

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

January 2018

Constraining The Small Binary Asteroid Population Of The Main Belt Using Doublet Craters On Ceres

Paul F. Wren

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Wren, Paul F., "Constraining The Small Binary Asteroid Population Of The Main Belt Using Doublet Craters On Ceres" (2018). *Theses and Dissertations*. 2384. https://commons.und.edu/theses/2384

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

CONSTRAINING THE SMALL BINARY ASTEROID POPULATION OF THE MAIN BELT USING DOUBLET CRATERS ON CERES

by

Paul Fredrick Wren Bachelor of Science, Arizona State University, 1985

A Thesis

Submitted to the Graduate Faculty

Of the

University of North Dakota

In partial fulfillment of the requirements

For the degree of

Master of Science

Grand Forks, North Dakota

May 2018

This thesis, submitted by Paul Fredrick Wren in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

<u>Monald Florg</u> Dr. Ronald Fevig

Dunnigan Dr. Gerri Dunnigan

Dr. Michael Gaffey

This thesis is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.

Grant McGimpsey Dean of the School of Graduate Studies

2018 Date

PERMISSION

TitleConstraining the Small Binary Asteroid Population of the Main Belt
Using Doublet Craters on Ceres

Department Space Studies

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

> Paul Fredrick Wren May 12, 2018

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF TABLES	viii
ACKNOWLEDGEMENTS	ix
ABSTRACT	x
	A
CHAFTER	
1 INTRODUCTION	1
1.1 Motivation	1
1.2 State of Research	2
1.2.1 Doublet Impact Craters	2
1.2.1.1 Observations	2
1.2.1.2 Doublet Crater Formation	3
1.2.1.2.1 Tidal fissioning of an incoming impactor	3
1.2.1.2.2 Tidal Disruption of Contact Binaries Prior to Impact	4
1.2.1.2.3 Tidal Disruption of Rubble Pile and Contact Binary Asteroids	5
1.2.2 Binary Asteroids	5
1.2.2.1 Do Binary Asteroids Exist?	6
1.2.2.2 Discovery	7
1.2.2.3 Observations	
1.2.2.3.1 Photometric Observations	
1.2.2.3.2 Ground-based Direct Imaging	9
1.2.2.3.3 Space-based Direct Imaging	9
1.2.2.3.4 Radar Imaging	10
1.2.2.3.5 Stellar Occultation	10
1.2.2.4 Formation Processes – Main Belt Binaries	11
1.2.2.4.1 Rotational Fission	12
1.2.2.4.2 Orbiting Ejecta	
1.2.2.4.3 Mutual Capture of Escaping Fragments	
1.2.2.4.4 Low Velocity Collision	
1.2.2.5 Formation Processes – Planet-crossing Binaries	14

1.2.2.5.1 Tidal Distortion of Planet-crossing Satellites	14
1.2.2.5.2 Thermal Torque Rotational Fission	
1.2.3 Impact Crater Morphology	
1.2.3.1 Overview	
1.2.3.2 Oblique Impacts	
1.2.3.3 Impact Crater Scaling Laws	
1.3 Goals and Outline	
2 METHODS	
2.1 Source Data	
2.1.1 Imagery	
2.1.2 Elevation Data	
2.2 Determining Impactor Size from Craters on Ceres	
2.2.1 Impact Crater Scaling Laws	
2.2.2 Estimating the Velocity of an Impacting Main Belt Aster	oid29
2.2.3 Estimating the Density of an Impacting Main Belt Astero	id 30
2.2.4 The Density of Ceres' Crust	
2.2.5 Crater Scaling Equation for Ceres	
2.3 Impact Crater Survey	
2.3.1 Survey Area	
2.3.2 Identifying and Recording Craters	
2.3.3 Upper Limit for Crater Diameters	
2.3.4 Limitations	
2.4 Identifying and Evaluating Potential Doublet Craters	
2.4.1 Identifying Crater Pairs	
2.4.2 Evaluating Crater Pairs	
2.4.3 Limitations	
2.5 Monte Carlo Simulation	
3 DATA ANALYSIS	
3.1 Impact Crater Identification	
3.2 Finding Doublet Craters	
3.2.1 Potential Crater Pairs	
3.2.2 Identifying Doublet Craters	
3.2.2.1 Scoring Crater Pairs	
3.2.2.2 Results	

3.3	Random Distribution of Craters	
3.4	Estimating Impactor Diameters	
4 IN	TERPRETATION AND CONCLUSIONS	51
4.1	Comparing Random Crater Separations to Observed Separations	51
4.2	Doublet Craters on Ceres	
4.3	Implications for Binary Asteroids in the Main Belt	
4.4	Future Work	55

APPENDICES

A	Impac	t Craters Considered in Study	
B	Stony	Main Belt Asteroids	
С	Candi	date Crater Pairs	
D	Softwa	are Tools	117
]	D.1 JN	1ARS	
]	D.2 Py	thon Programs	
	D.2.1	Processing Exported Crater Data	
	D.2.2	Computing Impactor Diameters	119
	D.2.3	Monte Carlo Simulation	119
	D.2.4	Chi Squared Test	

REFERENCES	2	1
------------	---	---

LIST OF FIGURES

Figure 1-1. Galileo false-color image of 243 Ida and satellite (NASA image P-44131)
Figure 2-1. Study area on Ceres. Red line is the original pilot study, white line encompasses the total study area for this work: 110°E to 270°E and 10°N to 30°S
Figure 2-2. Examples of impact crater attributes used to identify doublets: a. Super-imposed craters; b. Differing erosion; c. Septum between craters; d. Radial ejecta lobes
Figure 3-1. A "Definite" Doublet Crater on Ceres (NASA Dawn image FC0048556) 41
Figure 3-2. Large, "very likely" Doublet Crater on Ceres (NASA Dawn image FC0053565) 42
Figure 3-3. Peanut-shaped "very likely" Doublet on Ceres (NASA Dawn image FC0057993) 43
Figure 3-4. A "likely" Peanut Doublet Crater on Ceres (NASA Dawn image FC0064514) 43
Figure 3-5. Highly-eroded "likely" Doublet with possible septum and ejecta lobes (NASA Dawn image FC0052195)
Figure 3-6. Highly-eroded Doublet with possible septum and lobes (Dawn image FC0051873). 44
Figure 3-7. Eroded Doublet with possible septum (Dawn image FC 0056991) 45
Figure 3-8. Fresh "possible" Doublet Crater (Dawn image FC0058469) 45
Figure 3-9. "Possible" Doublet Crater on Ceres (Dawn image FC0054371)
Figure 3-10. Size-frequency distribution of impactors that created craters ≤ 15 km in study area.50
Figure 4-1. Observed counts of crater pairs by separation (Table 4-1), plotted against expected distribution of separations for random impacts (Table 3-3)

LIST OF TABLES

Table 2-1: Scoring System for evaluating potential doublet impact craters	36
Table 3-1: Doublet Crater candidates in the study area	40
Table 3-2: Bins for tallying crater separations by distance in kilometers.	47
Table 3-3: Average simulated counts of crater pairs binned by separation	48
Table 3-4: Candidate Doublet Craters with computed impactor diameters.	49
Table 4-1: Observed counts of crater pairs binned by separation.	51

ACKNOWLEDGEMENTS

This achievement would not have been possible without the tireless encouragement, advice, and support provided by my M.S. advisor, Dr. Ron Fevig. I am also grateful to my committee, for their thoughtful questions and feedback, and to Bev Fetter for always being so helpful with the nuts and bolts of being a Space Studies graduate student.

I want to thank my employer, Dr. Phil Christensen, for being supportive of my continuing education, and all of the staff and students of the Mars Space Flight Facility at Arizona State University. In particular, I owe a large debt to the MSFF software team for their development of JMARS, the tool that made my research possible.

Finally, I want to express my appreciation for my family. I feel tremendous gratitude toward my wife Teri for always supporting and encouraging me in this endeavor, even though I repeatedly disappeared into my office on far too many evenings and weekends. I also am very grateful to my daughters Emily and Hannah, and my stepson Bradley, for their great enthusiasm and support.

ABSTRACT

Binary asteroids have been observed among the Near Earth Asteroids, among the Main Belt Asteroids, and even in the Trans-Neptunian Object population. Many were discovered by light curve analysis, some by direct or radar imaging, and a few by stellar occultation. Some were discovered using ground-based telescopes, and others by space-based assets such as the Hubble Space Telescope. As good as these instruments may be, no confirmed binary asteroids in the Main Belt have a primary body less than one kilometer in diameter.

The primary goal of this research was to confirm the existence of Main Belt binary asteroid systems with components smaller than one kilometer in diameter. Another goal of this research was to estimate a lower bound for the percentage of all Main Belt asteroids less than one kilometer in diameter that are binary systems. Doublet craters are believed to be caused by binary asteroid impacts, and their numbers can serve as a proxy for the number of binary asteroids among all impactors. Doublet craters were studied on the surface of Ceres using the latest detailed imagery returned by NASA's Dawn spacecraft. A large sample area on the surface of Ceres was systematically surveyed to identify and locate all impact craters greater than a minimum diameter. All possible pairings were examined and evaluated for their potential as doublets, and the likely doublets allowed the percentage of impact events in the sample area that are created by binary asteroids to be determined. This percentage is proportional to the percentage of Main Belt asteroids that are themselves binary systems.

Х

The sizes of impactors that created the observed impact craters were determined using a crater scaling law, providing conformation of small binary asteroid systems in the Main Belt.

1 INTRODUCTION

1.1 Motivation

Doublet craters, i.e., pairs of impact craters in proximity to one another that are created by the same primary impact event, appear on all planetary bodies in the inner Solar System (Miljković et al., 2013; Oberbeck, 1973; Oberbeck et al., 1977; Trego, 1989; Trask et al., 1975; Cook et al., 2003; Melosh et al., 1996). Early research attributed their formation to a single impactor broken up by either atmospheric disruption (Passey and Melosh, 1980) or tidal forces (Sekiguchi, 1970; Oberbeck and Aoyagi, 1972), but further analysis revealed that these processes could not result in sufficient separation of the components to create observed doublets (Melosh and Stansberry, 1991; Bottke and Melosh, 1996). It is now believed that well-separated binary asteroids are the true source of doublet craters (Bottke and Melosh, 1996), making doublets an excellent source of evidence for the prevalence of binary asteroid systems.

The percentage of asteroids in the near-earth population that are binary is fairly well established at 15%, and doublet craters on Mars, Earth, Venus, and the Moon have been used to confirm this value (Miljković et al., 2013; Pravec et al., 2006). A total of 144 binary asteroids have been identified in the main belt using ground-based and spacecraft observations (Johnston 2016), but small binary systems have likely gone undetected. NASA's recent Dawn mission (Russell and Raymond, 2011; Nathues, 2016) has provided a large catalog of detailed images of the surface of Ceres, which was only a smudge of light in the best telescopes prior to Dawn (Drummond et al., 2014). Doublet craters on Ceres provide evidence for the abundance of binary asteroid systems in the main belt, down to smaller diameters than previously detected.

1.2 State of Research

This section describes the history and current state of research into doublet craters, binary asteroids, and the morphology of impact craters.

1.2.1 Doublet Impact Craters

This section addresses doublet crater observations and formation theories.

1.2.1.1 Observations

As early as the 1950s, the concept of simultaneous impactors creating crater pairs was discussed. Twin meteorites were proposed as the likely origin of Clearwater Lakes in Quebec, two adjacent circular depressions of diameters 32 and 21 kilometers (Dence et al., 1965). As compelling as the evidence was, recent (U-Th)/He isotopic dating of the Clearwater Lakes impact structures reveal that the two craters were formed on the order of 200 million years apart (Biren et al., 2016). Two other likely crater pairs (doublet craters) have been identified on Earth (Melosh and Stansberry, 1991) along with two more possible doublets (Miljković et al., 2013), out of 190 total impact sites on Earth identified as of August 2016 (Spray, 2016). When we consider the two to four known doublets, approximately 1.0-2.1% of impacts on Earth are identifiable as doublet craters.

Following the arrival of images from Mariner 6 and 7 showing Mars and its surprisingly cratered surface, Verne Oberbeck and Michio Aoyagi (1972) examined craters present in photographs of Meridiani Sinus, Deucaleonus Regio, and Hellespontus. They identified 461 potential doublet crater pairs in five photographs, a large percentage of the 906 total craters counted in the images. Suspecting that this number was higher than would be expected from

randomly distributed single impacts, the authors created a Monte Carlo simulation of Martian cratering that drew at random from the crater size frequency distribution derived from the 906 craters recorded in the Mariner images. The results of the simulation showed a 0.3% probability that the number of randomly-produced doublets could exceed 163.

Doublet craters have been observed on the Moon (Oberbeck, 1973; Oberbeck et al., 1977; Trego, 1989), on Mercury (Trask and Guest, 1975; Oberbeck et al., 1977), and on the surface of Venus (Cook et al., 2003). Cheryl Cook and colleagues find that 2.2% of the total impacts on Venus are doublets. While the high number of doublets reported by Oberbeck and Aoyagi (1972) suggest a large percentage of impact sites on Mars may represent doublets, a later examination of more lightly-cratered terrain in Vasitas Borealis yields a proportion of doublets of about 2.3% (Melosh et al., 1996). These percentages are consistent with more recent estimates of 2-3% for impacts in the inner Solar system (Miljković et al., 2013). This percentage is much lower than the percentage mentioned above for asteroids believed to be binary (15%). It is lower because a majority of binary impacts not resulting in visible doublet impact structures.

1.2.1.2 Doublet Crater Formation

In this section, the proposed formation processes for doublet craters are summarized.

1.2.1.2.1 Tidal fissioning of an incoming impactor

Oberbeck and Aoyagi (1972) propose that doublets, on Mars and elsewhere, are caused by impactors broken apart by the tidal force of the target body, as predicted by (Sekiguchi, 1970).

Multiple authors took issue with Oberbeck and Aoyagi's findings. Clark Chapman (1974) is not persuaded that all Martian doublets are caused by tidally-fissioned impactors, instead believing that true doublets are caused by 'relatively rare' already-fractured asteroids. Alex Woronow (1978) challenges their conclusions that the abundances of doublet craters are the result of non-random processes. Claiming their models are too elementary, Woronow proposes an alternative probabilistic model that shows no excess in doublets on Mars, i.e., the proximity of pairs of craters could be entirely the result of randomly-placed impacts.

1.2.1.2.2 Tidal Disruption of Contact Binaries Prior to Impact

In the late 1980s, radar imaging of Earth-crossing asteroids revealed that bi-lobed bodies might be two components making contact with each other (Ostro et al., 1990). Jay Melosh and John Stansberry (1991) built an orbital mechanics-based model to test whether such contact binary asteroids, when disrupted by tidal forces, could be the source of doublet craters. Running 1000 random cases through their model, their results seemed to undermine this possibility: 1. the median crater separation resulting from the experiments was nearly equal to the initial separation of the binary components, as measured between their centers of mass; 2. as a result of their rotation around each other, the resulting crater separation is just as likely to be less than the initial separation of the binary components; 3. orbital separations between the centers of the two components rarely become greater than twice the original separations. They conclude that "tidal forces are incapable of disrupting contact binary asteroids," and could not separate the two components sufficiently to create doublet craters. They also point out that the relative velocity of an Earth-crossing asteroid is around 10km/sec. The impactor would reach the surface before tidal effects could result in significant disruption. They suggest that the observed doublet craters are formed by the impact of well-separated binary asteroids, although at the time of their publication, no evidence had yet been presented that such systems might exist. Extrapolating from the (now outdated) estimate that 3 out of 28 impact sites on Earth are doublets, Melosh and Stansberry predict that as much as 20% of all Earth-crossing asteroids are well-separated binaries (Melosh and Stansberry, 1991 p.178).

1.2.1.2.3 Tidal Disruption of Rubble Pile and Contact Binary Asteroids

Paola Farinella (1992) believed that binary asteroids are likely the side effects of catastrophic collisions in the Main Asteroid Belt. Farinella proposed that binary asteroids whose separations were only a few times the sum of their radii could have their orbital energy changed during a close encounter with Earth. This encounter would result in the two components becoming gravitationally unbound, cause them to collide, or increase their orbital separation. Further modeling work (Chauvineau, Farinella, and Harris, 1995) demonstrated that slightly separated binaries repeatedly encountering Earth become well separated, become contact binaries, or entirely disrupt the system.

William Bottke and Jay Melosh (1996) were very interested in this hypothesis. They proposed that rubble piles and also contact binaries, after experiencing a close approach with a planet, could be tidally pulled into two or more fragments whose separation is sufficient to create the doublet craters seen in the inner solar system. Using a revised model for asteroid interaction with tidal forces based upon previous work by Farinella and Chauvineau, they produced percentage estimates for tidally-created widely-separated binaries that are consistent with the rates of doublet craters on the Earth, the Moon, and Mars. Modeling impacts of such widely-separated binaries, they found that as the impactors approach, planetary tidal forces tend to align the two bodies along their velocity vector, resulting in them impacting closely. This accounts for why 15% of the impacts on Earth may be binaries, but do not always produce a recognizable doublet crater. As noted earlier, the latest estimate for Earth doublets is 1.0-2.1% (Miljković et al., 2013; Spray, 2016).

1.2.2 Binary Asteroids

This section provides a review of research in the area of binary asteroids.

1.2.2.1 Do Binary Asteroids Exist?

The existence of binary asteroids was discussed in the early 1970s by Allan F. Cook (1971) following the publication of light curves for 624 Hektor, a Trojan Asteroid. The unusual asymmetry of the light curves prompted Cook to propose two different possibilities: The light curves may represent an eclipsing binary asteroid system, or Hektor may be a contact binary.

The first evidence for binary asteroids began to trickle in a few years later, in the form of anomalous data collected as part of stellar occultation observations. The first was during the occultation of γ Ceti A by 6 Hebe on March 7, 1977. One of multiple observers, Paul Maley, detected a short period occultation that could not have been the limb of Hebe, as he was positioned too far north. His data indicated a satellite with a possible diameter of 20 km (Dunham and Maley, 1977). June 7 of the following year, three independent observers measured the occultation of star SAO 120774 by 532 Herculina. All three detected 532 Herculina, and two of the three also saw an additional extinction, indicating a satellite of 532 Herculina with an estimated diameter of 45.6 +/- 3.6 km (McMahon, 1978).

Following these reports of possible asteroid satellites, anomalous sightings from earlier observations now became the focus of renewed interest. Re-examination of previous data for secondary extinctions resulted in the identification of seven new probable satellites, bringing the list of suspected asteroids with satellites to eight: 2 Pallas, 3 Juno, 6 Hebe, 9 Metis, 12 Victoria, 129 Antigone, 433 Eros, and 532 Herculina (Binzel and Van Flandern, 1979).

The idea of satellites orbiting minor planets was intriguing, and there were multiple attempts to observe them using ground-based telescopes. Gehrels, et al., (1987) set out in 1984 to confirm the existence of such satellites with CCD imaging of several main belt asteroids, including two previously identified as having probable satellites. They were unable to identify any satellites

within the limits of resolution and sensitivity. They suggested that the only binary asteroids likely to exist are contact binaries. During roughly the same time period, 57 asteroids were observed using speckle interferometry on the 4-meter Mayall Telescope at Kitt Peak. No satellites were found (Roberts et al., 1995).

1.2.2.2 Discovery

The conflicting results from occultation and light curve observations versus optical observations in the 1980s may have left the question of asteroid satellites somewhat unanswered, but the Galileo mission to Jupiter put the question to rest. Planned photographs of main belt asteroid 243 Ida taken on August 28, 1993 included a surprise guest: a satellite orbiting the asteroid (see Figure 1-1). This first confirmed moon of an asteroid, named Dactyl, measured 1.6 km across in its largest axis, compare to 31.4 km for 243 Ida (Chapman et al., 1995).

Observations of near-Earth asteroids (NEAs) beginning in the late 1980s provided more evidence for the existence of binary asteroids, some separated, and some in the form of contact binaries. Shortly after its discovery, delay-Doppler images using radio telescopes at both Arecibo and Goldstone showed that 1989 PB (now named 4769 Castalia) was extremely bifurcated, appearing to be two distinct lobes. They saw no evidence of separation, so it is likely a contact binary (Ostro et al., 1990). By the time Asteroids III (Bottke et al., 2002) was published, five additional NEAs were confirmed to be separated binary systems using the delay-Doppler technique (Ostro et al., 2002).

The first ground-based, direct observation of a moon orbiting an asteroid was made on the first night of a planned survey of 200 asteroids for possible companions in 1998. A team using the 3.6-meter Canada-France-Hawaii Telescope atop Mauna Kea equipped with adaptive optics

was able to observe a satellite of 45 Eugenia multiple times, and determine the characteristics of its orbit (Merline et al., 1999).

1.2.2.3 Observations

1.2.2.3.1 Photometric Observations

A photometric light curve is a time series of measurements of the brightness of the observed object. Binary asteroids can be identified by periodic patterns in the light curve caused by differential rotational rates, or by the bodies eclipsing each other (Margot et al., 2015).

Figure 1-1. Galileo false-color image of 243 Ida and satellite (NASA image P-44131).

Most observed binary NEAs are asynchronous, meaning that at least one of the bodies rotates at a rate that differs from the period of their revolution. Asynchronous binaries are easy to detect via photometry, since their differing rotational periods scatter sunlight at their own rate. Even though the light curves of the two components are received as a single light curve, individual periods for the two bodies can still be identified by fitting a two-period Fourier series (Pravec et al., 2006). Photometry can also detect partial or complete eclipse events, if the plane of the binary system's orbit is close to edge-on when observed. These events have characteristic features, and once identified indicate the period of orbit (Pravec et al., 2006).

Photometric observations have discovered 175 binary systems (Johnston, 2018) representing all broad types of asteroids: NEAs, Mars crossing, MBAs, Jupiter Trojans, and TNOs (Margot et al., 2015).

1.2.2.3.2 Ground-based Direct Imaging

To directly observe an asteroid and its much smaller satellite, an instrument must possess sufficient resolution and contrast sensitivity. For example: a 50-100km asteroid in the Main Belt with a satellite only a few km in diameter, the angular separation between them is typically less than an arc second, and the contrast between the two bodies will be 5 to 10 magnitudes. Large aperture (at least 10-meter) ground-based telescopes equipped with adaptive optics (AO) are capable of such observations (Margot et al., 2015).

Since the AO-assisted discovery of a satellite orbiting 45 Eugenia in 1998 (Merline et al., 1999), ground-based telescopes using adaptive optics have discovered 16 binaries in the main belt, two among the Jupiter Trojans, and 14 Trans-Neptunian Objects (TNOs) that are binary systems (Johnston 2016).

1.2.2.3.3 Space-based Direct Imaging

The Hubble Space Telescope (HST) has the capability to resolve binary separations in the Main Belt (Margot et al., 2015), and successfully imaged a companion to 107 Camilla (Merline et al., 2002). HST has also been used to identify satellites of TNOs, including some around dwarf planets (considered TNOs) such as Pluto and Haumea (Johnston, 2016).

Deep space probes making close approaches to asteroids should be able to detect satellites, but none were discovered during visits to several, including Ceres (McFadden et al., 2018): 4 Vesta (McFadden et al., 2015), 21 Lutetia (Barucci et al., 2015), 253 Mathilde (Veverka et al., 1997), 433 Eros (Veverka et al., 2000), 951 Gaspra (Belton et al., 1992), 2867 Šteins (Barucci et al., 2015), 4179 Toutatis (Barucci et al., 2015), 5535 Annefrank (Duxbury et al., 2004), 25143 Itokawa (Fuse et al., 2008), and 132524 APL (Young et al., 2008). Only the Galileo spacecraft successfully identified a satellite around a minor planet, i.e., Dactyl orbiting 243 Ida (Chapman et al., 1995).

A total of 70 binary minor planet systems have been discovered to date via space-based imaging, with the vast majority being TNOs (Johnston, 2016).

1.2.2.3.4 Radar Imaging

Radar observations of asteroids, which usually involve a bi-static configuration where one radio telescope is used to transmit a radar signal, and another radio telescope is used to receive the signal that bounces off the asteroid and returns to Earth. The Arecibo radio telescope is the most sensitive in the U.S., and is the preferred receiver (Benner et al., 2015). The attenuation of the transmitted signal of existing systems is such that the discovery of binary asteroid systems is only possible for near-Earth objects (Ostro et al., 2002).

As of July of 2016, 41 binary asteroids have been identified in the NEA population using radar imaging (Johnston, 2016). In addition, over 30 NEAs are deeply bifurcated, making them strong candidates for contact binaries (Benner et al., 2015).

1.2.2.3.5 Stellar Occultation

Stellar occultation is an effective and simple method for determining the size and profile of asteroids. The approach requires multiple observers located at some distance (many miles) from

one another roughly positioned along a line normal to the path of the asteroid's shadow along the Earth as it passes in front of a star. Each observer records the start and end time of the occultation from their vantage point. Data are later combined, taking into account the latitude/longitude of each observer, allowing both the shape and the angular size to be determined (Millis and Dunham, 1989).

Individual components of binary asteroids could be detected if a sufficient number of observers are regularly spaced across the viewing zone. The earliest discoveries of satellites of asteroids used the stellar occultation technique (Van Flandern et al., 1979), but despite concerted efforts, most of these early observations remain unconfirmed. As recently as 2012, a team of five observers recorded the stellar occultation of HIP 41337 by the Trojan asteroid 911 Agamemnon, and a likely satellite was detected (Timerson et al., 2013). This observation has yet to be confirmed (Margot et al., 2015).

With 290 binary asteroids now identified (Johnston 2016), it is unfortunate that not a single asteroid satellite detected by those early stellar occultation observations (Binzel and Van Flandern, 1979) has been confirmed, despite extensive follow-up searches (Margot et al., 2015).

1.2.2.4 Formation Processes – Main Belt Binaries

Models for the formation of binary asteroids among the Main Belt and Trojan asteroids have not changed drastically over time. All of the candidate mechanisms for forming binary systems start with a collision. Such formation mechanisms that have been proposed and discussed since the 1980s, are described here. The first two are supported by observational data (Walsh and Jacobson, 2015).

1.2.2.4.1 Rotational Fission

For bodies larger than a few tens of kilometers in diameter (considered large in size), a sufficiently large impactor would result in a "catastrophic" collision. Such a collision would shatter the body, but most of the mass would remain gravitationally bound, creating what is commonly referred to as a "rubble pile" (Davis et al., 1979). Models of catastrophic collisions revealed cases where off-center impacts impart angular momentum that is too great for all of the mass to remain in a single body, resulting in some mass fissioning off the primary and forming a satellite (Weidenschilling 1980, Zappala et al., 1980, Farinella et al., 1982).

Numeric modeling of 161 catastrophic collisions involving large asteroids (100 km in diameter) was done by Daniel Durda and his colleagues (2004). They produced large rubble pile asteroids with small satellites (they call them SMATS, short for "SMAshed Target Satellites"). These SMATS formed from some of the highly fractured debris of the collision, and enter into orbit around the rubble pile formed from the majority of the remaining debris. In a single simulation of a large asteroid collision, 92 SMATS entered stable orbits around the single large rubble pile. The authors expect that these small bodies in highly eccentric orbits will eventually accrete into a single satellite.

1.2.2.4.2 Orbiting Ejecta

In the case where a large asteroid is struck obliquely by an impactor too small to cause the main body to fracture, some material from the crater may be ejected with sufficient velocity to enter orbit (Weidenschilling et al., 1989). This is only possible if the primary component is remarkably aspherical; otherwise the ejected material would collide again (Doressoundiram, 1997). Even if orbit is achieved, it is unlikely to remain stable (Weidenschilling et al., 1989).

1.2.2.4.3 Mutual Capture of Escaping Fragments

William Hartmann's (1979) study of collisions between two comparably-sized bodies identified a number of possible outcome categories. He introduced the idea that conditions could exist where a high-energy impact could completely disrupt both bodies, and that most of the fragments would escape. Even so, some of the fragments moving along the same vector and having a low relative velocity could become gravitationally bound, forming small binaries. Weidenschilling et al. (1989) concluded after some simple modeling that very few of the fragments could become gravitationally bound.

More recent modeling efforts (Durda et al., 2004) report on the plentiful creation of both SMATS (see above) and the mutual captures we are discussing which they have named Escaping Ejecta Binaries (EEBs). They employed smooth-particle hydrodynamics (SPH) algorithms to model pressure, temperature, and kinetic energy during collisions, and fed the output into N-body simulations to track hundreds of thousands of fragments over time from the moment of the impact. Simulating 161 impacts onto asteroids 100 kilometers in diameter, varying the impact velocity, impact angle, and ratio of the object masses. A typical outcome for a single simulated collision produced over 1000 EEBs.

The SMATS (SMAshed Target Satellites) created in the modeled collisions and their resulting orbits around large primaries match up well with known satellites around large Main Belt asteroids. EEBs seem as though they should be plentiful, but are rare in the known catalog. Most small binaries have a primary with a rapid rotation rate, which better matches binaries formed via YORP effect, described later (Walsh and Jacobson, 2015).

1.2.2.4.4 Low Velocity Collision

Another mechanism for creating a binary could involve an encounter by two asteroids with a

relative velocity sufficiently low that they could become gravitationally bound, and become a contact binary. The statistical rarity of such an event caused Doressoundiram et al. (1997) to dismiss this mechanism as a realistic possibility.

1.2.2.5 Formation Processes – Planet-crossing Binaries

We discussed in section 1.2.1.2 that planet-crossing, well-separated binary asteroids are considered to be the impactors responsible for doublet craters on Mercury, Venus, Earth, and Mars (e.g. Bottke and Melosh, 1996). But how do these planet-crossing binaries form?

1.2.2.5.1 Tidal Distortion of Planet-crossing Satellites

1995), proposed that slightly-separated Earth-crossing binaries (originating from collisions in the Main Belt) that repeatedly experience close encounters with Earth will experience orbital energy changes from the tidal forces. These changes will result in one of three outcomes: the reduction of their separation or even collision (creating a contact binary), becoming gravitationally unbound, or they become a well-separated binary.

Paola Farinella alone (1992), and later joining Chauvineau and Harris (Chauvineau et al.,

William Bottke and Jay Melosh (1996) were inspired by the work begun by Farinella, and conceived of their own mechanism to produce sufficiently separated binary asteroids that could explain the observed doublet craters on the inner planets. They propose Earth-crossing rubble-pile asteroids (including contact binaries) are the source of doublet craters, and that a single close planetary approach will tidally pull the rubble into two or more fragments. They created a model to evaluate contact binaries involved in close encounters with Earth, and ran the model against thousands of contact binaries with varying characteristics.

When a test binary was run through the simulation, its initial position was 60 Earth radii away from the planet. Encounter velocity and closest approach distance were varied for each

case. For some pairs, the components were no longer gravitationally bound and would escape. Others remained bound to one another. For these pairs, further computation of their semi-major axis, eccentricity, and perihelion allowed Bottke and Melosh to determine whether objects 1) remained in contact, 2) separated but collided again, or 3) separated and entered orbit around each other.

Bottke and Melosh (1996) also created a Monte Carlo model that determined 15% of the time, close planetary encounters for rubble piles or contact binaries should produce a satellite. They note some implications revealed by their models:

1. Close approaches are much more likely than collisions with a planet.

2. Asteroid satellites are almost always stripped from the primary during close approaches.

Even though satellite stripping occurs, rubble piles can keep on giving—there is a lot of rubble to provide more satellites.

Richardson et al., (1998) carried forward the work of Bottke and Melosh (1996), enhancing the model to represent true multi-particle rubble piles, and to include more realistic shapes, trajectories, spin rates and orientations. In the end, the improved model also predicts that 15% of Earth-crossing asteroids experiencing a close encounter with Earth should become binaries. Walsh and Richardson (2006) took advantage of improved computer capabilities to run N-body simulations of rubble piles being tidally disrupted by close planetary encounters. These simulations produced binary systems similar to observed NEA binaries, although 110,500 runs resulted in only 5747 binaries (~5%).

Building on their N-body simulations of rubble piles after collisions, Walsh and Richardson (2008) fed those results into a Monte Carlo routine. This routine simulated the transport of

bodies from the Main Belt, close encounters with Earth for those bodies, the formation of binary systems, and the subsequent evolution of their orbits and spins over a period of one billion years. Their results show that tidally disrupted binaries do not survive very long due to large semimajor axes and high eccentricities. They estimate that such binaries should only account for 1-2% of all NEAs, and conclude that tidal disruption may not be the primary mechanism for binary asteroid formation in the planet-crossing population.

1.2.2.5.2 Thermal Torque Rotational Fission

If only 1-2% of NEAs were binary systems, it would not be sufficient to explain the doublet cratering record, which is estimated to require around 15% of all NEAs be binary (Miljković et al., 2013). Among observed NEAs and MBAs under 10km, 15% are binary (Walsh et al., 2008). Recent observations indicated the abundance of small satellites among small MBAs is the same as that among NEAs (Ćuk, 2007). Upon noting this, Matija Ćuk observed that with no planetary tidal encounters in the main belt to create such binaries, another process must exist to strip material from small MBAs, giving them satellites. This also raises the question of whether NEA binaries are created by tidal disruption, or by the process at work in the main belt? Ćuk suspected a common origin for both: Spinning up of the asteroid's rotation by the YORP effect.

The Yarkovsky-O'Keefe-Radzievskii-Paddack effect, or YORP effect (Rubincam, 2000), can impart rotational torque to irregularly-shaped small bodies (< 10 km in diameter). This causes them to spin faster or slow down depending on the nature of the body and its direction of spin. Solar infrared radiation striking the day side of an asteroid is absorbed and then re-emitted as thermal radiation. A perfect sphere would emit the photons radially and symmetrically, having no effect. On the other hand, a highly irregular body would emit photons both radially and tangentially, typically creating asymmetric force that can affect its spin rate.

Kevin Walsh, Derek Richardson and Patrick Michel (2008) presented a model showing that binary asteroids <10 km in both the near-Earth and Main Belt populations are formed by the same mechanism: the slow spin up of rubble pile asteroids by the YORP effect, ultimately reaching a critical rotational rate that sheds mass from the pile. The binaries produced by their model are consistent with known small binaries in both populations.

The big shift in the first decade of the 21st century was to move away from thinking planetcrossing asteroids and Main Belt asteroids were fundamentally different.

112 confirmed asteroids with satellites had been observed in these two populations (Johnston 2016), and Pravec and Harris (2007) created a classification system for them:

- Group L: Large asteroids with relatively very small satellites
- Group A: Small asteroids with relatively *small* satellites in *tight* orbits
- Group B: Small asteroids with relatively *large* satellites in *tight* orbits
- Group W: Small asteroids with relatively *small* satellites in *wide* orbits

Where the boundary between "Large" and "Small" asteroids falls at a diameter of 20 km for the primary (D_P), the boundary between relatively *large* and *small* satellites is a ratio of the secondary to primary diameters (D_S/D_P) around 0.7, and the boundary between *tight* and *wide* orbits is defined as a semi-major axis at 9 times the radius of the primary. New observational data and the application of YORP theory to binary formation resulted in some movement of the categorical boundaries (the updated values are presented here) since the creation of the classification system in 2007 (Walsh and Jacobson, 2015).

Group L was addressed in section 1.2.2.4: collisional processes dominate the creation of these binaries with large primaries. At sizes exceeding 20 km, YORP does not play a role since

spin-up timescales increase with surface area (Walsh and Jacobson, 2015). This group is represented exclusively by Main Belt asteroids.

Groups A, B, and W are composed of binary asteroids from both the Main Belt and the planet-crossing populations, and the systems in these groups can all be accounted for by YORP-based formation processes.

Seth Jacobson and Daniel Scheeres (2011) presented a model for small asteroid binary system creation through rotational fission that depends only on the YORP effect, the existence of rubble pile asteroids, and their gravitational interactions. They note that previous YORP-based models (such as presented in Walsh et al., 2008) do not adequately predict all observed binary system characteristics. Their model differs from others in that it covers longer timescales, thus it more realistically represents the time it would take to develop YORP torque (on the order of 10⁶ orbits).

Their model is comprised of two parts: a YORP-based rotational fission model to create the initial binary, followed by a purely gravitational model for post-fission evolution of the system (gravitational timescales are much shorter than those required to perceive YORP effects). They ran 526 varying rubble piles through their simulation, letting the post-fission dynamical model proceed for 1000 years. At the end of that time, 41 of these became stable binary systems, representing synchronous binaries (secondary spin matches orbital period), doubly synchronous binaries, and contact binaries. The authors believe their rotational fission model creates all types of observed binaries that begin with a rubble pile in the size range of 100 meters to 10 kilometers (Jacobson and Scheeres, 2011).

While the Jacobson and Scheeres (2011) simulation modeled bodies as monolithic entities until they fissioned into multiple components, Walsh, Richardson, and Michel (2012) continued and expanded the YORP spin up numerical experiments described in Walsh et al. (2008) which model the rubble pile and any fissioned satellites as thousands of constituent particles. Walsh et al. (2012) demonstrate through their model that an equatorial ridge (observed on some near-Earth asteroids) is formed as spin approaches the critical speed necessary to fission, and that mass is then stripped from the equatorial ridge to form satellite(s). Jacobson and Scheeres (2011) attribute the equatorial ridge to mass that is further fissioned from satellites, and falls back onto the primary.

Though taking different approaches, both of these YORP effect-based models are very good at explaining the population of small asteroid binaries in the Main Belt and planet-crossing populations.

1.2.3 Impact Crater Morphology

The morphology of impact craters is of particular interest for this study, as it allows for analysis both during the determination of whether two craters could have been formed in the same impact event, and during the computation of the mass of the impactor that created a crater. This section begins with a brief overview of basic crater forms seen on planetary bodies, summarized from Jay Melosh's book, *Impact Cratering* (1989).

1.2.3.1 Overview

As the sizes of impact craters increase on a particular body, transitions occur in their overall form. The smallest craters are called "simple" craters. Simple craters possess a circular raised rim, and present a generally featureless, bowl-shaped interior that is close in profile to a parabola. At some threshold diameter (it varies by target body), there is a transition to a more complex morphology for the crater's interior, thus the name "complex" craters. These larger craters maintain a circular rim, and the inner walls are steep near the rim, just as in a simple

crater. The difference comes at the crater floor, which is flat and covered by material that has the appearance of landslide debris. Complex craters are more shallow, in comparison to their diameter, than simple craters. As larger complex craters are examined, they also exhibit terracing in the crater walls, and raised structures at the center of the crater floor referred to as central peaks.

The candidate doublets identified in the study (with the exception of one pair) each have a diameter that falls below 7 km, the observed transition from simple to complex craters on Ceres (Hiesinger et al., 2016), so the primary morphological concern of this study is that of simple impact craters.

1.2.3.2 Oblique Impacts

The chance that an impacting body strikes a planetary surface vertically is quite small indeed, given that random objects meeting in space can come at one another at any angle. Virtually every impactor strikes a target surface at some angle above horizontal that is less than 90°, with 45° being both the average angle and the one with the highest probability of occurring (Melosh, 1989, p. 49). The probability of an impact at an angle falling between θ and $\theta + d\theta$ (θ is measured from target surface horizontal), is defined as

$$dP = 2\sin\theta\cos\theta\,d\theta\tag{1}$$

and based on this equation (Pierazzo & Melosh 2000), the angle with the highest frequency is 45°. Equation 1 also indicates the probability of a vertical ($\theta = 90^\circ$) or a grazing ($\theta = 0^\circ$) is essentially zero. Equation 1 predicts that 50% of impacts will occur for angles between 30° and 60°. The conclusion to be drawn from this is that all impacts should be considered oblique impacts.

If it is the case that essentially all impact craters have been created by bodies striking the surface at varying degrees of obliquity, surely one should be able to detect that in the shape of the crater itself. It turns out to not be so easy, since hypervelocity impacts, i.e., where the velocity is higher than the speed of resulting compression waves in the target material (Burchell and Grey, 2001), produce circular crater rims for all but the most oblique angles. Elliptical crater shapes do not appear until the angle of impact is within 10-15° of horizontal (Melosh 1989), and such oblique impact events are likely to occur less than 7% of the time (Pierazzo and Melosh 2000).

