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ABSTRACT 

One of the challenges in characterization of complex environmental matrices and 

renewable materials is the determination low molecular weight polar compounds (LMWPCs). 

Depending on the matrix, the targeted LMWPCs include acids, aldehydes, sugars, sugar alcohols 

or aminoacids. To investigate the role and impact of these species, a development of accurate 

and precise analytical protocols is essential. One of the challenges in analysis of LMWPCs is their 

volatility and thus potential losses during sample preparation. The various matrices including 

renewable materials may contain >100 compounds that are either non-targeted (i.e., their 

identity is not known prior to the analysis) or targeted (specific compounds within the matrix). 

Gas or liquid chromatography coupled with mass spectrometry (GC-MS or LC-MS, respectively) 

are the preferred methods of analysis because they adequately address the simultaneous 

identification of numerous non-targeted compounds and quantification of targeted compounds. 

Analysis of low molecular weight polar compounds in four different matrices and materials, each 

representing a unique challenge, are presented in this dissertation including characterization of 

biologically produced succinic acid (Chapter II), investigation of the composition of a methanolic 

extract of Pulicaria jaubertii and its fractions (Chapter III), serum of rats after exposure to 

resveratrol (Chapter IV) and atmospheric particulate matter (PM, Chapter V).  

Biologically produced succinic acid needs to be free of undesirable compounds, such as 

short-chain carboxylic acids, which cause odor, and sugars and sugar alcohols, which can partake 
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in a Maillard reaction in the presence of nitrogen containing compounds. We have adapted 

derivatization followed by GC-MS to identify and quantify more than 120 impurities in several 

succinic acid samples. This study focused on petroleum based succinic acid as well as bio-based 

samples that use a modified E. coli strain for fermentation. To enable an accurate quantification 

of both the target product and common impurities, we evaluated the acetonitrile extraction 

efficiency as an alternative to direct derivatization, and then compared several derivatization 

agents for trimethylsilylation. A prior ACN extraction was shown to be essential to detect 

impurities in trace concentrations. N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was most 

efficient for derivatization of saccharides and low molecular weight monocarboxylic acids. 

However, the presence of pyridine was shown to be necessary for derivatization of saccharides 

and polyalcohols with BSTFA, whereas low molecular weight acids had to be quantified without 

pyridine. Fourteen representative bioproduced succinic acid samples differing in production 

stage and cultivation method were characterized. The screening of initial-process (1st stage of 

synthesis) samples showed that monocarboxylic acids were the  most abundant and suggested 

the occurrence of saccharides. Thus, we have developed a method allowing for quantification of 

carboxylic acids and saccharides with limits of detection between 0.02–0.3 ng. In the initial-

process bacterial samples and petrochemical sample, formic, acetic, lactic, oxalic, benzoic, citric 

and malic acids as well as glycerol, butanediol and glucose were found in a range of 0.02–

1160 µg/g. In final-process samples, formic and acetic acid, and glucose were found in 

concentrations lower than 0.001%, thereby demonstrating the effectiveness of the process as 

well as the applicability of the method for quality control measure of the process.  
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Pulicaria jaubertii is a Middle Eastern medicinal plant with anti-obesity potential. To 

characterize its biologically active compounds, extraction with methanol was performed. This 

extract was further fractionated to hexane, dichloromethane and water/methanol. Analysis by 

GC-MS and LC coupled with high resolution mass spectrometry (HRMS) demonstrated the 

presence of catechin-like moieties in the dichloromethane and methanolic fractions and 

suggested that these components were partially responsible for the bioactivity of these fractions. 

Our data indicate that fractions derived from PJ exhibit anti-adipogenic properties in part owing 

to the presence of catechin-like compounds. 

Trans-resveratrol (3,5,4’-trihydroxy-trans-stilbene) (RES) is a polyphenol found in many 

foods, such as peanuts, berries and red wine. In this study we developed a sensitive method using 

LC coupled to electrospray ionization (ESI) with high resolution time of flight (TOF) MS for the 

determination of RES. This method enabled an investigation of a relationship between tumor 

growth in rats and concentration of RES and its primary metabolites, trans-resveratrol-3-O-

sulfate (R3S) and trans-resveratrol-3-O-β-D-glucuronide (R3G), in rat serum after RES exposure 

(5 or 25 mg/kg/day). RES levels in rat serum were near the limit of detection, showing 

concentrations of 4±1 and 12±4 ng/mL for low and high-dose exposure, respectively. Compared 

to RES, higher concentrations were found for its metabolites (R3G:4.8±0.3 and 6.8±0.3 µg/mL; 

R3S:0.27±0.09 and 0.34±0.04 µg/mL, respectively). Using LC-ESI-HRMS, for the first time, we 

measured the matrix-affected limits of detection (LODs) in plasma (3.7, 82.4, and 4.7 ng/mL for 

RES, R3G, and R3S, respectively), which were comparable to those reported in previous work 

using LC tandem mass spectrometry, but with a benefit of obtaining a full mass spectral profile. 

The additional novelty of our study is in synthesis and application of deuterated recovery 
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standards enabling accurate and precise quantification. In order to develop a robust method, the 

ESI conditions were optimized using a multilevel full factorial design of experiments. 

Understanding the occurrence of polar organic species in PM is essential because they 

are significant constituents of atmospheric carbonaceous PM and are also suggested to serve as 

cloud condensation nuclei. In this study, we propose a  new analytical method allowing for the 

simultaneous methylation of the majority of carboxylic acids and derivatization of aldehydes (in 

contrast to sequential trimethylsilylation) enabling an easier interpretation of acids’ mass spectra 

without any interference from hydroxy groups. The sequential trimethylsilylation is still 

employed though targeting only the remaining aromatic acids and compounds with hydroxy 

groups. The developed quantitative method for simultaneous determination of aldehydes and 

acids using PFBHA·HCl in methanol results in oximes and methyl esters, respectively; with the 

limits of detection between 0.04–1 μg/mL. The method has been successfully applied to a broad 

range of species with various functionalities (ca. 95 compounds), including long chain 

monocarboxylic acids, dicarboxylic acids, aromatic acids, ketoacids, hydroxyacids and aldehydes. 

The developed protocol was applied to wood smoke and urban air standard reference material 

1648b PM. The aldehydes were observed in concentrations 10–3000 µg/g in wood smoke PM 

and 10–900 µg/g in urban air PM, while the observed acids were in concentrations 20–1800 µg/g 

in wood smoke PM and 15–1200 µg/g in urban air PM. The most prominent aldehydes were 

syringaldehyde and vanillin in wood smoke PM and glyoxal in urban air PM. The most abundant 

acids in both PM samples were short-chain dicarboxylic acids (≤C10), while wood smoke PM had 

a high abundance of hydroxyacids (vanillic and malic acids), as well as ketoacids (glutaric and 
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oxalacetic), urban air PM also featured a high abundance of long-chain monocarboxylic acids 

(≥C16).  
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I. CHAPTER 
CHALLENGES IN ANALYSIS OF LOW MOLECULAR WEIGHT POLAR 

COMPOUNDS & STATEMENT OF PURPOSE 

One of the challenges in characterization of complex environmental matrices and 

renewable materials is the determination of low molecular weight polar compounds (LMWPC). 

For the purpose of this dissertation, LMWPCs are defined as compounds with the molecular 

weight less than 500 amu and with at least one or more polar functional group, such as carbonyl, 

carboxyl or hydroxyl group. Depending on the matrix, the targeted LMWPCs may be acids, 

aldehydes, sugars, sugar alcohols or aminoacids. These compounds can either be desirable, such 

as polyphenols with antioxidant properties in plants or plant products [1], or undesirable in the 

case of impurities in renewable chemicals [2]. The adverse effect of the impurities may be odors 

or coloration of downstream products [2]. In the case of atmospheric chemistry, LMWPCs are 

significant constituents of atmospheric carbonaceous particulate matter (PM) formed as a result 

of both primary emissions and secondary atmospheric reactions as well as a potential source of 

cloud condensation nuclei [3–5]. 

To investigate the role and impact of the LMPWC species, development of accurate and 

precise analytical protocols is essential. For analysis of these compounds, one must optimize a 

sample preparation, e.g., derivatization, together with an appropriate choice of a 

chromatographic method, i.e., liquid or gas chromatography coupled with mass spectrometry 

(LC-MS and GC-MS, respectively). One of the challenges in the LMWPC analysis is their volatility 
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and thus potential losses during sample preparation. Another obstacle may be their high polarity 

leading to a possible adhesion to a surface and possibly inefficient extraction from a broad range 

of matrices. The matrices and renewable materials may contain >100 compounds that are either 

non-targeted (i.e., their identity is not known prior to the analysis) or targeted (specific 

compounds monitored within the matrix). Analyses of both types of compounds can take 

advantage of the chromatographic separation methods and mass spectra identification. For 

instance, when using GC-MS for non-targeted analysis, spectra generated with electron 

ionization (EI) can be matched to an extensive NIST mass spectra library. Complementary to using 

GC-MS with EI is  LC coupled to high resolution mass spectrometry (HRMS), which provides exact 

molecular mass values, thus benefiting both targeted and non-targeted analysis.  

In this dissertation, the development of analytical methods for LMWPC in four different 

matrices and materials are presented: 

 Characterization of biologically produced succinic acid (Chapter II) 

 Investigation of the composition of a methanolic extract of Pulicaria jaubertii and 

its fractions (Chapter III) 

 Determination of trans-resveratrol (RES) and its metabolites in serum of rats after 

their exposure to resveratrol (Chapter IV) 

 Determination of occurrence of aldehydes and acids in atmospheric PM (Chapter 

V).  

General purposes of the specific projects are described below: 

Biologically produced succinic acid has to be free of undesirable compounds, such as 

short-chain carboxylic acids, causing odor, and sugars and sugar alcohols, which can partake in a 
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Maillard reaction in presence of nitrogen containing compounds. The succinic acid itself can 

affect the analysis simply because of its overwhelming concentration. Thus, we developed a 

method for simultaneous saccharide and carboxylic acid determination using a GC-MS analysis 

ensuring efficient derivatization. The efficiency of a prior ACN extraction compared to a direct 

derivatization, and effectiveness of several derivatization agents/conditions for 

trimethylsilylation were evaluated. Finally, the effectiveness of the manufacturing processing and 

purification were assessed based on the concentrations of target species found in the samples.  

Pulicaria jaubertii is a Middle Eastern medicinal plant with potential for anti-obesity 

treatment. In order to characterize its biologically active constituents, the composition of the 

active fraction of methanol (MeOH) extracts was evaluated. For this project, the MeOH extract 

was dried and subsequently fractionated using liquid-liquid extraction from MeOH/water system 

first into hexane, then dichloromethane (DCM) and remaining MeOH/water was collected as the 

last fraction. A two-fold analysis was performed; first to identify which fraction has the greatest 

potential as medical treatment, and second to characterize all the fractions and identify the 

possible active compounds. In this case, combining both GC-MS and LC-HRMS takes advantage 

of both the EI spectral library (GC-MS) and accurate molecular mass determination (LC-HRMS). 

RES (3,5,4’-trihydroxy-trans-stilbene) is a polyphenol found in many foods, such as 

peanuts, berries, and red wine. RES and its metabolites have been reported to exhibit anticancer, 

analgesic, cardioprotective, and neuroprotective effects. The goal of this study was to develop a 

method enabling an investigation of a relationship between the tumor growth in rats and 

concentration of RES and its primary metabolites, trans-resveratrol-3-O-sulfate (R3S) and trans-

resveratrol-3-O-β-D-glucuronide (R3G), in rat serum after a RES exposure (5 or 25 mg/kg/day) by 



 
 
 

4 
 

using LC coupled to electrospray ionization (ESI) with HRMS. To increase the method precision, 

deuterated standards of RES, R3G, and R3S were synthesized and used as recovery standards 

(RSs) added prior to the sample preparation in combination with an IS (pinosylvin), which was 

added before injection. This combination of RSs and IS (used frequently in environmental studies) 

allowed for an improved assessment of repeatability issues (i.e., whether the issues arise from 

sample preparation or analysis). The developed method was applied to rat serum samples 

following their exposure to RES. 

Understanding the occurrence of polar organic species in PM is essential because they 

are significant constituents of atmospheric carbonaceous particulate matter (PM) and are also 

suggested to serve as cloud condensation nuclei [3–5]. The observed variety of carboxylic and 

carbonyl compounds in PM includes linear monocarboxylic acids, dicarboxylic acids, aromatic 

polycarboxylic acids, polycyclic quinones, hydroxyacids, oxoacids, aldehydes, dialdehydes, 

ketones and multifunctional aliphatic and aromatic compounds. To investigate the occurrence of 

compounds with various polar functional groups, such as hydroxyl, carbonyl or carboxyl groups 

present in PM, a multi-step derivatization is often employed prior to their GC analysis. The most 

common approach is the derivatization of carbonyl groups with O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA·HCl) and then a separate derivatization 

of carboxyl and hydroxy groups via either their trimethylsilylation with N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA).  

Our goal was to first extract and derivatize aldehydes to stabilize them prior to further 

derivatization. We have evaluated two solvent systems used previously for extraction, 

ACN/DCM/MeOH and MeOH alone. An advantage of the use of MeOH in the presence of a HCl 
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salt was the concomitant methylation of carboxylic acids, allowing for simultaneous 

derivatization of both aldehydes and acids. Thus, in addition, we evaluated the influence of the 

methylation reaction conditions on the process efficiency and compared that to the methylation 

with BF3 and silylation with BSTFA. The efficiency of the proposed extraction method was studied 

using wood smoke (WS) PM, which has a higher abundance of organic compounds. The 

concentrations of acids and aldehydes were compared for two common PM matrices: WS and 

urban air (UA) standard reference material (SRM) PM.  
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II. CHAPTER  
DETERMINATION OF IMPURITIES IN BIOPRODUCED SUCCINIC ACID 

II.1. BACKGROUND 

At present, significant research resources are directed towards development of 

renewable products for replacing petrochemicals [2,6,7]. Among them, succinic acid, a precursor 

of a wide range of polyesters, has a market of 270,000 ton per year [6]. Consequently, bio-based 

succinate is receiving increasing attention, and with rising oil prices it has become a worthy 

competitor of petrochemical-based succinate [2,6]. The challenge of being cost competitive with 

petrochemical-based alternatives is being able to obtain high rates of production with little or no 

by-products, to efficiently use substrates, and to simplify the purification process [2]. The 

expected by-product of bioproduced succinic acid is acetic acid; however, other impurities, such 

as other carboxylic acids, amino acids, saccharides and polyalcohols might be present in trace 

amounts [2].  

Chromatography is the preferred method of analysis because it adequately addresses a 

simultaneous identification and quantification of the targeted compounds (i.e., carboxylic acids, 

saccharides, and polyalcohols) [8]. However, not all chromatographic protocols are suitable for 

the given task. For example, the LC of short-chain carboxylic acids (e.g., acetic or formic) is usually 

performed in the presence of a strong acid, such as diluted sulfuric acid [8], which is not 

compatible with mass spectrometry thus preventing the identification of numerous species 

potentially present in samples. The determination of acetic acid is crucial, because it is considered 
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as the main impurity [2]. The alternative to LC is GC-MS. Although the separation using this 

method generally targets volatile, non-polar species, the use of derivatization for polar low 

molecular weight species (i.e., the expected impurities) enables detection with a good resolution 

and sensitivity [8]. 

Numerous studies addressing acids, saccharides and polyalcohols were performed using 

GC-MS with trimethylsilylation [9–23] (see Appendix A Table A.1 for their overview). Most of 

these studies characterize food products, focusing on relevant species occurring in fairly high 

concentration [8–13,20,22,24]. To our knowledge, no short-chain (i.e., highly volatile) 

monocarboxylic acids were reported. The shortest-chain acid reported was oxalic acid [15,16,20], 

which has two carboxylic groups available for derivatization and thus is less volatile than the 

derivatives of C1 and C2 monocarboxylic acids. Similarly, we did not find any study simultaneously 

addressing both saccharides and short-chain monocarboxylic acids. Finally, to our best 

knowledge, no study has yet addressed the most practical case characteristic for industrial 

production of pure chemicals when the trace amounts of impurities, such as acids, sugars and 

polyalcohols, were analyzed in the presence of a high concentration of one major mixture 

component, e.g., succinic acid. 

Several options are available for selecting the derivatization agents for GC-MS analysis of 

both acids and saccharides. The most common approach is derivatization with hydroxylamine in 

pyridine in combination with hexamethyldisilazane (HMDS) with trifluoroacetic acid [9,10,12–

14], where hydroxylamine reacts with the saccharide carbonyl group  while HMDS functionalizes 

the moiety containing a reactive hydrogen atom, i.e., carboxyl, hydroxyl and phenyl groups. 

