William Rowan Hamilton, an Irish mathematician in 1843 [64]. 

He was trying to answer the question: What is the result of dividing a three-dimensional vector by 

another three dimensional-vector? 

Quaternions are 4-dimensional objects that extend complex numbers. Generally, we go from 

scalars to complex numbers and from complex numbers to quaternions. We can look at quaternions 

as complex numbers whose components are complex numbers. When we move from complex 

numbers to quaternions, objects are no longer fields, whereas they algebraically form a semi-ring 

[66]. 

We can describe molecular symmetry in terms of quaternions since quaternions can be used to 

rotate any object, e.g. cartesian coordinates of nuclei, to a different frame. In particular, quaternions 

can be used to orient any molecule into a preferential, or “standard”, orientation in which chemists 

are accustomed to describing symmetry [65]. 

Quaternions can be used to display objects that have more structure than the point-like nuclei. 

They can provide a more compact representation of 3-dimensional objects (such as the basis 

functions that are attached to nuclei in typical quantum chemistry calculations), and it is in this 

context that quaternions have seen use in different computational areas, such as image processing 

[67]. One consequence is that memory access times can be less than by less compact 

representations. The real challenge that will be faced when dealing with quaternions is 

performance. 

Quaternions as an algebraic system can be expected to be an efficacious description of objects 

in quantum physics. Specifically, since quaternions are non-commutative (i.e., the result of 

multiplying two quaternions depends on their order), they naturally capture the non-commutative 

nature of many operators in quantum mechanics. 
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Moreover, one can suspect that quaternions will also be useful in describing rotations of 

multidimensional basis functions, such as those found in describing electron correlation, e.g. by   

Configuration Interaction (CI).  In an extrapolation from the relatively well understood rotations 

of simple objects in 3-dimensional space, such as points or vectors, the interior structure of the CI 

sparse matrix should allow for more compact representation when quaternions are used rather than 

real scalars. However, this is a complex question that involves nontrivial developments in both 

quantum chemistry and scientific computing.  The critical issue addressed in this dissertation work 

is whether a robust and efficient library that allows manipulation of quaternions as 

straightforwardly and efficiently as do the libraries that support operations on scalars can be 

obtained. 

In the remainder of the chapter, we describe the desiderata of a library for quaternions for use 

in quantum chemical calculations.  Specific features of quaternions and aspects of the algorithms 

used for implementation are described.  Furthermore, examples of the use the quaternion library 

to rotate the orientation of molecules (i.e., the positions of the nuclei) are provided to help illustrate. 

 

Quaternions have the following properties for addition: 

 Closure: If P, Q ∈ q, then P+Q ∈ q. 

 Commutativity: P + Q = Q + P for all P, Q ∈ q. 

 Associativity: (P + Q) + R = P + (Q + R) for all P, Q, R ∈ q 

 Identity: There is a 0 ∈ q such that 0 + P = P + 0 = P. 

 Inverse: For any P ∈ q, there exists a (-P) ∈ q such that P + (-P) = (-P) + P = 0. 

 

Quaternions have the following properties for multiplication: 

 Closure: If P, Q ∈ q, then PQ ∈ q. 

 Associativity: (PQ)R = P(QR) for all P, Q, R ∈ q. 

 Identity: There is a 1 ∈ q such that 1P = P1 = P. 

 Inverse: If P ≠ 0, then there is a P-1 such that PP-1 = P-1P = 1. 
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We can define a quaternion mathematically using different ways. The section below shows how 

to define a quaternion mathematically: 

Q = [s, v], s ∈ R, v ∈ R3 

OR 

Q = a + bi + cj + dk, a, b, c, d ∈ R 

Where: 

a is the scalar (real) Part 

bi + cj + dk is the vector (imaginary) part 

i (1, 0, 0), j (0, 1, 0), and k (0, 0, 1) are unit vectors in the x, y, and z direction. 

Moreover, quaternions can be represented using a 2X2 complex matrix. 

i, j, and k are imaginary numbers. 

   i 

k     j 

If we multiply clockwise, the result will be positive, on the other hand, if we multiply counter 

clockwise, the result will be negative, for example, i X j = k, while j X i = -k. 

We used quaternions for rotating molecules. To rotate a point we should have 3 inputs: 

1. The unit vector of the rotation axis (axis of spin) we will rotate around 

2. The angle we will rotate by 

3. The point we will rotate 
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Steps: 

1. Create the Rotation Quaternion. The Rotation Quaternion for rotating θ degrees around the 

rotation axis which has a unit vector V =  <vx, vy, vz> is cos(θ / 2) + (V.vx * sin(θ / 2))i + (V.vy 

* sin( θ / 2))j + (V.vz * sin( θ / 2))k 

2. Create the Point Quaternion which is the point we want to rotate in a quaternion form. The 

Point Quaternion of a point P = <px, py, pz> is 0 + (P.px)i + (P.py)j + (P.pz)k 

3. Multiply the Rotation Quaternion by the Point Quaternion in order to get a Halfway Rotation 

Quaternion. 

4. Get the Conjugate of the Rotation Quaternion. The Conjugate of a Quaternion Q = a + bi + cj 

+ dk is a - bi - cj – dk 

5. Multiply the Halfway Rotation Quaternion by the Conjugate of the Rotation Quaternion in 

order to get the rotated point. 

Rotated Point = Rotation Quaternion * Point * Rotation Quaternion Conjugate 

Example: 

Rotate the point (1, 0, 0) by 90 degrees around the z axis 

1. The unit vector of the rotation axis we will rotate around is 0x + 0y + 1z 

2. The angle we will rotate by is 90 

3. The point we will rotate is 1x + 0y + 0z 

Solution: 

Rotation Quaternion.a = cos(90 / 2) = cos(45) = 1 / sqrt(2) = 0.707106781186 

Rotation Quaternion.i = 0 * sin(90 / 2) = 0 

Rotation Quaternion.j = 0 * sin(90 / 2) = 0 
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Rotation Quaternion.k = 1 * sin(90 / 2) = 1 / sqrt(2) = 0.707106781186 

Rotation Quaternion = 1 / sqrt(2) + 0i + 0j + (1 / sqrt(2))k 

Point Quaternion = 0 + 1i + 0j + 0k 

Rotation Quaternion  

1 / sqrt(2) 0i 0j (1 / sqrt(2))k   

 

Point 

Quaternion 

0 0 0 0 0 

(1 / sqrt(2))i 0 0 (1 / sqrt(2))j 1i 

0 0 0 0 0j 

0 0 0 0 0k 

 

Halfway Rotation Quaternion = 0 + (1 / sqrt(2))i + (1 / sqrt(2))j + 0k 

Rotation Quaternion Conjugate = 1 / sqrt(2) - 0i - 0j - (1 / sqrt(2))k 

 

Halfway Rotation Quaternion  

0 (1 / sqrt(2))i (1 / sqrt(2))j 0k   

 

Rotation 

Quaternion 

Conjugate 
 

0 (1.0/2.0)i (1.0/2.0)j 0 1 / sqrt(2) 

0 0 0 0 0i 

0 0 0 0 0j 

0 (1.0/2.0)j - (1.0/2.0)i 0 - (1 / sqrt(2))k 

 

The Rotated Point Quaternion = 0 + 0i + 1j + 0k 

The Rotated Point = 0x + 1y + 0z 
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Another way using Rotation Matrices: 

          |1        0           0   | 

Rx(θ) |0    cos θ    -sin θ| 

          |0    sin θ      cos θ| 

 

          |cos θ    0    sin θ| 

Ry(θ) |   0       1       0   | 

          |-sin θ   0    cos θ| 

 

          |cos θ   -sin θ    0| 

Rz(θ) |sin θ    cos θ    0| 

          |   0          0       1| 

          |cos 90    -sin 90    0|   | 1 |       | 0 | 

Rz(θ) |sin 90    cos 90     0|   | 0 |  =   | 1 | 

          |   0             0         1|   | 0 |       | 0 | 

The Rotated Point = 0x + 1y + 0z 
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Quaternion Invariants: 

Commutative        

Yes a * a ∈ R a * i ∈ i i * a ∈ i a * j ∈ j j * a ∈ j a * k ∈ k k * a ∈ k 

No i X j = k j X i = -k j X k = i k X j = -i k X i = j i X k = -j  

Yes i . j = 0 j . i = 0 j . k = 0 k . j = 0 k . i = 0 i . k = 0  

 i X i = 0  j X j = 0  k X k = 0   

 i . i = 1  j . j = 1  k . k = 1   

 i * i = -1 i2 = -1 j * j = -1 j2 = -1 k * k = -1 k2 = -1 i * j * k = -1 

 
Real Quaternion 

A Quaternion with a vector part of zero 0 

Q = [s, 0] 

Q = a + 0i + 0j + 0k 

Pure Quaternion 

A Quaternion with a scalar part of zero 0 

Q = [0, v] 

Q = 0 + bi + cj + dk 

Addition Identity Quaternion 

Q = [0, 0] 

Q = 0 + 0i + 0j + 0k 

Quaternion + Addition Identity Quaternion = Quaternion 

Multiplication Identity Quaternion 

The Multiplication Identity Quaternion is considered a Real Quaternion 

Q = [1, 0] 
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Q = 1 + 0i + 0j + 0k 

Quaternion * Multiplication Identity Quaternion = Quaternion (No Rotation) 

Quaternion Magnitude, Length, or Norm ||Q||: 

Q = a + bi + cj + dk 

||Q|| = sqrt((a)2 + (b)2 + (c)2 + (d)2) 

||Q|| = sqrt(Q . Q) = sqrt(Q * Conjugate(Q)) = sqrt(Conjugate(Q) * Q) 

(||Q||)2 = Q . Q = Q * Conjugate(Q) = Conjugate(Q) * Q 

||Q1 * Q2|| = ||Q1|| * ||Q2|| 

Unit Quaternion (Quaternion Normalization): 

A Normalized Quaternion is a Unit Quaternion of length 1 

Q = a + bi + cj + dk 

Normalized Quaternion = Q / Magnitude(Q) = Q.a / Magnitude(Q) + (Q.i / Magnitude(Q))i + (Q.j / 

Magnitude(Q))j + (Q.k / Magnitude(Q))k 

Normalized Quaternion.a = a / Magnitude(Q) 

Normalized Quaternion.i = b / Magnitude(Q) 

Normalized Quaternion.j = c / Magnitude(Q) 

Normalized Quaternion.k = d / Magnitude(Q) 

Conjugate(Unit Quaternion) = Inverse(Unit Quaternion) 

Rotation Quaternion: 

A Rotation Quaternion is a Unit Quaternion of length 1 
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Rotation Quaternion * Rotation Quaternion = Unit Quaternion of length 1 

Rotation Quaternion = cos(Rotation Angle in Radians / 2) + Rotation Axis Unit Vector * 

sin(Rotation Angle in Radians / 2) 

Assume: 

Rotation Axis Unit Vector, V = <vx, vy, vz> 

Rotation Angle in Radians = Θ 

Then: 

Rotation Quaternion.a = cos(Θ / 2.0) 

Rotation Quaternion.i = V.vx * sin(Θ / 2.0) 

Rotation Quaternion.j = V.vy * sin(Θ / 2.0) 

Rotation Quaternion.k = V.vz * sin(Θ / 2.0) 

If the Rotation Axis Unit Vector = <0, 0, 0> and the Rotation Angle = 0.0 then: 

The Rotation Quaternion = 1 + 0i + 0j + 0k, (Multiplication Identity Quaternion, No Rotation) 

Get Rotation Axis and Rotation Angle from Rotation Quaternion: 

Q = a + bi + cj + dk 

Rotation angle in Radians (Θ) = cos-1(a) * 2.0 

Rotation Axis Unit Vector.vx = b / sin(Θ / 2.0)  

Rotation Axis Unit Vector.vy = c / sin(Θ / 2.0) 

Rotation Axis Unit Vector.vz = d / sin(Θ / 2.0) 

cos2(Θ) + sin2(Θ) = 1 
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cos2(Θ / 2.0) + sin2(Θ / 2.0) = 1 

sin(Θ / 2.0) = sqrt(1.0 – cos2(Θ / 2.0)) = sqrt(1.0 – a2) 

Point Quaternion: 

A Point Quaternion is considered a Pure Quaternion. It’s a point in a Quaternion form. 

