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Abstract 

Regulation of blood pressure is vital for maintaining organ perfusion and homeostasis. A 

significant decline in arterial blood pressure could lead to fainting and hypovolemic shock. 

In contrast to young and healthy, people with impaired autonomic control due to aging or 

disease find regulating blood pressure rather demanding during orthostatic challenge. 

This thesis performed an assessment of blood pressure regulatory controls during 

orthostatic challenge via traditional as well as novel approaches with two distinct 

applications 1) to design a robust automated system for early identification of hypovolemia 

and 2) to assess orthostatic tolerance in humans. In chapter 3, moderate intensity 

hemorrhage was simulated via lower-body negative pressure (LBNP) with an aim to 

identify moderate intensity hemorrhage (-30 and -40 mmHg LBNP) from resting baseline. 

Utilizing features extracted from common vital sign monitors, a classification accuracy of 

82% and 91% was achieved for differentiating -30 and -40 mmHg LBNP, respectively from 

baseline. In chapter 4, cause-and-effect relationship between the representative signals 

of the cardiovascular and postural systems to ascertain blood pressure homeostasis 

during standing was performed. The degree of causal interaction between the two 

systems, studied via convergent cross mapping (CCM), showcased the existence of a 

significant bi-directional interaction between the representative signals of two systems to 

regulate blood pressure. Therefore, the two systems should be accounted for jointly when 

addressing physiology behind fall.  Further, in chapter 5, the potential of artificial gravity 

(2-g) induced via short-arm human centrifuge at feet towards evoking blood pressure 

regulatory controls analogous to standing was investigated. The observation of no 

difference in the blood pressure regulatory controls, during 2-g centrifugation compared 

to standing, strongly supported the hypothesis of artificial hypergravity for mitigating 

cardiovascular deconditioning, hence minimizing post-flight orthostatic intolerance. 
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Chapter 1.  
 
Introduction 

1.1. Motivation 

Regulation of blood pressure is complex and numerous variables play a vital role to 

ascertain its homeostasis under challenging physiological conditions(1). Dependent on 

the physiological conditions failure to maintain blood pressure homeostasis can result in 

hypovolemic shock or orthostatic intolerance leading to an unexpected fall(2,3). Mortality 

and financial burden associated with both hypovolemic shock and fall, respectively is 

significant and concerning(4,5). Hypovolemic shock accounts for approximately 5 million 

deaths annually and is the biggest cause of death in people under the age of 45(6), while 

over $31 billion is spent annually for treatment and management of injuries associated 

with unexpected fall(7). 

Quantifying the blood pressure regulatory controls can provide key information regarding 

the mechanisms sustaining homeostasis and therefore can assist early identification of 

hypovolemia and fall proneness. However, the traditional methodologies for assessing 

blood pressure control fail to account for all mechanisms that play part in the regulation of 

blood pressure. For example, the autonomic control studied typically via heart rate and 

blood pressure variability and baroreflex sensitivity fail to account for the non-linearity of 

the signal under consideration and closed loop intersystem interaction to assure blood 

pressure homeostasis. Accordingly, this thesis supplemented the traditional methods with 

novel approaches to assess the regulation of blood pressure with application to early 

identification of 1) hypovolemia and 2) orthostatic intolerance. 
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1.2. Literature Review 

1.2.1. Early Identification of Hypovolemia 

Excessive loss of blood from circulation i.e. hemorrhage due to a traumatic injury remains 

one of the major cause of mortality in civilians as well as in soldiers on the battlefield(8–

11). Over 29 million people in civilian settings are affected by traumatic events annually 

and 30-40 % of trauma deaths are associated with hemorrhage(4). Approximately 9-10 % 

of the deaths during the Vietnam War was postulated to be due to hemorrhage(12,13). 

Additionally, Post-partum hemorrhage is a perceived cause of maternal mortality, which 

accounts for over 125,000 deaths annually(10,14,15). In contrast to central nervous 

system injury, a leading cause of mortality, which has limited intervention to offer a hope 

for survival and recovery, hemorrhage is responsive to pertinent intervention(4,16). 

Therefore, early identification of the need to apply lifesaving intervention can greatly 

increase the survival rate both in civilians and on the battlefield(16–18). Due to complex 

physiological adaptation to hypovolemia, the greatest challenge caregivers experience is 

in the early and reliable identification of bleeding from the vital sign monitors, which are 

customarily utilized in a pre-hospital setting for monitoring physiological state(19–21).  

Muscle sympathetic nerve activity, central venous pressure, and stroke volume can 

provide accurate insights regarding bleeding(22–24), however, measuring such 

parameters require sophisticated instrumentation and an expert operator, accordingly, 

such indicators of bleeding have limited application towards facilitating interventional 

strategies in a setting where the majority of traumatic events occur. Due to limited 

resources available in a pre-hospital setting to monitor the progression of hypovolemia, 

the arterial blood pressure is often relied on(25). However, due to the autonomic control 

of blood pressure, arterial blood pressure remains regulated during the early phase of 
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blood loss and until the point of autonomic collapse(26,27). Post autonomic collapse, the 

application of the interventional strategies have limited effect towards maintenance of 

tissue perfusion; making hemorrhagic shock inevitable(2,12,28).  

Making a decision regarding resuscitation based on parameter specific based on statistical 

tests can be an inadequate indicator of hypovolemia due to high-inter subject variability 

and non-linearity of data distribution. Therefore, development of an automated trauma 

support system utilizing multiple indicators of hypovolemia can effectively underscore the 

need to apply interventional strategies. Machine learning in this context can be a promising 

tool given its potential to analyze the data and learn the information from the data. 

Although the application of machine learning in medicine has been exhaustive(29–31), its 

application towards design of an automatic system to detect hypovolemia has been 

limited(32–34). This thesis is an attempt in this direction which derives multiple indicators 

of hypovolemia from common vital sign monitors used in a pre-hospital setting.   

1.2.2. Early Identification of Orthostatic Intolerance 

Orthostatic intolerance, an inability of an individual to regulate arterial blood pressure 

during standing, is commonly observed in older people and in people with 

neurodegenerative diseases such as Parkinson’s disease, stroke, and concussion, which 

can lead to unexpected fall(35–37). The prevalence of orthostatic intolerance ranges from 

5% (people under the age of 50) to 30% (age greater than 70)(38). Since the elderly 

population is expected to grow in the future(39), the number of people affected by such 

diseases are also anticipated to grow. Elderly with neurological disorders experience fall 

more frequently than their healthy counterparts(35,40). Additionally, it has become a 

significant burden on the current healthcare system(7), as treatment of fall associated 

injuries often entails immediate medical attention. Over 31 billion dollars are spent 
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annually (in 2015) for treatment and management of fall-related incidents(7). Further falls 

can cause fear of another fall while conducting day-to-day activities leading to 

incapacitation, therefore, a severe degradation in the quality of life. 

Regulation of blood pressure during standing depends on 1) the immediate compensatory 

efforts from the autonomic nervous system via neural pathways causing an elevation in 

heart rate and systemic vascular resistance and 2) the postural controls such as the 

skeletal muscle pump and postural sway to pump the pooled venous blood back to the 

heart in response to gravity-induced hypovolemia. Yet, the two systems have been studied 

independently in the literature when addressing the physiology associated with fall(3,41–

45). Consequently, providing insufficient information regarding the underlying physiology. 

Therefore, the design of rehabilitation schemes to restore the postural stability based on 

the existing knowledge in people with a history of neurodegenerative disease is rendered 

inadequate.  

In the recent years, the coupling between the representative signals of cardiovascular and 

postural systems during orthostatic challenge has been studied(46–48). These studies 

demonstrated the interdependency between the cardiovascular and postural controls of 

blood pressure, however, the degree and the direction of information flow (causality) 

between the representative signals of cardiovascular and postural controls of blood 

pressure remains to be generalized. This thesis attempts to address the existing limitation 

in the literature and studied the cause-and-effect relationship between the cardiovascular 

and postural controls of blood pressure during orthostatic challenge induced by standing. 

By studying a group of young and healthy participants, the thesis generalized the baseline 

behavior of the degree of causal information flow between the representative signals of 

the cardiovascular and postural systems facilitating blood pressure homeostasis, hence, 

stable upright stance.  
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1.2.3. Mitigation of Spaceflight Deconditioning 

There is growing interest in NASA and European Space Agency (ESA) towards a manned 

mission to outer space(49–51). Spaceflight deconditioning is one of the several concerns 

hindering such aspiration(50). Exposure to microgravity causes a series of physiological 

changes due to redistribution of blood volume above thoracic(52). Although such changes 

account for microgravity environment, it can have a detrimental effect on the physiological 

performance when exposed back to natural gravity. Approximately 30% of astronaut 

experience orthostatic intolerance after short duration spaceflight, however, this number 

jumps to 80% following a long-duration spaceflight(53). Due to growing interest in the 

manned mission to outer space, long-duration spaceflight is anticipated in the future. 

Accordingly, there is a need for the development of a countermeasure system to minimize 

the deleterious effects of microgravity on the physiological performance and facilitate 

healthy life for astronauts on return to Earth. 

Due to shift in central blood volume above thoracic in microgravity, the typical blood 

pressure regulatory controls remain under stimulated for the duration of 

spaceflight(54,55). Additionally, the posture muscle groups are left with nutritional scarcity 

due to lack blood flow resulting in muscle atrophy(52). Typical exercise routines currently 

employed to minimize the spaceflight deconditioning are limited in effect for their inability 

to challenge multiple physiological systems simultaneously analogous to standing in 

natural gravity(56,57). 

Literature suggests intermittent exposure to artificial hypergravity can mitigate the adverse 

effect on physiological performance associated with microgravity(58,59). In this regards, 

Short-arm human centrifuge (SAHC), capable of creating artificial gravity of different g-

load can be a promising training tool. This thesis compares the blood pressure regulatory 
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indices during 2-g created via centrifugation at feet with standing in a natural gravity to 

validate the hypothesis of SAHC towards evoking blood pressure regulatory controls 

analogous to standing.  

1.3. Thesis Outline 

Chapter 2 details the methodology considered for data analysis. Chapter 3 discusses the 

potential of non-invasive features derived from typical vital sign monitors for reliable 

detection of moderate category simulated hemorrhage (-40 mmHg). Chapter 4 establishes 

the degree of causal information flow in the novel model of blood pressure regulation 

during standing (cardio-postural control of blood pressure) with application to assessing 

fall proneness. In chapter 5, the comparison of blood pressure regulatory controls during 

2-g centrifugation at feet with standing in natural gravity is performed. Chapter 6 outlines 

the major limitations of this thesis and proposes potential future work required to address 

such limitations. 

1.4. Thesis Contribution 

This thesis demonstrated the potential of quantification of blood pressure regulatory 

indices via robust methodology towards early identification of hypovolemia, orthostatic 

intolerance, and validation of training tool for minimizing post-flight orthostatic 

hypotension. The key contributions of the thesis are summarized below. 

 Demonstrated the closed loop heart rate and blood pressure interaction as an early 

indicator of simulated hemorrhage (Chapter 3, J.5.). 

 Highlighted the possibility of early identification of hypovolemia based on features 

extracted from common pre-hospital vital sign monitors along with machine learning 

algorithms (Chapter 3, J.3.). 
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 Generalized the degree of cause-and-effect relationship between the cardiovascular 

and postural controls of blood pressure during orthostatic challenge induced by 

standing (Chapter 4, J.7, J.6, and C.3-C.7). 

 Quantified further changes in the degree of causal relationship between the 

cardiovascular and the postural controls of blood pressure following exercise (Chapter 

4, J.6.). 

 Demonstrated the role of individual leg muscles towards blood pressure regulation 

(Chapter 4, J.2.).  

 Validated the short-arm human centrifuge as a potential tool towards evoking blood 

pressure regulatory controls analogous to standing (Chapter 5, J.4.). 

 Proposed relevant future work to address the limitation of this thesis and outlined the 

potential strategy towards the development of a device with application in a remote 

setting (Chapter 6, C.1, C.2, C.8, and C.9). 

 The key limitation of the thesis was limited sample size and data from only young, 

healthy people.  

1.5. Publications 

A portion of the results presented in this thesis has been published in peer-reviewed 

journals and in the proceedings of the peer-reviewed international conferences. Other 

results are under review or in preparation for submission to peer-review journals. The work 

presented in chapter 3 resulted in article J.3 and J.4. The work presented in chapter 4 

resulted in article J.1, J.2, J.6, and J.7, while the work presented in chapter 5 resulted in 

article J.4. The average impact factor of journals where the results of this thesis are 

published, under review, or will be submitted is 3.6. Additionally, the article J.6 was 

selected as a feature article in the September 2017 edition of the American Journal of 
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Chapter 2.  
 
Methodology 

2.1. Baroreflex Sensitivity 

Baroreceptors, the stretch receptors localized in the aortic arch and the carotid sinus, 

sense the dynamics of beat-to-beat blood pressure and continuously relay the information 

pertaining to the pressure on the arterial wall to the brain stem(60). In the case of 

disturbance to hemodynamic homeostasis i.e. increase or decrease in arterial pressure, 

the baroreceptors increases or decreases, respectively the afferent traffic, making brain 

aware of the required reflex mechanisms to bring the blood pressure back to a preset 

value(1,61). 

In the scenario of decreased arterial pressure, the reduced afferent traffic (baroreceptor 

unloading) results in withdrawal of vagal nerve activity and increased sympathetic activity 

via efferent pathways causing an increase in heart rate and systemic vascular resistance 

to regulate the arterial pressure to a preset value. Conversely, in case of increased arterial 

pressure sensed by the baroreceptors, the afferent traffic to the brain is increased resulting 

in sympathetic inhibition and increased vagal activity resulting in decreased heart rate and 

systemic vascular resistance. Thus, by controlling the heart rate and systemic vascular 

resistance via neural efferent pathways, the blood pressure is maintained during perturbed 

hemodynamic state. 

The baroreflex sensitivity (BRS) is well-accepted norm to quantify the baroreflex 

activity(62). The BRS is defined as a change RR intervals (ms) with respect to per unit 

change in arterial blood pressure(62,63). For example, if arterial pressure rises by 10 

mmHg and RR intervals increased by 200 ms, then BRS is 
200

10
 = 20 ms/mmHg. The 
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baroreflex sensitivity is typically assessed in time and frequency domain. The time domain 

method requires calculation of slope of a sequence of beats during which RR intervals 

and arterial blood pressure increases or decreases(64,65). The frequency domain 

assessment of BRS requires calculation of arterial blood pressure to the RR intervals 

transfer function. The transfer function amplitude is analogous to the slope of the 

sequence method(62).  

2.2. Spectral Analysis of Blood Pressure and RR intervals 

The spectra of blood pressure and RR intervals is divided into three key frequency bands 

which are known to be associated with the key physiological phenomenon. These three 

frequency bands include; very-low frequency (VLF, 0-0.04 Hz), low-frequency (LF, 0.04-

0.15), and high-frequency (HF, 0.15-0.4 Hz)(66). The VLF frequency band in the RR 

intervals is associated hormonal activity, the LF frequency is associated with the activity 

of sympathetic nerve activity, and HF band reflects the vagal or parasympathetic nerve 

activity and the ration of LF and HF power in normalized units reflect the sympatho-vagal 

balance(66–68). Similarly, the LF and HF frequency band of blood pressure are known to 

be associated with baroreflex and respiratory activity, respectively(69).  

Prior to spectral analysis, the beat-to-beat time series for blood pressure and RR intervals 

are derived from continuous blood pressure waveform and electrocardiogram signal, 

respectively. The beat-to-beat time series interpolated to convert the beat-to-beat time 

series in the evenly sampled continuous signal. The mean of the evenly sampled signal is 

further removed before computation of Power Spectral Density (PSD) to stay in an 

alignment with the stationary assumption(66,67). Spectral analysis was computed using 

Welch PSD in MATLAB.  The block diagram for step-by-step processing to calculate the 

spectral power distributed in the respective frequency bans is shown in Figure 2.1. 
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Figure 2.1.  Step-by-step processing to calculate spectral power in RR, SBP, and DBP 

time series distributed in VLF (0-0.04 Hz), LF (0.04-0.15 Hz), and HF (0.15-0.4 Hz) 

frequency bands. 

2.3. Convergent Cross Mapping 

The cause-and-effect relationship between two inter-dependent systems provides key 

characteristic pertaining to their behavior. Deviation in such behavior from established 

baseline characteristic can serve as an indicator of system deterioration and accordingly 

can assist caregiver design idea intervention. To this end, the concept of Granger causality 

has been widely utilized(70,71), however, due to the assumption of linear and stationary 

signal behavior, it is limited in effect to unravel complex non-linear physiological 

interactions. Transfer entropy method is considered to address the limitation of linearity 

assumption of Granger causality(72), nevertheless, the stationary signal behavior and 

requirement to determine probability density function of a representative signal under 

consideration limits its wide application(73). Convergent cross mapping is a relatively new 

method to determine directional information flow in a non-linear system, has a potential 

infer causal information of weak to moderate strength.  
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Using CCM method, for X having a causal influence on Y, test for causality is conducted 

by quantifying the degree to which historical record of Y can be used to accurately estimate 

the states of X. In order to do so, first, the shadow manifold of Y (MY) and X (M
X
) are 

constructed using lagged coordinates of variables Y and X, respectively(74,75). The 

lagged coordinates of X, say x(t) is formed as; X(t), X(t-τ), X(t-2τ)… X (t-(E-1)τ), where 

E and τ are embedding dimension and time lag used for constructing shadow manifold. 

The range of x (t) is from t=1+(E-1)τ to t=L, where L is data length. Similarly, the lagged 

coordinates of Y are formed. Next step is to find E+1 nearest neighbors, E+1 is the 

minimum number of points required in order bound a simplex in E-dimensional space, the 

time indices of E+1 nearest neighbors are denoted from closest to farthest. The nearest 

neighbors found on X manifold MX is used to find the neighbors on Y manifold MY to 

estimate Y, the estimated Y denoted as Ŷ|MX= ∑ wi Y(ti) i=1,2,3…….E+1 . Here, wi is the 

weighting based on the distance between x (t) and its ith nearest neighbor and Y (ti) are 

concurrent values of Y(76). More detailed explanation of the choice of weighting is 

explained in(76). Once estimates of Y are determined, the strength of causality flowing 

from Y to X is quantified by calculating the Pearson correlation coefficient between the 

original (reconstructed Y) and estimated Y. Mathematically,  Y→X=ρ(Y, Ŷ|Mx). Similarly, 

the test for causal information flowing X to Y can be conducted.   

Using CCM method unidirectional and bidirectional causality can be detected. In case of 

a unidirectional causality (X →Y), the driver X can be estimated using a historical record 

from the manifold of Y (MY). However, Y cannot be estimated using the historical record 

from X manifold (MX). The strength of causality varies between 0 and 1, where 0 

represents the absence of causality and 1 represents maximum causality. Therefore, 

under an ideal case of unidirectional causality (X→Y) the value of correlation between X 

and estimated X will vary between 0 and 1, while this value for Y and estimated Y will be 
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zero. Mathematically, the case of X→Y could be represented as; 0<ρ(X, X̂|MY)≤1 

and, ρ(Y,Ŷ|MX)=0 where, ρ is Pearson correlation coefficient.  

In case of bidirectional causality (X→Y and Y→X) the historical record from Y manifold 

(MY) can be used to estimate X, while historical record from X manifold (Mx) can be used 

to estimate Y. In this case both, the correlation of X and estimated X as well as the 

correlation of Y and estimated Y will vary between 0 and 1. Mathematically, 

0<ρ(X, X̂|MY)≤1 and 0<ρ(Y,Ŷ|MX)≤1. However, for the variable having stronger effect on 

other variable, the correlation of that variable and its estimate will converge to a higher 

correlation coefficient value. For example, if X has a stronger effect on Y compared to 

vice-versa then mathematically, ρ(X, X̂|MY)-ρ(Y, Ŷ|MX)>0. The accuracy of the causality 

improves with increasing data length marked by increase in correlation between the 

original and estimated variables (convergence), also, the way CCM infers causality is 

contrary to the notion of causality proposed by Granger hence it’s termed as cross 

mapping, as in CCM response is used to estimate driver(77–79). The mathematical details 

of the methodology can be found in the supplementary material of Sugihara et al and book 

on time series analysis(75,80). The MATLAB (Mathworks Inc., MA) implementation of 

CCM algorithm demonstrated in an application with non-linear signals in the study 

conducted by Krakovská et al. was considered for analysis(74). 

2.4. Recurrence Quantification Analysis 

The system behavior can be characterized via its fundamental property utilizing a set of 

meaningful features derived from the recurrence plots(81). The recurrence plot is a 

graphical representation of recurrences in dynamical systems. Based on the structure of 

recurrence plot a set of features can be derived to quantify the meaningful information 
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embedded in the recurrence plot, this quantification process is termed as recurrence 

quantification analysis (RQA)(81–83).  

The recurrence quantification analysis has been used effectively in physiology to outline 

transitions in a dynamical pattern of a time series acquired from the human body under 

various physiological conditions(44,84,85). The construction of recurrence plot entails 

nonlinear phase space reconstruction of time series under investigation. The states of 

system change from time to time in a complex fashion, therefore, quantification of such 

changes provide pivotal information regarding the underlying systems behavior. The 

nonlinear state space reconstruction of a time series is performed according to Taken’s 

theorem as X(t), X(t-τ), X(t-2τ)… X (t-(E-1)τ). 