However, the use of two derivatization agents may lead to uncertainties as the optimal 
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conditions for two different derivatization methods may not match. Also, HMDS is not the most 

efficient derivatization agent, leaving less reactive sources of active hydrogen, e.g., amino groups, 

unaltered [23]. For a more efficient derivatization of active hydrogen groups, including amino 

groups, either N-methyl-N-(trimethylsilyl) trifluoroacetamide [17,20] (MSTFA) or BSTFA 

[15,16,18,19] is typically employed. The derivatization with BSTFA is often catalyzed with 

trimethylchlorosilane [15] (TMCS) or, in specific cases, trimethylsilylimidazole [11]. Because 

trimethylsilylation is water-sensitive, the most common pretreatment of samples is either 

evaporation [9–11,13,19,20,25] or lyophilization [17]. However, the short-chain monocarboxylic 

acids are volatile and thus may be lost together with the solvent, which might lead to 

underestimation of their content.  

Thus, in order to provide a comprehensive characterization of impurities in bioproduced 

succinic acid samples, we developed a method for simultaneous saccharide and carboxylic acid 

determination using a GC-MS analysis and ensuring efficient derivatization. The efficiency of prior 

ACN extraction compared to direct derivatization, and effectiveness of several derivatization 

agents/conditions for trimethylsilylation was evaluated. Finally, the effectiveness of the 

manufacturing processing and purification were assessed based on the concentrations of target 

species found in the samples.  

 

II.2. MATERIALS AND METHODS 

II.2.1 Studied samples  

Fifteen samples of succinic acid were used (labeled A–P; the complete list including 

detailed sample descriptions is provided in Appendix A Table A.2). Samples C–P were produced 



 
 
 

9 
 

on a large scale with E. coli bacteria using adapted protocol [26]. Briefly, the fermentation took 

place for 36 hours at 35 °C using glucose based media enriched with ammonia as nitrogen source. 

The purification was accomplished via anion and cation exchange followed by electrodialysis to 

remove ammonium. Crystallization was used to further improve quality (samples G and L). 

Samples M–O were produced using a corn steep liquor, which is a by-product of corn wet milling. 

An analytical standard of succinic acid (99% purity; Sigma-Aldrich, St. Louis, MO, USA) and sample 

A were used as references, where sample A was petroleum based succinic acid. 

II.2.2 Chemicals 

ACN, MeOH (both LCMS Optima grade), and DCM (GC quality) were purchased from 

Fisher Scientific (Waltham, MA, USA). Water was purified using a Direct-Q3 water purification 

system with incorporated dual wavelength UV lamp (Millipore, Billerica, MA, USA) for low total 

carbon content (the manufacturers claimed impurity is less than 5 ng/g). Derivatization agents 

BSTFA (99%) with 1% of TMCS, BSTFA with 10% of TMCS, and MSTFA were obtained from Sigma-

Aldrich. Pyridine (99%) was obtained from Alfa Aesar (Ward Hill, MA, USA). The compounds 

quantified are listed in Table II.1 along with their suppliers. 
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Table II.1 List of acids, saccharides and polyalcohols studied, their suppliers, the GC–MS retention times, target 
and confirmation ions (used for quantification) of their trimethylsilyl derivatives used for data processing, and 
LODs. All acronyms are defined in the list of abbreviations. 

 Supplier tr r12 MW ion Target ion Confirmation ions LOD 

   [min]     [ng] 

formic acid Flukaa 2.8 0.1 118 103 73, 45 0.2 

acetic acid Fisherb 3.9 0.2 132 117 75, 45 0.3 

lactic acid 
Sigma-
Aldrichc 12.3 0.5 

230 191 147, 117 
0.2 

oxalic acid 
Sigma-
Aldrich 

13.6 0.6 
230 190 219, 147 

0.2 

3-hydroxybutyric acid 
Sigma-
Aldrich 

13.8 0.6 
244 191 233, 117 

0.04 

butanediol 
Sigma-
Aldrich 

13.9 0.6 
234 177 147, 116 

0.02 

benzoic acid 
Sigma-
Aldrich 

15.3 0.7 
192 179 135, 105 

0.4 

glycerol Fisher 15.7 0.7 308 205 218, 117 0.2 

proline 
Sigma-
Aldrich 

15.9 0.7 
259 142 216, 73 

0.1 

malic acid 
Sigma-
Aldrich 

18.5 0.8 
344 233 245, 147 

0.04 

phthalic acid 
Sigma-
Aldrich 

20.8 0.9 
310 295 147,73 

0.1 

xylitol Supelcod 21.0 0.9 502 307 319, 217 0.04 

arabitol Supelco 21.1 0.9 502 307 319, 217 0.02 

ribitol Supelco 21.2 0.9 502 319 307, 217 0.06 

citric acid 
Sigma-
Aldrich 

22.2 1.0 
480 273 465, 73 

0.03 

glucose Supelco 23.1 1.0 530 204 191, 147 0.02 

sucrose Supelco 29.8 1.3 902 361 217, 73 19 
a Fluka – St. Louis, MO, USA; b Fisher – Waltham, MA, USA; c Sigma-Aldrich – St. Louis, MO, USA; d Supelco – St. Louis, 
MO, USA 

II.2.3 Sample preparation  

Direct BSTFA derivatization. Samples (1.0 mg) were directly mixed with 50 μL BSTFA and 

derivatized overnight at 60 °C. The amount of BSTFA was calculated to be in a 20-fold molar 

excess, considering the amounts of succinic acid in the samples. Samples were diluted to 200 μL 

using DCM together with 5.0 L of an internal standard (IS, o-terphenyl) to control the volume 

changes, and analyzed in vials with 400 µL inserts. 
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Extraction. Bioproduced succinic acid samples (1.00 ± 0.05 g) were sonicated overnight 

with 1 mL of ACN. After sonication, the samples were filtered through some purified glass wool 

inserted into a Pasteur pipette.  

BSTFA derivatization. Filtered ACN extracts (100 μL aliquot) were mixed with 50 μL BSTFA 

(99% + 1% TMCS), then derivatized for 1 h at 60 °C. Alternatively, samples were derivatized for 

18 h at 70 °C in order to achieve a complete derivatization of saccharides and polyalcohols. 

BSTFA derivatization with ACN. Acid and saccharides standards (100 μL) were dried and 

subsequently mixed with 50 μL BSTFA and 100 μL ACN and derivatized for 18 h at 70 °C. 

BSTFA derivatization with pyridine. Filtered ACN extracts (100 μL aliquot) were mixed with 

60 μL BSTFA (99% + 1% TMCS) and 60 μL of pyridine and derivatized for 18 h at 70 °C.  

MSTFA derivatization. Acid and saccharides standards (100 μL) were mixed with 50 μL 

MSTFA and derivatized for 18 h at 70 °C. 

Calibration. Stock solutions of individual compounds were prepared and combined into 

two mixtures, i.e., acids (the final concentration ca. 0.5 mg/mL per analyte) and saccharides (the 

final concentration ca. 0.2 mg/mL per analyte). The calibration range was between 0.001–50 

µg/mL, where the highest calibration point corresponded to ca. 30 µmoles of carboxylic or 

hydroxy groups. The list of compounds with their retention times, target and confirmation ions 

used for data processing is provided in Table II.1.  

Prior to the analysis an IS (o-terphenyl, 10 μL, ca. 1 mg/mL), was added to all samples, and 

the solution was diluted to 1.0 mL using DCM unless stated otherwise. 
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II.2.4 Instrumentation 

GC analyses were performed using a 5890 GC with 5972 MS equipped with an 

autosampler (6890 series, Agilent Technologies, Santa Clara, CA, USA). Injections were performed 

in the splitless mode for 0.50 min at 250 °C and the injection volume was 1 µL. The separation 

was performed using a 52-m long DB-5MS capillary column, with 0.25 mm internal diameter (I.D.) 

and 0.25 µL film thickness (J&W Scientific, Folsom, CA, USA). A constant flow of the carrier gas 

(helium) at a flow rate of 1.0 mL/min was maintained during the analysis. The temperature 

program used was adapted from previous work [27,28], and started at 35 °C held for 5 min, 

followed by a gradient of 15 °C/min to 300 °C and held for 1 min. The MS data in total ion 

chromatograms (TIC) were acquired in the mass range of m/z of 35–1000 at a scan rate 2.66 

scan/s using the EI of 70 eV. The MS was turned off to eliminate the signal from the derivatization 

agents and their by-products in periods determined by observing the increase of pressure in MS. 

Namely, for BSTFA with pyridine, the MS was off for the first 2.5 min, 2.90–3.60 min, 4.40–7.00 

min, 8.00–8.70 min; for MSTFA, the MS was off for the first 4 min. 

II.2.5 Data processing 

GC-MS data were processed using ChemStation (version E.02.02.1431) and AMDIS 

software (Automated Mass Spectral Deconvolution and Identification System, version 2.71) [29]. 

Compounds’ identification was based on confirmation with the corresponding analytical 

standard, or as isomers of standards with similar mass spectra and/or using NIST 05 Mass Spectra 

library. 

AMDIS software was used for the deconvolution of MS ion spectra and tentative 

identification of impurities for which the analytical standards are not available. The tentative 
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identification was based primarily on the reversed match of >80% (described in Appendix A) and 

compared to the weighted match requiring at least 80% for both matching methods. Peaks found 

in the pure succinic acid standard and in the BSTFA blank were not considered. Based on TIC, the 

AMDIS program provided a percent response, which allowed for semi-quantification of impurities 

(Table II.2) and their comparison between the samples, by normalizing to the response of the IS. 

The protocol developed for AMDIS processing is included in Appendix A. 

The limits of detection and quantification (LODs and LOQs) were determined using the 

target ions, which were selected based on the highest signal-to-noise ratio (ions listed in Table 

II.1). The instrumental LODs were calculated from calibration curves (within one order of 

magnitude of LOD) using the formula LOD=3.3*sy/k, where k is a slope of the calibration curve 

and sy is the standard error of the predicted y-value for each x-value; sy was obtained by a least 

square linear regression. In order to report the low amounts of impurities we have used for 

quantification, lower limits of quantification were defined as LOQ=5* sy/k.  

The repeatability of the quantification method was evaluated using a representative 

sample of bioproduced succinic acid (C), which was chosen on the basis of preliminary testing. 

The sample was prepared in triplicate and analyzed in the following ways: 1) the same sample 

was analyzed three times in a row to assess the intraday GC repeatability; 2) the same sample 

was analyzed throughout the sequence on two consecutive days, to evaluate the interday GC 

repeatability; and 3) the extraction triplicate was analyzed to assess the extraction repeatability.  
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II.3. RESULTS AND DISCUSSION 

II.3.1 Extraction vs direct analysis 

The selection of a sample preparation method strongly affects the impurities detected. 

Thus, we first compared the extraction using ACN followed by BSTFA derivatization with direct 

BSTFA derivatization (no extraction). Figure II.1 shows that the ACN extraction was essential for 

characterization of impurities. A range of peaks representing impurities was observed in the 

majority of ACN extracted and BSTFA derivatized samples (Fig. II.1b, Table II.2). We expected 

enhanced derivatization when eliminating the extraction step and using BSTFA in molar excess; 

however no additional impurities were found when the direct analysis was applied (Fig. II.1a). 

The higher responses observed after extraction could be explained by a higher solubility of 

impurities in ACN than in the derivatization agent alone, combined with a lower solubility of 

succinic acid in ACN. 

 

Figure II.1 GC-MS analyses following a) direct BSTFA derivatization and b) derivatization of ACN extracted 
bacterial sample F. Stars mark the peaks of impurities in observed in bacterial samples. Chromatograms are 
scaled to the internal standard height. All acronyms are defined in the list of abbreviations. 
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II.3.2 Initial identification of impurities 

The initial method of analysis was adapted from our previous work [27] allowing for 

quantification of a wide range of mono- and di-carboxylic acids. Over 120 peaks were observed 

in the initial process bacterial succinic acid samples upon derivatization with BSTFA. Table II.2 

shows the normalized data for the most abundant species (the detailed list is in Appendix A Table 

A.3). The common impurities of higher abundance in the bacterial samples were formic, acetic, 

lactic and malic acids, butanediol and valine (Fig. II.2). Using this screening method, we also 

observed incompletely derivatized saccharides. Other compounds found in a lower abundance 

were oxalic, benzoic, phthalic, hexadecanoic, and octadecanoic acids (Table II.3). These acids 

might be from the sample preparation contamination, however their abundance in controls 

(experiment performed without analytes) seemed to be lower.  
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Table II.2 Contaminants and their percent responses, with respect to an internal standard, observed upon BSTFA 
derivatization of an ACN extract of petroleum produced succinic acid and initial process bio-based succinic acid 
samples.  

r12 Identified compounds 
A 

(petroleum) 
F  

(bacteria) 
K 

(bacteria) Confirmeda 

0.319 formic acid 0.01 0.03 0.03 * 

0.406 acetic acid 0.02 0.12 0.17 * 

0.570 methyl-propanoic  acid  0.03    

0.604 alanine   0.03   

0.608 dimethylsulfone   0.01 * 

0.631 ethanediol 0.04   * 

0.663 butanediol  0.02 0.03 * 

0.672 lactic acid  0.74 0.30 * 

0.694 alanine   0.01   

0.715 methyl butanol 0.01     

0.720 3-hydroxybutyric acid   0.02 * 

0.722 oxypentanoic acid   0.02   

0.724 hydroxymethylbutyric acid  0.05    

0.736 pentenoic acid   0.03   

0.747 L-valine (bisTMS)   0.08 * 

0.759 ethyl succinate   0.04 * 

0.770 glycerol   0.04 * 

0.773 phosphoric acid  0.10    

0.792 methyl succinic acid 0.03     

0.798 pyrimidine   0.02   

0.815 malic acid  0.03 0.08   

0.821 pentanedioic acid   0.02 * 

0.854 malic acid 5.40 0.03 0.02   

0.860 hexanedioic acid  0.01  * 

0.930 phthalic acid 0.03 0.05    

0.967 citric acid   0.07 * 

0.992 heptanol derivative   0.04   

1.000 o-terphenyl (IS) 1.00 1.00 1.00 IS 

1.012 glucose   0.02   
a Confirmed using the analysis of standard. 
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Figure II.2 Comparison of GC-MS chromatograms of analysis BSTFA derivatization of ACN extracted bioproduced 
succinic acid samples, normalized to the same percent response of internal standard. Samples F(a) and K(b) 
were initial process samples. 

The screening results showed primarily acids, saccharides and polyalcohols, which are 

essential for production control on a large scale [2,7], and thus, the further quantification efforts 

targeted these species. 

II.3.3 Development of quantification method for analysis of acids and saccharides as the most 

abundant impurities 

Based on our previous work [27] and reported data, several trimethylsilylation methods 

were compared to determine the most efficient approach for a simultaneous derivatization of 

saccharides and acids. These methods included the derivatization with MSTFA in the presence of 

ACN, and BSTFA (1% TMCS) with/without ACN or pyridine. The application of these derivatization 

agents to saccharides resulted in only an incomplete derivatization in MSTFA with or without ACN 

and in BSTFA without either pyridine or ACN (Figs. II.3a,b). Xue et al. [30] reported multiple peaks 

for glucose derivatized with MSTFA, however, it was not addressed. By contrast, BSTFA in the 

presence of either ACN or pyridine resulted in a complete derivatization of saccharides and 
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polyalcohols (Fig. II.3c,d). Nevertheless, further tests of derivatization evaluation of BSTFA with 

ACN and pyridine resulted in higher peaks or glucose in presence of pyridine (Fig. II.4). The 

comparison of extracted ion chromatograms of acetic acid (ion 117, [M-15]+) demonstrates that 

the MSTFA (Fig. II.5a) and BSTFA derivatization with ACN (Fig. II.5c) resulted in higher peaks 

compared to the derivatization using BSTFA with pyridine. Perhaps pyridine had a negative effect 

on the transfer of volatile analytes from the GC injection port to the column due to its relatively 

high boiling point and tendency to bind acids due to the formation of pyridinium salts. Therefore, 

the derivatization using BSTFA with ACN seemed to be optimal for acids, while BSTFA with 

pyridine was more effective for saccharides (Figs. II.3-5). We also tested the separation of succinic 

acid and its isomer, methylmalonic acid. Those compounds were completely separated as shown 

in Figure A.1. 
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Figure II.3 GC-MS extracted ion chromatograms (m/z = 217) of a mixture of standard saccharides and polyalcohols 
upon derivatization (18 h at 70 °C) with a) MSFTA with ACN, b) BSTFA (1%TMCS), c) BSTFA 1% TMCS with ACN, d) 
BSTFA (1% TMCS) with pyridine. The stars mark peaks of the completely derivatized sucrose and glucose. The scale 
is the same for all parts of the figure. 
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Figure II.4 GC-MS extracted ion 204 chromatograms of bio-produced succinic acid (sample F) upon derivatization 
with various derivatization agents for 18 hours at 70 °C. Derivatization with pyridine (solid line) provided higher 
response than derivatization with ACN (dashed line). The IS co-elutes with other derivatized hexose which is 
believed to be an impurity in the glucose standard. 
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Figure II.5 GC-MS extracted ion chromatograms (m/z = 117) of an acetic acid standard upon derivatization (18 h 
at 70 °C) with a) MSFTA with ACN, b) BSTFA (1%TMCS), c) BSTFA 1% TMCS with ACN, d) BSTFA 1% TMCS with 
pyridine. 
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II.3.4 Limits of detection and repeatability  

Table II.1 lists the obtained instrumental LODs, which were in a range of 0.03–0.6 ng for 

acids and 0.03–0.2 ng for saccharides and polyalcohols. The values obtained for acids are 

comparable to those reported in our previous study [27], while we achieved tenfold lower values 

for sugars than in the study of Adams et al. [14], where HMDS was used as a derivatization agent, 

possibly due to a more effective derivatization or broader calibration range. LOD’s in other 

studies [15,17,19] were not comparable because they have been reported in different units, e.g. 