Elliptical crater rims may not occur in most cases, but there are other morphological indicators associated with oblique impacts. In an oblique strike, much of the vertical velocity component is absorbed by the shock, but the horizontal velocity component is less affected by the initial impact. Both the remains of the projectile and the excavated target material are carried along the horizontal velocity vector, depositing more material downrange. The downrange rim is pushed away as this lateral energy is spent, resulting in the deepest excavation of the crater bowl occurring up-range of the center of the new crater. This effect is more pronounced as obliquity increases (Melosh, 1989, pp. 49-51). These same processes result in radially asymmetrical ejecta blankets (Wallis et al., 2005; Poelchau and Kenkmann, 2008), however all but the freshest craters tend to lose their well-defined ejecta blankets to erosion. Herrick and Forsberg-Taylor (2003) examined craters on the Moon and on Venus, looking for evidence of oblique impacts. They observed that craters possessing a single depression along a portion of the crater rim showed ejecta concentrated on the opposite side of the crater. This is consistent with experimental results that found up-range rim depressions and downrange ejecta concentrations for impact angles less than 30° (Gault and Wedekind, 1978). It should be noted that not all

impact experiments support this oblique morphology. Burchell and Grey (2001) fired aluminum projectiles into thick glass, and found that regardless of the angle of impact, the deepest point of the resulting craters remained at the center. Numeric modeling has been supportive of an oblique morphology. Three-dimensional simulation of high-velocity oblique impacts produced crater profiles that were asymmetric: the crater floors showed a steeper slope in the up-range direction, with a shallower (and elongated) slope in the downrange direction (Elbeshausen et al., 2009).

1.2.3.3 Impact Crater Scaling Laws

There have been numerous attempts to determine a reliable impact crater scaling law, dating back to at least the late 1960s (Öpik, 1969; Gault, 1974; Melosh, 1980; Holsapple and Schmidt, 1982; Schmidt and Housen, 1987, and others). It is generally agreed that the size and form a crater will take is dependent on a number of variables: impactor velocity, impactor size, impactor density, target density, target strength, and the gravity of the target body. Some models also consider separately the porosity, cohesion, and friction of the target, and these values can be considered for impactors as well (Elbeshausen et al., 2009; Wünnemann et al., 2011).

Donald Gault (1974) stated that the final size and shape of impact craters is primarily dependent on the material strength and gravity of the target body. The strength of the target is most important for determining the shape of very small craters, whereas gravity dominates for larger craters (i.e., kilometers in size). Unable to create a scaling law that covers all impact crater sizes, Gault developed three equations for Lunar impacts that differed in a coefficient value and in the power to which the kinetic energy was raised. One equation was valid for craters up to 10 meters in diameter, the second was applicable in craters between 10 and 100 meters, and the third equation was useful for larger craters. They are all three of the form shown in Equation 2, but different values are used for the coefficients A and E:

$$D = A \rho_p^{1/6} \rho_t^{-1/2} E^X (\sin \theta)^{2/3}$$
(2)

Where:

D	= Crater diameter
$ ho_p$	= Projectile density
$ ho_t$	= Target density
Ε	= Kinetic energy of the projectile
θ	= Impact angle away from vertical (different from Eq. 1)

Horedt and Neukum (1984) took a look at six crater-scaling laws that had been published in the previous decade or so. They found Gault's (1974) crater-scaling equation for large craters to be straightforward and useful, even though they note that Holsapple and Schmidt (1982) were critical of it. They conclude that current crater scaling laws lack a firm theoretical base, and much more theoretical work and experimentation is needed. This assessment agrees with the view held by Jay Melosh (1980).

Extending the work of Elbenhausen et al., (2009), Kai Wünnemann and colleagues (2011) developed a scaling formula based on the results of over 150 numerical models of impact crater creation in targets that varied in their physical properties. Initially creating separate laws for the strength- and gravity-dominated regimes, they were able to combine them into a single scaling law that applied to both. The equation is quite complex. It combines the variables seen in many previous scaling laws with additional properties of the target material: cohesion, porosity, and friction.

Kevin Zahnle and colleagues developed a more manageable scaling formula for relating transient simple crater diameter to impactor diameter (2003). Their study primarily looked at impact cratering rates on the icy moons of the outer solar system. They desired a simpler scaling

rule than most of those mentioned above. Equation 3 shows their formula for determining the diameter of the transient crater. They state that the final crater diameter (D) is equal to the transient crater diameter (D_S) for craters whose D_S is smaller than the diameter marking the transition to complex craters (D_C) on the target body.

$$D_{S} = 11.9 (v^{2}/g)^{0.217} (\rho_{p/}\rho_{t})^{0.333} d^{0.783} \text{ km}$$
(3)

The new variables appearing in Equation 3 are projectile velocity (v) in km/s, gravity (g) in cm/s², and projectile diameter (d) in km (D_S is also expressed in kilometers).

1.3 Goals and Outline

The primary objective of this work is to demonstrate that the impact cratering record of Ceres provides conclusive evidence for the existence of binary asteroid systems with components smaller than one kilometer in diameter within the Main Belt. To do this, the percentage of small impact events on Ceres that are doublets will be estimated by a sampling of its surface. This percentage, when interpreted in the context of prior studies, will lead to an overall percentage of small asteroids that are binaries within the Main Belt.

Chapter 2 details the methodology employed in this research. It describes the methods used to estimate impactor diameter from crater diameter, covers the approach to impact crater sampling, and the source data upon which the sampling depends. A method for evaluating crater pairs is described, and finally a Monte Carlo simulation for determining an expected random distribution of impact craters in the study area is presented. Limitations for all these methods are addressed. Chapter 3 describes the application of the methods presented in Chapter 2, including detailed examination of likely doublet craters. Chapter 4 begins with interpretations of the
analyzed data from Chapter 3, and presents the conclusions of the work along with opportunities for additional research.

2 METHODS

This chapter begins with a brief review of methods used in previous doublet crater studies that have influenced this research, then goes on to describe the source data for this study, and provides details about the methods and tools used to identify doublet craters on Ceres.

Multiple attempts have been made to quantify the number of impact events on planetary surfaces that may be doublets. Oberbeck and Aoyagi (1972) performed the first systematic survey of impact craters on Mars, using Mariner 6 and 7 images. They counted all craters larger than 4 km in diameter within their total study area (3,818,095 km²). Likely choosing the area based on the most useful photographs, they examined the heavily cratered terrain to the west of Hellas Planitia. They defined possible doublets as any two craters whose rims either overlap by no more than 12.5 km, or whose rims are separated by no more than 12.5 km. Using these criteria, they identified 461 doublets among 906 craters.

Melosh et al. (1996) noted that Oberbeck and Aoyagi had sought out doublets on heavilycratered terrain, where saturation could have occurred. They instead chose to search for doublet craters on the lightly-cratered northern plains, examining approximately 2 million square kilometers in Vasitas Borealis. Using Viking image mosaics, they counted all craters greater than 5 km in diameter. They considered any pairing of craters whose separation was less than 100 km as potential pairs, and further evaluated the pairs based on visible geologic information. They categorized pairs as "unlikely" if evidence against being a doublet was present (e.g. different degradation), "likely" if positive evidence was observed, and "possible" if no particular evidence for or against simultaneous impact was seen. They identified only 133 craters in their study area with diameters greater than 5 km, and found only three pairs that they considered "likely."

Similar studies have been performed on the satellites of Saturn (Wagner et al., 2012), on the Moon (Oberbeck et al., 1977), and on Venus (Cook et al., 2003).

2.1 Source Data

Existing data sets from NASA's Dawn mission form the basis of this research. This section describes those data.

2.1.1 Imagery

The Dawn spacecraft has been orbiting the dwarf planet Ceres and making observations since March 6, 2015 (Ciarniello et al., 2017). It is equipped with two Framing Cameras (FC), each of whose 1024x1024 CCD can acquire visible light images through a clear filter, or through one of seven distinct band pass filters (Sierks et al., 2011).

To get the highest resolution images of Ceres in the most convenient form, a global mosaic of Dawn Framing Camera images captured during the Low Altitude Mapping Orbit (LAMO) is used for the crater survey. This global map depicts the surface of Ceres at a resolution of 35 meters per pixel (Roatsch, et al., 2017). When more detailed examination of specific craters is desired, individual Framing Camera images taken during LAMO (Nathues et al., 2016) can provide varied lighting and improved contrast when compared to the global mosaic product.

2.1.2 Elevation Data

To effectively study the morphology of impact craters, elevation data of the Ceres surface, presented with sufficient resolution to perceive the shape of craters on the order of 5 km in

27

diameter, are essential. The Dawn team has produced a global Digital Terrain Model (DTM) of Ceres, derived using stereo photogrammetry based on Framing Camera images from the High Altitude Mapping Orbit. This terrain model has a lateral spacing of approximately 136.7 meters per pixel, and a vertical accuracy of approximately10 meters (Preusker et al., 2016).

Examination of crater morphology will be done using the Ceres Relative Elevation for Oblate Spheroid (HAMO), a global numeric map derived from the above-described DTM.

2.2 Determining Impactor Size from Craters on Ceres

It is essential to determine the size of asteroids that created the impact craters examined in our study, since the intention it to characterize the binary systems within the population of small asteroids (≤ 1 km) in the Main Belt. A scaling law is needed to determine impactor sizes from the craters they create, and the inputs to such a scaling law must be determined.

2.2.1 Impact Crater Scaling Laws

We are interested in craters whose diameters fall below the transition from simple to complex craters, which Hiesinger et al., (2016) estimate to be between 7.5 and 12 kilometers in diameter. Since we will be focusing on simple craters, the diameter of the transient crater rim is a sufficient approximation of the final rim diameter for simple craters (Ivanov, 2001; Turtle et al., 2006).

This study is concerned with ranges of impactor sizes, and does not require exacting size determinations for impactors. As discussed in section 1.2.3.3, Kevin Zahnle and colleagues (2003) developed a scaling formula for relating simple crater diameter to impactor diameter that is suitable for this study.

Modifying their equation to solve for the diameter of the projectile, we get

$$d = \left[D / (11.9(v^2/g)^{0.217}(\rho_p / \rho_t)^{0.333}) \right]^{1.277}$$
(4)

where v is impactor velocity in km/s, $g = \text{Ceres gravity in cm/s}^2$, ρ_p is the density of the projectile in g/cm³, ρ_t is the density of the crust of the target Ceres, and D is the diameter of the impact crater in km.

Some of these values are well known. We have already measured the craters and know each diameter D, and the gravity of Ceres is 28 cm/s² (Mao et al., 2018). The following sections describe how the remaining values needed for this equation were determined.

2.2.2 Estimating the Velocity of an Impacting Main Belt Asteroid

The closing velocity is different for every impactor that collides with Ceres, and we cannot hope to know these velocities with any certainty. For the purposes of this study, a representative mean collisional velocity for main belt asteroids will be used as input to a crater scaling model.

Farinella and Davis (1992) computed collision probabilities for 682 known asteroids larger than 50 km from a set of 4100 numbered main belt asteroids whose orbits are known. They also computed their probable collision velocities.

This foundational work led to additional, similar computational studies. Bottke et al. (1994) computed a mean velocity for Main Belt asteroids of 5.3 kilometers per second, yet the most probable value was 4.4 km/s. John Vedder (1998) expanded his sample size to 4506 Main Belt asteroids, and propagated their known orbits for 48,000 days. He found an average closing velocity of 3.78 km/s for predicted collisions.

Taking a different approach, Hiesinger at al. (2016) used a global study of impact craters on Ceres (also taking advantage of the new detailed images from the Dawn space craft) and computed an average impact velocity of 4.57 km/s. As this value is close to the highest probability velocity predicted by Bottke et al. (1994), and it is a value more directly associated with the specific orbit of Ceres, it will be the value used for this study.

2.2.3 Estimating the Density of an Impacting Main Belt Asteroid

Benoit Carry (2012) published a review of the known densities of small bodies in the solar system. He compiled mass and density data for 287 bodies, which included Main Belt asteroids, comets, near-Earth asteroids (NEAs), and trans-Neptunian objects (TNOs), which are presented in his Table 1. He also assigned a quality grade to the data for each asteroid (A through F) based on the estimated accuracy.

For this study, we focused the Main Belt asteroids (175), eliminating those of grade E or F (indicating a relative density accuracy cruder than 100%), and restricted our final list to only stony MBAs. The average density for these remaining 138 stony Main Belt Asteroids (see Appendix B) is 2.788 g/cm³.

2.2.4 The Density of Ceres' Crust

Ermakov et al. (2017) report that based on the shape model and gravity field of Ceres, as determined by Dawn, they compute a best-fit global averaged crustal density of 1.287 g/cm³. This value will be used in our crater-scaling formula to determine the size of impactors.

2.2.5 Crater Scaling Equation for Ceres

Entering the values we have determined for Ceres and the Main Belt into Equation 4 results in the following:

$$d = \left[\frac{D}{(11.9(4.57^2/27)^{0.217}(2.788/1.287)^{0.333})}\right]^{1.277}$$
(5)

which simplifies to:

$$d = \left[D/14.44475 \right]^{1.277} \tag{6}$$

This work will use Equation 6 to determine approximate impactor crater diameters.

2.3 Impact Crater Survey

All impact craters at or above a chosen diameter, occurring within a predetermined area on Ceres, will be recorded. Much of the work is done using JMARS, the Java Mission-planning and Analysis for Remote Sensing software created at Arizona State University (Christensen et al., 2009).

2.3.1 Survey Area

An earlier pilot study (Wren and Fevig, 2017) searched terrain near large craters *Urvala* and *Yalode* for its low crater density, to minimize the number of randomly-adjacent impact craters (Heisinger et al., 2016). The full study region was extended to the west and somewhat north, bounded by 110°E to 270°E and 10°N to 30°S, roughly 430,000 km² (see Figure 2-1).

Figure 2-1. Study area on Ceres. Red line is the original pilot study, white line encompasses the total study area for this work: 110°E to 270°E and 10°N to 30°S.

2.3.2 Identifying and Recording Craters

To ensure sufficient resolution for crater identification in FC images and to provide sufficient resolution in the Digital Elevation Model, only craters with a minimum diameter of 3 kilometers will be considered.

The Crater Counting layer of JMARS (Described in Appendix D) is used to locate all craters within the study area. When the user selects a crater, the Crater Counting layer automatically records the location (latitude, longitude) and diameter of each impact crater in a table that can be exported. The Crater Counting layer was configured to record the diameter to the nearest 100 meters.

2.3.3 Upper Limit for Crater Diameters

Using Equation 3 in section 1.2.3.3, we enter the values determined in section 2.2 along with a value of 1 for projectile diameter in kilometers (d). The resulting simple crater diameter is 14.44 kilometers. Candidate pairs are limited to those whose craters are less than or equal to 15 kilometers in diameter.

2.3.4 Limitations

This approach to locating and identifying impact craters, as with all approaches, introduces some errors and biases into the collected data. Setting a 3 km lower limit on crater diameter may be necessary to ensure the craters included in the study can be accurately measured, but it also means smaller craters will not be included even though they may be part of a doublet, even one in which the other crater is above the 3 km limit.

The largest source of errors in the collected data is the human in the loop, who must judge the size of craters against the crater counting tool (the computer's cursor is a circle set to the 3 km-diameter minimum) and could miss some craters that are barely 3 km in diameter. The human could also misjudge the matching of the crater's actual diameter with the cursor tool, producing errors in the estimated diameter. This can be overcome later by performing more precise measurements of individual craters that are of interest later in the process.

2.4 Identifying and Evaluating Potential Doublet Craters

All potential crater pairs separated by an arbitrary upper limit will be identified automatically by custom software, and then individually examined for evidence for or against the pair being the result of a doublet impact event.

2.4.1 Identifying Crater Pairs

When looking for pairs of craters that could be considered doublets, a maximum distance of 20 kilometers was somewhat arbitrarily chosen as the upper limit for the separation between their centers. Twenty kilometers (vs. 100 km, as used in Melosh et al., 1996) was chosen to avoid nuisance pairings that were unlikely. Small craters whose separation is many times the craters' diameters would represent low-mass binary asteroids that would probably not be gravitationally stable. To identify candidate crater pairs, the following steps are performed:

- 1. Individual craters identified in the Crater Counting layer of JMARS are downloaded to a character-separated values (CSV) file.
- 2. Using the crater file as input, a Python program (Oliphant, 2007) assigns a unique number to each crater.
- 3. The program then examines all unique pairings of craters in the file, computing each pair's separation as a great circle arc between the latitude/longitude locations of the

craters' centers. The computation assumes Ceres is a sphere with a radius of 473 km, its mean radius (Ermakov et al., 2017).

- 4. Each crater pair whose separation is less than 20 km is output to a human-readable CSV file, and also output to a custom shape file that can be ingested by JMARS.
- 5. Lastly, the program creates a CSV file of information on all counted craters, including their assigned number. More details on this Python program can be found in Appendix D.

2.4.2 Evaluating Crater Pairs

Each candidate crater pair identified by the Python program is examined manually and graded using a scoring system.

To facilitate the evaluation of crater pairs, the custom shape file produced by the Python program is loaded into JMARS. This layer will draw a line between the centers of two craters, and label the line with the two craters' numbers. Each candidate crater pair identified in the previous section can be easily located and examined.

Each candidate doublet is assigned a score based on the observed presence of seven features/attributes: Heavy Erosion, Superposition, Differing Erosion, Differing Depth, Similar Erosion, Possible septum, and Possible Ejecta Lobes (see Table 2-1). Some examples are illustrated in Figure 2-2.

Scoring rationale: Differing erosion (when apparent to the human eye) and superposition are clear indications that a pair of craters do not represent a double impact, so a high magnitude negative score is assigned to these to ensure the pair will not ultimately receive a positive score. Differing Depth is a little trickier to interpret without detailed measurements of the craters, since the depth should be interpreted in relation to the diameter. Only fairly obvious differences will be detectable via visual inspection. Heavy Erosion subtracts one point because it makes much of the crater's original shape difficult to discern. Even though possible septa and ejecta lobes should indicate a doublet, it may take more analysis to be sure, so the positive evidence scores lower than negative evidence.

(a)

(b)

Figure 2-2. Examples of impact crater attributes used to identify doublets: a. Super-imposed craters; b. Differing erosion; c. Septum between craters; d. Radial ejecta lobes.

Attribute	Score	Description
Superposition	-3	One crater clearly is superimposed over the other
Differing Erosion	-3	One crater is clearly more eroded than the other
Differing Depth	-2	One crater is obviously deeper (in relation to its diameter)
Heavy Erosion	-1	Both craters are highly eroded
Similar Erosion	1	Both craters exhibit what seems to be the same amount of erosion
Possible Septum	2	A common rim segment shared by the two craters that is typically straight rather than curved
Possible Ejecta Lobes	2	Radial ejecta lobes deposited by two jets moving away from the crater pair in opposite directions along the axis of the septum (Miljković et al., 2013).

Table 2-1: Scoring System for evaluating potential doublet impact craters

Crater pairs with negative scores are not considered to be doublets. Pairs with scores of zero are inconclusive. Pairs with positive scores will be considered possible doublets, and will be examined more closely.

2.4.3 Limitations

Choosing an arbitrary 20-kilometer maximum separation between craters to examine as possible doublets is a waste of time for the smallest craters (the impactors would not likely be in a stable orbit at such a separation). The same 20 km limit may cause us to miss double impacts entirely in cases where one of the components of the binary is large in comparison to its companion (the separation could then be larger than 20 km).

2.5 Monte Carlo Simulation

A Monte Carlo simulation has been created in Python. The objective of this simulation is to create the expected distribution of crater pair separations resulting from randomly located, single-projectile impact events (the same number as the count of craters observed in the study

area on Ceres). This simulation is modeled after one employed in a similar doublet crater study on Mars by Melosh, Ingram, and Bottke (1992).

When provided with the boundaries of the study area (in latitude and longitude coordinates) and the number of craters counted in the Identifying and Recording Craters phase (described in section 2.3.2), the Python program will perform the following steps:

- Use a random number generator to simulate latitude/longitude pairs representing randomly-occurring craters. The simulation creates the same number of random crater locations as the number of real craters counted in the same study region on Ceres.
- 2. The simulation then identifies all possible pairings of the simulated craters whose separations are less than the threshold separation used in the Identifying Crater Pairs phase (section 2.4.1).
- 3. All pairings are tallied into logarithmic bins based on their separation distance.

This simulation is executed 1000 times, and the average value for each bin is computed. A different Python program reads in the observed crater pair data produced by the activities in section 2.4.1, and tallies the separations of all pairs into the same logarithmic bins. The observed separation counts will be compared against the expected distribution produced by the simulation.

3 DATA ANALYSIS

This chapter presents the data collected in this study, and describes the processing and analysis of those data using the methods presented in Chapter 2.

3.1 Impact Crater Identification

Using JMARS, 1084 craters at least 3 kilometers in diameter were counted in the study area (110°E to 270°E and 10°N to 30°S). Craters counted ranged from 3 to 63.8 kilometers in diameter (1021 of these are at most 15 km in diameter). The resulting rows of crater data, i.e., the latitude/longitude of the crater centers and their diameters, are written by JMARS to a file named craters all phases.csv.

3.2 Finding Doublet Craters

The goal of this study is to address Main Belt asteroids with diameters that are at most one kilometer. No upper limit was placed on crater diameter during the counting phase, but as we analyze potential pairs to identify doublet impacts, we will restrict the pairs examined to those whose craters are at or below the estimated crater diameter predicted for a 1 km impactor on Ceres (see section 2.3.3).

3.2.1 Potential Crater Pairs

A Python program named separations_shapes.py read in the crater data from the file craters_all_phases.csv. It examined all unique combinations of craters, and recorded all

pairs whose separations were less than 20 kilometers. There were 2037 crater pairs separated by less than 20 kilometers identified and output to the file crater_pairs_20km.csv.

A manual process using the sort function in Excel was employed to edit the file crater_pairs_20km.csv by removing all craters pairs that contain craters whose diameters are greater than 15 kilometers, resulting in the file named crater_pairs_lt_15km.csv. This new file contains 1878 crater pairs.

3.2.2 Identifying Doublet Craters

A two-step process is used to determine a final list of pairs that may be doublet craters. Each pair of craters is examined and scored. The crater pairs with a positive score weren revisited to classify them as inconclusive, possible, likely, very likely, or definite.

3.2.2.1 Scoring Crater Pairs

Of all crater pairs evaluated, 66 received a positive score. Of these, one is considered to be a "definite" doublet crater, two are considered "very likely" to be real doublet craters, three are considered "likely," and three are "possible." The remaining 57 are considered "inconclusive," and may be evaluated further. The nine crater pairs rated "possible" or better are listed in **Table 3-1**. Appendix C contains the complete list of the 2037 crater pairs analyzed, sorted by their total score.

3.2.2.2 Results

This section addresses the nine crater pairs from the study that show varying degrees of promise as doublet craters, as listed in **Table 3-1**.

Pair 1 is the only one classified as a "definite" doublet crater. This relatively fresh impact structure bears the hallmark septum wall between the two craters (Figure 3-1), which is the best evidence for a simultaneous impact of two bodies (Johnston and Miljković, 2014). The two

impactors were close in size to one another, and were separated by about two kilometers upon impact.

Crater Pair	Longitude	Latitude	Diameter (km)	Separation (km)	Doublet?
Pair 1	228.633	-9.703	3.2	2.16	Definite
	228.367	-9.695	3.5		
Pair 2	170.487	9.613	10.8	10.47	Very Likely
	171.366	10.540	13.8		
Pair 3	216.578	9.367	4.3	1.63	Very Likely
	216.570	9.176	3.7		
Pair 4	154.906	-29.375	3.2	2.65	Likely
	154.93	-29.695	3		ž
Pair 5	252.679	-13.583	3.0	2.92	Likely
	252.938	-13.831	3.2		ž
Pair 6	251.772	-21.941	3.0	3.26	Likely
	252.024	-22.236	5.3		ž
Pair 7	218.295	-21.601	3	3.55	Likely
	218.064	-21.974	3.5		2
Pair 8	255.199	-17.097	3.6	8.01	Possible
	255.426	-16.152	3.0		
Pair 9	132.27	-26.360	5.2	7.47	Possible
	132.016	-27.234	5.2		

Table 3-1: Doublet Crater candidates in the study area

Figure 3-1. A "Definite" Doublet Crater on Ceres (NASA Dawn image FC0048556)

A larger pair of impact craters is depicted in Pair 2 (Figure 3-2). These two craters are not as young as those in Pair 1, showing a good number of small impact craters that occurred after the two large craters were formed. Even with the higher degree of erosion, the septum wall between the craters is nearly unmistakable. At diameters exceeding 10 km (the larger crater is nearly 14 km), this is the largest observed doublet in the study.

The impact structure shown in Figure 3-3 was initially mistaken for a single impact crater during the counting phase. It was not recognized as a potential double impact event until it came under closer scrutiny as a member of other potential pairs (see sections 2.3.1 and 2.3.2). The rim of this excavation fits well with two circular craters whose rims overlap far enough that there is only a single pit. These structures are often referred to as "peanut-shaped". This pair is considered "highly likely" to be a true doublet crater. The impactors were separated by less

Figure 3-2. Large, "very likely" Doublet Crater on Ceres (NASA Dawn image FC0053565).

than 1.5 km when they struck the surface.

Pair 4 in the table is another example of a peanut-shaped doublet crater (Figure 3-4). It is categorized only as "likely" to be a doublet on the basis of its relatively heavy erosion, which could have erased evidence that it was not a doublet.

Pairs 5 (Figure 3-5) and 6 (Figure 3-6) are both highly eroded, but the remnants of possible radian ejecta lobes and a septum make these two pairs of craters "likely" doublets.

Pair 7 is less eroded than the two previous pairs, and may include a septum (Figure 3-7). Alternatively, these may be coincidental impacts that are fortuitously spaced such that the crater rims touch, but are not part of a single impact event.

Figure 3-3. Peanut-shaped "very likely" Doublet on Ceres (NASA Dawn image FC0057993).

Figure 3-4. A "likely" Peanut Doublet Crater on Ceres (NASA Dawn image FC0064514).

Figure 3-5. Highly-eroded "likely" Doublet with possible septum and ejecta lobes (NASA Dawn image FC0052195).

Figure 3-6. Highly-eroded Doublet with possible septum and lobes (Dawn image FC0051873).

Figure 3-7. Eroded Doublet with possible septum (Dawn image FC 0056991).

Figure 3-8. Fresh "possible" Doublet Crater (Dawn image FC0058469).

Figure 3-9. "Possible" Doublet Crater on Ceres (Dawn image FC0054371).

The last two crater pairs that are candidates to be true doublets lack any explicit evidence for being the results of binary asteroid impacts. Pair 8 is a fresh pair of similarly-sized craters that appear to be about the same age and have well-formed rims (Figure 3-8). They could be the result of a binary impact, so it is classified as "possible." The craters in Pair 9 are more eroded than Pair 8, but they are similarly eroded and close in size to each other (Figure 3-9). They are also considered to be a "possible" doublet.

3.3 Random Distribution of Craters

As described in section 3.1, 1084 impact craters with diameters equal to or greater than three kilometers were counted in the study area. The Monte Carlo simulation described in section 2.5

(monetcarlo_phase123.py) was executed to create 1084 random impact locations in the same area as the study (bounded by 110°E to 270°E and 10°N to 30°S). The software then identified all pairs of simulated craters whose separation was less than 20 km (the same process used in section 3.2.1 to identify candidate pairs of observed craters on Ceres). The Python code created algorithmic bins for tallying separations by distance, as shown in Table 3-2. For all bins except the final one, a separation *s* will be tallied in the bin if *lower bound* $\leq s < upper bound$. For the final bin, the upper bound is inclusive, i.e., *s* is tallied if *lower bound* $\leq s \leq upper bound$, but since we exclude the value of 20 kilometers from our selected crater separations, the final bin will never include any counts representing the upper bound value.

Bin #	<i>lower bound</i> (km)	<i>upper bound</i> (km)
1	1.0	1.349282848
2	1.349282848	1.820564203
3	1.820564203	2.456456052
4	2.456456052	3.314454017
5	3.314454017	4.472135955
6	4.472135955	6.034176337
7	6.034176337	8.141810631
8	8.141810631	10.98560543
9	10.98560543	14.82268898
10	14.82268898	20.0

Table 3-2: Bins for tallying crater separations by distance in kilometers.

The simulation was executed 1000 times. Each run produced a different set of 1084 craters, and the number of crater pairs whose separation was less than 20 kilometers varied, as expected. The averaged bin counts for the 1000 runs are shown in Table 3-3.

Bin #	Simulated crater pairs
1	3.54
2	6.64
3	11.67
4	21.61
5	39.23
6	71.03
7	128.43
8	232.27
9	420.64
10	755.23

Table 3-3: Average simulated counts of crater pairs binned by separation.

3.4 Estimating Impactor Diameters

Using the crater scaling law shown in Equation 4, estimates were produced for the diameters of the impactors that created all craters with diameters of at most 15 km counted in the study area. Impactor diameter ranged from 134 meters for the smallest crater measured at 3 km, to 1040 meters for the largest crater, which measured 14.9 km in diameter. A full list of these 1021 impact craters appears in Appendix A.

A size-frequency distribution for these 1021 impact craters (see section 3.1) is shown in **Figure 3-10**. The average impactor size is 248.2 meters in diameter. Note that we only counted

craters that were at least 3 km in diameter, so we are excluding impactors that we would estimate to be below a diameter of 134 meters.

The 18 individual impact craters making up the nine candidate doublets are shown in Table 3-4 along with their estimated diameters. The mean diameter of impactors involved in candidate doublets is 246.8 meters.

Crater Pair	Longitude	Latitude	Diameter (km)	Separation (km)	Impactor Diameter (m)
Pair 1	228.633	-9.703	3.2	2.16	145.9
	228.367	-9.695	3.5		163.6
Pair 2	170.487	9.613	10.8	10.47	686.2
	171.366	10.540	13.8		940.7
Pair 3	216.578	9.367	4.3	1.63	212.8
	216.570	9.176	3.7		175.6
Pair 4	154.906	-29.375	3.2	2.65	145.9
	154.93	-29.695	3		134.4
Pair 5	252.679	-13.583	3.0	2.92	134.4
	252.938	-13.831	3.2		145.9
Pair 6	251.772	-21.941	3.0	3.26	134.4
	252.024	-22.236	5.3		277.9
Pair 7	218.295	-21.601	3	3.55	134.4
	218.064	-21.974	3.5		163.6
Pair 8	255.199	-17.097	3.6	8.01	169.6
	255.426	-16.152	3.0		134.4
Pair 9	132.27	-26.360	5.2	7.47	271.3
	132.016	-27.234	5.2		271.3

Table 3-4: Candidate Doublet Craters with computed impactor diameters.

Figure 3-10. Size-frequency distribution of impactors that created craters ≤ 15 km in study area.

4 INTERPRETATION AND CONCLUSIONS

This chapter presents further analyses and interpretations of this study's results.

4.1 Comparing Random Crater Separations to Observed Separations

Comparing the results of the Monte Carlo simulation described in Section 3.3 with the distribution of actual separations between observed craters (the 2037 crater pairs identified in section 3.2.2) could reveal if there is a non-random pattern to the observed craters in the study area. The observed separations were tallied into the same logarithmic bins defined in Table 3-2, and the results are presented in Table 4-1.

Bin #	Observed crater pairs
1	1
2	4
3	5
4	25
5	49
6	84
7	141
8	273
9	554
10	890

Table 4-1: Observed counts of crater pairs binned by separation.

Figure 4-1 shows the graphing the bin values from Table 3-3 and Table 4-1. The blue line represents randomized crater separations, and the observed separations are the red line. While

the same comparison showed some promising localized excesses that corresponded to the separations of observed doublets in the pilot study (as described in section 2.3.1), the graph in Figure 4-1 depicts no perceptible localized excesses. This is a result of the large sample size, which overpowers the handful of likely doublets discovered in the larger study area.

Figure 4-1. Observed counts of crater pairs by separation (Table 4-1), plotted against expected distribution of separations for random impacts (Table 3-3).

Plotting the same data without the 20-kilometer upper limit for crater separations revealed that the observed line (red) and the random line (blue) begin to converge at a separation of 150

km, and the observed line is ultimately overtaken by the random line at a separation of about 320 km. Why are the observed craters resulting in more pairs that are closer together than the Monte Carlo model showed? I suspect that secondary impact craters from some of the larger craters close to the study area are the cause. Secondary craters cluster in non-random patterns, since many of the impactors are ejected from the same primary impact source and strike nearly simultaneously. Since secondary ejecta are at the small end of the impactor size range and strike close together (sometimes in pairs or chains), they would inflate the number of crater pairs with small separations, lifting the observed graph line above the one produced solely from random impacts.

4.2 Doublet Craters on Ceres

If Pairs 1 through 7 (from Table 3-4) are true doublet craters, this sets 0.7% as a lower bound for the percentage of impact events (\leq 15 km in diameter) in the study area that resulted from binary asteroid impactors. This percentage is based on 1021 originally counted craters, reduced to 1014 unique impact events since the doublets are seven events each involving 2 craters. This bound of 0.7% is below the current estimate of 1-2% for Earth, and the estimate of 2-3% for Mars (Miljković et al., 2013).

4.3 Implications for Binary Asteroids in the Main Belt

Through the detection of even the one "definite" doublet crater (Figure 3.1), this research demonstrates that binary asteroids with components smaller than one kilometer in diameter exist in the Main Belt. The next question is: how many of the small asteroids in the Main Belt are binaries?

Two different situations can result in a pair of asteroids impacting a target surface with a separation smaller than their maximum orbital separation: The orbital plane of two co-orbiting asteroids relative to the planar surface on the target, and the positions of the two asteroids in their orbit (Melosh and Stansberry, 1991). Either of these can independently contribute to binaries impacting much closer to one another than their orbital distance, and a sizeable percentage of such impact events will result in one impactor landing on the other. In such a case, the result is a single crater with no visible evidence that two impactors were involved.

Bottke and Melosh (1996) applied Melosh and Stansberry's model (1991) to simulate 10,000 binary asteroid systems impacting various inner Solar System planets, and also concluded that to form a visible doublet crater, the following must be true: $\Delta/(r_1 + r_2) > 1.0$, where Δ is the separation at impact, and r_1 and r_2 are the radii of the respective impactors. They found that on average, only 23% of well-separated binary asteroids would produce a visible doublet crater. Miljković et al. (2013) estimate a more conservative range of 10-15% for impacting binaries that produce a visible doublet.

Assuming that 15% of impacting binaries create visible doublets, the observed percentage of 0.7% for impact events on Ceres that are doublets (Section 4.2) would allow the placement of a lower bound of 4.6% for the percentage of Main Belt asteroids of diameter less than 1 km that are binary. This is notably smaller than the radar and photometric studies that show approximately 15% of all NEAs and MBAs are binaries (Miljković et al., 2013; Pravec et al., 2006).

Why such a small percentage for these small binaries in the Main Belt, compared to planetcrossing and larger Main Belt asteroid populations? One contributing factor to a lower number of binary systems could be the lack of encounters with planetary masses in the Main Belt. Without such encounters, contact binaries are likely to stay contact binaries. Another possibility is that these small binary systems could be Escaping Ejecta Binaries (EEBs), produced by highenergy collisions (Durda et al., 2004). The binary asteroids that created the doublets identified in this study are small (most less than 0.5 km), and close in size to each other. They are consistent with the component sizes in EEBs predicted by Durda et al. (2004), and are not consistent with the YORP binaries described by Walsh and Jacobsen (2015), which feature large rubble pile primaries and much smaller satellites. Even though simulations showed large numbers of EEBs should result from catastrophic collisions (Durba et al., 2004), Walsh and Jacobsen (2015) suspect most EEBs would not be stable over long time scales (on the order of the age of the solar system), and since collisions are much rarer now, most EEBs created in the distant past may have become gravitationally unbound. This may not be inconsistent with the lower percentage of small binaries indicated by doublet craters on Ceres.

4.4 Future Work

Seldom is any line of inquiry exhausted, and this research is no exception. This section addresses some areas where the study could be improved or expanded.

For example, one could question whether all that could be done to eliminate crater pairs from the list of candidate doublets has been done. Craters resulting from secondary impacts of ejecta from much larger craters can be detected through morphological means, whether by determining the angles of oblique impacts don't match, detecting their rims are irregular and not circular, or even if the depth to diameter ratio is not sufficiently large due to low impactor velocity. Another improvement in crater pair filtering would be to estimate the upper limit for the separation between two craters if they were created by a binary asteroid impact. Computing the estimated masses of the two impactors from the crater diameters (using the crater scaling law in Section 2.2.5), force equations could be used to estimate the maximum stable orbital separation of the two asteroids, and that distance is used as the largest possible separation that could be supportive of a binary impact. This would be more effective in eliminating crater pairs that could not be doublets that were below the arbitrary 20-kilometer limit, and also open up the possible detection of doublets involving much larger craters with commensurate large separation distances.

During this work, multiple doublet impact structures were noted but not included, since their component craters were below the diameter threshold of the study. The Framing Camera images seem to have sufficient resolution to lower the diameter threshold.

Ceres is not the only crater-covered large body in the Main Belt that has been visited by the Dawn spacecraft. Similar data available for 4 Vesta would provide an opportunity to compare doublet craters on these two large asteroids, which show a different surface history and occupy a different region of the Main Belt. A separate study of doublet craters on 4 Vesta would likely be quite rewarding.

56

A IMPACT CRATERS CONSIDERED IN STUDY

This appendix contains a list of the 1021 craters \leq 15 km counted in the study area, including an estimated diameter for the impactor that created each crater.