Where E and τ are dimension of embedding and time delay, respectively. Appropriate 

choice of delay and embedding dimension is critical in accurately transferring time series 

information to phase space. Traditionally false nearest neighbor algorithm is employed to 

explore the minimization of false nearest neighbor as a function of embedding dimension 

for physiological signals under consideration and optimal dimension of reconstruction 

chosen accordingly. Since different signals may have different characteristics, the choice 

of parameters for respective signals will be detailed at relevant places throughout the 

thesis. 

After multidimensional state space reconstruction, the distance between the individual 

points at i and j locations are calculated using a defined norm (such as Euclidean, 

Maximum norm, Minimum norm, and Levenshtein). The recurrence plot, therefore, 

describes the repetition of values of the signal in its phase space. When the distance at 

any given point is lower than the defined threshold than the coordinated at [i, j] then the 

recurrence point is plotted in the recurrence plot.  
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𝑅𝑃𝑖,𝑗 = {
1: 𝑥𝑖 ≈ 𝑥𝑗

0: 𝑥𝑖 ≉ 𝑥𝑗
   𝑖, 𝑗 = 1, … . , 𝑁 

Where RPi, j is a recurrence matrix containing points 0 and 1. N is a number of states 

considered, 𝑥𝑖 ≈ 𝑥𝑗 means equality up to a defined threshold (or tolerance). The matrix 

holds the result of a system at times 𝑖 𝑎𝑛𝑑 𝑗, if the states are similar, the corresponding 

entry to the recurrence matrix is 1 otherwise the entry to the recurrence matrix is 0. The 

figure 2.2 is an example of recurrence of systolic blood pressure during standing for two 

participants belonging to different group i.e. healthy older person (A) and older person with 

a history of stroke (B).  

The joint recurrence plot, an extension of recurrence plot, allows for an investigation of the 

relationship between multiple variables, utilizing a set of features derived from the joint-

recurrence plot termed as joint recurrence quantification analysis(81). While the 

recurrence plot captures the correspondence between the two signals as the distance 

between the multi-dimension phase-space profiles, the joint recurrence plot outlines the 

correspondence between the individual recurrence plots of the two signals under 

consideration(81,86). Therefore, the first step to the joint recurrence analysis is the 

construction of individual recurrence plot of the systems under consideration. Secondly, 

the individual recurrence plots are joined together, as such, the common occurrences of 

the recurrence plot are kept, while the occurrences in the recurrence plot that are different 

(determined by threshold or tolerance) are disregarded. The RQA analysis was performed 

using freely available MATLAB based CRP toolbox(87). 
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Figure 2.2. An example of the recurrence plot for systolic blood pressure during standing. 

As it can be seen visually that the recurrence plot for the healthy older person (A) is 

different from that of an older person with a history of stroke (B). 
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Chapter 3.  
 
Early Identification of Moderate Category Simulated 
Hemorrhage 

3.1. Summary 

Background: Hemorrhage is one of the major cause of mortality in civilians and soldiers. 

Early identification of bleeding remains an open problem. In this regard, blood pressure 

has been an ineffective measure of blood loss due to numerous compensatory 

mechanisms sustaining arterial blood pressure homeostasis. Especially, in pre-hospital or 

remote settings where intervention decisions are dependent on the common vital sign 

monitors such as heart rate and blood pressure. This chapter investigated the feasibility 

of identification of moderate category bleeding by utilizing non-invasively extracted 

features from electrocardiogram and continuous blood pressure. Methods: The 

hemorrhage of variable degree was simulated via graded lower-body negative pressure 

(LBNP) of 0 mmHg, -20, -30, and -40 mmHg. Simultaneous electrocardiogram (ECG) and 

continuous blood pressure were acquired for 5-minutes of each LBNP stage from 27 

young, healthy participants. Feature extraction was performed during the last 3 minutes 

of each LBNP stage to allow for effective blood pooling. Results: The findings showcased 

the feasibility of non-invasive features extracted from ECG and blood pressure with 

support vector machines (SVM) classifier algorithm towards classifying -30 mmHg and -

40 mmHg LBNP with 82% and 91% accuracy, respectively. Conclusion: The outcome of 

the analysis leads to the conclusion that development of an automated decision support 

system to identify moderate intensity hemorrhage is possible from commonly employed 

vital sign monitors, which can facilitate pertinent intervention to impede hemorrhage 

progression. 
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3.2. Background 

Trauma remains a major cause of mortality in civilians as well as in soldiers on the 

battlefield(8,9,18,88). According to World Health Organization, Trauma is associated with 

approximately 9% of the global annual mortality(4). Low and middle-income countries 

have witnessed overwhelming mortality pertaining to traumatic injury due to limited access 

to immediate medical care. Although most of the traumatic events have taken place in 

developing countries, industrialized nations are also severely affected by traumatic events, 

with over 29 million people suffering from traumatic events(4). Bleeding associated with 

traumatic events accounts for a considerable proportion of mortality(89). Post-partum 

hemorrhage accounts for approximately 125,000 deaths annually worldwide(14). 

Hypovolemic shock accounts for 80% of death within the first hour of injury, 33 to 56% of 

the death in a pre-hospital setting, and approximately 50% of death within a first 24-hour 

of trauma(4). Given that hemorrhage is responsive to appropriate intervention, early 

identification of hypovolemia can assist design of pertinent intervention. 

Table 3.1. The relationship between lower-body negative pressure stages, degree of blood 

volume displaced, percent of total volume lost, and hemorrhage category(90). 

LBNP (mmHg) Hemorrhage (category) Blood Loss (mL) Blood Loss (%) 

10-20 Mild 400-550 10 

20-40 Moderate 500-1000 10-20 

>40 Severe >1000 >20 
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Hemorrhage is typically classified as mild, moderate, or severe depending on the amount 

of blood volume lost from the circulation. The approximate amount blood volume lost 

corresponding to the respective category of hemorrhage is summarized in Table 3.1. In 

most cases, due to numerous compensatory mechanisms, the traditional marker of blood 

loss i.e. blood pressure fails to provide information regarding the degree of blood loss. 

Baroreceptors are the stretch receptors localized in the carotid sinus and the aortic arch, 

these receptors keep firing impulses to the brain continuously; to relay information 

pertaining to the arterial blood pressure level. 

 In response to the early phase of blood loss, these pressure receptors sense the drop in 

pressure level and decrease the number of impulses relayed to the brain. The 

corresponding withdrawal of vagal nerve and activation of sympathetic nerve activity, 

causing an elevation in heart rate and systemic vascular resistance, is a typical autonomic 

mechanism to ascertain blood pressure is regulated. Nevertheless, with the progression 

of blood loss to a severe category, stroke volume drops significantly and the autonomic 

control of blood pressure fails to regulate arterial blood pressure (autonomic 

decompensation), after which blood pressure drops abruptly and hemorrhagic shock is 

imminent if stroke volume is not immediately somehow increased.   

Table 3.2. List of traditional vital sign and hemodynamic parameters. Table highlights the 

changes in such parameters in response to central hypovolemia. 

Vital Signs Changes Reference 

Heart Rate Not Specific (21,26,91) 

Systolic Blood Pressure Late (27,92,93) 
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Diastolic Blood Pressure Late (27,93,94) 

Mean Arterial Pressure Late (26,27,92,93,95) 

Pulse Pressure Not specific (92,93) 

Shock Index Late (93) 

Respiratory Rate Late (93) 

Compensatory Reserves Early (93,94,96) 

 

Since it is rather impracticable, due to ethical reasons, to have humans go through severe 

blood loss, typically the research conducted for algorithm development and validation are 

performed during simulated hemorrhage. The lower-body negative pressure (LBNP) is an 

acclaimed tool for simulating hemorrhage. The application of LBNP translocate the central 

blood volume below the heart level in peripheral regions (mostly in pelvis and leg 

region)(90,97). The response of the cardiovascular system to LBNP has been shown to 

be analogous to blood loss, therefore, it provides safe and reproducible experimental 

setup for studying and developing algorithms impede hemorrhage(24). The continuous 

application of LBNP increases the blood volume displaced in the lower periphery, which 

reduces central venous pressure, therefore, preload and stroke volume. Compensatory 

increase in heart rate and systemic vascular resistance strives to maintain blood pressure 

by pumping out quickly the blood in the pulmonary artery. However, with a continuous 

decline in preload due to increased lower-body suction the pulmonary reservoir drains and 

autonomic collapse occurs resulting in an abrupt decline in blood pressure. The LBNP 

stage of -30 to -40 mmHg simulates a moderate category hemorrhage, therefore, 
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successful differentiation of -30 and -40 mmHg LBNP from resting state can assist surgical 

triage to impede hemorrhage progression.  

Considerable research have been conducted in the last two decades focused on the 

development of automatic algorithms for early detection of blood loss. However, limited 

success have been achieved in this regards. The more sophisticated way of tracking the 

compensatory response such as invasive stroke volume, central venous pressure, or 

muscle sympathetic nerve activity have shown potential towards accurately outlining the 

degree of blood loss(22,23,98,99). Nonetheless, due to their invasive nature and 

sophisticated instrumentation requirement, these approached have limited application in 

settings where the majority of hemorrhagic shock occurs (in the battlefield, rural, low-

income countries, and home monitoring). Table 3.2 summarizes the list of physiological 

features those are commonly employed and their potential as an early or late marker of 

blood loss. 

In recent years, interest has emerged towards quantifying compensatory mechanisms as 

an early indicator of hemorrhage progression(93,94,96). Autonomic control of blood 

pressure quantified via spectral analysis of heart rate and blood pressure and 

spontaneous baroreflex sensitivity (BRS) is long known to provide information regarding 

sympathetic, vagal, and baroreflex activity in response to an external perturbation to the 

cardiovascular homeostasis(66,100). However, due to the assumption of linear system 

behavior for spectral analysis and the inability of BRS to separate the feedforward and 

feedback control of blood pressure, these traditional methods are considered insufficient 

regarding underlying physiology when aimed to get accurate information pertaining to 

blood pressure regulation(101,102).  
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Arterial blood pressure and heart rate interaction, a closed loop control systems, is shown 

to be a pivotal inter-system interaction for regulating arterial blood pressure during 

orthostatic challenge(102,103). Therefore, quantified knowledge of causal heart rate and 

blood pressure interaction can provide key information pertaining to hemorrhage 

progression. The closed-loop heart rate and blood pressure interaction have a feedforward 

or non-baroreflex arm, governed by Frank-Starling and Weindkessel mechanisms and a 

feedback or baroreflex arm which signifies the strength of baroreceptors activity towards 

regulation of arterial blood pressure(104). In literature, the concept such bidirectional 

interaction is well studied and demonstrated for its ability to track central hypovolemia 

induced by head-up tilt or stand the test (Table 3.3).  

However, its potential towards tracking the degree of blood loss has not yet been 

validated. Additionally, a pertinent literature indicates a difference in physiological 

behavior in response to orthostatic challenge evoked via head-up tilt and LBNP. Such 

observations further warrant comprehensive investigation of heart rate and blood pressure 

directional interaction in response to LBNP to validate its potential as an early indicator of 

hypovolemia. Table 3.3 summarizes the studies which assessed heart rate and blood 

pressure interaction in response to orthostatic challenge. In this chapter we combine the 

traditional and novel features extracted from the ECG and blood pressure waveform and 

assess their potential to classify moderate intensity (-30 and -40 mmHg LBNP) simulated 

hemorrhage. An automated system that can classify hemorrhage at an early stage from 

common vital sign monitors will be of great clinical significance towards making 

interventional decisions to impede hemorrhage progression to a severe category. 

Table 3.3. List of research assessing heart rate and blood pressure interaction in response 

to orthostatic challenge. 
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Research Signals Method 

Javorka et al(105) SBP and RR Tilt test 

Javorka et al(104) SBP and RR Tilt test 

Porta et al(106) SBP and RR Tilt test 

Silvani et al(69) SBP and RR Tilt test and Phlebotomy 

Faes et al(107) SBP and RR Tilt Test 

Faes et al(108) SBP and RR Tilt Test 

Nollo et al(109) SBP and RR Tilt Test 

Porta et al(103) SBP and RR Tilt test 

 

3.3. Methods 

3.3.1. Experimental protocol and Instrumentation 

The participants for the study were recruited via an oral advertisement on the Simon 

Fraser University (SFU) campus. The approval for experimentation was obtained from the 

research ethics board of SFU, which approved the experimental protocols as a minimum 

risk protocol. Any participants over the age of 18 and without any cardiovascular disease 

were eligible to participate in the study. The experimental protocols were conducted in the 

Aerospace Physiology Laboratory in the Department of Biomedical Physiology and 

Kinesiology. Written informed consent for participation was obtained from each participant 
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prior to experimentation. A registered nurse was present during the experimentation for 

the safety of participants. 

The lower body of each participant was placed in the LBNP chamber and sealed at the 

level of the iliac crest. The participants lay supine inside the chamber for 5 minutes of 

baseline recording after which, the pressure inside the chamber was gradually reduced to 

-20 mmHg, from this point the chamber pressure was reduced in steps of 10 mmHg up to 

-40mmHg. Five minutes of negative pressure was applied at each LBNP stage.  A 

straddling bicycle seat inside the chamber prevented participants from getting further 

pulled inside the chamber. The chamber pressure was immediately terminated if a 

participant exhibited 1) pre-syncopal symptoms 2) sudden drop in blood pressure and/or 

heart rate 3) any discomfort or 4) upon request.   

Simultaneous electrocardiogram (ECG) and blood pressure were acquired from 27 young, 

healthy participants (15 males and 12 females, age: 27±1 years, weight: 66±2 kg, height: 

169±2 cms, mean±SE) who underwent graded LBNP. The detailed demographic 

information is summarized in Table 3.4. The ECG signal was acquired in a lead II 

configuration using LifePak8 (Medtronic Inc., MN, USA) and the blood pressure signal was 

acquired using a finger photoplethysmograph cuff (FMS, Amsterdam, The Netherlands) 

applied on the mid phalanx of the middle finger (left hand). Five minutes of data were 

acquired during baseline resting and each LBNP stages using an NI 9205 analog input 

module (National Instruments Inc., TX, USA) at a sampling rate of 1000 Hz. Figure 3.1 

shows the experimental setup for data acquisition during LBNP protocol. 
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Figure 3.1. Experimental set up of lower-body negative pressure protocol. Lower body is 

placed in the chamber where suction is applied to translocate central blood volume in the 

lower periphery. 

Table 3.4. Detailed demographic information of the 27 participants. The table lists each 

participant’s age, height, weight, and gender. 

Subject No. Age Height (cms) Weight (Kgs) Gender 

1 34 174 70 Male 

2 27 179 90 Male 

3 29 168 54 Female 

4 24 162 61 Male 

5 24 165 56 Female 

6 26 162 57 Female 
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7 39 165 85 Male 

8 28 169 59 Female 

9 25 171 67 Female 

10 25 175 77 Male 

11 25 169 64 Female 

12 30 164 58 Female 

13 29 178 70 Male 

14 31 169 65 Male 

15 18 158 60 Female 

16 39 170 85 Female 

17 24 177 77 Male 

18 22 180 68 Male 

19 26 183 71 Male 

20 25 156 44 Female 

21 25 168 62 Male 

22 24 150 53 Female 



29 

23 23 151 45 Female 

24 23 169 67 Male 

25 26 175 72 Male 

26 28 167 74 Male 

27 23 177 71 Male 

 

3.3.2. Data Processing 

From the acquired signals RR intervals, beat-to-beat systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) was obtained using the beatscope software (Finapres, 

FMS, The Netherlands), mean arterial pressure (MAP) was derived from SBP and DBP 

as; MAP=
2

3
×DBP+

1

3
×SBP. An evenly sampled signal was created from beat-to-beat 

signals using spline interpolation and was resampled to 10 Hz prior to assessing heart 

rate and blood pressure causality and spectral analysis of blood pressure and RR 

intervals. The appropriate parameter for causality analysis was determined using false 

nearest neighbor (FNN) algorithm at a delay of 10 samples using CRP toolbox in MATLAB. 

The FNN minimization was achieved at M=3. Therefore, the heart rate and blood pressure 

causality was computed at M=3 and τ=10 unless mentioned otherwise.  

The spectral analysis was performed using Welch power spectral density (PSD) using a 

Hamming window of size 128 sampled and 50% overlap. The normalized power 

distributed in the VLF, LF, and HF band of blood pressure and RR intervals during each 

LBNP stage was calculated. The causality and spectral analysis were performed only 
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during the last 3 minutes of each LBNP stages to allow for effective blood pooling achieved 

by LBNP and its effect on the cardiovascular parameters. Pulse pressure was obtained 

as a difference between the SBP and DBP for each LBNP stage.  

3.3.3. Statistical Analysis 

The group mean of RR, SBP, DBP, MAP, pulse pressure (PP = SBP-DBP), the non-

baroreflex i.e., feedforward (RR→SBP and RR→MAP), the baroreflex i.e., feedback 

(SBP→RR and MAP→RR) causality values, normalized spectral power distribution in 

respective bands of blood pressure and RR intervals, and gain value and % significant 

time interaction in respective frequency bands for the last 3min of each LBNP stage was 

obtained. Test for normality of the data was conducted using the Shapiro-Wilk test at α = 

0.05. A one-way test of ANOVA (normally distributed data) or Kruskal-Wallis test (data 

failed the normality test) was conducted to test the significance of the difference. The 

group mean of baroreflex causality (SBP→RR and MAP→RR) was compared with the 

group mean of non- baroreflex causality (RR→SBP and RR→MAP) under baseline using 

one-way ANOVA. A multiple comparison test, to account for the significance of the 

difference in the cardiovascular parameters and on the blood pressure regulatory indices, 

inflicted by different LBNP stages, was conducted using appropriate statistical test 

followed by post-hoc analysis using the Tukey-HSD method. All tests for significance were 

conducted using a statistical toolbox of MATLAB (Mathworks Inc., MA, USA). The test 

result at α = 0.05 was considered as significant. All tabular results are presented as mean 

± SD while all graphical results are presented as mean±SE unless mentioned otherwise. 
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3.4. Results 

The cardiovascular parameters and the blood pressure regulatory indices passed the test 

of normality, therefore, a one-way test of ANOVA was conducted followed by post-hoc 

analysis using the Tukey-HSD method. Figure 3.2 summarizes the behavior of 

cardiovascular parameters in response to different LBNP stages. No change was 

observed in the SBP (p=0.50), DBP (p=0.79), or MAP (p=0.99) as a consequence of LBNP 

application. Pulse pressure decreased significantly (p<0.05) at -40 mmHg LBNP 

compared to baseline. Additionally, pulse pressure was observed to be significantly 

(p<0.05) different at -40 mmHg LBNP compared to -20 mmHg LBNP. RR intervals and 

heart rate decreased and increased, respectively at -30 and -40 mmHg compared to 

baseline. Furthermore, both parameters changed significantly (p<0.05) at -40 mmHg 

compared to -20 mmHg. 

The response of baroreflex and non-baroreflex causalities are summarized in Figure 3.3. 

In response to LBNP stages no change (p>0.05) was observed in the non-baroreflex arm, 

while the baroreflex arm showed a significant increase (p<0.05) at -30 mmHg LBNP and 

at -40 mmHg LBNP compared to baseline. Moreover, a significant difference (p<0.05) was 

observed in the baroreflex causality between -20 mmHg LBNP and -40 mmHg LBNP. 

During resting stage the non-baroreflex arm of the interaction was observed to be 

dominant compared to the baroreflex arm, as higher (p<0.05) causal information flow in 

the direction RR→SBP or RR→MAP was noted compared to the causal information flow 

in reverse direction i.e. SBP→RR or MAP→RR (Figure 3.4). 
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Figure 3.2. The response of cardiovascular parameters to graded lower-body negative 

pressure. R-R intervals (A) reduced significantly both at −30 (p=0.001) and −40 (p<0.001) 

mmHg LBNP compared to rest. Heart Rate (B) increased significantly at -30 mmHg and -

40 mmHg compared to baseline. Pulse pressure (F) changes significantly at -40 mmHg 

compared to baseline. Additionally, R-R intervals (p<0.001), heart rate (p<0.001), and 

pulse pressure (p=0.02) reduced significantly at −40mmHg LBNP compared to −20mmHg 

LBNP. The systolic blood pressure (C), diastolic blood pressure (D), and the mean arterial 

pressure (E) did not change (p=0.50, p=0.79, and p=0.99, respectively) in response to 

graded lower-body negative pressure, * and ‡ represents significant change (p<0.05, post-

hoc result) compared to rest and −20mmHg, respectively. 