Pietrogrande and Bacco [15] reported them as air volume concentrations.  

The repeatability of the developed quantification method on representative sample C is 

demonstrated in Table V.3. The GC intra- and interday repeatability as well as sample preparation 

were similar, with the relative standard deviation (RSD) <10%, with the exception of glycerol, for 

which the intraday reproducibility was 12% 

Table II.3 GC intra, interday, and extraction method repeatability for a bioprocessed sample of succinic acid 
(sample C) reported as a mean value (in µg/g) ± one standard deviation (n=3) 

Analyte  GC intraday  GC interday  Extraction 

lactic acid  6.3 ± 0.5  6.2 ± 0.4  6.0 ± 0.1 
benzoic acid  0.63 ± 0.02  0.67 ± 0.06  0.61 ± 0.03 
glycerol  0.12 ± 0.01  0.11 ± 0.01  0.12 ± 0.01 
glucose  0.08 ± 0.01  0.08 ± 0.01  0.071 ± 0.004 

 

II.3.5 Characterization of succinic acid samples 

The developed quantification method was applied to bioproduced succinic acid samples, 

as an application for monitoring the product quality. The targeted compounds were the most 

abundant acids, , i.e., formic, acetic, lactic, oxalic, 3-hydroxybutyric, benzoic, malic, phthalic and 

citric acids, as well as saccharides, and polyalcohols, i.e. butanediol, glycerol, xylitol, arabitol, 
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glucose, and sucrose (Table II.2). Due to the low concentrations of some of these compounds in 

the samples, quantification is reported only for a narrower range of these compounds featuring 

the concentrations above the corresponding LODs (Table II.4). 

Table II.4 Concentrations of acids and saccharides in bioprocessed succinic acid samples reported as a mean value 
(in µg/g) ± one standard deviation (n=3). 

Analyte 

A F K G L 

(petroleum) 
(initial 

process) 
(initial 

process) (final process) (final process) 

formic acid 15 ± 5 5 ± 2 1.1 ± 0.03 1 ± 0.06 1.5 ± 0.8 

acetic acid Below LOQ 13 ± 3 20 ± 6 3.2 ± 0.6 3.9 ± 0.8 

oxalic acid 8 ± 5 Below LOQa Below LOQ NDb ND 

lactic acid ND 186 ± 19 27 ± 4 ND ND 
3-hydroxybutyric 
acid Below LOQ Below LOQ 1.1 ± 0.1 ND ND 

butanediol Below LOQ 5.1 ± 0.3 3.6 ± 0.1 ND ND 

benzoic acid 2.00 ± 
0.0
3 Below LOQ ND ND ND 

glycerol ND 0.49 ± 0.06 ND ND 
0.2
3 ± 

0.0
3 

malic acid 
115

9 ± 24 10 ± 2 Below LOQ Below LOQ Below LOQ 

phthalic acid 7 ± 2 ND ND ND ND 

citric acid ND Below LOQ 8 ± 1 ND ND 

glucose Below LOQ 3.1 ± 0.2 0.07 ± 0.01 
0.0
2 ± 

0.00
1 Below LOQ 

 

II.3.5.1 Abundance of acids, saccharides, and polyalcohols 

Quantification confirmed the occurrence of all tested acids and glucose (Tables II.2 and 

II.4). The polyalcohols in samples were found as well but xylitol, arabitol and ribitol were below 

their LOD.  

As mentioned above, acids were the prevailing impurities in the bacterial samples. Acetic 

acid is a common contaminant of biologically produced succinic acid [2], and for its unpleasant 

smell was an undesirable impurity. It was abundant in samples F and K (13 µg/g and 20 µg/g, 
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respectively), but its concentration decreased in purified sample G (3 µg/g). Formic acid, which 

also has an undesirable odor, was determined in all samples  between 1 µg/g in samples K, L, and 

M (Table II.5) and 16 µg/g in samples A (petroleum-based sample). Similarly to acetic acid, formic 

acid concentration decreased after purification from 5 µg/g (sample F) to 1 µg/g (sample G). Malic 

acid, also used in industry for polymer production [7], was the major impurity in sample A (1.2 

mg/g) and lactic acid was found in samples F and K (0.2 mg/g and 27 µg/g, respectively).  

Polyalcohols found in the samples were glycerol and butanediol (Table II.4). Glycerol was 

found in samples F and L (0.5 and 0.3 µg/g, respectively). Butanediol was also found in sample F 

(5 µg/g ) and sample K (4 µg/g). Ethanediol was observed petroleum based sample but it was not 

quantified in other samples. Sugar polyalcohols were not detected, with exception of arabitol, 

which was detected in sample N, but it was below its limit of quantification. Glucose was only 

representative of saccharides with its concentration up to 8 µg/g in sample K (Table II.4). 

The effect of production media on the purity of succinic acid was evaluated for samples 

K–O comparing the product produced by bacteria in a defined medium (sample K) and in corn 

steep liquor (samples M, N, O). Corn steep liquor is less expensive as it is a by-product of corn 

wet milling and so it is preferred in industry; however, the product obtained using this complex 

organic mixture was expected to contain more impurities. In contrast to this expectation, samples 

M, N, and O and other initial process samples contained similar impurities (formic acid, acetic 

acid and glucose), suggesting that the production medium had a lower impact on generation of 

the observed impurities than the production microorganism. Only oxalic acid was observed in a 

4-fold higher abundance in sample M with corn steep, compared to sample K produced using a 

defined medium. 
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II.3.5.2 Final Bacterial Process Samples 

The effectiveness of the product purification was evaluated by the comparison of samples 

F and K (initial process), and G and L (final product) where G was purified F. While most of the 

targeted compounds were detected in the initial process samples, only formic and acetic acids 

were quantified in purified sample G, showing a decrease from 0.13 µg/g to 0.06 µg/g for formic 

acid and from 0.3 µg/g to 0.1 µg/g for acetic acid. Sample L showed also some glycerol present. 

Lactic and malic acids were both detected in the initial process samples, but were not found in 

refined samples (Table II.4). Thus, the developed method was demonstrated to be suitable for 

the quality control of the process and demonstrated purity of the final products. 

II.4 CONCLUSIONS 

We developed a protocol for characterization and quality control of bioproduced succinic 

acid. A prior ACN extraction was found to be essential to detect impurities. The optimization of 

derivatization was critical for low molecular weight polar acids as well as saccharides; a procedure 

using BSTFA with pyridine as a catalyst was determined to be suitable for both polyalcohols and 

saccharides whereas the BSTFA with ACN treatment was found to be the most suitable for 

quantification of low molecular weight carboxylic acids. The presence of short chain 

monocarboxylic acids, i.e. formic and acetic acid, has an effect on the odor of the final product, 

which is undesirable in the industrial process. The presence of saccharides might lead to 

caramelization or Maillard reactions, resulting in coloring the final product. We achieved LODs as 

low as 0.02 ng for saccharides and 0.03 ng for acids, which makes the quantification method 

advantageous for detection of trace-level impurities even in the presence of one major 
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compound at a high concentration, e.g., succinic acid. The final process samples showed removal 

or decrease of all quantified compounds. 
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III. CHAPTER 
 CHARACTERIZATION OF BIOLOGICALLY ACTIVE MOLECULES IN 

PULICARIA JAUBERTII EXTRACTS USING GAS AND LIQUID 
CHROMATOGRAPHY AND MASS SPECTROMETRY 

III.1. BACKGROUND 

In the Middle East, levels of obesity are growing along with the predicted consequences 

like insulin resistance [31,32]. This has resulted in increased attention towards the identification 

of the anti-obesigenic properties of traditional Middle Eastern herbal medicines. Species of the 

genus Pulicaria are widespread throughout the Mediterranean, Middle East, and Asia [33]. 

Pulicaria jaubertii Gamal-Eldin (PJ) is a traditional Yemeni flavorant and is used in the traditional 

medicines, as is typical of the genus Pulicaria [33–35]. The extracted oils of PJ are known to have 

cytotoxic effects towards breast cancer cells and moderate antimicrobial activities [36]. The 

extent to which PJ may contain phytochemicals with anti-obesogenic properties has not been 

explored. 

Thus, a methanolic extract of PJ and its fractions were characterized to identify the 

possible active compounds. In this case, combining both GC-MS and LC-ESI-HRMS is taking 

advantage of both the EI spectral library and accurate molecular mass determination, 

respectively. 
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III.2. MATERIALS AND METHODS 

III.2.1 Plant collection 

PJ plant leaves and flowers were collected from Sana`a, Yemen by Dr. Al-Naqeb [37]. The 

plant was identified and authenticated by a plant taxonomist at the Department of Botany, 

Faculty of Agriculture, Sana`a University, Yemen. The plant material was air-dried being protected 

from light. Dried plant material was stored at 4 °C and protected from light prior to further use.  

III.2.2 Chemicals  

MeOH (LC-MS Optima grade), and DCM (GC quality) were purchased from Fisher 

Scientific. n-Hexane (LC-MS grade) was obtained from JT Baker, USA. BSTFA (99%) with 1% TMCS 

was purchased from Sigma-Aldrich (St. Louis, MO, USA) and used to form trimethylsilyl (TMS) 

derivatives.  

III.2.3 Preparation of the PJ extract and its fractionation.  

Dried PJ was finely ground using an electric grinder (Ika Labortechnik M 20 Brand). The 

resulting powder was extracted with MeOH with a 1:5 powder:MeOH (w/v) ratio for 48h, stirred 

under dark conditions. The resulting extract was filtered and the filtrate was concentrated by a 

rotary evaporation at 40 °C. The final extract was transferred into glass amber bottles and stored 

at 4 °C for subsequent analyses. A 5% yield of the final methanolic PJ extract, denoted PJM, 

relative to starting powder was obtained. 

For liquid-liquid fractionation, twelve grams of PJM were mixed with n-hexane at a 1:5 w/v 

ratio and 100 mL of methanol: water (80:20 v/v) was added. The mixture was shaken in a 

separatory funnel and the n-hexane layer was collected. This step was repeated once more. DCM 

was added into the remaining aqueous residue and the process was repeated. The resulting DCM 
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and hexane fractions were concentrated to dryness using a rotary evaporator. The aqueous 

phase was subjected to freeze drying. The yields obtained for each PJ fraction with respect to the 

initial methanolic extract were: n-hexane (denoted PJH) 5.0 g (41%), DCM (denoted PJD) 1.8 g 

(16%) and residual MeOH:aqueous fraction (denoted PJA) 1.2 g (8%). 

III.2.4 Chemical characterization of PJ fractions. 

For GC-MS analysis, the methanolic extract, PJM, and each fraction (PJH, PJD, PJA) were 

analyzed in the amounts proportional to the weight of corresponding fraction obtained from the 

extract (e.g., 5.0 mg of PJH, 1.8 mg of PJD). Samples were dissolved in 1.0 mL DCM with and 

without TMS derivatization with BSTFA. Prior to GC-MS analyses, 25 μL of IS (o-terphenyl, 1.4 

mg/mL) was added to control volume changes in each sample. The tentative identification of 

observed compounds was based on comparison with the NIST 05 Mass Spectra library. 

For TMS derivatization, appropriate amounts of the methanol extract and its fractions 

were weighed, dried, and reconstituted with and 100 μL of BSTFA and 50 μL pyridine. The solution 

was heated at 70 °C for 18 h. After derivatization 25 μL of IS (o-terphenyl) were added together 

with 0.85 mL of DCM. 

GC-MS analyses were performed using a 6890N GC with 5975C MS (Agilent Technologies, 

Santa Clara, CA, USA) equipped with a Gerstel MPS2 autosampler (Gerstel, Baltimore, MD, USA). 

Injections (1 μL) were performed in a splitless mode for 0.40 min at 250 °C. Separation was 

performed using a DB-5MS capillary column (30 m), with 0.25 mm internal diameter (I.D.) and 

0.25 µL film thickness (J&W Scientific, Folsom, CA, USA). A constant carrier gas (helium) flow rate 

of 1 mL/min was maintained during the analysis. The temperature program started at 35 °C held 

for 5 min, followed by a gradient of 10 °C/min to 300 °C and held for 1 min. The MS data in TIC 
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mode were acquired in the mass range of m/z of 35–1000 at a scan rate of 2.66 scan/s using an 

EI of 70 eV. The duration of the solvent delay was based on the elution of the derivatization agent, 

their by-products, and solvent retention times, measured by observing the vacuum change. 

Namely, for BSTFA with pyridine, the MS was off for the first 2.5 min, 2.90–3.60 min, 4.40–7.00 

min, 8.00–8.70 min; for samples without derivatization, the solvent delay was 2.5 minutes. 

For LC-MS analyses, a stock solution of each sample (PJM, PJH, PJD, PJA ) was prepared in 

methanol in a concentration of 2–3 mg/mL. Stocks were further diluted to a final concentration 

of 10 – 16 ppm in ACN and water (50:50 v/v) with ammonium acetate (a final concentration of 

ca. 5 mM). LC-ESI-HRMS analyses were carried out using the electrospray ionization with time of 

flight mass spectrometer (G1969A, Agilent, Santa Clara, CA, USA) coupled to an Agilent LC 1100 

LC) The column was a C18 Zorbax Eclipse plus (2.1 x 150 mm with 3.5µm particle size) with a 1.2 

cm guard column (Agilent). For the chromatographic separations, the mobile phase solutions 

consisted of 1.0 mM ammonium acetate in water:ACN (95:5, v/v) as solvent A and 1.0 mM 

ammonium acetate in ACN as solvent B. The flow rate was 0.2 mL/min, and the injection volume 

was 50 µL with an injector needle wash program to avoid cross-contamination. The gradient 

elution program started isocratically at 0% B for 2 min, followed by a linear gradient to 80% B 

from 2 min to 30 min with maintenance of 80% B for 5 min. Following a sharp gradient to 100% 

A from 35 to 36 min, the column was re-equilibrated with 100% solvent A from 36 to 56 min. The 

column temperature was maintained at 30 °C. ESI was performed in negative mode with an 

electrospray voltage of 4500 V, a fragmentor voltage of 175 V, a nebulization pressure of 25 psig, 

a drying gas flow rate of 12 L/min, and a drying gas temperature of 350 °C. 
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III.3. RESULTS AND DISCUSSION 

III.3.1 Determination of bioactive fractions 

PJM was fractionated in the order of increasing solvent polarity into n-hexane (PJH), DCM 

(PJD) and aqueous (PJA) fractions. Several methods were used to determine bioactivity by Dr. Al-

Naqeb [37] including inhibition of TG accumulation. The bioactivity results (Appendix Table B.1) 

showed that the PJD (i.e., the fraction recovered in DCM) but not the PJH or PJA fractions 

significantly inhibited TG accumulation. 

III.3.2 Chemical characterization of PJ fractions 

The PJM, PJH, PJD, and PJA fractions were analyzed by GC-MS and LC-ESI-HRMS in order to 

characterize the bioactive compounds present. GC-MS analyses were performed with and 

without the formation of TMS derivatives. The formation of TMS derivatives allows for analysis 

of compounds with limited volatility. Direct GC-MS analysis (without TMS derivatization) (Figure 

III.1) of PJ fractions showed that most fractions contained carvotanacetone, with the highest 

abundance in hexane fraction, i.e. PJH. Other compounds were observed in limited abundance 

and the data are further detailed in Appendix B (Table B.2). These profiles are in agreement with 

prior reports on the chemical composition of other Pulicaria species [34,36,38,39].  