Point, P = <px, py, pz> 

Point Quaternion = 0 + (P.px)i + (P.py)j + (P.pz)k 

Point Quaternion.a = 0 

Point Quaternion.i = P.px 

Point Quaternion.j = P.py 

Point Quaternion.k = P.pz 

Quaternion Conjugate: 

Q = a + bi + cj + dk 

Conjugate(Q) = a - bi - cj - dk 

Conjugate(Q).a = a 

Conjugate(Q).i = - b 

Conjugate(Q).j = - c 

Conjugate(Q).k = - d 

We can get the conjugate of a rotation quaternion by rotating in the opposite direction, so we 

use -Θ (360 - Θ) instead of Θ. Cos(Θ) = cos(-Θ) and sin(-Θ) = -sin(Θ). That is why the scalar part 

didn’t change and the vector (Imaginary part) was negated. 
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Quaternion Inverse (Reciprocal): 

Q = a + bi + cj + dk 

Inverse(Q) = Q-1 = 1 / Q       “Multiply the nominator and the denominator by Conjugate(Q)” 

                             = Conjugate(Q) / (Q * Conjugate(Q)) 

                             = Conjugate(Q) / (Magnitude(Q))2  

                                             = (a - bi - cj - dk) / (a)2 + (b)2 + (c)2 + (d)2 

Inverse(Q).a = a / (a)2 + (b)2 + (c)2 + (d)2 

Inverse(Q).i = - b / (a)2 + (b)2 + (c)2 + (d)2 

Inverse(Q).j = - c / (a)2 + (b)2 + (c)2 + (d)2 

Inverse(Q).k = - d / (a)2 + (b)2 + (c)2 + (d)2 

Q * Q-1 = 1 

Q1 * Q2 * Q2
-1 = Q1 

Q2 * Q1 * Q2
-1 != Q1 

Adding Quaternions: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 + Q2 = [s1, v1] + [s2, v2] = [s1 + s2, v1 + v2]  

Q1 + Q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k 

Resulting Quaternion.a = a1 + a2 
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Resulting Quaternion.i = b1 + b2 

Resulting Quaternion.j = c1 + c2 

Resulting Quaternion.k = d1 + d2 

Subtracting Quaternions: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 - Q2 = [s1, v1] - [s2, v2] = [s1 - s2, v1 - v2]  

Q1 - Q2 = (a1 - a2) + (b1 - b2)i + (c1 - c2)j + (d1 - d2)k 

Resulting Quaternion.a = a1 - a2 

Resulting Quaternion.i = b1 - b2 

Resulting Quaternion.j = c1 - c2 

Resulting Quaternion.k = d1 - d2 

Multiplying Quaternions: 

When you combine Vectors, you have to add them. 

When you combine Quaternions, you have to multiply them. 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 * Q2 = [s1, v1] * [s2, v2] = [(s1 * s2) – (v1 . v2), (s1 * v2) + (s2 * v1) + (v1 x v2)] 
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Proof: 

Q1 * Q2 = [a1 + b1i + c1j + d1k] * [a2 + b2i + c2j + d2k] 

              = a1a2 + a1b2i + a1c2j + a1d2k 

              + b1ia2 + b1ib2i + b1ic2j + b1id2k 

              + c1ja2 + c1jb2i + c1jc2j + c1jd2k 

              + d1ka2 + d1kb2i + d1kc2j + d1kd2k 

 

              = ((a1a2) – (b1b2) – (c1c2) – (d1d2)) 

              + ((a1b2) + (b1a2) + (c1d2) – (d1c2))i 

              + ((a1c2) + (c1a2) + (d1b2) – (b1d2))j 

              + ((a1d2) + (d1a2) + (b1c2) – (c1b2))k 

              = ((a1a2) – (b1b2) – (c1c2) – (d1d2))                                               =>     (s1 * s2) – (v1 . v2) 

              + (a1b2)i + (a1c2)j + (a1d2)k                                                            =>     s1 * v2 

              + (a2b1)i + (a2c1)j + (a2d1)k                                                            =>     s2 * v1 

              + ((c1d2) – (d1c2))i  + (– (b1d2) + (d1b2))j + ((b1c2) – (c1b2))k      =>     v1 x v2 

 

              = ((a1a2) – (b1b2) – (c1c2) – (d1d2))                                               =>     (s1 * s2) – (v1 . v2) 

              + a1(b2i + c2j + d2k)                                                                         =>     s1 * v2 

              + a2(b1i + c1j + d1k)                                                                         =>     s2 * v1 
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              + ((c1d2) – (d1c2))i  + (– (b1d2) + (d1b2))j + ((b1c2) – (c1b2))k      =>     v1 x v2 

Resulting Quaternion.a = (a1a2) – (b1b2) – (c1c2) – (d1d2) 

Resulting Quaternion.i = (a1b2) + (b1a2) + (c1d2) – (d1c2) 

Resulting Quaternion.j = (a1c2) + (c1a2) + (d1b2) – (b1d2) 

Resulting Quaternion.k = (a1d2) + (d1a2) + (b1c2) – (c1b2) 

Dividing Quaternions: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 / Q2 = Q1 * Inverse(Q2)  

             = Q1 * (Conjugate(Q2) / (Magnitude(Q2))2) 

                 = Q1 * ((a2 - b2i - c2j - d2k) / ((a2)2 + (b2)2 + (c2)2 + (d2)2)) 

Multiplying a Quaternion by a Scalar 

Q = a + bi + cj + dk 

Scalar Value = s 

Q * s = a * s + (b * s)i + (c * s)j + (d * s)k 

Resulting Quaternion.a = a * s 

Resulting Quaternion.i = b * s 

Resulting Quaternion.j = c * s 

Resulting Quaternion.k = d * s 
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Dividing a Quaternion by a Scalar 

Q = a + bi + cj + dk 

Scalar Value = s 

Q / s = a / s + (b / s)i + (c / s)j + (d / s)k 

Resulting Quaternion.a = a / s 

Resulting Quaternion.i = b / s 

Resulting Quaternion.j = c / s 

Resulting Quaternion.k = d / s 

Multiplying a Quaternion by itself 

Q = a + bi + cj + dk 

Q1 * Q2 = [s1, v1] * [s2, v2] = [(s1 * s2) – (v1 . v2), (s1 * v2) + (s2 * v1) + (v1 x v2)] 

Q * Q = (a2 – b2 – c2 – d2) + (2 * a * b)i + (2 * a * c)j + (2 * a * d)k 

Resulting Quaternion.a = a2 – b2 – c2 – d2 

Resulting Quaternion.i = 2 * a * b 

Resulting Quaternion.j = 2 * a * c 

Resulting Quaternion.k = 2 * a * d 

Multiplying a Quaternion by its Conjugate 

Q = a + bi + cj + dk 

Q1 * Q2 = [s1, v1] * [s2, v2] = [(s1 * s2) – (v1 . v2), (s1 * v2) + (s2 * v1) + (v1 x v2)] 

Q * Conjugate(Q) = (a2 + b2 + c2 + d2) + 0i + 0j + 0k 
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Resulting Quaternion.a = (a2 + b2 + c2 + d2) 

Resulting Quaternion.i = 0 

Resulting Quaternion.j = 0 

Resulting Quaternion.k = 0 

Quaternions Dot Product: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 . Q2 = (a1 * a2) + (b1 * b2) + (c1 * c2) + (d1 * d2) 

Point Quaternions Cross Product: 

Q1 = 0 + b1i + c1j + d1k 

Q2 = 0 + b2i + c2j + d2k 

1. Multiply the two point quaternions to get a resulting quaternion. 

2. The scalar part of the resulting quaternion is negative of the dot product of the two "vector 

parts" of the two "point quaternions". 

3. The vector part of the resulting quaternion is the cross product of the two "vector parts" of 

the two "point quaternions".  

Scalar Part(Q1 * Q2)  = Vector Part(Q1) . Vector Part(Q2) * -1 

Vector Part(Q1 * Q2) = Vector Part(Q1) x Vector Part(Q2) 

Q1 * Q2 = [Vector Part(Q1) . Vector Part(Q2) * -1, Vector Part(Q1) x Vector Part(Q2)] 

Proof: 

Q1 * Q2 = [s1, v1] * [s2, v2] = [(s1 * s2) – (v1 . v2), (s1 * v2) + (s2 * v1) + (v1 x v2)] 
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              = [0 – v1 . v2, (0, 0, 0) + (0, 0, 0) + v1 x v2] = [– (v1 . v2), v1 x v2] 

The Angle Between two Quaternions: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 and Q2 should be Unit Quaternions "Normalized" 

Q1 . Q2 = || Q1|| * || Q2|| * cos(Angle / 2) 

cos(Angle / 2) = Q1 . Q2 / || Q1|| * || Q2||.    “Q1 and Q2 are Unit Quaternions” 

cos(Angle / 2) = Q1 . Q2 

Angle between Q1 and Q2 in Radians = cos-1(Q1 . Q2) * 2.0 

The Distance Between two Quaternions: 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 and Q2 should be Unit Quaternions "Normalized" 

Distance between Q1 and Q2 = 1.0 – (Q1 . Q2)2 

Distance between Q1 and Q2 = (1.0 – cos(Angle Between Quaternions)) / 2 

Converting a Quaternion to a Matrix: 

Q = a + bi + cj + dk 

 

Resulting Matrix = |1 – 2c2 – 2d2   2bc – 2ad          2bd + 2ac            0| 
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                                  |2bc + 2ad          1 – 2b2 – 2d2      2cd – 2ab           0| 

                                  |2bd – 2ac          2cd + 2ab          1 – 2b2 – 2c2     0| 

                                  |      0                        0                        0                     1| 

Slerp (Spherical Linear Interpolation): 

Q1 = a1 + b1i + c1j + d1k 

Q2 = a2 + b2i + c2j + d2k 

Q1 and Q2 should be Unit Quaternions "Normalized". 