33 

 

Figure 3.3. The response of baroreflex (A, C) and non-baroreflex (B, D) causalities to 

graded lower-body negative pressure. In response to LBNP, MAP→RR (p=0.004) 

causality increased significantly at −30mmHg compared to rest, SBP→RR (p=0.001) 

causality increased significantly at −40mmHg compared to rest. Compared to −20mmHg 

the SBP→RR (p=0.04) and MAP→RR (p=0.01) causality increased significantly at 

−40mmHg LBNP. No change in RR→SBP (p=0.76) and RR→MAP (p=0.60) causality was 

observed in response to LBNP. *Represents significant difference (p<0.05, post-hoc 

result) from rest while ‡represents significant difference from −20mmHg. 
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Figure 3.4. Comparison of non-baroreflex or feedforward (RR→SBP and RR→MAP) and 

baroreflex or feedback (SBP→RR and MAP→RR) causalities during supine baseline. The 

feedforward causality was significantly stronger (p<0.001) than the feedback causality for 

both RR↔SBP (A) and RR↔MAP (B) interactions. *Represents significantly (p<0.05, one-

way ANOVA) stronger causality. 

The behavior of autonomic control of blood pressure assessed via spectral analysis of RR, 

SBP, and DBP is summarized in Figure 3.5. A significant decline RRHF at -30 and -40 

mmHg compared to baseline was observed. RRLF/HF increased significantly at -30 and -40 

mmHg compared to baseline. The DBPLF increased significantly only at only -40 mmHg 

compared to baseline while no change was observed spectral distribution in the SBP. 

Shock index, modified shock index, and PP/HR all changed significantly at -30 and -40 

mmHg compared to resting baseline (Figure 3.6).  A 5-fold cross-validation was performed 

to test the potential of different classifier towards classifying moderate category 

hemorrhage (-30 and -40 mmHg LBNP) from baseline. Highest accuracy of 82% was 

achieved for classifying -30 mmHg LBNP from baseline, while an accuracy of 91% was 

observed for classifying -40 mmHg from baseline. The results for different classifier are 

summarized in Table 3.5 and 3.6 for -30 mmHg and -40 mmHg LBNP, respectively. Values 

of spectral power distributed in each frequency band is summarized in Table 3.7. 
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Figure 3.5. Spectral power distribution in SBP (A-C), DBP (D-F), and MAP (G-I) in 

respective frequency bands. No change (p>0.05) was observed in the spectral power 

distribution except for LF power in DBP, which increased significantly (p<0.05) at -40 

mmHg compared to baseline. 

3.5. Interpretation 

This chapter investigated the feasibility of differentiating moderate intensity hemorrhage 

by utilizing non-invasive feature derived from commonly employed indicators of 

hemodynamic state i.e. ECG and continuous blood pressure signals. To this end, the 

findings of the research highlighted the capability of machine learning application towards 

differentiating the dynamics of moderate category hemorrhage (-40 mmHg) simulated via 

lower-body negative pressure utilizing a set of meaningful features derived from common 

vital sign monitors. 
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Figure 3.6. The behavior of Shock index (A), modified Shock index (B), and pulse 

pressure/heart rate (C) in response to lower-body negative pressure. All indices changed 

significantly at -30 and -40 mmHg compared to baseline. Moreover, they changed 

significantly at -40 mmHg compared to -20 mmHg. * Represents significant difference from 

baseline while ‡ represents a significant difference from -20 mmHg. 

3.5.1. Cardiovascular Parameters in response to LBNP 

Owing to convoluted physiological mechanisms regulating arterial blood pressure until 

autonomic collapse has rendered arterial blood pressure as an ineffective marker of early 

stage bleeding. Following autonomic collapse, blood pressure falls abruptly, however, at 

this point the interventional steps may be limited in effect towards maintenance organ 

perfusion. Therefore, early diagnosis of blood loss can assist the design of appropriate 

interventional strategies. The LBNP stage of -30 to -40 mmHg simulates a spectrum of 

moderate category simulated hemorrhage, and accurate classification moderate category 

simulated hemorrhage on the basis of non-invasive features derived from commonly 

employed vital sign monitors for hemodynamic monitoring can be a great asset. 

Reduction in stroke volume is observed in response to central hypovolemia(26,95,110), 

nevertheless, accurate measurement of stroke volume is invasive and often entails 
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sophisticated instrumentation and expert operator, and thus, limiting its application to the 

environment where the majority of hemorrhagic shock occurs. Consequently, caregivers 

have to rely on systolic, diastolic, or mean arterial pressures to get insights regarding the 

dynamics of bleeding. Nevertheless, numerous physiological mechanisms responsible for 

arterial blood pressure regulation have limited the efficacy of blood pressure from 

exhibiting early symptoms of blood loss from the circulation, which often remain regulated 

until the hemorrhage has progressed to severe category. Pulse pressure as an alternative 

to stroke volume has been explored as an early indicator of progressive hypovolemia, 

although it showed potential to track hypovolemia, its clinical application is hindered due 

to high inter-subject variability(92,111,112).  

Accordingly, noninvasive detection of stroke volume can have a clinical significance 

towards monitoring central hypovolemia, in this regard, attempts have been made to 

derive stroke volume from continuous arterial blood pressure waveform. Scherhag et 

al(113) and Tavakolian et al(110) have shown the possibility of such metric towards 

tracking hypovolemia by performing a comparison with non-invasively derived stroke 

volume with accurately measured stroke volume via echocardiography. 

Additionally, the ratio of pulse pressure and heart rate has also been demonstrated to be 

correlated with stroke volume in an animal model, however, its application to humans 

towards tracking hypovolemia has not yet been demonstrated. Pulse pressure in response 

to simulated hemorrhage changed only at -40 mmHg compared to resting baseline while 

heart rate changed both at -30 mmHg and -40 mmHg compared to resting baseline. While 

heart rate showed an early change in its dynamics, making a triage decision based on 

heart rate alone controversial due its variable behavior and dependence numerous factors 

such as pain, hormones, vagal and sympathetic tone. 

Figure 3.6 (C) highlights the dynamics of PP/HR ratio in response to LBNP stages. The 

ratio significantly declined at -30 mmHg and -40 mmHg compared to baseline, additionally 
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the ratio successfully differentiated -40 mmHg from -20 mmHg underscoring its capability 

to continuously monitor the severity of bleeding. The Figure 3.7 details the distribution of 

such index for individual participants for resting baseline and moderate category 

hemorrhage (-40 mmHg). The ratio declined significantly in the majority of the participants 

suggesting its application towards monitoring the intensity of progressing central 

hypovolemia. 

3.5.2. Shock Index in Response to LBNP 

Shock index, a ratio of heart rate and systolic blood pressure, is also a commonly utilized 

feature for tracking the degree of blood loss(114,115). However, changes in such index 

are not specific, some research have found it an early indicator of hypovolemia, while in 

others no change in shock index was observed during moderate category hemorrhage 

which further highlights great degree of variance in the behavior of heart rate in the 

literature(93). In our data, with the application of moderate category LBNP (-30 and -40 

mmHg), we observed a significant increase in the heart rate in response to a reduction in 

stroke volume to maintain cardiac output and arterial blood pressure, consequently, 

inflicting significant change in shock index. The behavior of shock index in response to 

LBNP is shown in Figure 3.6, significant difference compared to resting baseline was 

observed as early as -30 mmHg compared to resting baseline. 

Majority of studies utilize systolic blood pressure for calculation of shock index, however, 

DBP can also be of particular importance given its potential to provides information 

pertaining to the systemic vascular resistance, and thus incorporation of mean arterial 

pressure for calculating shock index i.e. modified shock index can have wider application 

towards tracking hypovolemia(116). The behavior of modified shock index in response 

LBNP is summarized in Figure 3.6, a significant change was observed in the modified 

shock index at -30 and -40 mmHg compared to resting baseline. In addition, both indexes 
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were observed to be significantly different at -40 mmHg compared to -20 mmHg further 

validating its potential to track the degree of blood loss. 

3.5.3. Spectral Analysis in Response to LBNP 

Furthermore, we studied the autonomic control of blood pressure during simulated 

hemorrhage via spectral analysis of heart rate and blood pressure in the normalized units. 

The spectral power distributed in the high-frequency region of the RR intervals reduced 

significantly with the application of LBNP suggesting vagal withdrawal, while no change 

was observed in the VLF and LF frequency bands of the RR intervals. Additionally, the 

RRLF/HF ratio increased significantly at -30 and -40 mmHg compared to resting baseline. 

This behavior is summarized in Table 3.7. The increased RRLF/HF ratio was more so due 

to a sudden decline in vagal behavior as opposed to an increase in sympathetic behavior 

in response to LBNP. This observation suggests during hypovolemia in supine posture, 

the autonomic control of blood pressure is achieved via sudden vagal withdrawal leading 

to shift in sympatho-vagal balance more towards sympathetic activity causing an increase 

in heart rate and systemic vascular resistance for regulating cardiac output and blood 

pressure. 

The spectral power distributed in the low-frequency and high-frequency band of blood 

pressure is shown to reflect baroreflex and respiratory activity, respectively. When SBP 

was used as a blood pressure marker, we observed no change (p>0.05) in the spectral 

power distributed in any frequency bands. However, when DBP was used as a blood 

pressure marker, we observed a significant change in the DBPLF at -40 mmHg compared 

to resting baseline suggesting activation of baroreflex response (Figure 3.5). This 

discrepancy can be associated with the postural effect on the translocation of blood 

volume. Application of LBNP translocate the blood volume in the lower extremities while 

standing or head-up tilt translocate the blood volume in the splanchnic bed(117).  
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Table 3.5. Different classifier performance towards classifying moderate category 

hemorrhage (-30 mmHg) from resting baseline. Table lists the highest values for each 

classifier category. 

Classifier Sensitivity Specificity Accuracy 

SVM 85% 78% 82% 

kNN 89% 70% 80% 

DA 67% 78% 72% 

LR 74% 70% 72% 

Ensemble 85% 81% 83% 

DT 70% 70% 70% 

 

Table 3.6. Different classifier performance towards classifying moderate category 

hemorrhage (-40 mmHg) from resting baseline. Table lists the highest values for each 

classifier category. 

Classifier Sensitivity Specificity Accuracy 

SVM 89% 93% 91% 

kNN 89% 85% 87% 
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DA 89% 89% 89% 

LR 74% 74% 74% 

Ensemble 89% 89% 89% 

DT 74% 74% 74% 

 

While the spectral analysis is well-accepted norm to study the autonomic control of blood 

pressure in response to the orthostatic challenge, the same is also criticized for its ability 

to not account for non-linearity of signals under investigation.  

3.5.4. Non-linear Heart Rate and Blood Pressure Interaction 

The thesis substantiated the analysis by incorporating non-linear heart rate and blood 

pressure interaction in response to LBNP. To impede progressing hemorrhage, it is central 

to quantify the compensatory mechanisms regulating arterial blood pressure. To this end, 

the current research investigated the sensitivity of causal heart rate and blood pressure 

interaction for monitoring simulated central hypovolemia which is known to act in a closed 

loop to regulate arterial blood pressure during orthostatic challenge. Furthermore, owing 

to the robustness of the nonlinear methodology, we successfully highlighted the 

contribution of the non-baroreflex (RR→SBP and RR→MAP) and the baroreflex 

(SBP→RR and MAP→RR) mechanisms responsible for blood pressure regulation under 

a variable degree of LBNP induced physiological stressor (Figure 3.3). The directional 

information flow, mediated by both baroreflex and non-baroreflex arms of the interaction 

was observed, with the non-baroreflex (RR→SBP and RR→MAP) arm being dominant 
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(p<0.001) during the resting stage compared to the baroreflex arm (SBP→RR and 

MAP→RR), Figure 3.4.  

With the application of external perturbation to the hemodynamic homeostasis in the form 

of lower body negative pressure, an elevation in the causal activity, in the direction of 

blood pressure to heart rate (SBP→RR and MAP→RR) was observed, representing 

activation of baroreflex mediated control of heart rate towards the maintenance of arterial 

blood pressure homeostasis. Progression of central hypovolemia to moderate intensity (-

30 mmHg) was accompanied by no significant elevation in the SBP→RR (p=0.07) 

causality but significant elevation in the causal drive from MAP→RR (p=0.004) while no 

change was observed in the strength of reverse drive, which is a representative of heart 

rate mediated blood pressure changes i.e. RR→SBP (p=0.76) and RR→MAP (p=0.60).  

This observation indicated that under resting condition blood pressure is primarily 

maintained through blood pressure changes mediated by heart rate, contrarily, under 

physiologically perturbed cardiovascular system due to a decline in venous return, the 

baroreflex mediated heart rate control acts as a compensatory mechanism leading to 

arterial blood pressure homeostasis. Thus, the two blood pressure regulatory mechanisms 

interact in closed loop at any given time in order to maintain blood pressure homeostasis. 

Furthermore, the baroreflex causality (SBP→RR and MAP→RR) was able to differentiate 

-40 mmHg from -20 mmHg, therefore highlighting its capability to track and differentiate 

varying intensity of hemorrhage (Table 3.7).  

This behavior of closed loop heart rate and blood pressure interaction under varying 

physiological conditions ascertained the contribution of either arm of the blood pressure 

regulation mechanism. The findings of the current research corroborated with the previous 

findings regarding heart rate and blood pressure interaction highlighted under head-up tilt 
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and the stand test, which demonstrated an elevation in the baroreflex activity during 

orthostatic challenge compared to baseline with SBP being an indicator of blood pressure 

functioning(69,104,105). However, the literature is limited in terms of comprehensive 

quantified knowledge of such nonlinear behavior with respect to progressing blood loss 

simulated by LBNP.  

The report by Dorantes-Mendez et al and Silvani et al(69,118) investigated heart rate and 

blood pressure coupling with respect to LBNP and actual blood loss, respectively. 

However, a linear methodological approach was considered for such quantification. 

Moreover, the heart rate and blood pressure interaction is known to be of nonlinear nature, 

therefore, a more robust approach would be a prerequisite, for accurately underpinning 

the continuous dynamics of the non-baroreflex and the baroreflex arms of such interaction. 

With the application of nonlinear methodology and higher sample size compared to 

previous two works, in the current research, we systematically demonstrated the degree 

of statistical alteration in both the non-baroreflex and the baroreflex mechanisms of blood 

pressure regulation in response to the simulated progressing hemorrhage (LBNP). Our 

study, therefore, provided comprehensive insights regarding the feasibility of 

compensatory directional interaction for monitoring progression of hemorrhage and for 

surgical triage.  

Additionally, we compared the use of SBP and MAP as a marker of baroreflex mediated 

heart rate control (baroreflex causality) in response to LBNP. As such, we found MAP to 

be a more sensitive marker of baroreflex mediated heart rate control in response to 

moderate category (-30 mmHg) LBNP compared to SBP (Figure 3.3). The MAP→RR 

causality achieved statistical significance at -30 mmHg LBNP compared to baseline while 

the SBP→RR causality did not show a significant change in its dynamics until -40 mmHg 

LBNP. However, SBP→RR and MAP→RR both showed a significant change in their 
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dynamics at -40 mmHg compared to baseline and -20 mmHg (Figure 3.3). This 

observation leads us to conclude that MAP→RR causality is more sensitive to the early 

phase of central blood loss simulated by LBNP, thus, a better marker of baroreflex activity 

when aimed to gain early information regarding progressing blood loss from the 

circulation. Mean arterial pressure perhaps is a better indicator of early phase of central 

blood pooling in the lower limbs compared to SBP due to its relationship with cardiac 

output (CO), systemic vascular resistance (SVR), and central venous pressure 

(CVP); MAP=(CO×SVR)+CVP(61), validation of this hypothesis under gravity-induced 

orthostatic stress (head-up tilt or stand test) requires future work. 

The behavior of nonlinear causal heart rate and blood pressure interaction in response to 

simulated hemorrhage via LBNP is not extensively explored in the literature. The 

references that exist regarding such behavior have been outlined under orthostatic 

challenge induced via head-up tilt and stand test, which have considered systolic blood 

pressure as a marker of arterial blood pressure. The lower-body negative pressure is 

hypothesized to exert orthostatic challenge on the human body analogous to head-up 

tilt(117,119). Therefore, the physiological response to LBNP is expected to be analogous 

to that of head-up tilt and quiet standing. Nevertheless, the outcomes of some studies 

have highlighted the differences in the cardiovascular, cerebrovascular, and the hormonal 

responses when using LBNP to evoke orthostatic challenge compared to head-up 

tilt(117,120–122).  

The absence of gravity induced hydrostatic gradient during lower-body negative suction 

is shown to be the major contributor towards the existence of such difference. The 

application of LBNP empties splanchnic blood volume (analogous to hemorrhage) while 

the gravity induced orthostatic stress (such as head-up tilt) increases the blood volume in 

the splanchnic bed(117). Recent work by Silvani et el(69) further highlighted such 
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discrepancy, where a significant change in baroreflex response (using SBP) during head-

up tilt but not during 1000 ml of blood loss was observed, similarly, the baroreflex response 

(SBP→RR) in our analysis failed to differentiate -30 mmHg LBNP (equivalent to 

approximately 1000 ml of blood loss) from baseline. These observations, besides 

highlighting the fact that baroreflex response differs between head-up tilt and central blood 

loss, raise concern regarding SBP as baroreflex marker when aimed to gain early insights 

regarding blood loss.  

The discrepancies that might exist in the blood pressure regulation via causal heart rate 

and blood pressure interaction during orthostatic challenge induced by the application of 

LBNP compared to head-up tilt or stand test is not the scope of this thesis, and future work 

shall follow to address such concerns to further our understanding regarding underlying 

physiology. The current thesis aimed at investigating the capability of causal heart rate 

and blood pressure interaction in tracking progressing simulated hemorrhage. In such 

context, the findings of the study are promising and underscored capability of MAP→RR 

causality to differentiate moderate category hemorrhage (-30 mmHg LBNP) from resting 

baseline. 

Although the parameters extracted from the blood pressure waveform and 

electrocardiogram show statistical capability to differentiate moderate category 

hemorrhage from resting baseline, it is pivotal also consider the behavior on an individual 

basis, high inter subject variability can limit the potential of such predictor to accurately 

classify progressing hemorrhage. Figure 3.7 shows the behavior of individual participants 

during baseline and -40 mmHg LBNP. 
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Figure 3.7. Comparing rest vs -40 mmHg of different parameters which showed a 

significant change in response to lower-body negative pressure. 

Table 3.7. Values of different parameters studied in this research in reponse to lower-body 

negative pressure. * Represent significant difference from rest while ‡ represents a 

significant difference from -20 mmHg. 

Variables Rest -20 mmHg -30 mmHg -40 mmHg 

RR (ms) 0.94±0.14 0.90±0.14 0.82±0.11* 0.74±0.10*‡ 

HR (BPM) 65±11 69±12 75±11* 82±11*‡ 

SBP (mmHg) 127±16 126±19 123±19 120±21 

DBP (mmHg) 71±15 71±17 73±16 75±17 

MAP (mmHg) 90±15 90±16 90±16 90±18 
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SBPVLF (n.u.) 0.55±0.17 0.55±0.16 0.52±0.19 0.50±0.24 

SBPLF (n.u.) 0.30±0.13 0.34±0.12 0.38±0.18 0.40±0.20 

SBPHF (n.u.) 0.14±0.10 0.12±0.09 0.10±0.05 0.10±0.07 

DBPVLF (n.u.) 0.49±0.18 0.50±0.18 0.39±0.13 0.37±0.22 

DBPLF (n.u.) 0.39±0.15 0.43±0.15 0.50±0.15 0.53±0.20* 

DBPHF (n.u.) 0.11±0.11 0.10±0.09 0.11±0.07 0.10±0.08 

RRVLF (n.u.) 0.30±0.16 0.38±0.15 0.42±0.15 0.45±0.18 

RRLF (n.u.) 0.31±0.13 0.30±0.10 0.36±0.13 0.36±0.15 

RRHF (n.u.) 0.39±0.15 0.31±0.17 0.23±0.13* 0.19±0.14*‡ 

SI 
(BPM/mmHg) 0.52±0.10 0.56±0.11 0.62±0.13* 0.71±0.16*‡ 

MSI 
(BPM/mmHg) 0.75±0.17 0.79±0.19 0.88±0.19* 0.94±0.21*‡ 

PP/HR 
(mmHg/BPM) 0.88±0.20 0.80±0.21 0.67±0.17* 0.56±0.14*‡ 

RR→SBP 0.84±0.09 0.85±0.06 0.85±0.05 0.86±0.06 

SBP→RR 0.78±0.07 0.80±0.09 0.83±0.07 0.85±0.07*‡ 

RR→MAP 0.85±0.07 0.85±0.06 0.86±0.04 0.87±0.05 

MAP→RR 0.77±0.06 0.80±0.07 0.83±0.06* 0.85±0.07*‡ 
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3.5.5. Classification of Moderate Category Hemorrhage from Baseline 

Although numerous parameters have been explored in the literature to accurately 

differentiate hypovolemic state compared to the normovolemic state, limited success has 

been obtained due to the existence of high inter-subject variability. These observations 

evidently hint towards the need of a more robust system for accurately and reliably 

monitoring hypovolemia progression. Such system would require decision making based 

on numerous parameters accentuating respective physiological information. In this 

context, the concept of machine learning can play a pivotal role. Even though machine 

learning is frequently utilized in literature for performing multi-level classification, its 

application towards the automatic classification of trauma is limited(32–34,123). The 

concept of the compensatory reserve is promising in this context which utilized advanced 

machine learning scheme to monitor hypovolemic state(93,96). The work by Bennis et al 

utilized neural network with noninvasive features to differentiate -50 mmHg from resting 

baseline(33). From limited research conducted in this area, it can be concluded that 

machine learning can overcome the limitations such as high inter-subject variability and 

reliance on specific parameter to make a decision on intensity of hemorrhage. 