 
 
 

32 
 

 

 

Figure III.1 GC-MS total ion current chromatograms of methanol extract and its fractions without TMS 
derivatization.  (A) methanol extract (PJM), (B) DCM fraction (PJD), (C) n-hexane fraction (PJH), (D) water/methanol 
fraction (PJA). All chromatograms are normalized to the response of internal standard, thus providing proportional 
response based on quantities extracted.  
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Figure III.2 GC-MS total ion current chromatograms of methanol extract and its fractions with TMS 
derivatization. (A) methanol extract (PJM), (B) DCM fraction (PJD), (C) n-hexane fraction (PJH), (D) 
water/methanol fraction (PJA). Note that analysis of TMS derivatives allowed for enhanced characterization of 
the fractions and allowed for identification of catechin-like compounds in the methanol extract and the DCM 
fraction. All chromatograms are normalized to the response of internal standard, thus providing proportional 
response based on quantities extracted.   
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Figure III.3 GC-MS characterization of DCM fraction (PJD) and EI-MS spectrum of most abundant catechin-like 
compounds.  (A) Total ion current chromatogram (B-G) EI-MS spectra of peaks D1-D6. Compounds D2, D3, D4 
showed high identity (> 80%) with the EI/MS NIST library for catechin. Compounds were analyzed as TMS 
derivatives.   
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In order to further characterize less volatile, polar components by GC-MS, TMS 

derivatization was performed (Fig. III.2). Based upon the match with the NIST mass spectra 

library, catechin-like compounds were found in high abundance in the polar fractions (PJM and 

the PJD , Fig. III.2A,C) and parallel the bioactivity of these two fractions. Several other compounds, 

including carvotanacetone, fatty acids and sugars were observed in the fractions analyzed and 

this information further detailed in supplementary data (Table B.3).  

To investigate the potential source of antioxidant properties, further analysis of these 

catechin-like compounds was performed (Fig. III.3). Focusing on the relevant section of the 

chromatogram derived from GC-EI-MS of TMS-derivatized PJD fraction, six catechin-like 

compounds were observed (Fig. III.3A). Three of these compounds, peaks D2,D3, D4 (Fig. III.3B-

D), had a characteristic common ion 368 m/z that matched the EI mass spectra of catechin and 

epi-catechin analytical standards (Fig. III.3E) [40]. However, the retention time of these catechin-

like species did not match the retention times of the catechin and epicatechin standards (Fig. 

III.4). While catechins are mostly known as antioxidants, they also prevent the differentiation of 

adipocytes [41–44]. Catechins and related flavonoid phytochemicals have not been reported in 

previous analyses of PJ, likely as a result of using GC-MS without TMS derivatization. The low 

resolution of the EI-MS data prevented the confirmation of identification of these compounds.  

The PJD fraction was analyzed using LC-ESI-HRMS. Similar to GC-MS, two peaks with ions 

of 289. 07 m/z (corresponding to [M-H-] ion for catechin) were observed (Fig. III.5A), and similar 

to GC, they eluted at later retention times. The low mass accuracy error of 14 ppm supported the 

molecular structure of this ion as that of catechin (Fig. III.5A). The mass spectra of these peaks 

(Fig. III.5B,C) showed the most abundant fragments as 317.05 m/z and 359.19 m/z.  The first peak 
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(L1, tR 19.15) with the ions of 289 m/z and 317 m/z may be related to GC-MS peaks D2 and D4 

(Figure 7), respectively. The 317 m/z corresponds to catechin with a CO group, with 40 ppm error. 

The second peak (L2) had an abundant ion of 359 m/z, suggesting that the parent molecule 

possessed a mass of 360 with a proposed structure C20H24O6 and with a mass error of 111 ppm.  

 

Figure III.4 GC-MS characterization of catechin and epicatechin standards. (A) TMS-derivatives of catechin and 
epicatechin standards were analyzed by GC-MS in comparison to the TMS-derivatized DCM fraction, PJD. Note 
that the retention times for the standards do not match that of the compounds observed in the PJD. The EI-MS 
spectra of catechin and epicatechin are provided in (B) and (C). Note that of the 368.2 ions present in the 
standards is also enriched in the TMS-derivatized compounds observed in the DCM fraction detailed in Figure 
III.3.  
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Figure III.5 Extracted ion chromatograms and mass spectra of LC-HR-MS analysis of the DCM fraction PJD.   (A) 
Extracted ion chromatogram (EIC) of ions 289.07, 317.05 and 359.19. (B) Time of flight (TOF) mass spectrum of L1 
peak, C) TOF mass spectrum of L2 peak and mass accuracy confirming the catechin-like structure. The structure of 
catechin (m/z 289.0718) is provided for comparison.   
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III.4 CONCLUSIONS 

We have analyzed methanolic extract of Pulicaria jaubertii E.Gamal-Eldin and its fractions. 

Al-Naqeb et al. [37] showed that the methanol extract of PJ and its subsequent DCM fraction 

possessed bioactivity towards inhibiting TG accumulation. Our analysis revealed a high 

abundance of catechin-like compounds. Other compounds observed in higher abundance were 

carvotanacetone, fatty acids and sugars, however, these were not specific to the DCM fraction. 
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IV. CHAPTER 
DETERMINATION OF TRANS-RESVERATROL AND ITS METABOLITES IN 

RAT SERUM USING LIQUID CHROMATOGRAPHY WITH HIGH-
RESOLUTION TIME OF FLIGHT MASS SPECTROMETRY 

IV.1. BACKGROUND 

RES (3,5,4’-trihydroxy-trans-stilbene) is a polyphenol found in many foods, such as 

peanuts and berries, and red wine [1]. RES and its metabolites have been reported to exhibit 

anticancer, analgesic, cardioprotective, and neuroprotective effects [1]. Numerous animal 

studies have already been performed to evaluate the benefits of RES [45,46]. A majority of animal 

studies involving RES have employed rats [47,48], as reviewed by Park and Pezzuto [45], while 

use of other animals, such as pigs [49,50] and dogs [51] have been reported. The doses of RES in 

these studies varied greatly, between 1 to 1200 mg/kg/day [47–51]. The specific RES metabolites, 

R3G and R3S were shown to be the most abundant primary resveratrol metabolites in rat serum 

[49,52–54]. Long-term clinical studies are still necessary to investigate its effectiveness in 

humans.  

Various LC-MS methods have been employed to detect and quantify RES and its 

metabolites in blood and tissue samples as summarized in Appendix Table C.1 [47–70]. The 

constituents of the mobile phase employed generally consisted of various mixtures of MeOH [55–

62] or ACN [47–50,52–54,63–68] with water and electrolytes such as acetic acid [54,69,70], 

ammonium acetate [55,58,61,62,70], or formic acid [48–52,57,60,63]. For the MS analysis, ESI 

was typically used in negative mode, with voltages ranging from 2500 to 5000 V [49–52,54–67]. 
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The limits of quantification were between 0.1 and 63 ng/mL [47,49,51,57,59–62,65,66,68,70]. 

The variety of conditions and matrices reported precludes the selection of the most sensitive 

method. Moreover, reasons for the selection of a particular electrolyte, its concentration, or the 

ESI voltages were generally not provided. 

LC with tandem MS/MS has generally been employed for quantification and confirmation 

of the identity of various resveratrol species [47–54,56–58,60,62–66,68–70]. To our knowledge, 

LC-HRMS has not been used for quantification of resveratrol species, and only one study used LC-

HRMS for identification of such compounds [49]. 

A variety of ISs have been used in the LC-MS analysis of RES and its metabolites. The ISs 

were often compounds of different chemical structure from RES [45,48,50,52,55,57,60–63,66], 

and only two studies reported the use of 13C6-RES as an IS, which was added before extraction to 

correct the RES recoveries [51,61]. In these studies, 13C6-RES was used as the IS for RES 

determination but not for its metabolites. The application of the 13C RES analog enables more 

accurate monitoring of RES behavior during sample processing but the cost is rather high and 

thus may be prohibiting. The application of a deuterated RES is more economical than that of the 

13C RES analog, moreover, it has not previously been reported neither as an IS, nor as a possible 

recovery (surrogate) standard. 

In this study, we optimized LC-ESI-HRMS method to determine levels of RES and its 

metabolites, R3G and trans-resveratrol-3-O-sulfate R3S (the target species are shown in Table 

IV.1). To increase the method precision and accuracy, deuterated standards of RES, R3G, and R3S 

were synthesized and used as RSs added prior to the sample preparation in combination with an 

IS (pinosylvin), which was added before injection. This combination of RSs and IS (used frequently 
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in environmental studies) allowed for an improved understanding of repeatability issues (i.e., 

whether the issues arise from sample preparation or analysis). The developed method was 

applied to rat serum samples following their exposure to RES. 

Table IV.1 Target analytes, their structures, the mass of the ions used for quantification, and determination of 
LODs. 

Compound Formula Structure Quantification 
ion [M-H]- (m/z) 

Confirmation ion 
(m/z) 

trans-resveratrol 
(RES) 

C14H12O3 

 

227.07137 228.07765 

trans-
resveratrol-3-O-
β-D-glucuronide 
(R3G) 

C20H20O9 
 

 

403.103456 227.07137 

trans-
resveratrol-3-O-
sulfate (R3S) 

C14H12O6S 

 

307.028182 227.07137 

 

IV.2. MATERIALS AND METHODS 

IV.2.1 Materials 

RES (≥99%), pinosylvin (97%) and ascorbic acid were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). ACN, MeOH, acetic acid, and ammonium acetate (all LC-MS quality) were 

obtained from Fisher Scientific (Pittsburgh, PA, USA). Deionized water was obtained using a 

Direct-Q 3 UV water purification system (Millipore Corporation, Billerica, MA, USA). Toluene-d8 

was purchased from Cambridge Isotope Laboratories, other starting materials for the synthesis 
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OH
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OH

OH
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OH
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OH
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(3,5-dihydroxybenzoic acid, iodomethane, triethylphosphite) were purchased from Sigma-

Aldrich. 

IV.2.2 Synthesis and purification of RES analogs and deuterated RSs 

R3G and R3S were synthesized using a previously developed procedure for non-

deuterated analogs [71]. Resveratrol-d5 (RES-d5), along with its conjugates (R3S-d5 and R3G-d5), 

were prepared using a modification of this procedure (described in detail in Appendix C), based 

on the condensation of 3,5-dimethoxybenzyl diethylphosphonate and anisaldehyde-d5 (Fig. IV.1). 

Anisaldehyde-d5 was prepared from readily available commercial toluene-d8, relying on the 

reported highly selective NaY zeolite catalyzed para-bromination, followed by radical benzylic 

bromination [72]. 

 

Figure IV.1 Schematics of synthesis of RES-d5. 

Synthesized R3G and RES-d5 were purified using solid phase extraction (SPE), with a 

Waters Sep-Pak C18 cartridge. R3G, in 0.5 mM acetic acid, was eluted with 10% and 20% MeOH 

and RES-d5, in 90 mM acetic acid, was eluted with 40% ACN; their LC purity was 98% and 89%, 

respectively. Synthesized R3S, R3S-d5, and R3G-d5 were dissolved in 100% MeOH, which resulted 
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in LC purity of 99%, 90%, and 86%, respectively. No non-deuterated compounds were observed 

in the mass spectra of the deuterated analogs. 

IV.2.3 Sample preparation 

Standards for the ESI optimization were solutions consisting of RES, R3G, or R3S (4 µg/mL 

each) in a range of electrolyte concentrations (0–10 mM ammonium acetate or 0–100 mM acetic 

acid) in 50% MeOH/H2O or 50% ACN/H2O. For the analysis of serum samples, calibration solutions 

were in the range 2 to 70 ng/mL of RES and R3S, and 0.2 to 6.7 μg/mL of R3G dissolved in the 

mobile phase. Calibration of RSs was in the range 2 to 125 ng/mL of RES-d5 and R3S-d5, and 0.1 

to 5.0 μg/mL of R3G-d5 in the same solvent system. 

Serum samples were obtained from ACI (August Copenhagen) rats, which spontaneously 

form mammary cancer when estradiol (E2) is delivered through slow release pellets [31]. Rats 

were subjected to one of four treatment regimens involving RES in a diet for 5.5 months (control, 

E2 only, E2 + low dose of RES (5 mg/kg/day), E2 + high dose of RES (25 mg/kg/day)). No animal 

died nor did any require euthanasia prior to study completion. By 21wk, some tumors were quite 

large and would soon require sacrifice. To maintain consistency, all rats were sacrificed at this 

time. Tissue was collected and processed as described by Qin et al. [73]. Blood was collected by 

a tail vein at the time of sacrifice in accord with a protocol approved by the UND animal care 

committee. Serum was extracted using a serum separator tube and centrifugation performed at 

3000 rpm for 10 min. Samples were snap frozen at -80 °C until use. 

The analyte extraction method was adapted from earlier reports [61,74], implementing 

the use of deuterated RSs. A serum aliquot (75 µL) was spiked with 10 µL of the RS solution, 

consisting of 2.8 µg/mL each of RES-d5, R3G-d5 and R3S-d5, and mixed with 1.0 mL of ACN. The 
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solution was vortex-mixed for 2 min and centrifuged at 6,000 rpm for 10 min. The supernatant 

was filtered using a 0.2 µm PTFE syringe filter and the extract was evaporated under a gentle 

stream of nitrogen after the addition of 10 µL of 4 mg/mL (ca. 100 µM) ascorbic acid, which was 

added to prevent the degradation of RES and R3G, as suggested by Juan et al. [54]. The dried 

residue was redissolved in 250 µL of mobile phase and 3 µL IS (11.35 µg/mL pinosylvin) were 

added to control for volume changes before LC-ESI-HRMS analysis. Blank serum samples (i.e., 

from rats not exposed to RES) spiked with 100 ng/mL each of RES, R3G, and R3S and the RSs were 

used for development of the extraction protocol. Three serum aliquots were used to prepare the 

samples for triplicate analysis and determination of mean values and standard deviations. 

IV.2.4 Instrumentation 

All determinations were carried out using ESI-TOF-MS (G1969A, Agilent, Santa Clara, CA, 

USA) coupled to an Agilent LC 1100 LC. The column was a C18 Zorbax Eclipse plus (2.1 x 150 mm 

with 3.5 µm particle size) with a 1.2 cm guard column (both Agilent). Because ions corresponding 

to R3S and R3G were not detected in the positive mode, the ESI negative ion mode was used for 

all experiments. 

IV.2.5 ESI optimization 

All optimized conditions are summarized in Table IV.2 and details are provided in 

Appendix Tables C.2-7. All conditions were evaluated independently using flow injection analysis 

(FIA) employing a multi-level full factorial design of experiments (DOE). This design allows for 

three or more levels per factor while analyzing all the combinations of factors. We first evaluated 

ionization and fragmentor voltages as well as nebulization conditions, which do not seem to be 

affected by other parameters [75]. The solvent evaluation was performed in 50% MeOH/H2O and 
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50% ACN/H2O. The ACN system produced approximately 1.5-fold higher analyte responses; 

therefore, it was used for all subsequent experiments. Preliminary screening showed that the 

peak area of RES was much lower when formic acid was present, compared with ammonium 

acetate and acetic acid. Our experiments and previous work showed significant interactions 

between the type of electrolyte and its concentration [75]; thus, DOE was performed evaluating 

ammonium acetate and acetic acid added to the samples (Table IV.2). The final concentrations 

of electrolytes in the mobile phase, considering 50 μL injection volume at a flow rate of 0.2 

mL/min, were 0.025–10 mM ammonium acetate and 0.025–100 mM acetic acid (i.e., four-fold 

lower than the prepared solutions).  

The effect of the serum matrix on ionization was evaluated using control serum samples, 

where RES or its metabolites were below their limits of detection. Samples were spiked with RES, 

R3G, and R3S (with a final concentration of ca. 100 ng/mL of each analyte). The spiked serum 

samples were purified using the protocol described in the sample preparation section and 

analyzed using LC-ESI-HRMS. Several mobile phase solvent systems containing various 

electrolytes (0.025, 0.25, 0.50, and 1.0 mM ammonium acetate and 0.25 and 1.0 mM acetic acid) 

were evaluated.  
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Table IV.2 Summary of experimental conditions used for flow injection analysis of individual target analytes with 
ESI in negative mode with 50% MeOH or 50% ACN as the mobile phase. All experiments were run in two blocks. 

Factors No. of levels Levels 

Optimization of ESI voltages 
(drying gas: 350 °C and 12 L/min; nebulization pressure 25 psig) 

Capillary (V) 3 3500 

4000 

4500 

Fragmentor (V) 4 125 

150 

175 

200 

Optimization of ESI nebulization conditions 
(capillary voltage of 4500 V, fragmentor voltage of 175 V) 

Drying gas temperature (°C) 4 200 

250 

300 

350 

Nebulizer pressure (psig) 3 15 

20 

25 

Drying gas flow rate (L/min) 3 8 

10 

12 

Evaluation of mobile phase 
(capillary voltage of 4500 V, fragmentor voltage of 175 V) 

Solvent 2 ACN 

MeOH 

Electrolyte (0.1 mM) 3 none 

ammonium acetate 

acetic acid 

Optimization of electrolyte conditions  
(capillary voltage of 4500 V, fragmentor voltage of 175 V) 

Electrolyte 2 ammonium acetate 

acetic acid 

Electrolyte concentration (mM) 4 0 

0.1 

1 

10a 
a for acetic acids concertation of 100 and 400 mM was evaluated as well however the response 
was low and thus not reported. 
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IV.2.6 LC-ESI-HRMS conditions for serum analysis  

For the final chromatographic separations, the flow rate was set to 0.2 mL/min, the 

injection volume was 50 µL, and the column was equilibrated at 30 °C. The mobile phase solvent 

A consisted of 1.0 mM ammonium acetate in water:ACN (95:5, v/v) and solvent B of 1.0 mM 

ammonium acetate in ACN. The gradient elution program started isocratically at 0% B for 2 min 

followed by a linear gradient to 80% B from 2 to 15 min, and was maintained at 80% for 5 min. 