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
1	258.463	-17.341	3000	134.4
2	255.426	-16.152	3000	134.4
3	253.508	-16.685	3000	134.4
4	252.679	-13.583	3000	134.4
5	256.622	-11.029	3000	134.4
6	257.827	-16.434	3000	134.4
7	254.448	-19.573	3000	134.4
8	255.459	-20.777	3000	134.4
9	251.772	-21.941	3000	134.4
10	251.215	-24.928	3000	134.4
11	256.429	-21.995	3000	134.4
12	256.831	-24.793	3000	134.4
13	257.207	-29.123	3000	134.4
14	252.002	-28.994	3000	134.4
15	255.089	-23.205	3000	134.4
16	251.662	-21.559	3000	134.4
17	254.645	-21.797	3000	134.4
18	255.086	-20.572	3000	134.4
19	261.189	-23.371	3000	134.4
20	263.060	-23.443	3000	134.4
21	260.700	-24.108	3000	134.4
22	260.536	-21.280	3000	134.4
23	262.885	-27.650	3000	134.4
24	265.089	-24.617	3000	134.4
25	268.890	-25.130	3000	134.4
26	268.606	-24.971	3000	134.4
27	265.685	-20.394	3000	134.4
28	265.929	-15.805	3000	134.4
29	266.640	-11.073	3000	134.4
30	266.929	-17.207	3000	134.4
31	253.087	-10.138	3100	140.1
32	256.003	-15.443	3100	140.1
33	259.162	-15.154	3100	140.1
34	254.118	-13.202	3100	140.1
35	267.191	-24.860	3100	140.1
36	252.900	-11.827	3200	145.9
37	252.938	-13.831	3200	145.9
38	251.078	-11.975	3200	145.9
39	253.317	-14.742	3200	145.9
40	250.236	-17.949	3200	145.9

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
41	253.515	-18.099	3200	145.9
42	257.898	-17.972	3200	145.9
43	250.785	-22.843	3200	145.9
44	250.413	-22,422	3200	145.9
45	256.439	-26,957	3200	145.9
46	258 755	-23 187	3200	145.9
47	264 955	-28 888	3200	145.9
48	267 537	-22.828	3200	145.9
49	269.228	-25 301	3200	145.9
50	259.953	-11 125	3200	145.9
51	259.955	15 3/8	3300	151.8
52	256,600	-15.548	3300	151.8
52	250.099	-24.403	3400	157.7
55	209.300	-23.804	3400	157.7
55	250.010	-17.310	3500	162.6
55	259.771	-20.107	3500	105.0
50	202.237	-13.891	3300	105.0
57	255.199	-1/.09/	3600	169.6
58	252.719	-23.732	3600	169.6
59	261.951	-27.115	3600	169.6
60	261.398	-27.557	3600	169.6
61	253.952	-12.410	3800	181.7
62	256.281	-14.008	3800	181.7
63	252.014	-12.463	3800	181.7
64	259.332	-25.994	3800	181.7
65	252.699	-24.208	3900	187.9
66	254.925	-13.050	4000	194.0
67	250.910	-23.100	4000	194.0
68	265.570	-29.293	4000	194.0
69	258.159	-15.328	4100	200.3
70	259.445	-25.366	4100	200.3
71	260.451	-26.531	4200	206.5
72	257.001	-27.978	4300	212.8
73	252.965	-12.413	4400	219.1
74	256.002	-25.332	4700	238.4
75	259.747	-10.249	5000	258.0
76	269.025	-17.816	5100	264.6
77	252.054	-22.236	5300	277.9
78	251.144	-27.787	11600	755.7
79	263.038	-19.740	14900	1040.4
81	230.239	-11.093	3200	145.9
82	231.721	-10.781	3200	145.9
83	230.814	-13.637	3000	134.4
84	237.706	-13.735	3000	134.4
85	238.662	-14.034	3400	157.7
86	240.477	-10.296	4100	200.3
87	241.385	-14.924	3000	134.4
88	233.824	-11.505	11100	714.4
89	238.775	-12.878	6500	360.7
90	238.585	-11.916	8000	470.2
91	241 966	-12 340	3200	145.9
92	247 797	-13 377	3000	134.4
93	242,624	-16 832	3900	187.9
94	248 510	-14 173	3000	134.4
95	247 117	-14 079	3000	134.4
96	248 483	-17 506	3000	134.4
20	- 10.105	17.000	2000	10

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
97	249.554	-17.733	3000	134.4
98	248.822	-18.898	3000	134.4
99	247.457	-18.358	3700	175.6
100	248.185	-20.008	3300	151.8
101	243.393	-21.984	3500	163.6
102	242.273	-20.782	3000	134.4
103	241.301	-22.542	3300	151.8
104	238.001	-21.630	3000	134.4
105	237.993	-17.668	3000	134.4
106	240.153	-23.523	8900	538.8
107	240 957	-24 232	3400	157.7
108	238.070	-23.459	4100	200.3
109	238 802	-24 512	3600	169.6
110	239 974	-25 297	3600	169.6
111	241 919	-23 310	3400	157.7
112	242 103	-27 402	4600	231.9
113	242.049	-27.903	4600	231.9
113	243 246	-28 957	3700	175.6
115	235 400	-26.957	4200	206.5
115	233.400	-23.943	4000	194.0
117	233.802	-27 437	5100	264.6
118	233.159	-20.885	8100	477 7
110	233.137	-20.885	5700	305.0
120	232.140	-20.844	3300	151.8
120	235.840	10 / 51	7600	101.0
121	235.040	-19.451	/000	228 4
122	235.278	-18.875	4700	134 4
123	237.139	-17.774	3000	134.4
124	240.777	-19.178	3000	124.4
125	237.544	-17.743	3000	134.4
120	237.017	-23.102	3000	134.4
127	241.301	-20.003	3000	134.4
120	241.412	-17.955	5000 8500	508 1
129	213.444	-10.802	14100	060.6
131	217.438	-13.934	2000	909.0
132	213.044	-13.093	3000	134.4
133	214.113	-15.727	3000	134.4
134	218.833	-13.303	3000	134.4
135	220.623	-15.475	4900	251.4
130	213.702	-10.214	7900	402.7
13/	215.598	-14.032	3000	134.4
138	220.692	-14.881	14900	1040.4
139	223.203	-15.808	3000	134.4
140	223.136	-16./3/	3100	140.1
141	219.496	-16.390	14000	960.9
143	219.983	-19.203	4000	194.0
144	220.265	-19.539	5300	277.9
145	217.999	-19.809	/200	411.0
146	213.820	-17.915	5600	298.2
147	213.503	-18.639	5500	291.4
148	216.096	-18.832	3000	134.4
149	211.476	-16.581	3100	140.1
150	214.380	-19.974	9100	554.3
151	215.387	-21.355	3300	151.8
152	214.843	-21.840	4900	251.4
153	212.067	-21.302	3000	134.4

154217.354-20.6133000134.4155218.295-21.6013000134.4156218.063-21.9743500163.615722.9971-20.9906000325.6158216.527-22.8967100403.7159212.314-22.2438400500.4160220.923-18.6694100200.3161222.599-18.8175900318.7163217.390-25.4823400157.7164221.111-23.1535000258.0165222.845-24.24410000625.2166220.52-25.6213400134.4169221.197-26.48830000134.4170213.499-25.7743000134.4169223.789-25.7743000134.4170213.499-26.9819000546.517120.819-27.1863800181.7172220.123-28.2114100200.3173216.631-28.5864100200.3174225.538-24.4874000194.0175225.056-25.6758300134.4176225.055-25.6758300134.4177225.375-26.99310500665.4178228.433-10.6737200411.0179225.129-18.1753000134.4181225.655	Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
155 $218,295$ -21.601 3000 1344 156 $218,063$ -21.974 3500 163.6 157 220.971 -20.990 6000 325.6 158 216.527 -22.896 7100 403.7 159 212.314 -22.243 8400 200.4 160 220.923 -18.669 4100 200.3 161 221.999 -18.817 5900 318.7 162 214.642 -23.992 3000 134.4 163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5900 2652 165 222.945 -24.244 10000 6552 166 222.052 -25.621 3400 157.7 167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 170 213.499 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.866 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -22.822 3000 134.4 176 226.557 8300 492.8 177 228.357 -26.993 10500 665.4 178 22.8433 -20.763 7200 411.0 179 225.657 83000 134.4 180 22.5435 -19.927 </td <td>154</td> <td>217.354</td> <td>-20.613</td> <td>3000</td> <td>134.4</td>	154	217.354	-20.613	3000	134.4
156218.063 -21.974 3500163.615722.0971 -20.990 6000325.6158216.527 -22.896 7100403.7159212.314 -22.243 8400500.4160220.923 -18.669 4100200.3161222.599 -18.817 5900318.7162214.642 -23.992 3000134.4163217.390 -25.482 3400157.7164221.111 -23.153 5000258.0165222.845 -24.244 10000625.2166222.052 -25.621 3400157.7167218.176 -26.679 3200134.4169223.789 -25.774 3000134.4170213.499 -26.981 9000546.5171220.123 -28.211 4100200.3173219.631 -28.586 4100200.3174225.538 -24.487 4000194.0175225.056 -23.282 3000134.4176225.052 -23.282 3000134.4176225.054 -23.675 8300492.8177228.357 -26.993 10500665.4178228.433 -84.487 4000194.0179225.05 -17.329 11300730.9184227.420 -10.899 3000134.4185214.649.6649300569.9	155	218.295	-21.601	3000	134.4
157 220.971 -20.990 6000 325.6 158 216.527 -22.2806 7100 403.7 159 212.314 -22.243 8400 500.4 160 220.923 -18.669 4100 200.3 161 222.999 -18.817 5900 318.7 162 214.642 -23.992 3000 134.4 163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5000 258.0 166 222.845 -24.244 100000 625.2 166 222.052 -25.621 3400 157.7 167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 170 213.499 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -23.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.933 7000 134.4 181 227.655 -17.329 <td>156</td> <td>218.063</td> <td>-21.974</td> <td>3500</td> <td>163.6</td>	156	218.063	-21.974	3500	163.6
188 $216 527$ $-22 236$ 7100 403.7 159 212.314 -22.243 8400 500.4 160 220.923 -18.669 4100 200.3 161 222.599 -18.817 5900 318.7 162 214.642 -23.992 3000 134.4 163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5000 258.0 165 222.845 -24.244 10000 625.2 166 220.52 -25.621 3400 157.7 167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 170 213.499 -26.981 9000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.511 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.056 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.537 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.05 -17.329 11300 730.9 181 225.635 -19.927 5000 238.0 182 229.555 -19.297 <td>157</td> <td>220.971</td> <td>-20.990</td> <td>6000</td> <td>325.6</td>	157	220.971	-20.990	6000	325.6
159 212.314 -22.233 8400 500.4 160 220.293 -18.669 4100 200.3 161 222.299 -18.817 5900 318.7 162 214.642 -23.992 3000 134.4 163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5000 625.2 166 222.052 -25.621 3400 157.7 167 218.176 -26.679 3200 134.4 169 223.789 -25.774 3000 134.4 169 223.789 -25.774 3000 134.4 170 213.499 -26.881 9000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.635 -19.927 5000 238.0 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 <t< td=""><td>158</td><td>216.527</td><td>-22.896</td><td>7100</td><td>403.7</td></t<>	158	216.527	-22.896	7100	403.7
160 $220 923$ $-18 869$ 4100 200.3 161 $222 599$ $-18 817$ 5900 318.7 162 $214 442$ $23 992$ 3000 134.4 163 217.390 $-25 482$ 3400 157.7 164 221.111 -23.153 5000 258.0 165 $222 845$ $-24 244$ 10000 625.2 166 $222 052$ $-25 621$ 3400 137.7 167 $218 176$ $-26 679$ 3200 145.9 168 221.197 $-2.6 488$ 3000 134.4 170 $213 A99$ $-26 981$ 9000 546.5 171 $220 819$ -27.186 3800 181.7 172 220.123 $-28 211$ 4100 200.3 173 $219 631$ $-28 586$ 4100 200.3 174 $225 538$ $-24 487$ 4000 194.0 175 $225 036$ $-23 282$ 3000 134.4 176 $226 505$ $-25 675$ 8300 492.8 177 $228 357$ $-26 993$ 10500 665.4 178 $228 433$ $-20 763$ 7200 411.0 179 225.129 $-18 175$ 3000 134.4 180 $225 483$ $-18 415$ 3000 134.4 181 $227 646$ $-15 433$ 3000 134.4 182 $229 505$ $-17 339$ 11300 <	159	212.314	-22.243	8400	500.4
161 222.599 -18.817 5900 318.7 162 214.642 -23.992 3000 134.4 163 217.300 -25.482 3400 157.7 164 221.111 -23.153 5000 258.0 165 222.845 -24.244 10000 625.2 166 222.052 -25.621 3400 157.7 167 218.176 -26.488 3000 134.4 169 223.789 -25.774 3000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.856 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.337 -26.993 10500 665.4 178 228.433 -20.703 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 23.65 184 27.420 -10.899 3000 134.4 181 225.635 -19.927 5000 23.44 182 21.646 -15.433 3000 134.4 181 227.646 -15.333 <td< td=""><td>160</td><td>220.923</td><td>-18.669</td><td>4100</td><td>200.3</td></td<>	160	220.923	-18.669	4100	200.3
162 214.642 -23.992 3000 134.4 163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5000 258.0 165 222.845 -24.244 10000 625.2 166 222.052 -25.621 3400 157.7 167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 170 213.499 -26.981 9000 546.5 171 220.123 -28.281 4100 200.3 172 220.123 -28.284 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.056 -23.282 3000 134.4 176 226.056 -23.575 8300 492.8 177 228.433 -20.763 7200 411.0 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.466 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 <	161	222.599	-18.817	5900	318.7
163 217.390 -25.482 3400 157.7 164 221.111 -23.153 5000 258.0 165 222.845 -24.244 10000 625.2 166 222.052 -25.621 3400 157.7 167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 169 223.789 -25.774 3000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -25.675 8300 434.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 3000 134.4 184 216.578 9.367 4300 569.9 189 216.578 9.367	162	214.642	-23.992	3000	134.4
164 $221,111$ $-23,153$ 5000 258.0 165 $222,845$ $-24,244$ 10000 625.2 166 $222,052$ $-25,621$ 3400 137.7 167 $218,176$ $-26,679$ 3200 134.4 169 $223,789$ $-25,774$ 3000 134.4 169 $223,789$ $-25,774$ 3000 134.4 170 $213,499$ $-26,981$ 9000 546.5 171 $220,819$ $-27,186$ 3800 181.7 172 $220,123$ $-28,586$ 4100 200.3 173 $219,631$ $-28,586$ 4100 200.3 174 $225,538$ $-24,487$ 4000 194.0 175 $225,036$ $-23,282$ 3000 134.4 176 $226,505$ $-25,675$ 8300 492.8 177 $228,357$ $-26,993$ 10500 665.4 178 $228,433$ $-18,175$ 3000 134.4 180 $225,483$ $-18,175$ 3000 134.4 181 $225,655$ $-17,329$ 11300 730.9 182 $229,505$ $-17,329$ 11300 730.9 183 $227,646$ $-15,433$ 3000 134.4 184 $227,420$ $-16,899$ 3000 134.4 184 $227,420$ $-16,899$ 3000 134.4 185 $211,491$ $-23,552$ 10000 625.2 186 $210,724$ $-15,361$ <td>163</td> <td>217.390</td> <td>-25.482</td> <td>3400</td> <td>157.7</td>	163	217.390	-25.482	3400	157.7
165 $222,845$ $-24,244$ 10000 625.2 166 $222,052$ $-25,621$ 3400 $157,7$ 167 $218,176$ $-26,679$ 3200 145.9 168 $221,197$ $-26,488$ 3000 134.4 170 $213,499$ $-26,981$ 9000 546.5 171 $220,819$ $-27,186$ 3800 181.7 172 $220,123$ $-28,211$ 4100 200.3 173 $219,631$ $-28,856$ 4100 200.3 174 $225,538$ $-24,487$ 4000 194.0 175 $225,036$ $-23,282$ 3000 134.4 176 $226,505$ $-25,675$ 8300 492.8 177 $228,357$ $-26,993$ 10500 665.4 178 $228,433$ $-20,763$ 7200 411.0 179 $225,129$ $-18,175$ 3000 134.4 180 $225,483$ $-19,927$ 5000 238.0 182 $229,505$ $-17,329$ 11300 730.9 183 $227,646$ $-15,433$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 184 $227,420$ $-10,899$	164	221.111	-23.153	5000	258.0
166 $222, 052$ $-25, 621$ 3400 157.7 167 $218, 176$ $-26, 679$ 3200 145.9 168 $221, 197$ $-26, 488$ 3000 134.4 169 $223, 789$ $-25, 774$ 3000 $546, 5$ 171 $220, 819$ $-27, 186$ 3800 181.7 172 $220, 123$ $-28, 211$ 4100 200.3 173 $219, 631$ $-28, 586$ 4100 200.3 174 $225, 538$ $-24, 487$ 4000 194.0 175 $225, 036$ $-23, 282$ 3000 134.4 176 $226, 505$ $-25, 675$ 8300 492.8 177 $228, 357$ $-26, 993$ 10500 665.4 178 $228, 433$ $-20, 763$ 7200 411.0 179 $225, 129$ $-18, 175$ 3000 134.4 180 $225, 483$ $-18, 415$ 3000 134.4 181 $225, 635$ $-17, 329$ 11300 730.9 183 $227, 646$ $-15, 433$ 3000 134.4 185 211.491 $-23, 552$ 10000 625.2 186 $210, 724$ $-15, 361$ 3300 134.4 185 211.491 $-23, 552$ 10000 625.2 186 $210, 724$ $-15, 361$ 3300 134.4 185 211.491 $-23, 552$ 10000 625.2 186 $210, 724$ $-15, 361$ 3300 114.0 1	165	222.845	-24.244	10000	625.2
167 218.176 -26.679 3200 145.9 168 221.197 -26.488 3000 134.4 169 223.789 -25.774 3000 134.4 170 213.499 -26.981 9000 546.5 171 220.123 -28.211 4100 200.3 173 219.631 -28.886 4100 200.3 174 225.538 -24.877 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 27.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 199 213.961 7.119 6000 325.6 192 213.961 7.119 6000	166	222.052	-25.621	3400	157.7
168 221.197 -26.488 3000 134.4 169 223.789 -25.774 3000 134.4 170 213.499 -26.981 9000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 238.0 182 229.505 -17.329 11300 73.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 235.6 199 218.102 9.125 3000 134.4 191 213.406 7.719 6000	167	218.176	-26.679	3200	145.9
169 223.789 -25.774 3000 134.4 170 213.499 -26.981 9000 546.5 171 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 434.4 176 226.505 -25.675 8300 492.8 177 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.175 3000 134.4 180 225.433 -18.175 3000 134.4 181 225.635 -19.927 5000 228.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 440.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 216.678 9.367 4300 212.8 190 218.102 9.125 3000 34.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 <td>168</td> <td>221.197</td> <td>-26.488</td> <td>3000</td> <td>134.4</td>	168	221.197	-26.488	3000	134.4
170 213.499 -26.981 9000 546.5 171 220.819 -27.186 3800 181.7 172 220.123 -28.211 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.588 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 213.961 7.114 7200 411.0 193 217.344 6.833 14000 960.9 194 219.219 9.797 3700 155.6 197 217.86 4.320 10500 <td>169</td> <td>223.789</td> <td>-25.774</td> <td>3000</td> <td>134.4</td>	169	223.789	-25.774	3000	134.4
171 $220,123$ $-27,186$ 3800 $181,7$ 172 $220,123$ $-28,211$ 4100 $200,3$ 174 $225,538$ $-24,487$ 4000 $194,0$ 175 $225,036$ $-23,282$ 3000 $134,4$ 176 $226,505$ $-25,675$ 8300 $492,8$ 177 $228,357$ $-26,993$ 10500 $665,4$ 178 $228,433$ $-20,763$ 7200 $411,0$ 179 $225,129$ $-18,175$ 3000 $134,4$ 180 $225,483$ $-18,415$ 3000 $134,4$ 181 $225,635$ $-19,927$ 5000 $258,0$ 182 $229,505$ $-17,329$ 11300 $730,9$ 183 $227,646$ $-15,433$ 3000 $134,4$ 184 $227,420$ $-10,899$ 3000 $134,4$ 185 $211,491$ $-23,552$ 10000 $625,2$ 186 $210,724$ $-15,361$ 3300 $151,8$ 187 $216,678$ $9,367$ 4300 $212,8$ 190 $218,102$ $9,125$ 3000 $34,4$ 191 $213,406$ $7,719$ 6000 $325,6$ 192 $213,961$ $7,414$ 7200 $411,0$ 193 $217,344$ $6,883$ 14000 $960,9$ 194 $219,219$ $9,797$ 3700 $155,6$ 197 $217,086$ $4,320$ 10500 $665,4$ 198 $214,914$ $4,500$ 6200	170	213.499	-26.981	9000	546.5
172 220.123 -28.2811 4100 200.3 173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 212.8 190 218.102 9.125 3000 134.4 191 213.961 7.114 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 <	171	220.819	-27.186	3800	181.7
173 219.631 -28.586 4100 200.3 174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -17.329 11300 730.9 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 105500 <td>172</td> <td>220.123</td> <td>-28.211</td> <td>4100</td> <td>200.3</td>	172	220.123	-28.211	4100	200.3
174 225.538 -24.487 4000 194.0 175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 256.9 190 218.102 9.125 3000 134.4 191 213.966 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 <td< td=""><td>173</td><td>219.631</td><td>-28.586</td><td>4100</td><td>200.3</td></td<>	173	219.631	-28.586	4100	200.3
175 225.036 -23.282 3000 134.4 176 226.505 -25.675 8300 492.8 177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 21.284 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0	174	225.538	-24.487	4000	194.0
176 226.505 -25.675 8300 492.8 177 228.337 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 31	175	225.036	-23.282	3000	134.4
177 228.357 -26.993 10500 665.4 178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.175 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 184 227.420 -10.899 3000 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.898 7600 440.4 </td <td>176</td> <td>226.505</td> <td>-25.675</td> <td>8300</td> <td>492.8</td>	176	226.505	-25.675	8300	492.8
178 228.433 -20.763 7200 411.0 179 225.129 -18.175 3000 134.4 180 225.483 -18.415 3000 134.4 181 225.635 -19.927 5000 258.0 182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3600 157.7 202 219.539 3.898 7600 440.4 <	177	228.357	-26.993	10500	665.4
179 $225,129$ $-18,175$ 3000 134.4 180 $225,483$ $-18,415$ 3000 134.4 181 $225,635$ $-19,927$ 5000 258.0 182 $229,505$ $-17,329$ 11300 730.9 183 $227,646$ $-15,433$ 3000 134.4 184 $227,646$ $-15,433$ 3000 134.4 185 $211,491$ $-23,552$ 10000 625.2 186 $210,724$ $-15,361$ 3300 151.8 187 $210,641$ 6.938 7600 440.4 188 $214,664$ 9.664 9300 569.9 189 $216,578$ 9.367 4300 212.8 190 $218,102$ 9.125 3000 134.4 191 $213,406$ $7,719$ 6000 325.6 192 $213,961$ $7,414$ 7200 411.0 193 $217,344$ 6.883 14000 960.9 194 $219,219$ $9,197$ 3700 175.6 197 $217,086$ 4.320 10500 665.4 198 $214,914$ 4.500 6200 339.6 199 $212,484$ 5.328 5800 311.9 200 $212,922$ 4.719 5900 318.7 201 $220,211$ 3.617 3400 157.7 202 $219,539$ 3.539 5000 258.0 203 $220,227$ 3.078 6500 360.7 <td>178</td> <td>228.433</td> <td>-20.763</td> <td>7200</td> <td>411.0</td>	178	228.433	-20.763	7200	411.0
180225,433 $-18,415$ 3000 134.4 181225,635 $-19,927$ 5000 258.0 182229,505 $-17,329$ 11300 730.9 183227,646 $-15,433$ 3000 134.4 184227,420 -10.899 3000 134.4 185 211.491 $-23,552$ 10000 625.2 186 210.724 $-15,361$ 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 <t< td=""><td>179</td><td>225 129</td><td>-18 175</td><td>3000</td><td>134.4</td></t<>	179	225 129	-18 175	3000	134.4
181225.635 -19.927 5000258.0182229.505 -17.329 11300 730.9 183227.646 -15.433 3000 134.4 184227.420 -10.8999 30000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.641 2.047 14200 978.4 211 220.99 <t< td=""><td>180</td><td>225.483</td><td>-18.415</td><td>3000</td><td>134.4</td></t<>	180	225.483	-18.415	3000	134.4
182 229.505 -17.329 11300 730.9 183 227.646 -15.433 3000 134.4 184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 220.99 1.867 4000 <td< td=""><td>181</td><td>225.635</td><td>-19.927</td><td>5000</td><td>258.0</td></td<>	181	225.635	-19.927	5000	258.0
183 $227,646$ $-15,433$ 3000 134.4 184 $227,420$ $-10,899$ 3000 134.4 185 $211,491$ $-23,552$ 10000 625.2 186 $210,724$ $-15,361$ 3300 151.8 187 $210,641$ 6.938 7600 440.4 188 $214,664$ 9.664 9300 569.9 189 $216,578$ 9.367 4300 212.8 190 $218,102$ 9.125 3000 134.4 191 $213,406$ 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 288.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 <	182	229 505	-17 329	11300	730.9
184 227.420 -10.899 3000 134.4 185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 <tr< td=""><td>183</td><td>227.646</td><td>-15.433</td><td>3000</td><td>134.4</td></tr<>	183	227.646	-15.433	3000	134.4
185 211.491 -23.552 10000 625.2 186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4	184	227.420	-10.899	3000	134.4
186 210.724 -15.361 3300 151.8 187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0 <td>185</td> <td>211.491</td> <td>-23.552</td> <td>10000</td> <td>625.2</td>	185	211.491	-23.552	10000	625.2
187 210.641 6.938 7600 440.4 188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	186	210.724	-15.361	3300	151.8
188 214.664 9.664 9300 569.9 189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.72 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	187	210.641	6.938	7600	440.4
189 216.578 9.367 4300 212.8 190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	188	214.664	9.664	9300	569.9
190 218.102 9.125 3000 134.4 191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	189	216.578	9.367	4300	212.8
191 213.406 7.719 6000 325.6 192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	190	218.102	9.125	3000	134.4
192 213.961 7.414 7200 411.0 193 217.344 6.883 14000 960.9 194 219.219 9.797 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	191	213.406	7.719	6000	325.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192	213.961	7.414	7200	411.0
194 $219,219$ $9,797$ 3700 175.6 197 217.086 4.320 10500 665.4 198 214.914 4.500 6200 339.6 199 212.484 5.328 5800 311.9 200 212.922 4.719 5900 318.7 201 220.211 3.617 3400 157.7 202 219.539 3.539 5000 258.0 203 220.227 3.078 6500 360.7 204 215.359 3.898 7600 440.4 205 213.617 2.547 11800 772.4 206 220.023 1.461 3600 169.6 207 212.172 1.766 4000 194.0 208 211.727 1.422 4500 225.5 209 216.461 2.047 14200 978.4 211 222.039 1.867 4000 194.0	193	217.344	6.883	14000	960.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194	219.219	9.797	3700	175.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197	217.086	4.320	10500	665.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	198	214.914	4.500	6200	339.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	199	212.484	5.328	5800	311.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	212.922	4.719	5900	318.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	220.211	3.617	3400	157.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202	219.539	3.539	5000	258.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203	220.227	3.078	6500	360.7
205213.6172.54711800772.4206220.0231.4613600169.6207212.1721.7664000194.0208211.7271.4224500225.5209216.4612.04714200978.4211222.0391.8674000194.0	204	215.359	3.898	7600	440.4
206220.0231.4613600169.6207212.1721.7664000194.0208211.7271.4224500225.5209216.4612.04714200978.4211222.0391.8674000194.0	205	213.617	2.547	11800	772.4
207212.1721.7664000194.0208211.7271.4224500225.5209216.4612.04714200978.4211222.0391.8674000194.0	206	220.023	1.461	3600	169.6
208211.7271.4224500225.5209216.4612.04714200978.4211222.0391.8674000194.0	207	212.172	1.766	4000	194.0
209216.4612.04714200978.4211222.0391.8674000194.0	208	211.727	1.422	4500	225.5
211 222.039 1.867 4000 194.0	209	216.461	2.047	14200	978.4
	211	222.039	1.867	4000	194.0
Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)	
----------	-----------	----------------	--------------	-----------------------	
212	222.352	8.133	3500	163.6	
213	223.000	5.953	3000	134.4	
214	226.234	6.164	3000	134.4	
215	226.609	6.102	4200	206.5	
216	227.805	6.578	10000	625.2	
217	229 516	6.016	3000	134.4	
218	228.141	8 555	4200	206.5	
219	223 195	4 086	5800	311.9	
220	226.195	3 492	6800	382.1	
220	220.242	3 906	8800	531.1	
221	220.544	3 1/18	5500	201 /	
222	229.104	J.140 A 242	3000	13/ /	
223	227.700	4.242	4300	212.9	
224	223.009	2.406	4300	212.0	
223	229.211	2.400	7000	390.3 772 A	
220	221.807	5.254	2200	145.0	
228	228.033	-9.703	3200	143.9	
229	228.367	-9.695	3500	163.6	
230	218.141	-9.531	3000	134.4	
231	215.219	-7.430	/200	411.0	
232	213.695	-3.711	6500	360.7	
234	211.406	-3.734	4100	200.3	
235	210.953	-6.586	3300	151.8	
236	210.469	-1.969	5100	264.6	
237	232.109	9.227	3800	181.7	
238	232.289	8.563	3400	157.7	
239	232.516	8.289	3500	163.6	
240	233.992	6.250	3700	175.6	
241	231.094	6.211	3400	157.7	
242	233.000	5.258	3000	134.4	
243	235.180	7.086	3700	175.6	
244	230.172	4.445	3200	145.9	
245	237.680	5.406	3000	134.4	
246	238.094	4.711	6100	332.6	
247	237.406	3.109	3600	169.6	
248	232.531	3.555	3200	145.9	
249	236.398	3.320	3000	134.4	
250	240.102	4.750	4300	212.8	
251	240.078	5.141	3700	175.6	
252	241.023	5.289	8900	538.8	
253	246.516	5.961	4300	212.8	
254	243.891	3.188	3000	134.4	
255	246.867	6.531	3000	134.4	
256	249.320	7.430	4500	225.5	
257	248.656	6.688	4100	200.3	
258	247.500	6.227	3600	169.6	
259	246.609	8.383	3000	134.4	
260	245 633	4 766	3400	157.7	
261	248.375	3.656	3800	181 7	
262	244 852	3 063	3000	134.4	
263	249 969	3 742	4000	194.0	
265	249 555	1 570	3000	134.4	
265	247 539	1 445	4200	206.5	
265	245 109	2 359	4100	200.3	
260	242 281	0.469	4800	244.9	
267	241 516	0.141	3000	134.4	
200	2T1.J10	0.141	5000	1.57.7	

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
269	241.602	1.766	4900	251.4
270	241.141	0.477	4400	219.1
271	248.813	-1.383	3000	134.4
272	248.492	-1.656	3800	181.7
273	246.375	-1.875	4800	244.9
274	245.672	-2.422	4900	251.4
275	242.297	-1.578	4500	225.5
276	240.523	-1.117	4000	194.0
277	240.305	-1.969	5000	258.0
278	241.102	-2.375	6000	325.6
279	241.516	-2.703	5300	277.9
280	248.844	-0.250	8200	485.3
281	237.969	-2.125	4000	194.0
282	238.516	-3.000	5000	258.0
283	231.875	1.625	3600	169.6
284	233,156	1.984	8000	470.2
285	231.313	0.531	4000	194.0
286	232.102	0.430	4500	225.5
287	237.156	0.328	3000	134.4
288	233.258	0.703	3500	163.6
289	232 227	-0.617	11000	706.2
290	234 023	-0.672	7300	418.3
291	233 914	-1 023	5300	277.9
292	236 695	-0.250	5800	311.9
293	236 898	-2.320	3600	169.6
293	236.273	-3 000	3800	181 7
295	231 273	-2.984	3300	151.8
296	239 563	-2.078	3000	134.4
297	230,906	1 820	4900	251.4
298	233 039	-3 680	10600	673 5
299	238 398	-5 672	3000	134.4
300	238 805	-6.859	6700	374.9
301	236 180	-8 641	3000	134.4
302	238 203	-8 664	4000	194.0
303	243 938	-6 789	4000	194.0
304	242 555	-6 078	5800	311.9
305	239 750	-4 758	3000	134.4
306	239.703	-5.047	3000	134.4
307	248 273	-6 695	3000	134.4
308	248 430	-6.031	3500	163.6
309	245 383	-7 609	3000	134.4
310	247.086	-8 734	7500	433.0
311	244 461	-6 297	3000	134.4
312	245 617	-6 422	5000	258.0
313	245.078	-6 148	4300	212.8
314	242 633	-5 391	4500	225.5
315	242.000	-4.063	4500 8400	500.4
316	249.000	_9 719	3000	134.4
317	255 680	9 758	3000	134.4
318	255.000	9 273	3000	134 4
310	250.820	6 781	4600	231.9
320	251.219	2 961	8200	485 3
320	257.500	1 020	3100	+05.5 140 1
321	255.401	1.230	3800	190.1
322	254.070	2.320	5100	101./ 264.6
323	230.172	2.303	3100	∠04.0

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
324	251.297	1.742	4700	238.4
325	252.195	-0.031	5400	284.7
326	254.016	5.367	4000	194.0
327	258.156	-0.164	3000	134.4
328	257.625	-0.320	3300	151.8
329	256.258	-0.281	3000	134.4
330	256.648	-0.852	3300	151.8
331	256.211	-1.180	3200	145.9
332	259.047	-1.391	5400	284.7
333	255.141	-0.336	3400	157.7
334	258.570	-2.602	4600	231.9
335	251.938	-2.359	3000	134.4
336	253.836	-5.078	3000	134.4
337	261.172	-3.398	5700	305.0
338	260.625	-3.875	3300	151.8
339	257.242	-3.898	3000	134.4
340	258.453	-9.063	3000	134.4
341	257.930	-9.125	6200	339.6
342	256.836	-6.406	8200	485.3
343	258.055	-7.695	3000	134.4
344	262.680	-4.281	4300	212.8
345	265.328	-4.945	5600	298.2
346	268 906	-6 477	5100	264.6
347	269 305	-2.867	3000	134.4
348	269 266	-1 727	4000	194.0
349	262.898	4 547	3000	134.4
350	267 273	4 563	13000	874 1
351	259 352	3 555	3000	134.4
352	268 898	7.086	4100	200.3
353	267 320	8 789	3000	134.4
354	266 156	8.172	4200	206.5
355	263 789	7 125	3000	134.4
356	262.375	9 4 3 0	5100	264.6
358	216 570	9 176	3700	175.6
359	191 761	-10.611	8000	470.2
360	193 133	-12.721	11700	764 1
361	194 255	-10 245	12700	848.4
362	195.861	-10 215	13700	934.6
365	190 163	-13 945	4700	238.4
366	190.518	-15 976	3000	134.4
367	196 794	-12 509	6000	325.6
368	194 372	-11 844	4000	194.0
369	195.070	-13 867	13200	891 3
370	197.439	-13 895	3200	145.9
371	196 537	-15 293	3000	134.4
372	193 398	-14 037	3000	134.4
372	197.997	-13 449	8100	477 7
374	192 841	-15 947	12500	831 4
375	191 505	-15 101	9000	546 5
375	200 808	-10.607	4000	10/ 0
370	200.000	-14 031	3000	134.0
378	200.100	-15.286	5000	258.0
370	201.049	-13.200	7000 7000	230.0
313	201 102	-10.371	3000	13/ A
201	201.102	-13.942	12200	104.4 806 0
202	202.703	-21.088	12200	000.0

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
385	208.141	-14.668	3000	134.4
386	191.537	-25.791	11200	722.6
387	200.618	-24.890	3800	181.7
388	193.119	-27.475	6000	325.6
389	190.442	-28.868	7000	396.5
390	194.939	-29.667	4300	212.8
391	197.192	-29.565	6700	374.9
392	199.026	-29.568	8000	470.2
393	200.834	-28.248	3000	134.4
394	202.908	-27.962	3000	134.4
395	203.902	-28.436	3000	134.4
396	205.136	-22.724	3800	181.7
397	205.805	-22.735	3600	169.6
398	204.003	-27.957	3000	134.4
400	204.891	-17.127	3000	134.4
401	208 883	-18 066	12700	848.4
402	204 804	-13 425	10000	625.2
403	205 587	-10 446	8000	470.2
404	205.507	-11 347	3000	134.4
405	170 250	-11 328	3700	175.6
406	172 961	-12 070	3000	134.4
407	170.664	-14 102	6300	346.6
408	170.320	-15 336	3000	134.4
400	173 188	-15 391	3000	134.4
410	172 375	-15.859	4000	194.0
411	172.575	-16.641	4000	194.0
412	170.914	-16 297	3000	134.0
412	172 641	-16.492	3400	157.7
413	172.041	-10.492	3300	151.8
414	176.656	-11.515	3000	131.8
415	170.050	-11.002	3300	151.9
410	180 1/1	-10.148	5300 6700	374.0
417	180.141	-13.730	3800	1917
410	170 420	-12.273	7100	402.7
419	179.430	-11.933	/100	405.7
420	179.409	-11.275	8200	403.3
421	179.373	-10.727	5700	222.6
422	1/9.900	-10.464	0100	552.0
423	1/2./81	-17.320	3000	134.4
424	173.203	-17.544	5000	134.4
423	1/4.34/	-17.703	6100	552.0 280.2
427	1/8.80/	-17.080	6900 5700	369.3 205.0
428	1/4.380	-20.742	5700	305.0
430	182.141	-1/.031	11000	/06.2
431	182.039	-18.297	9000	340.3
432	1/9.492	-19.008	6000	323.0
433	180.219	-20.469	4200	206.5
434	180.281	-21.234	5/00	1/5.0
435	1//.266	-22.313	4000	194.0
436	1/2.305	-19.313	7/00	44/.8
437	1/1./34	-1/./81	3000	154.4
438	170.188	-17.688	3300	151.8
439	170.539	-19.852	4000	194.0
440	170.789	-20.742	3300	151.8
441	171.281	-20.781	3200	145.9
442	171.031	-22.906	3200	145.9

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
443	172.867	-22.859	10400	657.4
444	176.633	-21.320	3000	134.4
445	176.633	-18.094	3000	134.4
446	180.867	-18.344	3600	169.6
447	180.250	-22.438	11100	714.4
448	178.453	-22.945	4000	194.0
449	178.180	-22.273	4000	194.0
450	171.750	-20.633	3000	134.4
451	172.281	-24.172	3000	134.4
452	171.789	-23.836	5000	258.0
453	171.789	-23.836	3000	134.4
454	171.203	-23.797	4000	194.0
455	175.281	-23.742	3000	134.4
457	180.445	-24.188	3000	134.4
458	180.063	-24.469	3300	151.8
459	176.039	-23.008	6400	353.6
460	176.234	-23.711	6000	325.6
461	176.766	-23.516	8000	470.2
462	178.609	-25.102	3000	134.4
463	178.922	-25.313	3500	163.6
464	179.758	-26.172	12200	806.0
465	181 867	-21 727	3500	163.6
466	181 844	-21 344	3000	134.4
467	180.836	-24 305	9000	546.5
468	181 477	-26 531	4600	231.9
469	170 984	-24 664	3000	134.4
470	171 070	-24 773	14000	960.9
471	172 273	-21 703	3000	134.4
473	177 359	-26.867	5000	258.0
474	175 609	-26.844	3000	134.4
475	175 633	-27 664	3000	134.4
476	173 492	-28 164	4000	194.0
477	174 305	-28 563	5000	258.0
478	179 680	-27 117	3000	134.4
479	180 250	-28 344	4000	194.0
480	175 141	-29.016	3000	134.4
481	176 219	-27 273	13000	874 1
482	172 195	-28 133	3000	134.4
483	171 500	-27 500	3000	134.4
484	170 477	-27.266	5000	258.0
485	172 234	-28 852	9000	546.5
486	180.852	-27 469	3000	134.4
487	181.031	-28 070	8400	500.4
488	182 477	-23 195	4000	194.0
489	182.852	-22.320	6000	325.6
490	183 539	-23 820	7000	396.5
491	184 289	-23 539	6000	325.6
492	182.617	-25 258	5100	264.6
493	184 617	-24 250	3000	134.4
494	185 742	-23 547	4300	212.8
495	187 203	-23.347	5000	258.0
496	187 313	_23 883	4600	230.0
490 407	187 301	-25.005	4000	251.9
497	184 250	-25.492	900 8000	470.2
470	183 742	-25.250	5300	277.0
477	103./42	-23.901	5500	211.9

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
501	184.313	-28.063	5900	318.7
503	182.602	-27.742	3000	134.4
504	182.242	-27.430	5000	258.0
505	181.438	-29.039	3000	134.4
506	178.898	-27.391	3000	134.4
507	185.891	-25.555	3000	134.4
508	188.984	-25.063	3000	134.4
509	187.461	-29.648	3000	134.4
510	186.391	-21.680	5900	318.7
511	181.641	-19.813	5000	258.0
512	182.031	-20.031	4400	219.1
513	182.539	-21.352	3000	134.4
514	185.242	-18.898	8200	485.3
516	187.578	-19.523	5000	258.0
517	187.336	-19.000	5000	258.0
518	186.320	-17.516	5000	258.0
519	187.945	-16.086	3200	145.9
521	188.078	-14.430	3300	151.8
522	188.797	-13.445	6200	339.6
523	185.977	-12.445	3000	134.4
524	183.719	-12.891	3700	175.6
525	181.820	-12.297	3800	181.7
527	181.461	-14.406	7000	396.5
529	180.336	-14.930	3700	175.6
530	188 234	-10 234	3000	134.4
531	189 539	-11 875	3000	134.4
532	185 000	-10 914	4000	194.0
533	184 742	-10 414	4000	194.0
534	184 047	-10 297	4000	194.0
537	185 117	-12 344	3000	134.4
538	150 633	-11 734	4600	231.9
539	150.305	-11.469	10000	625.2
540	157 281	-11 547	3000	134.4
541	158 367	-11 625	4000	194.0
542	155.070	-12.359	3000	134.4
544	158.883	-12.406	3000	134.4
545	157 609	-13 008	4000	194.0
546	155 680	-12 203	3000	134.4
547	154.211	-13.570	3700	175.6
548	154.063	-14.313	5000	258.0
549	152.039	-12.633	3300	151.8
550	158.477	-10.203	3000	134.4
551	153 461	-15 180	4200	206.5
552	151.961	-15.289	4000	194.0
553	159.836	-15.531	5100	264.6
554	157 195	-16 398	3400	157.7
555	160 586	-13 367	6700	374.9
556	155.984	-16.297	4000	194.0
557	153.047	-17.094	4000	194.0
558	154 281	-17 508	4000	194.0
559	155.570	-18.180	3600	169.6
560	154,430	-19.242	3000	134.4
561	150 273	-18 477	5000	258.0
562	150 898	-18 742	4100	200 3
563	151.445	-18.297	4000	194.0
2.02				

