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ABSTRACT

Global circulation/climate models (GCMs) remain as an invaluable tool to predict 

future potential climate change. To best advise policy makers, assessing and increasing 

the accuracy of climate models is paramount. The treatment of clouds, radiation and 

precipitation in climate models and their associated feedbacks have long been one of the 

largest sources of uncertainty in predicting any potential future climate changes.  

Three versions of the NASA GISS ModelE GCM (the frozen CMIP5 version 

[C5], a post-CMIP5 version with modifications to cumulus and boundary layer 

turbulence parameterizations [P5], and the most recent version of the GCM which builds 

on the post-CMIP5 version with further modifications to convective cloud ice and cold 

pool parameterizations [E5]) have been compared with various satellite observations to 

analyze how recent modifications to the GCM has impacted cloud, radiation, and 

precipitation properties. In addition to global comparisons, two areas are showcased in 

regional analyses: the Eastern Pacific Northern ITCZ (EP-ITCZ), and Indonesia and the 

Western Pacific (INDO-WP). 

Changes to the cumulus and boundary layer turbulence parameterizations in the 

P5 version of the GCM have improved cloud and radiation estimations in areas of 

descending motion, such as the Southern Mid-Latitudes. Ice particle size and fall speed 

modifications in the E5 version of the GCM have decreased ice cloud water contents and 

cloud fractions globally while increasing precipitable water vapor in the model. 
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Comparisons of IWC profiles show that the GCM simulated IWCs increase with height 

and peak in the upper portions of the atmosphere, while 2C-ICE observations peak in the 

lower levels of the atmosphere and decrease with height, effectively opposite of each 

other. Profiles of CF peak at lower heights in the E5 simulation, which will potentially 

increase outgoing longwave radiation due to higher cloud top temperatures, which will 

counterbalance the decrease in reflected shortwave associated with lower CFs and the 

thinner optical depths associated with decreased IWC and LWC in the E5 simulation. 

Vertical motion within the newest E5 simulation is greatly weakened over the EP-

ITCZ region, potentially due to atmospheric loading from enhanced ice particle fall 

speeds. Comparatively, E5 simulated upward motion in the INDO-WP is stronger than its 

predecessors. Changes in the E5 simulation have resulted in stronger/weaker upward 

motion over the ocean/land in the INDO-WP region in comparison with both the C5 and 

P5 predecessors. 

Multimodel precipitation analysis shows that most of the GCMs tend to produce a 

wider ITCZ with stronger precipitation compared to GPCP and TRMM precipitation 

products. E5-simulated precipitation decreases and shifts Southward over the Easter 

Pacific ITCZ, which warrants further investigation into meridional heat transport and 

radiation fields. 
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CHAPTER I

INTRODUCTION 

Statement of Problem 

The treatment of clouds and precipitation in climate models and their associated 

feedbacks have long been one of the largest sources of uncertainty in predicting any 

potential future climate changes. Although many improvements have been made in Phase 

5 of the Coupled Model Intercomparison Project (CMIP5) (Lauer and Hamilton 2012; 

Wang and Su 2013; Li et al. 2013; Klein et al. 2013; Chen et al. 2013; Stanfield 2012), 

clouds, precipitation, and their feedbacks are still a problem in climate models as 

concluded in the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment 

Report (AR5) (2013), and have been illustrated in many studies (e.g., Jiang et al. 2012; 

Stanfield et al. 2014, 2015, and 2016; Dolinar et al. 2015a&b). 

 

Clouds and Radiation 

Lauer and Hamilton (2012) have revealed that the model simulated cloud 

radiative effects (CREs) tend to outperform cloud fractions (CFs), suggesting that models 

are not accurately depicting fundamental cloud processes; rather, the models are being 

tuned to provide simulations closer to observations. Jiang et al. (2012) developed a 

grading scale to rate each model based upon spatial mean, standard deviation, and 

correlation, and highlighted that there exists a large spread in the models and a high 
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degree of discrepancy from observations, particularly in the upper troposphere. Dolinar et 

al. (2015a) evaluated 28 CMIP5 AMIP GCMs simulated CFs and concluded that the 

multi-model ensemble mean CF (57.6%) is, on average, underestimated by 7.6% when 

compared to CERES-MODIS results between 65° S and 65° N. What makes this 

particularly interesting is that many studies have shown that there is a good agreement 

between GCMs simulations and observations in the radiation budget at the top-of-the-

atmosphere (TOA) (Dolinar et al. 2015a&b; Stanfield et al. 2015). 

 

Precipitation 

As described in chapter 9 of the IPCC AR5 (Flato et al. 2013), the majority of the 

general circulation models (GCMs) underestimate the sensitivity of extreme precipitation 

to temperature variability or trends, especially in the tropics, which implies that the 

models may underestimate the projected increase in extreme precipitation in the future. 

Kendon et al. (2014) studied the intensification of extremes with climate change on a 

regional scale, over the United Kingdom using a model generally used for weather 

forecasting with a grid spacing of 1.5 km. Kendon et al. (2014) found that a warmer 

climate produced an increase in winter hourly rainfall intensities and an increase in high-

intensity summer precipitation events indicative of flash flooding. To understand how 

future climate change might impact precipitation at various scales, it is imperative for us 

to accurately simulate and predict past and present precipitation. 

Many studies (e.g., Stanfield et al. 2014, 2015, and 2016; Dolinar et al. 2015a&b) 

have shown that modeled clouds, radiation, and precipitation agree with observations 

within a certain range on a global scale, however, large biases occur at the regional scale. 
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For example, Dolinar et al. (2015b) compared five reanalyzed precipitation rates (PRs) 

with PRs from the Tropical Rainfall Measurement Mission (TRMM) and found that 

while the reanalyzed PRs overestimate the large-scale TRMM mean (3.0 mm/day) by 

only 0.1–0.6 mm/day, the reanalyses oversimulate PRs in both ascent and descent 

regimes with PR biases over the ascent regime being roughly an order of magnitude 

larger than those over the descent regime. 

The intertropical convergence zone (ITCZ), a narrow east-west band of vigorous 

cumulonimbus convection and heavy precipitation (Holton et al. 1971), is located in the 

ascent regime. In addition to the traditional North Pacific ITCZ, a well-known secondary 

ITCZ is often found in the southern tropics of many GCMs when they are coupled with 

their respective ocean model, resulting in a “double-ITCZ” and excessive precipitation in 

zones south of the equator in the Atlantic and the Eastern Pacific (Lin 2007; Pincus et al. 

2008). The double-ITCZ has been a long-standing problem within the GCMs. Hirota et 

al. (2011) examined precipitation in many CMIP3 models and found that models with 

low skills scores, as defined by Taylor et al. (2001), tended to have a stronger correlation 

with sea surface temperatures (SSTs), a weaker correlation with vertical motion (ω500), 

and tended to overestimate (underestimate) precipitation over large-scale subsidence 

(ascending) regions when compared to models with higher skill scores. Other studies 

have also examined the interaction of the ITCZ and the equatorial Pacific cold tongue 

bias in the models (Misra et al. 2008, Li and Xie 2014, Li et al. 2015). In Stanfield et al. 

(2016), we focused precipitation in the traditional North Pacific ITCZ and will continue 

to focus on precipitation in this region in this study. 
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Importance and Purpose of the Study 

GCMs are an essential tool for simulating possible future climate scenarios. 

However, as concluded by the IPCC AR5, the GCMs still have many uncertainties to 

contend with in regards to clouds, precipitation, and their associated feedbacks, and any 

improvements we can make in regards to the GCMs are vital to forecasting future climate 

changes. 

Three studies have been published at the University of North Dakota since 2014. 

The first two studies in conjunction analyzed changes to cloud (Stanfield et al. 2014) and 

radiative properties (Stanfield et al. 2015) in the NASA GISS-E2-R Post-CMIP5 GCM, 

and compared new results with the frozen CMIP5 version of the GCM as well as various 

observations. Stanfield et al. (2016) compared precipitation coverage and magnitude from 

29 GCM AMIP simulations with GPCP (Adler et al. 2003) and TRMM (Huffman and 

Bolvin, 2011) precipitation products over the North Pacific ITCZ, as well as comparing 

them with their linked CMIP5 historical ocean-coupled runs. A new algorithm has been 

developed to define the North Pacific ITCZ through several metrics with the intent of 

quantifying magnitude-, location-, and width-based biases within the GCMs. Recently, 

these studies have been updated by examining three versions of the NASA GISS ModelE 

GCM in comparison with a suite of space- and ground-based observations.  

The goal of this study is to determine how recent parameterization changes to the 

NASA GISS ModelE GCM have impacted simulated IWC, LWC, and updraft strength, 

and to determine how changes in these variables have impacted simulated clouds and 

precipitation both globally and regionally, with a special focus on two regions of interest 
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within the ITCZ: the Eastern Pacific, and the Western Pacific. This study seeks to provide 

feedback to improve the NASA GISS ModelE GCM simulations. 

 

Limitations of the Study 

All GCM data acquired for this study have a monthly temporal output and have 

been provided for us either by a data center or by NASA GISS directly. Dynamic analysis 

is challenging without access to higher temporal resolutions, such as hourly or daily 

GCM runs. Without running the GCMs in house, analysis essentially left to a black box 

in which it can be seen how each field has evolved with time, however, multiple changes 

have been made between each time step. Determining how each modification to the GCM 

has specifically affected relevant variables is challenging given the complex interactions 

between simulated variables. Data availability was limited as two of the GCM 

simulations were provided by outside sources, meaning available variables and temporal 

resolution were not controllable factors. Examining CMIP6 GCM results was proposed 

originally, but unfortunately time was another limitation as CMIP6 GCM simulations 

were not available at the time of this study. 

 

Outline 

The dissertation is organized as follows. In Chapter II, relevant information on 

data used in this study will be provided, grouped based on the data source. Overarching 

methodologies used across multiple chapters are discussed in Chapter III. In detail, basic 

statistical methods, calculations of global and zonal means, and the reasoning for 

establishing two focus regions which are showcased in the regional analyses provided in 
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Chapter IV and VI updates are discussed. Chapters IV through VI contain more specific 

additions to the methodology employed when appropriate only for that section of the 

chapter.  

Chapters IV through VI discuss the results of this study, split into three parts 

based on the topic discussed. Chapter IV discusses the findings of Stanfield et al. (2014) 

which analyzed multiple cloud properties in a newer NASA GISS-E2-R Post-CMIP5 

version of the GCM and compared these results with the frozen CMIP5 version of the 

GCM as well as various observations. An update to Stanfield et al. (2014) is provided 

which discusses how recent changes in the E5 GCM simulation have impacted IWP, 

IWC, LWP, LWC, vertical motion, total column cloud fraction, cloud fraction profiles, 

and precipitable water vapor in the CMIP5, Post-CMIP5, and most recent E5 versions of 

the models. 

 Stanfield RE, Dong X, Xi B, Kennedy A, Del Genio AD, Minnis P, Jiang JH 

(2014) Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and 

TOA radiation budgets using satellite observations: Part I: Cloud fraction and 

properties. J. Clim., 27 (11): 4189-4208, doi:10.1175/JCLI-D-13-00558.1. 

Chapter V discusses the findings of Stanfield et al. (2015) which analyzed 

radiative properties in the NASA GISS-E2-R Post-CMIP5 GCM and compared new 

results with the frozen CMIP5 version of the GCM as well as various observations. 

Radiative properties are not available in the E5 version of the GCM at the time of this 

study, and as such an update to Stanfield et al. (2015) is provided which speculates on 

how observed changes in E5-simulated cloud properties might impact radiative fields in 

the new version of the GCM. 
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 Stanfield RE, Dong X, Xi B, Del Genio AD, Minnis P, Doelling D, Loeb N 

(2015) Assessment of NASA GISS CMIP5 and Post-CMIP5 simulated clouds and 

TOA radiation budgets using satellite observations. Part II: TOA radiation budget 

and CREs. J Clim 28 (5): 1842–1864. doi:10.1175/JCLI-D-14-00249.1 

Chapter VI discusses the findings of Stanfield et al. (2016) which compared 

precipitation coverage and magnitudes from 29 GCM AMIP simulations with GPCP 

(Adler et al. 2003) and TRMM (Huffman and Bolvin, 2011) precipitation products over 

the North Pacific ITCZ, as well as with their linked CMIP5 historical ocean-coupled 

runs. More specifically, a new algorithm has been developed to define the North Pacific 

ITCZ through several metrics with the intent of quantifying magnitude-, location-, and 

width-based biases within the GCMs. An update to Stanfield et al. (2016) is provided 

which analyzes how recent changes in the E5 GCM simulation have impacted 

precipitation on global and regional scales. 

 Stanfield RE, Jiang J, Dong X, Xi B, Su H, Donner L, Rotstayn L, Wu T, Cole J, 

and Shinodo E (2016) A Quantitative Assessment of Precipitation Associated 

with the ITCZ in the CMIP GCM Simulations. Climate Dynamics, 47: 1863. 

doi:10.1007/s00382-015-2937-y 

A summary of updated conclusions, potential future work, and suggestions are 

provided in Chapter VII. 
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CHAPTER II

DATA 

The NASA GISS ModelE Global Climate Model 

 This section will outline the general concept behind the suite of GCMs used in 

this study while providing specific details about the CMIP5 version of the NASA GISS 

Model E2 (GISS-E2) GCM, parameterization changes made in the post-CMIP5 (P5) 

iteration of the NASA GISS GCM, as well as new changes made to the P5 version of the 

model outlined in Elsaessor et al. (2017).  

 C5 GCM data are provided by the Earth System Grid Federation (ESGF) Program 

for Climate Model Diagnosis and Intercomparison (PCMDI) database from various 

modeling groups at various temporal resolutions. The spatial resolutions of the GCMs are 

varied and dependent on the modeling group. Each ensemble member within the ESGF 

PCMDI database is given three integers (N,M,L), in r<N>i<M>p<L> format to 

distinguish related simulations, where N is the realization number, M is the initialization 

method indicator, and L is the perturbed physics number as described in Taylor et al. 

(2010). In Stanfield et al. (2016), monthly data from each respective r1i1p1 GCM 

simulation during the period January 2000 - December 2005 were used. This period is 

used frequently in this study as it best represents the climate mean as there are no strong 

ENSO signals during this observational period. It should be noted, however, that the 
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models were not screened for their respective ENSO signal during this time period, and 

as such there may be bias introduced into our comparison because of this. 

 

CMIP5 GISS ModelE GCM 

 While multiple simulations of each model are provided by the ESGF PCMDI 

CMIP5 database, Stanfield et al. (2014) used the r5i1p3 ensemble member of the GISS 

ModelE GCM, outlined in Taylor et al. (2012). The third version of model physics (p3) 

includes aerosol direct, semi-direct, and first indirect effects, although differences in 

mean fields between this model version and the version with non-interactive aerosols (p1) 

are small (Schmidt et al. 2014). The r1i1p1 ensemble member was used in Stanfield et al. 

(2016), and is used again in the updates provided in this study for consistency. The 

minimum relative humidity at which clouds are formed is tuned in order to reach global 

mean radiative balance within the GISS GCM. The GISS-E2 has a native horizontal 

resolution of 2° × 2.5° (latitude × longitude) with 40 vertical layers. A detailed analysis 

of the C5 run can be found in Schmidt et al. (2014).  

The GISS convective parameterization is a mass flux scheme triggered when a 

parcel lifted from one model layer becomes buoyant. The resulting mass flux restores 

cloud base to neutral buoyancy over a specified convective adjustment time. The mass 

flux is partitioned into two bulk “plumes” with different interactive entrainment rates, 

based on the parameterization of Gregory (2001). Vertical velocity is diagnosed and 

cloud top is defined as the level at which the vertical velocity becomes zero or negative 

(Del Genio et al. 2007). Condensed water in the updraft is assumed to follow a Marshall-

Palmer distribution, and by comparing the updraft speed to fall speeds for different 
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particle sizes, the fractions of the condensate that precipitates, detrains, and advects 

upward are determined (Del Genio et al. 2005). 

 

Post-CMIP5 GISS ModelE GCM 

 Two versions of NASA GISS ModelE Post-CMIP5 (P5) intermediate diagnostic 

data were provided by NASA GISS at different times for this study. Stanfield et al. 

(2014) and Stanfield et al. (2015) used four years of P5 diagnostic data provided directly 

by NASA GISS in 2013, while updates to these studies use only one year of a more 

recently released version of the P5 diagnostic data which was provided indirectly by 

NASA GISS through the Jet Propulsion Laboratory. Consistency of the minor changes 

between these two versions cannot be 100% guaranteed, however, the two major 

parameterization changes are confirmed to be consistent between each version. The 

cumulus parameterization has been modified with increased entrainment and rain 

evaporation and changes in the convective downdraft as detailed in Del Genio et al. 

(2012). For example, the stronger entrainment allows the new cumulus parameterization 

to produce MJO (Madden–Julian Oscillation)-like variability (Kim et al. 2012). Increased 

entrainment and rain evaporation decrease convective drying and thus can cause a small 

local increase in water vapor and cloudiness, especially in regions where convective 

depth is most sensitive to entrainment. 

The boundary layer turbulence parameterization has been modified as well in the 

P5 simulation (Yao and Cheng 2012). According to Yao and Cheng (2012), this new 

scheme differs in its computation of nonlocal transports, turbulent length scale, and PBL 

height, and shows improvements in cloud and radiation simulations, particularly over the 
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subtropical eastern oceans and the southern oceans, despite the fact that the stratiform 

cloud parameterization itself is unchanged from the C5 version.  

 

 

ModelE GCM with Elsaessor et al. (2017) Ice Modifications 

 Recently, an improved parameterization of convective cloud ice was developed 

by Elsaesser et al. (2017) which incorporates new particle size distributions for 

convective outflow and a new ice particle fall speed formulation. Elsaessor et al. (2017) 

modified convective outflow particle size distributions and ice particle fall speeds in the 

NASA GISS ModelE convective cloud ice parameterization using data gathered from 

four field campaigns: the NASA African Monsoon Multidisciplinary Analysis 

(NAMMA), NASA Tropical Composition, Cloud and Climate Coupling (TC4), DOE 

ARM-NASA Midlatitude Continental Convective Clouds Experiment (MC3E), and DOE 

ARM Small Particles in Cirrus (SPARTICUS). Going forward, the GISS team is actively 

preparing the CMIP6 configuration of the GISS model, which may include the modified 

parameterizations described in Elsaesser et al. (2017). 

 

 

CERES-MODIS (CM) 

 This research utilized three data products provided by the NASA Clouds and 

Earth's Radiant Energy System (CERES) team: the SYN1 cloud products and the EBAF-

TOA and EBAF-SFC radiation products. 
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CERES SYN1 Cloud Products 

 This study uses the CERES-MODIS SYNoptic radiative fluxes and clouds 

(SYN1) Edition 3 dataset for global and regional cloud fraction (CF), ice water path 

(IWP) and liquid water path (LWP) comparisons, which includes CERES Edition 2 cloud 

properties (Minnis et al. 2011a). Note that the CERES science team uses different 

algorithms to retrieve MODIS cloud properties than those used by the MODIS 

Atmospheres Science Team (MOD06) (Platnick et al. 2003) as discussed by Minnis et al. 

(2011b). More than 5 years of SYN1 data are used in this study (March 2000 to 

December 2005).  

 The CM Aqua and Terra CF retrievals have been extensively compared with other 

observational data in Minnis et al. (2008), which documented a 7% uncertainty in CM 

global CF retrievals. The global mean CM Edition 2 CF is among the lowest values from 

twelve different satellite retrievals that ranged from 0.56 to 0.73 (Stubenrauch et al. 

2013). The mean CM low and high CFs, however, are close to the respective averages for 

the twelve datasets. Thus, other than having lower midlevel cloud fractions than all other 

retrievals, except for CALIPSO, the CM CFs are representative of passive satellite cloud 

amounts.  

The SYN1 Edition 3 dataset has a well-known issue in its IWP and LWP 

estimations due to the relatively large uncertainties in regard to nighttime CWP retrievals 

when CWP > 50 g m
−2

. Dong et al. (2008) documented uncertainties in the CM retrieved 

cloud LWP and found mean LWP differences of 11.3 ± 51.0 g m
−2

 compared to DOE 

Atmospheric Radiation Measurement Program ground-based microwave radiometer 

retrieved LWPs at the Southern Great Plains Central Facility. Minnis et al. (2011b) found 
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that the CM LWP over ocean was, on average, 0.2 ± 53.6 g m
−2

 less than LWP from 

matched overcast AMSR-E footprints. For single layer cirrus clouds, Mace et al. (2005) 

found that the CM IWP was 3.3 ± 16.2 g m
−2

 less than IWP derived from a ground-based 

radar. Although not quantified precisely, the CM IWP means for all ice clouds are similar 

in magnitude and distribution compared to IWP from CloudSat (Waliser et al. 2009). 

Minnis et al. (2007) found that for ice-over-water cloud systems, CWP from the single-

phase retrieval (CWP = IWP) was 10-15% greater than when IWP and LWP were 

retrieved explicitly using microwave and visible-infrared imagers together. Thus, in these 

situations, the CM IWP (CWP) is probably overestimated by 10-15%. Further discussion 

of the CM cloud properties uncertainties is found in Minnis et al. (2011b). 

 

CERES EBAF-TOA and EBAF-SFC Radiation Products 

 The CERES energy balanced and filled at the top of the atmosphere (EBAF-TOA) 

Ed2.7 dataset is used for needed radiation calculations in this study. The CERES EBAF-

TOA product is derived using the CERES SYN1deg-lite product, adjusted within the 

uncertainty to be consistent with the net planetary imbalance derived from ocean heating 

rates from Argo in-situ ocean temperature measurements (Loeb et al. 2012). CERES 

TOA radiative fluxes have been validated across multiple studies (Loeb et al. 2006 and 

2007; Kato and Loeb 2005; Doelling et al. 2013). For more detailed information 

regarding the derivation of CERES results, please consult the following sources: Loeb et 

al. (2001, 2003, 2005, 2012), Kopp and Lawrence (2005), and Minnis et al. (2011a). 

Based on documentation, CERES EBAF regional errors/uncertainties, meaning more 

specifically average error across any singular 1°x1° gridbox, are as follows: TOA clear-
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sky OLR (3.6 W m
−2

) and TOA clear-sky SW (2.6 W m
−2

). TOA all-sky SW 

errors/uncertainties are ~ 5 W m
−2

 during the period of March 2000-June 2002 and ~4 W 

m
−2

 during the period of July 2002-December 2010. Monthly mean fluxes were 

determined by the CERES team through spatially averaging the instantaneous values on a 

1°×1° grid, temporally interpolating between observed values at one hour increments for 

each hour of every month, and then averaging all hour boxes in a month (Young et al. 