Θ -> Half the angle in radians between Q1 and Q2 

t -> Percent 

Slerp Quaternion = [sin((1.0 - t) * Θ) / sin(Θ)] * Q1 + [sin(t * Θ) / sin(Θ)] * Q2 

Another Way: 

Q * Q1 = Q2                                                         Multiply both sides by Q1
-1 

Q * Q1 * Q1
-1 = Q2 * Q1

-1                        Q1 * Q1
-1 = 1 

Q = Q2 * Q1
-1 

Q = cos(Θ / 2) + V * sin(Θ / 2) 

Then we can get the Rotation Axis Unit Vector, V and Rotation Angle in Radians, Θ 

Qt = cos((t * Θ) / 2) + V * sin((t * Θ) / 2) 

Slerp Quaternion = Qt * Q1 = (Q2 * Q1
-1)t * Q1 
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Chapter Summary: 

Quaternions are 4-dimensional objects that extend complex numbers. They were created by 

William Rowan Hamilton in 1843. Quaternions can be used to display objects that have more 

sophisticated structure than the point-like nuclei. 

There are some tangible advantages that come along with using quaternions. Quaternions 

introduce no gimbal lock, as opposed to rotation matrices and Euler angles; gimbal lock happens 

when two axes effectively line up, resulting in a temporary loss of a degree of freedom. With 

regard to rotation, quaternions are allocated less memory (4 scalars) than a 3x3 rotation matrix (9 

scalars). Regarding performance, quaternions multiplication is much faster than a 3x3 matrix 

multiplication, rotating matrices require an evaluation of sin() and cos(). Besides, multiplying a 

quaternion by a vector (dense or sparse) is going to be much faster than a full matrix-vector 

multiplication. 

Quaternions prove useful for coordinate transformations. The quaternion method is much better 

if one of the coordinate systems keeps moving, which is the usual case with navigation and 

animated 3-D graphics. 

When the scalars that make up the CI sparse matrix get replaced with quaternions, the interior 

structure of the CI sparse matrix will be represented in a more compact structure due to the nature 

of quaternions [68], hence memory reduction will be tangible and pronounced. 

When representing the CI sparse matrix using quaternions, multiplying the CI sparse matrix by 

a vector will be noticeably faster due to the fact that quaternions multiplication is much faster than 

normal matrix multiplication. 

Quaternions can also be used when multiplying a sparse matrix by a sparse vector, rather than 

a dense vector (SpMV), in this case quaternions will be used to represent both the sparse matrix 

and the sparse vector in a more compact way rather than using scalars. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

In this study, we are proposing a new model for storing CI sparse matrices on the GPU. We 

have also implemented the kernel of the SpMV operation for the proposed model. We have started 

out by creating the storage format for the newly-developed proposed model. This storage format 

will be used to store CI matrices on the GPU. We have used this proposed format in order to 

develop the SpMV kernel for the proposed model. The previously-mentioned SpMV kernel will 

be used to multiply the compact representation of the CI sparse matrix by a vector. The proposed 

SpMV kernel that we have developed is a vector kernel that uses the warp technique. The proposed 

kernel was compared to the cuSPARSE library and the CSR5 (Compressed Sparse Row 5) format 

using different input sparse matrices and already outperformed both of them. 

We have compared the proposed format to the other common formats using different input 

sparse matrices. The proposed format used less memory than the ELLPACK format and the Sliced 

ELLPACK format. 

The proposed storage format and the developed SpMV kernel work efficiently with CI sparse 

matrices, but this does not mean that the proposed model can be used efficiently with any sparse 

matrix. The proposed model including the proposed storage format and the developed SpMV 

kernel, was created and developed specifically for CI sparse matrices, it is not a general purpose 

model. 

The CI sparse matrices have a specific structure and the algorithm that we have developed is 

well-suited for them. The developed algorithm includes the use of 2 warps (one for each row in 

the Reference Region and another warp for each row in the Expansion Space Region) with an 

efficient level of synchronization. The proposed algorithm didn’t use tiles as in CSR5, which is 

not a practical solution for CI matrices due to their irregular sparsity pattern through the whole 

entire matrix, rather used 2 warps that efficiently serve the 2 main regions of the CI matrix. 

Although the Expansion space region has a very small sparsity, it’s huge especially when we deal 
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with big CI matrices, we stored the Expansion space region in the CSR format that is simple and 

uses very minimal space on the GPU compared to the CSR5 format. 

I have learnt some lessons from my work on SpMV problems in the context of high performance 

computing (HPC). One lesson is that using high performance computing as a part of solving a 

problem will not always be necessary, in some cases it might add overhead to the algorithm, hence 

using the CPU will be more efficient. Another lesson that I learnt is that an efficient algorithm that 

works for one type of problems will not necessarily work for other problems. For example, an 

SpMV kernel that is very efficient for a specific type of sparse matrices will not necessarily be 

efficient and successful for other types of sparse matrices. 

The proposed model is expected to be extendable to a wider class of algebraic objects than real 

scalars. In particular, it is expected that it is extendable all the way to quaternions, but 

implementation is outside the scope of this dissertation. Quaternions are 4-dimensional objects, 

where Q = [s, v], s ∈ R, v ∈ R3, Q = a + bi + cj + dk, a, b, c, d ∈ R. i2 = -1, j2 = -1, k2 = -1, ijk = -

1. They extend complex numbers. When we move from complex numbers to quaternions, objects 

are no longer fields, whereas they algebraically form a semi-ring. Specifically, we lose 

commutativity which is not necessarily a disadvantage, since many operations in quaternions are 

not commutative. For example, ij = k whilst ji = -k. Subsequently, the proposed model (quaternions 

version) should be compared with the quaternions versions of the already developed models. Of 

course, the comparison will be based on the two crucial key factors: the amount of used memory 

and performance. 

In Chapter 8, we have discussed quaternions by giving a handy introduction about Quaternions 

features and functions. Subsequently in Appendix 1, I will be talking about the Quaternions 

package that I have developed in order to widely deal with Quaternions functions. 

Also, I am planning to continue working on SpMV, but instead of dealing with dense vectors 

(my case), I might consider working on problems that involve sparse vectors; in this case, in 

addition to creating a storage format for the sparse matrix, I will have to create a separate storage 

format for the sparse vector as well. 
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APPENDIX 1 - THE QUATERNIONS PACKAGE 

In this section, I will list all the functions that are contained in the Quaternions package that we 

have developed. They almost covert all the Quaternions functionality. 

 

 

struct Quaternion CreateQuaternionByComponents(double a, double i, double j, double k) 

{ 

 struct Quaternion Q; 

 

 Q.a = a; 

 Q.i = i; 

 Q.j = j; 

 Q.k = k; 

 

 return Q; 

} 

 

 

struct Quaternion CreateQuaternionByScalarAndVector(double Scalar, struct Vector V) 

{ 

struct  Quaternion Q; 

 

Q.a = Scalar; 

Q.i = V.Vx; 

Q.j = V.Vy; 

Q.k = V.Vz; 

 

return Q; 

} 

 

 

struct Quaternion CreateQuaternionByArray(double *QuaternionComponents) 

{ 

 struct Quaternion Q; 

 

 Q.a = *QuaternionComponents; 

 Q.i = *(QuaternionComponents + 1); 

 Q.j = *(QuaternionComponents + 2); 

 Q.k = *(QuaternionComponents + 3); 

 

 return Q; 

} 
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void PrintQuaternion(const char *QuaternionName, struct Quaternion Q, int Precision) 

{ 

 char *ComponentFormat = NULL; 

 

 ComponentFormat = (char*) calloc(BufferSize + 1, sizeof(char)); 

 

 sprintf(ComponentFormat, "%%.%df", Precision); 

 printf("%s = ", QuaternionName); 

 printf(ComponentFormat, Q.a); 

 if(Q.i >= 0.0) {  printf(" + "); printf(ComponentFormat, Q.i); } else if(Q.i < 0.0) { printf(" - "); 

printf(ComponentFormat, Q.i * -1); } printf("i"); 

 if(Q.j >= 0.0) {  printf(" + "); printf(ComponentFormat, Q.j); } else if(Q.j < 0.0) { printf(" - "); 

printf(ComponentFormat, Q.j * -1); } printf("j"); 

 if(Q.k >= 0.0) {  printf(" + "); printf(ComponentFormat, Q.k); } else if(Q.k < 0.0) { printf(" - "); 

printf(ComponentFormat, Q.k * -1); } printf("k\n"); 

 

 free(ComponentFormat); 

} 

 

 

double GetQuaternionScalarPart(struct Quaternion Q) 

{ 

 double ScalarPart = 0.0; 

 

 ScalarPart = Q.a; 

 

 return ScalarPart; 

} 

 

 

struct Vector GetQuaternionVectorPart(struct Quaternion Q) 

{ 

 struct Vector VectorPart; 

 

 VectorPart.Vx = Q.i; 

 VectorPart.Vy = Q.j; 

 VectorPart.Vz = Q.k; 

 

 return VectorPart; 

} 
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double* GetQuaternionComponents(struct Quaternion Q) 

{ 

 double *QuaternionComponents = NULL; 

 

 QuaternionComponents = (double*) calloc(4 + 1, sizeof(double)); 

 

 *QuaternionComponents       = Q.a; 

 *(QuaternionComponents + 1) = Q.i; 

 *(QuaternionComponents + 2) = Q.j; 

 *(QuaternionComponents + 3) = Q.k; 

 

 return QuaternionComponents; 

} 

 

 

double GetQuaternionMagnitude(struct Quaternion Q) 

{ 

 double QuaternionMagnitude = 0.0; /**** Quaternion Magnitude = Quaternion Length = 

Quaternion Norm = Sqrt(Quaternion . Quaternion) = Sqrt(Quaternion * Conjugate(Quaternion)) 

= Sqrt(Conjugate(Quaternion) * Quaternion) ****/ 

  

 QuaternionMagnitude = sqrt(pow(Q.a, 2) + pow(Q.i, 2) + pow(Q.j, 2) + pow(Q.k, 2)); 

 

 return QuaternionMagnitude; 

} 

 

 

double GetQuaternionMagnitudeSquared(struct Quaternion Q) 

{ 

 double QuaternionMagnitudeSquared = 0.0; 

  

 QuaternionMagnitudeSquared = pow(Q.a, 2) + pow(Q.i, 2) + pow(Q.j, 2) + pow(Q.k, 2); 

 

 return QuaternionMagnitudeSquared; 

} 

 

 

struct Quaternion NormalizeQuaternion(struct Quaternion Q) 

{ 

 double QuaternionMagnitude = 0.0; 

 struct Quaternion NormalizedQuaternion; /**** A Normalized Quaternion is a Unit Quaternion 

of length 1 ****/ 
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 QuaternionMagnitude = GetQuaternionMagnitude(Q); 

 

 if(QuaternionMagnitude == 0.0) 

 { 

  return CreateQuaternionByComponents(0.0, 0.0, 0.0, 0.0); 

 } 

  

 NormalizedQuaternion.a = Q.a / QuaternionMagnitude; 

 NormalizedQuaternion.i = Q.i / QuaternionMagnitude; 

 NormalizedQuaternion.j = Q.j / QuaternionMagnitude; 

 NormalizedQuaternion.k = Q.k / QuaternionMagnitude; 