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
564	151.211	-19.141	3300	151.8
566	158.328	-18.781	4900	251.4
567	157.031	-14.523	3000	134.4
568	160.281	-17.875	3800	181.7
569	160.695	-18.070	5000	258.0
570	160.609	-18.836	3200	145.9
571	161.352	-18.977	3000	134.4
572	162.039	-18.031	8900	538.8
573	161.742	-13.094	12400	822.9
574	155.266	-18.641	3000	134.4
575	159.953	-16.234	3000	134.4
576	160.305	-19.672	3000	134.4
577	153.688	-20.266	3000	134.4
578	151.203	-20.172	4000	194.0
579	151.586	-22.578	5400	284.7
580	154.086	-20.883	5000	258.0
581	153.836	-22.898	3700	175.6
583	153.367	-23.500	5000	258.0
584	154.977	-23.375	4000	194.0
585	152.891	-24.336	3200	145.9
586	155.492	-25.367	3000	134.4
587	159 070	-24 594	3000	134.4
588	162.016	-22.516	3600	169.6
589	153 813	-24 625	3200	145.9
590	156 664	-28 414	3200	145.9
591	157 234	-24 945	3000	134.4
592	151.063	-28 336	3000	134.4
593	151 766	-28.086	5000	258.0
594	154 906	-29 375	3200	145.9
595	154.930	-29.695	3000	134.4
596	158.063	-29.625	3600	169.6
597	157 563	-26 578	13000	874 1
598	160 266	-28 766	3000	134.4
599	157.656	-25 438	4000	194.0
600	158 102	-25 563	5100	264.6
601	160.148	-28 344	3000	134.4
602	163 008	-28 984	3000	134.4
603	164 922	-28 648	7000	396.5
604	164 266	-26 109	3000	134.4
605	165 180	-25 414	3300	151.8
606	165 625	-26 695	3600	169.6
607	163 203	-27 945	3000	134.4
608	167 109	-25 469	5000	258.0
609	168 633	-28 203	3000	134.4
610	169 383	-28 516	5700	305.0
611	169 242	-25 336	3200	145.9
612	164 500	-22.550	3300	151.8
613	163 625	-24 336	3300	151.8
614	163 703	-27 484	4200	206.5
615	163 500	-20.617	10200	641 3
616	161 250	-20.017	3000	134 4
617	165 484	-22.719	3000	134 4
618	167 133	-20.445	5000	258.0
620	166 164	-20.742	3200	1/5 0
621	165 200	-17.230	3200	145.9
021	103.398	-19.201	3200	143.9

6	Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
	622	164.891	-14.898	5700	305.0
	623	166.492	-13.141	3300	151.8
	624	163.688	-13.141	3000	134.4
	625	164.008	-13.453	3000	134.4
	626	163.266	-13.328	4000	194.0
	627	164.914	-17.617	4700	238.4
	628	166.336	-17.875	3000	134.4
	629	169.570	-14.828	5000	258.0
	630	169.516	-13.563	4500	225.5
	631	161.750	-11.008	3700	175.6
	632	162.070	-11.195	3400	157.7
	633	164.219	-11.266	3000	134.4
	634	164.508	-10.992	4100	200.3
	635	163.383	-12.297	3000	134.4
	636	164.688	-12.094	3600	169.6
	637	165.375	-10.664	3400	157.7
	638	166.273	-10.148	3000	134.4
	639	130.141	-12.773	3200	145.9
	640	135.828	-10.438	6400	353.6
	641	132.008	-13.336	3000	134.4
	642	133.180	-14.680	3000	134.4
	643	131.570	-15.367	4100	200.3
	644	130.578	-16.453	4200	206.5
	645	132,969	-16.086	5200	271.3
	646	134.852	-16.234	6900	389.3
	647	134 672	-11 766	5900	318.7
	648	136.320	-11.820	3000	134.4
	649	135.156	-12.742	6300	346.6
	650	134 164	-13 406	13300	899.9
	652	135.383	-15.102	3000	134.4
	653	139.688	-12.242	4600	231.9
	654	137.320	-13.992	4000	194.0
	655	136.703	-10.523	3500	163.6
	656	136.328	-16.531	7800	455.3
	657	139.523	-14.234	3000	134.4
	658	139,594	-14.586	3200	145.9
	659	130.672	-17.688	4000	194.0
	660	131.961	-17.953	8900	538.8
	661	134.602	-18.094	5200	271.3
	662	134.063	-20.234	5400	284.7
	663	132.984	-20.555	3000	134.4
	664	131.117	-22.367	4000	194.0
	665	136.852	-18.945	3300	151.8
	666	137.258	-20.008	13000	874.1
	667	139.391	-17.313	3700	175.6
	668	139.813	-19.234	4200	206.5
	669	141 789	-19 328	3000	134.4
	670	140.492	-20.391	5700	305.0
	671	139.781	-20.953	6200	339.6
	672	142.133	-20.961	13400	908.6
	673	131.258	-19.594	3600	169.6
	674	134.359	-21.352	4000	194.0
	675	134.320	-23,148	3200	145.9
	677	140.539	-25.344	9100	554.3
	678	137 344	-25.508	3000	134.4
			-0.000	2000	

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
679	136.727	-25.563	3000	134.4
680	139.133	-26.648	3000	134.4
681	132.273	-26.359	5200	271.3
682	132.016	-27.234	5200	271.3
683	134.211	-26.172	5000	258.0
684	137.938	-27.875	4200	206.5
685	140.742	-26.406	3600	169.6
686	138.547	-29.266	3300	151.8
687	140.477	-29.000	3200	145.9
688	140 008	-28 922	3000	134.4
690	137 820	-29 461	3000	134.4
691	140 414	-29.875	4000	194.0
692	144 102	-29 492	3000	134.4
694	143 219	-24 203	4500	225.5
695	143 219	-25.094	4700	238.4
696	144 703	-24 758	3000	134.4
697	146.406	-24.750	3100	140 1
698	140.400	-24.180	3200	145.9
699	145 359	-25 766	3000	134.4
700	147 125	-27.656	3100	140 1
700	145 898	-22.867	5700	305.0
702	148 203	-22.007	3000	134.4
702	143.734	-23.469	3300	151.8
703	141 359	-23.407	3000	131.0
704	144.805	-22.414	3000	134 4
705	144.303	-20.305	3800	181 7
700	145 609	-20.505	3000	134.4
707	146.641	-20.005	5000	258.0
700	140.041	-21.539	3700	175.6
70)	148 164	-21.557	3300	151.8
711	149 281	-22,000	4300	212.8
712	149.625	-20 406	7300	418.3
713	147 969	-19 563	8400	500.4
714	149 305	-19 102	3000	134.4
715	142 922	-18 781	5700	305.0
716	145 156	-17 742	4400	219.1
717	145 258	-19 008	3000	134.4
718	146 102	-20 141	4000	194.0
719	144 266	-18 688	3300	151.8
720	141.586	-18 469	3400	157.7
721	140.984	-17.633	3000	134.4
722	147.031	-17.102	3000	134.4
723	143 484	-16 305	3000	134.4
724	143.016	-16.297	3400	157.7
725	143.297	-15.867	5200	271.3
726	144.258	-19.000	3000	134.4
727	147.531	-16.148	3000	134.4
728	147.602	-15.570	4000	194.0
729	141.164	-15.313	4800	244.9
730	145.281	-15.008	6000	325.6
731	147.430	-13.680	4000	194.0
732	149.063	-13.578	3000	134.4
734	144.539	-12.867	4000	194.0
735	145.555	-12.117	4000	194.0
736	143.945	-12.430	5100	264.6

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
737	145.180	-11.039	3000	134.4
738	146.547	-11.047	3200	145.9
739	147.195	-10.852	5700	305.0
740	142.320	-10.750	9800	609.3
741	110.164	-10.852	7600	440.4
742	112.141	-10.977	4200	206.5
743	117.047	-10.328	5000	258.0
744	111.773	-12.477	4000	194.0
745	119.852	-13.328	5600	298.2
746	119.289	-16.281	3400	157.7
747	115.859	-16.016	4000	194.0
748	118.016	-16.844	3000	134.4
749	113.516	-17.867	3300	151.8
750	117.531	-19.125	3000	134.4
751	119.797	-18,469	3200	145.9
752	119 352	-18 008	6400	353.6
753	114 203	-17 156	3400	157.7
754	112.930	-17 883	13500	917.2
755	110.430	-21 664	3000	134.4
756	112 547	-20 766	3400	157.7
757	112.3 17	-20 344	6700	374.9
758	111.709	-20.094	4200	206.5
759	116.805	-22 250	3000	134.4
760	116.003	-22.230	3000	134.4
760	117.031	-24 281	3600	169.6
762	118.016	-24.201	3300	151.8
762	119.430	-24 250	6100	332.6
765	117 555	-27.539	3400	157.7
766	111 641	-22.557	3000	134 4
767	111.041	-28.002	5000	258.0
768	114.813	-26.453	3000	134.4
769	116 531	-23.433	5900	318 7
70)	117 453	-27.515	3000	134 4
770	120 047	-20.507	9000	546 5
772	120.047	-27.297	5100	264.6
777	117.515	-29.211	J100 4400	204.0
775	117,500	-29.148	4400	219.1
776	12./11	-29.394	4300	124.4
770	121.005	-27.109	3000	154.4
778	124.009	-27.234	3000	131.8
770	121.273	-20./11	3000 4 2 00	206.5
780	122.088	-29.003	4200	200.5
780	120.070	-23.041	2400	157.7
782	125.559	-29.303	3400	10/ 0
782	125.727	-24.117	4000	124.0
783	120.900	-23.632	3000	134.4
/84	127.323	-23.072	3000	134.4
183	123.828	-20.104	5000	134.4
/00	120.219	-23.344	5100	204.0
/88	120.002	-22.041	5100	204.0
/89	122.266	-21./11	4400	219.1
/90	120.01/	-20.1/2	3100	140.1
/91	127.602	-20.016	/000	440.4
/92	123.266	-19.805	3800	181./
793	126.234	-17.570	5500	291.4
7/94	128.539	-17.344	4100	200.3

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
795	128.992	-17.547	3500	163.6
796	126.102	-18.805	3000	134.4
797	127.078	-19.688	3000	134.4
798	125.258	-19.250	3700	175.6
799	122.516	-18.969	3000	134.4
800	121.023	-17.469	3200	145.9
801	125.016	-17 555	6300	346.6
802	126.953	-21.484	3000	134.4
803	127.203	-12.977	10400	657.4
804	124 250	-14 672	8000	470.2
805	126.203	-14 211	3000	134.4
806	126.164	-12 328	3000	134.4
807	129 352	-13 805	4000	194.0
808	129.375	-13 633	3300	151.8
809	129.373	-12 445	3000	134.4
811	116 375	-2 500	3400	157.7
812	118 320	-2 586	3500	163.6
813	117 477	-0 547	3300	151.8
814	111 719	-4 492	14700	1022.6
816	112 852	-6 195	10400	657.4
817	112.002	-3 969	3000	134.4
818	119 734	-1 641	3100	140.1
819	120 164	-4 063	8600	515 7
820	118 820	-6.617	4100	200.3
821	116 539	-7 297	13000	874.1
822	114 492	-7.055	5000	258.0
823	114 922	-9 367	4000	194.0
824	116 453	-9 414	4000	194.0
825	118 172	-9 438	5000	258.0
826	117 828	-9 188	3000	134.4
827	118 750	-7 852	4500	225 5
828	119.227	-7.961	4000	194.0
829	121.727	-3.719	3600	169.6
830	122.211	-4.328	5400	284.7
831	124,656	-5.492	7700	447.8
832	125.078	-4.563	3000	134.4
833	124.359	-8.383	4400	219.1
834	127.844	-9.016	4000	194.0
835	127.766	-9.859	3500	163.6
836	122.563	-9.758	3100	140.1
837	122.969	-0.570	12600	839.9
838	126.039	-1.188	4700	238.4
839	127.344	-3.313	3000	134.4
840	132.750	-2.133	4500	225.5
841	131.766	-4.563	4000	194.0
842	132.086	-4.938	4300	212.8
843	132.055	-5.672	4300	212.8
844	134.633	-4.117	4800	244.9
845	136.617	-4.391	4000	194.0
846	138.602	-3.102	3000	134.4
847	131.664	-6.547	3000	134.4
848	131.883	-7.492	4300	212.8
849	134.313	-7.438	5000	258.0
850	132.945	-8.047	9200	562.1
851	133.922	-8.672	3700	175.6

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
852	139.711	-7.297	5000	258.0
853	139.008	-8.141	4000	194.0
854	137.719	-5.445	3800	181.7
855	135.375	-8.391	4600	231.9
856	139.773	-5.391	3000	134.4
857	140.172	-9.211	5600	298.2
858	140.375	-7.438	3000	134.4
859	141.867	-3.820	3200	145.9
860	142.141	-5.500	3200	145.9
861	143.750	-5.344	3000	134.4
862	142.961	-8.281	3300	151.8
863	144.188	-3.352	3000	134.4
864	145.422	-5.758	4400	219.1
865	145.625	-6.297	4800	244.9
866	146.430	-4.586	4200	206.5
867	147.422	-4.195	4100	200.3
868	149.078	-3.219	4000	194.0
869	148.453	-9.773	4300	212.8
870	147.492	-8.672	4300	212.8
871	143.117	-7.852	4400	219.1
872	142.313	-8.711	3500	163.6
873	149.875	-8.336	9400	577.7
875	149 961	-5.617	3600	169.6
876	147 172	-1 422	3100	140.1
877	143 625	-1 180	13600	925.9
878	193 555	7 641	5100	264.6
879	193 289	4 148	3000	134.4
881	191 994	3 702	11199 96345	722.6
882	191 974	2 664	9553 815081	589.8
883	199.024	8 506	13547 89405	921.4
884	198 914	5 733	3239 839863	148.2
886	198 844	4 188	3000	134.4
887	198 367	7 844	6700	374.9
888	200.438	4 578	3600	169.6
889	200.813	4 633	8200	485.3
890	197 719	2 844	3600	169.6
891	199 719	2.011	14300	987.2
892	193.141	-0.016	3800	181 7
893	194.055	-0.484	3200	145.9
895	201 125	1 547	3200	145.9
896	196 625	-0.633	3300	151.8
897	200 305	-0.234	8000	470.2
898	192 227	-4 516	3800	181 7
899	192.227	-4.891	8000	470.2
900	190 305	-5 484	5600	298.2
901	196.898	-7.055	3000	134.4
002	200.063	5 430	9300	560.0
902	192 711	-6.773	3000	13 <i>A A</i>
Q0 <i>1</i>	190 125	-6.675	5200	271 2
004	190.123	-0.025	3000	271.3 124 A
90 <i>3</i> 006	190.430	-7.433	4100	200.3
900 007	177.422	-7.705	5100	200.5
907 000	200.443	-1.430 5.619	\$100 \$200	204.0 AQ5 2
500 000	203.313	-2.040	0200 4200	405.5
909	202.703	-0.032	4200	200.3
910	206.398	-/.609	3600	109.0

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
911	207.703	-7.234	3200	145.9
912	207.648	-0.875	3000	134.4
913	208.094	-1.922	12800	857.0
914	206.102	3.367	6000	325.6
915	206.242	9.773	4900	251.4
916	200.063	8.727	3000	134.4
917	199.266	9.500	3000	134.4
922	176.781	-2.047	3000	134.4
923	177.992	6.086	3900	187.9
924	188.359	9.352	4000	194.0
925	184.094	5.852	4600	231.9
926	183.398	5.438	3800	181.7
927	181.852	4.109	5100	264.6
928	186.328	3.875	3600	169.6
929	186.352	3.141	12000	789.2
930	181 797	8 852	6300	346.6
931	186 945	1 906	4000	194.0
932	177 148	1 828	5200	271.3
933	174 602	6 234	5800	311.9
934	172.625	5 383	14700	1022.6
936	171.102	5.031	3000	134.4
937	170.625	6 563	5400	284.7
938	173.836	3 1 2 5	7200	411.0
939	177 273	3 141	3000	134.4
940	175 539	6 602	4100	200.3
941	178 773	9.813	3300	151.8
942	176.992	9.477	6800	382.1
943	172.656	8 773	3300	151.8
944	172.030	8 301	3200	145.9
945	170.031	9.613	10755 97544	686.2
946	171 366	10 539	13769 71506	940.7
947	170.914	-2 141	4000	194.0
948	170.914	-2.141	4000	194.0
040	172.375	-2.515	4000	206.5
949	179.673	-1.400	4200	455.2
950	179.002	-2.201	/ 800	455.5
951	180.331	-1.091	4000	194.0
952	174 711	-1.394	3200	403.3 124 A
955	1/4./11	-2.015	3000	134.4
954	177.023	-1.030	3200	145.5
955	178.028	-3.977	5100	225.6
957	1/0.930	-0.104	2100	140.1
939	105.559	-0.201	2000	140.1
900	180.180	-0.323	3000	134.4
901	187.000	-0.930	4200	200.3
962	180.477	-/.438	4200	200.3
963	189.070	-0.339	4100	200.3
904 045	100.071	-3.8/3	5400 4800	284.7 244.0
903	107.3/3	-2.832	4800	244.9
966	188.891	-3.008	4100	200.3
967	187.914	-3.555	12600	839.9
968	183.953	-/.133	3000	154.4
969	188.555	-0.578	3800	181./
970	184.602	-1.039	6/00	574.9
971	185.414	-2.188	13700	934.6
972	182.828	-0.789	3000	134.4

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
973	182.781	-0.430	3000	134.4
976	185.094	0.250	14000	960.9
978	184.188	-4.859	8800	531.1
979	164.844	6.531	6000	325.6
980	162.719	7.813	6100	332.6
981	169.016	5.078	6400	353.6
986	163.059	5.141	5310.004712	278.6
987	164.254	5.199	5566.608285	295.9
988	167.250	-2.750	4600	231.9
989	167.766	-6.344	3200	145.9
990	169.727	-8.484	3100	140.1
991	168.820	-4.758	3000	134.4
992	160.969	-3.883	7300	418.3
993	161.711	-6.320	6400	353.6
994	160.609	-6.977	4600	231.9
995	164.977	-8.430	3000	134.4
996	162 711	-9 109	4200	206.5
997	166 711	-5 883	5500	291.4
998	166 516	-8 602	3200	145.9
999	168 531	-8 820	3300	151.8
1000	160.961	-2 391	5200	271.3
1001	165.086	-4 781	4800	244.9
1001	165.063	-4 328	3300	151.8
1002	166.836	-2 188	3000	134.4
1005	162 531	-1 102	3000	134.4
1004	164 688	-1.102	3300	151.8
1005	166 359	-1 539	3300	151.8
1000	161 969	-0.523	5600	298.2
1007	160 797	-0.325	4500	225.2
1008	160.391	-1.953	5000	258.0
1010	165 469	1.055	3000	134.4
1010	169 633	3 289	6100	332.6
1012	160.891	6.094	4000	194.0
1012	162 500	6 109	3000	134.4
1013	151 641	4 008	6000	325.6
1014	151 516	4.008	4000	194.0
1015	152 563	3 422	5000	258.0
1010	156 102	5 117	3700	175.6
1017	155 328	<i>J</i> .117 <i>A</i> 91 <i>A</i>	3300	151.8
1010	155.008	9 211	5000	258.0
1019	159.633	2 094	3800	181 7
1020	153.680	1 006	3500	163.6
1021	151.460	3.016	3000	134 4
1022	152 102	3 219	3000	134.4
1023	152.102	0.984	3000	134 4
1024	156.578	-0.984	3200	145 0
1020	150.378	-1.400	3200 4700	228 4
1027	159.550	-1.0/3	4700	230.4 251 A
1020	156 710	-2.013	4700 2000	231.4 101 7
1029	150./19	-2.033	2000	101./
1030	137.//3	-0.009	3000 5700	101./
1031	130.0/3	-3.333	J/UU 4100	200.2
1032	133.200	-3.048	4100	200.5
1033	150.515	-2.148	14000	900.9 502.4
1034	150.050	-/.102	8/00	525.4
1035	155.945	-0.2/3	3000	154.4

Crater #	Longitude	Latitude	Diameter (m)	Impactor Diameter (m)
1036	153.891	-6.008	3700	175.6
1037	152.547	-5.422	3000	134.4
1038	151.445	-6.016	3800	181.7
1039	152.961	-3.758	11300	730.9
1040	157.398	-5.125	3500	163.6
1041	151.469	-4.531	4900	251.4
1042	153.461	-7.867	3000	134.4
1043	159.930	-6.422	3900	187.9
1044	155.914	-8.289	3000	134.4
1045	154.602	-8.000	3000	134.4
1046	154.117	-9.492	3000	134.4
1047	158.477	-9.898	3200	145.9
1048	159.984	-9.242	5000	258.0
1049	152.375	-6.023	3000	134.4
1050	159.227	-7.641	3000	134.4
1051	113.875	6.031	4200	206.5
1052	119.023	8.125	11000	706.2
1053	117 078	6 531	3000	134.4
1054	117.180	8.375	3000	134.4
1055	115.789	9.797	3000	134.4
1056	111.234	3.672	3400	157.7
1057	117 969	2 695	3000	134.4
1058	114 773	3 289	8800	531.1
1059	110 555	7 742	4000	194.0
1060	120 188	4 234	3000	134.4
1061	120.672	4 047	5100	264.6
1062	119 078	0.555	3000	134.4
1063	111 422	-0.008	3400	157.7
1064	123 516	3 883	3000	134.4
1065	127.711	2.938	3600	169.6
1066	129 719	1 234	4300	212.8
1068	121 344	4 219	3000	134.4
1070	129.414	9 273	3000	134.4
1072	133 656	8 875	3300	151.8
1072	137 313	2 602	9600	593.5
1075	136 742	0.008	4000	194.0
1075	137 320	0.742	3000	134.4
1076	137.520	0.070	5100	264.6
1077	138 656	3.086	3300	151.8
1078	140 445	3 530	3000	134.4
1079	140 477	3 117	4400	219.1
1080	139 703	5 234	4800	212.1
1081	139.867	0 742	3000	13 <i>1 1</i>
1087	149 734	2 984	3200	1/5 0
1083	140 500	2.704	3200	175.7
100.7	148 586	5219	3500	163.6

B STONY MAIN BELT ASTEROIDS

This appendix contains a list of 138 stony Main Belt asteroids and their physical characteristics. The quality column is an indication of the accuracy of the information, with "A" being the best.

#	Name	Mass (kg)	Diameter (km)	Density (g/cm ³)	Porosity (%)	Qual.
145	Adeona	2.08E+18	149.504	1.19	47	С
268	Adorea	3.25E+18	140.32	2.24	19	D
47	Aglaja	3.25E+18	141.901	2.17	22	D
702	Alauda	6.06E+18	191.655	1.64	41	D
259	Aletheia	7.79E+18	190.055	2.17	22	В
54	Alexandra	6.16E+18	149.686	3.51	0	D
516	Amherstia	1.43E+18	69.848	8.01	0	D
29	Amphitrite	1.29E+19	217.595	2.39	28	С
90	Antiope	8.3E+17	122.151	0.87	61	В
387	Aquitania	1.9E+18	103.514	3.27	0	С
404	Arsinoe	3.42E+18	96.974	7.16	0	D
105	Artemis	1.53E+18	119.102	1.73	23	С
5	Astraea	2.64E+18	113.415	3.45	0	В
111	Ate	1.76E+18	142.857	1.15	48	С
230	Athamantis	1.89E+18	110.17	2.7	19	В
419	Aurelia	1.72E+18	124.473	1.7	24	С
94	Aurora	6.23E+18	186.358	1.84	18	D
63	Ausonia	1.53E+18	94.457	3.47	0	С
324	Bamberga	1.03E+19	234.672	1.52	32	А
28	Bellona	2.62E+18	108.106	3.95	0	С
1313	Berna	2.25E+15	13.935	1.21	63	В
154	Bertha	9.19E+18	186.854	2.69	0	D
720	Bohlinia	5.97E+16	34.647	2.74	17	С
107	Camilla	1.12E+19	210.689	2.29	18	В
491	Carina	4.82E+18	97.37	9.97	0	С
505	Cava	3.99E+18	101.513	7.28	0	D
1	Ceres	9.44E+20	944.795	2.14	4	А
1669	Dagmar	3.98E+16	42.997	0.96	57	С
61	Danae	2.89E+18	82.53	9.82	0	D
41	Daphne	6.31E+18	181.05	2.03	9	В
511	Davida	3.38E+19	298.289	2.43	0	С
4492	Debussy	3.33E+14	15.786	0.9	60	В
349	Dembowska	3.58E+18	145.24	2.23	33	С
344	Desiderata	1.39E+18	129.203	1.23	45	С
78	Diana	1.27E+18	123.637	1.28	42	В
106	Dione	3.06E+18	147.178	1.83	18	D
423	Diotima	6.91E+18	211.644	1.39	38	С
48	Doris	6.12E+18	211.673	1.23	45	D
60	Echo	3.15E+17	60.005	2.78	16	В
13	Egeria	8.82E+18	214.735	1.7	24	D
442	Eichsteldia	1.95E+17	65.584	1.32	41	В
130	Elektra	6.6E+18	189.628	1.85	17	В
59	Elpis	3E+18	163.617	1.31	53	C
481	Emita	5.78E+18	107.231	8.95	0	С

#	Name	Mass (kg)	Diameter (km)	Density (g/cm ³)	Porosity (%)	Qual.
283	Emma	1.38E+18	132.746	1.13	49	С
45	Eugenia	5.79E+18	201.817	1.35	40	С
185	Eunike	3.56E+18	160.616	1.64	27	D
15	Eunomia	3.14E+19	256.631	3.54	0	В
31	Euphrosyne	1.27E+19	272.925	1.19	47	D
52	Europa	2.38E+19	310.211	1.52	32	С
27	Euterpe	1.67E+18	105.803	2.7	19	D
164	Eva	9.29E+17	101.775	1.68	39	D
751	Faina	3 27E+18	107 318	5.05	0	B
19	Fortuna	8 6E+18	206 904	1.85	17	A
854	Frostia	1.06E+15	8 396	0.88	72	B
74	Galatea	6.13E+18	120 673	6.66	0	D
328	Gudrun	3.16E+18	122.599	3 27	1	B
444	Gyntis	1.06E+10	164 639	4 56	0	C
6	Hebe	1.00E+19 1 39E+19	190 925	3.81	0	Δ
624	Hektor	9.95E+18	226 684	1.63	41	C
895	Helio	9.87E+18	148 432	5 77	0	D
532	Herculina	1.15E+10	217 /0/	2.13	36	C
121	Hermione	4.97E+18	195 368	2.15	43	B
804	Hispania	5E+18	1/8 252	2.93	45 0	C
379	Huenna	3.83E+17	87 282	2.75	51	C
10	Hygiea	8.63E+10	421 603	2.2	2	
238	Hypetia	4.05E+19	421.003	3	2	C A
238	Inypana	4.92 + 10 8 03E+17	106 165	1 /3	36	C
2/3	Ida	3.78E+16	31.3	2 35	20	
173	Ino	3.78E+10 4 70E+18	160.071	2.33	29	Л
704	Interamnia	4.79E+18 3.28E+10	317 105	2.23	20	
85	Interanina	2.20E+19 2.57E+18	155 005	1.90	41	D
85 14	IU Irana	2.37E+18 2.01E+18	133.003	1.52	41	D D
14	Iric	2.91E+10 1 20E+10	147.757	2.14	40	D C
12	IIIS	1.29E+19 1.58E+18	102 738	2.14	16	C
42	Isolda	1.30E+18	102.738	2.78	10	D D
127	Iohanna	4.492+18	149.018	2.55	0	C
127	Juawa	5.00E + 10 5.54E+18	161 422	2.75	0	C
139	Juewa	5.34E+18	101.433	2.32	9	C
3	Juna	0.71E+10 2.72E+10	147.373	3.98	0	
91	Vlio	2.73E+17 5.47E+17	241.797	2.08	0	A D
04 170	KIIU Vivita amma astro	$3.4/E \pm 1/$	79.402	2.09		D C
1/9	Kiylaeninestia Vrougo	$2.49E \pm 17$	162.22	1.15	50	C
400	Lastitia	2.40E+10	102.33	2.19	25	C
39 187	Lacilla	4./2E+10 1 9E+19	121 212	2.40	23	C
68	Lamoerta	1.0E + 10 2 28E+18	124.061	2.21	32	
117	Leio	5.20E + 10	124.901	3.21	5	D
800	Lundia	0.08E + 18 0.27E+14	140.785	5.07	10	D
21	Lutatio	9.27E + 14 1 7E+18	08	2.45	49	
21 758	Mangunia	1.7E + 10 0.21E+17	70 87 088	2.45	0	D A
20	Massalia	5E±18	127	2.09	0	D C
20 760	Massinga	1 22E+10	70 821	5.71 7.15	0	n D
252	Mathilda	1.33E + 10 $1.03E \pm 17$	/0.021 52	1 22	/1	
233 19	Melnomena	1.05ET1/ 2.77E±10	55 171 701	1.32	41	A C
10	Metic	3.22E+10 8 20E+10	141./21 161 166	2.10 2.6	33 0	
7 02	Mineryo	0.37E+10 2 5E±10	1/04.400	5.0 1.00	11	D D
73 107	Nausikaa	3.31 + 10 1 70F+18	147./74 QA 188	1.77	0	Б С
51	Nemausa	2.791110 2.48E+18	148 857	1 11	36	C
178	Nemesis	2.701 + 10 5 07E+18	18/ 107	1.77	18	C
120	1101110515	J.7/L-10	104.192	1.02	10	U

#	Name	Mass (kg)	Diameter (km)	Density (g/cm ³)	Porosity (%)	Qual.
150	Nuwa	1.62E+18	146.546	0.98	56	С
3169	Ostro	1.86E+14	5.15	2.6	25	В
49	Pales	4.22E+18	150.825	2.35	0	D
2	Pallas	2.04E+20	514.417	2.87	0	А
372	Palma	5.15E+18	191.122	1.41	49	В
70	Panopaea	4.33E+18	133.431	3.48	0	С
471	Papagena	3.05E+18	124.555	3.02	9	D
11	Parthenope	5.91E+18	151.077	3.27	1	А
451	Patientia	1.09E+19	234.425	1.61	28	D
617	Patroclus	1.36E+18	143.15	0.89	68	В
679	Pax	7.14E+17	64.886	4.99	0	С
554	Peraga	6.59E+17	96.465	1.4	12	В
196	Philomela	4E+18	145.298	2.49	25	С
25	Phocaea	5.99E+17	80.191	2.22	33	С
189	Phthia	3.84E+16	40.919	1.07	67	С
790	Pretoria	4.58E+18	160.982	2.1	24	С
508	Princetonia	2.99E+18	139.695	2.09	25	С
194	Prokne	2.68E+18	170.336	1.04	53	В
762	Pulcova	1.4E+18	138.401	1.01	55	В
168	Sibylla	3.92E+18	149.062	2.26	0	С
386	Siegena	8.14E+18	170.357	3.14	0	С
87	Sylvia	1.48E+19	278.149	1.31	52	В
1089	Tama	8.9E+14	13.445	2.52	24	В
345	Tercidina	2.68E+18	98.788	5.31	0	С
81	Terpsichore	6.19E+18	121.776	6.55	0	D
23	Thalia	1.96E+18	106.814	3.08	7	В
24	Themis	5.89E+18	183.842	1.81	19	С
17	Thetis	1.33E+18	82.768	4.48	0	С
405	Thia	1.38E+18	122.148	1.45	35	С
88	Thisbe	1.53E+19	204.046	3.45	0	С
30	Urania	1.74E+18	94.489	3.93	0	С
240	Vanadis	1.1E+18	94.035	2.54	0	D
416	Vaticana	3.27E+18	87.109	9.45	0	D
490	Veritas	5.99E+18	110.965	8.38	0	С
4	Vesta	2.63E+20	519.337	3.59	0	А
144	Vibilia	5.3E+18	141.344	3.59	0	С
12	Victoria	2.45E+18	124.099	2.45	19	С
747	Winchester	3.81E+18	170.078	1.48	47	D
654	Zelinda	1.35E+18	127.831	1.23	45	В

C CANDIDATE CRATER PAIRS

This appendix contains a list of 2037 pairs of impact craters from the study area whose separation is < 20 kilometers. The pairs are sorted by "Score", with the best scores at the top. The crater numbers correspond to crater numbers assigned in Appendix A.

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
4	252.679	-13.583	37	252.938	-13.831	2.92	4
9	251.772	-21.941	77	252.054	-22.236	3.26	4
228	228.633	-9.703	229	228.367	-9.695	2.16	3
945	170.487	9.613	946	171.366	10.539	10.47	3
55	259.771	-26.107	64	259.332	-25.994	3.38	2
155	218.295	-21.601	156	218.063	-21.974	3.55	2
568	160.281	-17.875	569	160.695	-18.070	3.63	2
594	154.906	-29.375	595	154.930	-29.695	2.65	2
2	255.426	-16.152	57	255.199	-17.097	8.01	1
6	257.827	-16.434	69	258.159	-15.328	9.50	1
8	255.459	-20.777	11	256.429	-21.995	12.52	1
28	265.929	-15.805	30	266.929	-17.207	14.02	1
59	261.951	-27.115	71	260.451	-26.531	12.06	1
60	261.398	-27.557	71	260.451	-26.531	10.97	1
84	237.706	-13.735	85	238.662	-14.034	8.06	1
189	216.578	9.367	190	218.102	9.125	12.57	1
189	216.578	9.367	358	216.570	9.176	1.58	1
190	218.102	9.125	358	216.570	9.176	12.49	1
214	226.234	6.164	216	227.805	6.578	13.33	1
232	213.695	-3.711	234	211.406	-3.734	18.86	1
250	240.102	4.750	252	241.023	5.289	8.79	1
254	243.891	3.188	260	245.633	4.766	19.38	1
263	249.969	3.742	264	249.555	1.570	18.25	1
263	249.969	3.742	323	250.172	2.563	9.88	1
267	242.281	0.469	269	241.602	1.766	12.09	1
281	237.969	-2.125	294	236.273	-3.000	15.74	1
288	233.258	0.703	291	233.914	-1.023	15.25	1
320	257.508	2.961	351	259.352	3.555	15.97	1
323	250.172	2.563	324	251.297	1.742	11.49	1
337	261.172	-3.398	338	260.625	-3.875	5.98	1
365	190.163	-13.945	522	188.797	-13.445	11.71	1
408	170.320	-15.336	629	169.570	-14.828	7.30	1
408	170.320	-15.336	630	169.516	-13.563	15.99	1
413	172.641	-16.492	423	172.781	-17.320	6.93	1
423	172.781	-17.320	424	173.203	-17.344	3.33	1
465	181.867	-21.727	513	182.539	-21.352	6.02	1
478	179.680	-27.117	506	178.898	-27.391	6.16	1
523	185.977	-12.445	524	183.719	-12.891	18.55	1
523	185.977	-12.445	533	184.742	-10.414	19.52	1
540	157.281	-11.547	542	155.070	-12.359	19.07	1
542	155.070	-12.359	546	155.680	-12.203	5.08	1
554	157.195	-16.398	559	155.570	-18.180	19.50	1
562	150.898	-18.742	714	149.305	-19.102	12.79	1