1998; Doelling et al. 2013). Level-3 processing is performed on a nested grid, which uses 

1° equal-angle regions between 45°N and 45°S, maintaining area consistency at higher 

latitudes. The fluxes from the nested grid are then output to a complete 360x180 1°×1° 

grid using replication. In the CERES EBAF-TOA radiation product, clear-sky TOA 

fluxes are supplemented with fluxes derived from partly cloudy CERES footprints via 

narrow-to-broadband regression (Loeb et al. 2009).   

 

Cloudsat / CALIPSO Cloud Products 

 The CALIPSO and Cloudsat satellites were launched in April 2006 as part of the 

A-Train constellation (Winker et al. 2007). CALIPSO carries the Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP) instrument, a nadir-viewing two-wavelength 

(1064 and 532 nm) polarization lidar. The CloudSat millimeter wavelength cloud 

profiling radar (CPR) has a unique ability to observe the majority of cloud condensate 

and precipitation within its nadir field of view. The CloudSat-retrieved properties have a 

vertical resolution of 500 m (Stephens et al. 2002). When combined with CALIPSO, they 

yield a nearly complete vertical cloud profile, the exception being hydrometeors in the 
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lower troposphere that may be masked due to attenuation or surface clutter (Marchand et 

al. 2008). 

 

 

CCCM Cloud Products 

 The CALIOP and CPR retrievals from the CALIPSO-Cloudsat-CERES-MODIS 

(CCCM, Kato et al. 2010) RelB1 data product are used for total column CF comparisons. 

Given that CCCM CFs are based on active scanning strategies, we expect that CF results 

from CCCM will be generally higher than other CF observations based on passive 

scanning strategies. 

 

 

2C-ICE Ice Cloud Products 

 The Cloudsat and CALIPSO Ice Cloud Property Product (2C-ICE) contains 

retrieved estimates of ice cloud water content (IWC) and effective radius (re) for 

identified ice clouds measured by Cloud Profiling Radar (CPR) on CloudSat and/or the 

CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; hereafter 

referred as the Lidar). This 2C-ICE cloud product uses combined inputs of measured 

radar reflectivity factor from the CloudSat 2BGEOGPROF product and measured 

attenuated backscattering coefficients at 532 nm from CALISPO lidar to constrain the ice 

cloud retrieval more tightly than the radar-only product and to generate more accurate 

results. 
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AIRS Water Vapor Products 

 This study uses the Level 3 AIRS AIRX3STD dataset for observations of 

atmospheric precipitable water vapor (PWV; Olsen et al. 2007b). AIRS is one of the six 

instruments on board the Aqua satellite with a spatial resolution of 50 km reported on a 

1° x 1° grid. PWV retrievals are more reliable from 1000 hPa to 300 hPa over ocean, and 

850 hPa to 300 hPa over land, with an estimated uncertainty of 25% in the tropics, 30% 

within the midlatitudes, 50% at high latitudes, and 30% globally averaged (Jiang et al. 

2012). Because AIRS cannot retrieve water vapor amounts in largely overcast scenes, 

which are usually more humid than clear scenes, it is dry-biased by 5-10% over much of 

the globe; the opposite is true in subtropical stratocumulus regions in which near-overcast 

scenes are overlain by very dry air (Fetzer et al. 2006).  

 

AMSR-E Water Vapor Products 

 AMSR-E Level 3 Version 5 PWV data (Wentz 1997) are obtained from Remote 

Sensing Systems in their native gridded resolution of 0.25° x 0.25°. The product is 

estimated to have a random error up to ~1.2 kg m
–2

. The AIRS and AMSR-E PWV data 

over the oceans have been extensively compared by the AIRS science team, described in 

Fetzer et al. (2006), who found a difference of no more than 5% when both instruments 

view the same scene. The AMSR-E PWV retrievals over oceans are higher than their 

AIRS counterparts simply because AMSR-E is capable of measuring PWV from the 

surface to TOA, while reliable AIRS retrievals are restricted from 1000 hPa to 300 hPa, 

and also because of the dry bias due to the omission of nearly overcast scenes described 

above. The AMSR-E retrievals are valid for the full column of the atmosphere, but are 
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limited to ocean-only retrievals, while the AIRS retrievals are provided over both land 

and ocean, but are restricted from 1000 hPa to 300 hPa. As such, AMSR-E will be more 

reliable for comparisons over the ocean, while AIRS should be considered over land. 

 

GPCP Precipitation Product 

 The Global Precipitation Climatology Project (GPCP, Adler et al. 2003) is part of 

the Global Energy and Water Cycle Exchanges Project (GEWEX) established by the 

World Climate Research Programme (WCRP). The GPCP precipitation product used in 

this study, as used in Stanfield et al. (2016), is the GPCP satellite-gauge (SG) monthly 

precipitation product which provides monthly precipitation estimates on a global 

2.5°×2.5° grid based on a combination of data from geostationary satellites, polar 

satellites, surface reference data, and station observations. Uncertainty of precipitation in 

the GPCP-SG product is estimated at ~15% (Huffman et al. 1997). 

 

TRMM Precipitation Product 

 The Tropical Rainfall Measuring Mission (TRMM, Huffman and Bolvin 2011) 

precipitation product is generated through a combination of four sources: the TRMM 

precipitation radar data, passive microwave radiances at multiple frequencies and 

polarizations (observed from a mixed constellation of operational and research low-earth-

orbit [LEO] satellites), thermal infrared brightness temperatures from geosynchronous 

satellites, and surface precipitation gauge measurements (Huffman et al. 2007; Huffman 

and Bolvin 2011). This study uses the 3B43 monthly TRMM dataset, as used in Stanfield 

et al. (2016), with a native resolution of 0.25° × 0.25° (latitude × longitude). The TRMM 
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microwave imager is available between ±37° of latitude. An important difference 

between the GPCP and TRMM products is the inclusion of the precipitation radar on-

board the TRMM satellite. Given the higher spatial resolution and ability of the 

precipitation radar to detect precipitating clouds, we expect the precipitation features 

identified by TRMM to be finer/sharper than features identified by GPCP. 

The uncertainties of 3-hourly TRMM precipitation data are estimated at 90% - 

120% for light rain (< 0.25 mm/hr) and 20% - 40% for heavy rain (Habib and Krajewski 

2002; AghaKouchak et al. 2009). TRMM data is known to have up to a ~30% positive 

bias during the northern summer when compared to other measurements (e.g. Nicholson 

et al. 2003), which cannot be removed through monthly averaging. It should be noted that 

at the time of these studies, generation of the GPCP product does not include TRMM 

observations (Huffman and Bolvin 2012). 

 

MERRA-2 Reanalysis 

 A multi-level updraft analysis to examine changes in the strength of the updraft 

associated within the ascending branch of the Hadley Cell is performed in this study. 

Three-dimensional wind field observations are particularly challenging to come by, and 

as such we rely on “semi-observational” data from the MERRA-2 reanalysis to compare 

with the GCM runs. MERRA-2 has a native resolution of 0.67° × 0.5° (longitude × 

latitude), and uses a 3D-VAR assimilation method with incremental updates (Molod et al. 

2015).  
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CHAPTER III

OVERARCHING METHODOLOGY 

Methodologies used across multiple chapters are discussed in this section. In 

detail, basic statistical methods employed across every chapter in this study are described 

in section 3.1, calculations of global and zonal means are discussed in section 3.2, and the 

reasoning behind the establishment of two areas of focus which are showcased in 

regional analyses provided in the updates to Chapters IV and VI are discussed in section 

3.3. 

 

3.1 Statistical Methods 

 In order to properly assess the GISS GCM and its sensitivities, a few basic 

statistical methods are employed and presented in Table 1. Global averages are computed 

through the following two steps (temporal average first, and then spatial). First, the 

monthly averages (for example January) are binned and averaged from all monthly means 

(for all available Januaries) for a grid box, and then the seasonal and annual averages are 

calculated from the averages from January to December. Once the monthly, seasonal and 

annual averages over a grid box are created, a global mean is computed using a cosine 

weighting scheme, where the weight applied to each datum is the cosine of the latitude to 

which that datum belongs. After dividing by the sum of the weights, a global cosine 

weighted mean is achieved. 
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Table 1. Basic statistics used for calculating the weighted mean bias, standard deviation, 
and correlation between the GCM and observations. 

Statistic Equation 

Mean 𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

Weighted Mean 𝑥̅ =
∑ 𝑤𝑖𝑥𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

Standard Deviation 𝜎𝑁 = √
1

𝑁− 1
∑(𝑥𝑖− 𝑥̅)2
𝑁

𝑖−1

 

Covariance 𝐶𝑜𝑣(𝑋, 𝑌) =∑
(𝑋𝑖 − 𝑋)(𝑌𝑖−𝑌)

(𝑁 − 1)

𝑁

𝑖=1

 

Correlation 𝐶𝑜𝑟𝑟(𝑋,𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

Root-Moon-Square 
Deviation (RMSD) 𝑅𝑀𝑆𝐷 = √

∑ (𝑥1,𝑡− 𝑥2,𝑡)
2𝑛

𝑡=1

𝑛
 

 

3.2 Global and Zonal Means 

 Global averages are calculated using two different methods in this study, based on 

the global property being averaged. Specifically, global averages of albedo must be 

calculated in a manner that differs from other variables. For most variables, available data 

within each grid box for the specified variable are averaged into an array of 12 months 

(from January to December) by averaging like months, such as all Marches during the 

available timeframe. This particularly helps to account for missing data associated with 

the 2C-ICE dataset used in this study, namely in 2007 where 2C-ICE has intermittent 
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days of missing data as well as an entire missing month of data. After this, the values of 

each grid box for all 12 months are averaged to generate a yearly mean for the 

aforementioned grid box, generating a global grid of yearly means, as is shown in all 

annually averaged global plots. Zonal averages are generated from the gridded global 

means by averaging across latitudinal bands. A cosine-weighting scheme is employed to 

calculate total global averages, where each point is weighted by the cosine of the latitude. 

A global average is finally calculated by the ratio of the sum of the values to the sum of 

the weights.  

As mentioned prior, the method for calculating the global mean albedo differs 

slightly from this procedure. Given that albedo is a ratio of reflected SW to downwelling 

SW, the previously listed method leads to erroneous global averages. Instead, global 

averages of albedo are calculated using the ratio of the sum of the weighted reflected SW 

to the sum of the weighted downwelling SW. That is, values of reflected SW and 

downwelling SW are weighted using the cosine-weighting scheme mentioned prior, 

summed up respectively across the globe, divided by the sum of the weights, and then the 

global mean albedo is calculated as the weighted sum of reflected SW over the weighted 

sum of downwelling SW. 

 

3.3 Defining Areas of Focus 

 Based on the most recent changes made to the E5 version of the NASA GISS 

GCM, two regions are showcased in regional analyses provided in the updates to 

Chapters IV and VI. These two regions are shown in Figure 1 and are labeled as follows: 

(1) the Eastern Pacific Northern ITCZ (EP-ITCZ), and (2) Indonesia and the Western 
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Pacific (INDO-WP). Boundaries of these regions are outlined in Table 2. These regions 

are selected based on their opposite behavior in regard to how many of the variables 

change with the most recent changes made in the NASA GISS E5 GCM simulation. 

Boundaries for these two regions were tested and selected based on maximizing coverage 

area where large inter-model differences were found while trying to minimize outside 

influences.  

 

Figure 1. Two regions are showcased in regional analyses provided in the updates to 
Chapters IV and VI: (1) the Eastern Pacific Northern ITCZ (EP-ITCZ), and (2) Indonesia 

and the Western Pacific (INDO-WP). 

Table 2. The longitudinal and latitudinal boundaries of the two regions of interest 
selected for this study. 

Region Region Label Longitudinal Boundaries Latitudinal Boundaries 
EP-ITCZ 1 180° 260° E 0° 15° N 

INDO-WP 2 90° 180° E 20° S 20° N 
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CHAPTER IV 

CLOUD PROPERTIES 

 This chapter details the analysis of cloud properties discussed in Stanfield 

et al. (2014), and examines how new modifications in the NASA GISS ModelE GCM 

have impacted model simulated cloud properties.  

 

4.1 Stanfield et al. (2014) − NASA GISS CMIP5 vs Post-CMIP5 Cloud Analysis  

 Stanfield et al. (2014) focused on understanding the connections between cloud 

properties and their environmental conditions. Although globally averaged cloud fraction 

(CF) simulated by the CMIP5 version of the GCM is closer to that from satellite 

observations (Schmidt et al. 2013) relative to its CMIP3 predecessor (Schmidt et al. 

2006; Kennedy et al. 2010; Naud et al. 2010), the GISS E2 GCM, like most other CMIP5 

GCMs, underestimates marine boundary layer (MBL) clouds over the subtropical marine 

stratocumulus regions and the southern mid-latitude (SML) oceans (Stanfield 2012; 

Dolinar et al. 2014). Recent GISS-E2 runs, denoted as Post-CMIP5, have newly updated 

turbulence (Yao and Cheng 2012) and moist convection (Del Genio et al. 2012) 

parameterizations that have yielded substantial improvements over the SMLs and 

moderate improvement in coastal areas where MBL clouds frequently occur. Stanfield et 

al. (2014) looked at comparisons of CFs and cloud properties simulated by GISS-E2 

CMIP5 and post-CMIP5 versions and NASA satellite observations. In detail, CMIP5 and 

post-CMIP5 simulated CFs and cloud water path (CWP) were compared with CERES-

MODIS (MODerate resolution Imaging Spectroradiometer) Edition 2 cloud results 

(Minnis et al. 2011a) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder 



24 

 

Satellite Observation) profiles (Kato et al. 2010). Model-simulated liquid and ice water 

paths (LWP, IWP) were compared with CloudSat results (Austin et al. 2009). Simulated 

precipitable water vapor (PWV) is compared to Advanced Microwave Scanning 

Radiometer (AMSR-E) retrievals (Wentz 1997), while both PWV and relative humidity 

(RH) profiles are compared with Atmospheric InfraRed Sounder (AIRS) retrievals (Olsen 

et al. 2007a&b). 

 

4.1.1 Methodology 

 Cloud fraction height classifications as well as the term “bias” used in Stanfield et 

al. (2014) are discussed in the following. 

 

4.1.1.1 Cloud Height Classifications and Total Column Cloud Fraction Calculations 

P5-simulated CFs are stratified into high (P < 440 hPa), middle (440 hPa < P < 

680 hPa), and low (P > 680 hPa) level cloud fractions based on the ISCCP classifications 

presented in Rossow and Schiffer (1999). Combinations of CFs within similar layer 

classifications were performed in-house by NASA GISS for both the P5 and C5 

simulations, ensuring a proper vertical CF comparison.  

 

4.1.1.2 The Term “Bias” in Stanfield et al. (2014) 

Errors in satellite retrieved results are not explicitly accounted for in the figures 

shown in this comparison. While satellite retrievals contain uncertainties and biases, they 

remain good tools for diagnosing model issues. For example, NASA CERES-MODIS 

retrieved cloud properties have been extensively validated using a suite of ground-based 
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observations and retrievals (Dong et al. 2008 and 2016; Minnis et al. 2011b; Xi et al. 

2010, 2014). On the other hand, cloud fields retrieved from different satellite 

observations or using different retrieval techniques give markedly different results 

(Stubenrauch et al. 2013). Given this caveat about satellite retrievals and uncertainties, 

the term “bias” used in the findings of Stanfield et al. (2014 and 2015) was used in its 

simplest form, and represents the differences between the model simulations and the 

observations.  

 

4.1.2 Cloud Fraction 

 Figures 2a-d show observed and modeled gridded annual CFs for CERES-

MODIS (CM), Cloudsat/CALIPSO (CC), P5, and C5 results, respectively, while Figs. 

2e-h show the differences between simulated and observed CFs, such as P5-CM, C5-CM, 

P5-CC, and C5-CC, respectively. Comparing two observational datasets, the annual 

global average of CC derived CF is ~12% higher than CM, with much higher values over 

the Arctic regions. This discrepancy is a result of different sensitivities to clouds between 

passive and active remote sensing; CC is more sensitive to optically thin clouds and 

clouds with small coverage areas while CM has a tendency to miss small cumulus clouds 

and clouds with optical thicknesses less than 0.3 (Chiriaco et al. 2007; Minnis et al. 

2008). The CF differences between CM and CC can be reduced to within ~2% if CC-

derived CFs (~63%) are limited to clouds with optical depth greater than 0.3 (not shown 

in this study). 
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Figure 2. Gridded annual mean CFs derived from (a) NASA CM results, (b) NASA CC 
observations, and simulated by NASA GISS (c) P5 and (d) C5 GCM simulations, as well 
as their differences (e) P5-CM, (f) C5-CM, (g) P5-CC and (h) C5-CC, for the period of 
March 2000. 

Although the global averages P5 and C5 simulated CFs agree within 1%, 

significant differences are evident over some regions, such as the Arctic and SMLs (Figs. 

2c and 2d). The P5- and C5-simulated global distributions and mean CFs agree much 
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better with CM than with CC, suggesting that the GISS GCMs cannot simulate some of 

the optically thin clouds (τ < 0.3) observed by CC. The C5-simulated CFs are greater than 

the CM derived CFs over the tropical and polar regions, but lower over the mid-latitudes 

(Figs. 2a and 2d). The newly simulated CFs from P5, agree much better with the CM 

CFs, especially over the mid-latitudes, but without significant improvement over the 

tropical Pacific Ocean (Figs. 2a and 2c). Arctic comparisons are not strongly considered 

at the time of this study given the known low biases associated with Arctic CM 

observations (Chiriaco et al. 2007; Minnis et al. 2008), as well as latitudinal limitations of 

CC observations (Winker 2007). Marine boundary layer (MBL) clouds are dominant over 

the SML regions as illustrated in Fig. 3d. While large improvements were observed in 

MBL CFs over the SMLs in Fig. 2, the P5-simulated CFs over regions with a high 

occurrence of subtropical MBL clouds, such as off the coasts of Peru and California, have 

only increased moderately. 

 Figure 3 shows zonally averaged total and low/middle/high CFs derived from 

observations and simulations. As expected, CC-derived total CFs are higher than the CM 

and model-simulated CFs over both the tropics and mid-latitudes (60°S-60°N), and agree 

well with model simulations over the polar regions (60°-90°), while the CM-derived total 

CFs are ~20% lower than the other three datasets over the polar regions (Fig. 3a). Over 

the SMLs, the P5-simulated total column CFs agree with CM and CC observations better 

than the previous C5 results due to the implementation of the new PBL scheme in P5. 

The changes to the PBL scheme deepen the boundary layer in the extratropics (Yao and 

Cheng 2012) and result in an increase of low-level CFs (Fig. 3d). Over the tropics, the 

P5-simulated total column CFs are slightly lower than the previous C5 results, primarily 
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due to the shallower tropical boundary layer in P5 relative to C5 in tropical regions 

outside the marine stratocumulus decks. For both high and mid-level CF comparisons, 

P5, C5, CC, and CM all agree well each other, with the exception of the CM-derived 

CFs, which are lower than the others, particularly over the Arctic regions (Figs. 3b and 

3c). 

 

Figure 3. Zonally averaged (a) total CF, (b) high-level (P<440 hPa), (c) middle 
(440<P<680 hPa), and low (P>680 hPa) CFs from NASA CM and CC observations and 
NASA GISS P5 and C5 simulations. Values in parenthesis indicate corresponding global 
means. 
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4.1.3 Water Path (CWP, LWP, IWP) 

Figure 4 describes observed and simulated CWPs while Fig. 5 breaks down CWP 

by phase and relates these properties to total column CF. The CloudSat (CS) and daytime 

CM retrieved global CWP distributions and their annual means are similar to each other 

with some exceptions. For example, the CS-derived CWPs over the tropics are almost 

doubled those retrieved from CM. Over marine stratus regions, however, the CM values 

are ~50 g m
−2

 more than the CS values due to the limitation of CS for detecting clouds 

below 1 km. These discrepancies result in ~16 g m
−2

 more globally averaged CWP 

retrieved from CS than from CM. Although the overall global CWP distributions from 

both P5 and C5 are fairly similar to CM and CS, their global mean CWPs are much 

higher than both CM and CS, primarily due to the over-simulation of CWPs over the 

tropics. However, the P5-simulated CWPs over the tropics are in general lower than the 

previous C5 results, bringing results from the new version of the model closer to 

observations (Fig. 5b). Regionally, large variation is found in magnitude based on surface 

type and in regions of ascent, such as the ITCZ. This improvement directly reflects the 

shallower tropical boundary layer in P5. Over the tropics, the decrease in CWP from the 

C5 to the P5 version is consistent with the decrease observed in total column CF, whereas 

comparing CWP and total column CF over the SMLs shows the opposite relationship. 

For example, the MBL CFs simulated by the P5 version of the GCM are about 20% 

higher than the C5 results, while the P5-simulated CWPs are 25 g m
−2

 less than the C5 

results. This small change may be an artifact; The CWP diagnostic in the GCM is for 

stratiform clouds only. P5 has more frequent shallow convection than C5 in the SMLs 
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(Fig. 7 of Yao and Cheng 2012), causing an apparent decrease since its cloud water is not 

accounted for in CWP. 

To understand the partitioning between ice and water, cloud LWP and IWP 

comparisons are shown in Figs. 5c and 5d, respectively. Note that the CM results are not 

shown because portions of the SYN1 LWP are hidden under ice and deep convection 

clouds, deeming the separation of water path into LWP and IWP unreliable. The P5-

simulated LWPs are consistently much lower than those simulated from C5 by roughly 

25-50 g m
−2

, and are close to the CS retrievals, particularly over the SML region. Figure 

5d shows that both the P5- and C5-simulated IWPs are roughly 100 - 200 g m
−2

 higher 

than the CS results over the tropical regions, with a peak at ~5 °N that is several degrees 

offset from the CS maximum. 
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Figure 4. As in Fig. 2, except for CWP. 
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Figure 5. Zonally averaged (a) total CF (daytime only for CM), (b) CWP (daytime only 
for CM), (c) LWP, and (d) IWP. Values in parenthesis indicate corresponding global 

means. 

4.1.4 Precipitable Water Vapor (PWV) and Relative Humidity (RH) 

Figure 6 shows observed and simulated PWV means from AIRS, AMSR-E, P5, 

and C5, respectively, and the differences between simulated and observed PWV values. 