The extracted features for machine learning classification in this research shown in Figure 

3.7 were fed to different classifiers to test its potential to accurately classify moderate 

category hemorrhage (-30 ad -40 mmHg LBNP) from resting baseline. Table 3.5 and 3.6 

lists the performance of classifier using different kernels towards the classification of -30 

and -40 mmHg LBNP compared to baseline. Even though numerous study parameters 

showed significant change at -30 mmHg compared to resting baseline, the classification 

accuracy of only 82% was achieved, this further emphasized insufficiency of decision 

making based on the group mean behavior of specific parameter due to the existence of 

inter-subject variability, thus, decision support system utilizing information via multiple 



49 

predictors of blood loss can be more reliable and accurate. Utilizing same features 

classification accuracy for -40 mmHg LBNP was 91% suggesting the set features 

discussed in this manuscript may assist automatic detection of blood loss at an early 

stage, accordingly assist surgical triage to impede hemorrhage progression to a severe 

stage. 

3.6. Conclusion 

In conclusion, the thesis showed strong evidence towards classifying moderate intensity 

hemorrhage with reasonable accuracy (82% for -30 mmHg and 91% for -40 mmHg) based 

on features derived from non-invasively acquired common vital sign monitors. Further 

validation is warranted with a bigger cohort to gain potential application towards design of 

automated decision support system for caregivers to facilitate surgical triage. 

 



50 

Chapter 4.  
 
Cardio-Postural Control of Blood Pressure: 
Validation of a Novel Model to Assess Orthostatic 
Tolerance 

4.1. Summary 

Background: Blood pressure during standing is regulated in part by autonomic activity 

and partly via skeletal muscle activation by pumping the pooled venous blood back to the 

heart. Despite such knowledge, the physiology of the postural instability is studied 

independently as cardiovascular and postural problems. In recent years, significant 

coupling between the cardiovascular and postural controls of blood pressure during 

standing has been demonstrated, however, the cause-and-effect relationship between the 

respective signals of cardiovascular and postural controls of blood pressure remains to be 

established. Methods: In this chapter, we extended the previous work and explored the 

existence of a degree of cause-and-effect relationship between the representative signals 

of cardiovascular and postural systems during last 4-minutes of standing via non-linear 

convergent cross mapping (CCM). Systolic blood pressure was considered as a marker 

of cardiovascular performance, while calf-electromyography (EMG) and postural sway 

(COPr) were considered as representative of postural systems. Causality was studied 

between EMG↔SBP, COPr↔SBP, and EMG↔COPr signal pairs. Results: The bi-

directional causal information flow confirmed the previously conceived notion of 

interdependency between the cardiovascular and postural systems towards blood 

pressure regulation during orthostatic challenge. Further, this chapter observed a 

significant change in such behavior following a 12-minute bout of submaximal exercise. 

Conclusions: The findings of this chapter underscored the existence of a significant 
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interaction between cardiovascular and postural towards regulation of blood pressure and 

therefore, stresses upon considering cardiovascular as well as postural controls of blood 

pressure when addressing physiology behind orthostatic intolerance or postural instability. 

4.2. Background 

Maintaining postural instability remains a major concern in people with neurodegenerative 

diseases such as stroke, concussion, and Parkinson’s disease (PD)(35,124–127). 

Unexpected falls are associated with postural instability and are one of the leading cause 

of injury in such population group(5). Older people with a history of neurodegenerative 

disease have a higher chance of falling compared to their healthy counterparts(35,40). 

Given that neurodegenerative diseases are predominantly prevalent in older people and 

with elderly population is anticipated to grow in the future(39), the prevalence of 

neurodegenerative diseases and associated fall is expected to increase in the near future. 

Injuries due to falling entail immediate medical attention and are a major cause of a visit 

to the emergency department of the hospital. With over $31 billion spent annually for 

treatment and management, the fall and associated injuries have become a significant 

financial burden on the current healthcare system(7). Additionally, such events are 

debilitating; limiting individual’s mobility leading to severe degradation in the quality of life.  

On assuming upright stance, the central blood volume is translocated below the heart level 

as a consequence of gravity induced hydrostatic gradient. Given the compliant nature of 

the venous system, pooling of blood takes place; in the veins of the lower periphery. 

Excessive venous pooling can result in a decline in preload and therefore, drop in blood 

pressure, which if not compensated for can initiate symptoms of syncope. On standing, 

the immediate translocation of blood volume is compensated via the baroreceptor 

unloading leading to vagal withdrawal and sympathetic nerve activation causing increased 
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heart rate and systemic vascular resistance. However, prolonged standing can cause 

continuous displacement of blood in the lower periphery, under such circumstances blood 

pressure regulation is dependent on the calf musculature to pump the pooled venous 

blood back to the heart (skeletal muscle pump). 

Additionally, the postural control system integrates the information via the visual, 

vestibular, and the somatosensory systems, the absence of such information can lead to 

postural instability(128,129). Therefore, maintaining stable upright stance is an intricate 

process and dependent on the autonomic and postural controls of blood pressure.  This 

thesis aims to investigate the physiology of fall either due to the deterioration of postural 

mechanisms or the impairment of the cardiovascular performance. However, only limited 

research have considered both systems jointly when addressing the physiology of postural 

instability(48,130). Figure 4.1 details the hypothesized link between the cardiovascular 

and postural controls of arterial blood pressure during orthostatic challenge.  

Research has demonstrated individuals with poor orthostatic tolerance relied on increased 

postural sway for the maintenance of preload, where postural sway is believed to 

contribute to greater activation of calf skeletal muscles, therefore, facilitating a venous 

return to the heart to facilitate blood pressure homeostasis(3). The cardio-locomotor model 

proposed by Novak et al hypothesized that forces generated during locomotion by 

increased contraction of skeletal muscles can act as a pump, consequently, propelling the 

pooled venous blood back to the heart(131). The cardio-locomotor model was further 

modified by Blaber et al as a cardio-postural model to assess orthostatic tolerance(130). 

Of late, bidirectional coupling was shown to exist between the respective signals of the 

cardiovascular and postural systems during orthostatic challenge evoked via standing 

utilizing an advanced wavelet transform coherence, further validating the applicability of 

the cardio-postural model for assessing orthostatic tolerance(46,48). However, the causal 
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information flow between the respective variables of the cardiovascular and postural 

systems remains to be understood(132–135). 

Causality describes the directional relationship between cause and its effect. The human 

body as a highly integrated group of dynamic and adaptive systems often shows cause 

and effect relationships, such relationship has been studied in neural(71,136,137), 

cardiovascular(103,107), cardio-respiratory(70,138), and cardio-neural 

systems(139,140). The established knowledge of causality between dynamical systems 

could be exploited for physiological system performance monitoring, as; a significant 

deviation in the behavior of causally linked systems from the established norm could be 

symptomatic of system impairment. For example, the directional interaction between heart 

rate and blood pressure has been extensively studied in the literature, and the behavior 

has been generalized, therefore, deviation in such generalized behavior can serve as an 

early indicator system deterioration.  

To this end, the commonly applied Granger causality method measures the ability of one 

signal to predict the future of other to establish causal behavior. However, assumptions of 

linear statistical inference, stationary signal behavior, and determination of appropriate 

model order limit the application of Granger causality methods to linear and stationary 

systems(71,136). Transfer entropy, a nonlinear model free methodology is often 

considered for addressing limitations of Granger causality(72,108,141). Nevertheless, the 

assumption of stationary signal behavior and the requirement to estimate probability 

density function of signals under consideration limit its application(73). Physiological 

signals are inherently nonlinear in nature, thus, a nonlinear approach would be necessary 

to obtain accurate inference with respect to the dynamics of the complex causal interplay 

between physiological systems.  
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Figure 4.1. The hypothesized cardio-postural model for regulation of arterial blood 

pressure during orthostatic challenge induced by upright stance(142). 

Convergent cross mapping (CCM), a nonlinear approach for estimating causality between 

two time series is based on the state space reconstruction of a time series called ‘shadow-

manifold’(75). Causality is estimated by quantifying the correspondence between two 

manifolds. State space reconstruction of variables is dependent on the selection of time 

delay (τ) and embedding dimension of reconstruction (E) (74,143). Under optimal choice 

of two parameters, CCM is expected to uncover accurate underlying nonlinear directional 

physiological interaction. Moreover, in contrast to Granger causality, the CCM method is 

capable of inferring causality in systems with weak to moderate coupling, while the 

performance of Granger causality is contingent on data separability(78,143). Causality 

analysis using Granger-based approaches is often subject to statistical hypothesis testing, 
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whereby, causality inference is based on acceptance/rejection of the null hypothesis while 

the physiological systems are interacting continuously with variable intensity.  

On the other hand, CCM infers causality in terms of strength of coupling, thus, revealing 

vital information regarding the degree to which the interacting variables are coupled. The 

quantified knowledge of the strength of directional interaction can have a clinical 

relevance; as aging or pathology may cause an alteration in the strength of such 

interaction. The strength of the CCM method has been demonstrated in physiological 

applications to understand blood pressure and cerebral blood flow velocity 

interaction(144) and in the interaction between heart rate variability and the 

electroencephalographic signals(79). Additionally,  the performance of CCM method has 

been shown to be superior to the Granger causality with signals of nonlinear nature(79). 

With evidence of success in the literature, CCM is expected to accurately unearth 

dynamics of underlying physiological interactions between cardio-postural-

musculoskeletal systems (cardio-postural control loop), a pivotal intersystem interaction 

required for maintaining stable upright posture. In addition to studying the cause-and-

effect relationship between the cardiovascular and postural systems, this chapter also 

studied the interdependency between the cardiovascular and controls of blood pressure 

using joint recurrence quantification analysis. Although the concept of recurrence 

quantification analysis is abundantly studied in literature to address physiological 

problems, the concept of joint recurrence quantification analysis which would highlight the 

interdependency between the systems is not well explored in the literature. 

This chapter investigates the existence of a degree of directional information flow between 

the respective signals of cardiovascular and postural systems account for the cardio-

postural control loop to ascertain blood pressure homeostasis during orthostatic 

challenge. Also, this chapter investigates the coupling between the cardiovascular and 
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postural controls of blood pressure using novel joint recurrence quantification analysis. 

We hypothesize following closed-loop interaction 1) cardio-postural (SBP↔COPr), 2) 

muscle pump-baroreflex (SBP↔EMG), and 3) muscle pump-postural (EMG↔COPr). The 

hemodynamic homeostasis was perturbed via stand test, further stress was applied via 

12 minutes of submaximal exercise to increase blood pooling. The response of cardio-

postural control of blood pressure was studied before and after exercise to highlight the 

underlying physiology regulating blood pressure during standing. The goal behind the 

choice of adding a short bout of exercise was the known concept of post-exercise 

hypotension typically observed; even in young, healthy population(145). Altered 

physiology post-exercise can result in excessive pooling of central blood volume in the 

venous system due to vasodilation. Thus, under such physiological state, the alteration in 

a cardio-postural model of blood pressure can be more evident, therefore, furthering our 

understanding of the cardio-postural control of blood pressure under challenging 

physiological state. 

4.3. Methods 

4.3.1. Experimental Protocol 

Data were collected from 21 participants with no history of the cardiovascular, respiratory, 

or neurological disease, major musculoskeletal injuries, or hormone imbalance. The 

details regarding experimental protocol and signals acquisition can be found here(142). 

Detailed demographic information is summarized in Table 4.1. The use of prescription 

medications and naturopathic remedies were reported. Participants taking any substance 

that could alter cardiovascular regulation or postural stability were excluded. Prior to the 

experiments, participants’ height, weight, general medical history, and present 

medications were recorded. Female participants were asked to report the use of 
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prescription contraceptives and the number of days since their last menstruation to 

determine the phase of the menstrual cycle at the time of testing. All participants were 

instructed to refrain from exercise and caffeine consumption for 24 hours prior to the 

experiment. The experiment protocol was approved to be of minimal risk by Simon Fraser 

University’s Research Ethics Board. Written informed consent was obtained from each 

participant before the experiment. 

After all the physiological monitoring sensors were in place, participants were seated and 

the measurement authenticity was then verified for necessary adjustments prior to data 

collection. The experiment protocol consisted of three parts: pre-exercise sit-to-stand test, 

sub-maximal cycle ergometer exercise, and post-exercise stand test. All tests were 

conducted in a sensory-minimized environment – a dark room with black drapes in front 

of the participants with minimal ambient noise. During the sit-to-stand test, participants 

were seated quietly with arms relaxed by their sides for 5 minutes, after which assistance 

was provided to transition into an upright stance on a force platform for an additional 5 

minutes to induce orthostatic stress. Participants’ feet were placed parallel and 5 cm apart 

on the center of the force platform. They were instructed to keep their eyes closed, 

maintain imaginary eye-level gaze, and not to alter foot placement.  

After the sit-to-stand test, participants were seated comfortably on a cycle ergometer to 

carry out a 12-minute sub-maximal exercise protocol. The exercise protocol consisted of 

a 2-minute warm-up at 25W, followed by 10 minutes at 80W or 100W for female and male 

participants, respectively. Participants were instructed to maintain 70 RPM throughout the 

duration of the exercise protocol. This protocol was designed to induce mild stress on the 

cardiovascular system without crossing the aerobic threshold and limited the risk of 

musculoskeletal fatigue. No data were collected during the exercise period. Immediately 

upon cessation of exercise, a 6-minute stand test was conducted with eyes closed 

(forward gaze), and identical pre-test foot placement on the force platform. Approximately 
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30 seconds elapsed in the transition from the cycle ergometer to the force platform and 

initiate data acquisition. 

4.3.2. Data Acquisition 

After careful review, data from 18 participants (age: 25±2 years, height: 174±8cm, weight: 

68±11 Kg, 8 females) were found appropriate for analysis. During the pre-exercise sit-to-

stand test and post-exercise stand test, electrocardiography (ECG) was acquired with 

custom equipment from LifePak 8 (Medtronic Inc, MN, USA) in a standard Lead II 

electrode configuration. Continuous blood pressure was monitored through a non-invasive 

photoplethysmography finger cuff from Finometer Model 1 (FMS, Amsterdam, The 

Netherlands). Surface EMG signals were measured from four bilateral lower leg muscles: 

tibialis anterior, lateral soleus, and medial and lateral gastrocnemius. Transdermal 

differential recording of the signals was performed using the Bagnoli-8 (Delsys Inc, MA, 

USA) EMG system. The sites for surface EMG sensor placement were chosen based on 

recommendations from the SENIAM project. Postural sway data, in the form of COP 

coordinates (medial-lateral sway COPx and antero-posterior sway COPy) were derived 

from force and moment data obtained with an Accusway Plus force platform (AMTI, MA, 

USA). The exercise protocol was performed on a digital Jaeger ER 800 cycle ergometer 

(Wuerzburg, Germany). Data were acquired at a sampling rate of 1000 Hz using National 

Instruments PCI-6229 16-bit data acquisition platform and Labview 8.2 software (National 

Instruments Inc, TX, USA). Figure 4.2 demonstrated an example of experimental setup 

for acquisition of data pertaining to cardiovascular and postural systems. 
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Figure 4.2. An example of experimental setup for acquisition of simultaneous blood 

pressure, calf electromyography, and postural sway (Centre). Calf electromyography 

acquired from four different leg muscles (left). Force platform right (bottom), and finger 

plethysmography (top right)(146). 

4.3.3. Data Processing 

Data analyses were implemented in MATLAB (MathWorks, MA, USA). The last five 

minutes of the quiet stance phase were used for analysis. The QRS complex was first 

detected from ECG based on a Pan-Tompkins algorithm, which yielded the time series of 

heartbeat period (i.e., RR-interval). Beat-by-beat time series of SBP were then obtained 

from the maximum pressure values of the blood pressure waveform within each RR-
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interval while the diastolic blood pressure (DBP) time series was constructed by identifying 

the minimum blood pressure values prior to the SBP peak of the following beat. The beat-

by-beat mean arterial pressure (MAP) was then calculated by averaging the blood 

pressure waveform between two adjacent DBP valleys. 

Aggregate EMG was obtained by addition of rectified EMG signals from all individual leg 

muscles to represent the overall muscle activities. The EMG envelope was then captured 

by a moving average filter whose cutoff frequency was recommended by the SENIAM 

project to be within 5-20 Hz. Considering the low frequency response of cardio-postural 

control (<0.5 Hz), a cutoff frequency of 5 Hz was used for the filter in EMG envelope 

extraction to minimize the estimation uncertainty. Finally, analogous to the impulse of 

force, the area under the EMG envelope within each heartbeat (i.e., EMG impulse, EMG) 

was calculated to represent the muscle contraction strength on a beat-by-beat basis. The 

concept of impulse was employed because, in a beat-by-beat perspective, the strength of 

muscle contraction over a heartbeat would be related to the time period of that beat. That 

is, a brief strong contraction can be considered to be equivalent to weaker contractions 

over a longer period and the same contraction level would produce higher overall strength 

over a longer heartbeat. The resultant COP was obtained from COPx and COPy (i.e., 

COPr=√COPx
2
+COPy

2
) and the change rate of resultant COP was calculated as the first 

derivative of resultant COP and averaged within each beat (COPr). The resulted COPr 

time series represent the beat-by-beat postural sway velocity. All beat-by-beat time series 

were resampled to 10 Hz using spline interpolation prior to the causality and joint 

recurrence quantification analysis.  
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4.3.4. Statistical Analysis 

Shapiro-Wilk test was employed to test the normality of data (SPSS, IBM Corporation, 

Armonk, NY). One-way test of ANOVA for normally distributed data otherwise Kruskal-

Wallis test was employed to test the behavior of cardiovascular parameters strength of 

EMG↔COPr (EMG→COPr and COPr→EMG), EMG↔SBP (EMG→SBP and 

SBP→EMG), and COPr↔SBP (COPr→SBP and SBP→COPr), and joint recurrence 

quantification indices for cardio-postural coupling (EMG↔SBP, SBP↔COPr, and 

EMG↔COPr). Additionally, the effect of exercise on the behavior of cardiovascular 

parameters and each of the six causal events and three coupling pairs was studied using 

one-way test of ANOVA or Kruskal-Wallis test. Furthermore, whenever necessary the 

post-hoc analysis was performed via the Tukey-HSD method. All tabular data are 

presented as mean±SD while graphical data are presented as mean±SE. 

Table 4.1. Detailed demographic information of study participants. 

Participant # Age Weight Height Gender 

1 25 57 165 Female 

2 24 85 177 Male 

3 25 63 177 Male 

4 28 62 167 Female 

5 27 67 181 Female 

6 22 61 172 Female 

7 27 74 177 Male 

8 24 87 181 Male 

9 23 66 172 Female 
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10 25 57 167 Female 

11 28 63 179 Male 

12 28 70 180 Male 

13 23 52 168 Male 

14 23 81 191 Male 

15 24 61 157 Female 

16 27 78 180 Male 

17 27 69 178 Male 

18 30 55 165 Female 

19 22 58 162 Female 

20 28 54 163 Female 

21 28 86 177 Male 

 

4.4. Results 

The appropriate dimension of embedding for state space reconstruction was conducted 

using a false nearest neighbor algorithm (FNN) at a delay of 10 samples to account for 

changes within a heartbeat range. False nearest neighbor minimization of greater than 

95% was achieved at the dimension of 4 for the last 4 minutes of data. Therefore, all 

strength of causality discussed in this chapter is reported at E=4 and τ=4. Same 

parameters were chosen to perform joint recurrence quantification analysis, an additional 

parameter, the threshold was required which was chosen to be 1 based on distribution of 

% determinism. However, to ascertain behavior of embedding dimension of respective 
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cardio-postural signals the behavior was calculated at other values of delay for 

investigatory purposes, this is summarized in Figure 4. 3. 

The CCM causality analysis resulted in the existence of a bidirectional interaction between 

baroreflex and muscle-pump baroreflex (EMG↔SBP), muscle pump and postural sway 

(EMG↔COPr), and baroreflex-postural sway (SBP↔COPr). The baroreflex causal events 

(SBP→EMG and SBP→COPr) were found to be significantly lower in strength compared 

to non-baroreflex events (EMG→SBP and COPr→SBP), Figure 4.4.  

After establishing the baseline cardio-postural control of blood pressure, such behavior 

was studied after the application external perturbation to the system via mild exercise. The 

comparison of changes in the cardiovascular behavior before and after the exercise is 

summarized in Table 4.2, while the behavior of cardio-postural control of blood pressure 

is summarized in Table 4.3. Heart rate increased significantly (p<0.05) post exercise, SBP 

and EMG activity decreased significantly (p<0.05) post-exercise, while no change 

(p>0.05) in DBP, MAP, and COPr was observed. Spontaneous BRS changed significantly 

(p<0.05) post exercise.  