This was followed by a sharp gradient to 0% B from 20 to 21 min. To allow for column 

equilibration, the program was completed isocratically at 0% B from 21 to 40 min.  The optimized 

ESI conditions employed for the analysis of serum samples were as follows: an electrospray 

voltage of 4500 V, fragmentor voltage of 175 V, nitrogen gas nebulization pressure of 25 psig, 

drying gas (nitrogen) flow rate of 12 L/min, and drying gas temperature of 350 °C. 

IV.2.7 Data processing 

The LC-ESI-HRMS data were processed using Analyst QS 1.1 (Applied Biosystems) and 

MassHunter Workstation Quantitative Analysis B.04.00 (Agilent Technologies). Target analytes 

were quantified using deprotonated molecular ions ± 0.03 Da and verified using confirmation 

ions (See Table IV.1 for masses and Appendix Fig. C.1 for mass spectra) and interpretation of the 

observed ions [64,68,76,77]. Minitab 16.1.1 and JMP software was used for statistical analysis. 

The analysis of variance (ANOVA) general linear model was used to analyze main factors and 

interactions in DOE, and any having a p-value less than 0.05 were considered to be significant. 

Chi-square test was used for comparing the numbers of rats between the low and high RES dose 

groups which developed tumors within 6 months. The serum concentrations of RES, R3G and R3S 
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were compared between groups using Wilcoxon Test. P values less than 0.05 were considered a 

statistically significant difference. 

Instrumental LODs and LOQs were calculated from calibration curves of RES, R3G, and 

R3S using the equations LOD = 3.3 × sy/k and LOQ = 5 × sy/k, where k is the slope of the calibration 

curve and sy is the standard error of the predicted y-value for each x-value. These values were 

obtained using linear least squares regressions. To determine the matrix LODs, control serum 

samples were spiked with RES, R3G, and R3S at concentrations within one order of magnitude of 

the LOD (4.9–32.1, 66.1–264.5, 9.8–63.8 ng/mL, respectively). The quantification of analyte 

concentrations in serum samples was based on the IS method of calibration, corrected with the 

recoveries of the deuterated RSs.  

IV.3. RESULTS AND DISCUSSION  

IV.3.1 Evaluation of ESI conditions 

Both our previous work and preliminary screening suggested that electrospray and 

fragmentor voltages are independent of other factors such as the electrolyte and its 

concentration [75]. Thus, they were evaluated independently using flow injection analysis (FIA). 

The optimum conditions for ESI capillary and fragmentor were 4500 V and 175 V, respectively 

(Appendix Fig. C.2). Similarly, nebulization conditions were evaluated independently (Appendix 

Fig. C.3) showing as optimal a nebulization pressure of 25 psig, drying gas flow rate of 12 L/min, 

and drying gas temperature of 350 °C. 

Comparison of two solvent systems showed that the application of 50% MeOH/H2O and 

50% ACN/H2O resulted in similar mass spectra (the representative mass spectra are shown in 
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Appendix Fig. C.1); however, 50% ACN produced an overall higher response than MeOH, 

particularly in the presence of ammonium acetate (Fig. IV.2 A,B,C).   

We confirmed that the concentration and selection of the electrolyte affected the ESI-MS 

response (Fig. IV.2D,E,F). This DOE was set up using FIA to introduce varying electrolyte 

concentrations into the mobile phase. A trend of decreasing response with increasing electrolyte 

concentration was observed for all analytes (Fig. IV.2D,E,F, data are shown up to 2.5 mM 

estimated final concentration). 

The further evaluation of the ESI efficiency was performed on serum samples spiked with 

RES and R3S and their RSs (RES-d5 and R3S-d5) to determine the impact of the matrix. The 

ionization of R3S was enhanced in the presence of purified serum with acetic acid. While this 

could be beneficial to increase analysis sensitivity towards this metabolite, our aim was to ensure 

a robust repeatable method. Among the tested electrolytes, the most consistent results were 

achieved for 1.0 mM ammonium acetate (Appendix Table C.8). Therefore, further determinations 

of RES and its metabolites in serum samples were performed using 1.0 mM ammonium acetate 

in an ACN/H2O solvent system.  
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Figure IV.2 ESI-MS normalized response for RES (A), R3G (B), and R3S (C), comparing the solvents 50% MeOH/H2O 
and 50% ACN/H2O, with no electrolyte, 0.1 mM AcOH, and 0.1 mM NH4OAc, determined using FIA in the negative 
mode (for RES: solvent p=0.288, for R3G: solvent p=0.065, for R3S: solvent p=0.045). ESI-MS normalized response 
of RES (D), R3G (E), and R3S (F) in 50% ACN/H2O solutions with AcOH and NH4OAc (0–10 mM in sample) determined 
in the negative mode using FIA (for RES: concentration p<0.0005, electrolyte and concentration interaction 
p=0.012; for R3G: electrolyte p=0.002, concentration p<0.0005, electrolyte and concentration interaction p=0.002; 
for R3S: concentration p<0.0005) 

IV.3.2 Calibration parameters and limits of detection 

The calibration parameters and LODs for RES, R3G, and R3S are shown in Table IV.5. 

Instrumental LODs were determined to be 1.3, 4.4, and 1.6 ng/mL for RES, R3G, and R3S, 

respectively. LODs for the serum matrix spiked with target analytes and subjected to the full 

method were 9.7, 82.4, and 4.7 ng/mL for RES, R3G, and R3S, respectively (Appendix Table C.9). 

These LODs for LC-ESI-HRMS are similar to those reported in previous studies using LC-MS/MS 
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[49,51,57] and higher than those obtained by LC-MS [67]. Other studies [59,61,66,68,70] 

reported lower LOQs (Appendix Table C.1). These LOQs appear to be based on a signal intensity 

rather than the signal to noise ratio and thus these points may be at the level of LODs or even 

lower. It is of note that most of these studies succeed due to higher sample size [59,61,68,70], 

which is not always available. Perhaps we could improve our LODs if the ethylacetate extraction 

was used for sample purification was used [66] instead of typically employed SPE.  

 

Figure IV.3 Representative LC-ESI-HRMS extracted ion chromatograms (EIC) of control serum spiked with RES, R3G, 
R3S (0.32, 3.9, 0.48 µg/mL, respectively; scaled to same peak height) 

The selectivity of the developed LC-ESI-HRMS method, when applied to extracts of control 

spiked plasma samples, is demonstrated in the EIC chromatograms of deprotonated molecules 
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showing no interference for RES and its metabolites, R.S., and I.S. from the endogenous 

compounds (Fig. IV.3). 

The repeatability of analysis was evaluated using the serum samples targeting the 

metabolites (as RES present only in trace concentrations) (Appendix Table C.10). The metabolites 

were determined with a 10% relative standard deviation for samples with a higher concentration 

of target analytes (200 ng/L) prepared in triplicate. For lower concentrations of sulfates, the RSD 

increased due to interference from the matrix (Table IV.3). The interday repeatability of the LC 

analysis was determined for analytes in two selected serum samples by measuring on two 

different days. The interday average concentrations for R3G and R3S were 3689±313 ng/mL, and 

55±3 ng/mL, respectively (Appendix Table C.10).  

IV.3.3 Concentration of RES and its metabolites in rat serum and their impact on tumor growth 

The developed method was employed to evaluate serum samples from rats, which were 

subjected to a treatment involving either a low or high dose RES diet, allowing for determination 

of both RES and its metabolites (Table IV.3). It is of note that beside R3S we have also observed 

two other peaks characteristic for resveratrol sulfate (m/z of 307) eluting between 10–12 min 

(Fig. IV.4 and Appendix Fig. C.4 for mass spectra). We have attempted to identify both of these 

peaks assuming that, based on the isotopic lines and this ion, they must be resveratrol sulfate 

derivatives. The occurrence of the previously reported R4’S isomer was ruled out as its 

characteristic ion of 143 [78] was not present in the mass spectra of either of the peaks. The 

further MS interpretation of the first (smaller) peak (X1) was not possible due to its lower 

intensity. The mass spectrum of the second peak (X2) seemed to lack the corresponding 

pseudomolecular ion, which could not be assigned to ion 441, as the loss of 15.97 (from 441 to 
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425) could not be attributed to either oxygen or CH3 with a sufficient mass accuracy. The tentative 

identification of this ion was consistent with the loss of CO from resveratrol trisulfate (RtS) [M-

CO]-, with a fairly low mass error (13 ppm), although we cannot explain the formation of such 

ions from RtS. Thus, the results suggest that X2 represents a higher MW RS derivative, possibly 

RtS. The X2 and R3S peaks were of the same order of magnitude in both types of samples (low 

and high dose).  

Table IV.3 Concentration (ng/mL) of RES and its metabolites in serum samples of rats exposed to RES. The data 
are presented as mean with one standard deviation (n=3). 

 RES  R3G  R3S  Resveratrol Sulfatesa 

 Mean SD Mean SD Mean SD Mean SD 

Low Dose (5 mg/kg/day) 

171 2 4 4938 363 76 15 131 11 

173 6 1 6391 390 314 93 626 181 

175 6 1 6807 487 374 103 757 220 

178 7 0.5 1950 232 216 12 418 26 

179 ND  3775 313 61 9 117 7 

181 2 0.3 4611 324 391 104 743 195 

183 8 1 1924 109 256 5 490 15 

186 1 0.3 5645 292 358 170 691 328 

188 2 0.2 7335 169 272 139 539 271 

Mean 4 1b 4801 317 268 94 501 183 

High Dose (25 mg/kg/day) 

148 31 1 8124 314 191 10 627 41 

150 7 0.4 3476 53 395 7 676 10 

152 22 2 3852 381 94 4 349 17 

154 6 1 8111 155 275 80 372 54 

156 8 0.2 11660 418 907 28 1774 55 

158 7 1 3540 116 326 47 611 59 

160 27 11 12553 195 349 17 959 33 

162 20 4 11279 418 213 81 697 63 

165 7 0.1 2756 167 336 11 578 16 

168 8 0.2 2601 476 356 53 617 104 

Mean 16 3.8 6795 304 344 44 731 73 
a Represents sum of peaks observed as resveratrol sulfates 
b Overall standard deviation was determined as pooled standard deviation of all sample analysis 
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Figure IV.4 Representative LC-ESI-HRMS analysis of in vivo rat serum sample; extracted ion chromatogram (EIC) 
for R3G (A), EIC for R3G-d5 (B), EIC for resveratrol sulfates (C), EIC for R3G-d5 (D), EIC for internal standard (IS, E). 
Peaks X1 and X2 represent suspected derivatives of resveratrol sulfate 

The observed RES concentrations were either low or at the limit of detection, but were 

nevertheless 4 times higher for the higher dose diet. By contrast, R3G (6.8 µg/mL and 4.8 µg/mL, 

high dose and low dose, respectively) and resveratrol sulfates (0.7 µg/mL and 0.5 µg/mL, 

respectively) were much more abundant. The resveratrol conjugates were found in all serum 
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samples with a 1.4 fold higher response in samples from rats receiving the high dose treatment. 

RES concentrations were significantly different between the high and low dose groups 

(p=0.0147), but the concentrations for R3G and R3S were not significantly different with p values, 

0.4963 and 0.7055, respectively (Fig. IV.5a). Two rats in the high dose group and six in the low 

dose group developed tumors within 6 months, which was not significantly different (p=0.0679). 

Fewer rats developed tumors in the high dose resveratrol group than in the low dose group, 

however, the result was not significantly different. This lack of statistical significance is likely a 

result of limited sample size. Even though not statistically different (p=0.068), the fact that only 

one third as many rats in the high RES group compared to the low RES group formed tumors, may 

be viewed as biologically significant, and consistent with a protective effect of active RES (but not 

the metabolites, which were not higher in tumor), on the development of mammary cancer 

formation. These tumors are hormone sensitive as are 70% of human breast cancers, suggesting 

that RES may also be useful in the prevention of the most common form of human breast cancer.  

When the serum concentrations were compared, the RES concentrations were 

significantly lower in the rats with tumors than without tumors (p=0.0081). The p values for R3G 

and R3S were both 0.2801 using nonparametric statistical tests (Fig. IV.5b). This result suggests 

that animals have differential responses to resveratrol doses and the serum resveratrol 

concentration is a better predictor of cancer onset than dietary dose.  
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Figure IV.5 Boxplots representing measured concentrations (ng/mL) of RES, R3G and R3S in rat serum and tumor 
after exposure to RES after 21 weeks  
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IV.4. CONCLUSIONS 

A sensitive method for the determination of RES and its two most abundant metabolites, 

R3G and R3S, in rat serum was developed using LC-ESI-HR-TOF MS suggesting that the RES serum 

concentration is of higher significance than its dietary dose. While the ESI response was highest 

at lower electrolyte concentrations, to achieve reproducible results it was necessary to use 1.0 

mM ammonium acetate. Deuterated RSs were employed to account for analyte loss during 

sample preparation. LODs achieved in this way were similar to those reported for other methods 

using LC-MS. This method was used to determine levels of RES and its metabolites in rat serum 

samples after treatment with high (25 mg/kg/day) and low (5 mg/kg/day) dose of RES. R3G was 

the most abundant analyte with a concentration of 5–7 µg/mL while resveratrol sulfates had a 

10 fold lower concentration, i.e. 0.5–0.7 µg/mL. Fewer rats developed tumors in the high dose 

resveratrol group than in the low dose group, however, the result was not significantly different. 

When the serum concentrations were compared, the RES concentrations were significantly lower 

in the rats with tumors than without tumors. To our best knowledge, levels of RES and its 

metabolites in human serum and occurrence of breast cancer were not correlated, however, 

preventive effect of RES dose on human breast cancer had been described in many studies, most 

recently reviewed by Kotecha et al. [46]. Thus, the sensitive method developed in this study 

provides a robust approach for monitoring serum resveratrol and its metabolites levels, which 

may contribute to cancer prevention. 
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V. CHAPTER 
METHOD DEVELOPMENT FOR DETERMINATION OF TRACE 

CONCENTRATIONS OF ALDEHYDES AND CARBOXYLIC ACIDS IN 
PARTICULATE MATTER 

 V.1. BACKGROUND 

Carboxylic and carbonyl compounds are significant constituents of atmospheric 

carbonaceous PM formed as a result of both primary emissions and secondary atmospheric 

reactions [3–5]. The observed variety of carboxylic and carbonyl compounds in PM includes 

linear monocarboxylic acids, dicarboxylic acids, aromatic polycarboxylic acids, polycyclic 

quinones, hydroxyacids, ketoacids, aldehydes, dialdehydes, ketones and multifunctional 

aliphatic and aromatic compounds [3,4]. Within secondary atmospheric reactions, aldehydes 

are readily oxidized to acids and also react with acids leading to the formation of polymers [3–

5]. Owing to the hydrophilicity of acids and aldehydes, they are also suggested to serve as 

cloud condensation nuclei [3,79,80]. The high reactivity of these species in atmospheric 

processes warrants their accurate determination [3–5].  

To investigate the occurrence of compounds with various polar functional groups, such 

as hydroxyl, carbonyl or carboxyl groups present in PM, a multi-step derivatization is often 

employed prior to their GC analysis [81–93]. The most common approach is the derivatization 

of carbonyl groups with PFBHA·HCl and then a separate derivatization of carboxylic and 

hydroxyl groups via either their BSTFA [81–91,93–97] or esterification with an alcohol, such as 

butanol or MeOH, in the presence of BF3 [84–86,88,92]. These studies summarized in Table 

V.1 pioneered the identification but quantified only few species and thus, as described below, 

not addressing potential quantification issues. 
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For determination of aldehydes and acids in PM using the PFBHA·HCl/BSTFA protocol 

(Table V.1), a Soxhlet extraction using either DCM or a mixture of DCM / ACN is frequently 

employed [81,85–87,98,99]. The next step in the typical PFBHA·HCl/BSTFA protocol involves 

derivatization with PFBHA in an aqueous solution [82,91,96,97], which is not miscible with 

DCM used for the initial extraction. As a result, this process requires a drying step prior to the 

PFBHA·HCl derivatization [82,85,86,96], which may lead to losses of volatile analytes. 