The AMSR-E PWV retrievals are slightly higher than the AIRS retrievals over the 

Indonesia-Papua New Guinea area. Given the limitations of each instrument, this is 

expected considering AIRS retrieves PWV between 1000 hPa to 300 hPa over ocean, and 
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850 hPa to 300 hPa over land, but only in scenes with significant clear sky, while AMSR-

E is able to perform PWV retrievals from the surface to TOA in virtually all cloud 

conditions. Of the two, the AMSR-E PWV retrievals are more reliable than AIRS data 

over the ocean.  

The global P5- and C5-simulated PWV patterns match well with the observed 

patterns, with the maximum occurring in the tropics along the ITCZ. As demonstrated in 

Figs. 6 and 7, P5-simulated PWV values are higher than both C5 and AIRS results by as 

much as 11 g m
−2

 over the tropical regions, due to stronger convective rain evaporation 

occurring in the P5 version of the model (Del Genio et al. 2012). Although the overall C5 

global PWV pattern and mean matches well with the AIRS observations (Figs. 6a and 

6d), the C5 PWV values less than the AIRS values by as much as 9 g m
−2

 over land (Fig. 

6f). These discrepancies have been reduced significantly in the P5 simulations (Fig. 6e). 

Given that AIRS contains a dry bias resulting from AIRS being unable to perform 

retrievals during overcast conditions, along with instrument limitations discussed above, 

the P5 simulations make more physical sense than the C5 results over land. Over the 

ocean, the C5 simulated PWV values have negative biases of 1 to 5 g m
−2

 globally except 

for within a small region over the tropical Pacific Ocean, while P5 results agree better 

with AMSR-E retrievals globally, excluding over the tropical Pacific Ocean. Over the 

SMLs, the P5 PWV results more closely resemble AMSR-E observations than C5 results, 

which provides strong support for P5 simulating more MBL clouds than C5 (Figs. 2c and 

3d) given the same SST and cloud microphysical schemes in both P5 and C5.  
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Figure 6. As in Fig. 2, except for PWV derived from AIRS and AMSE-R observations, as 
well as simulated by NASA GISS P5 and C5. 
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Zonally averaged PWVs and sea surface temperatures (SSTs) are presented in 

Fig. 7. It worth noting that surface air temperature over water was used as an estimate for 

AIRS SST, due to the noise found in its surface skin temperature retrievals. As illustrated 

in Fig. 7a, P5-simulated PWV values are higher than AIRS retrievals, while the C5 

results closely match AIRS retrievals. Differences between P5 and AIRS increase in 

intensity approaching the equator from the mid-latitudes, on the order of 3 g m
−2

. This 

makes physical sense given the dry bias associated with AIRS retrievals. By limiting 

zonally averaged PWV values to those only over the ocean (Fig. 7b), the comparison 

shows a close correlation between P5 simulations and AMSR-E retrievals, maintained 

within 2 g m
−2

. Figure 7c indicates that the prescribed SSTs used in C5 and P5 

simulations are consistent with AMSR-E observations. The model-prescribed SSTs are 

fairly consistent with those from AIRS, given that surface air temperature over water was 

used as an estimate of SST. The P5-simulated PWV values over the ocean are close to 

both the AMSR-E and AIRS results, but higher than the C5 simulations. 

For the sake of brevity, extended discussions on RH results are not discussed 

here. Our general conclusions on RH are as follows. The P5-simulated RHs are greater 

than the C5 means. For regional comparisons, both the P5 and C5 low-level RH patterns 

are wetter than the AIRS retrievals over the tropics, slightly more for the P5 simulations 

compared to C5 results. Over the SML, the P5 and C5 low-level RHs are ~10% higher 

and lower than the AIRS retrievals, respectively. This finding is consistent with the CF 

comparison and provides strong support for the increase in the number of low-level 

clouds simulated by P5 over the SMLs. Over the polar regions, the GCM simulations are 

drier than the AIRS retrievals. 
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Figure 7. Latitudinally averaged PWV over (a) both land and ocean and (b) over ocean 
only, and SST. Note that AMSR-E has results only over ocean. Values in parenthesis 

indicate corresponding global mean. 

4.1.5 Quantitative Estimation of Improvement in CFs and Cloud Properties over the 

SMLs 

To quantitatively estimate the improvements in modeled CFs, scatterplots 

between CM/CC observed and P5/C5 simulated CFs globally and over the SMLs are 

shown in Fig. 8. Within these scatterplots, each point/dot represents the annual average at 

a grid point within the region of interest, be it globally or restricted to the SMLs. Global 

comparisons of P5/C5 simulations to CM (Fig. 8a) and CC (Fig. 8b) both show an 

improvement in the P5-simulated total column CF. Root mean square error (RMSE) 
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values have decreased slightly, while linear regressions of the data more closely resemble 

a one-to-one relationship with the observations. Within the SML focus region, 

parameterization changes in the P5 model, particularly changes to the boundary layer 

turbulence parameterization, have roughly halved RMSE values between the model runs 

when compared with both CM (Fig. 8c) and CC observed total column CFs (Fig. 8d). 

 

Figure 8. Scatterplots and associated linear regressions and RMSE of simulated and 
observed total column cloud fraction both globally (a,b) and restricted within the SMLs 
(c,d); comparing the models with CERES (left column) and CloudSat/CALPISO (right 
column) observations, respectively. 
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4.2 Update to Stanfield et al. (2014) 

Studies have shown that high magnitudes of upper-level ice water content have 

been an ongoing concern in the NASA GISS ModelE GCM. Recently, Elsaessor et al. 

(2017) modified convective outflow particle size distributions (PSDs) and ice particle fall 

speeds in the NASA GISS ModelE convective cloud ice parameterization using data 

gathered from four field campaigns: the NASA African Monsoon Multidisciplinary 

Analysis (NAMMA), NASA Tropical Composition, Cloud and Climate Coupling (TC4), 

DOE ARM-NASA Midlatitude Continental Convective Clouds Experiment (MC3E), and 

DOE ARM Small Particles in Cirrus (SPARTICUS). With these new modifications to the 

NASA GISS ModelE GCM, the opportunity has arisen to analyze three different versions 

of the GISS GCM (the frozen CMIP5 version [C5], a post-CMIP5 version with 

modifications to cumulus and boundary layer turbulence parameterizations [P5], and the 

most recent version of the GCM which builds on the post-CMIP5 version with further 

modifications to the convective cloud ice parameterization [E5]).  

This section will examine how each set of modifications has impacted the 

different versions of the GISS GCM and will compare these models with available 2C-

ICE ice cloud properties retrieved from CC and to CM SYN1 cloud properties. Liquid 

water cloud comparisons were performed, but have been omitted for brevity as they were 

found to closely match the ice water analysis. 
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4.2.1 Methodology 

This section details the methods used to convert heights provided in 2C-ICE and 

2B-CWC-RVOD observations into pressure, and the methods employed to convert model 

given mass fractions into mass amounts. 

 

4.2.1.1 2C-ICE Height to Pressure Conversions 

 2C-ICE vertical satellite products are provided on set height scales while model 

results are based on set pressures. This study uses CCCM observations to convert the 

heights given in the 2C-ICE vertical satellite product, as the CCCM product 

measurements are on set height intervals but provide corresponding pressures to said 

heights. Unfortunately, the height scales used in the CCCM product do not match directly 

with the height scales used in 2C-ICE. As such, unweighted linear interpolation is 

preformed to estimate the pressure at which 2C-ICE and 2B-CWC-RVOD measurements 

are valid. Given the logarithmic scaling nature of the atmosphere, using unweighted 

linear interpolation will knowingly introduce bias, however, this introduced bias is 

minimal and estimated to be less than 25 hPa in converted pressure. 

 

4.2.1.2 Mass Fraction Conversions 

 Ice and liquid water contents in the NASA GISS GCM are provided as mass 

fractions while satellite products provide these variables as measurements of mass. In 

order to convert these mass fractions into mass, we perform a conversion at the monthly 

level by multiplying mass fractions by the local air density in kg m
−3

 and a conversion 
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factor of 10
6
 mg kg

−1
. For this calculation, air density is calculated using the ideal gas 

equation of state in Equation 1, 

 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = (𝜌𝑎𝑖𝑟) ∗ (𝑅𝑠𝑝𝑒𝑐𝑓𝑖𝑐) ∗ (𝑇𝑎), (1) 

where ρair is the density of air in Pascals, Rspecific is 287.058 J/T/Kg, and Ta is the 

temperature of air in degrees Kelvin. 

 

4.2.2 Ice Water Path (IWP) / Ice Water Content (IWC) 

In order to best examine the evolution of the NASA GISS GCM and to analyze 

and evaluate the different versions of GCM simulations against available satellite 

observations, it is prudent to begin with examining how recent changes to convective 

outflow PSDs and ice particle fall speeds have impacted the amount of ice in the 

atmosphere. To reach this goal, we first examine the overall amount of ice in the 

atmosphere by way of ice water path, the vertical integration of available ice water 

content (IWC), and then examine IWCs across multiple levels to investigate at what 

levels these IWC changes occur. 

 

4.2.2.1 Ice Water Path (IWP) 

 Average annual IWPs are shown in Fig. 9, given in units of grams per square 

meter, for NASA CERES SYN1 passive satellite observations, 2C-ICE active satellite 

observations, and for the C5, P5, and E5 versions of the GCM. Zonal averages of annual 

IWP are provided in Fig. 10 to further aid IWP discussions. Global means, standard 

deviations, and correlations and root-mean-square deviations of the GCM simulations in 

comparison with 2C-ICE observations are provided in Table 3. 



41 

 

 

Figure 9. Annually averaged IWPs, given in units of grams per square meter, retrieved 
from (a) SYN1 and (b) 2C-ICE and simulated by the (c) C5, (d) P5, and (e) E5 versions 

of the NASA GISS GCM. 

 

 

Figure 10. Zonally averaged IWPs, given in units of grams per square meter, for (purple) 
SYN1 passive satellite observations, (black) 2C-ICE active satellite observations, and for 
the (red) C5, (green) P5, and (blue) E5 versions of the NASA GISS GCM. 
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Table 3. Annual IWP weighted means, standard deviations, and correlation and root-
mean-square deviation (RMSE) in relation to 2C-ICE satellite observations on a global 
scale. 

Dataset 
Global Mean 

[g m
−2

] 

Std. Dev. 

[g m
−2

] 

Corr. 

[2C-ICE] 

RMSD  

[2C-ICE] 
SYN1 107.7 42.8 - - 

2C-ICE 132.4 86.0 - - 

GISS C5 98.1 85.8 0.65 82.8 

GISS P5 99.5 91.5 0.66 83.6 

GISS E5 54.0 39.9 0.66 98.2 

 As shown in Figs. 9 and 10, SYN1 passively and 2C-ICE actively retrieved IWPs 

agree moderately well in the mid-latitudes and in the Arctic, however, large discrepancies 

arise in the tropics where SYN1 IWPs are less than half as much as 2C-ICE IWPs. 

Unfortunately, the SYN1 data used in this study includes the retrievals during both day 

and night and has well-known biases in retrieving IWP at night. SYN1 results are also 

heavily dependent on geostationary satellite retrievals and is prone to biases at boundaries 

where the source of geostationary data changes. This can be seen directly by examining 

SYN1 IWPs along longitudes 90°E and 180° in Fig. 9a, where sudden artificial cutoffs in 

IWP support the hypothesis that the dataset is prone to biases from geostationary satellite 

influences as these demark boundaries where different geostationary satellites are used to 

fill in satellite overpass gaps. As such, this study focuses on comparing the GISS GCM 

simulated IWPs with 2C-ICE retrievals, as these are believed to be more accurate 

estimates of true atmospheric IWC. C5 and P5 simulated IWPs agree well with 2C-ICE 

retrievals over the tropics (±20°), but all three versions of the GCM are biased low over 

the mid-latitudes given that 2C-ICE retrieves all IWC content while the GCM reports 

only stratiform IWC content. 
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 IWPs in the C5 and P5 versions of the GISS GCM match well with 2C-ICE 

retrieved IWPs over the tropics, but undersimulate IWPs outside of the Tropics by 

generally by ~100 to 150 g m
−2

. Direct comparisons (not shown here) between C5 and P5 

GCM simulations and 2C-ICE retrievals show that both the C5 and P5 simulations tend 

to oversimulate/undersimulate IWPs over the ocean/land within the Tropics, respectively. 

While zonally averaged IWPs in C5 and P5 suggest minimal changes between these two 

simulations, changes within the P5 simulation have led to a regional increase of IWPs 

over the western Pacific and the area around Indonesia, and slightly decreased IWPs over 

the Eastern Pacific ITCZ. These two regions are of particular interest in this study and as 

such will be discussed more thoroughly throughout this study as the following: (1) the 

Eastern Pacific Northern ITCZ (EP-ITCZ), and (2) Indonesia and the Western Pacific 

(INDO-WP).  

 Recent changes to ice particle distributions and ice particle fall speeds in the E5 

version of the GCM have resulted in strong decreases in IWP globally in comparison to 

2C-ICE retrievals and previous versions of the GCM. E5 simulated IWPs are lower than 

SYN1 retrievals which have a muddled pattern and strength due to night retrieval issues. 

Correlations between the 2C-ICE and the three versions of the GCM are very close, 

between 0.65 and 0.66, while root-mean-square deviations (RMSD) have slightly 

increased with each iteration of the GCM, from 82.8 (C5) to 98.2 g m
−2

 (E5). Given the 

increase in ice particle fall speeds, it’s possible that fall speeds are too high causing over-

sedimentation of ice in the model. Further investigation is warranted, however, given the 

caveat that 2C-ICE retrieves all ice content while the model reports stratiform IWC. 
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 As mentioned prior, two regions are of particular interest in this study in regard to 

how these areas have changed with each modification to the NASA GISS GCM: (1) the 

Eastern Pacific Northern ITCZ (EP-ITCZ), and (2) Indonesia and the Western Pacific 

(INDO-WP). Probability density functions (PDFs) and scatterplots of IWPs retrieved 

from 2C-ICE against those from SYN1 and the C5, P5, and E5 versions of the GCM over 

the EP-ITCZ (Fig. 11) and the INDO-WP (Fig. 12) regions. Values of the cumulative 

distribution function (CDF) associated with the final bin are provided in parenthesis in 

Figures 11a and 12a next to the associated data. Statistics of regional weighted means, 

standard deviations, and correlations and RMSDs in reference to 2C-ICE retrieved IWPs 

over these two focused regions are listed in Table 4. 

 Over the EP-ITCZ region, the pattern of SYN1 retrieved IWPs agree reasonably 

well with 2C-ICE retrievals, however, the regional mean IWP for SYN1 (113.7 g m
−2

) is 

much lower than the mean IWP retrieved by 2C-ICE (151.7 g m
−2

). SYN1 retrieved 

IWPs are more centered in the lower bins while 2C-ICE retrievals have a broader and 

more even distribution (Figs. 11a&b). The C5 and P5 versions of the GCM simulate 

much more ice water compared to 2C-ICE (Figs. 11c&d), with regional means of 213.8 

and 191.0 g m
−2

 and correlations of 0.88 and 0.89, respectively. The newest version of 

the GCM, E5, simulates much less ice water within the EP-ITCZ region (27.3 g m
−2

) with 

a much lower correlation (0.47) and higher RMSD (155.9 g m
−2

) compared to 2C-ICE 

retrievals. 
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Table 4. Statistics of retrieved and simulated IWPs over the two selected regions: EP-
ITCZ and INDO-WP Statistics presented include regional means and standard deviations 
given in g m

−2
, as well correlations and RMSDs in comparison with 2C-ICE retrievals 

Region 1 – Eastern Pacific Northern ITCZ [EP-ITCZ] 

Dataset 
Regional Mean 

[g m
−2

] 
Std. Dev. 
[g m

−2
] 

Corr. 
[2C-ICE] 

RMSD  
[2C-ICE] 

SYN1 113.7 47.7 - - 

2C-ICE 151.7 102.9 - - 

GISS C5 213.8 139.1 0.88 93.2 
GISS P5 191.0 146.3 0.89 82.0 

GISS E5 27.3 22.8 0.47 155.9 

Region 2 – Indonesia and Western Pacific [INDO-WP] 

Dataset 
Regional Mean 

[g m
−2

] 
Std. Dev. 
[g m

−2
] 

Corr. 
[2C-ICE] 

RMSD  
[2C-ICE] 

SYN1 85.9 23.5 - - 

2C-ICE 243.9 123.2 - - 

GISS C5 225.1 146.6 0.62 120.7 

GISS P5 258.6 188.4 0.61 150.1 

GISS E5 88.9 64.2 0.59 183.7 

  
Over the INDO-WP region, SYN1 retrieved IWPs are much lower than 2C-ICE 

(85.9 vs. 243.9 g m
−2

) as this region is located within the boundaries of where SYN1 

retrievals suddenly decreased, presumably due to geostationary satellite influences. 

Regional mean IWPs simulated by C5 and P5 (225.1 and 258.6 g m
−2

, respectively) agree 

very well with 2C-ICE retrievals. The regional standard deviation in the P5 simulation 

(188.4 g m
−2

), however, is much larger than both its predecessor (C5, 146.6 g m
−2

) and 

2C-ICE (123.2 g m
−2

), potentially due to P5 having higher frequencies in the larger bins 

of ice water (Fig. 12a). Again, E5 simulated IWPs are much lower than its predecessors 

and 2C-ICE retrievals.  
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Figure 11. (a) PDFs of IWPs retrieved from (purple) SYN1 and (black) 2C-ICE, and 
simulated by the (red) C5, (green) P5, and (blue) E5 within the EP-ITCZ region, and 
scatterplots of IWPs retrieved from 2C-ICE vs. IWPs from (b) SYN1, (c) C5, (d) P5, and 

the (e) E5.  
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Figure 12. As in Fig. 11 except for over INDO-WP.  [g/m
2
] 
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4.3.2.2 Ice Water Content (IWC) 

 Having examined the total amounts of ice water simulated by the different 

versions of the NASA GISS GCM and how this amount changes with each iteration of 

the GCM, it is imperative to then examine at what levels in the atmosphere these changes 

occur and to ensure that this is simply not a case of biases counterbalanced by one 

another. 

 Figure 13 shows annual averages of zonal IWCs retrieved from 2C-ICE, 

simulated by three versions of the NASA GISS GCM (C5, P5, E5) and the MERRA2 

reanalyses. The MERRA2 reanalysis is included in all IWC comparisons because the 

reanalysis will be important to later discussions of vertical motion as the only ‘semi-

observational’ source for comparison. Horizontal IWC slices at 100, 210, and 300 hPa are 

shown in Figure 15, while IWC slices at 500, 600, and 850 hPa are shown in Figure 14. 

Averaged vertical profiles of IWC are split into three regions based on latitude: the 

tropics (±30°), the mid-latitudes (between ±30°-60°), and the poles (between ±60°-90°) 

as shown in Figure 16. From previous IWP discussions, it is known that the C5 and P5 

simulations, in general, simulate more/less ice water over the ocean/land within the 

Tropics while undersimulating IWPs outside of the Tropics.  

 Comparing IWC in the lower portion of the atmosphere, it is shown that all three 

versions of the NASA GISS GCM (C5, P5, and E5) undersimulate IWC in the poles and 

the midlatitudes at 600 and 800 hPa in comparison with 2C-ICE retrievals. MERRA2 

simulates even less IWC than all three versions of the GCM (Fig. 13, 14, & 16c). 

Comparing the C5, P5, and E5 at these two levels shows minor differences in magnitude 

and spatial pattern, with E5 IWC slightly higher than IWCs in both C5 and P5. It is 
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hypothesized that the increase in lower level IWC in E5 is a result of increased ice 

particle fall speeds in the E5 simulation. Around 500 hPa, the GCM simulated IWCs are 

closer to those retrieved from 2C-ICE in the midlatitudes, but still remain much less in 

the Tropics (Fig. 13, 14, 16b&c). 

 At 300 hPa, the C5 and P5 simulate much more IWC globally than is retrieved by 

2C-ICE (Fig. 15), while the E5 simulation continues to simulate less IWC in the Tropics 

and slightly more IWC in the midlatitudes in comparison with 2C-ICE (Figs. 16a&b). C5 

and P5 continue to simulate much more IWC than 2C-ICE at the 215 hPa level and above 

in the tropics (Fig. 16a). Near 215 hPa, the E5 GCM simulation begins to match 2C-ICE 

retrievals and continues through the upper-most portions of the atmosphere (Figs. 15 & 

16a).  

 

 
Figure 13. Annually averaged zonal IWC for (a) gridded 2C-ICE retrievals, (b) the 
MERRA2 reanalysis, and the (c) C5, (d) P5, and (e) E5 NASA GISS GCM simulations. 
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 When examining the vertical distribution more closely in Figures 13 and 16, an 

interesting pattern emerges. IWCs retrieved from 2C-ICE peak low in the atmosphere and 

gradually decreases with height, which is consistent to the findings in Deng and Mace 

(2015) using DOE ARM radar-lidar observations over three ARM surface sites. In 

contrast, the GCM simulated IWCs increase with height and reach the maximum values 

at upper levels. The GCM simulated IWCs in all three versions peak at nearly the same 

pressure level in the midlatitudes (Figs. 16b), however, this is not the case when 

analyzing the simulated IWCs in the Polar Regions and in the Tropics. MERRA-2 IWCs 

are much lower in comparison with retrievals from 2C-ICE and IWC simulated from the 

three versions of the GCM at all levels globally.   

 IWC profiles within the two regions of interest in general match previous tropical 

IWC comparisons, with all versions of the GCM peaking higher in the atmosphere than 

in 2C-ICE. A key difference is found when comparing the latest E5 GCM simulation in 

these two focus regions where the E5 simulated IWCs increase at a lower rate within the 

EP-ITCZ compared to INDO-WP, which may be a result of better MJO-like simulation in 

the updated E5 version of the GCM. 
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Figure 14. Vertical layers of annually averaged global IWC at (top row) 500, (middle 
row) 600, (bottom row) 850 hPa for (1st column) 2C-ICE retrievals, (2nd column) the 

MERRA2 reanalysis, and the (3rd column) C5, (4th column) P5, and (5th column) E5 
GCM simulations.  

 

Figure 15. Vertical layers of annually averaged global IWC at (top row) 100, (middle 

row) 200, (bottom row) 300 hPa for (1st column) 2C-ICE retrievals, (2nd column) the 
MERRA2 reanalysis, and the (3rd column) C5, (4th column) P5, and (5th column) E5 
GCM simulations.  