A significant reduction (p<0.05) in baroreflex causality (SBP→EMG and SBP→COPr) was 

observed post-exercise. No change (p>0.05) in causal information flow in the non-

baroreflex direction (EMG→SBP and COPr→SBP) was observed post exercise. 

Additionally, the strength of postural sway driven muscle pump activation (COPr→EMG) 

and muscle pump driven postural sway (EMG→COPr) reduced significantly (p<0.05) post 

exercise.  
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Figure 4.3. The behavior of different cardio-postural causality at different delay (τ) at 

chosen dimension of reconstruction (E=4). The causal events EMG→SBP (A), 

SBP→EMG (B), COPr→SBP (C), SBP→COPr (D), EMG→COPr (E), COPr→EMG (F). It 

can be observed that the strength of different causal events started to saturate at τ=10. 
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Figure 4.4. Representation of baseline behavior of different causal events during last 4-

minutes of quiet standing. The non-baroreflex arm (EMG→SBP and COPr→SBP) of the 

interaction were significantly higher (p<0.05) than the baroreflex arm (SBP→EMG and 

SBP→COPr). The COPr→EMG causality was higher than the EMG→COPr. * Represents 

significant difference from EMG→SBP, † represents a significant difference from 

COPr→SBP, and ‡ represents a significant difference from COPr→EMG. 

The effect of exercise on cardio-postural coupling is summarized in Table 4.3. The non-

baroreflex events (EMG→SBP and COPr→SBP) remain statistically unchanged (p>0.05) 

post-exercise standing, while the baroreflex events (SBP→EMG and SBP→COPr) 

decreased significantly (p<0.05) post-exercise standing. Additionally, both COPr→EMG 

and EMG→COPr decreased significantly post-exercise (Table 4.3).  

Table 4.2. Comparison of the behavior of different cardiovascular and postural control 

variables before and after exercise during standing. Results are considered significant at 

α=0.05. 
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VARIABLES 

Exercise 

Pre Post 

HR (BPM) 77±10 86±15* 

SBP (mmHg) 106±10 103±9* 

DBP (mmHg) 67±5 66±7 

MAP (mmHg) 82±7 80±7 

BRS (ms/mmHg) 13±13 8±7* 

EMGimp (uV.s) 40±24 28±19* 

COPrv (mm/s) 9±5 8±4 

 

Table 4.3. Comparison of different cardio-poatural causal events before and after exercise 

during standing. * Represents significant difference at α=0.05. 

Causal Events 

Exercise 

Pre Post 

EMG→SBP 0.92±0.04 0.91±0.04 

SBP→EMG 0.88±0.05 0.82±0.09* 

COPr→SBP 0.91±0.04 0.90±0.05 

SBP→COPr 0.78±0.04 0.73±0.10* 

EMG→COPr 0.81±0.05 0.73±0.12* 
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COPr→EMG 0.87±0.06 0.81±0.10* 

 

The EMG signal used so far were aggregate of 4 different leg muscles, we also aim to 

study the role of individual leg muscles towards regulation of postural sway and blood 

pressure. Table 4.4. Summarizes the causal strength between respective muscle group 

and SBP and postural sway. A significant difference between the feedforward and 

feedback causalities were observed when medial-gastrocnemius and tibialis anterior 

muscle group were used as muscle pump marker. No difference was observed between 

the feedback and feedforward causality when other muscle groups (lateral soleus and 

lateral-gastrocnemius) were used a marker of muscle pump. Multiple comparison tests 

resulted in no difference (p=0.71) in the strength of directional information flow from 

respective muscle group towards SBP (feedforward causality). However, the causal 

information flow in the reverse direction i.e. SBP to respective muscle group was 

significantly different (Figure 4.5). The strength of SBP→EMGLG and SBP→EMGMG were 

significantly different, additionally, a significant difference was observed between 

SBP→EMGMG and SBP→EMGTA.  The causality between individual leg muscles and 

COPr signal was also studied, no difference was observed in such relationship, the results 

are summarized in Table 4.4.  
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Figure 4.5. The role of individual leg muscles towards blood pressure regulation 

highlighted via EMG↔SBP causality. No difference (p>0.05) was observed between the 

causality from individual leg muscles towards SBP. The reverse causality SBP→EMGMG 

was significantly different from SBP→EMGLG and SBP→EMGTA, marked by * and † 

respectively. 

 

Figure 4.6. An example of joint recurrence plot for EMG↔SBP (A), COPr↔SBP (B), and 

EMG↔COPr (C) signal pairs during the last 4 minutes of standing from one participant 

(age: 25 years, height: 165, weight: 65, Female). 

In additional to cause-and-effect relationship, the novel concept of joint-recurrence 

quantification analysis was also explored to further validate the inter-dependency between 

the cardiovascular and postural controls of blood pressure, The results, both for pre and 
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post exercise conditions are summarized in Table 4.5. It can be observed that strong 

coupling between the cardio-postural controls of blood pressure was observed. An 

example of joint recurrence plot for EMG↔SBP, SBP↔COPr, and EMG↔COPr is 

illustrated in Figure 4.6. Further, the effect of exercise had non-significant (p>0.05) impact 

on the recurrence behavior of the cardiovascular and postural controls of blood pressure.  

4.5. Interpretation 

4.5.1. Parameters Choice and Cardio-Postural Behavior 

Accurate information regarding the degree of causal information flow from one system to 

the other via CCM method entails appropriate choice of embedding dimension and delay. 

For respective signals of the cardio-postural system, we empirically determined the input 

parameters of choice. The embedding dimension was first determined by varying the delay 

from 2 to 20 in a step of two, it was observed that for respective signals the false nearest 

neighbor was minimized around 4. Additionally, the ideal time delay was determined by 

analyzing different causal events at the choice of embedding dimension and different 

delays, these observation is summarized in Figure 4.3 for different signal pairs. After 

determining the overall behavior of signal pairs, the causality in this chapter is reported at 

E=4 and delay of 10 samples to account for changes within a heartbeat range. 

A quantified knowledge of existence directional information flow between the signals 

representing the cardiovascular and postural systems can provide key information 

pertaining to individual’s ability to maintain the prolonged stable stance. The key finding 

of the current research was the validation of the previous hypothesis of the existence of 

bi-directional or closed loop relationship between the variables representing cardio-

postural control loop. Additionally, the current research highlighted alteration in the 

strength of such relationship post perturbation to the system induced by mild exercise. 
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The causal information flow from one variable to another was of variable degree indicating 

one system to be the dominant drive of other under given physiological condition. In case 

of muscle pump and muscle pump baroreflex (EMG↔SBP) interaction, the mechanical 

muscle pump mediated blood pressure changes (EMG→SBP) was of significantly higher 

strength compared to reverse causality (SBP→EMG), which is hypothesized to be muscle 

pump activation in response to blood pressure changes. This observation indicated 

muscle pump to be a dominant driver of the facilitating venous return to the heart, 

contrarily, muscle pump baroreflex although lower in strength was observed to activate 

skeletal muscles. Similarly, for postural sway and baroreflex (COPr↔SBP) interaction, the 

postural sway mediated blood pressure changes was significantly higher than reverse 

causality of baroreflex mediated postural sway (SBP→COPr), suggesting postural sway 

can lead to blood pressure fluctuation and further sway as a feedback result to maintain 

blood pressure equilibrium. For muscle pump-postural sway (EMG↔COPr) interaction, 

the causal information flow in the direction of postural sway to the muscle pump 

(COPr→EMG) was significantly higher than the causal information flow in the reverse 

direction (EMG→COPr). This observation is indicative of activation of calf skeletal muscle 

in response to postural sway and further sway of posture as a result of such activation, 

hence a closed loop interaction between the two signals to ascertain postural stability. 

The causal behavior in the cardio-postural control loop highlighted the twofold role of 

postural sway; 1) activation of calf skeletal muscle facilitating control postural sway and 

simultaneously increasing venous return to the heart and 2) driving control of blood 

pressure in response to postural sway and further control of sway in response to 

fluctuations in blood pressure. There were two primary pathways of causal information 

flow were observed 1) the dominant non-baroreflex driven control of blood pressure via 

skeletal muscle activation and 2) weaker baroreflex driven control of postural sway via 

skeletal muscle activation. This bidirectional pathway to ascertain postural stability by 
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control of blood pressure and body sway is outlined in Figure 4.7. The dominant pathway 

is highlighted in black, while the non-dominant behavior is shown in red. These two 

pathways of cardio-postural control loop demonstrated the bidirectional transitive behavior 

(X↔Y and Y↔Z, then X↔Z, i.e. if there is a bidirectional causal behavior between X 

(COPr) and Y (EMG) and between Y and Z (SBP), then there should a bidirectional causal 

behavior between X and Z) towards regulation of blood pressure. 

4.5.2. Effect of Exercise on Cardio-Postural Causality 

To further assess the changes in the behavior of cardio-postural causality as a 

consequence of disturbance to hemodynamic homeostasis, a concept of mild cycling 

exercise was adopted. A short bout of exercise resulted in a significant reduction in RR 

intervals and SBP suggesting mild exercise was able to disturb the hemodynamic 

homeostasis. However, no change in DBP and MAP was observed. Our observation of 

reduced RR intervals (or increased heart rate) and SBP is in accordance with the existing 

findings in the literature. Moreover, spontaneous baroreflex sensitivity declined 

significantly post exercise, suggesting vagal withdrawal leading to increased heart rate to 

ascertain arterial blood pressure equilibrium (Table 4.2). Furthermore, no change in COPr 

but significant decline in EMG activity was observed post exercise (Table 4.3). 

 



72 

 

Figure 4.7. Two primary pathways of causal information flow in the cardio-postural control 

loop to assure stable upright stance. Dominant causality (black) represents feedforward 

control SBP via skeletal muscle activation and non-dominant baroreflex mediated 

correction of postural sway as a feedback control (red).  

Orthostatic intolerance is a result of the failure of cardiac as well as postural controls of 

blood pressure, however, often the two controls governing blood pressure are looked 

independently. We have shown in this chapter a significant role of muscle pump baroreflex 

towards activation of calf skeletal muscles to pump the pooled venous blood back to the 

heart in addition to well-known mechanical feedforward muscle pump. Therefore, the 

cardio-postural control of blood pressure should always be considered when addressing 

orthostatic intolerance. As per our hypothesis, we expected greater pooling of central 

blood volume in the compliant venous system, which would evoke a greater degree of 

muscle pump baroreflex (SBP→EMG) to facilitate pooled venous blood back to the heart. 

In contrary to our hypothesis, we observed a significant decline in the strength of muscle 

pump baroreflex, which was further accompanied by a decline skeletal muscle activation.  

Despite significant drop in the muscle pump baroreflex, the strength of non-baroreflex 

mechanical muscle pump remain unchanged, this observation along with no change in the 
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mean arterial pressure and DBP suggesting system was less stressed post-exercise lead 

us to speculate a less stressed system post exercise which could result in resetting of 

skeletal muscle activation post-exercise evident from a significant decline in skeletal 

muscle activity post exercise. A further decline in the strength of COPr→EMG causality 

and EMG→COPr causality with the dominant causality i.e. COPr→EMG remain 

unchanged post-exercise highlights the systemic disassociation of postural control loop, 

which could have resulted from increased postural sway via sources other than skeletal 

muscle contraction such as respiration. 

4.5.3. Effect of Individual Calf Muscles on Cardio-Postural Causality 

The role of individual leg muscles towards blood pressure regulation and postural sway 

was also investigated. The knowledge of such behavior can assist the design of 

appropriate therapy regime or exercise to target specific muscle group during rehabilitation 

or to prevent muscle atrophy during long-duration spaceflight. We observed no change in 

the behavior of causal information flowing from postural sway to individual muscle group 

(p=0.71), similarly, no change (p=0.32) was observed in the reverse causal information 

flow i.e. causal information flow from individual leg muscles towards postural sway (Table 

4.4). These findings suggest that activation of all four calf leg muscles are equally 

important and shall be considered altogether when addressing an issue related to balance. 

For directional interaction between individual leg muscles and blood pressure, we 

observed no change in the strength of causal information flow from individual leg muscles 

towards SBP (Figure 4.5), suggesting well-activated calf muscles to propel the venous 

blood back to the heart. The strength of reverse causality i.e. muscle pump baroreflex was 

significantly different in the direction of lateral-gastrocnemius and tibialis anterior 

compared to medial-gastrocnemius. While no change was observed in EMGMG→SBP 
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compared to other muscle groups, a significant decline in reverse causality i.e. 

SBP→EMGMG leads us to speculate the reliance of medial-gastrocnemius muscle group 

on other factors such as postural sway and respiration, further highlighting a strong 

intersystem interaction between cardio-postural control loop towards facilitating blood 

pressure regulation and upright stance. 

Table 4.4. Causality of individual leg muscles with SBP and COPr. 

Causal Events Causality Strength 

EMGLG→SBP 
0.90±0.04 

EMGMG→SBP 
0.89±0.07 

EMGTA→SBP 
0.89±0.06 

EMGLS→SBP 
0.91±0.04 

SBP→EMGLG 
0.87±0.05 

SBP→EMGMG 0.83±0.05 

SBP→EMGTA 0.88±0.03 

SBP→EMGLS 0.87±0.04 

EMGLG→COPr 0.79±0.05 

EMGMG→COPr 0.80±0.05 

EMGTA→COPr 0.82±0.08 

EMGLS→COPr 0.79±0.05 

COPr→EMGLG 0.86±0.05 
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COPr→EMGMG 0.86±0.06 

COPr→EMGTA 0.87±0.05 

COPr→EMGLS 0.87±0.06 

 

4.5.4. Interdependency between Cardiovascular and Postural 
Controls using Joint Recurrence Quantification Analysis 

Recurrence quantification has been widely studied in the literature to address 

physiological problems, however, the extension of recurrence quantification analysis i.e. 

joint recurrence quantification to address existing physiological problem is limited in the 

literature. The interplay between the physiological systems is expected under given 

physiological condition to maintain homeostasis, therefore, not accounting for existing 

coupling between the systems can lead to inadequate information regarding the 

underlying physiology. In this chapter, we quantified the coupling between the 

EMG↔SBP, COPr↔SBP, and EMG↔COPr signal pairs. The joint recurrence features 

i.e. recurrence rate (RR), the average length of adjacent recurrence points (Mean L), 

Shannon entropy of the distribution of the diagonal lines (Entropy L), the average length 

of diagonally adjacent recurrence points (Mean V), and Shannon entropy distribution of 

vertical lines (Entropy V).  

An example of joint recurrence plot for EMG↔SBP, COPr↔SBP, and EMG↔COPr is 

illustrated in Figure 4.6, while the results for each pair under the pre and post exercise 

conditions are summarized in Table 4.5. No change (p>0.05) was observed in the 

dynamics of any of signal pairs following a short bout of exercise (Table 4.5). This 

observation was indicative of system homeostasis was not disturbed following a short bout 
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of exercise. The behavior of different JRQA features was compared for the three 

interactions (EMG↔SBP, COPr↔SBP, and EMG↔COPr) to highlight the baseline 

behavior of this coupling, this comparison resulted in significant change between the three 

pairs, and the post-hoc comparison p-value is summarized in Table 4.6 for pre-exercise 

and 4.7 for post-exercise. For pre-exercise comparison, a significant difference was 

observed for the three comparisons except for the recurrence rate (EMG↔SBP vs 

COPr↔SBP, p=0.77) and the average length of diagonally adjacent recurrent points 

(EMG↔SBP vs SBP↔COPr, p=0.08 and COPr↔SBP vs EMG↔COPr, p=0.07). For 

post-exercise comparison, no change (p>0.05) was observed for any comparison in 

recurrence rate. No change was observed in the average length of recurrent points (Mean 

L) for COPr↔SBP and EMG↔COPr comparison. In case of diagonally adjacent 

recurrence points (Mean V), no change was observed for EMG↔SBP vs SBP↔COPr 

(p=0.05) and COPr↔SBP vs EMG↔COPr comparison.  

Table 4.5. Joint Recurrence Quantification Analysis of Cardio-Postural Variables during 

pre and post exercise. * Represents significant difference from pre-exercise. 

JRQA 
Features 

Pre-Exercise Post-Exercise 

EMG↔SBP COPr↔SBP EMG↔COPr EMG↔SBP COPr↔SBP EMG↔COPr 

% REC 57.44±1.59 58.36±4.82 61.86±4.57 58.48±2.65 58.62±3.39 61.25±6.01 

Mean L 75.73±21.33 52.91±24.10 35.66±15.02 77.60±25.23 49.45±26.82 29.59±23.43 

Entropy 
L 7.43±0.52 6.59±0.82 5.77±0.65 7.41±0.56 6.35±0.95 5.33±0.85 

Mean V 90.71±33.35 69.5±31.90 47.40±19.34 93.01±38.12 65.18±35.08 40.59±28.73 
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Entropy 
V 7.54±0.51 7.05±0.63 6.37±0.39 7.51±0.52 6.86±0.73 6.06±0.63 

 

 

Table 4.6. Comparison of different JRQA features for EMG↔SBP, COPr↔SBP, and 

EMG↔COPr signal pairs during pre-exercise experimental protocol. Table list post-hoc 

comparison p-values. * Represents significant difference. 

JRQA Features 

EMG↔SBP  

Vs 

SBP↔COPr 

EMG↔SBP  

Vs 

EMG↔COPr 

COPr↔SBP  

Vs 

EMG↔COPr 

% REC 0.77 0.004* 0.03* 

Mean L 0.004* <0.001* 0.04* 

Entropy L 0.004* <0.001* 0.001* 

Mean V 0.08 <0.001* 0.07 

Entropy V 0.02* <0.001* <0.001* 

 

Table 4.7. Comparison of different JRQA features for EMG↔SBP, COPr↔SBP, and 

EMG↔COPr signal pairs during post-exercise experimental protocol. Table list post-hoc 

comparison p-values. * Represents significant difference. 

JRQA Features 
EMG↔SBP  

Vs 

EMG↔SBP  

Vs 

COPr↔SBP  

Vs 
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SBP↔COPr EMG↔COPr EMG↔COPr 

% REC 0.99 0.14 0.16 

Mean L 0.004* <0.001* 0.06 

Entropy L <0.001* <0.001* 0.001* 

Mean V 0.05 <0.001* 0.09 

Entropy V 0.009* <0.001* 0.001* 

 

4.5.5. Limitations 

The major limitation of the study was availability of data from only young and healthy 

population, in which post-exercise vasodilation leading to excessive pooling of blood was 

not as effective as hypothesized. Consequently, our initial hypothesis of achieving greater 

pooling in the compliant venous system post-exercise was rendered inadequate. 

Therefore, the role of muscle-pump baroreflex (SBP→EMG) as a dominant driver of 

EMG↔SBP was not validated in this research as blood pressure was well regulated; 

suggesting blood pooling post-exercise was not significant compared to pre-exercise. In 

the future study, a concept of near-infrared spectroscopy shall be adopted to accurately 

measure the degree of blood pooling achieved during orthostatic stress. The investigation 

of causal behavior in relation to the degree of blood pooling achieved will extend our 

knowledge regarding the cardio-postural control of blood pressure. Moreover, potential 

JRQA to gain insights regarding the impairment of cardiovascular and postural controls 

needs to be studied in relation to challenging experimental protocol which can disturb the 

homeostasis of the system. Furthermore, involving other signals such as respiration 

known to affect both venous return and postural sway will further our understanding 
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pertaining to underlying mechanisms of blood pressure regulation during standing and 

validation of a model for early detection of fall proneness. 
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Chapter 5.  
 
Validation of Short-arm Human Centrifuge as a Tool 
for Mitigating Post-Flight Orthostatic Intolerance in 
Astronauts 

5.1. Summary 

Background: Autonomic control of blood pressure is essential towards maintenance of 

cerebral perfusion during standing, failure of which could lead to fainting. Long-term 

exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, 

astronauts experience orthostatic intolerance on their return to the gravitational 

environment. Ground-based studies suggest sporadic training in artificial hypergravity can 

mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), 

capable of creating artificial hypergravity of different g-loads, provides an auspicious 

training tool. Here, we compare autonomic control of blood pressure during 2-g 

centrifugation at feet with standing in natural gravity. Methods: Continuous 

electrocardiography and blood pressure were acquired simultaneously from 13 healthy 

participants during supine, standing, and 2-g centrifugation, from which heart rate (RR) 

and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation 

was assessed during supine, standing, and 2-g centrifugation via spectral analysis of SBP 

and RR, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure 

causality. Results: While these blood pressure regulatory indices were significantly 

different during standing and 2-g centrifugation compared to supine, a non-significant 

difference was observed in the same indices during 2-g centrifugation compared to 

standing. Conclusions: Outcome of the analysis conducted in this chapter highlighted the 
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capability of SAHC towards evoking blood pressure regulatory controls analogous to 

standing, therefore, a potential utility towards mitigating post-flight orthostatic intolerance. 

5.2. Background 

Right from birth, humans experience gravity, which pulls the human body towards the 

earth with a force equivalent to the product of the body mass and the gravitational 

acceleration i.e. 9.8 m/s2(147). Therefore, quintessential physiological performance is 

highly dependent on gravity(52,148). Physiological adaptation, a result of long-term 

microgravity exposure, can cause changes in physiological functions(128,149–152). Of 

such, cardiovascular adaptation to microgravity can have detrimental effects on the 

autonomic control of blood pressure upon return to the gravitational environment(52,153). 