Moreover, due to the use of aqueous solutions, PFBHA oximes have to be extracted prior to 

BSTFA derivatization [83–86,88–90,93,95] thus adding another step potentially resulting in a 

further analyte loss. Another option (used in studies with PFBHA alone) is to carry out the 

derivatization with PFBHA dissolved in MeOH, thus combining the extraction from PM and 

derivatization step [100,101]. Perhaps due to the focus on aldehyde derivatization [100,101], 

to our knowledge, there have been no studies reporting the expected occurrence of methyl 

esters as a result of the acids’ exposure to methanolic solutions in the presence of HCl (which 

is a part of the PFBHA·HCl molecule) or evaluating the effectiveness of such a derivatization. 
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Table V.1 Comprehensive summary of derivatization protocols using sequential derivatization with PFBHA and BSTFA for determination of carboxylic and carbonyl 
compounds in atmospheric samples. 

Sample type Compounds Initial sample  Derivatization reaction conditions Analysis Comments Reference 

  preparation PFBHA BSTFA    

Acids and aldehydes 

PM 2.5a hydroxyacids, 
ketoacids, 
dicarboxylic acids; 
carbonyls 

Soxhlet, 
DCM/ACN (1:1, 
v/v), 24 h 

350 µL 160 mM 
PFBHA (in water); 
dried with N2 

850 µL DCM/hexane 
(1:2, v/v), 50 µL BSTFA, 
100 µL pyridine, 
overnight stand (25 °C), 
then 70°C/120 min 

GC-MS 

PCI (CH4) 
IS: d5-
benzaldehyde 
(prior 
derivatization) 

[81]  

Chamber 
experiments 

pinic, pinonic, 
norpinic acid 

flow through 
impinger with 
500 mL ACN for 
24 h, volume 
reduced to 300 
mL 

100 µL PFBHA (19 
mM in ACN/water), 
16-18 h/ 25 °C, 
reduced to 5 mL by 
rotary evaporation, 
dried with N2 

100 µL hexane, 100 µL 
DCM, 20 µL BSTFA:TMSC 
(90:10, v/v),  
70 °C/ 150 min 

GC-MS 
PCI (CH4) 

IS: nopinone 
(prior 
derivatization) 

[82]  

Model 
compounds 

monocarboxylic, 
polycarboxylic, 
hydroxy and 
ketoacids; 
carbonyls 

NA 1 mL water, 250 
PFBHA (50 g/L in 
water), 24 h/ 25 °C, 
extraction with 
hexane/DCM (2:1, 
v/v), dried with N2 

250 µL BSTFA/TMCS 
(9:1, v/v), 100 µL 
pyridine,  
70 °C/ 120 min 

GC-MS 
EI, PCI 
(CH4), CIDb 
(He) 

other multi-
derivatizations  
No IS/RS 
reported 

[84]  

PM 2.5,  
 
 
chamber 
experiments 

substituted 
carboxylic acids 
and dicarboxylic 
acids 

PM: Soxhlet, 
DCM/ACN (1:1, 
v/v), 24 h; 
chamber: 
Soxhlet, DCM, 6 
h; both dried 
with N2 

1 mL water, 250 
PFBHA (50 g/L in 
water), 24 h/ 25 °C, 
extraction with 
hexane/DCM (2:1, 
v/v), dried with N2 

250 µL BSTFA/TMCS 
(9:1, v/v), 100 µL 
pyridine,  
70 °C/ 120 min 

GC-MS 
EI, PCI 
(CH4), CID 
(He) 

other multi-
derivatizations 
RS: cis-
ketopinic acid, 
d50-
tetracosane; IS 

[85]  
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Table V.1 Cont. 

Sample type Compounds Initial sample  Derivatization reaction conditions Analysis Comments Reference 

  preparation PFBHA BSTFA    

PM 2.5 
 
 
chamber 
experiments 

linear and 
substituted 
dicarboxylic acids 

PM: Soxhlet, 
DCM/ACN (1:1, 
v/v), 24 h; 
chamber: 
Soxhlet, DCM, 6 
h; both dried 
with N2 

1 mL water, 250 
PFBHA (50 g/L in 
water), 24 h/ 25 °C, 
extraction with 
hexane/DCM (2:1, 
v/v), dried with N2 

250 µL BSTFA/TMCS 
(9:1, v/v), 100 µL 
pyridine,  
70 °C/ 120 min 

GC-MS 
EI, CI (CH4) 

other multi-
derivatizations 
RS: cis-
ketopinic acid, 
d50-
tetracosane; IS 

[86] 

PM 2.5 
 
 
 
Gas phase 
 

substituted 
(hydroxy, oxo) 
carboxylic acids 

PM: Soxhlet, 24 
h DCM or 
DCM/ACM (1:1, 
v/v) 

160 µL PFBHA in 
water 

50 µL BSTFA, 100 µL 
pyridine, 850 µL 
DCM/hexane (1:2, v/v), 
65 °C/ 120 min 

GC-MS 
PCI (CH4) 

IS: d5-
benzaldehyde 
(prior 
derivatization) 

[87]  

denuder: 2X 275 
mL 
hexane/DCM/A
CN (1:1:2, v/v) 
and extraction 
with MeOH 

PFBHA added, 24 h 
reaction time, dried 
with N2 

PM 2.5 dicarboxylic, 
substituted 
(hydroxy, oxo) 
carboxylic acids 

Soxhlet, 
DCM/ACN (1:1, 
v/v), 24 h 

1 mL water, 250 
PFBHA (50 g/L in 
water), 24 h/ 25 °C, 
extraction with 
hexane/DCM (2:1, 
v/v), dried with N2 

250 µL BSTFA/TMCS 
(9:1, v/v), 100 µL 
pyridine,  
70 °C/ 120 min 

GC-MS 
CI (CH4) 

other multi-
derivatizations  
RS: cis-
ketopinic acid, 
d50-
tetracosane; 
IS 

[88]  
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Table V.1 Cont. 

Sample type Compounds Initial sample  Derivatization reaction conditions Analysis Comments Reference 

  preparation PFBHA BSTFA    

PM 2.5 substituted 
(hydroxy, oxo) 
carboxylic acids, 
carbonyls 

Denuder 
impregnated 
with 40 mM 
PFBHA; particle 
phase: 
sonication in ice-
bath, 15 min 

Denuder: 3X 
extracted with 5 mL 
DCM/ACN (1:1, 
v/v), then 20 h/ 25 
°C; particle phase: 
30 µL PFBHA (40 
mM), 24 h/ 25 °C 

50 µL BSTFA, 100 µL 
DCM/hexane (1:1, v/v),  
75 °C/ 150 min 

GC-MS 
EI 

IS: 1-
phenyldodecan
e (prior to 
analysis) 

[93]  

Chamber 
experiments, 
field samples 

substituted 
(hydroxy, oxo) 
carboxylic acids, 
carbonyls 

PFBHA coated 
denuder; gas: 
3X5 mL DCM for 
1 min; particles: 
6 mL DCM, 
sonication in ice-
bath, filtration, 
2X rinse 3 mL 
DCM 

30 µL PFBHA (40 
mM), 20 h/ 25 °C, 
dried with N2 

50 µL BSTFA:TMCS, 100 
µL DCM/hexane (1:1, 
v/v),  
75 °C/ 150 min 

GC-MS 
EI 

IS: 1-
phenyldodecan
e (prior to 
analysis) 

[83]  

PM 2.5 substituted 
(hydroxy, oxo) 
carboxylic acids 

Extraction with 
PFBHA 

0.1 M PFBHA in 
water; 24 h/ 25 °C, 
acidified with 
H2SO4, extraction to 
MTBE, dried with N2 

200 µL BSTFA, 42 °C/ 12 
h 

GC-MS 
EI, CI (CH4, 
PFBOHc) 

IS: 4-
fluorobenzalde
hyde (prior to 
derivatization) 

[89]  
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Table V.1 Cont. 

Sample type Compounds Initial sample  Derivatization reaction conditions Analysis Comments Reference 

  preparation PFBHA BSTFA    

Model 
compounds 

pyruvic acid, 
substituted 
carbonyls 

NA 10 mL PFBHA  
(2 mM in water), 24 
h/ 25 °C,  
2X extraction with 2 
mL DCM, MTBE or 
hexane, 
evaporation 

Evaporated to dryness 
with 100 µL BSTFA; 20 µL 
BSTFA (20 % in DCM), 
BSTFA:TMCS (99:1, v/v, 
20% in DCM) or 
BSFTA:TMCS (90:10, v/v, 
20% in DCM) into PFBHA 
derivatives in DCM 

GC-MS 
CI (CH4) 

different BSTFA 
derivatization 
protocols 
IS: 2,2’-
difluorobiphen
yl (prior to 
analysis) 

[90]  

Model 
compounds 

monocarboxylic, 
dicarboxylic, 
hydroxy and 
ketoacids 

NA 50 µL PFBHA  
(19 mM in 
ACN/water),  
16-24 h/ 25 °C, 
evaporation 

100 µL hexane/DCM 
(1:1, v/v), 20 µL BSTFA,  
60 °C/ 40 min 

GC-MS 
EI, CI (CH4) 

No IS/RS 
reported 

[91]  

Chamber 
experiments 

carbonyls 3 mL MeOH, 200 
µL PFBHA (20 
mM in ACN), 
dried and 
reconstituted 
with 100 µL 
MeOH 

200 µL PFBHA (20 
mM in ACN), 
overnight at 25 °C 

20 µL BSTFA,  
60 °C/ 45 min 

GC-MS 
EI, CI (ACN) 

No IS/RS 
reported 

[96]  

Chamber 
experiments 

carbonyls flow through 
impinger 
containing 4 mL 
ACN, 250 µL 
PFBHA (0.02 M 
in ACN) 

4 mL ACN, 250 µL 
PFBHA (0.02 M in 
ACN), 24-48 h/ 25 
°C, dried with N2 

150 µL BSTFA,  
70 °C/ 60 min 

GC-MS 
EI, CI (CH4) 

No IS/RS 
reported 

[97]  

a PM 2.5 – particulate matter with diameter less than 2.5 µm; b CID – collisionally activated dissociation; c PFBOH – pentafluorobenzyl alcohol 



 
 
 

64 
 

Another technique that may be coupled with PFBHA·HCl derivatization is the 

esterification of carboxylic acids in the presence of a strong mineral acid using an alcohol, such 

as BF3/butanol or MeOH [84–86,92]. This method is generally used for monocarboxylic 

[99,102–105] and dicarboxylic acids [85,98,103,104,106–114]. Successful derivatization of 

aromatic acids [102–104,107,108,110,112], hydroxyacids [104,107,108,112] and ketoacids 

[86,99,102–104,106,107,110,112,113] was also reported.  

Besides the combined derivatization protocols, a number of studies focused on 

improvement of individual derivatization steps. MeOH in combination with DCM and ACN was 

used to extract samples from PM matrices and derivatize aldehydes in one step [100,101]. 

Temime et al. [100] compared the PFBHA aldehyde derivatization efficiencies in several 

solvent systems including MeOH, water/ACN (9.875:0.125 v/v) and ACN/DCM/MeOH 

(1:8.5:0.5 v/v/v) and reported similar derivatization yields. The advantage of this approach of 

using organic rather than aqueous solvents was a facile removal of the precipitated PFBHA 

residue, thus making the subsequent extraction of PFBHA oximes unnecessary. However to 

our knowledge, these protocols using organic solvents have not been used in sequence with 

a BSTFA derivatization [100,101].  

As mentioned above, the BSTFA derivatization used either in a single step or following 

a PFBHA derivatization is commonly employed for determination of carboxylic and hydroxy 

groups. It has been used either in a mixture with a catalyst, TMCS, their ratio varying between 

99:1 (v/v) [90] and 90:10 (v/v) [82,84–86,88,95], or with the addition of pyridine [81,84–88]. 

Previous studies focused on extensive identification of a broad range of compounds in 

PM with a variety of functional groups (Table V.1), which limited the quantification to only a 

few compounds [83,89,93] or to the quantification using direct silylation or esterification in 

the presence of BF3 [27,84–86]. The majority of quantification studies employed a single IS, 
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which was added either prior to the analysis or prior to the derivatization. (Table V.1). RS 

sometimes called surrogate standards (e.g., isotope-labeled standards added prior to the 

extraction) were only used in several studies, however only 1–2 of the used RSs were 

representative for multiple compounds and the actual recoveries were not reported [85–87].  

 

Figure V.1 The proposed derivatization scheme using PFBHA·HCl with BSTFA for derivatization of aldehydic, 
carboxylic and hydroxylic groups on air PM. 

 

The aim of this study was to develop a sample preparation method involving a two-

step derivatization followed by GC-MS for determination of a broad range of oxygenated 

compounds including monocarboxylic, dicarboxylic, aromatic acids, ketoacids and 

hydroxyacids in PM. Our goal was to first extract and derivatize aldehydes to stabilize them 

prior to further derivatization. We have evaluated two solvent systems used previously for 

extraction, ACN/DCM/MeOH and MeOH alone. An advantage of the use of MeOH in the 

presence of a BF3 salt was the concomitant methylation of carboxylic acids. Thus, in addition, 

we evaluated the influence of the methylation reaction conditions on the process efficiency 

and compared that to the methylation with BF3 and silylation with BSTFA. Figure V.1 is showing 

the proposed new derivatization pathway. The efficiency of the proposed extraction method 

was studied using wood smoke (WS) PM, which has a higher abundance of organic 

compounds. The concentrations of acids and aldehydes were compared for two common PM 

matrices: WS and urban air (UA) standard reference material (SRM) PM.  
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V.2. MATERIALS AND METHODS 

V.2.1 Materials 

ACN (LCMS Optima grade), MeOH (99.9% Purge and Trap grade) and DCM (GC quality) 

were purchased from Fisher Scientific (Waltham, MA, USA); n-hexane (GC quality) was from 

Sigma-Aldrich (St. Louis, MO, USA). Water was purified using a Direct-Q3 water purification 

system with an incorporated dual wavelength UV lamp (Millipore, Billerica, MA, USA) to assure 

a low total carbon content (the manufacturer claimed this impurity to be less than 5 ng/g). 

The derivatization agents, PFBHA·HCl (>99%), BSTFA (1% TMCS; 10% TMCS) and 

BF3/methanol (10% w/w) were purchased from Sigma-Aldrich, pyridine (>99%) was purchased 

from Alfa Aesar (Ward Hill, MA, USA). The information on aldehydes and acids considered in 

this study is provided in Tables V.2 and V.3, respectively including suppliers, relative retention 

and ions (m/z) used in the GC-MS analysis.  

Model mixtures (Table V.3) of stock solutions representing different classes of 

carboxylic acids were prepared, including long chain monocarboxylic acids (ca. 0.5 mg/mL per 

analyte in DCM), dicarboxylic acids (ca. 1.5 mg/mL per analyte in ACN), aromatic acids (ca. 0.2 

mg/mL per analyte in ACN), ketoacids and hydroxyacids (ca. 1 mg/mL per analyte in ACN and 

MeOH), and stored at -18 °C. Stock solutions of single representatives of each group (ca. 0.5-

5 mg/mL) were also prepared. 

Calibration solutions. The aldehyde calibration solution was prepared in a 

concentration range of 0.03–50 μg/mL with the addition of a recovery standard mixture (Table 

V.2, the concentration range 0.03–30 μg/mL). The acid calibration solution was prepared by 

mixing acid standard mixtures (within a concentration range of 0.02–100 μg/mL) with acid 
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recovery standards (Table V.3; concentration range 0.01–50 μg/mL). The solutions were 

derivatized according to the PFBHA derivatization protocol (MeOH only). The calibration 

mixture for hydroxy and aromatic acids was prepared separately and was subjected to the 

sequential PFBHA/BSTFA derivatization protocol. Two ISs were employed to correct for the 

injection volume, o-terphenyl for acids and octafluoronaphthalene (OFN) for aldehydes 

(suitable for NCI). 

Two bulk PM samples (WS and UA PM) were used for this study. Bulk WS PM was 

collected from a chimney that vented an airtight wood stove burning a mix of hardwoods 

[115,116]. The UA PM used in this study was NIST SRM 1648b. 

V.2.2 Sample preparation 

V.2.2.1 Evaluation of derivatization conditions 

Five model mixtures (Table V.3) of stock solutions representing different classes of 

carboxylic acids were prepared, including long chain monocarboxylic acids (~0.5 mg/mL per 

analyte in DCM), dicarboxylic acids (~1.5 mg/mL per analyte in ACN), aromatic acids (~0.2 

mg/mL per analyte in ACN), ketoacids and hydroxyacids (~1 mg/mL per analyte in ACN and 

MeOH), and stored at -18 °C. Stock solutions of single representative of each group (~0.5-

5 mg/mL) were also prepared. 