52 

 

 

Figure 16. Three regional IWC profiles, defined by latitude, (a) the tropics (±30°), (b) the 
mid-latitudes (between ±30°-60°), and (c) the poles (between ±60°-90°) of (black) 2C-
ICE retrievals, (purple) the MERRA2 reanalysis, and (red) the C5, (green) P5, and (blue) 

E5 GCM simulations. 

 

Figure 17. IWC profiles of (black) 2C-ICE retrievals, (purple) the MERRA2 reanalysis, 
and (red) the C5, (green) P5, and (blue) E5 GCM simulations over the two selected 
regions of focus: the (a) EP-ITCZ and the (b) INDO-WP. 
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4.2.3 Vertical Motion (ω) 

 Given the significant IWC differences in the upper levels of the atmosphere 

between 2C-ICE retrievals and model simulations, it is imperative to analyze vertical 

motion at different levels within the three versions of the GCM and observations. 

Unfortunately, observations of vertical motion on a global scale are scarce, thus the 

MERRA2 reanalysis is used in this study as a ‘semi-observational’ dataset. However, it 

should be noted that vertical motion comparisons with the MERRA2 reanalysis may not 

be best given the lack of IWC in the reanalysis. Averaged profiles of vertical motion are 

also classified into three categories based on latitude: the tropics (±30°), the mid-latitudes 

(between ±30°-60°), and the poles (between ±60°-90°) as shown in Figure 18. Horizontal 

slices of vertical motion in the MERRA2 reanalysis, and in the C5, P5, and E5 

simulations at 500, 600, and 850 hPa are shown in Figure 19, while vertical motion slices 

at 100, 210, and 300 hPa are shown in Figure 20.  

 Large-scale intermodal comparisons of vertical motion in the C5, P5, and E5 

GCM simulations, as well as comparisons with vertical motion in the MERRA2 

reanalysis is challenging given that each source (not shown here) is highly dependent on 

region and tends to have offsetting biases at larger scales. As such, vertical profile 

comparisons show little differences, within 5 hPa per day, between each model 

simulation and the MERRA2 reanalysis (Fig. 18). 

 Profiles of vertical motion over each focus region are provided in Figure 21. Over 

the EP-ITCZ, MERRA2 and the C5 and P5 simulations show roughly the same vertical 

strength in the lower portion of the atmosphere (~800 to 1000 hPa, Fig. 21a.). Above 

~800 hPa, the strength of vertical motion in MERRA2 and the P5 simulation both 
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decrease compared to the C5 simulation. Interestingly, the C5 and P5 simulations show 

an increase in vertical motion strength between 500 and 300 hPa. All profiles within the 

INDO-WP region show a similar pattern; a steady increase in upward vertical motion 

strength from the surface up to 500 hPa, and then a gradual decrease in strength above 

500 hPa (Fig. 21b).  

As mentioned previously in the regional IWC discussions, IWC in the E5 

simulation increases at a lower rate over the EP-ITCZ compared to the INDO-WP focus 

area. Of particular interest is that within the EP-ITCZ, vertical motion simulated in the E5 

version of the GCM changes sign at 700 hPa from upward to downward motion (Fig. 

21a). It is hypothesized that this weakening and overall change in vertical motion is due 

to increased atmospheric loading as a result of increased ice particle fall speeds and 

smaller particle distributions as more albeit smaller particles are now falling out at 

increased speeds. What makes this particularly interesting is that this effect is not 

observed to this magnitude within the INDO-WP where the E5 simulates the strongest 

upward vertical motion of three GCM versions. Closer inter-model inspection of vertical 

motion comparisons in the GCMs (not shown) suggest that changes in the E5 simulation 

have resulted in stronger/weaker upward motion over the ocean/land in the INDO-WP 

region in comparison with its C5 and P5 predecessors. 
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Figure 18. Three regional annual vertical motion profiles, defined by latitude, (a) the 

tropics (±30°), (b) the mid-latitudes (between ±30°-60°), and (c) the poles (between 
±60°-90°) of (black) 2C-ICE observations, (purple) the MERRA2 reanalysis, and (red) 
the C5, (green) P5, and (blue) E5 GCM simulations. 
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Figure 19. Vertical layers of annually averaged global vertical motion at (top row) 500, 
(middle row) 600, (bottom row) 850 hPa for (1st column) the MERRA2 reanalysis, and 
the (2nd column) C5, (3rd column) P5, and (4th column) E5 GCM simulations.  

 
Figure 20. Vertical layers of annually averaged global vertical motion at (top row) 100, 
(middle row) 215, (bottom row) 300 hPa for (1st column) the MERRA2 reanalysis, and 
the (2nd column) C5, (3rd column) P5, and (4th column) E5 GCM simulations.  
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Figure 21. Annual vertical motion profiles of (purple) the MERRA2 reanalysis, and (red) 
the C5, (green) P5, and (blue) E5 GCM simulations in the two defined regions of interest, 

the (a) EP-ITCZ, and the (b) INDO-WP. 
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4.2.4 Total Column Cloud Fraction and Vertical Cloud Profiles 

 In order to reach radiative balance, the NASA GISS ModelE GCM tunes the 

minimum relative humidity at which clouds are formed. Previously in Chapter IV, E5 

simulated IWC was found to decrease in the E5 version of the GCM. Liquid water 

content (LWC) was also compared (not shown here) but is not included for brevity as 

results were similar to the IWC analysis. With the widespread decreases in ice and liquid 

water contents of the recent NASA GISS E5 simulation, it is imperative to examine how 

clouds will be affected in order to maintain global radiative balance. Annual total column 

cloud fraction (CF) of SYN1 passive satellite observations, CCCM active satellite 

observations, and the C5, and E5 versions of the GISS GCM are shown in Figure 22. 

Unfortunately, CFs for the current P5 simulation were not available at the time of this 

study, however, a fairly similar (if not identical) version of the P5 simulation provided 

was examined in Stanfield et al. (2014) and will be discussed briefly in this section. 

Zonally averaged annual total column cloud fraction is provided in Figure 23. Global 

means, standard deviations, and correlations and root-mean-square deviations of the C5 

and E5 GCM simulations in comparison with SYN1 retrievals and CCCM active satellite 

retrievals of total column cloud fractions are listed in Table 5. 

 As expected when comparing total column cloud fractions derived from passive 

and active satellite observations, CCCM active cloud fraction observations are higher 

than SYN1 at almost every point globally, with a global average total column cloud 

fraction of 75.9% compared to 60.6% observed in SYN1. CFs simulated in the C5 GCM 

agree well with SYN1 on globally (61.4% global average CF) due to offsetting regional 

biases. In detail, the C5 GCM simulates cloud frequencies higher than SYN1 
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observations within the tropics and outside ±60° of latitude, even higher than CCCM 

observations outside ±70° of latitude, while undersimulating cloud frequency in the 

midlatitudes. In Stanfield et al. (2014), it was found that changes to the planetary 

boundary layer parameterization in a P5 version of the NASA GISS GCM resulted in 

increased total column cloud fraction within the southern midlatitudes (SMLs), 

specifically by increasing low-level cloud frequency by ~20%. Recent changes in the E5 

version of the GCM has decreased CF globally, bringing modeled CFs closer to the C5 

simulation over the SMLs and lower than C5 in the tropics and in the Antarctic (Fig. 23) 

with a global average cloud fraction of 54.3%. While the E5 simulation has the lowest 

global mean cloud fraction, the latest version of the GCM correlates better than its C5 

predecessor with SYN1, 0.54 ← 0.38, and CCCM, 0.67 ← 0.57, CFs, respectively. 

 Given the tuning method used in the GISS ModelE, an equivalent alteration in 

vertical E5 simulated cloud structure is expected to counterbalance the noted decreases 

globally in E5 simulated IWC, LWC, and total column CF. Vertical annually averaged 

CF profiles for CCCM observations and the C5 and E5 GCM simulations are provided in 

Figure 24, split into three regions based on latitude: the tropics, midlatitudes, and polar 

regions. Both the C5 and E5 GCM simulations simulate lower CFs on average across all 

levels in the tropics and the midlatitudes while still maintain roughly the same vertical 

pattern as found in CCCM observations (Fig. 24a&b). With the polar regions, the vertical 

CF patter in the C5 simulation matches well the CCCM above 800 hPa, however, below 

800 hPa the C5 model simulates a decrease in CF while CFs in CCCM observations show 

an increase and peak in low level CF (Fig. 24c). The E5 simulation within the polar 

regions does not follow the patterns found in C5 and CCCM, and instead peaks at the 
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surface and shows a steady decrease in CF vertically. Comparing the C5 and E5 

simulations, it is found that CFs in the E5 simulation peak at a lower altitude compared to 

its C5 predecessor. Given that CFs are lower in the E5 simulation, and may potentially be 

less optically thick given the decreases observed in IWC and LWC, this lowering of 

cloud altitude could increase outgoing longwave radiation from higher cloud top 

temperatures and would help to counterbalance potential reduced reflected shortwave 

radiative from having lower clouds frequencies and decreased optical depths. 

 

 

Figure 22. Annually averaged total column cloud fractions for (a) SYN1 passive satellite 
observations, (b) CCCM active satellite observations, and the (c) C5, and (d) E5 GISS 

GCM simulations. 
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Figure 23. Annually averaged zonal total column cloud fractions for (purple) SYN1 
passive satellite observations, (black) CCCM active satellite observations, and the (red) 

C5, and (blue) E5 GISS GCM simulations. 

Table 5. Annual total column cloud fraction weighted means, standard deviations, and 
correlation and root-mean-square deviation (RMSE) in relation to 2C-ICE satellite 
observations on a global scale. 

Dataset 
Global Mean 

[%] 

Std. Dev. 

[%] 

Corr. 

[SYN1] 

RMSD  

[SYN1] 

Corr. 

[CCCM] 

RMSD  

[CCCM] 
SYN1 60.6 16.0 - - - - 

CCCM 75.9 13.7 - - - - 

GISS C5 61.4 14.5 0.38 17.4 0.57 18.2 

GISS E5 54.3 19.9 0.54 17.6 0.67 23.3 
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Figure 24. Three regional annually averaged CF profiles, defined by latitude, (a) the 

tropics (±30°), (b) the mid-latitudes (between ±30°-60°), and (c) the poles (between 
±60°-90°) of (black) CCCM satellite observations and (red) the C5 and (blue) E5 GCM 
simulations. 

 Statistics of regional weighted means, standard deviations, and correlations and 

RMSDs in comparison with SYN1 and CCCM observations based on the EP-ITCZ and 

the INDO-WP regions are listed in Table 6. E5 simulated total column CFs in both focus 

regions, the EP-ITCZ and the INDO-WP, have decreased in comparison with its C5 

predecessor, bringing E5 simulated CFs (EP-ITCZ, 59.2%; INDO-WP, 61.9%) more in 

line with SYN1 total column CF (EP-ITCZ, 55.0%; INDO-WP, 57.2%) in terms of 

regional averages. While changes to the E5 GCM have decreased E5 simulated CFs 

compared to its C5 predecessor in both the EP-ITCZ and the INDO-WP, the E5 is found 

to correlate better with SYN1 (0.50 → 0.66) and CCCM (0.66 → 0.69) in the EP-ITCZ, 

while performing slightly worse in the INDO-WP compared to SYN1 (0.63 → 0.61) and 
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CCCM (0.75 → 0.73) observations. Vertical CFs in both EP-ITCZ and INDO-WP 

regions agree with previous tropical CF comparisons in that E5 simulates clouds lower in 

the atmosphere while simulating fewer clouds than CCCM observations (not shown 

here). 

 

Table 6. Statistics detailing total column cloud fraction found in the EP-ITCZ and INDO-

WP regions. Statistics presented include regional means and standard deviations given in 
g m

−2
, as well correlations and RMSDs in comparison with SYN1 passive satellite 

observations and CCCM active satellite observations. 

Region 1 – Eastern Pacific Northern ITCZ [EP-ITCZ] 

Dataset 
Mean 
[%] 

Std. Dev. 
[%] 

Corr. 
[SYN1] 

RMSD  
[SYN1] 

Corr. 
[CCCM] 

RMSD  
[CCCM] 

SYN1 55.0 11.5 - - - - 

2C-ICE 78.7 7.6 - - - - 

GISS C5 68.1 5.4 0.50 14.2 0.66 12.0 

GISS E5 59.2 7.0 0.66 8.7 0.69 20.3 

Region 2 – Indonesia and Western Pacific [INDO-WP] 

Dataset 
Mean 

[%] 

Std. Dev. 

[%] 

Corr. 

[SYN1] 

RMSD  

[SYN1] 

Corr. 

[CCCM] 

RMSD  

[CCCM] 

SYN1 57.2 12.2 - - - - 
2C-ICE 83.7 9.4 - - - - 

GISS C5 70.5 10.7 0.63 14.9 0.75 15.0 

GISS E5 61.9 20.8 0.61 16.6 0.73 26.7 
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4.2.5 Precipitable Water Vapor 

 Average annual PWVs are shown in Figure 25, given in units of grams per square 

meter, of AMSR-E satellite observations and for the C5, P5, and E5 versions of the 

GCM. Zonal averages of annual PWV are provided in Figure 26. Global means, standard 

deviations, and correlations and root-mean-square deviations of the GCM simulations in 

comparison with AMSR-E observations are provided in Table 7. 

 On a global scale, the new changes implemented in the E5 simulation brings the 

global mean PWV in the model to perfect agreement with ASMR-E observations at 28.0 

g m
−2

. On a regional scale, however, it is shown that the E5-simulated PWV is much 

higher than AMSR-E observations and both of its predecessors (C5 and P5) within the 

tropics (Fig. 26). Outside of the tropics, E5-simulated PWVs are lower than AMSR-E 

observations but remain higher than both C5 and P5. Despite these regional differences, 

all three versions of the GISS GCM maintain a near perfect correlation (0.99) with 

AMSR-E observations.  

 

Table 7. Annual PWV weighted means, standard deviations, and correlation and root-

mean-square deviation (RMSE) in relation to TRMM observations on a global scale. 

Dataset 
Global Mean 

[g m
−2

] 
Std. Dev. 
[g m

−2
] 

Corr. 
[TRMM] 

RMSD  
[TRMM] 

AMSR-E 28.0 14.1 - - 

GISS C5 22.9 14.2 0.99 2.9 
GISS P5 24.4 15.2 0.99 2.4 

GISS E5 28.0 17.6 0.99 4.8 
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Figure 25. Annually averaged PWV, given in units of g m
−2

, for (a) AMSR-E 
observations, and for the (c) C5, (d) P5, and (e) E5 versions of the NASA GISS GCM. 

 

 

 

Figure 26. Zonal annually averaged PWV, given in units of g m
−2

, for (black) AMSR-E 

observations, and for the (red) C5, (green) P5, and (blue) E5 versions of the NASA GISS 
GCM. 
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4.3 Summary of Cloud Properties  

 In Stanfield et al. (2014), NASA GISS CMIP5 (C5) and Post-CMIP5 (P5) 

simulated cloud fractions and cloud properties were assessed utilizing satellite retrievals 

from CERES-MODIS, CloudSat/CALIPSO, AIRS, and AMSR-E, with a particular focus 

on the southern mid-latitudes (SMLs). Based on multiyear comparisons of P5 and C5 

versions of the GISS E2 GCM against observations, the following conclusions were 

made: 

1)  While GISS P5 and C5 global mean total column Cloud Fractions (CFs) 

remain within 1% of each other, the P5 total column CFs have better regional 

agreement with CERES-MODIS (CM) and CloudSat/CALIPSO (CC) 

retrieved CFs compared to its C5 predecessor. Changes to the PBL scheme 

implemented in the GISS P5 GCM have resulted in improved total column 

CFs, particularly in the SMLs where low-level CFs have increased by nearly 

20% in relation to C5 simulations. Over the tropics, the P5-simulated total 

column CFs are slightly lower than the C5 results, primarily due to the 

boundary layer changes as well. 

2)  Although the overall global distributions of CWP from both P5 and C5 are 

fairly similar to CM and CS results, their global mean CWPs are higher than 

both CM and CS, primarily due to the over-simulation of CWPs within the 

tropics. P5-simulated CWPs over the tropics are however much lower than C5 

results, bringing the simulation closer to observations. This improvement 

directly reflects the shallower boundary layer in the P5 simulation. Over the 

tropics, the decrease in CWP from the C5 to the P5 version of the model is 
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consistent with the decrease observed in total column CF, whereas comparing 

CWP and total column CF over the SMLs shows the opposite relationship, 

most likely an artifact due to a shift from stratiform cloud to shallow 

convection, whose condensate is not accounted for in the CWP diagnostic. 

3)  Precipitable water vapor comparisons show an increase in P5 simulated PWV 

compared to the C5 simulation, due to stronger convective rain evaporation in 

the P5 version of the GISS-E2. Compared to AIRS, the P5 results 

predominantly show a small positive bias throughout the model. This result is 

reasonable given the dry bias associated with AIRS retrieval limitations in 

vertical range and for overcast conditions. Although the global AIRS and C5 

PWV patterns and means are very close to each other, the C5 simulated PWV 

values are much lower than the AIRS retrievals over land. These discrepancies 

are reduced significantly in P5 simulations. Over the ocean, the P5 results 

agree better with AMSR-E retrievals globally, particularly over the SMLs. 

4) The P5 simulated RHs are greater than the C5 means. For regional 

comparisons, both the P5 and C5 low-level RH patterns are wetter than the 

AIRS retrievals over the tropics, slightly more so for the P5 simulation 

compared to C5 results. Over the SMLs, the P5 and C5 low-level RHs are 

~10% higher and lower than the AIRS retrievals, respectively. This finding is 

consistent with the CF comparison and provides strong support for the 

increase in the number of low-level clouds simulated by P5 over the SMLs. 

Over the Polar Regions, the GCM simulations are drier than the AIRS 

retrievals. 
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5) Spatial variability analyses using Taylor diagrams indicate overall better 

correlations and small standard deviations in PWV and RH comparisons 

between P5/C5 simulations and AMSR-E/AIRS observations. For CF and 

CWP/LWP/IWP comparisons, the P5 and C5 simulations have moderate 

correlations (~0.5 - 0.8), but large standard deviations (1 - 2σ) compared to 

CC results, while having low correlations (0.2 - 0.6) and standard deviations 

(~1σ) compared to CM observations. Although some improvements have been 

made to the P5 simulation on a global scale, large improvements have been 

found within the SML region, where correlations have increased while bias 

and RMSE have significantly decreased compared to the C5 simulation. 

 Overall, the changes implemented in the GISS P5 GCM, especially the changes in 

boundary layer depth, have shown a significant improvement in model-simulated clouds 

and cloud properties. GISS GCM simulations are generating more clouds within the 

SMLs, and are beginning to produce more marine stratocumulus clouds as well. Water 

path and PWV measurements continue to show improvement, particularly over the 

SMLs. At the time of Stanfield et al. (2014), available observations contained relatively 

large uncertainties over the polar regions. A more recent study, Dong et al. (2016), 

compared new CERES Edition 4 CFs and cloud properties over the ARM NSA site with 

ARM NSA observations and retrievals (Dong et al., 2016). 

 Recently, an improved parameterization of convective cloud ice was developed 

by Elsaesser et al. (2017) which incorporates new particle size distributions for 

convective outflow and a new ice particle fall speed formulation. This study has 

examined how fields of ice water path (IWP), ice water content (IWC), vertical motion, 
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cloud fraction (CF), and precipitable water vapor (PWV) changed in three iterations of 

the NASA GISS ModelE GCM.    

1) Recent changes to the E5 GCM have decreased IWCs at all levels globally 

compared to its previous versions and 2C-ICE retrievals. The GCM simulated 

IWCs increase with height, peaking in the upper portions of the atmosphere, 

while 2C-ICE retrievals peak in the lower levels of the atmosphere and 

decrease with height, effectively opposite of each other. EP-ITCZ and INDO-

WP comparisons show that E5 simulated IWCs decrease faster with height in 

the EP-ITCZ region. 

2) Regional biases make large-scale comparisons unreliable and uninteresting. 

Vertical motion within the newest E5 simulation is greatly weakened with 

increasing height in the EP-ITCZ focus region potentially due to atmospheric 

loading from enhanced ice particle fall speeds. Comparatively, E5 simulated 

upward motion in the INDO-WP is stronger than in both its predecessors. 

Changes in the E5 simulation have resulted in stronger/weaker upward motion 

over the ocean/land in the INDO-WP region in comparison with its C5 and P5 

predecessors. 

3) Previous studies have shown that changes to the PBL parameterization 

increased CFs within the P5 simulation compared to the previous C5 model. 

New changes in the E5 simulation have decreased cloud fractions globally 

compared to P5 while maintaining the same overall spatial pattern. Vertical 

CF profiles peak lower in the E5 simulation, which will potentially increase 

outgoing longwave radiation due to higher cloud top temperatures to 
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counterbalance the decrease in reflected shortwave associated with lower CFs 

and lower optical depth associated with decreased IWC and LWC in the E5 

simulation. 

4) On a global-scale, E5-simulated PWVs have an excellent agreement with 

AMSR-E retrievals. Regionally, the E5 version GCM simulates much higher 

than both AMSR-E and its predecessors (C5, P5). Correlations with AMSR-E 

remain very high (0.99) despite regional differences. 
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CHAPTER V 

RADIATION PROPERTIES 

This chapter details the analysis of radiative properties discussed in Stanfield et 

al. (2015), and speculates on the impacts of recently changed cloud parameterizations 

might have on the radiation budget in the NASA GISS ModelE E5 simulation.  

 

5.1 Stanfield et al. (2015) − NASA GISS CMIP5 vs Post-CMIP5 Radiative Analysis  

 Stanfield et al. (2015) focused on how the modified cloud properties in the P5 

simulation impact the TOA radiation budget and cloud radiative effects. Specifically, 

Stanfield et al. (2015) compared the P5- and C5-simulated clear-sky and all-sky Outgoing 

Longwave (LW) Radiation (OLR) and albedos at TOA, as well as their cloud radiative 

effects (CREs) with CERES-EBAF (CE) results. While the GCM simulated global TOA 

radiation budget agrees well with CE results, it is necessary to assess the regional 

changes to the radiation budget associated with the two new schemes in the P5 

simulation, particularly over the SMLs and the tropics. 