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
570	160.609	-18.836	571	161.352	-18.977	5.91	1
581	153.836	-22.898	583	153.367	-23.500	6.11	1
583	153.367	-23.500	584	154.977	-23.375	12.23	1
598	160.266	-28.766	602	163.008	-28.984	19.91	1
604	164.266	-26.109	605	165.180	-25.414	8.90	1
604	164.266	-26.109	606	165.625	-26.695	11.15	1
605	165.180	-25.414	606	165.625	-26.695	11.08	1
631	161.750	-11.008	996	162.711	-9.109	17.51	1
646	134.852	-16.234	652	135.383	-15.102	10.26	1
646	134.852	-16.234	656	136.328	-16.531	11.95	1
670	140.492	-20.391	671	139,781	-20.953	7.19	1
678	137.344	-25.508	679	136.727	-25.563	4.62	1
681	132.273	-26.359	682	132.016	-27.234	7.47	1
710	148,164	-21.547	711	149.281	-22.000	9.35	1
746	119.289	-16.281	751	119.797	-18.469	18.50	1
759	116.805	-22.250	760	116.492	-22.047	2.92	1
782	125 727	-24 117	783	126 906	-25 852	16.82	1
782	125 727	-24 117	784	127 523	-25 672	18 59	1
791	127 602	-20.016	802	126 953	-21 484	13.12	1
805	126 203	-14 211	806	126.164	-12 328	15.55	1
814	111 719	-4 492	816	112.852	-6 195	16.86	1
829	121 727	-3 719	830	122.002	-4 328	6.42	1
856	139 773	-5 391	858	140 375	-7 438	17.60	1
928	186 328	3 875	931	186 945	1 906	17.00	1
1004	162 531	-1 102	1005	164 688	-1 133	17.80	1
1004	164 688	-1.102	1005	166 359	-1 539	14 20	1
1005	153 945	-6.273	1042	153 461	-7.867	13.74	1
1033	158 477	-9.898	1042	159 984	-9 242	13.47	1
1	258 463	-17 341	33	259 162	-15 154	18.88	0
1	258.463	-17 341	51	259.102	-15 348	16.66	0
1	258.463	-17 341	69	258 159	-15 328	16.79	0
3	253 508	-16.685	39	253 317	-13.328 -14.742	16.12	0
4	252.500	-13 583	34	253.517	-14.742 -13.202	11.98	0
4	252.679	-13.585	36	252 900	-13.202	14.60	0
4	252.079	-13.583	38	252.900	-11.027	18.51	0
4	252.079	-13.383	56	251.078	-11.973	18.51	0
4	252.079	-13.383	17	254.925	-13.030	10.37	0
0	255.459	-20.777	17	254.045	-21.797	10.49	0
9	251.772	-21.941	10	251.002	-21.339	5.27	0
9	251.772	-21.941	50	252.719	-23.732	20.00	0
9	256 420	-21.941	03	252.099	-24.208	20.00	0
11	256 429	-21.995	17	254.045	-21.797	15.70	0
11	256.429	-21.993	18	255.080	-20.372	10.65	0
12	230.831	-24.793	40	238.733	-23.187	19.03	0
10	251.002	-21.559	45	250.785	-22.043	12.34	0
10	251.002	-21.559	38 77	252.719	-23.732	19.00	0
10	251.002	-21.559	11	252.054	-22.230	0.35	0
21	260.700	-24.108	46	258.755	-23.187	10.50	0
21	260.700	-24.108	04	259.332	-25.994	18.03	0
23	262.885	-27.650	47	264.955	-28.888	18.20	0
25	208.890	-25.130	<i>5</i> 5	267.191	-24.860	12.91	0
26	268.606	-24.971	48	267.537	-22.828	19.44	U
34	254.118	-13.202	<i>3</i> 6	252.900	-11.827	15.00	0
34	254.118	-13.202	39	253.317	-14.742	14.24	0
34	254.118	-13.202	66	254.925	-13.050	6.61	0
35	267.191	-24.860	48	267.537	-22.828	16.97	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
35	267.191	-24.860	49	269.228	-25.301	15.66	0
35	267.191	-24.860	53	269.500	-25.804	18.91	0
36	252.900	-11.827	38	251.078	-11.975	14.77	0
36	252.900	-11.827	66	254.925	-13.050	19.19	0
36	252.900	-11.827	73	252.965	-12.413	4.86	0
37	252.938	-13.831	61	253.952	-12.410	14.28	0
37	252.938	-13.831	63	252.014	-12.463	13.52	0
38	251.078	-11.975	73	252.965	-12.413	15.66	0
39	253.317	-14.742	61	253.952	-12.410	19.91	0
39	253.317	-14.742	66	254.925	-13.050	19.00	0
40	250.236	-17,949	54	250.016	-17.516	3.97	0
40	250.236	-17.949	97	249.554	-17.733	5.65	0
43	250.785	-22.843	44	250.413	-22.422	4.49	0
44	250 413	-22 422	77	252 054	-22 236	12.63	0
45	256 439	-26 957	74	256 002	-25 332	13.80	Õ
46	258 755	-23 187	52	256 699	-24 483	18.85	Õ
49	269 228	-25 301	53	269 500	-25 804	4 62	Ő
50	259.953	-11 125	35 75	259.300	-10 249	7.42	Ő
54	259.935	-17 516	97	239.747	-17 733	4.06	0
55	259 771	-26 107	70	259 445	-25 366	6.58	Ő
55	259.771	-26 107	78	260 451	-26 531	6.13	Ő
58	252 719	-23.732	65	252 699	-24 208	3.94	0
61	252.717	12 410	63	252.077	12 463	15.63	0
61	253.952	-12.410	03 73	252.014	-12.403	7.96	0
62	255.952	-12.410	66	252.905	-12.413	13.46	0
62	256.281	-14.008	60	254.925	-15.050	18.52	0
63	250.281	-14.008	73	250.159	-13.328	7.68	0
64	252.014	-12.403	73	252.905	-12.413	7.08	0
65	259.552	-23.994	70	259.445	-23.300	5.25	0
03	252.099	-24.208	//	252.034	-22.230	17.00	0
12	257.001	-27.970	80 2.4.1	259.095	-20.744	10.40	0
/3	239.747	-10.249	541	237.930	-9.123	1 / .40	0
89	238.773	-12.8/8	90	238.383	-11.910	8.09	0
96	248.483	-17.506	97	249.554	-1/./33	8.03	0
96	248.483	-17.506	99	247.457	-18.358	10.69	0
97	249.554	-17.733	98	248.822	-18.898	11.20	0
97	249.554	-1/./33	99	24/.45/	-18.358	17.25	0
99	247.457	-18.358	100	248.185	-20.008	14.75	0
101	243.393	-21.984	102	242.273	-20.782	13.14	0
101	243.393	-21.984	111	241.919	-23.310	15.69	0
101	243.393	-21.984	127	241.561	-20.603	18.13	0
102	242.273	-20.782	103	241.301	-22.542	16.33	0
102	242.273	-20.782	127	241.561	-20.603	5.70	0
103	241.301	-22.542	107	240.957	-24.232	14.19	0
105	237.993	-17.668	123	237.139	-17.774	6.77	0
106	240.153	-23.523	110	239.974	-25.297	14.70	0
107	240.957	-24.232	110	239.974	-25.297	11.47	0
108	238.070	-23.459	126	237.617	-23.102	4.53	0
109	238.802	-24.512	110	239.974	-25.297	10.91	0
109	238.802	-24.512	126	237.617	-23.102	14.68	0
112	242.103	-27.402	113	242.049	-27.903	4.15	0
115	235.400	-24.052	116	234.072	-23.943	10.05	0
115	235.400	-24.052	126	237.617	-23.102	18.52	0
118	233.159	-20.885	119	232.140	-20.844	7.87	0
133	214.115	-13.727	137	213.398	-14.632	9.42	0
146	213.820	-17.915	147	213.503	-18.639	6.47	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
152	214.843	-21.840	158	216.527	-22.896	15.54	0
167	218.176	-26.679	171	220.819	-27.186	19.90	0
188	214.664	9.664	192	213.961	7.414	19.44	0
198	214.914	4.500	205	213.617	2.547	19.34	0
202	219.539	3.539	203	220.227	3.078	6.83	0
203	220.227	3.078	206	220.023	1.461	13.46	0
204	215.359	3.898	205	213.617	2.547	18.18	0
211	222.039	1.867	224	223.609	1.281	13.83	0
217	229.516	6.016	244	230.172	4.445	14.04	0
222	229.164	3.148	225	229.211	2.406	6.14	0
237	232.109	9.227	238	232.289	8.563	5.67	0
237	232.109	9.227	239	232.516	8.289	8.42	0
240	233.992	6.250	242	233.000	5.258	11.55	0
241	231.094	6.211	242	233.000	5.258	17.52	Õ
241	231.094	6.211	244	230.172	4.445	16.43	Õ
242	233 000	5 2 5 8	248	232,531	3 555	14 58	Õ
245	237 680	5 406	251	240 078	5 141	19.84	Ő
255	246 867	6 531	257	248 656	6 688	14 73	Ő
255	249 320	7 430	258	247 500	6 2 2 7	17.92	0 0
256	249 320	7 430	319	251 219	6 781	16.45	Ő
265	247 539	1 445	280	248 844	-0.250	17.66	Ő
269	241.602	1.766	200	241 141	0.477	11.30	0 0
20)	241.002	0.477	276	241.141	-1 117	14 11	0
270	241.141	-1 656	270	246.325	-1.875	17.56	0
272	248.492	-1.656	280	240.373	-0.250	11.97	0
272	246.375	-1.875	230	240.044	-0.230	7 35	0
275	240.373	-1 578	274	240.305	-1.969	16 75	0
275	242.277	1 578	277	240.303	2 375	11.85	0
275	242.297	-1.578	278	241.102	-2.373	11.30	0
275	242.297	-1.378	279	241.310	-2.703	7.26	0
276	240.523	-1.117	277	240.303	-1.909	11.42	0
270	240.323	-1.11/	278	241.102	-2.373	7 28	0
277	240.303	-1.909	278	241.102	-2.373	6.10	0
277	240.303	-1.909	290	239.503	-2.078	0.19	0
279	241.510	-2.703	290	239.303	-2.078	10.92	0
282	238.310	-3.000	303	239.730	-4./38	1/./2	0
282	238.310	-3.000	300	239.703	-3.047	19.32	0
283	231.313	0.331	297	230.900	1.820	11.10	0
280	232.102	0.430	288	233.238	0.703	9.81	0
280	232.102	0.430	290	234.025	-0.672	18.29	0
286	232.102	0.430	291	233.914	-1.023	19.18	0
288	233.258	0.703	290	234.023	-0.672	12.99	0
299	238.398	-5.6/2	300	238.805	-6.859	10.35	0
300	238.805	-6.859	302	238.203	-8.664	15.69	0
304	242.555	-6.078	314	242.633	-5.391	5./1	0
308	248.430	-6.031	315	249.008	-4.063	16.93	0
309	245.383	-7.609	316	246.219	-9.719	18.70	0
311	244.461	-6.297	313	245.078	-6.148	5.21	0
311	244.461	-6.297	314	242.633	-5.391	16.77	0
312	245.617	-6.422	313	245.078	-6.148	4.97	0
321	255.461	1.930	322	254.078	2.320	11.85	0
321	255.461	1.930	329	256.258	-0.281	19.40	0
327	258.156	-0.164	328	257.625	-0.320	4.57	0
327	258.156	-0.164	329	256.258	-0.281	15.70	0
327	258.156	-0.164	330	256.648	-0.852	13.68	0
329	256.258	-0.281	330	256.648	-0.852	5.71	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
330	256.648	-0.852	331	256.211	-1.180	4.51	0
362	195.861	-10.215	368	194.372	-11.844	18.07	0
377	200.168	-14.031	381	201.102	-15.942	17.44	0
391	197.192	-29.565	392	199.026	-29.568	13.17	0
394	202.908	-27.962	395	203.902	-28.436	8.22	0
421	179.375	-16.727	422	179.906	-16.484	4.65	0
425	174.547	-17.703	445	176.633	-18.094	16.70	0
430	182.141	-17.031	431	182.039	-18.297	10.48	0
433	180.219	-20.469	511	181.641	-19.813	12.28	0
433	180.219	-20.469	512	182.031	-20.031	14.50	0
447	180.250	-22.438	458	180.063	-24.469	16.83	0
448	178.453	-22.945	449	178.180	-22.273	5.93	0
448	178.453	-22.945	463	178,922	-25.313	19.86	0
452	171.789	-23.836	453	171.789	-23.836	0.00	0
452	171.789	-23.836	454	171.203	-23.797	4.44	Õ
453	171.789	-23.836	454	171.203	-23.797	4.44	Õ
453	171 789	-23 836	469	170 984	-24 664	913	Õ
453	171 789	-23.836	470	171 070	-24 773	9 44	Ő
453	171 789	-23.836	471	172.273	-21 703	17 99	Ő
453	171 789	-23.836	472	170.836	-26 031	19.48	Ő
453	171 789	-23.836	619	169 695	-22.492	19 38	Ő
466	181 844	-21 344	512	182 031	-20.031	10.93	Ő
487	181.031	-28.070	504	182.001	-27 430	10.31	0
487	182 477	-23.195	489	182.852	-22 320	7 77	0
488	182.477	-23.195	490	183 539	-23.820	9.56	0
400	182.477	-23.195	490	184 289	-23.539	14.03	0
488	182.477	-22 320	490	183 539	-23.820	13.44	0
489	182.852	-22.320	512	182 031	-20.031	19.44	0
400	183 539	-23.820	491	184 289	-23.539	6.13	0
490	183.539	-23.820	491	185 742	-23.539	16.81	0
490	183 539	-23.820	498	184 250	-25.547	13.01	0
490	183 539	-23.820	490	183 742	-25.250	17 74	0
490	184 289	-23.539	493	184 617	-24 250	637	0
491	184.289	-23.539	493	184.017	-24.250	1/ 10	0
491	187 202	-23.339	490 510	186 201	-23.238	674	0
495 511	187.203	-21.992	510	180.391	-21.080	0.74	0
522	181.041	-19.813	527	182.031	-20.031	5.55	0
551	163.000	-10.914	557	163.117	-12.344	16.14	0
552	155.401	-13.180	557	153.047	-17.094	10.14	0
552	152.047	-13.269	559	153.047	-17.094	17.21	0
557	153.047	-17.094	563	154.201	-17.308	10.51	0
561	150.047	-17.094	563	151.445	-10.297	5 26	0
562	150.275	-10.4//	502	150.898	-16.742	5.50	0
563 562	151.445	-18.297	5/8	151.205	-20.172	15.59	0
564	151.445	-10.297	714	149.303	-19.102	16.01	0
504	151.211	-19.141	/12	149.023	-20.400	10.13	0
500	158.528	-18./81	508	160.281	-1/.8/5	17.04	0
5/4	155.200	-18.041	5//	155.088	-20.200	10.19	0
5//	153.088	-20.266	5/8	151.203	-20.1/2	19.20	U
5//	153.688	-20.266	580	154.086	-20.883	5.95	0
588	162.016	-22.516	612	164.500	-22.883	19.16	U
588	162.016	-22.516	613	163.625	-24.336	19.35	U
608	167.109	-25.469	611	169.242	-25.336	15.94	0
617	165.484	-20.445	618	16/.133	-20.742	12.97	U
617	165.484	-20.445	620	166.164	-19.258	11.13	0
617	165.484	-20.445	621	165.398	-19.281	9.63	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
618	167.133	-20.742	620	166.164	-19.258	14.37	0
618	167.133	-20.742	621	165.398	-19.281	18.07	0
620	166.164	-19.258	621	165.398	-19.281	5.97	0
623	166.492	-13.141	636	164.688	-12.094	16.91	0
624	163.688	-13.141	625	164.008	-13.453	3.64	0
624	163.688	-13.141	626	163.266	-13.328	3.73	0
624	163.688	-13.141	635	163.383	-12.297	7.38	0
625	164.008	-13.453	626	163.266	-13.328	6.05	0
625	164.008	-13.453	633	164.219	-11.266	18.14	0
625	164.008	-13.453	635	163.383	-12.297	10.79	0
626	163.266	-13.328	635	163.383	-12.297	8.57	0
629	169.570	-14.828	630	169.516	-13.563	10.46	0
632	162.070	-11.195	633	164.219	-11.266	17.41	0
637	165.375	-10.664	638	166.273	-10.148	8.45	0
637	165.375	-10.664	995	164.977	-8.430	18.73	0
638	166.273	-10.148	995	164.977	-8.430	17.69	0
639	130.141	-12.773	808	129.375	-13.633	9.39	Õ
643	131 570	-15 367	644	130.578	-16 453	11.93	Ő
647	134 672	-11 766	655	136 703	-10.523	19 39	Ő
653	139 688	-12 242	658	139 594	-14 586	19.36	Ő
658	139 594	-14 586	729	141 164	-15 313	13.89	Ő
659	130.672	-17 688	794	128 539	-17 344	17.03	Ő
659	130.672	-17 688	795	128.992	-17 547	13.27	Ő
661	134 602	-18 094	665	136 852	-18 945	18.96	0 0
667	139 391	-17 313	668	139.813	-19 234	16.21	0 0
667	139 391	-17 313	720	141 586	-18 469	19.71	0 0
668	139 813	-19 234	670	140.492	-20 391	10.91	0
680	139 133	-26 648	685	140 742	-26 406	12.05	0 0
686	138 547	-29.266	688	140.742	-28.922	10.91	0
695	143 219	-25.094	703	143 734	-23.469	13.96	0
698	149.217	-23.094	703	149.754	-22.402	18.00	0
706	142.211	-20 305	717	145 258	-19.008	11.52	0
708	146 641	-20.909	718	146 102	-20 141	7 73	0
708	140.041	21 530	718	146.102	20.141	16.05	0
709	147.711	18 781	716	140.102	-20.141	10.95	0
713	142.922	-10.701	710	145.150	-17.742	19.50	0
719	145.258	-19.008	710	140.102	-20.141	11.42	0
710	140.102	-20.141	719	144.200	-18.088	2.58	0
719	144.200	-10.000	720	144.236	-19.000	2.30	0
734	144.555	-12.807	730	145.945	-12.430	5.99	0
735	143.333	-12.117	/ 30 727	140.347	-11.047	11.94	0
730	143.943	-12.430	737	143.160	-11.039	13.21	0
742	112.141	-10.977	/44 825	111.//3	-12.4//	12.75	0
745	11/.04/	-10.328	823 762	118.172	-9.438	11.74	0
760	116.492	-22.047	764	110.010	-23.727	10.07	0
700	110.492	-22.047	/04	117.555	-22.339	9.08	0
/01	117.031	-24.281	/04	11/.555	-22.539	14.92	0
/61	117.031	-24.281	/68	114.813	-25.455	19.23	0
/02	118.010	-23.727	/04	11/.555	-22.539	10.41	0
/6/	111.922	-28.453	//4	114.500	-29.148	19.51	0
//2	120.047	-27.297	//5	119.313	-29.211	10.68	0
//8	121.273	-28.711	//9	122.688	-29.063	10.63	U
778	121.273	-28.711	781	123.359	-29.563	16.60	0
/86	128.219	-23.344	788	126.602	-22.641	13.59	0
789	122.266	-21.711	792	123.266	-19.805	17.53	0
792	123.266	-19.805	798	125.258	-19.250	16.16	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
792	123.266	-19.805	799	122.516	-18.969	9.04	0
796	126.102	-18.805	797	127.078	-19.688	10.54	0
796	126.102	-18.805	798	125.258	-19.250	7.54	0
796	126.102	-18.805	801	125.016	-17.555	13.38	0
797	127.078	-19.688	798	125.258	-19.250	14.62	0
812	118.320	-2.586	813	117.477	-0.547	18.22	0
812	118.320	-2.586	818	119.734	-1.641	14.04	0
822	114.492	-7.055	823	114.922	-9.367	19.41	0
826	117.828	-9.188	827	118.750	-7.852	13.35	0
827	118.750	-7.852	828	119.227	-7.961	4.00	0
843	132.055	-5.672	848	131.883	-7.492	15.09	0
852	139.711	-7.297	853	139.008	-8.141	9.03	0
864	145.422	-5.758	865	145.625	-6.297	4.75	0
864	145.422	-5.758	866	146.430	-4.586	12.74	0
865	145.625	-6.297	866	146.430	-4.586	15.60	0
866	146.430	-4.586	867	147.422	-4.195	8.78	0
871	143.117	-7.852	872	142.313	-8.711	9.67	0
875	149 961	-5.617	1038	151 445	-6.016	12.63	0
900	190.305	-5.484	904	190.125	-6.625	9.53	Õ
904	190.125	-6.625	963	189.070	-8.359	16.72	Õ
910	206 398	-7 609	911	207 703	-7 234	11.12	0
936	171 102	5 031	937	170.625	6 563	13.23	Õ
941	178 773	9.813	942	176 992	9 477	14 76	Ő
949	179 875	-1 406	950	179.602	-2.281	7 57	Ő
961	187 000	-6.930	962	186 477	-7 438	6.00	Ő
995	164 977	-8 430	998	166 516	-8 602	12.65	Ő
1000	160.961	-2 391	1007	161 969	-0.523	17.51	0
1000	160.961	-2 391	1008	160 797	-1 305	9.07	Ő
1000	165.086	-4 781	1003	165.063	-4 328	3 75	0
1001	162 531	-1.102	1002	160 391	-1 953	19.01	0
1001	164 688	-1 133	1010	165 469	1.055	19.01	Ő
1005	161 969	-0.523	1010	160 797	-1 305	11.63	0
1007	161.969	-0.523	1000	160.391	-1.953	17.58	0
1007	160 797	-0.325	1009	160.391	-1.953	6 3 2	0
1008	160.797	-1.305	1007	150 336	1.955	12.94	0
1008	160.797	-1.305	1027	159.550	-1.875	10.21	0
1008	160.797	-1.505	1027	159.775	-0.009	8 72	0
1009	160.391	-1.955	1027	159.550	-1.875	20.00	0
1009	160.391	-1.933	1028	150.140	-2.873	20.00	0
1009	160.391	-1.955	1030	159.775	-0.009	12.21	0
1009	160.391	-1.955	1012	162 500	-5.555	13.19	0
1012	152 562	3 422	1013	102.300	2.016	0.62	0
1010	152.505	1.006	1022	151.409	3.010	9.02	0
1021	150.080	1.900	1023	152.102	3.219 2.875	10.95	0
1027	159.330	-1.875	1028	150.140	-2.873	12.01	0
1027	159.550	-1.675	1030	159.775	-0.009	11.03	0
1027	159.550	-1.873	1031	156.875	-3.333	14.38	0
1028	130.148	-2.8/3	1029	130./19	-2.033	11.90	0
1028	130.148	-2.8/3	1031	138.8/3	-3.333	0.21	0
1029	150./19	-2.033	1032	155.266	-3.048	14.02	0
1036	155.891	-0.008	1049	152.5/5	-0.023	12.44	0
1041	151.469	-4.551	1049	152.375	-0.023	14.40	U
1043	159.930	-6.422	1050	159.227	-/.641	11.59	0
1045	154.602	-8.000	1046	154.11/	-9.492	12.94	0
1054	11/.180	8.375	1055	115.789	9./9/	16.32	U
1060	120.188	4.234	1068	121.344	4.219	9.52	0

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
1077	138.656	3.086	1079	140.477	3.117	15.01	0
1079	140.477	3.117	1080	139.703	5.234	18.60	0
4	252.679	-13.583	73	252.965	-12.413	9.93	-1
6	257.827	-16.434	51	258.482	-15.348	10.37	-1
9	251.772	-21.941	44	250.413	-22.422	11.12	-1
26	268.606	-24.971	35	267.191	-24.860	10.63	-1
36	252.900	-11.827	61	253.952	-12.410	9.76	-1
40	250.236	-17.949	98	248.822	-18.898	13.56	-1
43	250.785	-22.843	77	252.054	-22.236	10.89	-1
45	256.439	-26.957	72	257.001	-27.978	9.38	-1
51	258,482	-15.348	69	258,159	-15.328	2.58	-1
52	256.699	-24.483	74	256.002	-25.332	8.74	-1
54	250.016	-17.516	98	248.822	-18.898	14.76	-1
59	261 951	-27 115	60	261 398	-27 557	5 46	-1
70	259 445	-25 366	71	260 451	-26 531	12.18	-1
81	230 239	-11 093	82	231 721	-10 781	12.10	-1
98	248 822	-18 898	99	247 457	-18 358	11.57	-1
98	248 822	-18 898	100	248 185	-20.008	10.42	-1
130	215 520	-13 238	133	240.105	-13 727	11.98	_1
134	218.853	-15 363	141	219.496	-16 390	9.89	-1
134	218.853	-15 363	142	219.190	-17.616	19 19	_1
135	210.000	-13.305	138	217.451	-14 881	11.62	-1
1/1	220.025	16 300	142	210.072	17.616	10.13	-1
141	219.490	-10.590	142	219.431	10 203	13 75	-1 1
142	219.451	-17.010	143	219.965	19.203	17.10	-1 1
142	219.451	-17.010	144	220.203	-19.559	17.10	-1
142	219.431	-17.010	100	220.925	-18.009	3.54	-1
143	219.983	-19.203	144	220.205	10,800	16.22	-1
143	219.963	-19.203	145	217.999	-19.809	10.23 8 56	-1
143	219.965	-19.203	145	220.923	-18.009	8.30 17.76	-1
144	220.203	-19.339	145	217.999	-19.809	8.82	-1
144	220.203	-19.339	161	220.925	-18.009	0.02	-1
144	220.203	-19.339	101	222.399	-10.017	19.13	-1
145	217.999	-19.809	140	210.090	-10.052	0.0/	-1
143	217.999	-19.809	134	217.334	-20.013	0.31	-1
140	213.820	-17.915	148	210.090	-18.832	19.37	-1 1
140	213.820	-17.915	150	214.380	-19.974	17.55	-1 1
14/	215.505	-18.039	150	214.380	-19.974	12.97	-1
148	216.096	-18.832	150	214.380	-19.974	10.30	-1
148	216.096	-18.832	154	217.354	-20.613	1/.00	-1
149	211.4/6	-16.581	186	210.724	-15.361	11./1	-1
159	212.314	-22.243	185	211.491	-23.552	12.49	-1
160	220.923	-18.669	161	222.599	-18.817	13.16	-1
164	221.111	-23.153	165	222.845	-24.244	15.90	-l
166	222.052	-25.621	168	221.197	-26.488	9.56	-1
174	225.538	-24.487	176	226.505	-25.675	12.18	-1
176	226.505	-25.675	177	228.357	-26.993	17.49	-1
179	225.129	-18.175	180	225.483	-18.415	3.40	-1
179	225.129	-18.175	181	225.635	-19.927	14.99	-1
180	225.483	-18.415	181	225.635	-19.927	12.54	-1
188	214.664	9.664	191	213.406	7.719	19.06	-1
191	213.406	7.719	192	213.961	7.414	5.19	-1
197	217.086	4.320	198	214.914	4.500	17.94	-1
197	217.086	4.320	209	216.461	2.047	19.46	-1
198	214.914	4.500	200	212.922	4.719	16.49	-1
198	214.914	4.500	204	215.359	3.898	6.17	-1

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
199	212.484	5.328	200	212.922	4.719	6.18	-1
200	212.922	4.719	205	213.617	2.547	18.82	-1
202	219.539	3.539	226	221.867	3.234	19.35	-1
203	220.227	3.078	211	222.039	1.867	17.98	-1
204	215.359	3.898	209	216.461	2.047	17.78	-1
205	213 617	2 547	207	212 172	1 766	13.56	-1
207	212 172	1 766	208	211 727	1 422	4 64	-1
220	226 242	3 492	221	228 344	3 906	17.65	-1
220	228.242	3 906	221	229.164	3 148	9 21	-1
221	228.344	3 906	222	229.101	2 406	14 30	-1
221	220.544	3 148	223	229.211	4 445	13 55	_1
222	229.104	3 148	244	230.172	1.820	18.07	-1
222	229.104	2 406	297	230.900	1.820	14.80	-1
223	229.211	2.400	297	230.900	1.820	14.80	-1
255	240.807	0.331	200	243.033	4./00	17.70	-1 1
307	190./94	-12.309	3/3	197.997	-13.449	12.40	-1 1
390	205.130	-22.724	397	205.805	-22.735	5.10	-1 1
403	205.587	-10.446	404	205.760	-11.34/	/.5/	-1
407	170.664	-14.102	410	172.375	-15.859	19.92	-1
407	170.664	-14.102	412	170.984	-16.297	18.30	-1
411	170.914	-16.641	412	170.984	-16.297	2.89	-1
411	170.914	-16.641	438	170.188	-17.688	10.37	-1
412	170.984	-16.297	437	171.734	-17.781	13.61	-1
412	170.984	-16.297	438	170.188	-17.688	13.09	-1
414	175.844	-11.313	415	176.656	-11.602	6.99	-1
416	178.188	-16.148	421	179.375	-16.727	10.54	-1
416	178.188	-16.148	529	180.336	-14.930	19.83	-1
418	181.305	-12.273	419	179.430	-11.953	15.36	-1
418	181.305	-12.273	527	181.461	-14.406	17.65	-1
419	179.430	-11.953	420	179.469	-11.273	5.62	-1
421	179.375	-16.727	446	180.867	-18.344	17.78	-1
422	179.906	-16.484	430	182.141	-17.031	18.23	-1
422	179.906	-16.484	446	180.867	-18.344	17.11	-1
427	178.867	-17.680	446	180.867	-18.344	16.63	-1
428	174.586	-20.742	471	172.273	-21.703	19.48	-1
432	179.492	-19.008	433	180.219	-20.469	13.32	-1
432	179.492	-19.008	434	180.281	-21.234	19.37	-1
434	180.281	-21.234	448	178.453	-22.945	19.88	-1
434	180.281	-21.234	449	178,180	-22.273	18.25	-1
434	180.281	-21.234	511	181.641	-19.813	15.76	-1
435	177.266	-22.313	444	176.633	-21.320	9.52	-1
436	172.305	-19.313	441	171.281	-20.781	14.49	-1
437	171 734	-17 781	438	170 188	-17 688	12.19	-1
439	170 539	-19.852	441	171 281	-20 781	9 59	-1
441	171 281	-20 781	471	172 273	-21 703	10.78	-1
446	180 867	-18 344	511	181 641	-19.813	13 54	-1
446	180.867	-18 344	512	182 031	-20.031	16.63	_1
440	180.307	22 / 38	166	181 844	21 344	15.18	-1
<u> </u>	178 453	-22.430	460	176 234	-21.544	17 07	-1 _1
440	178 190	-22.943	400	176.020	23.711	17.27	-1
449	170.100	-22.213	439	176 724	-23.000	17.40 10 06	-1 1
449	170.100	-22.213	40U 461	176766	-23./11	10.90	-1 1
449	1/0.100	-22.213	401	170.700	-23.310	0.12	-1 1
452	1/1./89	-23.830	409	170.984	-24.004	9.13 7.25	-1 1
454	1/1.203	-23.191	409	170.984	-24.004	/.33	-1 1
454	1/1.203	-23.191	4/1	1/2.2/3	-21.703	19.11	-1
45/	180.445	-24.188	462	1/8.609	-25.102	15./1	-1

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
459	176.039	-23.008	460	176.234	-23.711	5.99	-1
459	176.039	-23.008	461	176.766	-23.516	6.92	-1
460	176.234	-23.711	461	176.766	-23.516	4.33	-1
462	178.609	-25.102	478	179.680	-27.117	18.43	-1
462	178.609	-25.102	506	178.898	-27.391	19.02	-1
463	178 922	-25 313	467	180 836	-24 305	16.58	-1
464	179 758	-26 172	487	181 031	-28 070	18 25	-1
466	181 844	-21 344	489	182.852	-22.320	11.16	-1
467	180.836	-24 305	468	181 477	-26 531	18 99	-1
467	180.836	-24 305	488	181.177	-23 195	15.41	-1
467	181 477	26 531	487	181.031	28.070	13.12	-1
408	181.477	-20.551	407	183 742	-28.070	17.12	-1
408	181.477	-20.331	499 504	182.742	-25.901	0.21	-1
408	101.4//	-20.331	304 494	102.242	-27.430	9.51	-1 1
472	172.402	-20.051	484	1/0.4//	-27.200	10.33	-1 1
4/0	173.492	-28.104	4//	174.303	-28.303	0.70	-1
4/6	1/3.492	-28.164	480	1/5.141	-29.016	13.80	-1
4/6	1/3.492	-28.164	482	1/2.195	-28.133	9.44	-1
478	179.680	-27.117	486	180.852	-27.469	9.07	-1
480	175.141	-29.016	481	176.219	-27.273	16.38	-1
482	172.195	-28.133	483	171.500	-27.500	7.28	-1
482	172.195	-28.133	484	170.477	-27.266	14.46	-1
484	170.477	-27.266	485	172.234	-28.852	18.31	-1
493	184.617	-24.250	499	183.742	-25.961	15.57	-1
494	185.742	-23.547	498	184.250	-25.258	18.04	-1
499	183.742	-25.961	504	182.242	-27.430	16.41	-1
516	187.578	-19.523	518	186.320	-17.516	19.28	-1
533	184.742	-10.414	534	184.047	-10.297	5.73	-1
536	183.156	-10.523	959	183.359	-8.281	18.58	-1
541	158.367	-11.625	543	159.984	-10.969	14.17	-1
541	158.367	-11.625	545	157.609	-13.008	12.95	-1
556	155.984	-16.297	567	157.031	-14.523	16.84	-1
559	155.570	-18.180	560	154.430	-19.242	12.51	-1
561	150.273	-18.477	712	149.625	-20.406	16.71	-1
599	157.656	-25.438	600	158.102	-25.563	3.47	-1
646	134.852	-16.234	651	134.555	-14.313	16.04	-1
772	120.047	-27.297	778	121.273	-28.711	14.70	-1
783	126.906	-25.852	784	127.523	-25.672	4.82	-1
790	126.617	-20.172	791	127.602	-20.016	7.74	-1
993	161.711	-6.320	994	160.609	-6.977	10.53	-1
1034	150 656	-7 102	1038	151 445	-6.016	11.06	-1
7	254.448	-19.573	17	254.645	-21.797	18.42	-2
37	252 938	-13 831	73	252 965	-12 413	11 71	-2
96	248 483	-17 506	98	248 822	-18 898	11.79	-2
101	243 393	-21 984	103	241 301	-22 542	16.64	-2
101	241 301	-22 542	105	241.901	-23 310	7 89	_2
103	241.301	-22.542	127	241.515	-20.603	16.14	_2
105	241.301	22.542	100	238 802	24 512	13.05	2
106	240.153	23.523	111	2/1 010	23 310	13.05	2
107	240.155	-23.323	100	271.212	-25.510	16.37	_2
107	240.737	-24.232	107	230.002	-24.J12 24.512	10.37	-2
100	230.070	-23.439	109	230.002	-24.312	10.30	-2
120	234.201 221 207	-19.330	121	233.04U	-17.431 10 075	12.14 0 CO	-2
120	234.28/	-19.330	122	233.278	-10.0/3	0.0U	-2
121	233.840	-19.431	123	233.344	-1/./43	14.03	-2
129	215.444	-10.802	130	215.762	-10.214	19.10	-2
130	215.520	-13.238	131	217.438	-13.934	16.43	-2

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
150	214.380	-19.974	152	214.843	-21.840	15.82	-2
151	215.387	-21.355	152	214.843	-21.840	5.79	-2
166	222.052	-25.621	171	220.819	-27.186	15.81	-2
190	218.102	9.125	194	219.219	9.797	10.65	-2
202	219.539	3.539	206	220.023	1.461	17.61	-2
223	227.766	4.242	244	230,172	4.445	19.88	-2
247	237.406	3.109	249	236.398	3.320	8.49	-2
248	232 531	3 555	284	233 156	1 984	13 95	-2
253	246 516	5 961	255	246 867	6 531	5 52	-2
253	246 516	5 961	260	245 633	4 766	12.25	-2
253	240.910	3 188	260	245.055	3 063	7 99	_2
254	249.320	7 430	257	244.652	6 688	8 19	_2
250	249.520	6.688	257	248.650	6 227	10.22	2
257	248.030	6 227	258	247.300	0.227	10.22	-2
238	247.300	0.227	200	243.033	4.700	19.32	-2
201	240.373	3.030	203	247.339	1.443	19.31	-2
203	249.969	5.742	524 265	251.297	1.742	19.81	-2
264	249.555	1.570	265	247.539	1.445	16.67	-2
264	249.555	1.570	280	248.844	-0.250	16.13	-2
271	248.813	-1.383	272	248.492	-1.656	3.48	-2
271	248.813	-1.383	280	248.844	-0.250	9.36	-2
276	240.523	-1.117	279	241.516	-2.703	15.44	-2
277	240.305	-1.969	279	241.516	-2.703	11.68	-2
277	240.305	-1.969	282	238.516	-3.000	17.04	-2
281	237.969	-2.125	293	236.898	-2.320	8.98	-2
283	231.875	1.625	286	232.102	0.430	10.04	-2
283	231.875	1.625	288	233.258	0.703	13.72	-2
284	233.156	1.984	285	231.313	0.531	19.38	-2
284	233.156	1.984	288	233.258	0.703	10.61	-2
285	231.313	0.531	286	232.102	0.430	6.57	-2
285	231.313	0.531	288	233.258	0.703	16.12	-2
286	232.102	0.430	289	232.227	-0.617	8.70	-2
289	232.227	-0.617	290	234.023	-0.672	14.84	-2
289	232.227	-0.617	291	233.914	-1.023	14.33	-2
293	236.898	-2.320	294	236.273	-3.000	7.62	-2
295	231 273	-2.984	298	233 039	-3 680	15.64	-2
304	242.555	-6.078	311	244.461	-6.297	15.75	-2
307	248 273	-6 695	308	248 430	-6.031	5 63	-2
309	245 383	-7.609	313	245.078	-6 148	12 32	_2
310	247.086	-8 734	316	246 219	-9 719	10.77	-2
317	255 680	9 758	318	256 820	9 273	10.11	_2
320	257.508	2 961	321	255.461	1 930	18.91	_2
320	258 156	-0.164	332	259.401	-1 391	12 51	_2
327	258.150	-0.104	332	259.047	-1.391	15.31	-2
354	238.370	-2.002	006	107 422	-3.898	10.31	-2
363	199.070	-11.300	368	197.422	-9.703	19.30	-2
304	192.133	-12.013	208 270	194.372	-11.044	18.14	-2
309	195.070	-13.807	370	197.439	-13.893	18.98	-2
309 202	195.070	-13.80/	3/2 204	193.398	-14.03/	13.4/	-2
383	202.763	-21.088	384 424	200.501	-20.702	1/./3	-2
413	1/2.641	-16.492	424	1/3.203	-1/.344	8.32	-2
430	182.141	-17.031	528	182.133	-14.758	18.77	-2
441	1/1.281	-20.781	619	169.695	-22.492	18.64	-2
447	180.250	-22.438	448	178.453	-22.945	14.31	-2
447	180.250	-22.438	449	178.180	-22.273	15.86	-2
454	171.203	-23.797	470	171.070	-24.773	8.12	-2
456	174.336	-25.383	474	175.609	-26.844	15.32	-2

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
462	178.609	-25.102	464	179.758	-26.172	12.29	-2
462	178.609	-25.102	473	177.359	-26.867	17.28	-2
464	179.758	-26.172	468	181.477	-26.531	13.06	-2
468	181.477	-26.531	492	182.617	-25.258	13.50	-2
473	177.359	-26.867	506	178.898	-27.391	12.11	-2
497	187.391	-25,492	507	185.891	-25.555	11.19	-2
500	184.461	-26.570	504	182.242	-27.430	17.80	-2
501	184.313	-28.063	503	182.602	-27.742	12.76	-2
502	186.016	-28.094	509	187.461	-29.648	16.55	-2
514	185.242	-18.898	515	184.617	-20.438	13.60	-2
514	185.242	-18.898	518	186.320	-17.516	14.21	-2
518	186.320	-17.516	520	186.039	-15.453	17.17	-2
519	187.945	-16.086	520	186.039	-15.453	16.02	-2
527	181 461	-14 406	529	180 336	-14 930	9 97	-2
528	182 133	-14 758	529	180 336	-14 930	14 41	-2
533	184 742	-10 414	960	186 180	-8 523	19 51	-2
540	157 281	-11 547	546	155 680	-12 203	14.03	-2
543	159 984	-10.969	544	158 883	-12.205	14.84	_2
543	159 984	-10.969	631	161 750	-11.008	14.34	_2
543	159 984	-10.969	632	162 070	-11 195	17.00	-2
543	159 984	-10.969	1047	158 477	-9 898	15.10	_2
572	162 039	-18.031	576	160 305	-19 672	19.16	_2
635	163 383	-12 297	636	164 688	-12.094	10.66	-2
651	134 555	-14 313	652	135 383	-15 102	9.28	-2
659	130.672	17 688	673	131.258	10 50/	16 30	-2
687	140 477	20,000	688	140.008	-19.394	2 45	-2
735	140.477	-29.000	730	140.008	10.852	16.80	-2
883	100 024	-12.117 8 506	887	197.195	7 844	7.66	-2
1	258 462	8.300 17 341	6	198.307	16 434	7.00 0.02	-2
1	258.463	-17.341 17.341	42	257.808	17 072	9.02 6.84	-5
1	250.405	12 582	42	257.090	-17.972	14.00	-5
4	252.079	-13.383	63	253.952	-12.410	14.09	-3
4 20	252.079	-13.363	03	252.014	-12.403	10.08	-3
20	263.000	-23.443	24 40	203.089	-24.017	5 20	-5
20	208.000	-24.9/1	49	209.228	-23.301	5.59	-5
30 22	200.929	-1/.20/	/0	209.023	-1/.810	17.23	-3
23 22	259.162	-13.134	51	238.482	-13.348	3.03 9.12	-3
33 24	259.102	-15.154	09	258.159	-15.528	8.12	-3
34 24	254.118	-13.202	3/ 72	252.958	-13.831	10.80	-3
34	254.118	-13.202	/3	252.965	-12.413	11.54	-3
36	252.900	-11.82/	3/	252.938	-13.831	16.54	-3
40	250.236	-17.949	96	248.483	-1/.506	14.26	-3
43	250.785	-22.843	6/	250.910	-23.100	2.33	-3
4 /	264.955	-28.888	68	265.570	-29.293	5.56	-3
54	250.016	-1/.516	96	248.483	-17.506	12.07	-3
55	259.771	-26.107	59	261.951	-27.115	18.12	-3
58	252.719	-23.732	77	252.054	-22.236	13.34	-3
66	254.925	-13.050	73	252.965	-12.413	16.64	-3
75	259.747	-10.249	340	258.453	-9.063	14.38	-3
84	237.706	-13.735	89	238.775	-12.878	11.13	-3
84	237.706	-13.735	90	238.585	-11.916	16.60	-3
85	238.662	-14.034	89	238.775	-12.878	9.58	-3
85	238.662	-14.034	90	238.585	-11.916	17.50	-3
93	242.624	-16.832	128	241.412	-17.955	13.31	-3
94	248.510	-14.173	95	247.117	-14.079	11.18	-3
103	241.301	-22.542	106	240.153	-23.523	11.90	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
 106	240.153	-23.523	107	240.957	-24.232	8.43	-3
106	240.153	-23.523	108	238.070	-23.459	15.78	-3
106	240.153	-23.523	126	237.617	-23.102	19.54	-3
112	242.103	-27.402	114	243.246	-28.957	15.29	-3
113	242.049	-27.903	114	243.246	-28.957	12.29	-3
118	233 159	-20.885	120	234 287	-19 330	15.53	-3
120	234 287	-19 330	125	235 344	-17 743	15.50	-3
121	235 840	-19 451	122	235 278	-18 875	6 48	-3
121	235.278	-18 875	122	237 139	-17 774	17 19	-3
122	237 139	-17 774	125	235 344	-17 743	14 11	-3
123	240 777	-19 178	125	233.544	-20.603	13.24	-3
124	240.777	-19.178	127	241.501	-17 955	11.24	-3
124	240.777	16 862	1/6	241.412	17 015	0.10	-5
129	213.444	-16.862	140	213.820	-17.913	9.19	-5
129	213.444	-10.802	147	215.505	-16.039	14.00	-5
131	217.430	-13.934	134	210.033	-13.303	10.54 8 5 0	-5
132	213.044	-13.095	155	214.113	-13.727	8.39	-5
132	213.044	-13.695	13/	213.398	-14.632	8.23	-3
134	218.853	-15.363	138	220.692	-14.881	15.19	-3
143	219.983	-19.203	157	220.971	-20.990	16.61	-3
144	220.265	-19.539	157	220.971	-20.990	13.16	-3
145	217.999	-19.809	155	218.295	-21.601	14.97	-3
145	217.999	-19.809	156	218.063	-21.974	17.88	-3
150	214.380	-19.974	151	215.387	-21.355	13.80	-3
151	215.387	-21.355	158	216.527	-22.896	15.43	-3
152	214.843	-21.840	162	214.642	-23.992	17.83	-3
153	212.067	-21.302	159	212.314	-22.243	8.00	-3
153	212.067	-21.302	185	211.491	-23.552	19.09	-3
154	217.354	-20.613	156	218.063	-21.974	12.49	-3
154	217.354	-20.613	158	216.527	-22.896	19.89	-3
155	218.295	-21.601	158	216.527	-22.896	17.23	-3
156	218.063	-21.974	158	216.527	-22.896	13.98	-3
158	216.527	-22.896	162	214.642	-23.992	16.90	-3
165	222.845	-24.244	166	222.052	-25.621	12.83	-3
165	222.845	-24.244	169	223.789	-25.774	14.47	-3
166	222.052	-25.621	169	223.789	-25.774	12.98	-3
167	218.176	-26.679	172	220.123	-28.211	19.06	-3
167	218.176	-26.679	173	219.631	-28.586	19.00	-3
168	221.197	-26.488	171	220.819	-27.186	6.39	-3
168	221.197	-26.488	172	220.123	-28.211	16.26	-3
169	223.789	-25.774	174	225.538	-24.487	16.84	-3
171	220.819	-27.186	172	220.123	-28.211	9.88	-3
171	220.819	-27.186	173	219.631	-28.586	14.45	-3
172	220,123	-28.211	173	219.631	-28.586	4.73	-3
174	225 538	-24 487	175	225 036	-23 282	10.64	-3
184	227 420	-10.899	228	228 633	-9 703	13.95	-3
184	227 420	-10.899	229	228 367	-9 695	12.50	-3
188	214 664	9 664	189	216 578	9367	15.78	-3
188	214.664	9 664	358	216.570	9.176	16.04	-3
190	218.004	9 1 2 5	193	210.370	6 883	19.57	_3
100	218.102	9.125	105	217.344	9 177	19.52	_3
103	210.102	6.883	358	220.500	9.172	19.02	_2
10/	217.344	0.00 <i>3</i>	105	210.370	0 177	11.70	-3
194	219.219	9.171	212	220.300	9.172 8 133	17.22	-3
195	220.500	6 250	212	222.332	5 052	10.00	-5
190	220.394	4 220	213	225.000	2 000	17.70	-5
17/	217.000	4.520	∠04	213.339	3.070	14.04	-3

 Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
201	220.211	3.617	203	220.227	3.078	4.45	-3
203	220.227	3.078	226	221.867	3.234	13.58	-3
205	213.617	2.547	208	211.727	1.422	18.15	-3
206	220.023	1.461	211	222.039	1.867	16.97	-3
211	222.039	1.867	226	221.867	3.234	11.38	-3
214	226 234	6 164	215	226 609	6 102	3.12	-3
215	226.609	6 102	216	227 805	6 578	10.57	-3
215	226.609	6 102	223	227.766	4 242	18.06	-3
215	227.805	6 578	217	229.516	6.016	14 79	-3
216	227.805	6 578	217	229.510	8 5 5 5	16.55	-5
210	227.803	6.578	210	220.141	8.333 4 242	10.33	-5
210	227.803	0.378	223	227.700	4.242	19.29	-3
217	229.510	0.010	221	228.344	5.900	19.90	-5
217	229.516	6.016	241	231.094	6.211	13.05	-3
220	226.242	3.492	223	227.766	4.242	13.99	-3
221	228.344	3.906	244	230.172	4.445	15.70	-3
222	229.164	3.148	223	227.766	4.242	14.64	-3
223	227.766	4.242	225	229.211	2.406	19.28	-3
225	229.211	2.406	244	230.172	4.445	18.60	-3
230	218.141	-9.531	357	219.641	-10.250	13.57	-3
234	211.406	-3.734	236	210.469	-1.969	16.50	-3
240	233.992	6.250	243	235.180	7.086	11.93	-3
245	237.680	5.406	246	238.094	4.711	6.67	-3
245	237.680	5.406	247	237.406	3.109	19.09	-3
246	238.094	4.711	247	237.406	3.109	14.38	-3
246	238.094	4.711	249	236.398	3.320	18.07	-3
246	238.094	4.711	250	240.102	4.750	16.52	-3
246	238.094	4.711	251	240.078	5.141	16.70	-3
248	232.531	3.555	283	231.875	1.625	16.82	-3
248	232 531	3 555	297	230,906	1.820	19.61	-3
250	240 102	4 750	251	240.078	5 141	3 23	-3
250	240.078	5 141	251	241 023	5 289	7.87	-3
253	246.516	5 961	252	241.025	6 688	18 56	-3
253	246.516	5.961	258	248.650	6 227	8 37	-5
255	240.510	2 1 9 9	250	247.300	0.227	12.15	-5
254	245.691	5.100	200	243.109	2.539	12.13	-5
255	240.807	0.531	258	247.500	0.227	5.//	-3
201	248.375	3.030	203	249.969	3.742	13.15	-3
261	248.375	3.656	264	249.555	1.570	19.78	-3
261	248.375	3.656	323	250.172	2.563	17.35	-3
264	249.555	1.570	323	250.172	2.563	9.64	-3
264	249.555	1.570	324	251.297	1.742	14.45	-3
267	242.281	0.469	268	241.516	0.141	6.88	-3
267	242.281	0.469	270	241.141	0.477	9.42	-3
267	242.281	0.469	275	242.297	-1.578	16.90	-3
267	242.281	0.469	276	240.523	-1.117	19.54	-3
268	241.516	0.141	269	241.602	1.766	13.43	-3
268	241.516	0.141	270	241.141	0.477	4.16	-3
268	241.516	0.141	275	242.297	-1.578	15.59	-3
270	241.141	0.477	275	242.297	-1.578	19.46	-3
275	242.297	-1.578	276	240.523	-1.117	15.12	-3
276	240.523	-1.117	296	239.563	-2.078	11.22	-3
277	240.305	-1.969	281	237.969	-2.125	19.31	-3
278	241.102	-2.375	279	241.516	-2.703	4.36	-3
278	241.102	-2.375	296	239.563	-2.078	12.93	-3
282	238 516	-3 000	293	236 898	-2 320	14 47	-3
282	231 875	1 625	285	231 313	0.531	10.15	-3
205	-01010	1.040	200	-01.010	0.001	10.10	5

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
283	231.875	1.625	289	232.227	-0.617	18.74	-3
283	231.875	1.625	297	230.906	1.820	8.15	-3
284	233.156	1.984	286	232.102	0.430	15.51	-3
284	233.156	1.984	297	230.906	1.820	18.61	-3
285	231.313	0.531	289	232.227	-0.617	12.12	-3
286	232.102	0.430	297	230.906	1.820	15.14	-3
287	237.156	0.328	292	236.695	-0.250	6.10	-3
288	233.258	0.703	289	232.227	-0.617	13.83	-3
290	234.023	-0.672	291	233.914	-1.023	3.04	-3
292	236.695	-0.250	293	236.898	-2.320	17.17	-3
299	238.398	-5.672	305	239.750	-4.758	13.43	-3
299	238.398	-5.672	306	239.703	-5.047	11.90	-3
300	238.805	-6.859	305	239.750	-4.758	19.01	-3
300	238.805	-6.859	306	239,703	-5.047	16.68	-3
301	236.180	-8.641	302	238.203	-8.664	16.52	-3
303	243.938	-6.789	304	242.555	-6.078	12.77	-3
303	243.938	-6.789	309	245.383	-7.609	13.64	-3
303	243 938	-6 789	311	244 461	-6 297	5 91	-3
303	243 938	-6 789	312	245 617	-6 422	14 10	-3
303	243 938	-6 789	313	245 078	-6 148	10.75	-3
303	243 938	-6 789	314	242 633	-5 391	15 75	-3
305	239 750	-4 758	306	239 703	-5.047	2.42	-3
307	248 273	-6 695	310	247.086	-8 734	19 44	-3
309	245 383	-7 609	311	244 461	-6 297	13.21	-3
309	245 383	-7.609	312	245.617	-6 422	9 99	-3
311	244 461	-6 297	312	245.617	-6 422	9 54	-3
321	255 461	1 930	333	255 141	-0.336	18 89	-3
324	255.401	1.750	325	252 195	-0.031	16.41	-3
327	258 156	-0.164	323	256 211	-1.180	18.12	-3
328	257.625	-0.320	329	256 258	-0.281	11.29	-3
328	257.625	-0.320	330	256.648	-0.852	9.18	-3
328	257.625	-0.320	331	256 211	-0.852	13.66	-3
320	256 258	-0.281	331	256 211	-1.180	7 43	-3
330	256.648	0.852	333	255.141	0.336	13 15	-5
221	256.048	-0.852	222	255.141	-0.330	11.25	-5
331	250.211	-1.180	224	258 570	-0.330	10.74	-5
332	259.047	-1.391	334	258.570	-2.002	10.74	-5
227	201.172	-3.390	244	202.080	-4.201	14.40	-5
338	200.023	-3.873	244	202.080	-4.201	17.23	-5
240	230.433	-9.003	241	257.950	-9.123	4.50	-5
340	238.433	-9.003	343	238.033	-7.093	11.75	-3
342 250	230.830	-0.400	343	238.033	-7.093	14.39	-3
339	191./01	-10.011	304	192.133	-12.013	11.90	-3
300	193.133	-12.721	308	194.372	-11.844	12.34	-3
300	193.133	-12.721	372	195.598	-14.03/	11.07	-3
361	194.255	-10.245	362	195.861	-10.215	13.05	-3
361	194.255	-10.245	368	194.372	-11.844	13.23	-3
362	195.861	-10.215	906	197.422	-9.703	13.37	-3
363	199.070	-11.388	5/5	197.997	-13.449	19.09	-5
363	199.070	-11.388	3/6	200.808	-10.607	15.48	-3
365	190.163	-13.945	366	190.518	-15.976	17.00	-3
365	190.163	-13.945	375	191.595	-15.101	14.90	-3
365	190.163	-13.945	521	188.078	-14.430	17.16	-3
365	190.163	-13.945	531	189.539	-11.875	17.81	-3
367	196.794	-12.509	370	197.439	-13.895	12.56	-3
368	194.372	-11.844	369	195.070	-13.867	17.62	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
368	194.372	-11.844	372	193.398	-14.037	19.73	-3
369	195.070	-13.867	371	196.537	-15.293	16.61	-3
370	197.439	-13.895	371	196.537	-15.293	13.61	-3
370	197.439	-13.895	373	197.997	-13.449	5.79	-3
371	196.537	-15.293	373	197.997	-13.449	19.19	-3
374	192.841	-15.947	380	194.229	-17.952	19.86	-3
379	195.616	-18.571	380	194.229	-17.952	12.01	-3
390	194.939	-29.667	391	197.192	-29.565	16.20	-3
393	200.834	-28.248	394	202.908	-27.962	15.29	-3
394	202.908	-27.962	398	204.003	-27.957	7.98	-3
395	203.902	-28.436	398	204.003	-27.957	4.02	-3
402	204.804	-13.425	404	205.760	-11.347	18.80	-3
405	170.250	-11.328	630	169.516	-13.563	19.37	-3
407	170.664	-14,102	629	169.570	-14.828	10.60	-3
407	170.664	-14.102	630	169.516	-13.563	10.22	-3
408	170.320	-15.336	410	172.375	-15.859	16.90	-3
408	170 320	-15 336	411	170 914	-16 641	11.76	-3
408	170 320	-15 336	412	170 984	-16 297	9 53	-3
408	170.320	-15 336	438	170 188	-17 688	19 44	-3
409	173 188	-15 391	410	172 375	-15 859	7 53	-3
409	173 188	-15 391	412	170 984	-16 297	19.03	-3
409	173 188	-15 391	413	172 641	-16 492	10.08	-3
409	173 188	-15 391	423	172.011	-17 320	16.00	-3
409	173 188	-15 391	423	173 203	-17 344	16.12	-3
410	172 375	-15.859	412	170.984	-16 297	11.61	-3
410	172.375	-15.859	423	172 781	-17 320	12.48	-3
410	172.375	-15.859	423	173 203	-17.320	13.90	-3
410	170.914	-16.641	413	172 641	-16.492	13.70	-3
411	170.014	16 641	423	172.041	17 320	15.72	-5
411	170.914	-16.641	423	172.781	-17.320	18.08	-5
411	170.014	16 641	620	160 570	1/ 828	18.38	-5
411	170.914	-16 297	413	172 641	-16.020	13.20	-3
412	170.984	-16.297	413	172.041	17 320	16.52	-5
412	170.984	-16.297	423	172.781	-17.320	10.52	-5
412	170.984	-10.297	424	175.205	-1/.344	19.55	-5
412	170.964	-10.297	422	109.370	-14.020	10.34	-5
410	170.100	-10.146	422	179.900	-10.464	10.25	-5
410	1/0.100	-10.148	420	1//.30/	-17.123	10.55	-5
410	1/0.100	-10.148	427	1/0.00/	-17.080	15.75	-3
41/	100.141	-13.730	410	101.303	-12.273	15.57	-5
418	181.303	-12.273	420	1/9.409	-11.273	10.98	-3
418	181.303	-12.273	525	181.820	-12.297	4.10	-5
419	179.430	-11.933	323	181.820	-12.297	19.30	-5
421	1/9.3/5	-10.727	420	1//.30/	-1/.123	10.19	-3
421	1/9.3/3	-10.727	427	1/8.80/	-1/.080	0.03	-5
421	179.375	-10.727	432	179.492	-19.008	18.80	-3
422	179.906	-16.484	427	1/8.86/	-1/.680	12.83	-3
422	1/9.906	-10.484	529	180.336	-14.930	13.28	-5
423	1/2./81	-1/.320	425	1/4.54/	-17.705	14.20	-5
423	1/2./81	-17.320	436	1/2.305	-19.313	16.8/	-3
423	172.781	-17.320	437	171.734	-17.781	9.08	-3
424	1/3.203	-1/.344	425	1/4.54/	-17.703	10.99	-3
424	173.203	-17.344	436	172.305	-19.313	17.71	-3
424	173.203	-17.344	437	171.734	-17.781	12.11	-3
426	177.367	-17.125	427	178.867	-17.680	12.67	-3
426	177.367	-17.125	445	176.633	-18.094	9.87	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
427	178.867	-17.680	432	179.492	-19.008	12.01	-3
427	178.867	-17.680	445	176.633	-18.094	17.88	-3
428	174.586	-20.742	444	176.633	-21.320	16.48	-3
431	182.039	-18.297	511	181.641	-19.813	12.89	-3
431	182.039	-18.297	512	182.031	-20.031	14.32	-3
433	180 219	-20 469	465	181 867	-21 727	16 40	-3
433	180 219	-20 469	466	181 844	-21 344	14 46	-3
433	180 219	-20 469	513	182 539	-21 352	19 32	-3
434	180 281	-21 234	465	181 867	-21 727	12.84	-3
434	180 281	-21 234	466	181 844	-21 344	12.05	-3
434	180 281	-21.234	512	182 031	-20.031	16.78	-3
434	180.281	-21.234	512	182 539	-21.352	17 39	-3
435	177 266	-21.234	<i>44</i> 9	178 180	-22.222	6 99	-3
435	177.266	-22.313	455	175 281	-22.273	19.15	-3
435	177.266	-22.313	455	176.030	-23.742	10.07	-5
435	177.266	-22.515	460	176.037	-23.008	13.05	-5
435	177.200	-22.313	400	176.234	-23.711	10.64	-5
435	177.200	-22.313	401	170.700	-23.310	10.04	-5
430	172.303	-19.313	437	1/1./34	-1/./81	13.41	-5
430	172.303	-19.313	439	170.339	-19.832	14.44	-3
430	172.303	-19.313	440	170.789	-20.742	10.00	-5
430	172.305	-19.313	450	1/1./50	-20.633	11.72	-3
430	172.305	-19.313	4/1	172.273	-21.703	19.74	-3
437	1/1./34	-1/./81	439	170.539	-19.852	19.48	-3
438	170.188	-1/.088	439	170.539	-19.852	18.08	-3
439	170.539	-19.852	440	170.789	-20.742	/.00	-3
439	1/0.539	-19.852	450	1/1./50	-20.633	11.38	-3
440	1/0./89	-20.742	441	1/1.281	-20.781	3.81	-3
440	170.789	-20.742	442	171.031	-22.906	17.96	-3
440	170.789	-20.742	450	1/1./50	-20.633	7.48	-3
440	170.789	-20.742	471	172.273	-21.703	13.91	-3
441	171.281	-20.781	442	171.031	-22.906	17.65	-3
442	171.031	-22.906	443	172.867	-22.859	13.97	-3
442	171.031	-22.906	450	171.750	-20.633	19.56	-3
442	171.031	-22.906	451	172.281	-24.172	14.09	-3
442	171.031	-22.906	452	171.789	-23.836	9.59	-3
442	171.031	-22.906	453	171.789	-23.836	9.59	-3
442	171.031	-22.906	470	171.070	-24.773	15.42	-3
442	171.031	-22.906	471	172.273	-21.703	13.74	-3
442	171.031	-22.906	619	169.695	-22.492	10.73	-3
443	172.867	-22.859	451	172.281	-24.172	11.71	-3
443	172.867	-22.859	453	171.789	-23.836	11.48	-3
443	172.867	-22.859	454	171.203	-23.797	14.80	-3
444	176.633	-21.320	448	178.453	-22.945	19.33	-3
444	176.633	-21.320	449	178.180	-22.273	14.23	-3
444	176.633	-21.320	459	176.039	-23.008	14.65	-3
447	180.250	-22.438	465	181.867	-21.727	13.69	-3
447	180.250	-22.438	467	180.836	-24.305	16.04	-3
447	180.250	-22.438	488	182.477	-23.195	18.06	-3
447	180.250	-22.438	489	182.852	-22.320	19.88	-3
447	180.250	-22.438	513	182.539	-21.352	19.69	-3
448	178.453	-22.945	457	180.445	-24.188	18.23	-3
448	178.453	-22.945	458	180.063	-24.469	17.50	-3
448	178.453	-22.945	462	178.609	-25.102	17.84	-3
450	171.750	-20.633	471	172.273	-21.703	9.71	-3
451	172.281	-24.172	452	171.789	-23.836	4.63	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
451	172.281	-24.172	453	171.789	-23.836	4.63	-3
451	172.281	-24.172	454	171.203	-23.797	8.70	-3
451	172.281	-24.172	469	170.984	-24.664	10.56	-3
451	172.281	-24.172	470	171.070	-24.773	10.37	-3
451	172.281	-24.172	472	170.836	-26.031	18.77	-3
452	171 789	-23 836	470	171 070	-24 773	9 44	-3
452	171 789	-23 836	471	172 273	-21 703	17 99	-3
452	171 789	-23.836	619	169 695	-22,492	19 38	-3
454	171 203	-23 797	472	170.836	-26.031	18.65	-3
454	171.203	-23 797	611	169 242	-25 336	19.05	-3
454	171.203	23.797	610	160 605	223.330	15.72	-5
455	175 281	-23.777	456	174 336	25 383	15.72	-5
455	175.201	-23.742	450	176.030	-23.383	8 25	-5
455	175.201	-23.742	439	176.039	-25.008	0.55	-5
455	175.201	-23.742	460	176.234	-23./11	/.21	-3
455	174.226	-23.742	401	1/0./00	-23.310	11.30	-5
456	1/4.336	-25.383	460	1/6.234	-23./11	19.84	-3
457	180.445	-24.188	458	180.063	-24.469	3.70	-3
457	180.445	-24.188	467	180.836	-24.305	3.10	-3
457	180.445	-24.188	488	182.477	-23.195	17.40	-3
457	180.445	-24.188	492	182.617	-25.258	18.53	-3
458	180.063	-24.469	462	178.609	-25.102	12.08	-3
458	180.063	-24.469	463	178.922	-25.313	11.02	-3
458	180.063	-24.469	464	179.758	-26.172	14.24	-3
458	180.063	-24.469	467	180.836	-24.305	5.97	-3
461	176.766	-23.516	462	178.609	-25.102	19.07	-3
462	178.609	-25.102	467	180.836	-24.305	17.95	-3
463	178.922	-25.313	478	179.680	-27.117	15.92	-3
463	178.922	-25.313	506	178.898	-27.391	17.16	-3
464	179.758	-26.172	473	177.359	-26.867	18.62	-3
464	179.758	-26.172	478	179.680	-27.117	7.83	-3
464	179.758	-26.172	479	180.250	-28.344	18.29	-3
464	179.758	-26.172	506	178.898	-27.391	11.89	-3
465	181.867	-21.727	466	181.844	-21.344	3.17	-3
465	181.867	-21.727	488	182.477	-23.195	12.99	-3
465	181 867	-21 727	489	182 852	-22 320	8 99	-3
465	181.867	-21 727	511	181 641	-19 813	15 90	-3
465	181.867	-21 727	512	182.031	-20.031	14.05	-3
466	181 844	-21 344	488	182.031	-23 195	16.03	-3
466	181 844	-21.344	511	181 641	-19 813	12 74	-3
466	181 844	-21.344	513	182 539	-21 352	5 3 5	-3
467	180.836	-24 305	492	182.557	-25.258	15 50	-3
468	181 477	26 531	472	170 680	27 117	14.00	-5
408	101.477	-20.331	478	1/9.000	-27.117	14.09	-5
408	101.477	-20.331	4/9	180.230	-20.344	17.43	-5
408	101.477	-20.331	400	100.032	-27.409	9.00	-5
408	181.4//	-20.551	503	182.002	-27.742	12.97	-3
469	170.984	-24.004	470	1/1.0/0	-24.773	1.11	-3
469	170.984	-24.664	4/2	1/0.836	-20.031	11.54	-5
469	171.070	-24.664	011	169.242	-25.536	14.1/	-5
470	1/1.0/0	-24.773	4/2	1/0.836	-26.031	10.53	-3
470	171.070	-24.773	611	169.242	-25.336	14.44	-3
472	170.836	-26.031	483	171.500	-27.500	13.08	-3
472	170.836	-26.031	611	169.242	-25.336	13.17	-3
473	177.359	-26.867	474	175.609	-26.844	12.89	-3
473	177.359	-26.867	475	175.633	-27.664	14.28	-3
473	177.359	-26.867	478	179.680	-27.117	17.19	-3
Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
----------	---------	---------	----------	---------	---------	-----------------	-------
473	177.359	-26.867	481	176.219	-27.273	9.03	-3
474	175.609	-26.844	475	175.633	-27.664	6.77	-3
474	175.609	-26.844	476	173.492	-28.164	18.95	-3
474	175.609	-26.844	477	174.305	-28.563	17.10	-3
474	175.609	-26.844	480	175.141	-29.016	18.25	-3
474	175 609	-26 844	481	176 219	-27 273	5 71	-3
475	175 633	-27 664	476	173 492	-28 164	16.15	-3
475	175 633	-27.664	477	174 305	-28 563	12.19	-3
475	175 633	-27.664	480	175 141	-29.016	11.72	-3
475	175.633	-27.664	481	176 219	-27 273	5 37	-3
475	173 402	28 164	483	171 500	27.500	15 54	-5
470	173.492	-28.104	485	172 234	-27.500	10.75	-5
470	174 205	-28.104	485	175.141	-28.852	7 11	-5
4//	174.303	-28.303	400	175.141	-29.010	/.11	-5
4//	174.303	-28.303	481	1/0.219	-27.273	17.33	-3
4//	174.305	-28.505	482	172.195	-28.133	15.75	-3
4//	174.305	-28.563	485	1/2.234	-28.852	15.18	-3
4/8	1/9.680	-27.117	4/9	180.250	-28.344	10.95	-3
478	179.680	-27.117	487	181.031	-28.070	12.64	-3
478	179.680	-27.117	504	182.242	-27.430	18.98	-3
479	180.250	-28.344	486	180.852	-27.469	8.45	-3
479	180.250	-28.344	487	181.031	-28.070	6.12	-3
479	180.250	-28.344	503	182.602	-27.742	17.84	-3
479	180.250	-28.344	504	182.242	-27.430	16.38	-3
479	180.250	-28.344	505	181.438	-29.039	10.34	-3
479	180.250	-28.344	506	178.898	-27.391	12.62	-3
481	176.219	-27.273	506	178.898	-27.391	19.68	-3
482	172.195	-28.133	485	172.234	-28.852	5.94	-3
483	171.500	-27.500	484	170.477	-27.266	7.75	-3
483	171.500	-27.500	485	172.234	-28.852	12.37	-3
484	170.477	-27.266	609	168.633	-28.203	15.54	-3
484	170.477	-27.266	610	169.383	-28.516	13.04	-3
484	170.477	-27.266	611	169.242	-25.336	18.36	-3
486	180.852	-27.469	487	181.031	-28.070	5.14	-3
486	180 852	-27 469	503	182 602	-27 742	13 00	-3
486	180.852	-27 469	504	182.242	-27430	10.19	-3
486	180.852	-27 469	505	181 438	-29 039	13.65	-3
486	180.852	-27.469	506	178 898	-27 391	14 33	-3
400	181.031	-28.070	503	182 602	-27.391	11.55	-3
487	181.031	-28.070	505	181.438	-29.039	8 52	-3
487	181.031	-28.070	505	178 808	27 301	16 56	-5
487	181.031	-28.070	102	182 617	25 258	17.06	-5
400	182.477	-23.195	492	182.017	-23.238	17.00	-5
400	102.477	-23.195	493	104.01/	-24.230	16.57	-5
488	182.477	-23.195	515	182.539	-21.352	15.25	-3
489	182.852	-22.320	491	184.289	-23.539	14.80	-3
489	182.852	-22.320	513	182.539	-21.352	8.35	-3
490	183.539	-23.820	492	182.617	-25.258	13./4	-3
490	183.539	-23.820	493	184.617	-24.250	8.8/	-3
491	184.289	-23.539	492	182.617	-25.258	18.96	-3
491	184.289	-23.539	494	185.742	-23.547	11.00	-3
492	182.617	-25.258	493	184.617	-24.250	17.15	-3
492	182.617	-25.258	498	184.250	-25.258	12.19	-3
492	182.617	-25.258	499	183.742	-25.961	10.19	-3
492	182.617	-25.258	500	184.461	-26.570	17.46	-3
492	182.617	-25.258	504	182.242	-27.430	18.14	-3
493	184.617	-24.250	494	185.742	-23.547	10.29	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
493	184.617	-24.250	498	184.250	-25.258	8.76	-3
493	184.617	-24.250	500	184.461	-26.570	19.19	-3
493	184.617	-24.250	507	185.891	-25.555	14.38	-3
494	185.742	-23.547	495	187.203	-21.992	16.98	-3
494	185.742	-23.547	496	187.313	-23.883	12.19	-3
494	185 742	-23 547	507	185 891	-25 555	16.61	-3
495	187 203	-21 992	496	187 313	-23 883	15.63	-3
496	187 313	-23 883	497	187 391	-25 492	13 30	-3
496	187 313	-23 883	507	185 891	-25 555	17.44	-3
496	187 313	-23.883	508	188 984	-25.063	15.89	-3
496	187 313	23.883	510	186 301	21.680	10/0	3
490	187 301	-25.005	508	188 08/	25.063	12.42	-3
497	187.391	-23.492	400	183.747	-25.003	6.02	-5
498	184.250	-23.230	499 500	103./42	-23.901	0.95	-5
498	184.230	-23.238	500	184.401	-20.370	10.93	-3
498	184.250	-25.258	507	185.891	-25.555	12.48	-3
499	183.742	-25.961	500	184.461	-26.570	1.32	-3
499	183.742	-25.961	501	184.313	-28.063	17.85	-3
499	183.742	-25.961	503	182.602	-27.742	16.94	-3
499	183.742	-25.961	507	185.891	-25.555	16.32	-3
500	184.461	-26.570	501	184.313	-28.063	12.37	-3
500	184.461	-26.570	503	182.602	-27.742	16.74	-3
500	184.461	-26.570	507	185.891	-25.555	13.52	-3
501	184.313	-28.063	502	186.016	-28.094	12.41	-3
501	184.313	-28.063	504	182.242	-27.430	16.00	-3
503	182.602	-27.742	504	182.242	-27.430	3.68	-3
503	182.602	-27.742	505	181.438	-29.039	13.64	-3
504	182.242	-27.430	505	181.438	-29.039	14.52	-3
510	186.391	-21.680	515	184.617	-20.438	17.08	-3
511	181.641	-19.813	513	182.539	-21.352	14.48	-3
512	182.031	-20.031	513	182.539	-21.352	11.58	-3
513	182.539	-21.352	515	184.617	-20.438	17.71	-3
514	185.242	-18.898	516	187.578	-19.523	18.93	-3
514	185.242	-18.898	517	187.336	-19.000	16.37	-3
516	187.578	-19.523	517	187.336	-19.000	4.72	-3
517	187 336	-19 000	518	186 320	-17 516	14 61	-3
519	187 945	-16.086	521	188.078	-14 430	13 71	-3
520	186 039	-15 453	521	188.078	-14 430	18 33	-3
520	186.039	-15 453	526	185 148	-14 148	12.90	-3
520	188.078	-14 430	520	188 797	-13 445	9.96	-3
522	188 797	-13 445	531	189 539	-11 875	14 28	-3
523	185 977	-12 445	526	185 148	-14 148	15.55	-3
523	185 977	-12.445	532	185,000	-14.140 -10.914	14.90	_3
523	185 077	12.445	537	185.117	12 344	6.08	3
523	183.710	12.445	525	181.820	12.344	16.06	-3
524	183.719	12.891	525	181.820	-12.297	15.00	-5
524	103.719	-12.091	520	103.140	-14.140	10.40	-5
524	185./19	-12.891	528	182.133	-14./38	19.98	-3
524 524	103./19	-12.891	552 577	105.000	-10.914	19.32	-5
524 525	103./19	-12.891	JJ /	103.11/	-12.344	12.14	-3
525	181.820	-12.29/	527	181.461	-14.406	1/.00	-5
525	181.820	-12.297	536	183.156	-10.523	18.20	-3
527	181.461	-14.406	528	182.133	-14.758	6.10	-3
530	188.234	-10.234	531	189.539	-11.875	17.18	-3
530	188.234	-10.234	535	188.078	-10.883	5.50	-3
530	188.234	-10.234	963	189.070	-8.359	16.91	-3
531	189.539	-11.875	535	188.078	-10.883	14.38	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
532	185.000	-10.914	533	184.742	-10.414	4.63	-3
532	185.000	-10.914	534	184.047	-10.297	9.26	-3
532	185.000	-10.914	536	183.156	-10.523	15.30	-3
533	184.742	-10.414	536	183.156	-10.523	12.91	-3
533	184.742	-10.414	537	185.117	-12.344	16.22	-3
534	184 047	-10 297	536	183 156	-10.523	7 47	-3
534	184 047	-10 297	537	185 117	-12 344	18 99	-3
534	184 047	-10 297	959	183 359	-8 281	17.56	-3
538	150.633	-11 734	539	150 305	-11 469	3 44	-3
538	150.633	-11 734	549	152 039	-12 633	13.56	-3
538	150.633	-11.734	732	149 063	-13 578	19.30	-3
530	150.000	-11.754	549	152 039	-12 633	16.98	-3
540	157 281	11 547	541	158 367	-12.035	8 81	-5
540	157.281	-11.547	541	150.307	-11.023	0.01	-5
540	157.201	-11.347	544	150.005	-12.400	14.75	-5
540	157.281	-11.347	545	157.009	-13.008	12.55	-5
540	157.281	-11.547	550	158.477	-10.203	14./3	-3
540	157.281	-11.54/	1047	158.4//	-9.898	16./1	-3
541	158.367	-11.625	544	158.883	-12.406	7.68	-3
541	158.367	-11.625	550	158.477	-10.203	11.//	-3
541	158.367	-11.625	1047	158.477	-9.898	14.28	-3
542	155.070	-12.359	547	154.211	-13.570	12.15	-3
542	155.070	-12.359	548	154.063	-14.313	18.04	-3
543	159.984	-10.969	550	158.477	-10.203	13.77	-3
543	159.984	-10.969	1048	159.984	-9.242	14.25	-3
544	158.883	-12.406	545	157.609	-13.008	11.39	-3
545	157.609	-13.008	546	155.680	-12.203	16.91	-3
545	157.609	-13.008	567	157.031	-14.523	13.34	-3
546	155.680	-12.203	547	154.211	-13.570	16.34	-3
548	154.063	-14.313	551	153.461	-15.180	8.62	-3
548	154.063	-14.313	552	151.961	-15.289	18.61	-3
550	158.477	-10.203	1047	158.477	-9.898	2.52	-3
550	158.477	-10.203	1048	159.984	-9.242	14.61	-3
553	159.836	-15.531	555	160.586	-13.367	18.84	-3
553	159.836	-15.531	575	159.953	-16.234	5.88	-3
554	157.195	-16.398	556	155.984	-16.297	9.63	-3
554	157.195	-16.398	565	158.070	-16.867	7.93	-3
554	157.195	-16.398	567	157.031	-14.523	15.53	-3
556	155.984	-16.297	558	154.281	-17.508	16.76	-3
556	155.984	-16.297	559	155.570	-18.180	15.88	-3
556	155.984	-16.297	565	158.070	-16.867	17.16	-3
558	154.281	-17.508	559	155.570	-18,180	11.55	-3
558	154.281	-17.508	560	154,430	-19.242	14.37	-3
558	154 281	-17 508	574	155 266	-18 641	12.13	-3
559	155 570	-18 180	574	155.266	-18 641	4 49	-3
560	154 430	-19 242	574	155.266	-18 641	8 20	-3
560	154 430	-19 242	577	153.688	-20 266	10.23	-3
560	154.430	-19.242	580	154.086	-20.200	13.80	-3
561	150 273	-18 477	563	151 445	-18 297	9 30	_3
561	150.273	-18/77	564	151.745	-10.297 -10.1/1	9.50	_3
561	150.275	-10.4// 10 /77	504	151.211	-19.141 20.172	9.15 15 76	-5
561	150.275	-10.4// 10 /77	570 714	1/0 205	-20.172	0.16	-5
567	150.275	-10.4// 10.7/0	/14	147.303	-17.102	7.10 5.6A	-5
562	120.090	-10./42	505 564	151.445	-10.29/	J.04 4 10	-5
562	150.070	-10./42	J04 570	151.211	-17.141	4.10	-5
502	150.898	-18./42	J/8 710	131.203	-20.1/2	12.04	-5
362	130.898	-18./42	/12	149.020	-20.406	10.94	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
563	151.445	-18.297	564	151.211	-19.141	7.20	-3
564	151.211	-19.141	578	151.203	-20.172	8.51	-3
564	151.211	-19.141	714	149.305	-19.102	14.87	-3
565	158.070	-16.867	566	158.328	-18.781	15.93	-3
565	158.070	-16.867	568	160.281	-17.875	19.30	-3
565	158 070	-16 867	575	159 953	-16 234	15 79	-3
566	158 328	-18 781	570	160 609	-18.836	17.83	-3
566	158 328	-18 781	576	160.305	-19 672	17.03	-3
568	160 281	-17 875	570	160.505	-18.836	8 34	-3
568	160.281	17 875	570	161 352	18 077	12 37	-5
568	160.281	-17.875	576	160.205	-10.977	12.37	-5
560	160.281	-17.873	570	160.505	-19.072	6.26	-5
560	160.695	-18.070	570	161.252	-18.850	0.30	-5
509	160.695	-18.070	5/1	101.352	-18.977	9.08	-3
569	160.695	-18.0/0	576	160.305	-19.6/2	13.57	-3
570	160.609	-18.836	576	160.305	-19.6/2	/.30	-3
571	161.352	-18.977	576	160.305	-19.672	9.97	-3
578	151.203	-20.172	712	149.625	-20.406	12.37	-3
578	151.203	-20.172	714	149.305	-19.102	17.20	-3
579	151.586	-22.578	581	153.836	-22.898	17.33	-3
579	151.586	-22.578	583	153.367	-23.500	15.53	-3
579	151.586	-22.578	585	152.891	-24.336	17.56	-3
579	151.586	-22.578	711	149.281	-22.000	18.24	-3
580	154.086	-20.883	581	153.836	-22.898	16.75	-3
581	153.836	-22.898	584	154.977	-23.375	9.51	-3
581	153.836	-22.898	585	152.891	-24.336	13.85	-3
581	153.836	-22.898	589	153.813	-24.625	14.25	-3
583	153.367	-23.500	585	152.891	-24.336	7.78	-3
583	153.367	-23.500	589	153.813	-24.625	9.88	-3
584	154.977	-23.375	585	152.891	-24.336	17.63	-3
584	154.977	-23.375	586	155.492	-25.367	16.90	-3
584	154 977	-23 375	589	153 813	-24 625	13 55	-3
585	152.891	-24.336	589	153.813	-24.625	7.33	-3
586	155 492	-25 367	589	153 813	-24 625	13.98	-3
586	155 492	-25 367	591	157 234	-24 945	13.48	-3
586	155 492	-25 367	597	157 563	-26 578	18 33	-3
586	155 492	-25.367	599	157.505	-25.438	16.15	-3
586	155 402	-25.367	600	158 102	-25.450	10.13	-5
587	150.492	-23.307	501	157.224	-25.505	19.52	-5
587	159.070	-24.394	507	157.234	-24.943	14.00	-5
507	159.070	-24.394	500	157.505	-20.378	12.60	-5
507	159.070	-24.394	599	157.050	-23.430	12.07	-5
J87 599	139.070	-24.394	600	158.102	-23.303	10.79	-5
588	162.016	-22.516	614	163.703	-22.484	12.87	-3
588	162.016	-22.516	615	163.500	-20.61/	19.38	-3
588	162.016	-22.516	616	161.250	-22./19	6.07	-3
590	156.664	-28.414	594	154.906	-29.375	14.98	-3
590	156.664	-28.414	595	154.930	-29.695	16.39	-3
590	156.664	-28.414	596	158.063	-29.625	14.21	-3
590	156.664	-28.414	597	157.563	-26.578	16.52	-3
591	157.234	-24.945	597	157.563	-26.578	13.70	-3
591	157.234	-24.945	599	157.656	-25.438	5.14	-3
591	157.234	-24.945	600	158.102	-25.563	8.24	-3
592	151.063	-28.336	593	151.766	-28.086	5.52	-3
596	158.063	-29.625	598	160.266	-28.766	17.39	-3
596	158.063	-29.625	601	160.148	-28.344	18.41	-3
597	157.563	-26.578	600	158.102	-25.563	9.29	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
598	160.266	-28.766	601	160.148	-28.344	3.58	-3
602	163.008	-28.984	603	164.922	-28.648	14.12	-3
602	163.008	-28.984	607	163.203	-27.945	8.69	-3
603	164.922	-28.648	607	163.203	-27.945	13.78	-3
604	164.266	-26.109	607	163.203	-27.945	17.05	-3
604	164.266	-26.109	613	163.625	-24.336	15.40	-3
605	165.180	-25.414	608	167.109	-25.469	14.39	-3
605	165.180	-25.414	613	163.625	-24.336	14.66	-3
606	165 625	-26 695	608	167 109	-25 469	14 96	-3
609	168 633	-28 203	610	169 383	-28 516	6.03	-3
612	164 500	-22 883	614	163 703	-22 484	6.90	-3
613	163 625	-24 336	614	163 703	-22.484	15 30	-3
614	163 703	-27 484	615	163 500	-20.617	15.50	-3
614	163 703	-22.181	616	161 250	-22 719	18.80	-3
615	163 500	-20.617	617	165 484	-20.445	15.00	-3
615	163 500	-20.617	621	165 398	-19 281	18.40	-3
620	166 164	-19 258	627	164 914	-17.617	16 71	-3
620	166 164	10 258	628	166 336	17.875	11.71	-5
621	165 398	-19.238	627	164 914	-17.673	14.25	-3
621	165 398	-19.281	628	166 336	-17.875	13 73	-3
622	164 891	-14 898	623	166 492	-13 141	19.75	-3
622	164 891	-14.898	624	163 688	-13 141	17.42	-3
622	164 891	-14.898	626	163 266	-13 328	18.37	-3
624	163 688	-13 141	633	164 219	-11.266	16.06	-3
624 624	163 688	-13 141	634	164 508	-10.992	18.00	-3
624	163 688	-13 141	636	164 688	-12.094	11.95	-3
625	164 008	-13 453	636	164 688	-12.094	12.49	-3
626	163 266	-13 328	633	164 219	-11 266	18.68	-3
626	163 266	-13 328	636	164 688	-12 094	15.33	-3
627	164 914	-17.617	628	166 336	-17.875	11.38	-3
631	161 750	-11.008	632	162 070	-11 195	3.02	-3
631	161 750	-11.008	635	163 383	-12 297	16.96	-3
632	162 070	-11 195	634	164 508	-10.992	19.82	-3
632	162.070	-11 195	635	163 383	-12 297	13.97	-3
632	162.070	-11 195	996	162 711	-9 109	17.99	-3
633	164 219	-11 266	634	164 508	-10 992	3 25	-3
633	164 219	-11 266	635	163 383	-12 297	10.87	-3
633	164 219	-11.200	636	164 688	-12.094	7 82	-3
633	164 219	-11 266	637	165 375	-10 664	10.61	-3
633	164 219	-11 266	638	166 273	-10 148	19.05	-3
634	164 508	-10 992	635	163 383	-12 297	14 10	-3
634	164 508	-10.992	636	164 688	-12.094	9.21	-3
634	164 508	-10.992	637	165 375	-10 664	7 54	-3
634	164 508	-10.992	638	166 273	-10 148	15.93	-3
636	164 688	-12 094	637	165 375	-10 664	13.05	-3
637	165 375	-10 664	998	166 516	-8 602	19 39	-3
638	166 273	-10 148	998	166 516	-8 602	12.92	-3
639	130 141	-12 773	641	132,008	-13 336	15.72	-3
639	130 141	-12.773	807	129 352	-13 805	10.61	-3
639	130 141	-12.773	809	129 297	-12,445	7.32	-3
640	135 828	-10.438	647	134 672	-11.766	14.42	-3
640	135 828	-10.438	648	136 320	-11.820	12.09	-3
640	135.828	-10.438	649	135.156	-12,742	19,79	-3
640	135.828	-10.438	655	136.703	-10.523	7.14	-3
640	135.828	-10.438	855	135.375	-8.391	17.30	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
641	132.008	-13.336	642	133.180	-14.680	14.53	-3
642	133.180	-14.680	643	131.570	-15.367	14.03	-3
642	133.180	-14.680	645	132.969	-16.086	11.73	-3
642	133.180	-14.680	646	134.852	-16.234	18.48	-3
642	133.180	-14.680	650	134.164	-13.406	13.14	-3
642	133 180	-14 680	651	134 555	-14 313	11 40	-3
642	133 180	-14 680	652	135 383	-15 102	17.92	-3
643	131 570	-15 367	645	132,969	-16.086	12.60	-3
644	130.578	-16 453	645	132 969	-16.086	19 19	-3
644	130.578	-16 453	659	130.672	-17 688	10.22	-3
644	130.578	16 453	660	131.061	17.000	16.50	3
644	130.578	-10.453	794	128 530	-17.955	17.71	-5
644	130.578	-10.453	794	128.002	-17.544	17.71	-5
644	130.378	-10.433	193	120.992	-1/.34/	13.44	-5
645	132.909	-10.080	040 651	134.832	-10.234	14.98	-3
645	132.969	-10.080	651	134.555	-14.313	19.34	-3
645	132.969	-16.086	660	131.961	-1/.953	17.35	-3
646	134.852	-16.234	661	134.602	-18.094	15.48	-3
647	134.672	-11.766	648	136.320	-11.820	13.33	-3
647	134.672	-11.766	649	135.156	-12.742	8.96	-3
647	134.672	-11.766	650	134.164	-13.406	14.15	-3
648	136.320	-11.820	649	135.156	-12.742	12.09	-3
648	136.320	-11.820	654	137.320	-13.992	19.65	-3
648	136.320	-11.820	655	136.703	-10.523	11.15	-3
649	135.156	-12.742	650	134.164	-13.406	9.68	-3
649	135.156	-12.742	651	134.555	-14.313	13.83	-3
649	135.156	-12.742	652	135.383	-15.102	19.56	-3
650	134.164	-13.406	652	135.383	-15.102	17.06	-3
652	135.383	-15.102	654	137.320	-13.992	17.99	-3
652	135.383	-15.102	656	136.328	-16.531	13.99	-3
653	139.688	-12.242	657	139.523	-14.234	16.50	-3
654	137.320	-13.992	657	139.523	-14.234	17.75	-3
654	137.320	-13.992	658	139.594	-14.586	18.84	-3
656	136.328	-16.531	661	134.602	-18.094	18.75	-3
657	139.523	-14.234	658	139,594	-14.586	2.96	-3
657	139 523	-14 234	729	141 164	-15 313	15.83	-3
659	130 672	-17 688	660	131 961	-17 953	10.37	-3
660	131 961	-17 953	673	131 258	-19 594	14.62	-3
661	134 602	-18 094	662	134.063	-20 234	18.16	-3
662	134.063	-20 234	663	132 984	-20.555	8 75	-3
662	134.063	-20.234	674	134 359	-21.352	9.50	-3
663	132 984	-20.254	673	131 258	-19 594	15 56	-3
663	132.904	20.555	674	13/ 350	21 352	12.30	-5
665	132.964	-20.333	666	134.335	-21.332	0.22	-5
667	130.832	-10.943	721	137.238	-20.008	9.52	-5
669	139.391	-17.313	/21	140.964	-17.033	12.05	-5
008	139.813	-19.234	009	141./89	-19.328	15.42	-3
008	139.813	-19.234	0/1 720	139.781	-20.955	14.19	-3
668	139.813	-19.234	/20	141.586	-18.469	15.23	-5
668	139.813	-19.234	/21	140.984	-1/.633	10.09	-5
669	141.789	-19.328	6/0	140.492	-20.391	13.35	-3
669	141.789	-19.328	672	142.133	-20.961	13.74	-3
669	141.789	-19.328	/15	142.922	-18.781	9.93	-3
669	141.789	-19.328	720	141.586	-18.469	7.27	-3
669	141.789	-19.328	721	140.984	-17.633	15.35	-3
669	141.789	-19.328	726	144.258	-19.000	19.44	-3
670	140.492	-20.391	672	142.133	-20.961	13.52	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
670	140.492	-20.391	704	141.359	-22.414	17.98	-3
670	140.492	-20.391	720	141.586	-18.469	18.01	-3
671	139.781	-20.953	672	142.133	-20.961	18.13	-3
671	139.781	-20.953	704	141.359	-22.414	17.09	-3
672	142.133	-20.961	704	141.359	-22.414	13.38	-3
672	142 133	-20 961	715	142 922	-18 781	19.01	-3
674	134 359	-21 352	675	134 320	-23 148	14 84	-3
677	140.539	-25 344	680	139 133	-26 648	15.00	-3
677	140 539	-25 344	685	140 742	-26 406	8 90	-3
677	140 539	-25 344	693	140.680	-26.453	9.22	-3
678	137 344	-25.544	680	139 133	-26.433	16.27	-3
679	136 727	-25.563	680	139 133	-26.648	19.96	-3
679	136 727	-25.563	683	13/ 211	26.172	10.35	-5
680	130.727	-25.505	684	127 028	-20.172	13.35	-5
680	139.133	-20.048	689	137.938	-27.873	15.40	-5
680	139.133	-20.048	000	140.008	-20.922	19.05	-5
080	139.133	-20.048	093	140.080	-20.433	11.34	-5
681	132.273	-26.359	683	134.211	-26.172	14.43	-3
682	132.016	-27.234	683	134.211	-26.1/2	18.41	-3
682	132.016	-27.234	689	131.953	-29.039	14.91	-3
684	137.938	-27.875	686	138.547	-29.266	12.30	-3
684	137.938	-27.875	688	140.008	-28.922	17.34	-3
684	137.938	-27.875	690	137.820	-29.461	13.12	-3
685	140.742	-26.406	693	140.680	-26.453	0.60	-3
686	138.547	-29.266	687	140.477	-29.000	14.09	-3
686	138.547	-29.266	690	137.820	-29.461	5.47	-3
686	138.547	-29.266	691	140.414	-29.875	14.32	-3
687	140.477	-29.000	690	137.820	-29.461	19.51	-3
687	140.477	-29.000	691	140.414	-29.875	7.24	-3
688	140.008	-28.922	690	137.820	-29.461	16.38	-3
688	140.008	-28.922	691	140.414	-29.875	8.39	-3
690	137.820	-29.461	691	140.414	-29.875	18.92	-3
694	143.219	-24.203	695	143.219	-25.094	7.35	-3
694	143.219	-24.203	696	144.703	-24.758	12.06	-3
694	143.219	-24.203	703	143.734	-23.469	7.21	-3
695	143.219	-25.094	696	144.703	-24.758	11.45	-3
696	144.703	-24.758	697	146.406	-24.500	12.96	-3
696	144.703	-24.758	699	145.359	-25.766	9.66	-3
696	144.703	-24.758	701	145.898	-22.867	18.03	-3
696	144.703	-24.758	703	143.734	-23.469	12.90	-3
697	146.406	-24.500	699	145.359	-25.766	13.05	-3
697	146.406	-24.500	701	145.898	-22.867	14.02	-3
697	146.406	-24,500	702	148.203	-24,477	13.50	-3
698	149 211	-24 180	702	148 203	-24 477	7 97	-3
701	145 898	-22.867	703	143 734	-23 469	17.16	-3
701	145 898	-22.867	707	145 609	-20 805	17.17	-3
701	145 898	-22 867	708	146 641	-20.930	16.97	-3
701	145 898	-22.867	709	147 711	-21 539	17.67	-3
705	144 805	-20 477	706	144 711	-20 305	1 59	-3
705	144 805	-20 477	707	145 609	-20.505	6 78	_3
705	144 805	-20.477	708	146 641	-20.003	14 66	_3
705	144 805	-20.477	717	1/15 258	-20.950	17.63	_3
705	144 805	-20.477	710	146 102	-19.000	10.42	_3
705	144.005	-20.477	710	140.102	-20.141	10.42	-5
705	144.005	-20.477	717	144.200	10.000	12.33	-5
703	144.803	-20.4//	720	144.238	-19.000	12.71	-5
/00	144./11	-20.303	/0/	143.009	-20.003	0.00	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
706	144.711	-20.305	708	146.641	-20.930	15.78	-3
706	144.711	-20.305	715	142.922	-18.781	18.76	-3
706	144.711	-20.305	718	146.102	-20.141	10.86	-3
706	144.711	-20.305	719	144.266	-18.688	13.79	-3
706	144.711	-20.305	726	144.258	-19.000	11.33	-3
707	145,609	-20.805	708	146.641	-20.930	8.02	-3
707	145.609	-20.805	709	147.711	-21.539	17.28	-3
707	145 609	-20 805	717	145 258	-19 008	15.08	-3
707	145 609	-20.805	718	146 102	-20 141	6 67	-3
707	145 609	-20.805	726	144 258	-19 000	18 22	-3
707	146.641	-20.005	720	147 711	-21 539	9.65	-3
708	146 641	-20.930	710	148 164	-21.537	12 78	-3
708	146.641	20.930	713	147.060	10 563	15.70	-5
708	146.641	-20.930	713	147.909	10.008	10.15	-5
708	140.041	-20.930	717	145.256	-19.008	2 49	-5
709	147.711	-21.559	710	140.104	-21.347	5.40 12.62	-5
709	14/./11	-21.559	/11	149.281	-22.000	12.03	-5
709	14/./11	-21.539	/12	149.625	-20.406	1/.4/	-3
/09	14/./11	-21.539	/13	14/.969	-19.563	16.44	-3
710	148.164	-21.547	712	149.625	-20.406	14.68	-3
710	148.164	-21.547	713	147.969	-19.563	16.45	-3
710	148.164	-21.547	718	146.102	-20.141	19.70	-3
711	149.281	-22.000	712	149.625	-20.406	13.42	-3
712	149.625	-20.406	713	147.969	-19.563	14.62	-3
712	149.625	-20.406	714	149.305	-19.102	11.05	-3
713	147.969	-19.563	714	149.305	-19.102	11.08	-3
713	147.969	-19.563	718	146.102	-20.141	15.26	-3
715	142.922	-18.781	717	145.258	-19.008	18.34	-3
715	142.922	-18.781	719	144.266	-18.688	10.53	-3
715	142.922	-18.781	720	141.586	-18.469	10.76	-3
715	142.922	-18.781	721	140.984	-17.633	17.91	-3
715	142.922	-18.781	726	144.258	-19.000	10.59	-3
716	145.156	-17.742	717	145.258	-19.008	10.48	-3
716	145.156	-17.742	719	144.266	-18.688	10.47	-3
716	145.156	-17.742	722	147.031	-17.102	15.69	-3
716	145.156	-17.742	723	143.484	-16.305	17.75	-3
716	145.156	-17.742	726	144.258	-19.000	12.54	-3
717	145.258	-19.008	719	144.266	-18.688	8.19	-3
717	145.258	-19.008	726	144.258	-19.000	7.81	-3
718	146.102	-20.141	726	144.258	-19.000	17.16	-3
720	141.586	-18.469	721	140.984	-17.633	8.36	-3
721	140.984	-17.633	724	143.016	-16.297	19.46	-3
721	140.984	-17.633	729	141.164	-15.313	19.21	-3
722	147 031	-17 102	727	147 531	-16 148	8 81	-3
722	147 031	-17 102	728	147 602	-15 570	13 42	-3
723	143 484	-16 305	724	143 016	-16 297	3 71	-3
723	143 484	-16 305	725	143 297	-15 867	3.91	-3
723	143 484	-16 305	730	145 281	-15.008	17.85	-3
724	143.016	-16 297	725	143 297	-15.867	4 19	-3
724	143.016	-16 297	729	141 164	-15 313	16.80	-3
724	143 207	-15.257	729	141 164	-15.515	17 57	_3
725	143 207	-15.867	729	145 781	-15.515	17.37	_3
723	147 521	-16.1/12	730	147 602	-15.000	17.31	-3
727	147.551	-10.140	720	147.002	-15.570	10 05	-5
720	147.002	-15.570	721	147.201	13 600	15.05	-5
120	147.002	-15.570	722	147.430	14 047	15.07	-5
120	147.002	-13.370	133	140./07	-14.04/	13.13	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
730	145.281	-15.008	734	144.539	-12.867	18.65	-3
731	147.430	-13.680	732	149.063	-13.578	13.13	-3
731	147.430	-13.680	733	148.789	-14.047	11.31	-3
731	147.430	-13.680	735	145.555	-12.117	19.85	-3
732	149.063	-13.578	733	148.789	-14.047	4.45	-3
734	144.539	-12.867	735	145.555	-12.117	10.26	-3
734	144.539	-12.867	737	145.180	-11.039	15.95	-3
735	145.555	-12.117	736	143.945	-12.430	13.24	-3
735	145.555	-12.117	737	145.180	-11.039	9.40	-3
736	143.945	-12.430	740	142.320	-10.750	19.10	-3
737	145.180	-11.039	738	146.547	-11.047	11.08	-3
737	145.180	-11.039	739	147.195	-10.852	16.41	-3
738	146.547	-11.047	739	147.195	-10.852	5.50	-3
738	146.547	-11.047	869	148.453	-9.773	18.71	-3
739	147.195	-10.852	869	148.453	-9.773	13.55	-3
739	147,195	-10.852	870	147.492	-8.672	18.16	-3
740	142 320	-10 750	872	142 313	-8 711	16.83	-3
741	110 164	-10.852	742	112.141	-10 977	16.06	-3
741	110.164	-10.852	744	111 773	-12.477	18.69	-3
743	117 047	-10 328	823	114 922	-9 367	19.02	-3
743	117.047	-10.328	824	116 453	-9 414	8 96	-3
743	117.047	-10.328	826	117 828	-9 188	11.36	-3
746	119 289	-16 281	748	118.016	-16 844	11.50	-3
746	119.209	-16 281	752	119 352	-18 008	14 26	-3
746	119.209	-16 281	800	121 023	-17 469	16.85	-3
740 747	115 859	-16.016	748	118 016	-16 844	18 39	-3
747	115.859	-16.016	753	114 203	-17 156	16.14	-3
747	118.016	-16 844	750	117 531	-19 125	19.21	-3
748	118.016	-16 844	750	119 797	-19.129	19.21	-3
748	118.016	-16 844	752	119 352	-18.008	14 25	-3
740	113 516	-17 867	752	114 203	-17 156	7 98	-3
749	113.516	-17.867	753	112 930	-17 883	4.61	-3
750	117 531	-19 125	754	112.990	-18 469	18 52	-3
750	117.531	10 125	751	110 352	18.008	16.07	-5
750	110 707	-19.125	752	119.352	-18.008	5 16	-5
751	119.797	-18.409	800	121 023	-18.008	12.60	-3
751	119.797	18.008	800	121.023	-17.409	12.09	-5
752	119.332	-18.008	754	121.023	-17.409	13.00	-5
755	114.203	-17.130	756	112.930	-17.885	17.00	-5
755	110.430	-21.004	758	112.347	-20.700	16.12	-5
755	110.430	-21.004	750	111.072	-20.094	10.12	-5
756	112.547	-20.700	759	114.707	-20.344	17.00 9.75	-5
750	112.347	-20.700	750	111.072	-20.094	0.75 10.22	-5
750	114.709	-20.344	761	110.492	-22.047	19.22	-5
739	116.805	-22.230	701	117.031	-24.201	10.80	-5
759	116.805	-22.230	764	110.010	-23.727	6.20	-5
739	110.803	-22.230	704	11/.333	-22.339	0.20	-5
139	110.803	-22.230	/03	118.3/3	-23.033	13.08	-5
/00	110.492	-22.04/	/01	11/.031	-24.281	10.89	-5
/00	110.492	-22.04/	/03	118.5/5	-23.033	10.39	-5
/01	117.031	-24.281	/02	118.016	-23.121	ð./2	-5
/61	117.031	-24.281	/63	119.430	-24.250	18.05	-5
/61	11/.031	-24.281	/65	118.575	-23.055	14.34	-3
/62	118.016	-23.727	/63	119.430	-24.250	11.51	-5
762	118.016	-23.727	765	118.375	-23.055	6.18	-3
763	119.430	-24.250	765	118.375	-23.055	12.69	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
763	119.430	-24.250	771	119.109	-26.531	18.98	-3
763	119.430	-24.250	780	120.070	-25.641	12.44	-3
764	117.555	-22.539	765	118.375	-23.055	7.56	-3
766	111.641	-28.602	767	111.922	-28.453	2.38	-3
766	111.641	-28.602	775	112.711	-29.594	11.26	-3
767	111.922	-28.453	775	112.711	-29.594	11.00	-3
768	114.813	-25,453	769	116.531	-27.313	19.93	-3
769	116 531	-27 313	770	117 453	-28 367	11.00	-3
770	117 453	-28 367	771	119 109	-26 531	19 41	-3
770	117 453	-28 367	773	119 313	-29 211	15.15	-3
771	119 109	-26 531	773	120.047	_27.207	936	-3
771	119.109	-26.531	776	121.063	-27.109	15.16	-3
772	120.047	-20.331	776	121.003	-27.109	7.62	-3
772	120.047	27.207	780	121.005	25.641	12.67	-5
772	120.047	-27.297	780	120.070	-23.041	13.07	-5
773 774	119.515	-29.211	775	121.273	-20.711	14.75	-5
774	114.300	-29.140	779	112.711	-29.394	15.59	-5
//0	121.063	-27.109	//8	121.273	-28./11	13.31	-3
//6	121.063	-27.109	/80	120.070	-25.641	14.1/	-3
///	124.609	-27.234	/85	125.828	-28.164	11./6	-3
//9	122.688	-29.063	/81	123.359	-29.563	6.36	-3
782	125.727	-24.117	786	128.219	-23.344	19.89	-3
782	125.727	-24.117	788	126.602	-22.641	13.88	-3
784	127.523	-25.672	786	128.219	-23.344	19.92	-3
786	128.219	-23.344	802	126.953	-21.484	18.14	-3
788	126.602	-22.641	802	126.953	-21.484	9.92	-3
790	126.617	-20.172	796	126.102	-18.805	11.98	-3
790	126.617	-20.172	797	127.078	-19.688	5.37	-3
790	126.617	-20.172	798	125.258	-19.250	13.02	-3
790	126.617	-20.172	802	126.953	-21.484	11.14	-3
791	127.602	-20.016	796	126.102	-18.805	15.37	-3
791	127.602	-20.016	798	125.258	-19.250	19.29	-3
793	126.234	-17.570	794	128.539	-17.344	18.25	-3
793	126.234	-17.570	796	126.102	-18.805	10.24	-3
793	126.234	-17.570	797	127.078	-19.688	18.68	-3
793	126.234	-17.570	798	125.258	-19.250	15.84	-3
793	126.234	-17.570	801	125.016	-17.555	9.59	-3
797	127.078	-19.688	802	126.953	-21.484	14.87	-3
798	125.258	-19.250	801	125.016	-17.555	14.12	-3
799	122.516	-18.969	800	121.023	-17.469	17.04	-3
803	127.203	-12.977	805	126.203	-14.211	12.97	-3
803	127.203	-12.977	806	126.164	-12.328	9.93	-3
803	127.203	-12,977	807	129.352	-13.805	18.56	-3
803	127 203	-12 977	808	129 375	-13 633	18 27	-3
803	127 203	-12 977	809	129 297	-12 445	17.42	-3
804	124 250	-14 672	805	126 203	-14 211	16.07	-3
806	126.164	-12 328	810	124.898	-10 750	16.57	-3
807	120.101	-13 805	809	129.297	-12 445	11.23	-3
808	129.352	-13 633	809	129.297	-12.445	9.82	-3
<u>811</u>	116 375	-2 500	812	118 320	-2.775	16.06	_3
<u>811</u>	116 375	-2.500	813	117 477	-0.547	18 51	_3
817	118 320	-2.500	<u>810</u>	120 164	-4.063	19.71	_3
<u>812</u>	117 177	-2.500	1067	110 078	0.555	16.05	_3
<u>815</u>	115 811	-5.347	<u>817</u>	11/ 308	-3 060	17 31	_3
§15	115 811	-5.492	871	116 530	-5.909	15 05	_3
01 <i>3</i> 01 <i>5</i>	115.044	-3.472	021	110.337	7 055	13.73	-5
015	113.044	-3.492	022	114.472	-1.035	17.01	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
816	112.852	-6.195	822	114.492	-7.055	15.21	-3
818	119.734	-1.641	1062	119.078	0.555	18.92	-3
819	120.164	-4.063	829	121.727	-3.719	13.18	-3
819	120.164	-4.063	830	122.211	-4.328	16.99	-3
820	118.820	-6.617	821	116.539	-7.297	19.52	-3
820	118 820	-6 617	827	118 750	-7 852	10.21	-3
820	118 820	-6.617	828	119 227	-7 961	11.58	-3
821	116 539	-7 297	822	114 492	-7 055	16.88	-3
821	116 539	-7 297	824	116 453	-9 414	17 49	-3
821	116 539	-7 297	826	117 828	-9 188	18.83	-3
821	116 539	-7 297	820	118 750	-7 852	18.66	-3
823	114 922	-9.367	824	116.750	-9.414	12.00	-3
824	116.453	-9.307	825	118 172	-9.414	12.40	-3
824	116.453	-9.414 0.414	826	117.828	0 188	11 36	-5
825	118 172	0/38	826	117.828	-9.188	3.48	-5
825	118.172	-9.438	820	117.020	7 852	12.02	-5
825	118.172	-9.438	828	110.750	7.052	13.92	-5
02 <i>3</i> 926	110.172	-9.430	020	119.227	-7.901	14.92	-5
820 821	11/.020	-9.100	828	119.227	-7.901	13.20	-3
831 822	124.030	-3.492	832	123.078	-4.303	0.4Z	-3
033	124.339	-0.303	830	122.303	-9.738	18.33	-5
834	127.844	-9.016	835	127.700	-9.839	0.99	-3
841	131.766	-4.563	842	132.086	-4.938	4.07	-3
841	131.766	-4.563	843	132.055	-5.672	9.46	-3
841	131./00	-4.503	847	131.004	-0.547	10.40	-3
842	132.086	-4.938	843	132.055	-5.672	6.07	-3
842	132.086	-4.938	84/	131.664	-6.547	13./3	-3
843	132.055	-5.672	847	131.664	-6.54/	/.90	-3
844	134.633	-4.117	845	136.617	-4.391	16.49	-3
845	136.617	-4.391	846	138.602	-3.102	19.51	-3
845	136.617	-4.391	854	137.719	-5.445	12.57	-3
847	131.664	-6.547	848	131.883	-7.492	8.01	-3
847	131.664	-6.547	850	132.945	-8.047	16.23	-3
848	131.883	-7.492	849	134.313	-7.438	19.89	-3
848	131.883	-7.492	850	132.945	-8.047	9.82	-3
848	131.883	-7.492	851	133.922	-8.672	19.30	-3
849	134.313	-7.438	850	132.945	-8.047	12.26	-3
849	134.313	-7.438	851	133.922	-8.672	10.68	-3
849	134.313	-7.438	855	135.375	-8.391	11.72	-3
850	132.945	-8.047	851	133.922	-8.672	9.50	-3
851	133.922	-8.672	855	135.375	-8.391	12.09	-3
852	139.711	-7.297	856	139.773	-5.391	15.75	-3
852	139.711	-7.297	857	140.172	-9.211	16.24	-3
852	139.711	-7.297	858	140.375	-7.438	5.56	-3
853	139.008	-8.141	857	140.172	-9.211	12.97	-3
853	139.008	-8.141	858	140.375	-7.438	12.60	-3
854	137.719	-5.445	856	139.773	-5.391	16.89	-3
856	139.773	-5.391	860	142.141	-5.500	19.47	-3
857	140.172	-9.211	858	140.375	-7.438	14.73	-3
857	140.172	-9.211	872	142.313	-8.711	17.94	-3
858	140.375	-7.438	872	142.313	-8.711	19.01	-3
859	141.867	-3.820	860	142.141	-5.500	14.05	-3
859	141.867	-3.820	861	143.750	-5.344	19.96	-3
859	141.867	-3.820	863	144.188	-3.352	19.51	-3
860	142.141	-5.500	861	143.750	-5.344	13.29	-3
861	143.750	-5.344	863	144.188	-3.352	16.84	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
861	143.750	-5.344	864	145.422	-5.758	14.16	-3
861	143.750	-5.344	865	145.625	-6.297	17.29	-3
862	142.961	-8.281	871	143.117	-7.852	3.77	-3
862	142.961	-8.281	872	142.313	-8.711	6.37	-3
867	147.422	-4.195	868	149.078	-3.219	15.85	-3
868	149.078	-3.219	1033	150.313	-2.148	13.48	-3
869	148 453	-9 773	870	147 492	-8 672	12.00	-3
869	148 453	-9 773	873	149 875	-8 336	16.59	-3
869	148 453	-9 773	874	147 789	-8 117	14 71	-3
870	147 492	-8 672	873	149 875	-8 336	19.65	-3
870	147.492	-8.672	874	147.789	-8.117	5 18	-3
873	149.875	-8.336	874	147.789	-8.117	17 14	-3
873	149.875	8 3 3 6	1034	150.656	7 102	12.03	-5
875	149.875	-8.550	1034	150.050	7.102	12.03	-5
873 975	149.901	-3.017	1034	150.050	-7.102	15.32	-5
873	149.901	-3.017	1041	101.004	-4.331	13.30	-5
879	193.289	4.148	001	191.994	3.702	11.29	-5
8/9	193.289	4.148	882	191.974	2.004	10.30	-3
880	191.666	6.028	881	191.994	3.702	19.39	-3
881	191.994	3.702	882	191.974	2.664	8.57	-3
882	191.974	2.664	894	193.195	0.938	17.45	-3
883	199.024	8.506	916	200.063	8.727	8.67	-3
883	199.024	8.506	917	199.266	9.500	8.44	-3
884	198.914	5.733	886	198.844	4.188	12.77	-3
884	198.914	5.733	887	198.367	7.844	17.99	-3
884	198.914	5.733	888	200.438	4.578	15.74	-3
884	198.914	5.733	889	200.813	4.633	18.06	-3
886	198.844	4.188	888	200.438	4.578	13.51	-3
886	198.844	4.188	889	200.813	4.633	16.62	-3
886	198.844	4.188	890	197.719	2.844	14.46	-3
886	198.844	4.188	891	199.719	2.734	14.00	-3
887	198.367	7.844	916	200.063	8.727	15.65	-3
887	198.367	7.844	917	199.266	9.500	15.51	-3
888	200.438	4.578	889	200.813	4.633	3.12	-3
888	200.438	4.578	891	199.719	2.734	16.33	-3
889	200.813	4.633	891	199.719	2.734	18.08	-3
890	197.719	2.844	891	199.719	2.734	16.52	-3
891	199.719	2.734	895	201.125	1.547	15.19	-3
892	193.141	-0.016	893	194.055	-0.484	8.48	-3
892	193.141	-0.016	894	193.195	0.938	7.88	-3
892	193.141	-0.016	921	193.746	-1.388	12.39	-3
893	194.055	-0.484	894	193.195	0.938	13.72	-3
893	194.055	-0.484	921	193.746	-1.388	7.89	-3
894	193 195	0.938	921	193 746	-1 388	19 73	-3
895	201 125	1 547	897	200 305	-0.234	16 19	-3
897	200 305	-0.234	918	200.868	-2.489	19.18	-3
898	192 227	-4 516	899	192 531	-4 891	3 98	-3
898	192.227	-4 516	900	190 305	-5 484	17 71	-3
898	192.227	-4 516	903	192 711	-6 773	19.06	-3
890	192.227	-4 891	900	190 305	-5 484	18.95	_3
800	102.551	_1 801	903	102 711	-6.773	15.55	_3
099	192.331	-7.071	905	192.711	-0.775	16.00	-3
000	100.305	-5.404	06/	188 801	-7.435	17.66	-5
900 002	200.003	-5.404	90 4 007	200 445	-5.075	16.81	-3
002	200.005	6772	907	100.445	7 152	10.01	-5
203 004	192./11	-0.773	905	100.430	7 152	17.43	-5
204	170.123	-0.023	203	170.430	-1.433	1.30	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
905	190.438	-7.453	963	189.070	-8.359	13.45	-3
912	207.648	-0.875	913	208.094	-1.922	9.39	-3
916	200.063	8.727	917	199.266	9.500	9.11	-3
922	176.781	-2.047	953	174.711	-2.813	18.21	-3
922	176.781	-2.047	954	177.023	-1.656	3.79	-3
925	184.094	5.852	926	183.398	5.438	6.66	-3
926	183.398	5.438	927	181.852	4.109	16.80	-3
928	186.328	3.875	929	186.352	3.141	6.07	-3
928	186.328	3.875	977	186.938	3.563	5.64	-3
929	186.352	3.141	931	186.945	1.906	11.31	-3
929	186.352	3.141	977	186.938	3.563	5.95	-3
931	186.945	1.906	977	186.938	3.563	13.67	-3
932	177.148	1.828	939	177.273	3.141	10.88	-3
933	174.602	6.234	934	172.625	5.383	17.69	-3
933	174.602	6.234	935	173.695	5.445	9.89	-3
933	174.602	6.234	940	175.539	6.602	8.27	-3
934	172.625	5.383	935	173.695	5.445	8.81	-3
934	172.625	5 383	936	171 102	5 031	12.86	-3
934	172.625	5 383	937	170.625	6 563	19.09	-3
935	173 695	5 445	938	173 836	3 125	19 19	-3
935	173 695	5 445	940	175 539	6 602	17.89	-3
936	171 102	5 031	981	169.016	5 078	17.16	-3
936	171.102	5.031	1011	169.610	3 289	18 79	-3
937	170.625	6 563	944	170.031	8 391	15.86	-3
937	170.625	6 563	981	169.016	5.078	18.02	-3
942	176 992	9 477	975	176 375	9 2 1 9	5 46	-3
943	172 656	8 773	945	170.373	9.613	18 99	-3
943	172.656	8 773	946	171 366	10 539	17.97	-3
943	170.031	8 391	945	170.487	9.613	10.75	-3
947	170.031	-2 141	948	172 375	-2 313	12.13	-3
948	172 375	-2 313	953	174 711	-2.813	19.70	-3
940	179 875	-1 406	951	180 531	-1 891	673	-3
949	179.875	-1.406	952	180.331	-1 594	5 20	-3
950	179.602	-2.281	951	180.477	-1.394	8 32	-3
950	179.602	2.201	952	180.331	1 50/	0.12	-5
950	180 531	-2.281	952	180.477	1 504	2 /0	-5
951	173 578	5 077	952	173 /8/	8 3 5 2	10.62	-5
955	171.664	-3.977	958	173.484	-8.352 8.352	19.02	-5
950	171.664	-7.580	938	1/3.404	-8.332	10.17	-5
950	182 250	-7.380 8.281	990	182 052	7 1 2 2	10.65	-5
959	185.559	-0.201	908	183.933	-7.133	10.05	-3
900	186,180	-8.525	901	187.000	-0.930	0.20	-5
900	100.100	-0.323	902	180.477	-7.430	9.29	-5
904	100.091	-3.873	903	109.373	-2.632	9.54	-5
904	188.891	-3.875	900	180.091	-3.008	7.10 8.47	-5
904	100.091	-3.073	907	10/.914	-3.333	0.47	-5
903	109.373	-2.632	900	100.091	-5.008	4.20	-5
903	107.3/3	-2.032	907	10/.914	-3.333	13.3/	-5
903	107.3/3	-2.032	707 070	100.333	-0.3/8	19.93	-5
968	183.933	-/.133	9/8	184.188	-4.839	18.8/	-5
970	184.002	-1.039	9/1	185.414	-2.188	11.01	-5
970	184.602	-1.039	972	182.828	-0./89	14./8	-5
970	184.602	-1.039	9/3	182./81	-0.430	15.85	-5
970	184.602	-1.039	9/0	185.094	0.250	11.39	-5
972	182.828	-0./89	9/3	182./81	-0.430	2.99	-5
973	182.781	-0.430	976	185.094	0.250	19.90	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
979	164.844	6.531	984	166.567	7.102	14.89	-3
979	164.844	6.531	987	164.254	5.199	12.02	-3
979	164.844	6.531	1013	162.500	6.109	19.54	-3
980	162.719	7.813	982	162.818	9.306	12.35	-3
980	162.719	7.813	1013	162.500	6.109	14.17	-3
981	169.016	5.078	1011	169.633	3.289	15.62	-3
983	164.148	3.332	986	163.059	5.141	17.42	-3
983	164.148	3.332	987	164.254	5.199	15.44	-3
986	163.059	5.141	987	164.254	5.199	9.84	-3
986	163.059	5.141	1012	160.891	6.094	19.47	-3
986	163.059	5.141	1013	162,500	6.109	9.22	-3
987	164.254	5.199	1013	162.500	6.109	16.25	-3
988	167.250	-2.750	1003	166.836	-2.188	5.76	-3
988	167.250	-2.750	1006	166.359	-1.539	12.41	-3
989	167.766	-6.344	991	168.820	-4.758	15.70	-3
989	167 766	-6 344	997	166 711	-5 883	9 46	-3
990	169 727	-8 484	999	168 531	-8 820	10.14	-3
991	168 820	-4 758	997	166 711	-5.883	19.67	-3
992	160.020	-3 883	1000	160.961	-2 391	12.32	-3
992	160.969	-3 883	1009	160 391	-1 953	16.63	-3
992	160.969	-3 883	1031	158 875	-3 555	17.46	-3
993	161 711	-6 320	1043	159 930	-6 422	14 64	-3
994	160.609	-6.977	1043	159.930	-6.422	7 21	-3
994	160.609	-6.977	1043	159 984	-9.742	19 39	-3
994	160.609	-6.977	1050	159.227	-7.641	12.59	-3
995	164 977	-8.430	996	162 711	-9.109	19.32	-3
997	166 711	-5.883	1001	165.086	-4 781	16.16	-3
997	166 711	-5.883	1001	165.063	-4 328	18.67	-3
008	166 516	-5.005	000	168 531	8 8 2 0	16.55	-5
1000	160.910	-0.002	1004	162 531	-1.102	16.77	-3
1000	160.961	-2.391	1004	160 391	-1.053	5.93	-3
1000	160.901	-2.391	1009	159 336	-1.955	14 07	-3
1000	160.961	2.391	1027	159.550	0.600	17.67	-5
1000	160.901	-2.391	1030	159.775	-0.009	10.70	-5
1000	166.926	-2.391	1005	150.075	-3.333	19.70	-5
1003	166.836	-2.188	1005	166 350	-1.133	19.75	-5
1003	162 521	-2.188	1000	161.060	-1.539	6.66	-5
1004	162.551	-1.102	1007	160 707	-0.323	0.00	-5
1004	162.331	-1.102	1008	100.797	-1.505	14.41	-5
1007	101.909	-0.323	1030	159.775	-0.009	10.14	-5
1014	151.041	4.008	1015	151.510	4.100	1.81	-3
1014	151.041	4.008	1010	152.303	5.422 2.016	9.00	-5
1014	151.041	4.008	1022	151.409	3.010	8.31	-3
1014	151.641	4.008	1023	152.102	3.219	/.54	-3
1014	151.041	4.008	1082	149.734	2.984	1/.84	-3
1015	151.516	4.188	1016	152.563	3.422	10.69	-3
1015	151.516	4.188	1022	151.469	3.016	9.68	-3
1015	151.516	4.188	1023	152.102	3.219	9.34	-3
1015	151.516	4.188	1082	149./34	2.984	17.72	-3
1016	152.563	3.422	1021	153.680	1.906	15.54	-3
1016	152.563	3.422	1023	152.102	3.219	4.15	-3
1017	156.102	5.117	1018	155.328	4.914	6.58	-3
1022	151.469	3.016	1023	152.102	3.219	5.48	-3
1022	151.469	3.016	1082	149.734	2.984	14.30	-3
1023	152.102	3.219	1082	149.734	2.984	19.61	-3
1024	153.773	-0.984	1025	155.391	-0.391	14.22	-3