PFBHA·HCl derivatization. Two different solvents systems were evaluated for PFBHA 

derivatization developed in previous studies [100,101], derivatization 1) in the presence of 

MeOH and 2) in the solvent system containing ACN, DCM and MeOH. The acid samples (with 

a final concentration of ~100 ppm) were mixed with PFBHA dissolved in MeOH (40 mg/mL) 

allowing for at least a 10-fold excess in the moles of PFBHA to the moles of acids present in 

the solvent system containing either ACN, DCM, and MeOH (1.0:8.5:0.5, v/v/v, the final 
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volume 1.0 mL), or just MeOH (0.10 mL). The acids were derivatized for either 1, 3 or 18 hours 

using sonication for agitation. Alternatively, the acids were stirred by a magnetic stir bar while 

heated to 50 °C for 18 hours to evaluate the effect of sonication. After cooling, the solution in 

the second solvent system was evaporated to 50 μL and DCM was added in the 0.5:9.5 ratio 

(MeOH/DCM, v/v, the final volume 1.0 mL), while ACN/DCM/MeOH solutions were left intact. 

The solutions were filtered using a 0.2 m PTFE filter to remove excess precipitated PFBHA 

from the solution.  

BF3/alcohol derivatization. For esterification of carboxylic acids with methanol in the 

presence of BF3, an adopted protocol [106,107] was used. The acid samples (the final 

concentration ~100 ppm) were added to 50 L of a BF3/methanol solution and heated to 60 

°C for 60 minutes. After cooling to room temperature, 0.5 mL of a saturated NaCl solution in 

water were added and methyl esters were extracted three times with n-hexane. The fractions 

were combined (the total volume 2.0 mL) and the solution was filtered through anhydrous 

Na2SO4 to remove residual water. 

Sequential PFBHA·HCl /BSTFA derivatization. The acid samples (the final concentration 

~100 ppm) were first derivatized as described in the PFBHA·HCl or BF3/methanol 

derivatization protocols. After drying the filtered solution, 50 L BSTFA was added and the 

mixture was held at 60 °C for 60 minutes. Subsequently, DCM was added up to 1.0 mL volume. 

Alternatively, a BSTFA solution with 10% of TMCS was used with/without the addition of 

pyridine (50 L).  

All samples were spiked with 5.0 L of IS (o-terphenyl) prior to the analysis to control 

the volume changes. 
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V.2.2.2 Extraction and derivation of PM samples 

PM samples. PM samples (~2.5-5 mg) were spiked with recovery standards (~10-20 

μg/mL), extracted with 5 mL of a tested solvent system and derivatized using the optimized 

protocol, i.e., with PFBHA·HCl (200 μL of 40 mg/mL of PFBHA·HCl in MeOH) for 18 hours and 

agitation by sonication. After cooling to room temperature, samples were evaporated to 50 

μL, spiked with both ISs, and then DCM was added in the 0.5:9.5 ratio (MeOH/DCM, v/v, the 

final volume 1 mL). Samples were processed according to the sequential PFBHA·HCl /BSTFA 

protocol. 

Alternatively, 2 mg of WS PM was first extracted and derivatized using 9.5 mL of MeOH 

and 0.5 mL of PFBHA (10 mg/mL) in MeOH for 18 hours and agitation by sonication. WS PM 

was filtered out using filtration paper and further extracted and derivatized using 

ACN/DCM/MeOH procedure. Finally, WS PM residue was extracted on the Soxhlet for 18 

hours with MeOH. All extraction fractions were analyzed separately. 

V.2.3 Instrumentation 

Analyses were performed using a GC-MS (6890N GC, 5975 MS; Agilent Technologies, 

Santa Clara, CA, USA) equipped with a Gerstel MPS2 autosampler (Gerstel, Baltimore, MD, 

USA). Injections were performed in a splitless mode for 0.5 min at 250 °C, injection volume 

was 1 µL. The separation was performed using a 30-m long DB-5 capillary column, with 0.25 

mm internal diameter (I.D.) and 0.25 µL film thickness (J&W Scientific, Folsom, CA, USA). A 

constant carrier gas (helium) flow rate of 1.0 mL/min was maintained during the analysis. The 

temperature program used started at 35 °C held for 1 min, followed by a gradient of 20 °C/min 

to 85 °C, followed by a second ramp of 5 °C/min to 320 °C and held for 2 min. The MS analysis 

was performed in the selected ion-total ion (SITI) mode. The ions used for selected ion 

monitoring (SIM, within SITI) are specified in Tables 2 and 3 with a typical dwell time of 50 ms, 
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the TIC mass range of m/z 50–600. The EI was used with an ionization energy of 70 eV. The 

temperatures of MS-NCI source, mass analyzer, and the transfer line were 155 °C, 150 °C and 

280 °C respectively. The reagent gas used for NCI ionization was methane with a flow rate of 

3 mL/min and ionization energy of 230 eV. 

V.2.4 Data processing 

MSD Chemstation E.02.00.147 software was employed for the GC-MS data acquisition 

and processing. Quantification was performed using the IS calibration method using the area 

of the target ion (Tables V.2 and V.3) obtained in the SIM mode (within SITI method). The 

recovery standards were used to correct recoveries of native aldehydes and aldehydes 

extracted from PM. Thus, a least square calibration curve was obtained for each recovery 

standard using Microsoft Office Excel to obtain calibration curve parameters. The instrumental 

LODs were calculated from the calibration curves using the formula LOD=3.3*sy/k, where k is 

a slope of the calibration curve and sy is the standard error of the predicted y-value for each 

x-value; sy was obtained by a least square linear regression. From the acquired calibration 

profiles, the points within one order of magnitude of the LOD were used for the LOD 

calculations. 
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Table V.2 List of aldehydes studied with their supplier, the corresponding GC-MS relative retention, target and confirmation ions and theirs relative abundance (listed in 
parenthesis) used for data acquisition and processing. 

    
EI NCI 

 

Label Aldehyde Supplier MW 
g/mol 

Target 
ion 

Confirmation ions LOD 
ng 

Target 
ion 

Confirmation ions LOD 
ng 

r12 

AL1 Formaldehyde Fisher Scientifica 225 181 (100) 195 (10), 225 (1) NA 225 (50) 205 (100) 1.02 0.76 

AL2 Acetaldehyde Sigma Aldrichb 239 181 (100) 209 (10), 239 (5) 0.22 239 (100) 218 (15) 0.24 0.98 

AL3 Propanal Sigma-Aldrich 253 181 (100) 223 (5), 236 (10) 0.15 253 (100) 233 (50) 0.08 1.16 

AL4 Acrolein Sigma-Aldrich 251 181 (100) 221 (5), 251 (20) 1.13 231 (70) 201 (100) 0.12 1.17 

AL5 Isobutanal Sigma Aldrich 267 181 (100) 250 (10) 0.18 178 (100) 247 (10), 267 (10) 0.06 1.25 

AL6 Butanal Flukac 267 181 (100) 239 (15) 0.20 247 (100) 267 (50) 0.08 1.35 

AL7 Crotonal Chem Serviced 265 181 (100) 195 (5), 250 (25) 0.21 245 (100) 215 (80) 0.07 1.47 

AL8 Pentanal Sigma Aldrich 281 181(100) 207 (5), 239 (20) 0.21 178 (100) 261 (20), 231 (15) 0.03 1.54 

AL9 Hexanal Sigma Aldrich 295 181 (100) 239 (25), 295 (5) 0.19 178 (100) 248 (30), 275 (20) 0.03 1.72 

AL10 Furaldehyde Sigma Aldrich 271 291 (50) 248(20), 181(100) 0.15 241 (100) 271 (80) 0.10 1.79 

AL11 trans-2-Hexenal Sigma Aldrich 293 181 (100) 250 (20), 293 (5) 0.16 273 (100) 243 (80) 0.05 1.85 

AL12 Heptanal Sigma Aldrich 309 181 (100) 207 (5), 239 (30) 0.19 178 (100) 289 (40) 0.02 1.90 

AL13 Octanal Sigma Aldrich 323 181 (100) 239 (30), 323 (1) 0.18 178 (100) 276 (10) 0.02 2.07 

AL14 Benzaldehyde Sigma Aldrich 301 301 (100) 271 (50) 0.11 281 (100) 251 (60) 0.07 2.12 

AL15 Phenylacetaldehyde Sigma Aldrich 315 181 (100) 91 (50), 315 (10) 0.09 178 (100) 205(50) 0.07 2.20 

AL16 Nonanal Fluka 337 181 (100) 239 (30) 0.14 178 (100) 317 (25) 0.02 2.24 

AL17 m-Tolualdehyde Sigma Aldrich 315 181 (100) 91 (15), 315 (30) 0.05 295 (100) 265 (40), 167 (25) 0.10 2.29 

AL18 o-Tolualdehyde Sigma Aldrich 315 181 (100) 91 (15), 315 (30) 0.07 295 (100) 265 (50), 167 (60) 0.10 2.29 

AL19 Hydrocinnamaldehyde Sigma Aldrich 329 181 (100) 271 (10), 329 (20) 0.16 178 (100) 309 (30) 0.06 2.35 

AL20 trans-2-Nonenal Sigma Aldrich 335 181 (100) 250 (25), 335 (5) 0.12 315 (100) 285 (30) 0.08 2.37 

AL21 2-Hydroxy benzaldehyde Chem Service 317 181 (100) 300 (15), 317 (40) 0.14 136 (100) 280 (5) 0.12 2.46 

AL22 Decanal Sigma Aldrich 351 181 (100) 239 (30), 351 (1) 0.14 178 (100) 331 (30), 196 (50) 0.03 2.40 
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Table V.1. cont. 
    EI NCI  

Label Aldehyde Supplier MW 
g/mol 

Target 
ion 

Confirmation ions LOD 
ng 

Target 
ion 

Confirmation ions LOD 
ng 

r12 

AL23 
2,5-
Dimethylbenzaldehyde Sigma Aldrich 329 181 (100) 286 (10), 329 (50) 0.14 309 (100) 279 (40) 0.04 2.43 

AL24 
5-Hydroxymethyl 
furfural Sigma Aldrich 321 181 (100) 291 (15), 321 (50) 0.11 271 (100) 285 (25), 301 (40) 0.13 2.47 

AL25 2,4-Nonadienal Sigma Aldrich 333 181 (100) 276 (70), 333 (15) 0.16 283 (100) 167 (50) 0.13 2.49 

AL26 Glyoxal Sigma Aldrich 448 181 (100) 418 (1), 448 (5) 0.16 267 (100) 167 (35) 0.11 2.53 

AL27 Anisaldehyde Chem Service 331 331 (100) 181 (90), 288 (20) 0.11 311 (100) 281 (40) 0.07 2.57 

AL28 Methylglyoxal Sigma Aldrich 462 181 (100) 432 (1), 462 (5) 0.14 281 (100) 167 (20), 392 (10) 0.08 2.59 

AL29 4-Hydroxybenzaldehyde Chem Service 317 181 (100) 274 (10), 317 (40) 0.35 297 (100) 267 (40) 0.15 2.66 

AL30 Dodecanal Sigma Aldrich 379 181 (100) 239 (35) 0.10 178 (100) 332 (10), 359 (30) 0.23 2.69 

AL31 Glutaraldehyde Sigma Aldrich 490 181 (100) 293 (5), 490 (1) 0.22 178 (100) 450 (20) 0.22 2.85 

AL32 Syringaldehyde Chem Service 377 377 (100) 181 (70) 0.24 357 (100) 327 (20) 0.13 2.94 

Recovery Standards                 
 

Formaldehyde-13C-d2 Isotece 227 181(100) 198 (95) NA 228(50) 208(100) NA 0.76  

Acetaldehyde-d4 CDN Isotopesf 243 181(100) 213(10) NA 243(90) 222(100) NA 0.98  

Propanal-d2 CDN Isotopes 255 181(100) 238(15), 225(10) NA 255(100) 235(60) NA 1.16  

Butanal-d2 CDN Isotopes 269 181(100) 241(10) NA 269(75) 221(100) NA 1.35  

Furaldehyde-d4 CDN Isotopes 275 181(100) 295(30), 251(5) NA 245(100) 275(50) NA 1.79  

Octanal-d16 CDN Isotopes 329 181(100) 243(20), 339(5) NA 319(100) 289(20) NA 2.07  

Benzaldehyde-d6 CDN Isotopes 307 181(100) 307(25), 277(15) NA 287(100) 257(70) NA 2.12  

p-Anisaldehyde-d3 CDN Isotopes 334 181(100) 334(80) NA 314(100) 284(35) NA 2.57 
  4-Hydroxybenzaldehyde-

d4 CDN Isotopes 321 181(100) 321(70) NA 301(100) 271(40) NA 2.66 
a(Pittsburgh, PA,USA); b-c(St. Louis, MO, USA); d(West Chester, PA, USA); e(Champaign, IL, USA); f(Pointe-Claire, Quebec, Canada) 



 
 
 

73 
 

Table V.3 List of carboxylic acids studied with their supplier, the corresponding GC-MS relative retention, target 
and confirmation ions and their relative abundance (listed in parenthesis) used for data acquisition and 
processing. 

Label Acid Supplier MW 
g/mol 

Target 
ion 

Confirmation ions LOD 
ng 

r12 

Monocarboxylic Acids             

MA1 Valeric Sigma Aldricha 116 74 (100) 87(40) 57(50) 0.12 0.16 

MA2 Hexanoic Acrosb 130 74(100) 87(60) 99(30) 0.12 0.19 

MA3 Heptanoic Acros 144 74(100) 113(40) 87(30) 0.22 0.25 

MA4 Octanoic Acros 158 74(100) 87(50) 127(30) 0.23 0.32 

MA5 Nonanoic Sigma Aldrich 172 74(100) 87(50) 141(20) 0.21 0.41 

MA6 Decanoic Acros 186 74(100) 87(50) 143(20) 155(15) 0.15 0.50 

MA7 Undecanoic Acros 200 74(100) 143(20) 169(20) 0.13 0.60 

MA8 Dodecanoic Sigma Aldrich 214 74(100) 143(20) 171(20) 0.15 0.69 

MA9 Tridecanoic Sigma Aldrich 228 74(100) 143(20) 228(10) 0.12 0.78 

MA10 Tetradecanoic  Sigma Aldrich 242 74(100) 143(20) 242(10) 0.17 0.87 

MA11 Pentadecanoic Acros 256 74(100) 143(20) 256(20) 0.07 0.95 

MA12 Hexadecanoic  Acros 270 74(100) 143(30) 270 (20) 0.16 1.03 

MA13 Heptadecanoic  Sigma Aldrich 284 74(100) 143(30) 284(20) 0.15 1.11 

MA14 Octadecanoic  Acros 298 74(100) 298(30) 143(30) 0.27 1.18 

MA15 Oleic Sigma Aldrich 296 74(100) 143(10) 87(40) 0.24 1.16 

MA16 Nonadecanoic  Sigma Aldrich 312 74(100) 143(30) 87(80) 0.03 1.25 

MA17 Eicosanoic Acros 326 74(100) 143(30) 87(80) 0.04 1.32 

MA18 Docosanoic Sigma Aldrich 354 74(100) 143(30) 87(80) 0.04 1.45 

MA19 Tricosanoic Sigma Aldrich 368 74(100) 143(40) 87(80) 0.04 1.51 

MA20 Tetracosanoic Fisher Scientificb 382 74(100) 143(40) 87(90) 0.02 1.57 

MA21 Heneicosanoic Sigma Aldrich 340 74(100) 143(30) 87(80) 0.05 1.38 

MA22 Octacosanoic  Sigma Aldrich 438 74(100) 143(50) 87(90) 0.05 1.78 

Dicarboxylic Acids             

DA1 Oxalic Sigma Aldrich 118 59(100) 118(5) 0.18 0.15 

DA2 Malonic Sigma Aldrich 132 101(100) 74(50) 59(90) 0.13 0.19 

DA3 Succinic Sigma Aldrich 146 115(100) 87(20) 55(60) 0.22 0.25 

DA4 Glutaric Sigma Aldrich 160 59(100) 100(80) 129(60) 0.14 0.33 

DA5 Adipic Sigma Aldrich 174 114(100) 143(70) 59(100) 0.27 0.42 

DA6 Pimelic Sigma Aldrich 188 115(100) 157(50) 125(50) 0.27 0.52 

DA7 Methyl Malonic Sigma Aldrich 146 115(50) 87(40) 59(100) 0.32 0.30 

DA8 Methyl Succinic Flukaa 160 129(50) 101(40) 87(20) 0.19 0.28 

DA9 Methyl Glutaric Fluka 174 114(100) 143(50) 99(50) 0.14 0.36 

DA10 Maleic  Sigma Aldrich 144 113(100) 85(40) 59(40) 0.5 0.25 

DA11 Fumaric  Fluka 144 113(100) 85(60) 59(30) 0.5 0.25 

DA12 Methyl Maleic  Sigma Aldrich 158 127(100) 99(30) 59(40) 0.25 0.21 

DA13 Suberic  Sigma Aldrich 202 171(70) 138(100) 129(90) 0.16 0.62 

DA14 Azelaic  Sigma Aldrich 216 185(60) 152(100) 143(40) 0.19 0.71 

DA15 Sebacic  Sigma Aldrich 230 199(70) 166(50) 157(60) 0.06 0.80 
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Table V.3 cont. 