Orthostatic intolerance, an inability to regulate blood pressure on assuming upright 

stance(154,155), is commonly experienced by astronauts on their return to Earth after 

long-duration spaceflight(156,157). Typically, one in four astronauts fails to maintain 10-

minutes of quiet stance on the landing day(158). The success of envisioned Mars 

exploration would entail frequent long-duration spaceflight in the future(159–161). To this 

end, profound investigation of potential countermeasures is warranted to mitigate the 

adverse effects of microgravity on physiological performance to facilitate healthy life for 

astronauts on their return to Earth(161). 

The transition of posture, from supine to standing, reduces the blood pressure at the brain 

level (~ 70 mmHg) and increases the blood pressure at the feet level (~ 200 mmHg), as a 

consequence of gravity(55,153). Central blood volume, owing to gravity induced 

hydrostatic pressure gradient, is displaced below heart level and venous return and 

preload are reduced challenging blood pressure equilibrium, see Figure 5.1. Regulating 

blood pressure is imperative for the sustainability of prolonged and stable upright stance, 
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otherwise, cerebral perfusion will be challenged resulting in a feeling of dizziness and 

eventually syncope. During a physiological state of standing, blood pressure is regulated 

via reduced afferent discharge of the baroreceptor impulses localized in the carotid sinus 

and the aortic arch, leading to increased heart rate and systemic vascular resistance via 

neural efferent pathways resulting in vagal withdrawal and sympathetic nerve 

activation(60,162).  

 

Figure 5.1. Comparison of the distribution of central blood volume during standing at Earth 

(1-G) and in microgravity. Blood is translocated above heart level due to increased mean 

arterial pressure at the brain level in a microgravity environment(55). 

Therefore, to cope with the effects of an orthostatic challenge on physiological 

performance, autonomic, baroreceptor, and vasomotor controls play a consequential role 

to various degrees. Enfeebled or impaired blood pressure regulatory controls owing to 

long-term microgravity exposure could lead to an abrupt decline in arterial blood pressure 

on assuming upright stance resulting in reduced cerebral perfusion(3,129,163). Thus, 
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impaired autonomic control has an ominous effect on the individual’s ability to maintain 

standing(52,147,153).  

Ground-based experiments, performed to comprehend physiological response to 

microgravity simulated via bed rest immobilization(164–166) and potential 

countermeasures such as exercise training, lower-body negative pressure, and artificial 

gravity(119,153,167), have concluded an intermittent exposure to artificial hypergravity as 

an important factor towards improving orthostatic tolerance(58,59,153,168). The short-

arm human centrifuge (SAHC), in this regard, can serve as a promising training 

tool(59,169,170). The feasibility of short-arm centrifuge to be a part of a long duration 

spaceflight, owing to compact modern design, has opened new avenues towards 

minimizing the severity of microgravity-induced systemic deconditioning(169,171–173). 

Figure 5.2 shows the concept of artificial gravity created via short-arm human centrifuge. 

 

Figure 5.2. The concept of short-arm human centrifuge to create artificial gravity at feet. 

The magnitude of the artificial gravity created at feet depends on the rotating speed (ω) of 

the short-arm human centrifuge(170). 

In the previous work from our group(174), we demonstrated the response of 

cardiovascular and the cerebrovascular system during 2-g centrifugation at feet to be 

analogous to orthostatic challenge exerted by standing in a natural gravity. However, the 
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response of blood pressure regulatory indices to 2-g centrifugation at feet in relation to 

standing in a natural gravity remains to be generalized. In the current analysis, we extend 

our previous work to a comparison of the response of autonomic control of blood pressure 

during 2-g centrifugation in relation to standing. The autonomic control of blood pressure 

was assessed via causal heart rate-blood pressure interaction, spontaneous baroreflex 

sensitivity, and spectral analysis of SBP and RR time series. 

5.3. Method 

5.3.1. Experimental Protocol and Data Acquisition 

The detailed experimental protocol has been explained in the previous work from our 

group(174). Here, we briefly outline the experimental protocol with respect to the current 

research. All participants were pre-screened for physical and medical status. None of the 

participants had a prior history of cardiovascular, neurological, and musculoskeletal 

diseases or vasovagal syncope. Twelve hours prior to experimentation, all participants 

were required to refrain from alcohol, caffeine, and any medication.  

In the centrifuge, the participant was strapped with their head near the center of 2.8-meter 

radius centrifuge and feet outwards. In this orientation, the g-load at the feet is 

hypothesized to be proportional to the rotational speed of the centrifuge, while at the head 

the g-load is approximately zero, therefore simulating the typical hydrostatic difference 

created by standing in a natural gravity(57). The participant remained supine in the 

centrifuge for 20 minutes of baseline recording. After completion of baseline, the 

participant was transitioned into the standing position for 5 minutes of stand test. After 

stand test, participant lay supine in the centrifuge for another 15 minutes, after which the 

centrifuge was ramped up to a rate that applied 2-g at feet (0.44g at Middle Cerebral Artery 

and 0.75g at the heart). The participant was kept at 2-g for 5 minutes. Following 5 minutes 
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of centrifugation at 2-g the centrifuge rotation was slowed and halted in 30 seconds. The 

centrifuge facility at MEDES, France was used in this research. 

Data were acquired simultaneously from 13 participants (age: 28.08±8.4 year, height: 

172±6.9 cm, weight: 67.6±10.5 kg, 6 females). Detailed demographic information is listed 

in Table 5.1. Electrocardiogram was acquired with a standard lead II configuration using 

LifePak8 (Medtronic Inc, MN, USA) and continuous blood pressure from non-invasive 

finger photoplethysmography cuff (Portapress, FMS, The Netherlands) using NI data 

acquisition (National Instruments Inc., TX, USA) system at a sampling rate of 1000 Hz. 

Ethics approval for experimentation was obtained from the University of Toulouse. 

Experimentation complied with rules and regulations set forth by the research ethics board 

of the University of Toulouse. Written and informed consent form for participation was 

obtained from each participant prior to any experimentation. 

5.3.2. Data Processing 

The QRS complex was detected using Pan-Tompkins algorithm(175), from which, R-R 

time series was obtained. Systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) were obtained from continuous blood pressure waveform as the maximum and 

minimum values between adjacent R peaks, respectively. Mean arterial pressure (MAP) 

was derived from SBP and DBP as; MAP=
2

3
×DBP+

1

3
×SBP.  

RR interval and SBP time series were interpolated using spline interpolation to generate 

an evenly sampled signal and resampled to 2 Hz with zero mean before conducting the 

spectral analysis. The Welch power spectral density (PSD) of RR and SBP was calculated 

in very low frequency (VLF, 0-0.04 Hz), low frequency (LF, 0.04-0.15), and high frequency 

(HF, 0.15-0.4 Hz) bands. There upon, the RR and SBP power distributed (P) in the 
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respective bands were normalized as VLFnu= PVLF ÷Total Power, LFnu=PLF ÷Total Power, 

and HFnu=PHF ÷Total Power, where Total Power=PVLF+PLF+PHF. The PSD was computed 

with a Hamming window of size 128 samples and 50% overlap. 

The arterial baroreflex sensitivity was calculated using sequence method(176,177) by 

using CardioSeries computer software V2.4 (http://www.danielpenteado.com) similar to 

other research in the literature(178,179). Beat-to-beat RR intervals and SBP were input to 

the software, search for a sequence of at least three consecutive beats in which increase 

in SBP was followed by an increase in RR intervals (upslope) and decrease in SBP 

followed by a decrease in RR intervals (downslope) with a correlation greater than 0.8 was 

considered. The slope of linear regression between SBP and RR intervals was considered 

as a marker of spontaneous BRS. In addition to BRS, the number of baroreflex and non-

baroreflex sequences were also calculated.  

The strength of closed loop heart rate-blood pressure interaction (RR↔SBP), signifying 

the feedforward(non-baroreflex) and feedback (baroreflex) controls of blood pressure was 

obtained using convergent cross mapping (CCM) similar to our previous work(27,142). 

Prior to causality analysis, the evenly sampled continuous RR and SBP signals were 

resampled to 10 Hz. Mathematical details of the methodology are provided in the 

supplementary material of Sugihara et al(75) and in a book on time series analysis by 

McCracken et al(80). 

Table 5.1. Detailed demographic information of study participants. 

Participant # Age Height Weight Gender 

1 23 172 73 Male 

2 31 165 55 Female 

http://www.danielpenteado.com/
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3 24 164 56 Female 

4 25 169 62 Female 

5 25 176 75 Male 

6 35 175 76 Male 

7 23 165 53 Female 

8 29 175 79 Male 

9 24 174 55 Female 

10 35 189 84 Male 

11 39 178 73 Male 

12 37 166 72 Male 

13 32 169 68 Female 

 

5.3.3. Statistical Analysis 

Test for normality of the data was conducted using Shapiro-Wilk test (SPSS, IBM 

Corporation, Armonk, NY). A multiple comparison test was conducted using one-way test 

of ANOVA (for normally distributed data) or Kruskal-Wallis test (data failed normality) 

followed by post-hoc analysis using the Tukey-HSD method to account for the significance 

of changes in the cardiovascular parameters and blood pressure regulatory indices during 

different experimental conditions. The test of significance was conducted using a statistical 

toolbox of MATLAB (Mathworks Inc., MA, USA). The test results at α=0.05 were 

considered significant. All tabular data in the article are presented as mean±SD unless 

mentioned otherwise. 
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5.4. Results 

Test of normality resulted in data exhibiting mixed behavior given the limited sample size, 

therefore, Kruskal-Wallis test followed by post-hoc analysis using Tukey-HSD method was 

conducted to account for difference exerted by different experimental conditions on the 

cardiovascular parameters as well as on the blood pressure regulatory indices. Table 5.2 

summarizes the behavior of cardiovascular parameters during supine rest, standing, and 

2-g centrifugation. Stand test or application of 2-g centrifugation inflicted no change in 

SBP (p=0.25), DBP (p=0.58), or MAP (p=0.44). RR intervals reduced significantly during 

standing (p=0.01) and 2-g (p<0.001) compared to supine. No change (p=0.38) in RR 

intervals was observed between standing and 2-g. 

Table 5.2. Values (mean±SD) of cardiovascular parameters during supine, standing, and 

2-g. * Represents significant difference from supine. 

Parameters Supine Stand 2-g 

R-R (ms) 967±177 755±135* 669±115* 

SBP (mmHg) 110±15 122±21 114±20 

DBP (mmHg) 58±9 65±17 61±16 

MAP (mmHg) 75±10 84±17 79±17 

 

Figure 5.3 summarizes the normalized spectral power distribution in the VLF, LF, and HF 

bands of SBP and RR intervals. Table 5.3 lists the post-hoc comparison p-value between 

experimental conditions for respective frequency bands. Significant change (p<0.05) was 

observed in SBPVLF, SBPLF, and RRLF/HF during stand and 2-g compared to supine. SBPHF 
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and RRHF showed significant change (p<0.05) only at 2-g compared to supine.  No change 

(p>0.05) was observed in the spectral power distribution in any frequency bands of SBP 

and RR at 2-g compared to standing (Table 5.3). 

 Baroreflex sensitivity decreased (both up and down slope) significantly during standing 

(up slope, p=0.01 and down slope, p=0.003) and 2-g (up slope, p<0.001 and down slope, 

p<0.001) compared to supine. No change (up slope, p=0.50 and down slope, p=0.31) in 

BRS was observed at 2-g compared to standing. The number of baroreflex sequence 

decreased only at 2-g (p<0.001) compared to supine, Table 5.3. No change (p>0.05) in a 

number of non-baroreflex sequence was observed as a consequence of different 

experimental conditions (Table 5.3). The distribution of BRS for the study group is detailed 

in Figure 5.4. 

 

Figure 5.3. Distribution of systolic blood pressure and RR intervals spectral power (n.u). 

The figure details RR (A-C) and SBP (D-F) spectral power distribution in the VLF (0-0.04 
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Hz), LF (0.04-0.15 Hz, and HF (0.15-0.4 Hz) bands during supine, stand, and 2-g 

experimental protocol. 

The optimal embedding dimension to perform non-linear state space reconstruction in 

CCM was determined via false nearest neighbor algorithm at a delay of 10 samples to 

account for changes within a heartbeat range. The optimal dimension of reconstruction 

was determined to be 4 for SBP and RR based on the minimization of the false nearest 

neighbor using CRP toolbox in MATLAB(180,87). Therefore, the RR↔SBP causality was 

computed at an embedding dimension of 4 and delay of 10 samples unless mentioned 

otherwise.  The causal behavior between RR and SBP is detailed in Figure 5.5. 

 

Figure 5.4. Spontaneous baroreflex sensitivity determined via sequence method. Figure 

details the distribution of up slope BRS (A), down slope BRS (B), number of baroreflex 

sequences (C), and number of non-baroreflex sequences (D) during supine, stand, and 

2-g. 
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At supine rest, the non-baroreflex arm of the heart rate and blood pressure interaction was 

significantly higher than the baroreflex arm. During standing (p=0.009) and 2-g 

centrifugation (p=0.03), a significant increase in baroreflex arm of the interaction 

compared to supine was observed, while no change (p>0.05) in the non-baroreflex arm of 

the interaction was observed. Additionally, no difference between the standing and 2-g 

centrifugation was observed in either arm (RR→SBP, p=0.80 and SBP→RR, p=0.88) of 

the heart rate and blood pressure interaction (Table 5.3). Table 5.4 lists the values 

(mean±SD) of all blood pressure regulatory indices during supine, standing, and 2-g. 

 

Figure 5.5. Boxplot representation of non-baroreflex (feedforward) and baroreflex 

(feedback) causalities in response to supine, stand, and 2-g.  

5.5. Interpretation 

The current research investigated the capability of 2-g centrifugation at feet to evoke 

autonomic control of blood pressure analogous to standing. The autonomic blood pressure 

control via causal heart rate-blood pressure interaction, spontaneous baroreflex 

sensitivity, and spectral analysis of SBP and RR were studied. The analysis results 

ascertained previously contemplated yet undocumented potential of the short-arm human 
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centrifuge to evoke autonomic blood pressure control analogous to standing in natural 

gravity, therefore, a potential utility towards minimizing the adverse effects of long-term 

microgravity exposure on the cardiovascular performance, hence, minimizing orthostatic 

intolerance in astronauts upon return to Earth.  

Table 5.3. Comparison of changes in blood pressure regulatory indices inflicted by 

different experimental conditions. Table lists post-hoc comparison p-values. Significant 

results (p<0.05) are marked with *. 

Variables and Conditions 

To Compare 
Supine Vs Stand Supine Vs 2-g Stand Vs 2-g 

SBPVLF 0.01* <0.001* 0.66 

SBPLF 0.04* 0.02* 0.97 

SBPHF 0.16 0.005* 0.40 

RRVLF 0.63 0.10 0.50 

RRLF 0.09 0.24 0.88 

RRHF 0.07 0.002* 0.47 

RRLF/HF 0.04* 0.003* 0.65 

BRSup slope 0.01* <0.001* 0.50 

BRSdown slope 0.003* <0.001* 0.31 

Non-Baroreflex Sequence 0.76 0.07 0.28 

Baroreflex Sequence 0.15 <0.001* 0.12 

RR→SBP 0.23 0.06 0.80 
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SBP→RR 0.009* 0.03* 0.88 

 

The success of future inter-planetary missions to Mars depends on the design of pertinent 

countermeasures to mitigate the adverse effects of spaceflight deconditioning. The shift 

of central blood volume above thoracic leading to increased ventricular filling, stroke 

volume, and cerebral blood flow is an immediate consequence of physiological adaptation 

to microgravity. Accordingly, baroreceptor unloading, autonomic sympathetic nerve 

activity, and the vasomotor control remain vastly inhibited for the duration of 

spaceflight(55,158,181). The prolong inhibition of such blood pressure regulatory controls 

can have an adverse effect on individual’s orthostatic tolerance level, which can be 

analogous to aging and/or pathology(53,182). Additionally, the microgravity-induced 

cephalic fluid shift could lead to increased intracranial pressure which may cause an 

alteration in vision and anatomy of the eye(183,184) and could further challenge postural 

stability on return to the gravitational environment. 

Furthermore, decreased blood flow to the peripheral regions, especially to the calf skeletal 

muscles, render posture muscle group with nutritional scarcity, and is a major contributor 

towards skeletal muscle atrophy, bone remodeling, and decline in the calf 

circumference(152,164,185). While assuming upright stance on a return to the 

gravitational environment, the blood pressure regulatory controls such as autonomic blood 

pressure controls and skeletal muscle pump remains vastly ineffective. Such change in 

physiological function can lead to excessive pooling of central blood volume in the lower 

periphery, resulting in cerebral perfusion reduction leading to a feeling of dizziness and 

potentially syncope.  
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Thus, an external system capable of evoking autonomic control of blood pressure 

(baroreceptor unloading leading to increased sympathetic, decreased vagal activity, and 

increased systemic vascular resistance) and simultaneously increasing blood flow to the 

calf musculature to assure adequate nutritional and metabolic supply can mitigate the 

deterioration of cardiovascular performance associated with long-term exposure to 

microgravity. 

Table 5.4. Values (mean±SD) of blood pressure regulatory indices in response to different 

experimental conditions. * Represents significant difference (Tukey-HSD post-hoc 

analysis) from supine. 

Blood Pressure Regulatory 
Indices 

Supine Stand 2-g 

SBPVLF 0.72±0.13 0.51±0.15* 0.42±0.21* 

SBPLF 0.20±0.12 0.33±0.12* 0.36±0.17* 

SBPHF 0.08±0.06 0.16±0.13 0.22±0.13* 

RRVLF 0.31±0.21 0.36±0.14 0.46±0.20 

RRLF 0.30±0.16 0.42±0.16 0.39±0.16 

RRHF 0.39±0.20 0.22±0.12 0.15±0.08* 

RRLF/HF 1.10±1.02 2.89±2.54* 3.10±1.90* 

BRSup slope 31.18±20.19 10.40±4.78* 7.52±3.38* 

BRSdown slope 29.31±18.15 10.85±6.39* 6.80±2.67* 
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Non-Baroreflex Sequence 10±12.54 9.84±6.01 15.23±7.50 

Baroreflex Sequence 58.15±21.16 46.61±11.47 34±11.48* 

RR→SBP 0.95±0.03 0.93±0.03 0.92±0.04 

SBP→RR 0.83±0.09 0.91±0.03* 0.89±0.05* 

 

Exercise training and lower-body negative pressurization have been utilized as a potential 

countermeasure to spaceflight deconditioning. However, traditionally used aerobic 

exercise, resistance training, and lower-body suction has been limited in effect due to their 

inability to challenge multiple physiological systems that are associated with 

standing(170,173,186). Consequently, interest has shifted towards short-arm human 

centrifuge as a training tool to minimize microgravity-induced physiological 

deconditioning(57). Short-arm human centrifuge,  given its capability to create artificial 

gravity at feet, has a potential to produce hydrostatic gradient analogous to standing and 

evoke multiple physiological systems simultaneously(171,172). Achieving desired 

performance from SAHC, however, is contingent on an ideal choice of g-load. High g-load 

could initiate early syncopal symptoms, while low g-load could be insufficient to inflict 

strenuous perturbation to hemodynamic homeostasis, therefore, fails to evoke desired 

autonomic control of blood pressure. The choice of the 2-g at feet was based on the 

outcomes of previous studies, which have demonstrated such g-load to be under the safe 

limit in addition to being strenuous enough to evoke physiological responses analogous 

to standing(174,187).  

The autonomic control of blood pressure via the conventional approach of arterial 

baroreflex sensitivity and heart rate variability have been shown to exhibit microgravity or 
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hypergravity induced an alteration in the autonomic performance(188,189). However, the 

effect of orthostatic challenge induced via centrifugation artificial gravity in relation to quiet 

standing on the autonomic behavior has not been reported in the literature. The low 

frequency (0.04-0.15 Hz) and the high frequency (0.15-0.4 Hz) spectral power of RR 

intervals in normalized units are associated with the response of the sympathetic and the 

vagal nerve, respectively and the ratio of the two is widely recognized indicator of 

sympatho-vagal balance(66). The SBP power distributed in the low-frequency band (0.04-

0.15 Hz) has been reported to be associated with the baroreflex response(69). Thus, the 

spectral analysis of RR and SBP provides insights regarding the autonomic control of 

blood pressure under a given physiological state.  

In the current research, we applied external perturbation to the hemodynamic homeostasis 

via stand test and 2-g centrifugation at feet. No change (p>0.05) was observed in SBP, 

DBP, or mean arterial pressure due to standing or 2-g compared to supine (Table 5.2). 