 

 return NormalizedQuaternion; 

} 

 

 

int EqualQuaternions(struct Quaternion Q1, struct Quaternion Q2, double Tolerance) 

{ 

 int EqualQuaternions = 0; 

 

 if(fabs(Q1.a - Q2.a) <= Tolerance && fabs(Q1.i - Q2.i) <= Tolerance && fabs(Q1.j - Q2.j) <= 

Tolerance && fabs(Q1.k - Q2.k) <= Tolerance) 

 { 

  EqualQuaternions = 1; 

 } 

 

 return EqualQuaternions; 

} 

 

 

double GetQuaternionsDotProduct(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 double DotProduct = 0.0; 

 

 DotProduct = (Q1.a * Q2.a) + (Q1.i * Q2.i) + (Q1.j * Q2.j) + (Q1.k * Q2.k); 

  

 return DotProduct; 

} 

 

 

struct Vector GetQuaternionsCrossProduct(struct Quaternion Q1, struct Quaternion Q2, 

double *DotProduct) 

{ 
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 /**** The Quaternions cross product is the cross product of the two "vector parts" of the two 

"Point Quaternions" ****/ 

 

 struct Quaternion MultiplicationQuaternions; 

 struct Vector CrossProduct; 

 

 Q1.a = 0; 

 Q2.a = 0; 

 MultiplicationQuaternions = MultiplyQuaternions(Q1, Q2); 

 CrossProduct              = GetQuaternionVectorPart(MultiplicationQuaternions); 

 *DotProduct               = GetQuaternionScalarPart(MultiplicationQuaternions) * -1;  /**** 

DotProduct is the dot product of the two "Point Quaternions" ****/ 

 

 

 /**** Another Way ****/ 

 /* 

 struct Vector Q1VectorPart; 

 struct Vector Q2VectorPart; 

 struct Vector CrossProduct; 

 

 Q1VectorPart = GetQuaternionVectorPart(Q1); 

 Q2VectorPart = GetQuaternionVectorPart(Q2); 

 CrossProduct = GetVectorsCrossProduct(Q1VectorPart, Q2VectorPart); 

 */ 

 return CrossProduct; 

} 

 

 

double GetAngleBetweenTwoQuaternions(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 double DotProduct         = 0.0; 

 double AngleInRadians     = 0.0; 

 double AngleInDegrees     = 0.0; 

 

 DotProduct = GetQuaternionsDotProduct(Q1, Q2); 

 

 /**** The parameter of acos() function is in the interval [-1, 1]. The return value of acos is in 

the interval [0, pi] radians. We have to do the following check ****/ 

 if(DotProduct < -1) 

 { 

  DotProduct = -1; 

 } 

 else if(DotProduct > 1) 

 { 

  DotProduct = 1; 

 } 
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 AngleInRadians = 2.0 * acos(DotProduct); 

 AngleInDegrees = AngleInRadians * RadiansToDegrees; 

 

 return AngleInDegrees; 

} 

 

 

double GetAngleBetweenTwoQuaternions_2(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 double DotProduct     = 0.0; 

 double Value          = 0.0; 

 double AngleInRadians = 0.0; 

 double AngleInDegrees = 0.0; 

 

 DotProduct = GetQuaternionsDotProduct(Q1, Q2); 

 Value      = (2.0 * pow(DotProduct, 2)) - 1.0; 

 

 /**** The parameter of acos() function is in the interval [-1, 1]. The return value of acos is in 

the interval [0, pi] radians. We have to do the following check ****/ 

 if(Value < -1) 

 { 

  Value = -1; 

 } 

 else if(Value > 1) 

 { 

  Value = 1; 

 } 

 

 AngleInRadians = acos(Value); 

 AngleInDegrees = AngleInRadians * RadiansToDegrees; 

 

 return AngleInDegrees; 

} 

 

 

double GetDistanceBetweenTwoQuaternions(struct Quaternion Q1, struct Quaternion Q2) 

{   

 double DotProduct = 0.0; 

 double Distance   = 0.0; 

 

 DotProduct = GetQuaternionsDotProduct(Q1, Q2); 

 Distance   = 1.0 - pow(DotProduct, 2); 

 

 return Distance; 
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} 

 

 

double GetDistanceBetweenTwoQuaternions_2(struct Quaternion Q1, struct Quaternion 

Q2) 

{ 

 double AngleInDegrees = 0.0; 

 double AngleInRadians = 0.0; 

 double Distance       = 0.0; 

 

 AngleInDegrees = GetAngleBetweenTwoQuaternions(Q1, Q2); 

 AngleInRadians = AngleInDegrees * DegreesToRadians; 

 Distance = (1.0 - cos(AngleInRadians)) / 2.0; 

 

 return Distance; 

} 

 

 

struct Quaternion CreateRotationQuaternion(struct Vector RotationAxisUnitVector, 

double RotationAngleInDegrees) 

{ 

 /**** 

  RotationAxisUnitVector -> The axis to rotate around 

  RotationAngleInDegrees -> The angle to rotate by 

  RotationQuaternion     -> The Rotation Quaternion that results from rotating 

"RotationAngleInDegrees" degrees around the rotation axis which has 

"RotationAxisUnitVector" unit vector 

  ****/ 

 

 double RotationAngleInRadians = 0.0; 

 struct Quaternion RotationQuaternion; 

 

 /**** When rotating about the Y-Axis, Quaternions rotate clockwise, that is why we have to do 

the following operation ****/ 

 if(RotationAxisUnitVector.Vx == 0 && RotationAxisUnitVector.Vy == 1 && 

RotationAxisUnitVector.Vz == 0) 

 { 

   RotationAngleInDegrees = 360 - RotationAngleInDegrees; 

 } 

 

 RotationAngleInRadians = RotationAngleInDegrees * DegreesToRadians; 

 RotationQuaternion.a   = cos(RotationAngleInRadians / 2.0); 

 RotationQuaternion.i   = RotationAxisUnitVector.Vx * sin(RotationAngleInRadians / 2.0); 

 RotationQuaternion.j   = RotationAxisUnitVector.Vy * sin(RotationAngleInRadians / 2.0); 

 RotationQuaternion.k   = RotationAxisUnitVector.Vz * sin(RotationAngleInRadians / 2.0); 
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 return RotationQuaternion; 

} 

 

 

struct Vector GetAxisAndAngleFromRotationQuaternion(struct Quaternion 

RotationQuaternion, double *RotationAngleInDegrees) 

{ 

 double RotationAngleInRadians = 0.0; 

 struct Vector RotationAxisUnitVector; 

 

 RotationAngleInRadians    = acos(RotationQuaternion.a) * 2.0; 

 *RotationAngleInDegrees   = RotationAngleInRadians * RadiansToDegrees; 

 RotationAxisUnitVector.Vx = (RotationQuaternion.i) / sin(RotationAngleInRadians / 2.0); 

 RotationAxisUnitVector.Vy = (RotationQuaternion.j) / sin(RotationAngleInRadians / 2.0); 

 RotationAxisUnitVector.Vz = (RotationQuaternion.k) / sin(RotationAngleInRadians / 2.0); 

 

 /**** pow(cos(Angle), 2) + pow(sin(Angle), 2) = 1 ****/ 

 /**** sin(RotationAngleInRadians / 2.0) = sqrt(1.0 - pow(RotationQuaternion.a, 2)); ****/ 

 

 return RotationAxisUnitVector; 

} 

 

 

struct Quaternion CreatePointQuaternion(struct Vector Point) 

{ 

 struct Quaternion PointQuaternion; 

 

 PointQuaternion.a = 0; 

 PointQuaternion.i = Point.Vx; 

 PointQuaternion.j = Point.Vy; 

 PointQuaternion.k = Point.Vz; 

 

 return PointQuaternion; 

} 

 

 

struct Quaternion GetQuaternionConjugate(struct Quaternion Q) 

{ 

 struct Quaternion QuaternionConjugate; 

 

 QuaternionConjugate.a = Q.a; 

 QuaternionConjugate.i = Q.i * -1; 

 QuaternionConjugate.j = Q.j * -1; 

 QuaternionConjugate.k = Q.k * -1; 
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 return QuaternionConjugate; 

} 

 

 

struct Quaternion GetQuaternionInverse(struct Quaternion Q) 

{ 

 /**** Quaternion Inverse = Quaternion Reciprocal ****/ 

 /**** Inverse(Q) = 1 / Q ****/ 

 

 struct Quaternion QuaternionConjugate; 

 double QuaternionMagnitudeSquared = 0.0; 

 struct Quaternion QuaternionInverse; 

 

 QuaternionConjugate        = GetQuaternionConjugate(Q); 

 QuaternionMagnitudeSquared = GetQuaternionMagnitudeSquared(Q); 

 

 if(QuaternionMagnitudeSquared == 0.0) 

 { 

  return CreateQuaternionByComponents(0.0, 0.0, 0.0, 0.0); 

 } 

 

 QuaternionInverse.a = QuaternionConjugate.a / QuaternionMagnitudeSquared; 

 QuaternionInverse.i = QuaternionConjugate.i / QuaternionMagnitudeSquared; 

 QuaternionInverse.j = QuaternionConjugate.j / QuaternionMagnitudeSquared; 

 QuaternionInverse.k = QuaternionConjugate.k / QuaternionMagnitudeSquared; 

 

 return QuaternionInverse; 

} 

 

 

struct Quaternion AddQuaternions(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 struct Quaternion AdditionQuaternion; 

 

 AdditionQuaternion.a = Q1.a + Q2.a; 

 AdditionQuaternion.i = Q1.i + Q2.i; 

 AdditionQuaternion.j = Q1.j + Q2.j; 

 AdditionQuaternion.k = Q1.k + Q2.k; 

 

 return AdditionQuaternion; 

} 

 

 

struct Quaternion SubtractQuaternions(struct Quaternion Q1, struct Quaternion Q2) 
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{ 

 struct Quaternion SubtractionQuaternion; 

 

 SubtractionQuaternion.a = Q1.a - Q2.a; 

 SubtractionQuaternion.i = Q1.i - Q2.i; 

 SubtractionQuaternion.j = Q1.j - Q2.j; 

 SubtractionQuaternion.k = Q1.k - Q2.k; 

 

 return SubtractionQuaternion; 

} 

 

 

struct Quaternion MultiplyQuaternions(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 struct Quaternion MultiplicationQuaternion; 

 

 MultiplicationQuaternion.a = (Q1.a * Q2.a) + (Q1.i * Q2.i * -1) + (Q1.j * Q2.j * -1) + (Q1.k * 

Q2.k * -1); 

 MultiplicationQuaternion.i = (Q1.a * Q2.i) + (Q1.i * Q2.a)      + (Q1.j * Q2.k)      + (Q1.k * Q2.j 

* -1); 

 MultiplicationQuaternion.j = (Q1.a * Q2.j) + (Q1.j * Q2.a)      + (Q1.k * Q2.i)      + (Q1.i * Q2.k 

* -1); 

 MultiplicationQuaternion.k = (Q1.a * Q2.k) + (Q1.k * Q2.a)      + (Q1.i * Q2.j)      + (Q1.j * 

Q2.i * -1); 