 

5.1.1 Methodology: Calculations of Cloud Radiative Effect (CRE) 

 CREs in this study are calculated using the standard methods found in previous 

studies (Ramanathan et al. 1989; Dong and Mace 2003; Dong et al. 2006 and 2010). As 

in previous studies, SW and LW CREs at TOA are calculated as the difference between 

the net TOA fluxes, downwelling minus upwelling, of measurements during all-sky 

conditions minus clear-sky conditions, as shown in Equations 2 and 3. Net CRE is 

calculated by summing both SW and LW CREs. Positive values of CRE indicate a 
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radiative energy gain due to the presence of clouds, a warming effect, while negative 

values denote a radiative energy loss due to the presence of clouds, a cooling effect. 

 𝐶𝑅𝐸𝑆𝑊(𝑇𝑂𝐴)= (𝑆𝑊↓ − 𝑆𝑊𝑎𝑙𝑙
↑)− (𝑆𝑊↓ − 𝑆𝑊𝑐𝑙𝑒𝑎𝑟

↑), 

 = 𝑆𝑊𝑐𝑙𝑒𝑎𝑟
↑−𝑆𝑊𝑎𝑙𝑙

↑ = 𝑆𝑊↓(𝑅𝑐𝑙𝑒𝑎𝑟− 𝑅𝑎𝑙𝑙), (2) 

 𝐶𝑅𝐸𝐿𝑊(𝑇𝑂𝐴)= (𝐿𝑊𝑎𝑙𝑙
↓−𝐿𝑊𝑎𝑙𝑙

↑)− (𝐿𝑊𝑐𝑙𝑒𝑎𝑟
↓−𝐿𝑊𝑐𝑙𝑒𝑎𝑟

↑), 

 = 𝐿𝑊𝑐𝑙𝑒𝑎𝑟
↑−𝐿𝑊𝑎𝑙𝑙

↑
, (3) 

 

where SWclear
↑ and SWall

↑ 
represent clear-sky and all-sky reflected shortwave fluxes at 

TOA, Rclear and Rall represent clear-sky and all-sky albedos at TOA, and LWclear
↑
 and 

LWall
↑
 represent clear-sky and all-sky OLRs, respectively. 

 

5.1.1 Outgoing Longwave Radiation (OLR) 

 Zonal averages of clear-sky OLR for CERES-EBAF (CE), P5, and C5 are shown 

in Fig. 27a. Overall global patterns of clear-sky OLR appear to be fairly well represented 

in both the P5 and C5 simulations. It is global OLR analysis showed that both the P5 and 

C5 simulations appear to underestimate the CE observed clear-sky OLR globally by ~4 

and ~8 W m
−2

, respectively (not shown here). This discrepancy is in part due to the 

known clear-sky OLR dry bias when comparing GCM simulations to observations. 
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Figure 27. Zonally averaged clear-sky and all-sky (a,b) OLR, (c,d) SW Absorption, and 
(e,f) albedo for CE (blue), P5 (red), and C5 (green). 

The dry bias occurs due to the differing methods used between the GCMs and 

observations to interpret OLR for clear-sky scenes. To derive the clear-sky OLR, the 

CERES science team identifies the cloudiness of scenes from MODIS observations using 

CERES cloud mask algorithms. This results in clear-sky OLR results under truly clear-

sky conditions. GCMs, however, are capable of removing the cloud contamination within 

a scene to calculate clear-sky OLR for clear conditions. As discussed in Sohn et al. 

(2006), while the clouds are technically removed, the dynamic and thermodynamic 

conditions that made it favorable to form clouds are still present. More specifically, the 

modeled hypothetical clear-sky humidity in cloudy regions is wetter than the cloud-free 

regions identified by the CERES cloud mask. Sohn and Bennartz (2008) found that the 
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redistribution of water vapor associated with convection results in a significant 

contribution to LW CRE through the upper tropospheric moistening in the tropics, 

whereas columnar water vapor variation dominates OLR over the mid-latitudes. 

Therefore, the CERES observed clear-sky OLR for a scene may be higher than modeled 

clear-sky OLR, simply on the basis that it is calculated from selected cloud-free pixels, 

which likely represents drier atmospheric conditions for a given location.  

Kato et al. (2013) examined the impact of the dry bias globally, and found a mean 

difference of −1.25 W m
−2

 between a cloud removed modeled atmosphere and observed 

clear-sky data. Based on this result, the dry bias can only explain a portion of the clear-

sky OLR bias found in this study. Comparisons of clear-sky OLR in Fig. 27a show that 

observed clear-sky OLRs are slightly higher than both the P5 and C5 results over the 

mid-latitudes and tropical regions. Sohn and Bennartz (2008) compared AMSR-E derived 

all-sky PWVs using threshold liquid water paths ranging from 5 to 30 g m
−2

 and found 

that on average the difference between all-sky and clear-sky PWVs is approximately 2 

mm or 2 g m
−2

. This result was consistent with our findings in Stanfield et al. (Fig. 7; 

2014), where the AIRS PWV, which is known to be dry biased due to the lack of 

retrievals in overcast conditions, is ~2 mm lower than those retrieved from AMSR-E and 

simulated by P5 over the oceans. It should also be noted that P5 employs a new cumulus 

parameterization scheme. This scheme modifies convection within the model, making 

convection generally shallower with less water vapor being detrained into the upper 

troposphere and more in mid-troposphere. This effect would increase OLR within the P5 

simulation, as was observed in Stanfield et al. (Fig. 27). It is hypothesized that PWV 
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cannot solely explain the differences observed in clear-sky OLR, warranting further study 

to explore these biases in clear-sky OLR. 

 For all-sky OLR comparisons, while the P5- and C5-simulated global 

distributions of OLR are fairly similar to CERES observations and their global means are 

within ~1 W m
−2

, large differences exist regionally between the model simulations and 

the observations (not shown here). These regional differences can be partially explained 

by our all-sky PWV comparisons from Chapter IV (Fig. 6). For example, the large 

negative biases of all-sky OLR around the central Pacific (~Equator, 180 °E) and positive 

biases over Indonesia-Australia have strong negative correlations with their 

corresponding PWV comparisons from Chapter IV (Figs. 6e and 6f). Regional biases of 

all-sky OLR also agree well with the total column CF comparisons presented in Fig. 2. 

More specifically, regions with a strong positive bias in total column CF correspond well 

with lower all-sky OLR due to the lower LW emission of colder cloud-top temperatures. 

On the other hand, regions with a strong negative bias in total column CF correspond 

well with higher values of all-sky OLR due to the higher emission associated with 

warmer surface temperatures. No significant differences in all-sky OLR are found over 

the SMLs, where P5-simulated low-level CF has increased by ~20%, as discussed in 

Chapter IV. It is expected that these low-level clouds have only a minor impact on all-sky 

OLR due to the small difference between low-level cloud-top temperatures and sea 

surface temperatures. 

Comparing zonally averaged OLR in Fig. 27b, the P5-simulated all-sky OLRs 

agree well with the CE observations, which is consistent with the good agreement found 

between P5 and AMSR-E zonally averaged PWV in Chapter IV (Fig. 7b). However, 
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examining biases in all-sky OLR on a regional scale shows that this result is due to 

offsetting biases within the GCMs.  

 

5.1.2 Albedo 

Zonal averages of clear-sky and all-sky albedos are presented in Figs. 27e and 

27f, respectively. The modeled global mean clear-sky albedos agree with CE 

observations to within 0.01. When comparing the regional differences in clear-sky albedo 

between the model simulations and CE observations (Figs. 27e and 27f), all results agree 

well with each other within ±50° latitude. Outside of ±50° latitudes, both P5 and C5 have 

positive biases which can be seen zonally (Fig. 27e). These biases are potentially due to 

the differences in clear-sky surface albedo between the observations and those used in the 

GISS models. This is particularly true closer to the poles where clear-sky albedo is 

heavily influenced by sea ice albedo, which can be affected by the age of the ice, the 

presence of snow on the ice, or the formation of melt ponds. While zonal patterns of 

clear-sky albedo (Fig. 27e) show disagreement outside ±50° latitude, zonal patterns of 

clear-sky SW absorption show agreement across nearly all latitudes, as shown in Figure 

27c. 

While a quick comparison of global mean all-sky albedos suggests a good 

agreement between the models and observations, large biases are found regionally 

between the models and CE observations (Figs. 27d, 27e). The regional bias patterns in 

both the P5 and C5 simulations are similar to those in their total column CF comparisons 

(Figs. 2e and 2f). For example, the P5-simulated total column CF over the SMLs has 

increased ~20% compared to the previous C5 simulation (Figs. 2a and 3). This increase 
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in CF has resulted in increased all-sky albedos and decreased shortwave (SW) absorption 

at TOA in the P5 simulation over the SMLs. P5-simulated all-sky albedos have improved 

in regions with a known high frequency of MBL clouds, such as off the western coast of 

North and South America, due to the increase in CF from the newly implemented PBL 

scheme.  

 

5.1.3 Cloud Radiative Effects (CREs) 

 LW CREs are shown in Figure 28. The overall global patterns of simulated LW 

CREs from both P5 and C5 agree fairly well with CE observations. Clouds have a 

warming effect on the TOA LW radiation budget with a global average of 26.3 W m
−2

 

based on CE observations, while P5 and C5 averages are −5.5 W m
−2

 and −7.9 W m
−2 

lower than the observation, respectively. Global means of LW CRE, all-sky and clear-sky 

OLRs suggest that clear-sky OLR is the main contributor of biases in LW CRE, however, 

regional analysis suggest a more complicated relationship. Considering the potential dry 

bias, comparing PWV (Fig. 6) with LW CRE (Fig. 28) suggests a strong correlation 

between PWV and LW CRE. However, the cloud contribution to LW CRE cannot be 

ignored. For example, the LW CREs, excluding the polar regions, have strong 

correlations with CFs shown in Fig. 2. The LW CRE differences also mimic the patterns 

of their corresponding CF differences (P5-CM and C5-CM in Figs. 2e and 2f of Part I, 

where CM denotes CERES-MODIS). Therefore, it can be concluded that clouds and 

PWV both play major roles in calculating LW CRE (Sohn et al. 2006 and 2008, Dong et 

al. 2006). 
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Figure 28. Gridded annual mean clear-sky outgoing longwave radiation (OLR) cloud 
radiative effect (CRE) at top-of-atmosphere (TOA) derived from (a) NASA CERES-

EBAF (CE) results, and simulated by NASA GISS (b) Post-CMIP5 (P5) and (c) CMIP5 
(C5) simulations, as well as their differences (d) P5-CE and (e) C5-CE, for the period of 
March 2000 through December 2005. 

 For SW CRE (Fig. 29), PWV does not play as important of a role as clouds (Dong 

et al. 2006). In contrast to the warming effect on the TOA LW radiation budget, clouds 

have a strong cooling effect on the TOA SW radiation budget, particularly low-level 

clouds, with a global average of −47.2 W m
−2

 based on CE observations. Although both 
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the P5 and C5 global averages agree with the observation within ~1 W m
−2

, large 

differences occur regionally. The global distributions of P5-CE and C5-CE SW CREs 

have demonstrated that the C5-simulated SW CREs tend to have larger regional 

differences than the P5 simulation when compared to the CE observations. For instance, 

as discussed in Chapter IV, the MBL CFs simulated by P5 have increased by ~20% 

compared to the C5 simulations over the SMLs. This increase brings the P5-simulated 

MBL clouds over the SMLs much closer to CM observations (Fig. 2e), which results in a 

much better agreement in SW CRE between the P5 simulation and CE observations over 

the SMLs. On the opposite side, large positive biases exist in C5 simulations due to large 

negative biases in C5-simulated MBL clouds over the SMLs (Fig. 2f). The SW and LW 

CREs over the polar regions should be used with caution given the highly reflective 

snow-ice surfaces common in these regions, where surface albedos are close to, if not 

higher than, cloud albedos (Dong et al. 2010). 
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Figure 29. As in Fig. 28, except for SW CRE. 

 Net CRE, shown in Fig. 30, is defined as the sum of LW and SW CREs and tends 

to be dominated by the SW cooling effect. The globally averaged net CREs are −20.9 W 

m
−2

, −27.7 W m
−2

, and −28.5 W m
−2 

from CE, P5 and C5, respectively, indicating a net 

cooling effect of clouds on the TOA radiation budget. On a global mean basis, 

differences in global net CRE appear to be derived from biases in LW CRE. Examining 

LW, SW, and net CREs on a regional basis again suggests a more complicated 



81 

 

relationship. For example, regions with a high frequency of marine boundary layer 

(MBL) clouds are typically associated with large-scale atmospheric downwelling motion 

(Dong et al. 2014), such as off the western coast of the United States or South America. 

Here, both P5 and C5 tend to overestimate net CRE because the oversimulation of SW 

CRE outweighs the undersimulation of LW CRE. Over the SMLs, the P5-simulated SW 

CREs are closer to the CE observations due to the increase of MBL clouds within the P5 

simulation, however, LW CRF is underestimated which results in an undersimulation of 

net CRE over the SMLs. 
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Figure 30. As in Fig. 28, except for NET CRE. 

To investigate the impact of cloud fraction (CF) and cloud water path (CWP) on 

CREs, we plot the zonal means of LW, SW, and net CREs, as well as CF and CWP from 

Stanfield et al. (2014) in Figure 31. The focus of this section will be shifted away from 

the SMLs, and will instead be focused more on the tropics. Over the tropics, the P5 and 

C5-simulated CFs agree well with CM observations, while their CWPs are much higher 

than CM. The clear-sky OLR is primarily determined by surface temperature, sea-surface 
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temperature (SST), and atmospheric PWV, while determinations of all-sky OLR are 

largely affected by cloud-top temperatures, particularly in overcast conditions or in the 

presence of opaque clouds. In the tropics, this is in part due to the high number of deep 

convective clouds which have cold cloud-top temperatures (~220 K, Dong et al. 2008). 

Therefore, the LW CREs (OLRclear − OLRall) associated with these clouds should be large 

and predominately determined by CFs, not CWP, given that most deep convective clouds 

are optically thick clouds (Dong et al. 2008). Given the good agreement in CF 

comparison and ignoring the differences in clear-sky OLR between P5/C5 and CM/CE, 

the LW CREs from these three datasets should be close to each other over the tropics. 

The much higher CWPs found in P5 and C5 simulations, however, do have an impact on 

their TOA SW albedos, resulting in a much stronger cooling effect on the TOA SW 

radiation budget, with more obvious effects in the C5 simulation. Net CRE zonal 

variations (Figure 31e) essentially follow the variations of their corresponding SW CREs 

with slight modifications based on their corresponding LW CREs. 
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Figure 31. Zonally averaged (a) cloud fraction, (b) cloud water path, (c) LW, (d) SW, and 
(e) NET CREs for CE (blue), P5 (red), and C5 (green). 
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5.1.4 Regional Analysis over Downwelling (DW) / Upwelling (UW) Regimes and the 

SMLs 

It has been shown in previous studies (e.g., Su et al. 2013) that model biases can 

be highly dependent on their dynamic regimes. For example, vertical pressure velocity 

(ω) at 500 hPa has been widely used as a proxy to examine model errors in regions of 

large-scale upwelling (UW, ω < 0) and downwelling (DW, ω > 0) motion (Bony and 

Dufresne 2005). To define these regimes, simulated fields of ω at or near 500 hPa, over 

the oceans, are shown in hPa per day for the P5 and C5 simulations in Fig. 32. Although 

their global patterns are similar to each other, the P5 results tend to be slightly stronger 

and more wide-spread than its C5 counterpart over both the UW and DW regimes. For 

this study, we analyze the cloud and radiative properties over regions of strong monthly-

averaged large-scale UW motion (ω < −25 hPa per day) and DW motion (ω > 25 hPa per 

day) within the tropics and subtropics (±40° latitude, Dolinar et al. 2014). 
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Figure 32. Global maps of averaged vertical pressure velocity (ω) in hPa per day, taken at 
the layer closest to 500 hPa, for the P5 (top panel) and C5 (bottom panel) simulation. 
Negative values indicate regions of upwelling motion, while positive values indicated 
regions of downwelling motion. In this study, regions of strong atmospheric upwelling (ω 

< −25 hPa per day at 500 hPa) and downwelling (ω > 25 hPa per day at 500 hPa) have 
been selected to explore the regional differences between model simulations and 
observations. 
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Having defined both UW and DW regimes, we compared the P5- and C5-

simulated total column CFs, CWPs, and all-sky albedos over these two regimes with 

CERES-MODIS SYN1 and CERES-EBAF observations (CM and CE). Compared to the 

CM observed CFs, the P5-simulated CFs outperform the previous C5 results in both UW 

(Fig. 33a) and DW (Fig. 33b) regimes, having higher spatial correlations and lower mean 

differences. Figs. 33a and 33b show that both P5 and C5 oversimulate CF in regions of 

large-scale upwelling motion while undersimulating CF in regions of downwelling 

motion. P5- and C5-simulated CWPs are shown to be biased roughly 2 to 4 times greater 

than CM observations within the defined UW regime, resulting in a low spatial 

correlation, large mean deviation, and large RMSE. In comparison, the changes made to 

the new P5 parameterizations serve to further increase this bias. Within the DW regime, 

both P5- and C5-simulated results agree reasonably well with the CM observations, 

showing moderate correlations (0.67 and 0.53) and small RMSEs (~43 g m
−2

 and 55 g 

m
−2

). The P5 simulation shows improved spatial correlation and decreased RMSE 

compared to its C5 counterpart in CWP over the DW regime. All-sky albedo comparisons 

across both UW and DW regimes are similar to our previous CF comparisons. More 

specifically, the P5-simulated all-sky albedos show slight improvement within the UW 

regime (Fig. 33e) while showing significant improvement within the DW regime, where 

the correlation to CE observations increased from 0.40 to 0.78 (Fig. 33f).  
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Figure 33. Scatterplots of P5/C5 simulated total column cloud fraction (a,b), cloud water 
path (c,d), and TOA all-sky albedo (e,f) against CERES observations over defined 
regions of strong large-scale upwelling (left column) and downwelling (right column) 

vertical motion. The black line represents a perfect 1:1 correlation. Values of spatial 
correlation, mean difference between each model simulation and the observations, and 
RMSE are presented within each figure. 
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In summation, although the all-sky albedos simulated by both P5 and C5 are close 

to the CE observations within the UW regime, both the P5 and C5 simulations 

moderately overestimate total column CF while drastically oversimulating CWP. Within 

the DW regime, both the P5- and C5-simulated all-sky albedos and CWPs agree well 

with the CERES observations, however, their simulated total column CFs are lower 

(~14%) than the observations. Although the differences in all-sky albedo between the 

P5/C5 simulations and CERES observations in both regimes are small, they are not well 

correlated with the corresponding CF and CWP comparisons. All-sky albedos depend 

primarily on both CF and CWP. As such all-sky albedo comparisons are expected to be 

consistent, or complementary, with CF and CWP comparisons, such as lower/higher CF 

and larger/smaller CWP, respectively. However, all-sky albedo comparisons within the 

UW regime do not make sense, physically, when the agreement found in all-sky albedo 

(Figure 33e) is a result of similar biases in both CF (Figure 33a) and CWP (Figure 33c). 

Further study within the defined DW regime has revealed that while total column CF is 

~14% lower than the CERES observations, the good agreements found in all-sky albedo 

and CWP comparisons can be explained from an increase in highly reflective low-level 

CF (pressure > 660 hPa, ~10%), and decreases in mid- (660 hPa < pressure < 440 hPa, 

~1%) and high-level CFs (pressure < 440 hPa, ~6%) (multi-level CFs not shown here). 

High-level CF (pressure < 440 hPa), PWV, and all-sky OLR comparisons over 

the UW and DW regimes are shown in Figure 34. Both the P5- and C5-simulated PWVs 

have an excellent agreement with the AMSR-E observations, with nearly perfect 

correlations over both regimes. An increase of ~2 g m
−2

 is noted in the P5 simulation 

when compared to C5, which matches the ~2 g m
−2

 increase in global mean PWV shown 
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in Stanfield et al. (2014). This increase in P5-simulated PWV is predominately due to the 

increase in rain evaporation from the new cumulus parameterization. All-sky OLR biases 

agree well with the high-level CF comparisons. For example, both the P5- and C5-

simulated upper-level CFs are ~11% higher than CERES observations, while both the P5- 

and C5-simulated all-sky OLRs are ~2.5 W m
−2

 lower than observations within the UW 

regime due to high-level cloud tops having a much colder temperature than the sea 

surface. This argument is also true within the DW regime, where the C5-simulated high-

level CF is 9.25% higher and all-sky OLR is 1.76 W m
−2

 lower than the CERES 

observations. P5 shows particularly good agreement in simulated high-level CF and all-

sky OLR when compared with CERES observations within the defined DW regime. In 

general, the P5 simulation shows more improvement within the DW regime, where mean 

biases and RMSEs have decreased moderately compared to previous C5 results. 
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Figure 34. As in Figure 33, except for high-level cloud fraction (a,b, pressure < 440 hPa), 

precipitable water vapor (c,d), and all-sky OLR (e,f). 

In Stanfield et al. (2014), a quantitative comparison was performed to assess the 

improvement in the P5-simulated CF and cloud properties over the SMLs. To further 

investigate the impact of these improved cloud properties on the TOA radiation budget, 

we again focus on the SMLs using the data presented in Figure 35. Through this 

comprehensive analysis, it is our hope that the modeling community may benefit from the 
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modified planetary boundary layer (PBL) scheme implemented within the new GISS-E2 

P5 GCM simulation, as many of the GCMs undersimulate MBL clouds over the SMLs 

when compared to the CERES observations (Dolinar et al. 2014). 

As discussed in Stanfield et al. (2014) and presented here in Figure 35, the P5-

simulated total column CF increased ~12% over the SMLs compared to its C5 

predecessor (Figure 35a), largely as a result of the newly modified PBL scheme and the 

associated ~18% increase in low-level MBL clouds (Figure 35b). This increase in total 

column CF from enhanced MBL clouds has out-performed the underestimation of CWP 

in the SMLs (Fig. 35c), resulting in a ~6% increase in all-sky albedo compared to the 

previous C5 simulation (Fig. 35e). While it does not make physical sense to have higher 

albedo with lower CF and CWP compared to the observations, this result may be partially 

explained by the ~20% increase in P5-simulated MBL clouds. Note that comparisons of 

MBL CF should be used with caution as passive satellites often cannot observe low-level 

clouds if there is an optically thick cloud layer above it. PWV and all-sky OLR 

comparisons (Figs. 35e&f) are similar to those in the defined DW regime, with slight 

improvements found in the P5 simulation. Minimal changes are observed in all-sky OLR 

fields over the SMLs (Fig. 35f), as there is no significant difference between MBL cloud-

top temperature and SST. Based on the results presented here and findings of Stanfield et 

al. (2015), the largest improvements are found in the P5-simulated all-sky SW 

absorption, albedo, and SW CRE fields in response to the increase in MBL CF. 
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Figure 35. Scatterplots of total column cloud fraction CF (a), low-level cloud fraction (b, 
pressure > 660 hPa), cloud water path CWP (c), precipitable water vapor PWV (d), all-
sky albedo (e), and all-sky OLR (f) over the SMLs (30° S < latitude < 60° S). 
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5.2 Update to Stanfield et al. (2015) 

Radiative products in the E5 GCM simulation were not provided at the time of 

this study. As such, insights into radiative fields simulated by the E5 version of the GCM 

are left to speculation. Vertical CF results in Chapter IV have shown a decrease in 

average cloud height within the E5 GCM model which will heavily influence both SW 

and LW fluxes. It is hypothesized that these changes bring the model back into global 

radiative balance, as IWC, LWC, and CFs decrease globally, on average, in the E5 

simulation compared to previous C5 and P5 simulations. Future work should include 

examination into both TOA and surface radiative fields.  