This observation suggests that blood pressure was well regulated during orthostatic 

challenge evoked via standing and 2-g centrifugation by active autonomic control of blood 

pressure. A significant increase was observed in the RRLF/HF during standing (p=0.04) and 

2-g (p=0.003) compared to baseline (Table 5.4), suggesting a shift of sympatho-vagal 

balance towards sympathetic activity. Also, increase in low frequency SBP power was 

observed during standing (p=0.04) and 2-g (p=0.02) compared to supine. Additionally, 

baroreflex sensitivity (both upslope and downslope) declined during standing and 2-g 

compared to supine (Table 5.3), which is the result of decreased vagal activity (Table 5.3) 

and increased heart rate or reduced RR intervals  (Table 5.2) contributing towards the 

maintenance of blood pressure equilibrium. No change (p>0.05) in the autonomic blood 

pressure control between standing and 2-g was observed (Table 5.3).  
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While the spectral analysis of SBP and RR time series and baroreflex sensitivity are well-

accepted norm to account for the autonomic control of blood pressure, criticism of such 

approaches in the literature is also prevalent for the inability of the spectral method to 

account for the non-linearity of underlying physiology and BRS for not able to address the 

closed loop heart rate and blood pressure interaction(101,190). As such, in addition to 

traditional measures, the current article studied the non-linear causal heart rate and blood 

pressure interaction, a closed loop control system. Where the feedforward control signifies 

the Frank-Starling effect on blood pressure while the feedback control accentuates the 

baroreflex control of blood pressure. We studied the strength of feedforward (non-

baroreflex, RR→SBP) and feedback (baroreflex, SBP→RR) controls of blood pressure 

during supine, standing, and 2-g centrifugation.  

The results of closed loop heart rate and blood pressure interaction are detailed in Figure 

5.5. No change (p>0.05) was observed in the dynamics of non-baroreflex (RR→SBP) 

causality during standing or 2-g compared to supine. However, a significant increase was 

observed in the baroreflex (SBP→RR) causality; both during standing (p=0.009) and 2-g 

(p=0.03), Table 5.4. Additionally, no change was observed in the non-baroreflex (p=0.80) 

or baroreflex (p=0.88) causal events during 2-g compared to standing. The findings of this 

chapter corroborate with existing literature regarding the behavior of closed loop heart rate 

and blood pressure interaction during orthostatic challenge(69,104,107).  Therefore, the 

observations of current study confirmed our hypothesis of 2-g centrifugation at feet is 

capable of evoking autonomic control of blood pressure analogous to standing. 

5.6. Limitations and Future Directions 

 The limitation of the present study was the unavailability of the respiration signal, as such, 

the role of hypergravity towards the dynamics of respiration could not be studied. 
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Respiration is known to affect both heart rate (RR) as well as blood pressure(108,138). 

Additionally, it may also play a role towards facilitating venous return via the physiology of 

respiration pump(191). Therefore, the role of respiration towards facilitating blood 

pressure homeostasis in response to orthostatic challenge shall be investigated in the 

future. Moreover, the blood volume redistribution in the splanchnic bed and the lower 

periphery due to standing and 2-g centrifugation shall also be measured and compared in 

the future. Orthostatic challenges evoked via a source that eliminates the effect of gravity 

such as lower-body negative pressure is observed to be different from that due to natural 

gravity (such as head-up tilt)(117). Certain blood pressure regulatory controls such as 

SBPHF, RRHF, and a number of baroreflex sequence changed only at 2-g compared to 

supine (Table 5.3), which indicate 2-g was more stressful than standing. Accurate 

information regarding the degree of blood pooling achieved during each experimental 

condition will shed further light pertaining to the vigor of 2-g in relation to standing. 

Moreover, additional mechanisms that account for blood pressure regulation such as 

skeletal muscle pump (cardio-postural blood pressure regulation) shall also be 

investigated and compared in the future(48,142,192). Furthermore, due to small sample 

size, the gender effect on blood pressure regulation and alteration in the dynamics of such 

behavior under artificial hypergravity remains to be understood. Female astronauts 

account for approximately 22% of total astronaut population(193), and studies have 

demonstrated significant gender difference in autonomic mechanisms leading to stable 

stance and in response to countermeasures designed to mitigate deleterious effect of 

spaceflight deconditioning(194–197). Therefore, a generalization of gender effect would 

further improve our understanding regarding the potential of the short-arm human 

centrifuge as a training tool towards evoking blood pressure regulatory controls analogous 

to standing. 
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5.7. Conclusion  

Cardiovascular adaptation to microgravity impairs autonomic control of blood pressure, 

consequently, astronauts are susceptible to orthostatic intolerance on return to the 

gravitational environment. Sporadic training in artificial hypergravity is proposed to 

mitigate the effects of spaceflight deconditioning. A short-arm human centrifuge is a 

promising tool for simulating artificial gravity of different g-loads. The response of blood 

pressure regulatory controls to simulated hypergravity in relation to standing is not well 

established in the literature. This thesis investigated the response of autonomic control of 

blood pressure during 2-g centrifugation in relation to standing. While no difference was 

observed in the autonomic control of blood pressure between standing and 2-g, the blood 

pressure regulatory indices during standing and 2-g centrifugation were significantly 

different from supine (Table 5.4). The findings of the current study lead us to conclude that 

2-g centrifugation at feet via short-arm human centrifuge has potential to evoke autonomic 

control of blood pressure analogous to standing, therefore, a potential training tool towards 

reducing orthostatic intolerance in astronauts on their return to Earth.  
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Chapter 6.  
 
Conclusions and Future Directions 

6.1. Conclusions 

Hemorrhage associated with a traumatic event is one of the leading cause of mortality 

affecting over 29 million people in the US. Post-partum hemorrhage is a recognized cause 

of maternal mortality accounting for approximately 125,000 deaths per year. The prime 

reason for mortality associated with the hemorrhage is the inability to recognize 

hemorrhage at an early stage due to complex physiological mechanisms maintaining 

homeostasis. Additionally, fall associated with orthostatic intolerance (failure to sustain 

blood pressure during standing) is prevalent in people with neurodegenerative diseases 

such as Parkinson’s disease, stroke, and concussion. Over 31 billion dollars are spent 

annually for the treatment and management of fall-related (fatal and non-fatal) incidents. 

Physiology pertaining to fall is not adequately studied in the literature, accounting for 

integration of mechanisms associated with postural stability can assist early identification 

of fall proneness. Furthermore, astronauts experience orthostatic intolerance on a landing 

day following a long duration spaceflight due to physiological adaptation to microgravity. 

This thesis was aimed towards addressing above issues linked together via a common 

variable i.e. blood pressure regulation. The major conclusions of the thesis are outlined 

below. 

6.1.1. Early Detection of Hemorrhage 

Early identification of hemorrhage is vital for the design of trauma support system. On the 

battlefield and in a setting lacking sophisticated instrumentation, early identification of 

hemorrhage relies on arterial blood pressure. However, owing to compensatory 



101 

physiological mechanisms, blood pressure is proven to be an ineffectual marker of blood 

loss. This thesis investigated the potential of features extracted from electrocardiogram 

and continuous blood pressure waveform to classify moderate intensity hemorrhage from 

resting baseline. In this regard, our studies find convincing evidence regarding the 

potential of such features towards classification of moderate category hemorrhage (-40 

mmHg). In future, bigger cohort needs to be studied to further confirm its feasibility towards 

the development of decision support system to assist surgical triage in a pre-hospital 

setting. 

6.1.2. Cardio-Postural Blood Pressure Regulation Model 

Regulating arterial blood pressure is essential for maintaining stable and prolonged upright 

stance. During standing blood pressure regulation is achieved via autonomic activity, 

which causes an elevation in heart rate and systemic vascular resistance and skeletal 

muscle activation, which pumps the venous blood back to the heart. Therefore, the 

independent model of cardiovascular and postural systems to assess orthostatic 

intolerance is inadequate to explain the underlying physiology. This thesis, aimed at 

investigating the dependency between the two systems by quantifying the degree of 

directional information flow between the cardiovascular and postural controls of blood 

pressure via representative signals, found strong statistical evidence of bidirectional 

information flow between the cardiovascular and the postural controls of blood pressure. 

Further, this thesis found statistical alteration in the strength of cardio-postural relationship 

following 12-minutes of submaximal exercise. Accordingly, a significant deviation in the 

strength of such interaction can be symptomatic of system impairment and further study 

extending beyond young, healthy group is warranted to validate its potential towards 

assessment of orthostatic intolerance. 
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6.1.3. Artificial Gravity for Minimizing Spaceflight Deconditioning 

Exposure to microgravity can cause a series of physiological adaptation resulting in 

prolonged inhibition of autonomic controls of blood pressure, which can lead to 

cardiovascular deconditioning analogous to aging and/or pathology. Accordingly, 

astronauts commonly experience post-flight orthostatic intolerance. Intermittent exposure 

to artificial hyper gravity is hypothesized to mitigate spaceflight deconditioning. This thesis 

investigated the potential of artificial gravity created via 2-g centrifugation at feet to evoke 

autonomic control of blood pressure in relation to standing in natural gravity. The thesis 

found a strong statistical difference in the autonomic controls of blood pressure between 

supine and standing as well as between supine and 2-g. However, the difference in 

autonomic controls of blood pressure between standing and 2-g centrifugation was 

statistically insignificant. The findings of the analysis strongly support the hypothesis of 

artificial gravity (2-g centrifugation) towards minimizing spaceflight induced physiological 

deconditioning. Therefore, a potential towards minimizing post-flight orthostatic 

intolerance in astronauts. 

6.2. Future Directions 

6.2.1. Extension of the Assessment of Cardio-Postural Blood 
Pressure Regulation Model beyond Young, Healthy Population 

The major limitation of this thesis was the unavailability of the data from patients. As such, 

the behavior of a cardio-postural model of blood pressure regulation during the orthostatic 

challenge was solely limited to young, healthy participants. In a group of young, healthy 

participants the experimental protocol was rendered insufficient to evoke symptoms of 

orthostatic hypotension in the study participants. The arterial blood pressure was well-

regulated throughout the experimentation and the blood volume accumulated in the calf 
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musculature was not measured, therefore, the validation of the role of muscle pump 

baroreflex (SBP→EMG) towards the activation of calf skeletal muscle would require future 

work.  

In future, adding a group of people with history of neurodegenerative disease can further 

highlight the effectiveness of the cardio-postural model as an assessment tool for early 

detection of fall proneness, as people with a history of stroke and concussion and those 

affected by Parkinson’s disease have impaired autonomic and neural control(37,127,198–

201), which may lead to excessive pooling of blood in the lower extremities immediately 

upon maintaining upright stance; acutely challenging the blood pressure equilibrium. 

Additionally, such population groups are observed to have poor postural 

stability(124,202,203). Accordingly, the cardio-postural model stressed upon in this thesis 

can provide key information regarding the interaction between cardiovascular and postural 

controls associated with regulation of blood pressure during orthostatic challenge. 

Furthermore, a more intense experimental protocol such as head-up tilt or bed rest 

immobilization can be considered in the future work to disturb the hemodynamic 

homeostasis of the system and study the behavior of cardio-postural control loop in 

relation to such physiological state. Therefore, the results presented in this thesis shall be 

considered as a baseline and future analysis needs to be performed on the data acquired 

from patients or its analog to further validate the model prior to any clinical application 

towards early detection of fall proneness. 

6.2.2. Accurate Measurement of Degree of Blood Pooling during 
Orthostatic Challenge 

In this research, the degree of blood pooling as a consequence of orthostatic challenge 

induced via standing was not measured, therefore, the quantitative behavior of strength 
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of cardio-postural causality in relation to the vigor of orthostatic challenge remains to be 

generalized. A concept of near-infrared spectroscopy can be utilized in the future work to 

accurately measure the degree of blood pooling(167). Furthermore, it is pivotal to 

accurately measure translocation of blood volume as a consequence of different 

orthostatic challenge (head-up tilt, standing, LBNP) to validate the posture associated 

alteration in the physiological interplay to ascertain blood pressure. 

6.2.3. Extraction of Pulse Transit Time using SCG-PPG combination 
to Estimate Blood Pressure 

The physiological signals acquired in this research was acquired from typical laboratory 

equipment, therefore, to gain wide application, more portable and cheap alternatives need 

to be explored, especially for blood pressure and postural sway. Effect of posture should 

also be considered while developing a system for estimating blood pressure based on the 

concept of pulse transit time (PTT)(204). In the supine posture, blood pressure can be 

estimated by calculating the time difference between aortic-valve opening and arrival of 

blood in the external periphery. Seismocardiography (SCG), which is a recording of 

opening and closing of the heart valve can be a key towards annotating the proximal timing 

of a pulse wave. Using aortic-valve opening as a marker of the proximal timing of a pulse 

wave can address the limitation of the traditional used ECG signals R peak such purpose 

which may lead to erroneous result due to the inclusion of the isovolumetric contraction 

period(205). With the advent of sophisticated technology leading to the availability of 

lightweight accelerometers, significant elevation in the role of SCG towards monitoring 

cardiovascular functioning through heart rate variability(206), systolic time intervals(207–

209), early detection of hemorrhage progression(110), and pulse transit time is observed 

of late(210–214). Figure 6.1 explains the extraction of pulse transit time utilizing 
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seismocardiography and photoplethysmography sensors to extract estimates of blood 

pressure. 

 

Figure 6.1. Extraction of PTT from a combination of SCH (solid) and PPG (dotted). The 

aortic-valve (AO) opening point in SCG, a marker of proximal timing and rise point in PPG, 

a marker of the distal timing of a pulse wave. The time difference between the two 

locations is pulse transit time (PTT) an estimate of blood pressure(210). 

6.2.4. Extraction of Pulse Transit Time using BCG-PPG Combination 
to estimate Blood Pressure 

Extracting estimates of blood pressure using BCG-PPG combination of great significance 

to move from that usage of traditional rather costly laboratory-based acquisition to cheap 

and portable system capable of acquiring representative signals of the cardio-postural 

control loop. To achieve such goals, in future, a weighing scale can be developed which 

can measure the postural sway using load cells placed on the appropriate scale location 
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along with measure the ballistic forces of heart (ballistocardiography) whose vibration can 

get transferred to the scale (Figure 6.2). Then I, J, K wave of the ballistocardiogram signal 

can be explored for timing the proximal pulse wave and PPG can be used for timing the 

distal pulse, PTT will be the result of the time difference between proximal and distal 

timing(215).The EMG signal can be acquired by placing EMG sensors on the surface of 

the scale (Figure 6.2). 

 

Figure 6.2. Development of weighing scale system to acquire representative signals of the 

cardio-postural system. EMG will be acquired by placing a signal on the surface of the 

developed weighing scale. Postural sway will be acquired by placing load cells on the four 

corners, and blood pressure will be estimated from PTT derived using a combination of 

BCG and PPG. 
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6.2.5. Extension of the Cardio-Postural Model to Centrifuge Study and 
the Effect of Gender on the design of System to Mitigate Effects of 
Spaceflight Deconditioning 

This thesis laid focus on the study of cardiovascular variables (i.e. heart rate and blood 

pressure) in response to artificial gravity via short-arm human centrifuge. Additional 

mechanisms that account for blood pressure regulation such as skeletal muscle pump 

(cardio-postural blood pressure regulation) shall also be investigated and compared in the 

future(48,142,192). Furthermore, due to small sample size, the gender effect towards 

blood pressure regulation, and alteration in the dynamics of such behavior under artificial 

hypergravity remains to be understood. Female astronauts account for approximately 22% 

of total astronaut population(193), and studies have demonstrated significant gender 

difference in autonomic regulatory mechanisms leading to stable stance and in response 

to countermeasures designed to mitigate deleterious effect of spaceflight 

deconditioning(194–197). Therefore, a generalization of gender effect would further 

improve our understanding regarding the potential of the short-arm human centrifuge as 

a training tool towards evoking blood pressure regulatory controls analogous to standing. 

6.2.6. Exploration of Multivariate Model to assess Connectivity 
between Physiological Systems under Orthostatic Challenge 

In future, we aim to supplement the representative signals of a physiological system 

utilized in this research such as respiration, NIRS, and cerebral blood flow. Therefore, the 

bivariate model considered for investigating cause-and-effect relationship in this thesis 

may be insufficient to accurately quantify the strength of directional information flow 

among physiological systems under the respective physiological state. Therefore, in 

future, a multivariate model for studying cause-and-effect relationship shall be employed. 
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2012;35(2):E65-74.  

96.  Janak JC, Howard JT, Goei KA, Weber R, Muniz GW, Hinojosa-Laborde C, et al. 

Predictors of the Onset of Hemodynamic Decompensation During Progressive 

Central Hypovolemia: Comparison of the Peripheral Perfusion Index, Pulse 

Pressure Variability, and Compensatory Reserve Index. Shock. 2015;44(6):548–

53.  

97.  Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to 

study progression to acute hemorrhagic shock in humans. J Appl Physiol. 

2004;96(4):1249–61.  

98.  Cooke WH, Rickards CA, Ryan KL, Kuusela TA, Convertino VA. Muscle 

sympathetic nerve activity during intense lower body negative pressure to 

presyncope in humans. J Physiol. 2009;587(20):4987–99.  

99.  Bighamian R, Hahn J-O. Relationship between Stroke Volume and Pulse Pressure 

during Blood Volume Perturbation: A Mathematical Analysis. Biomed Res Int. 

2014;2014:1–10.  

100.  Teresa M, Rovere L, Pinna GD, Raczak G. Baroreflex Sensitivity : Measurement 

and Clinical Implications. 2008;  



118 

101.  Zhong Y, Jan K, Ju KH, Chon KH. Quantifying cardiac sympathetic and 

parasympathetic nervous activities using principal dynamic modes analysis of heart 

rate variability. Am J Physiol Hear Circ Physiol. 2006;291(3):H1475–83.  

102.  Faes L, Nollo G, Porta A. Mechanisms of causal interaction between short-term RR 

interval and systolic arterial pressure oscillations during orthostatic challenge. 

2013;(39):1657–67.  

103.  Porta A, Catai AM, Takahashi ACM, Magagnin V, Bassani T, Tobaldini E, et al. 

Causal relationships between heart period and systolic arterial pressure during 

graded head-up tilt. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R378–

86.  

104.  Javorka M, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Faes L. 

Causal analysis of short-term cardiovascular variability: state-dependent 

contribution of feedback and feedforward mechanisms. Med Biol Eng Comput. 

2017;55(2):179–90.  

105.  Javorka M, Czippelova B, Chladekova L, Turianikova Z, Visnovcova Z, Lazarova Z, 

et al. Causality of Heart Rate - Blood Pressure Interactions during Mental and 

Orthostatic Stress. In: Computing in Cardiology Conference (CinC). 2014. p. 769–

72.  

106.  Porta A, Marchi A, Bari V, De Maria B, Esler M, Lambert E, et al. Assessing the 

strength of cardiac and sympathetic baroreflex controls via transfer entropy during 

orthostatic challenge. Philos Trans R Soc A. 2017;375:20160290.  

107.  Faes L, Nollo G, Porta A. Mechanisms of causal interaction between short-term RR 

interval and systolic arterial pressure oscillations during orthostatic challenge. J 

Appl Physiol. 2013;114(12):1657–67.  

108.  Faes L, Nollo G, Porta A. Information domain approach to the investigation of 

cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front 

Physiol. 2011;2.  

109.  Nollo G, Faes L, Porta A, Antolini R, Ravelli F. Exploring directionality in 

spontaneous heart period and systolic pressure variability interactions in humans: 



119 

implications in the evaluation of baroreflex gain. Am J Physiol Hear Circ Physiol. 

2005;288(4):H1777-85.  

110.  Tavakolian K, Dumont GA, Houlton G, Blaber AP. Precordial vibrations provide 

noninvasive detection of early-stage hemorrhage. Shock. 2014;41(2):91–6.  

111.  Westphal G, Gallardo P, Almeida DP De, Rocha e Silva M, Poli-de-Figueiredo LF. 

Pulse Pressure Respiratory Variation as an Early Marker of Cardiac Output Fall in 

Experimental Hemorrhagic Shock. Artif Organs. 2007;31(4):284–9.  

112.  Convertino VA, Cooke WH, Holcomb JB. Arterial Pulse Pressure and Its 

Association With Reduced Stroke Volume During Progressive Central 

Hypovolemia. J Trauma Inj Infect Crit Care. 2006;61(3):629–34.  

113.  Scherhag A, Kaden JJ, Kentschke E, Sueselbeck T, Borggrefe M. Comparison of 

Impedance Cardiography and Thermodilution-Derived Measurements of Stroke 

Volume and Cardiac Output at Rest and During Exercise Testing. Cardiovasc 

Drugs Ther. 2005;19(2):141–7.  

114.  Olaussen A, Blackburn T, Mitra B, Fitzgerald M. Review article: Shock Index for 

prediction of critical bleeding post-trauma: A systematic review. Emerg Med 

Australas. 2014;26(3):223–8.  

115.  Montoya KF, Charry JD, Calle-Toro JS, Núñez LR, Poveda G. Shock index as a 

mortality predictor in patients with acute polytrauma. J Acute Dis. 2015;4(3):202–4.  

116.  Liu Y, Liu J-H, Fang ZA, Shan G-L, Xu J, Qi Z-W, et al. Modified shock index and 

mortality rate of emergency patients. World J Emerg Med. 2012;3(2):114.  

117.  Taneja I, Moran C, Medow MS, Glover JL, Montgomery LD, Stewart JM. Differential 

effects of lower body negative pressure and upright tilt on splanchnic blood volume. 