 

 return MultiplicationQuaternion; 

} 

 

 

struct Quaternion MultiplyQuaternions_2(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 double Q1R        = 0.0; 

 double Q2R        = 0.0; 

 double ScalarPart = 0.0; 

 struct Vector Q1V; 

 struct Vector Q2V; 

 struct Vector VectorPart; 

 struct Quaternion MultiplicationQuaternion; 

  

 Q1R = GetQuaternionScalarPart(Q1); 

 Q2R = GetQuaternionScalarPart(Q2); 

 Q1V = GetQuaternionVectorPart(Q1); 

 Q2V = GetQuaternionVectorPart(Q2); 

  

 ScalarPart               = (Q1R * Q2R) - GetVectorsDotProduct(Q1V, Q2V);  
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 VectorPart               = AddVectors(MultiplyVectorByScalar(Q1V, Q2R), 

MultiplyVectorByScalar(Q2V, Q1R)); 

 VectorPart               = AddVectors(VectorPart, GetVectorsCrossProduct(Q1V, Q2V)); 

 MultiplicationQuaternion = CreateQuaternionByScalarAndVector(ScalarPart, VectorPart); 

 

 return MultiplicationQuaternion; 

} 

 

 

struct Quaternion DivideQuaternions(struct Quaternion Q1, struct Quaternion Q2) 

{ 

 /**** Q1 / Q2 = Q1 * Inverse(Q2) ****/ 

 

 struct Quaternion Q2Inverse; 

 struct Quaternion DivisionQuaternion; 

  

 Q2Inverse          = GetQuaternionInverse(Q2); 

 DivisionQuaternion = MultiplyQuaternions(Q1, Q2Inverse); 

 

 return DivisionQuaternion; 

} 

 

 

struct Quaternion AddScalarToQuaternion(struct Quaternion Q, double Scalar) 

{ 

 struct Quaternion AddScalarQuaternion; 

 

 AddScalarQuaternion.a = Q.a + Scalar; 

 AddScalarQuaternion.i = Q.i; 

 AddScalarQuaternion.j = Q.j; 

 AddScalarQuaternion.k = Q.k; 

 

 return AddScalarQuaternion; 

} 

 

 

struct Quaternion AddVectorToQuaternion(struct Quaternion Q, struct Vector V) 

{ 

 struct Quaternion AddVectorQuaternion; 

 

 AddVectorQuaternion.a = Q.a; 

 AddVectorQuaternion.i = Q.i + V.Vx; 

 AddVectorQuaternion.j = Q.j + V.Vy; 

 AddVectorQuaternion.k = Q.k + V.Vz; 
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 return AddVectorQuaternion; 

} 

 

 

struct Quaternion SubtractScalarFromQuaternion(struct Quaternion Q, double Scalar) 

{ 

 struct Quaternion SubtractScalarQuaternion; 

 

 SubtractScalarQuaternion.a = Q.a - Scalar; 

 SubtractScalarQuaternion.i = Q.i; 

 SubtractScalarQuaternion.j = Q.j; 

 SubtractScalarQuaternion.k = Q.k; 

 

 return SubtractScalarQuaternion; 

} 

 

 

struct Quaternion SubtractVectorFromQuaternion(struct Quaternion Q, struct Vector V) 

{ 

 struct Quaternion SubtractVectorQuaternion; 

 

 SubtractVectorQuaternion.a = Q.a; 

 SubtractVectorQuaternion.i = Q.i - V.Vx; 

 SubtractVectorQuaternion.j = Q.j - V.Vy; 

 SubtractVectorQuaternion.k = Q.k - V.Vz; 

 

 return SubtractVectorQuaternion; 

} 

 

 

struct Quaternion MultiplyQuaternionByScalar(struct Quaternion Q, double ScalarValue) 

{ 

 struct Quaternion MultiplyByScalarQuaternion; 

 

 MultiplyByScalarQuaternion.a = Q.a * ScalarValue; 

 MultiplyByScalarQuaternion.i = Q.i * ScalarValue; 

 MultiplyByScalarQuaternion.j = Q.j * ScalarValue; 

 MultiplyByScalarQuaternion.k = Q.k * ScalarValue; 

 

 return MultiplyByScalarQuaternion; 

} 

 

 

struct Quaternion DivideQuaternionByScalar(struct Quaternion Q, double ScalarValue) 
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{ 

 struct Quaternion DivideByScalarQuaternion; 

 

 DivideByScalarQuaternion.a = Q.a / ScalarValue; 

 DivideByScalarQuaternion.i = Q.i / ScalarValue; 

 DivideByScalarQuaternion.j = Q.j / ScalarValue; 

 DivideByScalarQuaternion.k = Q.k / ScalarValue; 

 

 return DivideByScalarQuaternion; 

} 

 

 

struct Quaternion NegateQuaternion(struct Quaternion Q) 

{ 

 struct Quaternion NegatedQuaternion; 

 

 NegatedQuaternion.a = Q.a * -1; 

 NegatedQuaternion.i = Q.i * -1; 

 NegatedQuaternion.j = Q.j * -1; 

 NegatedQuaternion.k = Q.k * -1; 

 

 return NegatedQuaternion; 

} 

 

 

struct Quaternion CopyQuaternion(struct Quaternion Q) 

{ 

 struct Quaternion CopiedQuaternion; 

 

 CopiedQuaternion.a = Q.a; 

 CopiedQuaternion.i = Q.i; 

 CopiedQuaternion.j = Q.j; 

 CopiedQuaternion.k = Q.k; 

 

 return CopiedQuaternion; 

} 

 

 

double** ConvertQuaternionToMatrix(struct Quaternion Q) 

{ 

 double **QuaternionMatrix = NULL; 

 const int Rows            = 4; 

 const int Cols            = 4; 

 int i                     = 0; 
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 QuaternionMatrix = (double**) calloc(Rows + 1, sizeof(double*)); 

 for(i = 0; i < Rows; i++) 

 { 

  *(QuaternionMatrix  + i) = (double*) calloc(Cols + 1, sizeof(double)); 

 } 

 

 *(*(QuaternionMatrix + 0) + 0) = 1.0 - (2.0 * pow(Q.j, 2)) - (2.0 * pow(Q.k, 2)); 

 *(*(QuaternionMatrix + 0) + 1) = (2.0 * Q.i * Q.j) - (2.0 * Q.a * Q.k); 

 *(*(QuaternionMatrix + 0) + 2) = (2.0 * Q.i * Q.k) + (2.0 * Q.a * Q.j); 

 *(*(QuaternionMatrix + 0) + 3) = 0; 

 

 *(*(QuaternionMatrix + 1) + 0) = (2.0 * Q.i * Q.j) + (2.0 * Q.a * Q.k); 

 *(*(QuaternionMatrix + 1) + 1) = 1.0 - (2.0 * pow(Q.i, 2)) - (2.0 * pow(Q.k, 2)); 

 *(*(QuaternionMatrix + 1) + 2) = (2.0 * Q.j * Q.k) - (2.0 * Q.a * Q.i); 

 *(*(QuaternionMatrix + 1) + 3) = 0; 

 

 *(*(QuaternionMatrix + 2) + 0) = (2.0 * Q.i * Q.k) - (2.0 * Q.a * Q.j); 

 *(*(QuaternionMatrix + 2) + 1) = (2.0 * Q.j * Q.k) + (2.0 * Q.a * Q.i); 

 *(*(QuaternionMatrix + 2) + 2) = 1.0 - (2.0 * pow(Q.i, 2)) - (2.0 * pow(Q.j, 2)); 

 *(*(QuaternionMatrix + 2) + 3) = 0; 

 

 *(*(QuaternionMatrix + 3) + 0) = 0; 

 *(*(QuaternionMatrix + 3) + 1) = 0; 

 *(*(QuaternionMatrix + 3) + 2) = 0; 

 *(*(QuaternionMatrix + 3) + 3) = 1; 

  

 return QuaternionMatrix; 

} 

 

 

struct Quaternion LerpQuaternion(struct Quaternion Q1, struct Quaternion Q2, double 

Percent) 

{ 

 /****  

      Lerp stands for Linear Interpolation. Interpolates between two Quaternions linearly 

      "Percent" indicates how far to interpolate between the two Quaternions 

      Lerp Quaternion = Q1 + (Q2 - Q1) * Percent = Q1 + (Q2 * Percent) - (Q1 * Percent) = 

Q1(1.0 - Percent) + (Q2 * Percent) 

 ****/ 

 

 struct Quaternion LerpQ; 

 

 // LerpQ = AddQuaternions(Q1, MultiplyQuaternionByScalar(SubtractQuaternions(Q2, Q1), 

Percent)); 

    LerpQ = AddQuaternions(MultiplyQuaternionByScalar(Q1, (1.0 - Percent)), 

MultiplyQuaternionByScalar(Q2, Percent)); 
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 return LerpQ; 

} 

 

 

struct Quaternion SlerpQuaternion(struct Quaternion Q1, struct Quaternion Q2, double 

Percent) 

{ 

 /****  

      Slerp stands for Spherical Linear Interpolation. Interpolates between two Quaternions using 

spherical linear interpolation 

      "Percent" indicates how far to interpolate between the two Quaternions 

      Slerp Quaternion = Q1 * (sin((1.0 - Percent) * HalfAngleInRadians) / 

sin(HalfAngleInRadians)) 

                       + Q2 * (sin(Percent * HalfAngleInRadians) / sin(HalfAngleInRadians)) 

 ****/ 

 

 double AngleInDegrees     = 0.0; /**** Angle Between the two Quaternions ****/ 

 double HalfAngleInDegrees = 0.0; 

 double HalfAngleInRadians = 0.0; 

 double Value1             = 0.0; 

 double Value2             = 0.0; 

 struct Quaternion SlerpQ; 

 

 AngleInDegrees     = GetAngleBetweenTwoQuaternions(Q1, Q2); 

 HalfAngleInDegrees = AngleInDegrees / 2.0; 

 HalfAngleInRadians = HalfAngleInDegrees * DegreesToRadians; 

 

 Value1 = sin((1.0 - Percent) * HalfAngleInRadians) / sin(HalfAngleInRadians); 

 Value2 = sin(Percent * HalfAngleInRadians) / sin(HalfAngleInRadians); 

 

 SlerpQ = AddQuaternions(MultiplyQuaternionByScalar(Q1, Value1), 

MultiplyQuaternionByScalar(Q2, Value2)); 

 

 return SlerpQ; 

} 

 

 

struct Quaternion SlerpQuaternion_2(struct Quaternion Q1, struct Quaternion Q2, double 

Percent) 

{ 

 struct Quaternion Q; 

 struct Quaternion QPercent; 

 struct Quaternion SlerpQ; 

 double RotationAngleInDegrees = 0.0;  
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 struct Vector RotationAxisUnitVector; 

 

 Q = MultiplyQuaternions(Q2, GetQuaternionInverse(Q1)); 

 /****   

      PrintQuaternion("Q", Q, 6); 

      PrintQuaternion("Q * Q1", MultiplyQuaternions(Q, Q1), 6); // Q * Q1 = Q2 

      PrintQuaternion("Q2", Q2, 6); 

 ****/ 

 