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
1025	155.391	-0.391	1026	156.578	-1.406	12.90	-3
1026	156.578	-1.406	1028	158.148	-2.875	17.74	-3
1026	156.578	-1.406	1029	156.719	-2.633	10.19	-3
1028	158.148	-2.875	1040	157.398	-5.125	19.57	-3
1029	156.719	-2.633	1031	158.875	-3.555	19.34	-3
1031	158 875	-3 555	1040	157 398	-5 125	17 77	-3
1032	155 266	-3 648	1039	152.961	-3 758	19.01	-3
1032	150.200	-7 102	1049	152.375	-6.023	16.67	-3
1035	153.945	-6 273	1036	153 891	-6.008	2 24	-3
1035	153.945	-6 273	1037	152 547	-5 422	13.47	-3
1035	153 045	6 273	1045	154 602	8 000	15.23	-5
1035	153.945	6 273	1045	152 375	-6.000	13.25	-5
1035	153.945	-0.273	1049	152.575	-0.023	12.05	-5
1030	153.691	-0.008	1037	152.547	-3.422	12.03	-5
1030	153.891	-0.008	1042	155.401	-/.80/	13.73	-3
1030	153.891	-6.008	1045	154.602	-8.000	17.45	-3
1037	152.547	-5.422	1038	151.445	-6.016	10.29	-3
1037	152.547	-5.422	1039	152.961	-3./58	14.15	-3
1037	152.547	-5.422	1041	151.469	-4.531	11.52	-3
1037	152.547	-5.422	1049	152.375	-6.023	5.16	-3
1038	151.445	-6.016	1041	151.469	-4.531	12.26	-3
1038	151.445	-6.016	1049	152.375	-6.023	7.63	-3
1039	152.961	-3.758	1041	151.469	-4.531	13.85	-3
1039	152.961	-3.758	1049	152.375	-6.023	19.31	-3
1042	153.461	-7.867	1045	154.602	-8.000	9.39	-3
1042	153.461	-7.867	1046	154.117	-9.492	14.44	-3
1042	153.461	-7.867	1049	152.375	-6.023	17.63	-3
1044	155.914	-8.289	1045	154.602	-8.000	10.99	-3
1044	155.914	-8.289	1046	154.117	-9.492	17.70	-3
1047	158.477	-9.898	1050	159.227	-7.641	19.62	-3
1048	159.984	-9.242	1050	159.227	-7.641	14.60	-3
1052	119.023	8.125	1054	117.180	8.375	15.20	-3
1057	117.969	2.695	1062	119.078	0.555	19.90	-3
1060	120,188	4.234	1061	120.672	4.047	4.28	-3
1061	120 672	4 047	1068	121 344	4 2 1 9	5 71	-3
1064	123 516	3 883	1068	121.344	4 219	18 10	-3
1065	127.711	2 938	1067	128.953	1.219	15.73	-3
1065	129.719	1 234	1067	128.953	1.492	6.67	-3
1073	127.713	2 602	1075	120.999	0.742	15 35	-3
1073	137.313	2.002	1073	138 656	3.086	11.78	-5
1073	136.742	0.002	1075	137 320	0.742	7 72	-5
1074	136.742	0.008	1075	137.320	0.742	8.53	-5
1074	130.742	0.008	1076	137.773	0.070	6.33 6.60	-5
1075	137.320	0.742	10/0	137.773	0.070	0.09	-3
1076	13/.//3	0.070	1081	139.867	0.742	18.15	-3
1077	138.656	3.086	10/8	140.445	3.539	15.21	-3
10//	138.656	3.086	1080	139.703	5.234	19.72	-3
1078	140.445	3.539	1079	140.477	3.117	3.49	-3
1078	140.445	3.539	1080	139.703	5.234	15.27	-3
1083	148.586	5.219	1084	148.211	5.680	4.90	-3
3	253.508	-16.685	41	253.515	-18.099	11.67	-4
4	252.679	-13.583	39	253.317	-14.742	10.84	-4
5	256.622	-11.029	341	257.930	-9.125	18.97	-4
8	255.459	-20.777	18	255.086	-20.572	3.34	-4
9	251.772	-21.941	43	250.785	-22.843	10.59	-4
12	256.831	-24.793	52	256.699	-24.483	2.74	-4
16	251.662	-21.559	44	250.413	-22.422	11.93	-4