 

5.3 Summary of Radiation Properties 

 NASA GISS CMIP5 (C5) and Post-CMIP5 (P5) simulated TOA radiation budgets 

and Cloud Radiative Effects (CREs) were assessed utilizing the observed CERES EBAF 

(CE) radiation products, with a particular focus on large-scale atmospheric upwelling and 

downwelling regimes, the southern mid-latitudes, and marine stratocumulus regions. 

Based on multiyear comparisons of the P5 and C5 versions of the GISS E2 GCM against 

the CE observations, the following conclusions have been made: 

1) Overall, the P5- and C5-simulated global patterns of clear-sky outgoing 

longwave radiation (OLR) match well with CE observations. Global averages 

of the P5- and C5-simulated clear-sky OLRs are ~4 and ~8 W m
−2

, 

respectively, lower than the CE observation (266.1 W m
−2

). These biases are 

partially due to the dry bias issue of comparing simulated clear-sky OLRs 

with observations, however this cannot explain the full bias found. Regional 
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analysis of the biases in all-sky OLR revealed strong correlations to both 

PWV and total column CF. Further study has revealed that LW CREs also 

have strong correlations with PWV and total column CFs, thus it is concluded 

that clouds and PWV play major roles in calculating LW CRE. 

2)  Global means of clear-sky and all-sky albedo were found to be nearly 

identical between all three datasets. On a regional scale, however, large biases 

are found in all-sky albedo. As discussed in Part I, the MBL cloud fractions 

over the SMLs increased ~20% in the P5 simulation compared to its C5 

predecessor, due to the implementation of the new PBL scheme. This increase 

in MBL CF over the SMLs has resulted in increased all-sky albedo and 

decreased SW absorption at TOA in the P5 simulation.  

3) Analyses of spatial variability using the Taylor diagram showed large 

improvements in correlations of simulated SW and Net CRE, with an 

insignificant sacrifice in variability. LW CRE correlations between the models 

and CE observations remained static; however, improvements were found in 

the LW CRE variability. P5/C5 correlation and variability comparisons 

continue to show good agreement with CE observations for all other variables, 

which is expected given the already high agreement found when comparing 

previous model simulations with CE observations.  

4) To explore the regional differences between the model simulations and the 

observations, we define regions of large-scale vertical ascent/descent using 

vertical pressure velocity (ω) as a proxy. Regimes of strong atmospheric 

upwelling (UW, ω < −25 hPa per day) and downwelling (DW, ω > 25 hPa per 
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day) are identified. Although the differences in all-sky albedo between the 

P5/C5 simulations and CERES observations in both regimes are small, they 

are not well correlated with the CF and CWP comparisons. PWV amounts 

simulated by both P5 and C5 have an excellent agreement with the AMSR-E 

observations, with nearly perfect pattern correlations over UW and DW 

regimes. All-sky OLR biases agree well with high-level CF comparisons. In 

general, the P5 simulation shows more improvement within the DW regime, 

where mean biases and RMSEs have decreased moderately compared to 

previous C5 results. 

Overall, minimal changes were observed between the P5 and C5 simulations 

when looking at various fields during clear-sky scenes. With the adjustments to 

turbulence (Yao and Cheng 2012) and moist convection (Del Genio et al. 2012), large 

changes, however, are observed regionally during all-sky scenes. These changes come 

predominately in the form of improvements compared to CE observations, with particular 

attention to the SMLs. A second quantitative comparison over the SMLs was performed 

and has validated the improvements found in Stanfield et al. (2014). Changes to low-level 

and total column CFs and cloud properties, resulting from changes to the P5 PBL 

parameterization, have shown great improvement across almost all radiative variables 

presented in Chapter V of this study. The strongest improvements in the SMLs have been 

found in SW fields during all-sky conditions, where increased CF in the P5 simulation 

has led to increased reflected shortwave flux and a higher albedo.  

Vertical CF results in Chapter IV have shown a decrease in average cloud height 

within the E5 GCM model which will heavily influence both SW and LW fluxes. It is 
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hypothesized that these changes bring the model back into global radiative balance, as 

IWC, LWC, and CFs decrease globally, on average, in the E5 simulation compared to 

previous C5 and P5 simulations. 
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CHAPTER VI 

NORTH PACIFIC ITCZ PRECIPITATION 

This chapter details the precipitation analysis discussed in Stanfield et al. (2016), 

and examines how new modifications in the NASA GISS ModelE GCM have impacted 

precipitation fields in the model. 

 

6.1 Stanfield et al. (2016) − Precipitation Analysis of 29 CMIP5 AMIP GCM 

Simulations 

The goal of Stanfield et al. (2016) was to provide an accurate assessment of 

regional precipitation simulated by the AMIP (Atmosphere Model Intercomparison 

Project) GCM experiment under the Earth System Grid Federation (ESGF) Program for 

Climate Model Diagnosis and Intercomparison (PCMDI; Taylor et al. 2012). AMIP 

simulation runs use prescribed sea-surface temperatures, which eliminate potential biases 

caused by the coupled ocean models of the GCMs. Precipitation from 29 GCM AMIP 

simulations (Table 8) were thoroughly compared with GPCP (Adler et al. 2003) and 

TRMM (Huffman and Bolvin 2011) precipitation products, as well as with their linked 

CMIP5 historical ocean-coupled runs. In this study, an algorithm has been developed to 

define the North Pacific ITCZ through several metrics with the intent of quantifying 

magnitude-, location-, and width-based biases within the GCMs. The ITCZ is a major 

feature component of the global circulation, and serves as a good metric for testing the 

GCMs. These metrics are quantitatively examined using the observations as the ground 

truth.  
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Table 8. Summary of the 29 GCMs used in Stanfield et al. (2016), along with their spatial 

resolution (longitude × latitude). Models across from each other (horizontally) are 
considered to be linked when comparing historical and AMIP simulated precipitation. 

# AMIP Model Resolution Linked Historical Model 

1 ACCESS 1-0 1.875 x 1.25 ACCESS1-0 

2 ACCESS 1-3 1.875 x 1.25 ACCESS1-3 

3 BCC-CSM1-1 2.8125 x 2.8125 BCC-CSM1-1 

4 BCC-CSM1-1-m 1.25 x 1.25 BCC-CSM1-1-m 

5 BNU-ESM 2.8125 x 2.8125 BNU-ESM 
6 CCSM4 1.25 x 0.9375 CCSM4 

7 CESM1-CAM5 1.25 x 0.9375 CESM1-CAM5 

8 CMCC-CM 0.75 x 0.75 CMCC-CM 

9 CNRM-CM5 1.4 x 1.4 CNRM-CM5 

10 CSIRO-Mk3-6-0 1.875 x 1.875 CSIRO-Mk3-6-0 

11 CanAM4 2.8125 x 2.8125 CanCM4 

12 FGOALS-g2 2.815 x 3 FGOALS-g2 

13 FGOALS-s2 2.815 x 1.666 FGOALS-g2 
14 GFDL-AM3 2.5 x 2 GFDL-CM3 

15 GFDL-HIRAM-C180 0.625 x 0.5 - 

16 GFDL-HIRAM-C360 0.3125 x 0.25 - 

17 GISS-E2-R 2.5 x 2 - 

18 HadGEM2-A 1.875 x 1.25 - 

19 INM-CM4 2 x 1.5 - 

20 IPSL-CM5A-LR 3.75 x 1.875 IPSL-CM5A-LR 

21 IPSL-CM5A-MR 2.5 x 1.25 - 
22 IPSL-CM5B-LR 3.75 x 1.875 IPSL-CM5B-LR 

23 MIROC5 1.4 x 1.4 MIROC5 

24 MPI-ESM-LR 1.875 x 1.875 MPI-ESM-LR 

25 MPI-ESM-MR 1.875 x 1.875 - 

26 MRI-AGCM3-2H 0.5625 x 0.5625 - 

27 MRI-AGCM3-2S 0.1875 x 0.1875 - 

28 MRI-AGCM3 1.125 x 1.125 MRI-CGCM3 

29 NorESM1-M 2.5 x 1.8947 NorESM1-M 
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6.1.1 Methodology 

 This section details the selection of the area of focus (AOF) in Stanfield et al. 

(2016) and provides an in-depth discussion on how the algorithm developed in Stanfield 

et al. (2016) defines the ITCZ and thus pulls various metrics on the ITCZ based on this 

definition. 

 

6.1.1.1 Defining the Area of Focus (AOF) for the ITCZ 

 In the IPCC AR5, it was concluded that the GCMs in CMIP5 contain systematic 

errors in the tropics (IPCC AR5 Ch.9; Flato et al. 2013). To examine these systematic 

errors, modeled area-weighted mean precipitation is compared within the tropics and 

subtropics (±40° latitude) with GPCP and TRMM results. Figure 36 shows that all 29 of 

the GCM simulations examined in this study oversimulate precipitation compared to both 

GPCP and TRMM precipitation products between ±40° of latitude both annually and 

seasonally. The annual mean precipitation from the GCM ensemble is ~13% greater than 

both GPCP and TRMM results (~3 mm/day), with the GCMs ranging from 3.11 mm/day 

(IPSL-CM5A) to 3.73 mm/day (INM-CM4). No strong seasonal variation is observed. 

Comparisons of annual mean precipitation between the GPCP, TRMM, and the 

GCM ensemble over ±40° latitude for the 6-yr study period are shown in Fig. 37. This 

comparison shows that the ensemble mean precipitation of GCMs is higher than both 

GPCP and TRMM observations, particularly in large-scale ascent regions, such as the 

North Pacific ITCZ. 
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Figure 36. Comparisons of area-weighted mean precipitation (a) annually, in (b) January, 
and in (C) July between GPCP (black) and TRMM (red) observations and 29 GCM 

simulations used in this study over tropical and sub-tropical regions (±40° latitude). The 
black/red lines each represent the mean of GPCP/TRMM observations, respectively, 
while the blue line represents the GCM ensemble mean. All results are calculated over 
the full study period, January 2000 to December 2005. 
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Figure 37. Annually averaged regional mean precipitation over ±40° latitudes from (a) 
GPCP and (b) TRMM observations and (c) the GCM Ensemble mean during the 6-yr 
study period. The annual area-weighted means for each dataset are shown on the upper 
right corner of the image. The green box in each image represents the Area Of Focus 

(AOF): 2° S to 21° N and 180° W to 110° W, defined in this study. 

To make proper comparisons between the GCM simulations and observations, an 

area of focus (AOF) has been defined by the boundaries 2° S to 21° N and 180° W to 

110° W in this study. The selected AOF covers the full breadth of the ITCZ across all 

seasons as demonstrated using GPCP and TRMM observations in Fig. 38. With the AOF 

defined by these boundaries, we cover most of the precipitation simulated by the GCMs 

while also limiting exposure to exterior regional biases. These biases include spurious 

precipitation cells that occur north of the Pacific ITCZ in some GCMs which are strong 
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enough to potentially distract the algorithm from properly identifying the ITCZ as well as 

potential land effects found outside of the eastern and western edges of the AOF. 

 

Figure 38. Seasonal precipitation in the Pacific ITCZ from GPCP and TRMM 
observations. The green box in each image represents the AOF (2° S to 21° N and 180° 
W to 110° W) defined in this study. The regional mean represents the average amount of 

seasonal precipitation within the AOF for the respective month during the 6-yr study 
period. 

 

6.1.1.2 Regridding of Precipitation and Sensitivity Study 

 Given the varying resolutions of the GCMs and the GPCP and TRMM data 

products, all precipitation fields were interpolated to a standardized grid during 

comparisons to equally and objectively compare the performance of each GCM. A 

sensitivity test was performed to examine the connection between the sizing of the 

standardized grid and derived ITCZ metrics based on the chosen grid. It was concluded 

that standardized 1° × 1° (latitude × longitude) grid was sufficient. To minimize bias due 

to smoothing, all observational fields have been interpolated twice; once from their native 
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resolution to the spatial resolution of each GCM grid, and then a second time to convert 

back to the standardized 1° × 1° (latitude × longitude) grid during comparisons.  

 

6.1.1.3 Defining the ITCZ and ITCZ Metrics 

 In this study, an algorithm has been developed to analyze and compare the ITCZ 

simulated by each of the GCMs with collocated observations. The algorithm first outlines 

the boundaries of the ITCZ, and a variety of metrics are pulled based on these 

boundaries. An example of output from the algorithm is provided in Figure 39 using 

monthly averaged precipitation in January simulated by the Australian ACCESS 1-3 

GCM. In detail, the algorithm first attempts to identify the upper and lower boundaries of 

the ITCZ band (orange lines in Fig. 39) across each degree of longitude within the AOF 

by identifying the longest continuous stretch of precipitation above a set monthly 

precipitation rate threshold. The monthly thresholds defined in this study vary by month 

(4 mm/day from January to April, 6 mm/day from May to December). These thresholds 

were chosen based on our monthly analysis of TRMM and GPCP observations in the 

ITCZ. As demonstrated in Figure 39, these thresholds can be used to clearly identify the 

boundaries of the ITCZ. 
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Figure 39. A visual example defining Intertropical Convergence Zone (ITCZ) boundaries 
within the AOF using monthly data from the Australian Access1-3 GCM in January. The 
green box is the AOF defined in this study, the orange lines represent the upper and lower 
boundaries of the ITCZ using the method described, and the white line represents the 
derived centerline based on upper and lower boundaries. White, green, and red dots 

indicate a gridded precipitation rate greater than 4, 5, and 6 millimeters per day, 
respectively. 

After defining the upper and lower boundaries, a centerline (white line in Fig. 39) 

is derived as the midpoint between the upper and lower boundaries at each degree of 

longitude. When no values were found above the precipitation threshold for a given 

longitude, the algorithm will either interpolate between the nearest two known points of 

the ITCZ centerline or extrapolate outward by finding the average slope of the nearest 10 

points. The width of the ITCZ, here after referred to as width of the band, is defined as 

the latitude of the upper ITCZ boundary minus the latitude of the lower ITCZ boundary. 

When all simulated precipitation rates across a set degree of longitude are below the 

monthly thresholds, a value of zero is given for the width of the ITCZ at that longitude. 

All metrics and comparisons in this study are calculated and shown against both 

collocated GPCP and TRMM observations. The only exception to this is in the centerline 
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comparisons, where it was found that the centerlines derived from GPCP and TRMM 

observations predominately deviated by less than 1° of latitude. Therefore, centerline 

comparisons are conducted by comparing the GCM derived centerlines against the 

average of the GPCP and TRMM derived centerlines. 

To examine the magnitude of simulated precipitation along the ITCZ, we first 

calculate the average of all points of precipitation within ±4° latitude of the observed 

centerline for each GCM. These values are then compared to the average magnitude of 

precipitation observed from both GPCP and TRMM, which are both calculated as the 

average of all points of precipitation within ±4° latitude of the averaged observed 

centerline from each observation. The use of four degrees of latitude was chosen during 

analysis because using this range covered the full visible width of the observed ITCZ 

each month.  

The overall precipitation bias found between the Pacific ITCZ simulated by each 

GCM and the ITCZ observed by GPCP and TRMM can generally be expressed as a 

combination of three partitions. These three partitions are shown in Fig. 40 using 

idealized distributions of precipitation across a set longitudinal line: positional/locational 

biases, magnitude/intensity biases, and biases in the width of the simulated ITCZ. The 

algorithm developed in this study is designed to quantitatively estimate the strengths of 

these biases. These biases can be attributed to the physical parameterizations and 

dynamic schemes in different GCMs. 

Comparisons have been made between CMIP and AMIP simulations using 

identical parameterizations in each GCM. It should be noted that while precipitation is a 

diagnostic property within the GCMs, precipitation has a feedback on the large-scale 
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state, making it difficult to separate the contributions of dynamic schemes and physical 

parameterizations to precipitation biases. 

 

 

Figure 40. Three idealized examples of potential biases found when comparing GCM 
simulated (blue, red, or green) and observed (black) precipitation in the ITCZ: (a) 

location bias shown by a shift northward in the simulated ITCZ, (b) magnitude bias 
shown as an intensification of precipitation in the simulated ITCZ, and (c) width bias 
shown as a broadening of the simulated ITCZ, when compared to the observed ITCZ. 
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The methods used to examine and compare the simulated ITCZs in this study 

were chosen in an attempt to provide the most balanced and fair comparison between all 

CMIP5 GCMs. When developing the algorithm used in this study, three difficulties had 

to be overcome to provide a fair comparison: (1) Missing precipitation, (2) non-Gaussian 

distributions, and (3) spurious cells North of the ITCZ. For example, a few of the models 

severely undersimulated precipitation in the ITCZ, thus the west-east precipitation field 

was not continuous across the AOF. In these circumstances, the centerline of the ITCZ 

had to be estimated using interpolation or extrapolation based on the known centerline 

locations. While the observations showed a Gaussian-like distribution across a 

longitudinal line, many of the GCMs exhibited northerly skewed distributions of 

precipitation. An attempt was made to use an e-folding technique to identify the 

boundaries of the ITCZ, however, this attempt was unsuccessful because it could not treat 

all of the GCMs equally and fairly due to the non-Gaussian distributions of precipitation 

in many of the GCMs. These skewed distributions also limited our ability to use 

maximum precipitation as a centerline identifier. Many of the GCMs also showed large 

patches of high precipitation rates North of the ITCZ, which made it difficult to use a 

percentage-based system to identify the ITCZ boundaries. Therefore, we have chosen the 

threshold-based method to derive ITCZ metrics. 

 

6.1.1.4 Description of Barplot Presentation 

All barplots shown in Figs. 41 through 43 follow the same overall design. Each month is 

color coded as shown in the legends. The horizontal black line in each of these figures 

represents a perfect match with the baseline metric when comparing with the modeled 
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results. The observations are used as a baseline in Figs. 41 through 43, while CMIP 

results are used as the baseline in Fig. 44. Monthly values for each of the metrics 

presented are vertically stacked for each GCM, indicating that monthly values of each 

metric should be measured as the height of each respective bar for that month only. More 

specifically, the length of each bar should be compared to the scale length shown on the 

diagram. Tick marks along the y-axis of match the scale length presented in each figure. 

To alleviate potential confusion, values on the y-axis of these barplots have been 

removed, as including values tends to suggest an incorrect cumulative nature.  

 

6.1.2 Centerline and Width of the ITCZ in AMIP Simulations 

Figure 41 shows the differences in ITCZ centerline position between each GCM 

simulation and the averaged centerline of GPCP and TRMM observations. Monthly 

values above (below) the horizontal black line represent months where the modeled ITCZ 

centerline of the respective GCM was found to simulate more northward (southward) 

compared to the averaged centerline of GPCP and TRMM observations. Note that 

monthly values in Figure 41 are vertically stacked for each GCM, with a tick spacing of 2 

degrees.  

Figure 41 has demonstrated that most of the GCMs tend to simulate the ITCZ 

centerlines northward compared to GPCP and TRMM observations, with the greatest 

shifts occurring in March. While most of the GCMs simulate the ITCZ centerlines 

northward, it is worth noting that both the Chinese BCC-CSM1-1 and the BCC-CSM1-1-

m tend to shift the ITCZ centerlines southward compared to the observed centerline. 

Some models show promise, with low biases or by a balancing of northward and 
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southward months, such as the ACCESS1-0, ACCESS1-3, CCSM4, CESM-CAM5, 

CanAM4, HadGem2-A, and the MRI-AGCM3.  

 

 

Figure 41. Position of the ITCZ centerline as derived by our algorithm, shown as each 
respective GCM minus observations. Each month is color coded as shown in the legend. 
The horizontal black line found near the center of the diagram can be interpreted as the 
centerline derived from GPCP and TRMM observations. As such, if the colored bar is 

above (below) the black line, this suggests the centerline of the ITCZ simulated by a 
GCM is located more northward (southward) compared to observations. Each bar is 
vertically stacked for each respective GCM, meaning the bias found in each month 
should be measured as the length of respectively colored bar and not as the distance from 

the black line. Bars are stacked with January closest to the black bar, and expands 
outward, stacked vertically, progressing by month to December. 

 Comparisons of the ITCZ widths between each GCM and the GPCP observation 

are shown in Figure 42a, while comparisons with the TRMM observations are shown in 

Figure 42b. Tick spacing shown in Figure 42 is 4 degrees. Monthly values above (below) 

the horizontal black line represent months where the vertical width of the modeled ITCZ 
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is wider (thinner) than the ITCZ observed by GPCP or TRMM. We found that the width 

of the ITCZ observed by TRMM is thinner than the ITCZ observed by GPCP. The 

thinner band found in the TRMM observations is attributed to two factors: TRMM 

observations have a finer native resolution, and the TRMM satellite uses the on-board 

precipitation radar which is able to detect precipitating clouds but is insensitive to non-

precipitating clouds, while the GPCP product is primarily derived from satellite infrared 

brightness measurements where the cloud-top temperatures from precipitating and non-

precipitating clouds are almost the same (Stenz et al. 2014, 2016). 

 Results shown in Figure 42 illustrate that most of the GCMs simulate a wider 

band of precipitation (above the horizontal black line) in the Pacific ITCZ compared to 

both GPCP (Figure 42a) and TRMM (Figure 42b) observations. A few of the GCMs 

simulate the width of the ITCZ relatively close to the ITCZ observed from GPCP, such as 

the ACCESS1-3, CMCC-CM, IPSL-CM5A-LR, IPSL-CM5A-MR, MPI-ESM-LR, MPI-

ESM-MR, and the MRI-AGCM3. However, these models all simulate wider bands of 

precipitation more frequently when compared to the ITCZ observed from TRMM. The 

IPSL-CM5B-LR is the only model to simulate a thinner band of precipitation for nearly 

all months when compared to GPCP and TRMM. It should be noted that the precipitation 

produced by the IPSL-CM5B-LR drops below the monthly thresholds for large sections 

of the ITCZ. The differences between the French IPSL-CM5A-LR and IPSL-CM5B-LR 

are hypothesized to be a result of the changes made to parameterizations in the IPSL-

CM5B-LR model (Dufresne et al. 2012, Hourdin et al. 2013). Interestingly, the BCC-

CSM1-1 and the BCC-CSM1-1-m simulations show opposite results compared to each 
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other in Figure 42, suggesting either a significant change in modeled dynamics or that 

differing spatial resolution of these two models may play a role. 