 RotationAxisUnitVector = GetAxisAndAngleFromRotationQuaternion(Q, 

&RotationAngleInDegrees); 

 QPercent               = CreateRotationQuaternion(RotationAxisUnitVector, Percent * 

RotationAngleInDegrees); 

 SlerpQ                 = MultiplyQuaternions(QPercent, Q1); 

 

 return SlerpQ; 

} 
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APPENDIX 2 – GPU CODE 

 

Code 1. The AddArrays Kernel 

__global__ void AddArrays(int *d_Arr1, int *d_Arr2, int *d_sum, unsigned int Length) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; /**** If LENGTH = 65, 

then Index will be from 0 to 95 ****/ 

 

 if(Index < Length) 

 { 

  d_sum[Index] = d_Arr1[Index] + d_Arr2[Index]; 

 } 

} 
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Code 2. Calling the AddArrays Kernel 

int main(int argc, char **argv) 

{ 

 const unsigned int LENGTH = 64U; 

 const unsigned int SIZE   = LENGTH * sizeof(int); 

 unsigned int i            = 0U; 

 dim3 BlockDim(32, 1, 1); /**** x = 32, y = 1, z = 1 ****/ 

 dim3 GridDim(ceil((float) LENGTH / BlockDim.x), 1, 1); 

 

 (void) GetMemoryInfo("Before Allocation"); 

 

 int *h_Arr1 = NULL; 

 int *h_Arr2 = NULL; 

 int *h_sum  = NULL; 

 

 h_Arr1 = (int*) malloc(SIZE); 

 h_Arr2 = (int*) malloc(SIZE); 

 h_sum  = (int*) malloc(SIZE); 

 memset(h_Arr1, 0, SIZE); 

 memset(h_Arr2, 0, SIZE); 

 memset(h_sum, 0, SIZE); 

 

 for(i = 0; i < LENGTH; i++) 

 { 

  h_Arr1[i] = i; 

  h_Arr2[i] = i * 2; 

 } 

 

 (void) PrintArray("h_Arr1", h_Arr1, LENGTH); 

 (void) PrintArray("h_Arr2", h_Arr2, LENGTH); 

 

 int *d_Arr1 = NULL; 

 int *d_Arr2 = NULL; 

 int *d_sum  = NULL; 

 

 cudaMalloc((void**) &d_Arr1, SIZE); 

 cudaMalloc((void**) &d_Arr2, SIZE); 

 cudaMalloc((void**) &d_sum, SIZE); 

 cudaMemset(d_Arr1, 0, SIZE); 

 cudaMemset(d_Arr2, 0, SIZE); 

 cudaMemset(d_sum, 0, SIZE); 

 

 (void) GetMemoryInfo("After Allocation"); 

 

 cudaMemcpy(d_Arr1, h_Arr1, SIZE, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_Arr2, h_Arr2, SIZE, cudaMemcpyHostToDevice); 

 

 (void) AddArrays<<<GridDim, BlockDim>>>(d_Arr1, d_Arr2, d_sum, LENGTH); 

 // (void) AddArrays<<<ceil((float) LENGTH / 32.00f), 32>>>(d_Arr1, d_Arr2, d_sum, LENGTH); 

 

 cudaMemcpy(h_sum, d_sum, SIZE, cudaMemcpyDeviceToHost); 

 (void) PrintArray("h_sum", h_sum, LENGTH); 

 cudaFree(d_Arr1); 

 cudaFree(d_Arr2); 

 cudaFree(d_sum); 

 free(h_Arr1); 

 free(h_Arr2); 

 free(h_sum);  

(void) GetMemoryInfo("After Deallocation"); 

 

 return 0; 
} 
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Code 4. List the GPU Properties 

__host__ void PrintDeviceProperties(cudaDeviceProp DeviceProp) 

{ 

 printf("Name                                                     : %s\n", DeviceProp.name); 

 printf("Major revision number                                    : %d\n", DeviceProp.major); 

 printf("Minor revision number                                    : %d\n", DeviceProp.minor); 

 printf("Maximum memory pitch                                     : %u\n", DeviceProp.memPitch); 

 printf("Clock rate                                               : %d\n", DeviceProp.clockRate); 

 printf("Texture alignment                                        : %u\n", DeviceProp.textureAlignment); 

 printf("Concurrent copy and execution                            : %d\n", 

DeviceProp.deviceOverlap); 

 printf("Concurrent copy and execution                            : %s\n", (DeviceProp.deviceOverlap 

? "Yes" : "No")); 

 printf("Kernel execution timeout enabled                         : %s\n", 

(DeviceProp.kernelExecTimeoutEnabled ? "Yes" : "No")); 

 printf("Number of multiprocessors                                : %d\n", 

DeviceProp.multiProcessorCount); 

 printf("The maximum number of threads per multiprocessor         : %d\n", 

DeviceProp.maxThreadsPerMultiProcessor); 

 printf("The maximum number of threads per block                  : %d\n", 

DeviceProp.maxThreadsPerBlock); 

 printf("The maximum sizes of each dimension of a block (x, y, z) : %d, %d, %d\n", 

DeviceProp.maxThreadsDim[0], DeviceProp.maxThreadsDim[1], 

DeviceProp.maxThreadsDim[2]); 

 printf("The maximum sizes of each dimension of a grid (x, y, z)  : %d, %d, %d\n", 

DeviceProp.maxGridSize[0], DeviceProp.maxGridSize[1], DeviceProp.maxGridSize[2]); 

 printf("The total number of registers available per block        : %d\n", 

DeviceProp.regsPerBlock); 

 printf("The total amount of shared memory per block (Bytes)      : %u\n", 

DeviceProp.sharedMemPerBlock); 

 printf("The total amount of constant memory (Bytes)              : %u\n", 

DeviceProp.totalConstMem); 

 printf("The total amount of global memory (Bytes), (Gigabytes)   : %llu, %f\n", (unsigned 

long long int) DeviceProp.totalGlobalMem, (float) DeviceProp.totalGlobalMem / 

1073741824.00f); 

 printf("Warp size (Threads)                                      : %d\n", DeviceProp.warpSize);  /**** 

We should set blockDim as a multiple of 32 or whatever the warp size happens to be. ****/ 

 printf("\n"); 

} 
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Code 4. Calling the PrintDeviceProperties() Function 

 

  

int main(int argc, char **argv) 

{ 

 unsigned int i  = 0U; 

 int DeviceCount = 0; 

 cudaDeviceProp DeviceProp; 

 

 cudaGetDeviceCount(&DeviceCount); 

 printf("\nDevice Count = %d\n", DeviceCount); 

 

 cudaGetDeviceProperties(&DeviceProp, 0); 

 printf("Device 0 Name is %s\n\n", DeviceProp.name); 

 

 for(i = 0; i < DeviceCount; i++) 

 { 

  printf("Device Number %d:\n", i); 

  cudaGetDeviceProperties(&DeviceProp, i); 

  PrintDeviceProperties(DeviceProp);  

 } 

  

 return 0; 

} 
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APPENDIX 3 – SpMV FORMATS AND KERNELS FOR THE CPU 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CSR Format 

 

void CreateFormat(double **Mat, double *Value, unsigned int *Column, 

unsigned int *RowPtr, unsigned char *Flag, unsigned int *AllNonZeros) 

{ 

 unsigned int i      = 0U, j = 0U; 

 unsigned int Index  = 0U; 

 unsigned char GotIt = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(Mat[i][j] != 0.00) 

   { 

    Value[Index]  = Mat[i][j]; 

    Column[Index] = j; 

 

    if(GotIt == 0U) 

    { 

     GotIt        = 1U; 

     RowPtr[i]    = Index; 

     Flag[Index]  = 1U; 

    } 

    Index++; 

   } 

  } 

 } 

 RowPtr[i] = *AllNonZeros; 

} 
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The CSR Kernel 

 

 

 
 

 

 

  

void SpMV_CSR(double *Value, unsigned int *Column, double *Vector, 

unsigned int *RowPtr, double *Result) 

{ 

 unsigned int i     = 0U, j   = 0U; 

 unsigned int Start = 0U, End = 0U; 

 double Temp        = 0.00; 

  

 for(i = 0U; i < ROWS; i++) 

 { 

  Start            = RowPtr[i]; 

  End              = RowPtr[i + 1]; 

  for(j = Start; j < End; j++) 

  { 

   Temp += Value[j] * Vector[Column[j]]; 

  } 

  Result[i] = Temp; 

  Temp      = 0.00; 

 } 

} 



 
 

121 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ELLPACK Format 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void CreateFormat(double **Mat, double **NonZerosEntries, int **Column) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  c = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(Mat[i][j] != 0.00) 

   { 

    NonZerosEntries[r][c] = Mat[i][j]; 

    Column[r][c]          = j; 

    c++; 

   } 

  } 

  r++; 

 } 

} 
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The ELLPACK Kernel 

 

 

 

 

 

void SpMV_ELLPACK(double **NonZerosEntries, int **Column, double 

*Vector, double *Result, unsigned int *MaxNonZeros) 

{ 

 unsigned int r1 = 0U, r2 = 0U; 

 double Temp     = 0.00; 

 

 for(r1 = 0U; r1 < ROWS; r1++) 

 { 

  for(r2 = 0U; r2 < *MaxNonZeros; r2++) 

  { 

   if(Column[r1][r2] == -1) 

   { 

    break; 

   } 

   Temp = Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]); 

  } 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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The ELLPACK-R Kernel 

 

  

void SpMV_ELLPACK_R(double **NonZerosEntries, int **Column, double 

*Vector, unsigned int *NonZerosCount, double *Result) 

{ 

 unsigned int r1  = 0U, r2 = 0U; 

 unsigned int End = 0U; 

 double Temp      = 0.00; 

 

 for(r1 = 0U; r1 < ROWS; r1++) 

 { 

  End = NonZerosCount[r1]; 

  for(r2 = 0U; r2 < End; r2++) 

  { 

   Temp = Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]); 

  } 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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The Sliced ELLPACK Format 

 

 

 

 

 

 

void CreateFormat(double **Mat, double **NonZerosEntries, int **Column, 

unsigned int Rows) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 

 for(i = 0U; i < Rows; i++) 

 { 

  c = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(Mat[i][j] != 0.00) 

   { 

    NonZerosEntries[r][c] = Mat[i][j]; 

    Column[r][c]          = j; 

    c++; 

   } 

  } 

  r++; 

 } 

} 
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The Sliced ELLPACK Kernel 

 

void SpMV_SlicedELLPACK(double **NonZerosEntries, int **Column, 

double *Vector, double *Result, unsigned int Rows, unsigned int *Cols) 

{ 

 unsigned int r1  = 0U, r2 = 0U; 

 double Temp      = 0.00; 

 

 for(r1 = 0U; r1 < Rows; r1++) 

 { 

  for(r2 = 0U; r2 < *Cols; r2++) 

  { 

   if(Column[r1][r2] == -1) 

   { 

    break; 

   } 

   Temp = Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]); 

  } 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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The Sliced ELLPACK-R Kernel 

void SpMV_SlicedELLPACK_R(double **NonZerosEntries, int **Column, 

double *Vector, unsigned int *NonZerosCount, double *Result, unsigned int 

Rows) 