Am J Physiol Hear Circ Physiol. 2007;292(3):H1420-1426.  

118.  Dorantes-Mendez G, Ferrario M, Baselli G, Arbeille P, Shoemaker JK, Greaves DK, 

et al. Comparison of Baroreflex Sensitivity Gain during Mild Lower Body Negative 

Pressure in Presence and Absence of Long Duration Bed Rest. In: Computing in 

Cardiology. 2013. p. 763–6.  



120 

119.  Goswami N, Loeppky JA, Hinghofer-Szalkay H. LBNP: Past protocols and technical 

considerations for experimental design. Aviat Sp Environ Med. 2008;79(5):459–71.  

120.  Kitano A, Shoemaker JK, Ichinose M, Wada H, Nishiyasu T. Comparison of 

cardiovascular responses between lower body negative pressure and head-up tilt. 

J Appl Physiol. 2005;98(6):2081–6.  

121.  Bronzwaer AGT, Verbree J, Stok WJ, Daemen MJAP, Buchem MA Van, Osch MJP 

Van, et al. The cerebrovascular response to lower-body negative pressure vs. 

head-up tilt. J Appl Physiol. 2017;122(4):877–83.  

122.  Hinghhofer-Szalkay HG, Vigas M, Sauseng-Fellegger G, Kuenig EM, Lichardus B, 

D. J. Head-up tilt and lower body suction: comparison of hormone responses in 

healthy men. Physiol Res. 1996;45:369–78.  

123.  Liu NT, Salinas J. Machine Learning for Predicting Outcomes in Trauma. Shock. 

2017;48(5):504–10.  

124.  Błaszczyk JW, Orawiec R, Duda-Kłodowska D, Opala G. Assessment of postural 

instability in patients with Parkinson ’ s disease. Exp Brain Res. 2007;183(1):107–

14.  

125.  Kim SD, Allen NE, Canning CG, Fung VSC. Postural Instability in Patients with 

Parkinson ’ s Disease. CNS Drugs. 2013;27(2):97–112.  

126.  Riemann BL, Guskiewicz KM. Effects of Mild Head Injury on Postural Stability as 

Measured Through Clinical Balance Testing. J Athl Train. 2000;35(1):19.  

127.  Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D. Orthostatic 

Hypotension as a Risk Factor for Stroke : The Atherosclerosis Risk in Communities 

(ARIC) Study, 1987-1996. Stroke. 2000;31(10):2307–13.  

128.  Hallgren E, Migeotte P-F, Kornilova L, Delière Q, Fransen E, Glukhikh D, et al. 

Dysfunctional vestibular system causes a blood pressure drop in astronauts 

returning from space. Sci Rep. 2015;5:17627.  

129.  Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V. Blood pressure 

and blood flow variation during postural change from sitting to standing: model 



121 

development and validation. J Appl Physiol. 2005;99(4):1523–37.  

130.  Blaber AP, Landrock CK, Souvestre PA. Cardio-postural deconditioning: A model 

for post-flight orthostatic intolerance. Respir Physiol Neurobiol. 

2009;169(SUPPL.):21–5.  

131.  Novak V, Hu K, Vyas M, Lipsitz LA. Cardiolocomotor coupling in young and elderly 

people. Journals Gerontol - Ser A Biol Sci Med Sci. 2007;62(1):86–92.  

132.  Verma AK, Garg A, Blaber A, Fazel-rezai R, Tavakolian K. Causal Cardio-Postural 

Interaction Under Orthostatic Stress. J Med Device. 2016;10(2):20932.  

133.  Verma AK, Garg A, Blaber A, Fazel-Rezai R, Tavakolian K. Causality Detection in 

Cardio-Postural Interaction under Orthostatic Stress Induced by Quiet Standing 

using Transfer Entropy. In: IEEE International Conference on Electro Information 

Technology (EIT). 2016. p. 633–7.  

134.  Verma AK, Garg A, Blaber A, Fazel-Rezai R, Tavakolian K. Analysis of Causal 

Cardio-Postural interaction under Orthostatic Stress using Convergent Cross 

Mapping. In: IEEE International Conference on Engineering in Medicine and 

Biology Society. 2016. p. 2319–22.  

135.  Verma AK, Garg A, Blaber A, Fazel-Rezai R TK. Causality in the Cardio-Postural 

Interactions during Quiet Stance. In: Computing in Cardiology Conference (CinC). 

2015. p. 373–6.  

136.  Ding M, Chen Y, Bressler SL. 17 Granger causality: basic theory and application to 

neuroscience. Handbook of time series analysis: recent theoretical developments 

and applications. 2006;  

137.  Chen C, Member S, Maybhate A, Israel D, Thakor N V, Jia X. Assessing 

Thalamocortical Functional Connectivity With Granger Causality. IEEE Trans 

Neural Syst Rehabil Eng. 2013;21(5):725–33.  

138.  Porta A, Bassani T, Bari V, Pinna GD, Maestri R, Guzzetti S, et al. Accounting for 

Respiration is Necessary to Reliably Infer Granger Causality From Cardiovascular 

Variability Series. IEEE Trans Biomed Eng. 2012;59(3):832–41.  



122 

139.  Porta A, Faes L. Assessing causality in brain dynamics and cardiovascular control. 

Philos Trans R Soc London A Math Phys Eng Sci. 2013;371:20120517.  

140.  Faes L, Marinazzo D, Jurysta F, Nollo G. Granger Causality Analysis of Sleep 

Brain-Heart Interactions. In: 8th Conference of the European Study Group on 

Cardiovascular Oscillations. 2014. p. 5–6.  

141.  Schreiber T. Measuring Information Transfer. Phys Rev Lett. 2000;85(2):461–4.  

142.  Xu D, Verma AK, Garg A, Bruner M, Fazel-rezai R, Blaber AP, et al. Significant role 

of the cardiopostural interaction in blood pressure regulation during standing. Am J 

Physiol Hear Circ Physiol. 2017;313(3):H568-77.  

143.  Ye H, Deyle ER, Gilarranz LJ, Sugihara G. Distinguishing time-delayed causal 

interactions using convergent cross mapping. Sci Rep. 2015;5.  

144.  Heskamp L, Meel -van den Abeelen AS, Lagro J, Claassen JA. Convergent cross 

mapping : a promising technique for cerebral autoregulation estimation. Int J Clin 

Neurosci Ment Heal. 2014;S20.  

145.  Halliwill JR. Mechanisms and clinical implications of post-exercise hypotension in 

humans. Exerc Sport Sci Rev. 2001;29(2):65–70.  

146.  Bruner M. The Effect of Exercise on the Cardio-Postural Relationship. MS Thesis 

Simon Fraser Univ. 2012;  

147.  Antonutto G, di Prampero PE. Cardiovascular deconditioning in microgravity: Some 

possible countermeasures. Eur J Appl Physiol. 2003;90(3–4):283–91.  

148.  Blaber AP, Zuj KA, Goswami N. Cerebrovascular autoregulation: Lessons learned 

from spaceflight research. Eur J Appl Physiol. 2013;113(8):1909–17.  

149.  Morita H, Abe C, Tanaka K. Long-term exposure to microgravity impairs vestibulo-

cardiovascular reflex. Sci Rep. Nature Publishing Group; 2016;6:33405.  

150.  Otsuka K, Cornelissen G, Kubo Y, Hayashi M, Yamamoto N, Shibata K, et al. 

Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-

term to microgravity in space: observational study. npj Microgravity. 2015;1:15018.  



123 

151.  Harris LR, Jenkin M, Jenkin H, Zacher JE, Dyde RT. The effect of long-term 

exposure to microgravity on the perception of upright. npj Microgravity. 2017;3(1):3.  

152.  Lambertz D, Goubel F, Kaspranski R, Pérot C. Effects of long-term spaceflight on 

mechanical properties of muscles in humans. J Appl Physiol. 2003;94(2):490–8.  

153.  Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: Exercise, 

artificial gravity, and countermeasure development for prolonged space flight. Eur 

J Appl Physiol. 2013;113(9):2183–92.  

154.  Robertson D. The epidemic of orthostatic tachycardia and orthostatic intolerance. 

Am J Med Sci. 1999;317(2):75–7.  

155.  Lambert E, Lambert G. Sympathetic dysfunction in vasovagal syncope and the 

postural orthostatic tachycardia syndrome. Front Physiol. 2014;5:280.  

156.  Buckey JC, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, et al. 

Orthostatic intolerance after spaceflight. J Appl Physiol. 1996;81(1):7–18.  

157.  Lee SMC, Feiveson AH, Stein S, Stenger MB, Platts SH. Orthostatic Intolerance 

After ISS and Space Shuttle Missions. Aerosp Med Hum Perform. 2015;86(12):54–

67.  

158.  Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects 

on human physiology. Mil Med Res. 2016;180(13):1317–23.  

159.  Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JP, Foster E, et al. 

Human health and performance for long-duration spaceflight. Aviat Sp Environ 

Med. 2008;79(6):629–35.  

160.  Manzey D. Human missions to Mars: New psychological challenges and research 

issues. Acta Astronaut. 2004;55(3–9):781–90.  

161.  Clément GR, Charles JB, Paloski WH. Revisiting the needs for artificial gravity 

during deep space missions. Reach - Rev Hum Sp Explor. 2016;1:1–10.  

162.  Smith JJ, Porth CM, Erickson M. Hemodynamic Response to the Upright Posture. 

J Clin Pharmacol. 1994;34(5):375–86.  



124 

163.  Olufsen MS, Tran HT, Ottesen JT. Modeling Cerebral Blood Flow Control During 

Posture Change From Sitting to Standing. Cardiovasc Eng. 2004;4(1):47–58.  

164.  LeBlanc A, Gogia P, Schneider V, Krebs J, Schonfeld E, Evans H. Calf muscle area 

and strength changes after five weeks of horizontal bed rest. Am J Sports Med. 

1988;16(6):624–9.  

165.  Norsk P. Blood pressure regulation IV: Adaptive responses to weightlessness. Eur 

J Appl Physiol. 2014;114(3):481–97.  

166.  Jeong S-M, Hwang G-S, Kim S-O, Levine BD, Zhang R. Dynamic cerebral 

autoregulation after bed rest : effects of volume loading and exercise 

countermeasures. J Appl Physiol. 2013;116:24–31.  

167.  Blaber AP, Hinghofer-Szalkay H, Goswami N. Blood Volume Redistribution During 

Hypovolemia. Aviat Space Environ Med. 2013;84(1):59–64.  

168.  Stenger MB, Evans JM, Patwardhan AR, Moore FB, Hinghofer-Szalkay H, Rössler 

A, et al. Artificial gravity training improves orthostatic tolerance in ambulatory men 

and women. Acta Astronaut. 2007;60(4):267–72.  

169.  Frett T, Mayrhofer M, Schwandtner J, Anken R, Petrat G. An Innovative Short Arm 

Centrifuge for Future Studies on the Effects of Artificial Gravity on the Human Body. 

Microgravity Sci Technol. 2014;26(4):249–55.  

170.  Clément GR, Bukley AP, Paloski WH. Artificial gravity as a countermeasure for 

mitigating physiological deconditioning during long-duration space missions. Front 

Syst Neurosci. 2015;9:92.  

171.  Diaz A, Trigg C, Young LR. Combining ergometer exercise and artificial gravity in 

a compact-radius centrifuge. Acta Astronaut. 2015;113:80–8.  

172.  Zander V, Anken R, Pesquet T, Brungs S, Latsch J. Short Radius Centrifuges – A 

New Approach for Life Science Experiments Under Hyper-g Conditions for 

Applications in Space and Beyond. Recent Patents Sp Technol. 2013;3(1):74–81.  

173.  Bukley A, Lawrence D, Clément G. Generating artificial gravity onboard the Space 

Shuttle. Acta Astronaut. 2007;60(4):472–8.  



125 

174.  Goswami N, Bruner M, Xu D, Bareille MP, Beck A, Hinghofer-Szalkay H, et al. 

Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides 

similar cerebrovascular and cardiovascular responses to standing. Eur J Appl 

Physiol. 2015;115(7):1569–75.  

175.  Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Trans Biomed 

Eng. 1985;(3):230–6.  

176.  Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari A, Pedotti A, Mancia G. Evaluation 

monitoring of baroreceptor reflex by blood pressure in unanesthetized cats. Am J 

Physiol Hear Circ Physiol. 1988;254(2):H377–83.  

177.  Blaber AP, Yamamoto Y, Hughson RL. Methodology of spontaneous baroreflex 

assessed by surrogate data analysis. Am J Physiol Circ Physiol. 

1995;4(268):H1682-7.  

178.  Silva AS, Ariza D, Dias DPM, Crestani CC, Martins-Pinge MC. Cardiovascular and 

autonomic alterations in rats with Parkinsonism induced by 6-OHDA and treated 

with L-DOPA. Life Sci. 2015;127:82–9.  

179.  Durand MT, Becari C, Tezini GC, Fazan R, Oliveira M, Guatimosim S, et al. 

Autonomic cardiocirculatory control in mice with reduced expression of the 

vesicular acetylcholine transporter. Am J Physiol Hear Circ Physiol. 

2015;309(4):H655–62.  

180.  Kennel M, Brown R. Determining embedding dimension for phase-space 

reconstruction using geometrical construction. Phys Rev A. 1992;45(6).  

181.  White RJ, Averner M. Humans in space. Nature. 2001;409(6823):1115–8.  

182.  Takamatsu Y, Koike W, Takenouchi T, Sugama S, Wei J, Waragai M, et al. 

Protection against neurodegenerative disease on Earth and in space. npj 

Microgravity. 2016;2:16013.  

183.  Tzeng YC, Ainslie PN. Blood pressure regulation IX: Cerebral autoregulation under 

blood pressure challenges. Eur J Appl Physiol. 2014;114(3):545–59.  

184.  Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc 



126 

edema, globe flattening, choroidal folds, and hyperopic shifts observed in 

astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.  

185.  Stewart JM, Medow MS, Montgomery LD, McLeod K. Decreased skeletal muscle 

pump activity in patients with postural tachycardia syndrome and low peripheral 

blood flow. Am J Physiol Heart Circ Physiol. 2004;286(3):H1216–22.  

186.  Artiles AD, Heldt T, Young LR. Effects of artificial gravity on the cardiovascular 

system: Computational approach. Acta Astronaut. 2016;126:395–410.  

187.  Iwasaki KI, Sasaki T, Hirayanagi K, Yajima K. Usefulness of daily+ 2Gz load as a 

countermeasure against physiological problems during weightlessness. Acta 

Astronaut. 2001;49(3):227–35.  

188.  Fontolliet T, Pichot V, Antonutto G, Bonjour J, Capelli C, Tam E, et al. Effects of 

gravitational acceleration on cardiovascular autonomic control in resting humans. 

Eur J Appl Physiol. 2015;115(7):1417–27.  

189.  Yanagida R, Ogawa Y, Ueda K, Aoki K, Iwasaki K ichi. Sustained mild hypergravity 

reduces spontaneous cardiac baroreflex sensitivity. Auton Neurosci Basic Clin. 

2014;185:123–8.  

190.  Svacinova J, Javorka M, Novakova Z, Zavodina E, Czippelova B, Honzikova N. 

Development of causal interactions between systolic blood pressure and inter-beat 

intervals in adolescents. Physiol Res. 2015;64(6):821–9.  

191.  Miller JD, Pegelow DF, Jacques AJ, Dempsey JA. Skeletal muscle pump versus 

respiratory muscle pump: modulation of venous return from the locomotor limb in 

humans. J Physiol. 2005;563(Pt 3):925–43.  

192.  Verma AK, Garg A, Xu D, Bruner M, Fazel-Rezai R, Blaber AP, et al. Skeletal 

Muscle Pump Drives Control of Cardiovascular and Postural Systems. Sci Rep. 

2017;7:45301.  

193.  Harm DL, Jennings RT, Meck J V, Powell MR, Putcha L, Sams CP, et al. Invited 

Review: Gender issues related to spaceflight: a NASA perspective. J Appl Physiol. 

2001;91(5):2374–83.  



127 

194.  Goswami N, Evans J, Schneider S, Von Der Wiesche M, Mulder E, Rössler A, et 

al. Effects of individualized centrifugation training on orthostatic tolerance in men 

and women. PLoS One. 2015;10(5):e0125780.  

195.  Arzeno NM, Stenger MB, Lee SMC, Ploutz-Snyder R, Platts SH. Sex differences in 

blood pressure control during 6° head-down tilt bed rest. Am J Physiol Heart Circ 

Physiol. 2013;304(8):H1114-23.  

196.  Hughson RL, Robertson AD, Arbeille P, Shoemaker JK, Rush JWE, Fraser KS, et 

al. Increased postflight carotid artery stiffness and inflight insulin resistance 

resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart 

Circ Physiol. 2016;310(5):H628-38.  

197.  Macaulay TR, Macias BR, Lee SM, Boda WL, Watenpaugh DE, Hargens AR. 

Treadmill exercise within lower-body negative pressure attenuates simulated 

spaceflight-induced reductions of balance abilities in men but not women. npj 

Microgravity. 2016;2:16022.  

198.  Esterov D, Greenwald BD. Autonomic dysfunction after mild traumatic brain injury. 

Brain Sci. 2017;7(8):1–8.  

199.  Dobson JL, Yarbrough MB, Perez J, Evans K, Buckley T. Sport-related concussion 

induces transient cardiovascular autonomic dysfunction. Am J Physiol - Regul 

Integr Comp Physiol. 2017;312(4):R575–84.  

200.  Rodriguez J, Blaber AP, Kneihsl M, Trozic I, Ruedl R, Green DA, et al. Poststroke 

alterations in heart rate variability during orthostatic challenge. Med (United States). 

2017;96(14):4–8.  

201.  Ziemssen T, Reichmann H. Cardiovascular autonomic dysfunction in Parkinson’s 

disease. J Neurol Sci. 2010;289(1):74–80.  

202.  Guskiewicz KM, Ross SE, Marshall SW. Postural Stability and Neuropsychological 

De cits After Concussion in Collegiate Athletes. J Athl Train. 2001;36(3):263–73.  

203.  Brown LA, Sleik RJ, Winder TR. Attentional demands for static postural control after 

stroke. Arch Phys Med Rehabil. 2002;83(12):1732–5.  



128 

204.  Mukkamala R, Hahn J-O, Inan OT, Mestha LK, Kim C-S, Toreyin H, et al. Toward 

Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. 

IEEE Trans Biomed Eng. 2015;62(8):1879–901.  

205.  Payne RA, Symeonides CN, Webb DJ, Maxwell SRJ. Pulse transit time measured 

from the ECG: an unreliable marker of beat-to-beat blood pressure. J Appl Physiol. 

2006;100(1):136–41.  

206.  Laurin A, Blaber A, Tavakolian K. Seismocardiograms return Valid Heart Rate 

Variability Indices. In: Computing in Cardiology. 2013. p. 413–6.  

207.  Shafiq G, Tatinati S, Ang WT, Veluvolu KC. Automatic Identification of Systolic Time 

Intervals in Seismocardiogram. Sci Rep. 2016;6:37524.  

208.  Khosrow-Khavar F, Tavakolian K, Blaber A, Menon C. Automatic and Robust 

Delineation of the Fiducial Points of the Seismocardiogram Signal for Non-invasive 

Estimation of Cardiac Time Intervals. IEEE Trans Biomed Eng. 2016;64(8):1701–

10.  

209.  Tavakolian K. Systolic Time Intervals and New Measurement Methods. Cardiovasc 

Eng Technol. 2016;7(2):118–25.  

210.  Verma AK, Fazel-Rezai R, Blaber A, Tavakolian K. Pulse Transit Time Extraction 

from Seismocardiogram and its Relationship with Pulse Pressure. In: Computing in 

Cardiology. 2015. p. 37–40.  

211.  Verma AK, Fazel-Rezai R, Zanetti J, Tavakolian K. Preliminary Results for 

Estimating Pulse Transit Time Using Seismocardiogram. J Mech Des. 

2015;9(2):20916.  

212.  Verma AK, Zanetti J, Fazel-Rezai R, Tavakolian K. Pulse Transit Time Derivation 

using Xiphoidal and Carotid Seismocardiograms. In: Design of Medical Devices 

Conference. 2017. p. V001T01A010-V001T01A010.  

213.  Yang C, Tavassolian N. Pulse Transit Time Measurement Using 

Seismocardiogram, Photoplethysmogram, and Acoustic Recordings: Evaluation 

and Comparison. IEEE J Biomed Heal Informatics. 2017;  



129 

214.  Di Rienzo M, Vaini E, Lombardi P. Use of seismocardiogram for the beat-to-beat 

assessment of the Pulse Transit Time: A pilot study. Proc Annu Int Conf IEEE Eng 

Med Biol Soc EMBS. 2015;7184–7.  

215.  Kim CS, Carek AM, Mukkamala R, Inan OT, Hahn JO. Ballistocardiogram as 

proximal timing reference for pulse transit time measurement: Potential for cuffless 

blood pressure monitoring. IEEE Trans Biomed Eng. 2015;62(11):2657–64.  

 


	Assessment Of Blood Pressure Regulatory Controls To Detect Hypovolemia And Orthostatic Intolerance
	Recommended Citation

	Verma_Ajay K_Thesis