 

Figure 42. As in Figure 41, except showing the width of the ITCZ as derived by our 
algorithm, calculated as the distance between the upper and lower boundaries of the 

ITCZ, shown as each respective GCM minus (a) GPCP or (b) TRMM observations. The 
colored bars above (below) the horizontal black line represent months where the vertical 
width of the simulated ITCZ of the respective GCM was found to wider (thinner) than the 
observed ITCZ.  
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6.1.3 Magnitude of Precipitation in AMIP Simulations 

Comparisons in the magnitude of precipitation between the GCMs and GPCP and 

TRMM observations are presented in Figs. 43a and 43b, respectively. The tick spacing in 

Figure 43 is given as 4 mm/day. Monthly values above (below) the horizontal black line 

represent months where the GCM simulated magnitude of precipitation in the ITCZ is 

stronger (weaker) than that of the respective observations. It should be noted that the 

biases in the magnitude of precipitation are prone to both magnitude and positional 

errors. Comparing GPCP and TRMM results from Fig. 43 shows only minor variations 

from month to month between the two results, suggesting that GPCP and TRMM 

precipitation estimates are roughly equal in magnitude. 

Figure 43 also reveals that most of the GCMs simulated stronger precipitation 

compared to both GPCP and TRMM precipitation products. A few models, namely the 

BCC-CSM1-1 and the suite of IPSL GCMs, simulated weaker precipitation than both 

observations. Of the GCMs that were found to be oversimulating precipitation in the 

Pacific ITCZ, most of these GCMs had higher biases in the northern hemispheric summer 

months, with June showing the highest positive precipitation bias.  

Based on the comparisons in Figure 41 through Figure 43, we can conclude that 

most of the models tend to simulate a stronger, wider ITCZ shifted slightly northward 

compared to the ITCZ observed by GPCP and TRMM. 
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Figure 43. As in Figure 41, except showing the magnitude of precipitation within the 
ITCZ as derived by the algorithm in Stanfield et al. (2016), shown as each respective 
GCM minus (a) GPCP or (b) TRMM observations. The colored bars above (below) the 
horizontal black line represent months where the precipitation of the respective GCM was 

found to simulated stronger (weaker) than that of the respective observations. 
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6.1.4 Historical/CMIP vs AMIP Simulations 

The metrics derived in this study, including the ITCZ Centerline, width of the 

ITCZ band, and magnitude of precipitation, are prone to both positional/dynamic and 

magnitude/parameterization biases. To examine the strength and role of the coupled 

ocean dynamics/positional biases, we compare historical and AMIP simulations with 

identical parameterizations. In detail, the precipitation from 20 available historical and 

AMIP simulations have each been averaged between ±4° latitude of the average observed 

centerline, and their differences are shown in Figure 44 given as the historical simulation 

(CMIP) minus the AMIP simulation. Since the AMIP and CMIP versions of each model 

compared in Figure 44 use the same parameterizations, their precipitation differences are 

highly attributed to dynamic/positional influences, which can be used to estimate the 

strength of the potential bias in each GCM. A list is provided in Table 8 to identify how 

this study has linked the historical and AMIP simulations between GCMs. 
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Figure 44. As in Figure 41, except showing the ITCZ precipitation comparison between 
AMIP and historical ocean-coupled (CMIP) precipitation given as CMIP minus AMIP. 

The colored bars above (below) the horizontal black line represent months where 
precipitation in the respective GCM is found to be greater in the CMIP (AMIP) 
simulation. 

In general, the comparisons of precipitation simulated by identical AMIP and 

CMIP versions of the model are nearly equally distributed around the black line (Figure 

44). More specifically, there is roughly an even split between three different scenarios 

where: (1) the CMIP version of the GCM simulated more precipitation than their AMIP 

counterparts (e.g., ACCESS1-3, CMCC-CM, CanAM4, IPSL-CM5, MIRCO5), (2) the 

CMIP version of the GCM simulated less precipitation than their AMIP counterparts 

(e.g., ACCESS1-0, BCC-CSM1-1m, CSIRO-MK3-6-0, GFDL-AM3), or (3) the model 

showed a monthly split between simulating more/less precipitation when comparing 

CMIP and AMIP simulations (e.g., BCC-CSM1-1, BNU-ESM, FGOAL, NorESM1-M). 
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To investigate their differences, we examined the vertical upwelling (omega, ω) fields at 

850 mb and found that there is no significant difference between two simulations. Further 

study is warranted to understand why some of the CMIP models simulated more 

precipitation, while others simulated less precipitation compared to their AMIP 

counterparts. The role of SST during the simulations will be examined. 

 

6.2 Update to Stanfield et al. (2016) 

The global distributions of precipitation observed by GPCP and TRMM and 

simulated by the C5, P5 and E5 versions of the GCM have been examined in this section. 

Annually average precipitation rates are shown in Figure 45, given in units of millimeters 

per day, for GPCP and TRMM observations, and for the C5, P5, and E5 versions of the 

GCM. Zonal averages of annual precipitation rates are provided in Figure 46. Global 

means, standard deviations, and correlations and root-mean-square deviations of the 

GCM simulations in comparison with GPCP and TRMM precipitation products are 

provided in Table 9. 

GPCP and TRMM observations agree well regionally (Fig. 45) and across most 

latitudes zonally (Fig. 46), excluding the boundary of TRMM observations around ±37° 

of latitude. Within the tropics, TRMM observes slightly higher precipitation rates than 

the GPCP product, potentially due to the onboard precipitation radar and/or the finer 

spatial resolution of the TRMM precipitation product. In Stanfield et al. (2016), it was 

found that the C5 version of the NASA GISS GCM tended to produce a wider and 

stronger band of precipitation over the North Pacific ITCZ in comparison to both GPCP 

and TRMM observations. While all three versions of the GCM agree well on a global 
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scale, with global means ranging across a small range (2.7 - 3.1 mm/day), the models 

vary substantially on a regional scale, particularly over the defined regions of interest. 

 

 

Figure 45. Annually averaged precipitation, given in units of millimeters per day, for (a) 
GPCP and (b) TRMM observations, and for the (c) C5, (d) P5, and (e) E5 versions of the 
NASA GISS GCM. 

 

Figure 46. Zonal annually averaged precipitation rates, given in units of millimeters per 
day, for (purple) GPCP and (black) TRMM observations, and for the (red) C5, (green) 
P5, and (blue) E5 versions of the NASA GISS GCM. 
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Table 9. Annual PR weighted means, standard deviations, and correlation and root-mean-
square deviation (RMSE) in relation to GPCP globally and in TRMM between ±37° 

Dataset 
Global 
Mean 

[mm / day] 

Std. Dev. 
[mm / day] 

Corr. 
[GPCP] 

RMSD 
[GPCP] 

Corr. 
[TRMM] 

RMSD 
[TRMM] 

GPCP 2.7 1.8 - - - - 

TRMM 2.9 4.9 - - - - 

GISS C5 3.1 2.4 0.83 1.4 0.41 4.1 

GISS P5 3.2 2.5 0.85 1.4 0.42 4.1 

GISS E5 2.8 2.2 0.79 1.4 0.39 4.1 

PDFs and scatterplots of precipitation rates from GPCP and TRMM observations, 

as well as simulated from the C5, P5, and E5 versions of the GCM over the EP-ITCZ and 

the INDO-WP regions of focus are shown in Figures 47 and 48, respectively. Statistics of 

regional weighted means, standard deviations, and correlations and RMSDs in 

comparison with SYN1 and CCCM observations based on these focus regions are listed 

in Table 10. 

Precipitation rates in the latest E5 simulation of the GCM have decreased 

substantially in the EP-ITCZ to nearly half of the precipitation found in its C5 and P5 

predecessors, lowering regional correlations with GPCP (C5: 0.91; P5: 0.89; E5: 0.79) 

and TRMM (C5: 0.90; P5: 0.92; E5: 0.84) observations but decreasing RMSDs (Fig. 47). 

Over the INDO-WP, new changes in the latest version of the GCM have increased 

simulated precipitation over the ocean while decreasing precipitation over land (direct 

comparisons not shown here). This is consistent with intermodel comparisons of vertical 

motion, suggesting that these two factors may be linked as stronger vertical motion 

should promote particle growth. 
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Table 10. Statistics detailing PR found in the EP-ITCZ and INDO-WP regions in 

comparison with GPCP and TRMM precipitation products. 

Region 1 – Eastern Pacific Northern ITCZ [EP-ITCZ] 

Dataset 
Mean 

[mm / day] 

Std. Dev. 

[mm / day] 

Corr. 

[GPCP] 

RMSD  

[GPCP] 

Corr. 

[TRMM] 

RMSD  

[TRMM] 

GPCP 4.6 2.3 - - - - 
TRMM 4.1 2.8 - - - - 

GISS C5 6.6 3.6 0.91 2.7 0.90 3.0 

GISS P5 6.1 3.6 0.89 2.4 0.92 2.5 

GISS E5 3.5 1.7 0.79 1.8 0.84 1.7 

Region 2 – Indonesia and Western Pacific [INDO-WP] 

Dataset 
Mean 

[mm / day] 
Std. Dev. 

[mm / day] 
Corr. 

[GPCP] 
RMSD  
[GPCP] 

Corr. 
[TRMM} 

RMSD  
[TRMM] 

GPCP 5.2 2.1 - - - - 

TRMM 6.0 2.7 - - - - 

GISS C5 6.6 3.8 0.71 3.1 0.66 2.9 

GISS P5 6.9 4.3 0.71 3.6 0.66 3.3 
GISS E5 6.8 4.5 0.64 3.9 0.65 3.5 
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Figure 47. (a) PDFs of precipitation rates found in (purple) GPCP and (black) TRMM 
observations, as well as the (red) C5, (green) P5, and (blue) E5 simulations within the 
EP-ITCZ region, and scatterplots comparing EP-ITCZ PRs found in TRMM as compared 

to (b) GPCP, (c) C5, (d) P5, and the (e) E5 GCM simulations. 
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Figure 48. (a) PDFs of precipitation rates found in (purple) GPCP and (black) TRMM 
observations, as well as the (red) C5, (green) P5, and (blue) E5 simulations within the 
INDO-WR region, and scatterplots comparing INDO-WP PRs found in TRMM as 

compared to (b) GPCP, (c) C5, (d) P5, and the (e) E5 GCM simulations. 
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6.3 Summary of Precipitation 

 A new algorithm has been developed in Stanfield et al. (2016) to define the North 

Pacific ITCZ through several metrics: the centerline position of the ITCZ, the width of 

the ITCZ, and the magnitude of precipitation along the defined ITCZ. These metrics have 

allowed for a quantitative evaluation of magnitude-, location-, and width-based 

precipitation biases over the Pacific ITCZ from 29 CMIP5 GCMs using the GPCP and 

TRMM precipitation products as a ground truth. Based on the ITCZ metrics derived from 

our multiyear analysis and the comparisons between the model simulations and 

observations, the following conclusions have been made: 

1)  The GCMs predominately simulate the centerline of the ITCZ northward 

when compared to GPCP and TRMM observations, with the greatest shifts 

occurring in March. Few GCMs shift southward, such as the BCC-CSM1-1 

and the BCC-CSM1-1-m. Some of the models show promise with either low 

biases or by a balancing of northward and southward biases, such as the 

ACCESS1-0, ACCESS1-3, CCSM4, CESM-CAM5, CanAM4, HadGem2-A, 

and the MRI-AGCM3. 

2)  Most of the GCMs simulate a much wider band of precipitation in the Pacific 

ITCZ compared to both GPCP and TRMM observations. A few of the GCMs 

simulate ITCZ widths relatively close to the observations, such as the 

ACCESS1-3, CMCC-CM, IPSL-CM5A-LR, IPSL-CM5A-MR, MPI-ESM-

LR, MPI-ESM-MR, and the MRI-AGCM3. The IPSL-CM5B-LR is the only 

model to generate a thinner band of precipitation. 
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3) The GCMs tend to oversimulate precipitation compared to GPCP and TRMM 

observations. Of these GCMs, most have higher biases in the northern 

hemispheric summer months, with June showing the highest positive 

precipitation bias. A few of the models, namely the BCC-CSM1-1 and the 

suite of IPSL GCMs, simulate less precipitation than the observations. 

4)  Comparisons of precipitation simulated by identical AMIP and CMIP versions 

of the model are nearly equally distributed for the 20 available GCMs used in 

this study. In detail, an equal split is found between three scenarios. (1) Some 

of the GCMs simulated more precipitation in the CMIP version of the GCM 

compared to their AMIP counterparts, (2) while other GCMs simulated more 

precipitation in their AMIP counterpart. (3) Some of the GCMs showed an 

even monthly split between CMIP or AMIP simulations simulating more 

precipitation. Analysis of vertical upwelling (omega, ω) fields at 850 mb 

showed no significant difference between two simulations. Further study is 

warranted to understand why some CMIPs simulated more precipitation, 

while others were less than their AMIP counterparts. 

 With the recent changes to the E5 version of the GCM, precipitation rates remain 

similar on a global scale, however, large differences are observed on regional scales. 

Within the EP-ITCZ, precipitation in the latest E5 simulation has decreased substantially, 

to nearly half that of its predecessors (C5, P5). Over the INDO-WP region, mean 

precipitation remains similar, but closer examination has found that more/less 

precipitation is simulated over the ocean/land in the E5 simulation. 
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 With regards to precipitation over the EP-ITCZ, results from Fig. 45 suggest that 

modifications made in the E5 version of the NASA GISS GCM may result in a thinner, 

more southward band of simulated precipitation in the ITCZ. A number of studies have 

shown how the ITCZ position is closely related to the amount of atmospheric heat 

transport across the equator (AHTEQ) on a broad range of time scales. Chiang and Bitz 

(2005) found that forcing and feedbacks in the extratropics can remotely influence the 

location of the ITCZ. Kang et al. (2008) demonstrated a relationship between AHTEQ and 

the ITCZ location using a slab ocean aquaplanet simulation where a hemispheric 

asymmetry in atmospheric heating was imposed by introducing a surface heating in the 

southern extratropics and an equal surface cooling in the northern extratropics. Yoshimori 

and Broccoli (2008 and 2009) also showed that change in AHTEQ in response to 

hemispheric asymmetric forcing was closely related to the meridional shift in the Hadley 

cell, which itself was a response to the hemispheric asymmetry of the forcing and 

feedbacks.  

Future work is recommended to examine how this potential shift of the ITCZ in 

the E5 GCM simulation may impact AHTEQ as initial results using the precipitation 

centroid definition described in Frierson and Hwang (2012) suggests a potential southerly 

shift of the ITCZ in the E5 GCM simulation (not shown here). Calculations of AHTEQ in 

future work of this study will use the methods described in Donohoe et al. 2013 to define 

AHTEQ. 
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CHAPTER VII 

SUMMARY OF UPDATED RESULTS 

In this study, we analyzed how fields of cloud fraction (CF), ice water path 

(IWP), ice water content (IWC), vertical motion, precipitation, and precipitable water 

vapor (PWV) changed in three iterations of the NASA GISS ModelE GCM (the frozen 

CMIP5 version [C5], a post-CMIP5 version with modifications to cumulus and boundary 

layer turbulence parameterizations [P5], and the most recent version of the GCM which 

builds on the post-CMIP5 version with further modifications to the convective cloud ice 

parameterization [E5]). In this study, we also examine how each set of modifications has 

impacted the corresponding cloud, radiation, and precipitation properties in the GCM. 

Based on the results of this study, the following conclusions have been reached: 

1) Recent changes to the E5 GCM have decreased IWP globally compared to 

previous versions of the model. Comparisons of IWC profiles show that the 

GCM simulates increasing IWC with height, peaking in the upper portions of 

the atmosphere, while 2C-ICE observations peak in the lower levels of the 

atmosphere and decrease with height, effectively opposite of each other. EP-

ITCZ and INDO-WP comparisons show that the E5 simulated IWCs decrease 

faster with height in the EP-ITCZ than in the INDO-WP region. 

2) Regional biases make large-scale comparisons unreliable and uninteresting. 

Vertical motion within the newest E5 simulation is greatly weakened over the 
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EP-ITCZ region, potentially due to atmospheric loading from enhanced ice 

particle fall speeds. Comparatively, E5 simulated upward motion in the 

INDO-WP is stronger than its predecessors. Changes in the E5 simulation 

have resulted in stronger/weaker upward motion over the ocean/land in the 

INDO-WP region in comparison with both the C5 and P5 predecessors. 

3) Previous studies have shown that changes to the PBL parameterization 

increased CFs within the P5 simulation compared to the previous C5 model. 

New changes in the E5 simulation have decreased cloud fractions globally 

compared to P5 while maintaining the same overall spatial pattern. Profiles of 

CF peak at lower heights in the E5 simulation, which will potentially increase 

outgoing longwave radiation due to higher cloud top temperatures, which will 

counterbalance the decrease in reflected shortwave associated with lower CFs 

and the thinner optical depths associated with decreased IWC and LWC in the 

E5 simulation. 

4) Precipitation rates remain similar on a global scale, however, large differences 

are observed on regional scales. Within the EP-ITCZ, precipitation in the 

latest E5 simulation has decreased substantially, to nearly half that of its 

predecessors (C5, P5). Over the INDO-WP region, mean precipitation remains 

similar, but closer examination has found that more/less precipitation is 

simulated over the ocean/land in the E5 simulation. 
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5) On a global-scale, E5-simulated PWV is now in perfect agreement with 

AMSR-E observations. Regionally, the E5 version of the GCM simulates 

much higher than both AMSR-E and its predecessors (C5, P5). Correlations 

with AMSR-E remain very high (0.99) despite regional differences. 

In conclusion, while recent changes to the NASA GISS ModelE GCM suggested 

in Elsaesser et al. (2017) have improved the accuracy of the GCM in comparison with 

satellite and surface based observations, there is still room for improvement on a regional 

scale.  

 

Potential Future Work and Suggestions 

 For future studies, running the GCM in-house should be a top priority. Without 

having direct access to the GCM, temporal scales and available variables are limited 

while forcing the investigator to perform a black box analysis wherein multiple changes 

are made between each iteration of the GCM and the impacts of each change as well as 

the interactions between each of these changes cannot be analyzed on an individual basis. 

Further analysis should be performed over the defined “INDO-WP” region to investigate 

how parameterization changes in the GCM lead to opposite results over ocean and land.  

A comparison of E5-simulated radiative properties with CE observations and its 

predecessors is recommended based on observed changes to cloud properties in the E5 

version of the GCM. With access to E5-simulated radiative fields, it is recommended to 



129 

 

examine how the potential shift of the ITCZ in the E5 simulation may impact AHTEQ as 

initial results using the precipitation centroid definition detailed in Frierson and Hwang 

(2012) and calculations of AHTEQ based on the methods described in Donohoe et al. 

(2013) suggests a potential southerly shift of the ITCZ in the E5 GCM simulation (not 

shown). 

 In most studies, changes made to the GCM are often observed and discussed on 

fairly short and recent to near-future time scales. It would be of interest to examine how 

each of the recent changes to the GCM might affect future climate forecasts in the distant 

future. 

 Finally, it is recommended that vertical ice water content be further examined 

within the GCM. While IWC generally increases towards the base of the cloud as 

observed in nature, this study found that the latest E5 version of the GCM still simulates 

increasing IWC with height in the upper levels of the atmosphere at the monthly scale. 

IWC magnitude is also strongly decreased in the latest version of the GCM, bringing the 

magnitude of IWC in the GCM much lower than is found using 2C-ICE retrievals. This 

comparison however may not be accurate given that 2C-ICE retrieves both stratiform and 

convective cloud ice while the GCM simulates only stratiform cloud ice.  



130 

 

REFERENCES

Adler RF et al (2003) The Version 2 Global Precipitation Climatology Project (GPCP) 

Monthly Precipitation Analysis (1979–Present). J. Hydrometeor., 4, 1147–1167 
 
AghaKouchak A, Nasrollahi N, Habib E (2009) Accounting for Uncertainties of the 
TRMM Satellite Estimates. Remote Sens., 1, 606-619 

 
Austin RT, A.J. Heymsfield, and G. Stephens, 2009: Retrieval of ice cloud microphysical 
parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 
114, D00A23, doi:10.1029/2008JD010049. 

 
Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical 
cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, 
doi:10.1029/2005GL023851. 

 
Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine 
intertropical convergence zone. Climate Dyn., 25, 477–496, 
doi:https://doi.org/10.1007/s00382-005-0040-5 

 
Chen L., Y. Yu, and D. Sun, 2013: Cloud and water vapor feedbacks to the El Niño 
warming: Are they still biased in CMIP5 models? J. Clim. doi: 10.1175/JCLI-D-12-
00575.1. 

 
Chiriaco, M. et al., 2007: Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals 
of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE, 
Journal of Applied Meteorology and Climatology, 46(3), 249-272, 

doi:10.1175/JAM2435.1. 
 
Del Genio, A.D., W. Kovari, M.-S. Yao, and J. Jonas, 2005: Cumulus microphysics and 
climate sensitivity. J. Climate, 18, 2376-2387, doi:10.1175/JCLI3413.1. 

 
Del Genio, A. D., M.-S. Yao, and J. Jonas (2007), Will moist convection be stronger in a 
warmer climate?, Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525. 
 

Del Genio, A.D., Y.-H. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from 
shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. 
Climate, 25, 3755-3770, doi:10.1175/JCLI-D-11-00384.1. 
 



131 

 

Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update 
with a new Ze parameterization in lidar-only region, J. Geophys. Res. Atmos., 120, 
12,198-12,208, doi:10.1002/2015JD023600. 

 
Doelling, D. R., N. G. Loeb, D. F. Keyes, M. L. Nordeen, D. Morstad, C. Nguyen, B. A. 
Wielicki, D. F. Young, and M. Sun, 2013: Geostationary enhanced temporal interpolation 
for CERES flux products. J. Atmos. Oceanic Technol., 30, 1072-1090. 