{ 

 unsigned int r1  = 0U, r2 = 0U; 

 unsigned int End = 0U; 

 double Temp      = 0.00; 

 

 for(r1 = 0U; r1 < Rows; r1++) 

 { 

  End = NonZerosCount[r1]; 

  for(r2 = 0U; r2 < End; r2++) 

  { 

   Temp = Temp + (NonZerosEntries[r1][r2] * Vector[Column[r1][r2]]); 

  } 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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The Proposed Format 

void CreateFormat(double **Mat, double **NonZerosEntries, int 

**ELLPACK_Column, double *Value, unsigned int *CSR_Column, unsigned 

int *AllNonZerosCount, unsigned int *StartArr, unsigned int *EndArr) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 unsigned int Start     = 0U, End = 0U; 

 unsigned int Index     = 0U; 

 unsigned char GotIt    = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  c     = 0U; 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(Mat[i][j] != 0.00) 

   { 

     if(c < (unsigned int) BOUNDARY) /**** ELLPACK Format (0 to 

(BOUNDARY - 1)) ****/ 

     { 

      NonZerosEntries[r][c] = Mat[i][j]; 

      ELLPACK_Column[r][c]  = j; 

      c++; 

     } 

     else             /**** CSR Format ****/ 

     { 

      Value[Index]      = Mat[i][j]; 

      CSR_Column[Index] = j; 

      if(GotIt == 0U) { GotIt = 1U; Start = Index;} 

      Index++; 

     } 

   } 

  } 

  r++; 

  if(AllNonZerosCount[i] > (unsigned int) BOUNDARY) /**** CSR Format 

****/ 

  { 

   End         = Index; 

   StartArr[i] = Start; 

   EndArr[i]   = End; 

  } 

 } 

} 
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The Proposed Kernel 

void SpMV_Hybrid_ELLPACKandCSR(double **NonZerosEntries, int 

**ELLPACK_Column, double *Value, unsigned int *CSR_Column, unsigned 

int *StartArr, unsigned int *EndArr, unsigned int *AllNonZerosCount, double 

*Vector, double *Result) 

{ 

 unsigned int r1    = 0U, r2  = 0U, j = 0U; 

 unsigned int Start = 0U, End = 0U; 

 double Temp        = 0.00; 

 

 /**** ELLPACK Format ****/ 

 for(r1 = 0U; r1 < ROWS; r1++) 

 { 

  for(r2 = 0U; r2 < BOUNDARY; r2++) 

  { 

   if(ELLPACK_Column[r1][r2] == -1) 

   { 

    break; 

   } 

   Temp += (NonZerosEntries[r1][r2] * Vector[ELLPACK_Column[r1][r2]]); 

  } 

 

  /**** CSR Format ****/ 

  if(AllNonZerosCount[r1] > (unsigned int) BOUNDARY) 

  { 

   Start = StartArr[r1]; 

   End   = EndArr[r1]; 

   for(j = Start; j < End; j++) 

   { 

    Temp += (Value[j] * Vector[CSR_Column[j]]); 

   } 

  } 

 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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A Variation of the Proposed Model (Format) 

void CreateFormat(double **Mat, double **NonZerosEntries, int 

**ELLPACK_Column, double *Value, unsigned int *CSR_Column, unsigned 

int *AllNonZerosCount, unsigned int *StartArr, unsigned int *EndArr, 

unsigned int Rows, unsigned int Boundary) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 unsigned int Start     = 0U, End = 0U; 

 unsigned int Index     = 0U; 

 unsigned char GotIt    = 0U; 

 

 for(i = 0U; i < Rows; i++) 

 { 

  c     = 0U; 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(Mat[i][j] != 0.00) 

   { 

     if(c < Boundary) /**** ELLPACK Format (0 to (Boundary - 1)) ****/ 

     { 

      NonZerosEntries[r][c] = Mat[i][j]; 

      ELLPACK_Column[r][c]  = j; 

      c++; 

     } 

     else             /**** CSR Format ****/ 

     { 

      Value[Index]      = Mat[i][j]; 

      CSR_Column[Index] = j; 

      if(GotIt == 0U) { GotIt = 1U; Start = Index;} 

      Index++; 

     } 

   } 

  } 

  r++; 

  if(AllNonZerosCount[i] > Boundary) /**** CSR Format ****/ 

  { 

   End         = Index; 

   StartArr[i] = Start; 

   EndArr[i]   = End; 

  } 

 } 

} 



 
 

130 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Variation of the Proposed Model (Kernel) 

 

 
 

void SpMV_Hybrid_SlicedELLPACKandCSR(double **NonZerosEntries, int 

**ELLPACK_Column, double *Value, unsigned int *CSR_Column, unsigned 

int *StartArr, unsigned int *EndArr, unsigned int *AllNonZerosCount, double 

*Vector, double *Result, unsigned int Rows, unsigned int Boundary) 

{ 

 unsigned int r1    = 0U, r2  = 0U, j = 0U; 

 unsigned int Start = 0U, End = 0U; 

 double Temp        = 0.00; 

 

 /**** ELLPACK Format ****/ 

 for(r1 = 0U; r1 < Rows; r1++) 

 { 

  for(r2 = 0U; r2 < Boundary; r2++) 

  { 

   if(ELLPACK_Column[r1][r2] == -1) 

   { 

    break; 

   } 

   Temp += (NonZerosEntries[r1][r2] * Vector[ELLPACK_Column[r1][r2]]); 

  } 

 

  /**** CSR Format ****/ 

  if(AllNonZerosCount[r1] > Boundary) 

  { 

   Start = StartArr[r1]; 

   End   = EndArr[r1]; 

   for(j = Start; j < End; j++) 

   { 

    Temp += (Value[j] * Vector[CSR_Column[j]]); 

   } 

  } 

 

  Result[r1] = Temp; 

  Temp       = 0.00; 

 } 

} 
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APPENDIX 4 – SpMV FORMATS AND KERNELS FOR THE GPU 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CSR Format 

 

 

 

 

 

 

__host__ void CreateFormat(double *h_Mat, double *h_Value, unsigned int 

*h_Column, unsigned int *h_RowPtr, unsigned char *h_Flag, unsigned int 

*AllNonZeros) 

{ 

 unsigned int i      = 0U, j = 0U; 

 unsigned int Index  = 0U; 

 unsigned char GotIt = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(h_Mat[(i * COLS) + j] != 0.00) 

   { 

    h_Value[Index]  = h_Mat[(i * COLS) + j]; 

    h_Column[Index] = j; 

 

    if(GotIt == 0U) 

    { 

     GotIt = 1U; 

     h_RowPtr[i]   = Index; 

     h_Flag[Index] = 1U; 

    } 

    Index++; 

   } 

  } 

 } 

 h_RowPtr[i] = *AllNonZeros; 

} 
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The CSR Kernel 

 

 

 

 

 

 

 

 

 

 

 

 

 

__global__ void SpMV_CSR(double *d_Value, unsigned int *d_Column, 

double *d_Vector, unsigned int *d_RowPtr, double *d_Result) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int j     = 0U; 

 unsigned int Start = 0U, End = 0U; 

 double Temp        = 0.00; 

  

 if(Index < (unsigned int) ROWS) 

 { 

  Start                  = d_RowPtr[Index]; 

  End                    = d_RowPtr[Index + 1]; 

  for(j = Start; j < End; j++) 

  { 

   Temp += (d_Value[j] * d_Vector[d_Column[j]]); 

  } 

  d_Result[Index] = Temp; 

 } 

} 
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The ELLPACK Format 

 

  

__host__ void CreateFormat(double *h_Mat, double *h_NonZerosEntries, int 

*h_Column, unsigned int *MaxNonZeros) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  c = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(h_Mat[(i * COLS) + j] != 0.00) 

   { 

    h_NonZerosEntries[(r * *MaxNonZeros) + c] = h_Mat[(i * COLS) + j]; 

    h_Column[(r * *MaxNonZeros) + c]          = j; 

    c++; 

   } 

  } 

  r++; 

 } 

} 
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The ELLPACK Kernel (Thread per Row) 

 

 

 

 

 

 

 

 

 

 

 

 

__global__ void SpMV_ELLPACK_ThreadPerRow(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, double *d_Result, 

unsigned int MaxNonZeros) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int r2    = 0U; 

 double Temp        = 0.00; 

 

 if(Index < (unsigned int) ROWS) 

 { 

  for(r2 = 0U; r2 < MaxNonZeros; r2++) 

  { 

   if(d_Column[(Index * MaxNonZeros) + r2] == -1) 

   { 

    break; 

   } 

   Temp += (d_NonZerosEntries[(Index * MaxNonZeros) + r2] * 

d_Vector[d_Column[(Index * MaxNonZeros) + r2]]); 

  } 

  d_Result[Index] = Temp; 

 } 

} 
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The ELLPACK-R Kernel (Thread per Row) 

 

 

 

__global__ void SpMV_ELLPACK_R_ThreadPerRow(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, unsigned int 

*d_NonZerosCount, double *d_Result, unsigned int MaxNonZeros) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int r2    = 0U; 

 unsigned int End   = 0U; 

 double Temp        = 0.00; 

 

 if(Index < (unsigned int) ROWS) 

 { 

  End = d_NonZerosCount[Index]; 

  for(r2 = 0U; r2 < End; r2++) 

  { 

   Temp += (d_NonZerosEntries[(Index * MaxNonZeros) + r2] * 

d_Vector[d_Column[(Index * MaxNonZeros) + r2]]); 

  } 

  d_Result[Index] = Temp; 

 } 

} 
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The ELLPACK Kernel (Thread per Column) 

__global__ void SpMV_ELLPACK_ThreadPerColumn(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, double *d_Result, 

unsigned int MaxNonZeros) 

{ 

 unsigned int Row = (blockDim.y * blockIdx.y) + threadIdx.y; 

 unsigned int Col = (blockDim.x * blockIdx.x) + threadIdx.x; 

 

 if((Row < (unsigned int) ROWS) && (Col < MaxNonZeros)) 

 { 

  if(d_Column[(Row * MaxNonZeros) + Col] != -1) 

  { 

   atomicAdd(&d_Result[Row], (d_NonZerosEntries[(Row * MaxNonZeros) + 

Col] * d_Vector[d_Column[(Row * MaxNonZeros) + Col]])); 

   // atomicAdd(&d_Result2[Row], (d_NonZerosEntries[(Row * 

MaxNonZeros) + Col] * d_Vector[d_Column[(Row * MaxNonZeros) + 

Col]])); 

  } 

 } 

} 
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The Sliced ELLPACK Format 

 

__host__ void CreateFormat(double *h_Mat, double *h_NonZerosEntries, int 

*h_Column, unsigned int Rows, unsigned int *Cols) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 

 for(i = 0U; i < Rows; i++) 

 { 

  c = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(h_Mat[(i * COLS) + j] != 0.00) 

   { 

    h_NonZerosEntries[(r * *Cols) + c] = h_Mat[(i * COLS) + j]; 

    h_Column[(r * *Cols) + c]          = j; 

    c++; 

   } 

  } 

  r++; 

 } 

} 
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The Sliced ELLPACK Kernel (Thread per Row) 