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
17	254.645	-21.797	18	255.086	-20.572	10.67	-4
25	268.890	-25.130	26	268.606	-24.971	2.50	-4
25	268.890	-25.130	49	269.228	-25.301	2.89	-4
25	268.890	-25.130	53	269.500	-25.804	7.19	-4
26	268.606	-24.971	53	269.500	-25.804	9.58	-4
157	220.971	-20.990	164	221.111	-23.153	17.89	-4
219	223.195	4.086	226	221.867	3.234	13.01	-4
221	228.344	3.906	223	227.766	4.242	5.51	-4
238	232.289	8.563	239	232.516	8.289	2.92	-4
282	238.516	-3.000	296	239.563	-2.078	11.51	-4
360	193.133	-12.721	364	192,133	-12.013	9.96	-4
360	193.133	-12.721	369	195.070	-13.867	18.21	-4
364	192.133	-12.013	372	193.398	-14.037	19.56	-4
372	193.398	-14.037	375	191.595	-15.101	16.87	-4
373	197.997	-13.449	377	200.168	-14.031	18.06	-4
392	199 026	-29 568	393	200 834	-28 248	17.01	-4
407	170 664	-14 102	408	170 320	-15 336	10.55	-4
410	172 375	-15 859	411	170.914	-16 641	13.25	-4
410	172.375	-15 859	437	171 734	-17 781	16.65	-4
421	179 375	-16 727	529	180 336	-14 930	16.68	-4
430	182 141	-17.031	446	180.867	-18 344	14 76	-4
431	182.039	-18 297	446	180.867	-18 344	9 1 9	_4
431	179 492	-19.008	446	180.867	-18 344	12.07	_4
432	179 492	-19.008	511	180.807	-19.813	18.00	-4 -4
432	180 219	-19.000	434	180 281	-21 234	6 3 4	_4
433	180.219	20.469	446	180.261	18 3//	18.25	
435	177 266	-20.407	440	178 453	-10.344	10.25	-4
433	171 281	-20.781	450	171 750	-20.633	3.82	-4
441	172 867	22 850	450	171 780	23.836	11 48	
443	172.807	-22.859	452	175 281	-23.830	10.70	-4
443	172.867	22.057	433	172 273	21 703	10.57	
445	176.633	-22.859	460	176 234	-21.703	10.57	-4 _4
444	176.633	-21.320	400	176.254	-23.711	19.97	-4
444	180.250	-21.320	401	180.445	-23.510	14.52	-4
447	178 452	-22.438	457	176 020	-24.188	14.32	-4
440	170.433	-22.943	439	176.039	-23.008	10.50	-4
440	178.433	-22.943	401	170.700	-25.310	2.01	-4
402	171.500	-23.102	403	1/0.922	-23.313	2.91	-4
483	1/1.300	-27.300	610 510	109.383	-28.310	17.30	-4
494	183.742	-25.547	502	180.391	-21.080	10.19	-4
500	184.401	-20.570	502	180.010	-28.094	10.98	-4
518	180.320	-17.510	519	18/.945	-10.080	1 / .44	-4
544	158.885	-12.406	550	158.477	-10.203	18.48	-4
544	158.883	-12.406	555 540	160.586	-13.367	15.84	-4
547	154.211	-13.570	549	152.039	-12.633	19.10	-4
547	154.211	-13.570	551	153.461	-15.180	14.58	-4
551	153.461	-15.180	552	151.961	-15.289	11.98	-4
553	159.836	-15.531	568	160.281	-17.875	19.67	-4
566	158.328	-18.781	569	160.695	-18.070	19.45	-4
597	157.563	-26.578	599	157.656	-25.438	9.44	-4
612	164.500	-22.883	613	163.625	-24.336	13.70	-4
641	132.008	-13.336	643	131.570	-15.367	17.13	-4
641	132.008	-13.336	650	134.164	-13.406	17.33	-4
695	143.219	-25.094	699	145.359	-25.766	16.90	-4
794	128.539	-17.344	795	128.992	-17.547	3.94	-4
807	129.352	-13.805	808	129.375	-13.633	1.43	-4

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
966	188.891	-3.008	967	187.914	-3.555	9.23	-4
1053	117.078	6.531	1054	117.180	8.375	15.24	-4
2	255.426	-16.152	3	253.508	-16.685	15.82	-5
2	255.426	-16.152	6	257.827	-16.434	19.17	-5
2	255.426	-16.152	32	256.003	-15.443	7.43	-5
$\frac{-}{2}$	255 426	-16 152	62	256 281	-14 008	18 97	-5
3	253 508	-16 685	57	255 199	-17 097	13 79	-5
6	257.827	-16 434	32	256 003	-15 443	16.63	-5
6	257.827	-16 434	33	259.162	-15 154	14 97	-5
6	257.827	-16 434	42	257.898	-17 972	12.71	-5
7	257.027	10 573	8	257.678	20 777	12.71	-5
7	254.448	-19.575	18	255.459	-20.777	9.62	-5
7	254.448	-19.575	18	253.000	18 000	9.02	-5
/	254.440	-19.373	41	255.515	-18.099	14.10	-5
9	251.772	-21.941	07	250.910	-23.100	11.01	-5
10	251.215	-24.928	43	250.785	-22.843	17.51	-5
10	251.215	-24.928	58	252.719	-23.732	15.01	-5
10	251.215	-24.928	65	252.699	-24.208	12.62	-5
10	251.215	-24.928	67	250.910	-23.100	15.26	-5
11	256.429	-21.995	15	255.089	-23.205	14.28	-5
12	256.831	-24.793	15	255.089	-23.205	18.56	-5
12	256.831	-24.793	45	256.439	-26.957	18.10	-5
12	256.831	-24.793	74	256.002	-25.332	7.63	-5
13	257.207	-29.123	45	256.439	-26.957	18.73	-5
13	257.207	-29.123	72	257.001	-27.978	9.57	-5
13	257.207	-29.123	80	259.095	-28.744	14.00	-5
14	252.002	-28.994	78	251.144	-27.787	11.75	-5
15	255.089	-23.205	17	254.645	-21.797	12.11	-5
15	255.089	-23.205	52	256.699	-24.483	16.09	-5
15	255.089	-23.205	58	252.719	-23.732	18.47	-5
15	255.089	-23.205	65	252.699	-24.208	19.88	-5
15	255.089	-23.205	74	256.002	-25.332	18.85	-5
16	251.662	-21.559	67	250.910	-23.100	13.97	-5
19	261.189	-23.371	20	263.060	-23.443	14.18	-5
19	261.189	-23.371	21	260,700	-24,108	7.12	-5
19	261 189	-23 371	22	260 536	-21 280	17 97	-5
19	261 189	-23 371	46	258 755	-23 187	18 53	-5
20	263.060	-23 443	21	260.700	-24 108	18.66	-5
20	260.700	-24 108	55	259 771	-26 107	17.91	-5
21	260.700	-24.108	55 70	259.445	-25.366	14.01	-5
21	262.885	-27.650	59	261 951	-27.115	8 15	-5
23	262.885	27.650	60	261.308	27.113	10.00	-5
23	262.885	-27.030	35	267.101	-27.337	15.90	-5
24	203.089	-24.017	35	207.191	-24.800	13.89	-5
21	253.087	-10.138	50 72	252.900	-11.027	14.05	-5
21	255.087	-10.138	/ 5	252.905	-12.413	10.00	-5
32	256.003	-15.443	51	258.482	-15.348	19.75	-5
32	256.003	-15.443	57	255.199	-1/.09/	15.07	-5
32	256.003	-15.443	62	256.281	-14.008	12.05	-5
32	256.003	-15.443	69	258.159	-15.328	17.18	-5
34	254.118	-13.202	62	256.281	-14.008	18.59	-5
34	254.118	-13.202	63	252.014	-12.463	18.00	-5
36	252.900	-11.827	63	252.014	-12.463	8.87	-5
37	252.938	-13.831	66	254.925	-13.050	17.21	-5
38	251.078	-11.975	63	252.014	-12.463	8.57	-5
39	253.317	-14.742	73	252.965	-12.413	19.43	-5
41	253.515	-18.099	57	255.199	-17.097	15.62	-5

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
43	250.785	-22.843	58	252.719	-23.732	16.40	-5
43	250.785	-22.843	65	252.699	-24.208	18.35	-5
46	258.755	-23.187	70	259.445	-25.366	18.72	-5
55	259.771	-26.107	60	261.398	-27.557	16.94	-5
58	252.719	-23.732	67	250.910	-23.100	14.66	-5
60	261.398	-27.557	64	259.332	-25,994	19.96	-5
60	261.398	-27.557	80	259.095	-28.744	19.41	-5
61	253 952	-12 410	66	254 925	-13 050	9 45	-5
64	259 332	-25 994	71	260 451	-26 531	9 39	-5
65	252 699	-24 208	67	250 910	-23 100	16.33	-5
67	250.910	-24.200	77	252.054	-22.100	11.26	-5
81	230.239	-11 093	228	232.034	-9 703	17.20	-5
81	230.239	11 003	220	228.055	9.605	10.08	-5
87	230.239	10 781	88	228.307	-9.095	19.00	-5
82 97	231.721	-10.781	00	233.624	-11.303	18.03	-5
07	241.363	-14.924	93	242.024	-10.852	10.37 8 70	-5
92	247.797	-13.377	94	248.310	-14.173	8.70	-3
92	247.797	-13.3//	95	247.117	-14.079	/.90	-5
102	242.273	-20.782	124	240.777	-19.178	1/.61	-2
104	238.001	-21.630	108	238.070	-23.459	15.11	-5
104	238.001	-21.630	126	237.617	-23.102	12.50	-5
107	240.957	-24.232	111	241.919	-23.310	10.52	-5
121	235.840	-19.451	123	237.139	-17.774	17.18	-5
122	235.278	-18.875	125	235.344	-17.743	9.36	-5
129	213.444	-16.862	137	213.398	-14.632	18.41	-5
129	213.444	-16.862	149	211.476	-16.581	15.73	-5
138	220.692	-14.881	141	219.496	-16.390	15.67	-5
139	223.265	-15.868	140	223.136	-16.737	7.25	-5
140	223.136	-16.737	161	222.599	-18.817	17.68	-5
140	223.136	-16.737	179	225.129	-18.175	19.68	-5
151	215.387	-21.355	154	217.354	-20.613	16.35	-5
152	214.843	-21.840	159	212.314	-22.243	19.63	-5
154	217.354	-20.613	155	218.295	-21.601	10.91	-5
157	220.971	-20.990	160	220.923	-18.669	19.16	-5
163	217.390	-25.482	167	218.176	-26.679	11.47	-5
165	222.845	-24.244	175	225.036	-23.282	18.35	-5
201	220.211	3.617	202	219.539	3.539	5.57	-5
201	220.211	3.617	206	220.023	1.461	17.87	-5
201	220.211	3.617	226	221.867	3.234	14.01	-5
212	222.352	8.133	213	223.000	5.953	18.76	-5
213	223,000	5.953	219	223,195	4.086	15.50	-5
236	210.469	-1.969	913	208.094	-1.922	19.60	-5
255	246.867	6.531	259	246.609	8.383	15.43	-5
258	247 500	6 2 2 7	259	246 609	8 383	19.24	-5
260	245 633	4 766	262	244 852	3 063	15.46	-5
260	244 852	3.063	265	245 109	2 3 5 9	6.18	-5
262	241.516	0 141	200	240 523	-1 117	13 23	-5
200	237 969	-2 125	270	238 516	-3.000	8 52	-5
281	237.969	-2.125	202	236 695	-0.250	18 71	-5
201	237.909	-2.125	206	230.095	-0.230	13.15	-5
201	237.707	-2.123	290	239.303	-2.078	19.19	-5
202	230.310	-5.000	∠94 294	230.273	-5.000	10.40	-5
203	231.073	7 600	∠0 1 210	233.130	1.704 Q 721	16.70	-5
205	243.383 252 105	-7.009	310	247.080	-0./34	10.73	-5
323	232.193	-0.031	222	251.930	-2.339	17.34	-3
328 220	237.023	-0.320	<i>332</i>	259.04/	-1.391	14.09	-5
529	230.238	-0.281	333	233.141	-0.556	9.25	-2

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
334	258.570	-2.602	338	260.625	-3.875	19.93	-5
341	257.930	-9.125	343	258.055	-7.695	11.85	-5
347	269.305	-2.867	348	269.266	-1.727	9.42	-5
352	268.898	7.086	353	267.320	8.789	19.08	-5
353	267.320	8.789	354	266.156	8.172	10.78	-5
366	190.518	-15.976	374	192.841	-15.947	18.44	-5
366	190.518	-15.976	375	191.595	-15.101	11.21	-5
367	196.794	-12.509	369	195.070	-13.867	17.82	-5
372	193 398	-14 037	374	192 841	-15 947	16 38	-5
374	192.841	-15 947	375	191 595	-15 101	12.12	-5
377	200.168	-14 031	378	201.049	-15 286	12.12	-5
378	200.100	-15 286	381	201.012	-15 942	5 43	-5
386	191 537	-25 791	388	193 119	-27 475	18.15	-5
386	191.537	-25 791	508	188 984	-25.063	19.96	-5
410	172 375	15 850	413	172 641	-25.005	5.63	-5
410	172.575	16 402	425	174 547	17 703	18.06	-5
413	172.041	-10.492	423	1/4.34/	-17.703	10.00	-5
415	1/2.041	-10.492	437	1/1./34	-1/./01	12.02	-5
417	180.141	-13.730	419	1/9.430	-11.933	13.90	-5
417	180.141	-13.730	525	181.820	-12.297	18.07	-5
417	180.141	-13.730	527	101.401	-14.400	11.00	-3
417	180.141	-13.750	528	182.133	-14./58	17.98	-5
41/	180.141	-13./50	529	180.336	-14.930	9.86	-5
428	1/4.586	-20.742	429	1/6.688	-19.922	1/.62	-5
429	1/6.688	-19.922	444	1/6.633	-21.320	11.55	-5
429	1/6.688	-19.922	445	1/6.633	-18.094	15.10	-5
433	180.219	-20.469	447	180.250	-22.438	16.25	-5
434	180.281	-21.234	447	180.250	-22.438	9.94	-5
440	170.789	-20.742	619	169.695	-22.492	16.71	-5
442	171.031	-22.906	454	171.203	-23.797	7.47	-5
442	171.031	-22.906	469	170.984	-24.664	14.52	-5
451	172.281	-24.172	456	174.336	-25.383	18.36	-5
452	171.789	-23.836	472	170.836	-26.031	19.48	-5
457	180.445	-24.188	463	178.922	-25.313	14.72	-5
457	180.445	-24.188	464	179.758	-26.172	17.17	-5
463	178.922	-25.313	464	179.758	-26.172	9.43	-5
463	178.922	-25.313	473	177.359	-26.867	17.29	-5
464	179.758	-26.172	467	180.836	-24.305	17.39	-5
464	179.758	-26.172	486	180.852	-27.469	13.40	-5
526	185.148	-14.148	537	185.117	-12.344	14.90	-5
547	154.211	-13.570	548	154.063	-14.313	6.24	-5
555	160.586	-13.367	573	161.742	-13.094	9.56	-5
568	160.281	-17.875	572	162.039	-18.031	13.86	-5
568	160.281	-17.875	575	159.953	-16.234	13.79	-5
569	160.695	-18.070	572	162.039	-18.031	10.55	-5
569	160.695	-18.070	575	159.953	-16.234	16.25	-5
570	160.609	-18.836	572	162.039	-18.031	13.02	-5
571	161.352	-18.977	572	162.039	-18.031	9.48	-5
573	161.742	-13.094	624	163.688	-13.141	15.65	-5
573	161.742	-13.094	625	164.008	-13.453	18.44	-5
573	161.742	-13.094	626	163.266	-13.328	12.40	-5
573	161.742	-13.094	631	161.750	-11.008	17.22	-5
573	161.742	-13.094	632	162.070	-11.195	15.89	-5
573	161.742	-13.094	635	163.383	-12.297	14.76	-5
576	160.305	-19.672	582	159.430	-21.359	15.49	-5
582	159.430	-21.359	616	161.250	-22.719	17.89	-5

Crater 1	lon	lat	Crater 2	lon	lat	separation (km)	Score
603	164.922	-28.648	606	165.625	-26.695	16.92	-5
622	164.891	-14.898	625	164.008	-13.453	13.87	-5
791	127.602	-20.016	797	127.078	-19.688	4.88	-5
863	144.188	-3.352	877	143.625	-1.180	18.52	-5
34	254.118	-13.202	61	253.952	-12.410	6.67	-6
37	252.938	-13.831	39	253.317	-14.742	8.11	-6
44	250.413	-22.422	67	250.910	-23.100	6.76	-6
411	170.914	-16.641	437	171.734	-17.781	11.42	-6
553	159.836	-15.531	565	158.070	-16.867	17.82	-6
650	134.164	-13.406	651	134.555	-14.313	8.11	-6
676	137.188	-23.984	678	137.344	-25.508	12.63	-6
676	137.188	-23.984	679	136.727	-25.563	13.48	-6
979	164.844	6.531	986	163.059	5.141	18.62	-6
771	119.109	-26.531	780	120.070	-25.641	10.24	-8

D SOFTWARE TOOLS

This appendix provides details on both the off-the-shelf and custom software applications used in this study.

D.1 JMARS

JMARS (Java Mission-planning and Analysis for Remote Sensing) is a planetary Geographic Information System (GIS) application developed by ASU's Mars Space Flight Facility to provide mission planning and data analysis tools for NASA missions, researchers, students of all ages, and the general public (Christensen et al., 2009). It is an open-source, free application.

JMARS distinguishes itself from other GIS applications by providing servers that host preprocessed maps and individual remote-sensing images. Official NASA/ESA/DLR/JAXA/USGS data products for Mars, the Moon, and many other planetary bodies (including Ceres) are readily available and searchable.

JMARS provides a wide variety of tools to remote sensing analysis. This study will make use of the following features:

- Map Layer for displaying a high-resolution global mosaic of Ceres.
- Stamp Layer used to display individual images captured by the Dawn Framing Camera.

- Crater Counting Layer provides easy-to-use tools for marking and labeling impact craters. Crater data (latitude, longitude, and diameter in meters) can be saved to a CSV file.
- Custom Shape Layer used to draw shapes around objects or regions on a planetary surface. Underlying numeric data maps (e.g., Digital Elevation Models) can be sampled to determine max, min, and mean values within a shape. An entire shape layer can be exported to an ArcGIS-compatible shape file. This study uses the Custom Shape Layer for two things: analyzing the morphology of impact craters, and creating graphics to easily locate and evaluate individual crater pairs.

D.2 Python Programs

A number of programs were written in Python to manage and manipulate data collected in this study.

D.2.1 Processing Exported Crater Data

A large CSV file, containing all the craters counted in the study area, is processed by separations_shapes.py. This program produces three files:

- craters.csv a list of the following fields for each crater: unique number, latitude, longitude, and diameter.
- crater_pairs.csv pairings of craters that are within 20 km of each other. Includes crater numbers, latitudes, longitudes, and separation distance for each identified pair. The separation is computed by using a great circle arc, assuming Ceres to be a sphere.
- crater_pairs_shapefile.csv An ArcGIS-compatible shape file containing shapes representing each pair of craters. The generated shape is a line between the center

points of the two craters in a pair, along with a label for display that names the two craters' numbers.

The program also tallies the crater separations of all identified pairs (the ones written to crater pairs.csv) into 10 logarithmic bins between 1 and 20 for later use.

D.2.2 Computing Impactor Diameters

To estimate the diameters of the impactors that created the impact craters from the study, a simple program impactor_diam.py was created. It reads in the craters.csv file created by separations_shapes.py and, for each crater, uses an implementation of the following equation to compute an estimated impactor diameter (see sections 1.2.3.3 and 2.2 for details):

$$d = [D/14.44475]^{1.277}$$

where *D* is the crater diameter in km, and *d* is the impactor diameter in km. All the ingested crater columns, plus the impactor diameter in meters, are written to impactor_diam.csv.

D.2.3 Monte Carlo Simulation

montecarlo_phase123.py generates a number (equal to the number of craters in file craters.csv) of random crater locations within the study area. It identifies all unique pairings of these randomly generated craters whose separation is ≤ 20 km, and tallies these pairs into 10 logarithmic bins.

The simulation is executed 1000 times, and the tallies from all runs (and their averages) are written to file montecarlo phase123.csv.

NOTE: Each run of the program will produce slightly different results.

D.2.4 Chi Squared Test

A simple program, chi_squared.py, performs a Chi Square Test on the binned counts of crater separation values from both the actual observed craters (computed by the program separations_shapes.py) and the simulated craters (tallied by the program montecarlo_phase123.py).

REFERENCES

- Barlow, N. G., Boyce, J. M., Costard, F. M., Craddock, R. A., Garvin, J. B., Sakimoto, S. E., . . . Soderblom, L. A. (2000). Standardizing the nomenclature of martian impact crater ejecta morphologies. *Journal of Geophysical Research: Planets*, 105(E11), 26733-26738.
- Barucci, M. A., Fulchignoni, M., Ji, J., Marchi, S., & Thomas, N. (2015). The flybys of asteroids (2867) šteins,(21) lutetia, and (4179) toutatis. *Et Al., Asteroids IV*, University of Arizona Press, Tucson, 433-450.
- Belton, M. J., Veverka, J., Thomas, P., Helfenstein, P., Simonelli, D., Chapman, C., . . . Pilcher, C. (1992). Galileo encounter with 951 gaspra: First pictures of an asteroid. *Science* 257(5077), 1647-1652.
- Benner, L. A., Busch, M. W., Giorgini, J. D., Taylor, P. A., & Margot, J. (2015). Radar observations of near-earth and main-belt asteroids. *Asteroids IV*, University of Arizona Press, Tucson, 165-182.
- Binzel, R. P., & Van Flandern, T. C. (1979). Minor planets: The discovery of minor satellites. *Science 203*(4383), 903-905.
- Biren, M., van Soest, M., Wartho, J., Hodges, K., & Spray, J. (2016). Diachroneity of the clearwater west and clearwater east impact structures indicated by the (U–Th)/He dating method. *Earth and Planetary Science Letters*, *453*, 56-66.
- Bottke Jr, W. F., & Melosh, H. J. (1996). Binary asteroids and the formation of doublet craters. *Icarus*, 124(2), 372-391.
- Bottke Jr, W. F., Nolan, M. C., Greenberg, R., & Kolvoord, R. A. (1994). Velocity distributions among colliding asteroids. *Icarus*, 107(2), 255-268.
- Bottke, W. F., Cellino, A., Paolicchi, P., & Binzel, R. (2002). *Asteroids III*, University of Arizona Press, Tucson.
- Burchell, M. J., & Grey, I. D. (2001). Oblique hypervelocity impacts on thick glass targets. *Materials Science and Engineering: A, 303*(1-2), 134-141.

Carry, B. (2012). Density of asteroids. Planetary and Space Science, 73(1), 98-118.

- Chapman, C. R. (1974). Cratering on mars I. cratering and obliteration history. *Icarus*, 22(3), 272-291.
- Chapman, C., Veverka, J., Thomas, P., Klaasen, K., Belton, M., Harch, A., . . . Davies, M. (1995). Discovery and physical properties of dactyl, a satellite of asteroid 243 ida.
- Chauvineua, B., Farinella, P., & Harris, A. (1995). The evolution of earth-approaching binary asteroids: A monte carlo dynamical model. *Icarus*, 115(1), 36-46.
- Christensen, P., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., & Weiss-Malik, M. (2009). (2009). JMARS-a planetary GIS. AGU Fall Meeting Abstracts, 2009.
- Ciarniello, M., De Sanctis, M., Ammannito, E., Raponi, A., Longobardo, A., Palomba, E., . . . Schröder, S. (2017). Spectrophotometric properties of dwarf planet ceres from the VIR spectrometer on board the dawn mission. *Astronomy & Astrophysics*, *598*, A130.
- Cook, A. (1971). 624 hektor: A binary asteroid? NASA Special Publication, 267, 155.
- Cook, C. M., Melosh, H. J., & Bottke, W. F. (2003). Doublet craters on venus. *Icarus*, 165(1), 90-100.
- Cuk, M. (2007). Formation and destruction of small binary asteroids. *The Astrophysical Journal Letters*, 659(1), L57.
- Davis, D., Chapman, C., Greenberg, R., Weidenschilling, S., & Harris, A. (1979). Collisional evolution of asteroids-populations, rotations, and velocities. *Asteroids*, *1*, 528-557.
- Davison, T. M., Collins, G. S., Elbeshausen, D., Wünnemann, K., & Kearsley, A. (2011). Numerical modeling of oblique hypervelocity impacts on strong ductile targets. *Meteoritics & Planetary Science*, 46(10), 1510-1524.
- Dence, M. R., Innes, M., & Beals, C. (1965). On the probable meteorite origin of the clearwater lakes, quebec. *Journal of the Royal Astronomical Society of Canada, 59*, 13.
- Doressoundiram, A., Paolicchi, P., Verlicchi, A., & Cellino, A. (1997). The formation of binary asteroids as outcomes of catastrophic collisions. *Planetary and Space Science*, *45*(7), 757-770.
- Drummond, J., Carry, B., Merline, W., Dumas, C., Hammel, H., Erard, S., . . . Chapman, C. (2014). Dwarf planet ceres: Ellipsoid dimensions and rotational pole from keck and VLT adaptive optics images. *Icarus*, *236*, 28-37.
- Dunham, D. W., & Maley, P. D. (1977). Possible observation of a satellite of a minor planet. *Minor Planet Bulletin, 5*, 16-17.

- Durda, D. D., Bottke, W. F., Enke, B. L., Merline, W. J., Asphaug, E., Richardson, D. C., & Leinhardt, Z. M. (2004). The formation of asteroid satellites in large impacts: Results from numerical simulations. *Icarus*, 167(2), 382-396.
- Duxbury, T. C., Newburn, R. L., Acton, C. H., Carranza, E., McElrath, T. P., Ryan, R. E., ... Cheuvront, A. R. (2004). Asteroid 5535 annefrank size, shape, and orientation: Stardust first results. *Journal of Geophysical Research: Planets, 109*(E2).
- Elbeshausen, D., Wünnemann, K., & Collins, G. S. (2009). Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. *Icarus*, 204(2), 716-731.
- Ermakov, A., Fu, R., Castillo-Rogez, J., Raymond, C., Park, R., Preusker, F., ... Zuber, M. (2017). Constraints on ceres' internal structure and evolution from its shape and gravity measured by the dawn spacecraft. *Journal of Geophysical Research: Planets, 122*(11), 2267-2293.
- Farinella, P. (1992). Evolution of earth-crossing binary asteroids due to gravitational encounters with the earth. *Icarus*, *96*(2), 284-285.
- Farinella, P., & Davis, D. R. (1992). Collision rates and impact velocities in the main asteroid belt. *Icarus*, 97(1), 111-123.
- Farinella, P., Paolicchi, P., & Zappalà, V. (1982). The asteroids as outcomes of catastrophic collisions. *Icarus*, 52(3), 409-433.
- Fuse, T., Yoshida, F., Tholen, D., Ishiguro, M., & Saito, J. (2008). Searching satellites of asteroid itokawa by imaging observation with hayabusa spacecraft. *Earth, Planets and Space*, 60(1), 33-37.
- Gault, D. E. (1974). (1974). Impact cratering. Paper presented at the *A Primer in Lunar Geology*, NASA.
- Gault, D. E., & Wedekind, J. A. (1978). (1978). Experimental studies of oblique impact. Paper presented at the *Lunar and Planetary Science Conference Proceedings*, *9*, 3843-3875.
- Gehrels, T., Drummond, J., & Levenson, N. (1987). The absence of satellites of asteroids. *Icarus*, *70*(2), 257-263.
- Hamilton, D. P., & Burns, J. A. (1991). Orbital stability zones about asteroids. *Icarus*, 92(1), 118-131.
- Hamilton, D. P., & Burns, J. A. (1992). Orbital stability zones about asteroids: II. the destabilizing effects of eccentric orbits and of solar radiation. *Icarus*, 96(1), 43-64.

- Hamilton, D. P., & Krivov, A. V. (1997). Dynamics of distant moons of asteroids. *Icarus*, *128*(1), 241-249.
- Hartmann, W. (1979). Diverse puzzling asteroids and a possible unified explanation. *Asteroids, 1*, University of Arizona Press, Tucson, 466-479.
- Herrick, R. R., & Forsberg-Taylor, N. K. (2003). The shape and appearance of craters formed by oblique impact on the moon and venus. *Meteoritics & Planetary Science*, *38*(11), 1551-1578.
- Hiesinger, H., Marchi, S., Schmedemann, N., Schenk, P., Pasckert, J., Neesemann, A., . . . Fu, R. (2016). Cratering on ceres: Implications for its crust and evolution. *Science*, *353*(6303).
- Holsapple, K. (1993). The scaling of impact processes in planetary sciences. *Annual Review of Earth and Planetary Sciences*, 21(1), 333-373.
- Holsapple, K., & Schmidt, R. (1982). On the scaling of crater dimensions: 2. impact processes. *Journal of Geophysical Research: Solid Earth*, 87(B3), 1849-1870.
- Horedt, G., & Neukum, G. (1984). Comparison of six crater-scaling laws. *Earth, Moon, and Planets, 31*(3), 265-269.
- Ivanov, B. A. (2001). Mars/Moon cratering rate ratio estimates. *Space Science Reviews*, 96(1-4), 87-104.
- Jacobson, S. A., & Scheeres, D. J. (2011). Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems. *Icarus*, 214(1), 161-178.
- Johnston W.R., M. K. (2014). Doublet crater. *Encyclopedia of planetary landforms*, Springer, NewYork.
- Johnston, W. R. (2016). Binary minor planets V9.0. EAR-A-COMPIL-5-BINMP-V9.0
- Marchi, S., Bottke, W., O'Brien, D., Schenk, P., Mottola, S., De Sanctis, M., ... Russell, C. (2014). Small crater populations on vesta. *Planetary and Space Science*, 103, 96-103.
- Margot, J., Pravec, P., Taylor, P., Carry, B., & Jacobson, S. (2015). Asteroid systems: Binaries, triples, and pairs. *Encyclopedia of planetary landforms*, Springer, NewYork.
- McFadden, L. A., Skillman, D. R., Memarsadeghi, N., Li, J., Joy, S., Polanskey, C., . . . Palmer, E. (2015). Vesta's missing moons: Comprehensive search for natural satellites of vesta by the dawn spacecraft. *Icarus*, 257, 207-216.
- McMahon, J. H. (1978). The discovery of a satellite of an asteroid. *Minor Planet Bulletin, 6*, 14-17.

Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press, New York.

- Melosh, H. (1980). Cratering mechanics-observational, experimental, and theoretical. *Annual Review of Earth and Planetary Sciences*, 8(1), 65-93.
- Melosh, H., Ingram, J., & Bottke, W. (1996). (1996). The abundance of doublet craters on mars. Paper presented at the *Lunar and Planetary Science Conference*, 27
- Melosh, H., & Ivanov, B. (1999). Impact crater collapse. *Annual Review of Earth and Planetary Sciences*, 27(1), 385-415.
- Melosh, H., & Stansberry, J. (1991). Doublet craters and the tidal disruption of binary asteroids. *Icarus*, 94(1), 171-179.
- Merline, W. J., Weidenschilling, S. J., Durda, D. D., Margot, J., Pravec, P., & Storrs, A. D. (2002). Asteroids do have satellites. *Asteroids III*, University of Arizona Press, Tucson.
- Merline, W., Close, L. M., Dumas, C., Chapman, C., Roddier, F., Menard, F., ... Morgan, T. (1999). Discovery of a moon orbiting the asteroid 45 eugenia. *Nature*, 401(6753), 565-568.
- Miljković, K., Collins, G. S., Mannick, S., & Bland, P. A. (2013). Morphology and population of binary asteroid impact craters. *Earth and Planetary Science Letters*, *363*, 121-132.
- Millis, R., & Dunham, D. (1989). (1989). Precise measurement of asteroid sizes and shapes from occultations. *Asteroids II*, University of Arizona Press, Tucson.
- Nathues, A., Sierks, H., Gutierrez-Marques, P., Ripken, J., Hall, I., Buettner, I., . . . Chistensen, U. (2016). Dawn FC2 calibrated ceres images V1. 0. *NASA Planetary Data System, 265*
- Oberbeck, V. R. (1973). Simultaneous impact and lunar craters. The Moon, 6(1-2), 83-92.
- Oberbeck, V. R., & Aoyagi, M. (1972). Martian doublet craters. *Journal of Geophysical Research*, 77(14), 2419-2432.
- Oberbeck, V., Quaide, W., Arvidson, R., & Aggarwal, H. (1977). Comparative studies of lunar, martian, and mercurian craters and plains. *Journal of Geophysical Research*, 82(11), 1681-1698.
- O'Keefe, J. D., & Ahrens, T. J. (1993). Planetary cratering mechanics. *Journal of Geophysical Research: Planets, 98*(E9), 17011-17028.
- Oliphant, T. E. (2007). Python for scientific computing. *Computing in Science & Engineering*, *9*(3).
- Öpik, E. J. (1969). The moon's surface. *Annual Review of Astronomy and Astrophysics*, 7(1), 473-526.

- Ostro, S., Chandler, J., Hine, A., Rosema, K., Shapiro, I., & Yeomans, D. (1990). Radar images of asteroid 1989 PB. *Science*, 248, 1523-1528.
- Ostro, S. J., Hudson, R. S., Benner, L. A., Giorgini, J. D., Magri, C., Margot, J., & Nolan, M. C. (2002). Asteroid radar astronomy. *Asteroids III*, University of Arizona Press, Tucson, 151-168.
- Pierazzo, E., & Melosh, H. (2000). Understanding oblique impacts from experiments, observations, and modeling. *Annual Review of Earth and Planetary Sciences*, 28(1), 141-167.
- Pierazzo, E., & Collins, G. (2004). A brief introduction to hydrocode modeling of impact cratering. *Cratering in marine environments and on ice*, Springer, New York, 323-340.
- Poelchau, M. H., & Kenkmann, T. (2008). Asymmetric signatures in simple craters as an indicator for an oblique impact direction. *Meteoritics & Planetary Science*, 43(12), 2059-2072.
- Pravec, P., & Harris, A. W. (2007). Binary asteroid population: 1. angular momentum content. *Icarus, 190*(1), 250-259.
- Pravec, P., Scheirich, P., Kušnirák, P., Šarounová, L., Mottola, S., Hahn, G., ... Krzeminski, Z. (2006). Photometric survey of binary near-earth asteroids. *Icarus*, 181(1), 63-93.
- Prettyman, T. H., Yamashita, N., Toplis, M. J., McSween, H. Y., Schorghofer, N., Marchi, S., . .
 Russell, C. T. (2017). Extensive water ice within ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. *Science*, *355*(6320), 55-59.
- Richardson, D. C., Bottke, W. F., & Love, S. G. (1998). Tidal distortion and disruption of earthcrossing asteroids. *Icarus*, 134(1), 47-76.
- Roatsch, T., Kersten, E., Matz, K., Preusker, F., Scholten, F., Jaumann, R., . . . Russell, C. T. (2017). High-resolution ceres low altitude mapping orbit atlas derived from dawn framing camera images. *Planetary and Space Science*, *140*, 74-79.
- Roberts Jr, L. C., McAlister, H. A., Hartkopf, W. I., & Franz, O. G. (1995). A speckle interferometric survey for asteroid duplicity. *The Astronomical Journal, 110*, 2463.
- Rubincam, D. P. (2000). Radiative spin-up and spin-down of small asteroids. *Icarus, 148*(1), 2-11.
- Russell, C., & Raymond, C. (2011). The dawn mission to vesta and ceres. *Space Science Reviews*, 163(1-4), 3-23.
- Scheeres, D. (2002). Stability of binary asteroids. Icarus, 159(2), 271-283.

- Schmidt, R. M., & Housen, K. R. (1987). Some recent advances in the scaling of impact and explosion cratering. *International Journal of Impact Engineering*, 5(1-4), 543-560.
- Sekiguchi, N. (1970). On the fissions of a solid body under influence of tidal force; with application to the problem of twin craters on the moon. *The Moon, 1*(4), 429-439.
- Sierks, H., Keller, H., Jaumann, R., Michalik, H., Behnke, T., Bubenhagen, F., . . . Enge, R. (2011). The dawn framing camera. *Space Science Reviews*, *163*(1-4), 263-327.
- Spray, J. (2016). Earth impact database. Retrieved from http://www.passc.net/EarthImpactDatabase/index.html
- Sweeney, J., Warner, N., Golombek, M., Kirk, R., Fergason, R., Pivarunas, A., . . . Hernandez, D. (2017). (2017). Constructing a semi-automated method in ArcMap to measure impact crater morphology. Paper presented at the *Lunar and Planetary Science Conference*, 48
- Tanner, R. (1963). The orbital perturbations of a very large twin meteorite. *Journal of the Royal Astronomical Society of Canada*, 57, 109.
- Timerson, B., Brooks, J., Conard, S., Dunham, D. W., Herald, D., Tolea, A., & Marchis, F. (2013). Occultation evidence for a satellite of the trojan asteroid (911) agamemnon. *Planetary and Space Science*, 87, 78-84.
- Trask, N. J., & Guest, J. E. (1975). Preliminary geologic terrain map of mercury. *Journal of Geophysical Research*, 80(17), 2461-2477.
- Trego, K. D. (1989). Multiple impacts in the earth's cratering history. *Earth, Moon, and Planets,* 46(3), 201-205.
- Turtle, E., Pierazzo, E., Collins, G., Osinski, G., Melosh, H., Morgan, J., & Reimold, W. (2005). Impact structures: What does crater diameter mean. *Large Meteorite Impacts III: Geological Society of America Special Paper*, 384, 1-24.
- Van Flandern, T., Tedesco, E., & Binzel, R. (1979). Satellites of asteroids. *Asteroids*, University of Arizona Press, Tucson, 443-465.
- Vedder, J. D. (1998). Main belt asteroid collision probabilities and impact velocities. *Icarus*, 131(2), 283-290.
- Veverka, J., Robinson, M., Thomas, P., Murchie, S., Bell, J. F., 3rd, Izenberg, N., . . . Miller, J. K. (2000). NEAR at eros: Imaging and spectral results. *Science*, *289*(5487), 2088-2097.
- Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, J. F., 3rd, Carcich, B., ... Cheng, A. (1997). NEAR's flyby of 253 mathilde: Images of a C asteroid. *Science*, *278*(5346), 2109-2114.

- Wagner, R., Neukum, G., & Schmedemann, N. (2012). (2012). Double and multiple craters on the satellites of saturn and their size distribution. Paper presented at the *Lunar and Planetary Science Conference*, 43
- Wallis, D., Burchell, M., Cook, A., Solomon, C., & McBride, N. (2005). Azimuthal impact directions from oblique impact crater morphology. *Monthly Notices of the Royal Astronomical Society*, 359(3), 1137-1149.
- Walsh, K. J., & Jacobson, S. A. (2015). Formation and evolution of binary asteroids. *Asteroids IV*, University of Arizona Press, Tucson, 375-393.
- Walsh, K. J., & Richardson, D. C. (2006). Binary near-earth asteroid formation: Rubble pile model of tidal disruptions. *Icarus*, 180(1), 201-216.
- Walsh, K. J., & Richardson, D. C. (2008). A steady-state model of NEA binaries formed by tidal disruption of gravitational aggregates. *Icarus*, 193(2), 553-566.
- Walsh, K. J., Richardson, D. C., & Michel, P. (2008). Rotational breakup as the origin of small binary asteroids. *Nature*, 454(7201), 188-191.
- Walsh, K. J., Richardson, D. C., & Michel, P. (2012). Spin-up of rubble-pile asteroids: Disruption, satellite formation, and equilibrium shapes. *Icarus*, 220(2), 514-529.
- Weidenschilling, S. (1980). Hektor: Nature and origin of a binary asteroid. *Icarus*, 44(3), 807-809.
- Weidenschilling, S. J., Paolicchi, P., & Zappala, V. (1989). Do asteroids have satellites?, *Asteroids II*, University of Arizona Press, Tucson.
- Woronow, A. (1978). The expected frequency of doublet craters. *Icarus*, 34(2), 324-330.
- Wren, P.F., & Fevig, R.A. (2017). Investigation of doublet craters on ceres as evidence of main belt binary asteroid systems. Paper presented at the *Lunar and Planetary Science Conference*, 48.
- Wünnemann, K., Nowka, D., Collins, G., Elbeshausen, D., & Bierhaus, M. (2011). (2011). Scaling of impact crater formation on planetary surfaces—Insights from numerical modeling. Paper presented at the *Proceedings of the 11th Hypervelocity Impact Symposium*, Freiburg, Germany.
- Young, L. A., Stern, S. A., Weaver, H. A., Bagenal, F., Binzel, R. P., Buratti, B., ... Grundy, W. M. (2008). New horizons: Anticipated scientific investigations at the pluto system. *Space Science Reviews*, 140(1-4), 93-127.
- Zahnle, K., Schenk, P., Levison, H., & Dones, L. (2003). Cratering rates in the outer solar system. *Icarus*, 163(2), 263-289.

Zappalà, V., Scaltriti, F., Farinella, P., & Paolicchi, P. (1980). Asteroidal binary systems: Detection and formation. *The Moon and the Planets*, *22*(2), 153-162.