 
Dolinar E, Dong X, Xi B, Jiang J, Su H (2015a) Evaluation of CMIP5 simulated clouds 
and TOA radiation budgets using NASA satellite observations. Clim Dyn, 44, 2229-
2247. doi:10.1007/s00382-014-2158-9 

 
Dolinar E, Dong X, Xi B (2015b) Evaluation and Intercomparison of Clouds, 
Precipitation, and Radiation Budgets in Recent Reanalyses using Satellite-Surface 
Observations. Climate Dynamics, DOI: 10.1007/s00382-015-2693-z. 

 
Dong, X. and G. G. Mace, 2003: Arctic Stratus Cloud Properties and Radiative Forcing 
Derived from Ground-Based Data Collected at Barrow, Alaska, J. Climate, 16(3), 445-
461. 

 
Dong, X, B. Xi, and P. Minnis, 2006: A Climatology of Midlatitude Continental Clouds 
from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative 
Forcing, J. Climate, 19(9), 1765-1783. 

 
Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-
MODIS stratus cloud properties with ground-based measurements at the DOE ARM 
Southern Great Plains site, J. Geophys. Res., 113, D03204. 

 
Dong, X., B. Xi, K.Crosby, C.N.Long, and R.Stone, 2010: A 10 year climatology of 
Arctic cloud fraction and radiative forcing at Barrow, Alaska J. Geophys. Res. D12124, 
doi:10.1029/2009JD013489. 

 
Dong, X., B. Xi, and P. Wu (2014), Investigation of the diurnal variation of marine 
boundary layer cloud microphysical properties at the Azores, J. Clim., 27(23), 8827–
8835, doi:10.1175/jcli-d-14-00434.1. 

 
Dong X, B Xi, S Qiu, P Minnis, S Sun-Mack, and F Rose. 2016. "A radiation closure 
study of Arctic stratus cloud microphysical properties using the collocated satellite-
surface data and Fu-Liou radiative transfer model." Journal of Geophysical Research: 

Atmospheres, 121(17), 10.1002/2016jd025255. 
 
Donohoe, A., Marshall, J., Ferreira, D. & Mcgee, D. The relationship between ITCZ 
location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the 

last glacial maximum. Journal of Climate 26, 3597–3618, doi:10.1175/JCLI-D-12-
00467.1 (2013). 



132 

 

 
Dufresne et al (2012) Climate change projections using the IPSL-CM5 Earth System 
Model: from CMIP3 to CMIP5. Clim Dyn, 40, 2123-2165. doi:10.1007/s00382-012-

1636-1 
 
Elsaesser, G.S., A.D. Del Genio, J. Jiang, and M. van Lier-Walqui, 2017: An improved 
convective ice parameterization for the NASA GISS Global Climate Model and impacts 

on cloud ice simulation. J. Clim., 30, no. 1, 317-336, doi:10.1175/JCLI-D-16-0346.1. 
 
Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: 
Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder 

and Advanced Microwave Scanning Radiometer, J. Geophys. Res., 111, D09S16, 
doi:10.1029/2005JD006598. 
 
Flato G, Marotzke J, B. Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech 

F, S. Emori S, V. Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, 
Reason C, Rummukainen M (2013) Evaluation of Climate Models. In: Climate Change 
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. 

Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and 
P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and 
New York, NY, USA. 
 

Frierson DMW, Hwang Y-T (2012) Extratropical influence on ITCZ shifts in slab ocean 
simulations of global warming. J Clim 25:720–733 
 
Gregory D. 2001. Estimation of entrainment rate in simple models of convective clouds. 

Q. J. R. Meteorol. Soc. 127: 53–72. 
 
Habib E, Krajewski WF (2002) Uncertainty Analysis of the TRMM Ground-Validation 
Radar-Rainfall Products: Application to the TEFLUN-B Field Campaign. J. Appl. 

Meteor., 41, 558–572. 
 
Hirota N, Takayabu YN, Watanabe M, Kimoto M (2011) Precipitation reproducibility 
over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and 

MIROC5 climate models. J. Climate, 24, 4859-4873. 
 
Holton JR, Wallace JM, Young JA (1971) On boundary layer dynamics and the ITCZ. J. 
Atmos. Sci., 28, 275-280. 

 
Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, 
Idelkadi A, Musat I, Dufresne JL, Lefebvre MP, Lahellec A, Roehrig R (2013) From 
LMDZ5A to LMDZ5B: revisiting the parameterizations of clouds and convection in the 

atmosperic component of the IPSL-CM5 climate model. Clim Dyn. doi:10.1007/s00382-
012-1343-y 



133 

 

 
Huffman GJ, Robert F, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, 
McNab A, Rudolf B, Udo Schneider U (1997) The Global Precipitation Climatology 

Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78, 5–20. doi: 
http://dx.doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2 
 
Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, E.F. Stocker EF, 

Wolff DB (2007) The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, 
Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8, 
33-55. 
 

Huffman GJ, Bolvin DT (2011) Real-Time TRMM Multi-Satellite Precipitation Analysis 
Data Set Documentation. NASA/GSFC Laboratory for Atmospheres, 43 pp. 
ftp://meso.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_doc.pdf. 
 

Huffman GJ, Bolvin DT (2012) GPCP Version 2.2 SG Combined Precipitation Data Set 
Documentation. ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf, 46 pp. 
 
Jiang, J.H., H. Su, C. Zhai, V. Perun, A.D. Del Genio, L.S. Nazarenko, L.J. Donner, L.W. 

Horowitz, C.J. Seman, J. Cole, A. Gettelman, M.A. Ringer, L.D. Rotstayn, S.J. Jeffrey, 
T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, W. Masahiro, T.S. L'Écuyer, 
E.M. Volodin, T. Iversen, H. Drange, M. dos Santos Mesquita, W.G. Read, J.W. Waters, 
B. Tian, J. Teixeira, and G.L. Stephens, 2012: Evaluation of cloud and water vapor 

simulations in CMIP5 climate models using NASA "A-Train" satellite observations. J. 
Geophys. Res., 117, no. D14, D14105, doi:10.1029/2011JD017237. 
 
Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the 

ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. 
Climate, 21, 3521– 
3532, doi:10.1175/2007JCLI2146.1. 
 

Kato, S., and N.G. Loeb, 2005: Top-of-atmosphere shortwave broadband observed 
radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant 
Energy System (CERES) instruments on Terra. J. Geophys. Res., 110, 
doi:10.1029/2004JD005308. 

 
Kato, S., S. Sun‐Mack, W.F. Miller, F.G. Rose, Y. Chen, P. Minnis, and B.A. Wielicki, 
2010: Relationships among cloud occurrence frequency, overlap, and effective thickness 
derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 

115, D00H28, doi:10.1029/2009JD012277. 
 
Kato S, N.G. Loeb, F.G. Rose, D.R. Doelling, D.A. Rutan, T.E. Caldwell, L. Yu, R.A. 
Weller, 2013: Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere 

Shortwave and Longwave Irradiances. J. Climate, 26, 2719–2740. doi: 
http://dx.doi.org/10.1175/JCLI-D-12-00436.1 



134 

 

 
Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier 
summer downpours with climate change revealed by weather forecast resolution model. 

Nature Climate Change 4:570-576. doi: 10.1038/nclimate2258 
 
Kennedy, A.D., X. Dong, B. Xi, P. Minnis, A.D. Del Genio, A.B. Wolf, and M.M. 
Khaiyer, 2010: Evaluation of the NASA GISS Single Column Model simulated clouds 

using combined surface and satellite observations. J. Climate, 23, 5175-5192, 
doi:10.1175/2010JCLI3353.1. 
 
Kim, D., A.H. Sobel, A.D. Del Genio, Y. Chen, S.J. Camargo, M.-S. Yao, M. Kelley and 

L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS 
general circulation model. J. Climate, 25, 4641-4659. 
 
Klein, S.A., Y. Zhang, M.D. Zelinka, R. Pincus, J. Boyle, and P.J. Gleckler, 2013: Are 

climate model simulations of clouds improving? An evaluation using the ISCCP 
simulator. J. Geophys. Res. Atmos. 118 ,1329-1342. doi: 10.1002/jgrd.50141. 
 
Kopp, G., and G. Lawrence, 2005: The Total Irradiance Monitor (TIM): Instrument 

design. Solar Phys. 230, 91-109. 
 
Lauer, A., and K. Hamilton, 2012: Simulating clouds with global climate models: A 
comparison on CMIP5 results with CMIP3 and satellite data. J. Clim., doi:10.1175/JCLI-

D-12-00451.1. 
 
Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: The excessive 
equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765-1780. 

 
Li G, Du Y, Xu H, Ren B (2015) An intermodel approach to identify the source of 
excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in 
observational datasets. J. Climate, 28, 7630-7640. 

 
Li, J.-L.F., D.E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. 
Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 
GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos. 118, 8166–8184, 

doi:10.1002/jgrd.50378. 
 
Lin J-L (2007) The double-ITCZ problem in IPCC AR4 Coupled GCMs: 
Oceanatmosphere feedback analysis. J. Clim., 20, 4497–4525. 

 
Loeb, N.G., K.J. Priestley, D.P. Kratz, E.B. Geier, R.N. Green, B.A. Wielicki, P.O.R. 
Hinton, and S.K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and 
the Earth’s Radiant Energy System (CERES) instrument. J. Appl. Meteor., 40, 822–835. 

 



135 

 

Loeb N, N.M. Smith, S. Kato, W.F. Miller, S.K. Gupta, P. Minnis, and B.A. Wielicki, 
2003: Angular distribution models for top-of-atmosphere radiative flux estimation from 
the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall 

Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor., 42, 240–265. 
 
Loeb N, S. Kato, K. Loukachine, and N.M. Smith, 2005: Angular distribution models for 
top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant 

Energy System instrument on the the Terra satellite. Part I: Methodology. J. Atmos. 
Oceanic Technol., 22, 338–351. 
 
Loeb N, W. Sun, W.F. Miller, K. Loukachine, and R. Davies, 2006: Fusion of CERES, 

MISR and MODIS measurements for top-of-atmosphere radiative flux validation. J. 
Geophys. Res., 111, D18209, doi:10.1029/2006JD007146. 
 
Loeb N, B.A. Wielicki, W. Su, K. Loukachine, W. Sun, T. Wong, K.J. Priestley, G. 

Matthews, W.F. Miller, and R. Davies, 2007: Multi-instrument comparison of top-of-
atmosphere reflected solar radiation. J. Climate, 20, 575-591. 
 
Loeb N, B.A. Wielicki, D.R. Doelling, G.L. Smith, D.F. Keyes, S. Kato, N. Manalo-

Smith, T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere 
radiation budget. J. Climate, 22, 748-766, doi:10.1175/2008JCLI2637.1. 
 
Loeb N, S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. Norris, and X. 

Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from 
satellite observations. Surv. Geophys., 33, 359-385. DOI 10.1007/s10712-012-9175-1. 
 
Mace, G.G., Y. Zhang, S. Platnick, M.D. King, P. Minnis, and P. Yang, 2005: Evaluation 

of cirrus cloud properties from MODIS radiances using cloud properties derived from 
ground-based data collected at the ARM SGP site. J. Appl. Meteorol., 44, 221-240. 
 
Marchand, R., G.G. Mace, T. Ackerman and G. Stephens, 2008: Hydrometeor detection 

using CloudSat – an Earth-orbiting 94-GHz cloud radar. J. Atmos. Ocean Tech., 25, 519-
533. 
 
Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-

Fang; Ayers, J. Kirk; Mace, Gerald G. (2007) Ice cloud properties in ice-over-water 
cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared 
scanner and TRMM Microwave Imager data Journal of Geophysical Research: 
Atmospheres, 112(D6), D06206. http://dx.doi.org/10.1029/2006JD007626. 

 
Minnis, P., Q.Z. Trepte, S. Sun-Mack, Y. Chen, D.R. Doelling, D.F. Young, D.A. 
Spangenberg, W.F. Miller, B.A. Wielicki, R.R. Brown, S.C. Gibson, and E.B. Geier, 
2008: Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra 

and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 3857-3884. 
 



136 

 

Minnis P. et al. (2011a) CERES Edition-2 cloud property retrievals using TRMM VIRS 
and Terra and Aqua MODIS Data—Part I: Algorithms, Geosci. Remote Sens., 49, 4374-
4400. 

 
Minnis P et al. (2011b) CERES Edition-2 cloud property retrievals using TRMM VIRS 
and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons 
with other data, IEEE Trans. Geosci. Remote Sens., 49, 4401-4430. 

 
Misra V, Marx L, Brunke M, Zeng X (2008) The equatorial Pacific cold tongue bias in a 
coupled climate model, J. Climate, 21, 5852-5869. 
 

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J (2015) Development of the GEOS-
5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. 
Model Dev., 8, 1339-1356, doi:10.5194/gmd-8-1339-2015, 2015. 
 

Naud, C.M., A.D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution 
across warm fronts observed with CloudSat and CALIPSO and modeled with a general 
circulation model. J. Clim., 23, 3397–3415. 
 

Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, 
Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK 
(2003) Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge 
Dataset for West Africa. Part II: Validation of TRMM Rainfall Products. J. Appl. 

Meteor., 42, 1355–1368. 
 
Olsen, E.T., et al., 2007a: AIRS/AMSU/HSB Version 5 Data Disclaimer, report, 21 pp., 
Jet Propul. Lab., Pasadena, Calif. [Available at http:// 

http://disc.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V
5_Data_Disclaimer.pdf] 
 
Olsen ET, S. Granger, E. Manning, and J. Blaisdell, 2007b: AIRS/AMSU/HSB Version 5 

Level 3 Quick Start, report, 25 pp., Jet Propul. Lab., Pasadena, Calif. [Available at 
http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Doc
s/V5_L3_QuickStart.pdf] 
 

Pincus R, Batstone CP, Hofmann RJP, Taylor KE, Glecker PJ (2008) Evaluating the 
present-day simulation of clouds, precipitation, and radiation in climate models. J. 
Geophys. Res. Atmos., 113, D14209. 
 

Platnick, S., M.D. King, S.A. Ackerman, W.P. Menzel, B.A. Baum, J.C. Riedi, and R.A. 
Frey, 2003: The MODIS cloud products: algorithms and examples from Terra, Trans. 
Geosci, Remote Sens., 41(2), 459-473. 
 



137 

 

Ramanathan, V., R.D. Cess, E.F. Harrison, P. Minnis, B.R. Barkstrom, E. Ahmad, and D. 
Hartmann, 1989: Cloud-Radiative Forcing and Climate: Results from the Earth Radiation 
Budget Experiment, Science, 243(4887), 57-63. 

 
Rossow, W.B., and R.A. Schiffer, 1999: Advances in understanding clouds from ISCCP. 
Bull. Amer. Meteorol. Soc., 80, 2261-2288, doi:10.1175/1520-
0477(1999)080<2261:AIUCFI>2.0.CO;2. 

 
Schmidt, G.A. et al., 2006: Present-Day Atmospheric Simulations Using GISS ModelE: 
Comparison to In Situ, Satellite, and Reanalysis Data, J. Climate, 19(2), 153-192. 
 

Schmidt, G.A., M. Kelley, L. Nazarenko, R. Ruedy, G.L. Russell, I. Aleinov, M. Bauer, 
S.E. Bauer, M.K. Bhat, R. Bleck, V. Canuto, Y.-H. Chen, Y. Cheng, T.L. Clune, A. Del 
Genio, R. de Fainchtein, G. Faluvegi, J.E. Hansen, R.J. Healy, N.Y. Kiang, D. Koch, 
A.A. Lacis, A.N. LeGrande, J. Lerner, K.K. Lo, E.E. Matthews, S. Menon, R.L. Miller, 

V. Oinas, A.O. Oloso, J.P. Perlwitz, M.J. Puma, W.M. Putman, D. Rind, A. Romanou, 
M. Sato, D.T. Shindell, S. Sun, R.A. Syed, N. Tausnev, K. Tsigaridis, N. Unger, A. 
Voulgarakis, M.-S. Yao, and J. Zhang, 2014: Configuration and assessment of the GISS 
ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, no. 1, 141-

184, doi:10.1002/2013MS000265.  
 
Sohn, B., J. Schmetz, R. Stuhlmann, and J. Lee, 2006: Dry Bias in Satellite-Derived 
Clear-Sky Water Vapor and Its Contribution to Longwave Cloud Radiative Forcing, J. 

Climate, 19(21), 5570-5580. 
 
Sohn, B.. and R. Bennartz, 2008: Contribution of water vapor to observational estimates 
of longwave cloud radiative forcing, J. Geophys. Res., 113, D20107. 

 
Stanfield, R., 2012: Assessment of NASA GISS CMIP5 ModelE Simulated Clouds and 
TOA Radiation Budgets Using Satellite Observations Over the Southern Mid-Latitudes, 
Master’s Thesis, University of North Dakota. 

 
Stanfield RE, Dong X, Xi B, Kennedy A, Del Genio AD, Minnis P, Jiang JH (2014) 
Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA 
radiation budgets using satellite observations: Part I: Cloud fraction and properties. J. 

Climate, 27, no. 11, 4189-4208, doi:10.1175/JCLI-D-13-00558.1. 
 
Stanfield RE, Dong X, Xi B, Del Genio AD, Minnis P, Doelling D, Loeb N (2015) 
Assessment of NASA GISS CMIP5 and Post-CMIP5 simulated clouds and TOA 

radiation budgets using satellite observations. Part II: TOA radiation budget and CREs. J 
Clim 28(5):1842–1864. doi:10.1175/JCLI-D-14-00249.1 
 
Stanfield RE, Jiang J, Dong X, Xi B, Su H, Donner L, Rotstayn L, Wu T, Cole J, and 

Shinodo E (2016) A Quantitative Assessment of Precipitation Associated with the ITCZ 
in the CMIP GCM Simulations. Climate Dynamics, 47: 1863. doi:10.1007/s00382-015-



138 

 

2937-yWinker, D.M., W.H. Hunt, and M.J. McGill, 2007: Initial performance assessment 
of CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135. 
 

Stenz R, Dong X, Xi B, Kuligowski RJ (2014) Assessment of SCaMPR and NEXRAD 
Q2 Precipitation Estimates Using Oklahoma Mesonet Observations. J. Hydrometeor, 15, 
2484–2500. 
 

Stenz, R., X. Dong, B. Xi, Z. Feng, and R.J. Kuligowski, 2016: Improving Satellite 
Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth. J. 
Hydrometeor., 17, 557–570, https://doi.org/10.1175/JHM-D-15-0057.1 
 

Stephens, G.L., et al., 2002: The CloudSat Mission and the A-Train, Bull. Amer. Meteor. 
Soc., 83(12), 1771-1790. 
 
Stubenrauch, C.J., and Co-Authors, 2013: Assessment of global cloud datasets from 

satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. 
Meteor. Soc., 94, 1031-1049. 
 
Su, H., et al., 2013: Diagnosis of Regime-dependent Cloud Simulation Errors in CMIP5 

Models Using A-Train Satellite Observations, J. Geophys. Res. 118, 7, 2762-2780, 
doi:10.1029/2012JD018575 (2013). 
 
Taylor KE (2001) Summarizing multiple aspects of model performance in a single 

diagram. J. Geophys. Res., 106 (D7), 7183–7192. 
 
Taylor KE, Balaji V, Hankin S, Juckes M, Lawrence B (2010) CMIP5 Data Reference 
Syntax (DRS) and controlled vocabularies, 13 pp. 

 
Taylor KE, Ronald J. Stouffer, Gerald A. Meehl (2012) An Overview of CMIP5 and the 
Experiment Design. Bull. Amer. Meteor. Soc., 93, 485–498. 
 

Waliser, D., F. Li, C. Woods, R. Austin, J. Bacmeister, J. Chern, A. DelGenio, J. Jiang, 
Z. Kuang, H. Meng, P. Minnis, S. Platnick, W.B. Rossow, G. Stephens, S. Sun-Mack, W. 
K. Tao, A. Tompkins, D. Vane, C. Walker, and D. Wu, 2009: Cloud ice: A climate model 
challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, 

doi:10.1029/2008JD010015. 
 
Wang, H., and W. Su (2013), Evaluating and understanding top of the atmosphere cloud 
radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 

Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using 
satellite observations, J. Geophys. Res. Atmos., 118, 683–699, 
doi:10.1029/2012JD018619. 
 

Wentz, F.J., 1997: A well calibrated ocean algorithm for Special Sensor 
Microwave/Imager, J. Geophys. Res., 102, 8703–8718, doi:10.1029/96JC01751. 



139 

 

 
Winker, D.M., W.H. Hunt, and M.J. McGill, 2007: Initial performance assessment of 
CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135. 

 
Xi, B., X. Dong, P. Minnis, and M.M. Khaiyer, 2010: A 10-year climatology of cloud 
cover and vertical distribution derived from both surface and GOES observations over the 
DOE ARM SGP Site. J. Geophys. Res.115, D12124, doi:10.1029/2009JD012800. 

 
Xi, B., X. Dong, P. Minnis, and S. Sun-Mack, 2013: Comparison of CERES-MODIS 
Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM AMF at 
AZORES Site. In preparation for JGR. 

 
Xi, B., X.Dong, P.Minnis, and S.Sun-Mack (2014), Comparison of marine boundary 
layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF 
measurements at the Azores, J. Geophys. Res.Atmos.,119, doi:10.1002/2014JD021813  

 
Yao, M.-S., and Y. Cheng, 2012: Cloud simulations in response to turbulence 
parameterizations in the GISS Model E GCM. J. Climate, 25, 4963-4974, 
doi:10.1175/JCLI-D-11-00399.1. 

 
Yoshimori, M., and A. J. Broccoli (2008), Equilibrium response of an atmosphere-mixed 
layer ocean model to different radiative forcing agents: Global and zonal mean response, 
J. Clim., 21, 4399–4423, doi:10.1175/2008JCLI2172.1. 

 
Yoshimori, M., and A. J. Broccoli (2009), On the link between Hadley circulation 
changes and radiative feedback processes, Geophys. Res. Lett., 36, L20703, 
doi:10.1029/2009GL040488. 

 
Young, D.F., P. Minnis, D.R. Doelling, G.G. Gibson, and T. Wong, 1998: Temporal 
Interpolation Methods for the Clouds and Earth's Radiant Energy System (CERES) 
Experiment. J. Appl. Meteorol., 37, 572-590. 

 


	A Comprehensive Analysis Of Clouds, Radiation, And Precipitation In The North Pacific Itcz In The NASA GISS Modele GCM And Satellite Observations
	Recommended Citation

	tmp.1559259364.pdf.sbjxr