__global__ void SpMV_SlicedELLPACK_ThreadPerRow(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, double *d_Result, 

unsigned int Rows, unsigned int Cols) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int r2    = 0U; 

 double Temp        = 0.00; 

 

 if(Index < Rows) 

 { 

  for(r2 = 0U; r2 < Cols; r2++) 

  { 

   if(d_Column[(Index * Cols) + r2] == -1) 

   { 

    break; 

   } 

   Temp = Temp + (d_NonZerosEntries[(Index * Cols) + r2] * 

d_Vector[d_Column[(Index * Cols) + r2]]); 

  } 

  d_Result[Index] = Temp; 

 } 

} 
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The Sliced ELLPACK-R Kernel (Thread per Row) 

 

 

 

 

 

__global__ void SpMV_SlicedELLPACK_R_ThreadPerRow(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, unsigned int 

*d_NonZerosCount, double *d_Result, unsigned int Rows, unsigned int Cols) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int r2    = 0U; 

 unsigned int End   = 0U; 

 double Temp        = 0.00; 

 

 if(Index < Rows) 

 { 

  End = d_NonZerosCount[Index]; 

  for(r2 = 0U; r2 < End; r2++) 

  { 

   Temp = Temp + (d_NonZerosEntries[(Index * Cols) + r2] * 

d_Vector[d_Column[(Index * Cols) + r2]]); 

  } 

  d_Result[Index] = Temp; 

 } 

} 
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The Sliced ELLPACK-R Kernel (Thread per Column) 

 

__global__ void SpMV_SlicedELLPACK_ThreadPerColumn(double 

*d_NonZerosEntries, int *d_Column, double *d_Vector, double *d_Result, 

unsigned int Rows, unsigned int Cols) 

{ 

 unsigned int Row = (blockDim.y * blockIdx.y) + threadIdx.y; 

 unsigned int Col = (blockDim.x * blockIdx.x) + threadIdx.x; 

 

 if((Row < Rows) && (Col < Cols)) 

 { 

  if(d_Column[(Row * Cols) + Col] != -1) 

  { 

   // atomicAdd(&d_Result[Row], (d_NonZerosEntries[(Row * Cols) + Col] * 

d_Vector[d_Column[(Row * Cols) + Col]])); 

  } 

 } 

} 



 
 

141 
 

The Proposed Format 

__host__ void CreateFormat(double *h_Mat, double *h_NonZerosEntries, int 

*h_ELLPACK_Column, double *h_Value, unsigned int *h_CSR_Column, unsigned int 

*h_AllNonZerosCount, unsigned int *h_StartArr, unsigned int *h_EndArr) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 unsigned int Start     = 0U, End = 0U; 

 unsigned int Index     = 0U; 

 unsigned char GotIt    = 0U; 

 

 for(i = 0U; i < ROWS; i++) 

 { 

  c     = 0U; 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(h_Mat[(i * COLS) + j] != 0.00) 

   { 

     if(c < BOUNDARY) /**** ELLPACK Format (0 to (BOUNDARY - 1)) ****/ 

     { 

      h_NonZerosEntries[(r * BOUNDARY) + c] = h_Mat[(i * COLS) + j]; 

      h_ELLPACK_Column[(r * BOUNDARY) + c]  = j; 

      c++; 

     } 

     else             /**** CSR Format ****/ 

     { 

      h_Value[Index]      = h_Mat[(i * COLS) + j]; 

      h_CSR_Column[Index] = j; 

      if(GotIt == 0U) { GotIt = 1U; Start = Index;} 

      Index++; 

     } 

   } 

  } 

  r++; 

 

  if(h_AllNonZerosCount[i] > (unsigned int) BOUNDARY) /**** CSR Format ****/ 

  { 

   End           = Index; 

   h_StartArr[i] = Start; 

   h_EndArr[i]   = End; 

  } 

 } 

} 
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 unsigned int Thread_id = (blockDim.x * blockIdx.x) + threadIdx.x; // Global 

thread index. 

 unsigned int Warp_id   = Thread_id / 32;                          // Global warp index. 

 unsigned int Lane      = Thread_id & (32 - 1);                    // Thread index 

within the warp. 

 unsigned int Row       = Warp_id;                                 // One warp per row. 

 unsigned int r2        = 0U, j   = 0U; 

 unsigned int Start     = 0U, End = 0U; 

 unsigned int x         = 0U; 

 int          y         = 0; 

 

 __device__ __shared__ double SharedMem1[32]; 

 __device__ __shared__ double SharedMem2[32]; 

  

 memset(SharedMem1, 0.00, (32 * sizeof(double))); 

 memset(SharedMem2, 0.00, (32 * sizeof(double))); 

 

 if(Row < (unsigned int) ROWS) // one warp per row 

 { 

  /**** ELLPACK Format ****/ 

   

  SharedMem1[threadIdx.x] = 0.00; // Compute running sum per thread. 

 

  for(r2 = 0U + Lane; r2 < (unsigned int) BOUNDARY; r2 += 32) 

  { 

   x = (Row * (unsigned int) BOUNDARY) + r2; 

   y = d_ELLPACK_Column[x]; 

   // if(y == -1) 

   // { 

   //  break; 

   // } 

   // Temp += (d_NonZerosEntries[x] * d_Vector[y]); 

   SharedMem1[threadIdx.x] += (d_NonZerosEntries[x] * d_Vector[y]); 

  } 

 

  // Parallel reduction in shared memory (warp-level reductions). 

  if(Lane < 16) { atomicAdd(&SharedMem1[threadIdx.x], 

SharedMem1[threadIdx.x + 16]); } 

  if(Lane < 8)  { atomicAdd(&SharedMem1[threadIdx.x], 

SharedMem1[threadIdx.x + 8]);  } 

  if(Lane < 4)  { atomicAdd(&SharedMem1[threadIdx.x], 

SharedMem1[threadIdx.x + 4]);  }   

  if(Lane < 2)  { atomicAdd(&SharedMem1[threadIdx.x], 

SharedMem1[threadIdx.x + 2]);  } 

  if(Lane < 1)  { atomicAdd(&SharedMem1[threadIdx.x], 

SharedMem1[threadIdx.x + 1]);  } 
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The Proposed Kernel 

 

// if(Lane == 0) 

  // { 

  //  d_Result[Row] += SharedMem1[threadIdx.x]; 

  // } 

 

  /**** CSR Format ****/ 

  // if(d_AllNonZerosCount[Row] > (unsigned int) BOUNDARY) 

  { 

   Start = d_StartArr[Row]; 

   End   = d_EndArr[Row]; 

 

   SharedMem2[threadIdx.x] = 0.00; // Compute running sum per thread. 

 

   for(j = Start + Lane; j < End; j += 32) 

   { 

    SharedMem2[threadIdx.x] += d_Value[j] * d_Vector[d_CSR_Column[j]]; 

   } 

 

   // Parallel reduction in shared memory (warp-level reductions). 

   if(Lane < 16) { atomicAdd(&SharedMem2[threadIdx.x], 

SharedMem2[threadIdx.x + 16]); } 

   if(Lane < 8)  { atomicAdd(&SharedMem2[threadIdx.x], 

SharedMem2[threadIdx.x + 8]);  } 

   if(Lane < 4)  { atomicAdd(&SharedMem2[threadIdx.x], 

SharedMem2[threadIdx.x + 4]);  }   

   if(Lane < 2)  { atomicAdd(&SharedMem2[threadIdx.x], 

SharedMem2[threadIdx.x + 2]);  } 

   if(Lane < 1)  { atomicAdd(&SharedMem2[threadIdx.x], 

SharedMem2[threadIdx.x + 1]);  } 

 

   if(Lane == 0) // The first thread writes the result 

   { 

    d_Result[Row] += (SharedMem1[threadIdx.x] + 

SharedMem2[threadIdx.x]); 

   } 

  } 

 } 

} 
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A Variation of the Proposed Model (Format) 

__host__ void CreateFormat(double *h_Mat, double *h_NonZerosEntries, int 

*h_ELLPACK_Column, double *h_Value, unsigned int *h_CSR_Column, unsigned 

int *h_AllNonZerosCount, unsigned int *h_StartArr, unsigned int *h_EndArr, 

unsigned int Rows, unsigned int Boundary) 

{ 

 unsigned int i = 0U, j = 0U; 

 unsigned int r = 0U, c = 0U; 

 unsigned int Start     = 0U, End = 0U; 

 unsigned int Index     = 0U; 

 unsigned char GotIt    = 0U; 

 

 for(i = 0U; i < Rows; i++) 

 { 

  c     = 0U; 

  GotIt = 0U; 

  for(j = 0U; j < COLS; j++) 

  { 

   if(h_Mat[(i * COLS) + j] != 0.00) 

   { 

     if(c < Boundary) /**** ELLPACK Format (0 to (Boundary - 1)) ****/ 

     { 

      h_NonZerosEntries[(r * Boundary) + c] = h_Mat[(i * COLS) + j]; 

      h_ELLPACK_Column[(r * Boundary) + c]  = j; 

      c++; 

     } 

     else             /**** CSR Format ****/ 

     { 

      h_Value[Index]      = h_Mat[(i * COLS) + j]; 

      h_CSR_Column[Index] = j; 

      if(GotIt == 0U) { GotIt = 1U; Start = Index;} 

      Index++; 

     } 

   } 

  } 

  r++; 

  if(h_AllNonZerosCount[i] > Boundary) /**** CSR Format ****/ 

  { 

   End           = Index; 

   h_StartArr[i] = Start; 

   h_EndArr[i]   = End; 

  } 

 } 

} 
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A Variation of the Proposed Model (Kernel) 

 

 

__global__ void SpMV_Hybrid_SlicedELLPACKandCSR(double 

*d_NonZerosEntries, int *d_ELLPACK_Column, double *d_Value, unsigned 

int *d_CSR_Column, unsigned int *d_StartArr, unsigned int *d_EndArr, 

unsigned int *d_AllNonZerosCount, double *d_Vector, double *d_Result, 

unsigned int Rows, unsigned int Boundary) 

{ 

 unsigned int Index = (blockDim.x * blockIdx.x) + threadIdx.x; 

 unsigned int r2    = 0U, j   = 0U; 

 unsigned int Start = 0U, End = 0U; 

 double Temp        = 0.00; 

 

 if(Index < Rows) 

 { 

  /**** ELLPACK Format ****/ 

  for(r2 = 0U; r2 < Boundary; r2++) 

  { 

   if(d_ELLPACK_Column[(Index * Boundary) + r2] == -1) 

   { 

    break; 

   } 

   Temp += (d_NonZerosEntries[(Index * Boundary) + r2] * 

d_Vector[d_ELLPACK_Column[(Index * Boundary) + r2]]); 

  } 

 

  /**** CSR Format ****/ 

  if(d_AllNonZerosCount[Index] > Boundary) 

  { 

   Start = d_StartArr[Index]; 

   End   = d_EndArr[Index]; 

   for(j = Start; j < End; j++) 

   { 

    Temp += (d_Value[j] * d_Vector[d_CSR_Column[j]]); 

   } 

  } 

 

  d_Result[Index] = Temp; 

 } 

} 
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