Label Acid Supplier MW 
g/mol 

Target 
ion 

Confirmation ions LOD 
ng 

r12 

Dicarboxylic Acids             

DA16 Undecanedioic Sigma Aldrich 244 213(70) 171(50) 139(70) 0.11 0.60 

DA17 Dodecanedioic Sigma Aldrich 258 227(60) 185(40) 98(100) 0.19 0.97 

DA18 Tridecanedioic  Acros 272 241(50) 199(40) 98(100) 0.09 1.05 

DA19 Tetradecanedioic Sigma Aldrich 286 255(60) 213(40) 181(30) 0.03 1.13 

DA20 Pinic Sigma Aldrich 214 128(50) 154(30) 115(100) 0.15 0.61 

Ketoacids             

KA1 Pyruvic  Fisher 297 195(10) 181(100) 297(1) 0.17 0.59 

KA2 Glyoxylic  Fisher 283 195(10) 181(100) 283(5) 0.24 0.55 

KA3 4-Oxopentanoic Acros 325 294(30) 181(100) 195(10) 0.28 0.75 

KA4 Oxaloacetic  Sigma Aldrich 355 293(10) 181(100) 195(10) 0.24 0.85 

KA5 2-Ketoglutaric Acros 369 352(20) 181(100) 195(5) 0.16 0.93 

KA6 4-Ketopimelic Sigma Aldrich 397 366(20) 181(100) 397(10) 0.1 1.08 

KA7 cis-Pinonic  Sigma Aldrich 393 212(50) 266(40) 181(100) 0.21 1.05 

Hydroxyacids             

HA1 Malic Sigma Aldrich 350 335(10) 245(20) 233(25) 0.21 0.43 

HA2 Tartaric  Sigma Aldrich 439 423(10) 292(30) 219(20) 0.59 0.62 

HA3 Vanillic Sigma Aldrich 312 312(80) 297(90) 267(100) 1.14 0.72 

HA4 Annisic Sigma Aldrich 224 209(100) 179(30) 193(20) 14 0.57 

HA5 Homovanillic Sigma Aldrich 308 293(100) 308(70) 219(80) 0.57 0.83 

HA6 Syringic Sigma Aldrich 342 342(70) 327(100) 312(70) 1.14 1.01 

Aromatic Acids             

AA1 Benzoic  Sigma Aldrich 194 194(10) 179(100) 135(40) 0.8 0.43 

AA2 Salicylic  Sigma Aldrich 282 267(100) 209(10) 193(10) 0.1 0.67 

AA3 Mandelic Sigma Aldrich 296 253(20) 281(5) 179(100) 0.04 0.57 

AA4 3-Nitrobenzoic Sigma Aldrich 239 224(100) 178(30) 150(20) 0.05 0.79 

AA5 Phthalic Sigma Aldrich 310 295(30) 310(10) 221(10) 0.16 0.84 

AA6 4-Methylphthalic Sigma Aldrich 324 309(40) 250(50) 237(40) 0.03 0.93 

Recovery Standards             

 Malonic acid-d4 Sigma Aldrich 134 103(30) 134(5) 59(100) NA 0.15 

 Nonanoic acid-d17 CDN Isotopese 189 77(100) 91(50) 50(15) NA 0.41 

 Dodecanodioic acid-d4 CDN Isotopes 258 231(70) 187(40) 155(40 NA 0.97 

 Phthalic acid-d4 Isotecd 314 299(30) 314(10) NA 0.84 
a(St. Louis, MO, USA); b(Pittsburgh, PA,USA); c(Pointe-Claire, Quebec, Canada); d(Champaign, 
IL, USA) 
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V.3. RESULTS AND DISCUSSION 

V.3.1 Evaluation of derivatization and extraction 

A typical protocol was previously developed for derivatization and extraction of 

aldehydes with PFBHA·HCl [100]. It was also shown that both MeOH and ACN/DCM/MeOH 

derivatization systems are effective for derivatization of aldehydes [100]. Previous studies also 

employed sonication to enhance extraction, but not derivatization [81,93,101,117]. Following 

on this study, we have confirmed effectiveness of this system and observed that sonication 

improved the derivatization recoveries of aldehydes (Analysis performed by Mr. Chintapalli 

[118], Appendix Fig. D.1). Further, to promote the esterification reaction along with the 

formation of methoximes from carbonyls (Fig. V.1), we evaluated the effect of sonication time 

in MeOH (Fig. V.2). As shown for dicarboxylic acids (Fig. V.2) and similar to aldehydes, 18 hours 

of sonication were required for derivatization of the majority of tested acids with the 

exception of aromatic acids. After 3 hours, long monocarboxylic acids were completely 

methylated, however, dicarboxylic acids and ketoacids were derivatized only partially 

(presented in Fig. V.2 for dicarboxylic acids only). When the time of sonication was decreased 

to 1 hour, we observed an incomplete esterification for all tested acids. 

Since heat is released during the sonication (the temperature in a sonication bath 

reached 50 °C), we have explored whether the higher derivatization efficiency was due to the 

temperature (or if sonication was essential). The comparison for C8-C14 dicarboxylic acids 

derivatized while being either sonicated or heated on a hot plate (with the mixing by a 

magnetic stirrer for 18 hours) has demonstrated an incomplete derivatization of the heated 

sample showing both monomethyl and dimethyl esters. By contrast, the derivatization in 

sonicated samples was complete, showing dimethyl esters as single reaction products (Fig. 

D.2).  
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Figure V.2 The effect of time on methylation of dicarboxylic acids with PFBHA·HCl in MeOH. A) 1 h, B) 3 h, C) 
18 h. The acids labels are provided in Table V.2. 

To align our study with typical conditions for aldehydes’ derivatization [100], we also 

explored the use of an ACN/DCM/MeOH solvent system. The reaction completeness was 

confirmed by a subsequent BSTFA derivatization. In the ACN/DCM/MeOH solvent system, the 
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methylation of the majority of acids was incomplete showing the occurrence of both methyl 

and trimethylsilyl esters, the latter obtained by the sequential derivatization with BSTFA (Fig. 

V.3 A, shown for monocarboxylic acids), while a complete methylation was achieved for model 

compounds using MeOH as a single solvent (Fig V.3 B).  

 

Figure V.3 Demonstration of derivatization efficiency of monocarboxylic acid with 18 h sonication in two 
solvent systems A) PFBHA in ACN/DCM/MeOH and B) PFBHA in MeOH. The acids labels are provided in Table 
V.2. Denotation “a” stands for methyl ester, “b” stands for trimethylsilyl ester. The acids labels are provided 
in Table V.2. 

V.3.1.1 Efficiency of esterification of aromatic acids 

As shown in the previous section, the esterification reaction was not complete for 

aromatic acids even after 18 hour of sonication. In order to complete their derivatization, we 

attempted to enhance the methylation by increasing both the MeOH and PFBHA·HCl 

concentrations; however, no increase in the abundance of methyl esters was observed (Fig. 

D.3). 

We have compared the developed PFBHA/MeOH protocol to a common BF3/MeOH 

method [84–86,88,92] with the goal to address the derivatization of all acids including 
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aromatic. This method was chosen because it was previously reported that butylation in 

presence of BF3 yielded similar or even lower LODs to those obtained by trimethylsilylation 

with BSTFA for mono- and dicaboxylic acids [27,98]. Methylation was selected as opposed to 

butylation because it yields the same products as in our method. Esterification was tested 

using a mixture consisting of two aromatic acids with hydroxyl groups (vanillic and 

homovanillic) and two dicarboxylic acids (azelaic and sebacic) were used as reference 

compounds.  

 

Figure V.4 Comparison of BF3/MeOH with PFBHA methylation protocols each followed by BSTFA 
trimethysilylation shown for representative model acid mixture: A) BF3/MeOH, B) BF3/MeOH with 
subsequent BSTFA, C) PFBHA·HCl in MeOH, and D) PFBHA·HCl in MeOH with subsequent BSTFA The acids 
labels are provided in Table V.2. Denotation “a” stands for methyl ester, “b” stands for trimethylsilyl ester. 

 

While the reaction was complete for dicarboxylic acids and homovanillic acid (Fig. 

V.4A–D), an incomplete derivatization was still observed for vanillic acid. In the case of vanillic 

acid, the corresponding methyl ester was observed in both BF3/MeOH and PFBHA·HCl in 

MeOH (Fig. V.4A, C), although the response in the second system was significantly higher 
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(using the 95% confidence interval). A subsequent derivatization with BSFTA showed the 

vanillic acid methyl ester, now with the trimethylsilylated hydroxy group, in both systems, 

albeit with a lower abundance in the BF3 reaction. Vanillic acid with two trimethylsilyl groups 

was observed only in the PFBHA·HCl system (Fig. V.4D). This observation suggests that the 

non-derivatized vanillic acid was not extracted during the BF3/MeOH derivatization 

procedure. Thus, the esterification with MeOH in the presence of PFBHA·HCl has a clear 

advantage in determination of aromatic acids, because samples were evaporated to prevent 

the potential losses from incomplete extraction. 

V.3.1.2. Trimethylsilylation of aromatic acids 

The complete methylation of aromatic acids could not be achieved with the exception 

of homovanillic acid (Fig. V.4). Thus, we evaluated a possible quantification of aromatic acids 

as trimethylsilyl (TMS) esters following the PFBHA·HCl step.  

The PFBHA·HCl step resulted in a partial methylation of aromatic acids, thus we have 

attempted to enhance the following BSTFA derivatization (transesterification) with an 

increased TMCS content and with/without the presence of pyridine (Fig. V.5A). However, no 

significant difference was observed in the response of TMS derivatives of aromatic acids (Fig. 

V.5B) suggesting that the achieved partial methylation is irreversible under the tested 

conditions.  

Nevertheless, we observed that the TMS derivatives of aromatic acids were of 

significant abundance, and we have confirmed their abundance increased proportionally with 

concentration (Fig. V.5C).  
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Figure V.5 The efficiency of trimethylsilylation of aromatics acids: A) GC-MS TIC chromatogram with TMS 
derivatives following using PFBHA·HCl/BSTFA protocol; B) Efficiency of derivatization of aromatic acids with 
different catalyst system of subsequent BSTFA; C) Calibration curves obtained for trimethylsilyl esters of 
aromatic acids prepared with PFBHA/BSTFA protocol. The acids labels are provided in Table V.2. 
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V.3.1.3. Quantification of aldehydes and acids and calibration parameters 

The developed method allows for quantification of 61 acids and 32 aldehydes shown 

in chromatograms (Fig. V.6). The calibration parameters for all acids and aldehydes are 

provided in Table S.2. Tables V.2-3 summarize the instrumental LODs obtained with the 

developed methodology. The majority of aldehydes (Fig. V.6A) were observed within a range 

of 0.05 µg/mL – 0.35 µg/mL in EI mode compared to 0.02 µg/mL – 0.12 µg/mL in NCI mode, 

with the exception of formaldehyde (1 µg/mL in NCI). These values were comparable to the 

work of others [119–121]. It is worth noting that the protocols employing a solid phase micro-

extraction tend to report lower LODs for carbonyls [122–124], however, these reports were 

not targeting acids, either as trimethylsilyl derivatives or as methyl esters. 

Methylated acids (Fig. V.6B) were recovered in a range of 0.02 – 0.3 µg/mL, while the 

aromatic and hydroxyacids (Fig. V.6C) were determined in a somewhat broader range of 0.03 

– 1 µg/mL. The achieved LODs were either comparable or lower than those reported in recent 

papers [92,125]. 
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Figure V.6 GC-MS TIC analysis of A) Aldehyde standards after derivatization with PFBHA·HCl, B) Acid standards 
(dicarboxylic acids, ketoacids and long monocarboxylic acids) after derivatization with PFBHA·HCl, and C) 
(hydroxy and aromatic acids) after esterification with MeOH in presence of PFBHA·HCl and subsequent BSTFA 
trimethylsilylation. The acids labels are provided in Table V.2. “HA3a” stands for vanillic acid methyl ester, 
“HA3b” stands for vanillic acid trimethylsilyl ester. 
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V.3.2 Determination of acids and aldehydes in PM samples 

The developed method was used to extract and derivatize two representative PM 

samples of a significantly different organic carbon content; WS PM was chosen because of its 

high organic carbon content (61%); while UA has a lower organic content (13%) and is used as 

SRM [126]. For aldehydes, the extraction with ACN/DCM/MeOH was previously accomplished 

[100]. The efficiency of the extraction in the MeOH system was confirmed by sequential 

extraction of WS PM, which demonstrated full aldehyde recoveries in the first sonication step, 

and with no aldehyde shown in consecutive steps, i.e., ACN/DCM/MeOH sonication, and 

Soxhlet extraction (Analysis performed by Mr. Chintapalli [118], Fig. D.4A). 

Furthermore, we extracted different amounts of WS PM to evaluate the extraction 

recoveries of aldehydes and acids (Fig V.7A, B, respectively) ensuring sufficient capacity.  

Similar recoveries were achieved for both PM loadings, although, some of the acids (decanoic, 

pimelic, and suberic) were below the limit of detection in the samples of lower loadings.  
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Figure V.7 Occurrence of aldehydes (A) and acids (B) determined in different amounts of WS PM using the 
developed PFBHA·HCl /BSTFA protocol. Aldehydes analysis performed by Mr. Chintapalli [118] 
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The concentration and occurrence of acids and aldehydes in WS PM was then 

compared to UA PM (Fig. V.8, Table D.2). A lower organic carbon content in UA PM [126], was 

most likely the reason for the observed lower concentration of target compounds (both acids 

and aldehydes) compared to WS PM. The most abundant acids in both PM samples were 

short-chain dicarboxylic acids (≤C10), while WS PM had a high abundance of hydroxyacids 

(vanillic and malic acid), as well as ketoacids (glutaric and oxalacetic), and UA PM had a high 

abundance of long-chain monocarboxylic acid (≥C16). It is worth noting that azelaic acid 

concentration was higher in the UA rather than WS PM. This could be possibly due to azelaic 

acid resulting from secondary emission as suggested for other urban sites in Gent, Belgium 

[127], Ulaanbaatar, Mongolia [128] and Research Triangle Park, NC [88]. 

The most abundant compounds in the WS PM were related to lignin pyrolysis, such as 

vanillin, syringaldehyde (~1 and 3 mg/gPM, respectively; Fig. V.8A), as well as vanillic acid (~1.5 

mg/gPM; Fig. V.8B). Other abundant observed compounds were dicarboxylic acids, such as 

succinic, methyl succinic and glutaric acid (all ~1 mg/gPM), that were related to oxidation of 

terpenes [88]. UA PM featured higher concentrations of palmitic and stearic acids (1 and 0.5 

mg/gPM, respectively; Fig. V.8B) and glyoxal (0.8 mg/gPM; Fig. V.8A). Studies of urban sampling 

sites report similar long-chain mono carboxylic acids (≥C16) and short-chain dicarboxylic acids 

(≤C10), as well as dialdehydes (glyoxal and methylglyoxal) [88,127–130]. To our knowledge, 

there was no other study providing a full profile of aldehydes and carboxylic acids in SRM 

1648b (UA PM).  
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Figure V.8 Occurrence of aldehydes (A) and acids (B) determined in WS PM and UA PM using the developed 
PFBHA·HCl /BSTFA protocol. 
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V.4. CONCLUSIONS 

We have developed a new protocol employing a sequential PFBHA·HCl/BSTFA 

derivatization. In the first step using PFBHA·HCl in methanol, complete methylation was 

achieved for the majority of carboxylic acids, allowing for easier MS interpretation without the 

interference from hydroxy groups. This method was shown to be effective for hydroxyacids, 

providing the methylation of carboxylic groups in the first step and derivatization of the 

hydroxyl groups in the second step using BSTFA.  

An overnight (18 hours) derivatization with sonication was essential in order to achieve 

a complete methylation of all tested acids with the exception of aromatic acids.  

Aromatic acids were only partially derivatized (methylated), we were unable to 

enhance the reaction either towards methylation or trimethylsilylation. However, we 

demonstrated the feasibility of quantification based on trimethylsilyl esters.  

The developed method was applied to two types of PM, wood smoke and urban air. 

The observed aldehydes were in concentrations 10–3000 µg/gPM in WS PM and 10–900 µg/gPM 

in UA PM, while the observed acids were in concentrations 20–1800 µg/gPM in WS PM and 15–

1200 µg/gPM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in the 

WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain 

dicarboxylic acids (≤C10), while WS PM had a high abundance of hydroxyacids (vanillic and 

malic acid), as well as ketoacids (glutaric and oxalacetic), and UA PM had a high abundance of 

long-chain monocarboxylic acid (≥C16).  
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APPENDIX A 

Application of AMDIS for the automatized interpretation of GC-MS data 

The following protocol describes the identification of multiple species in GC-MS chromatogram 

using AMDIS deconvolution software and MS library resulting in the identification report. The 

advantage of this setup over the traditional use of MS library is that the AMDIS software 

deconvolutes, which MS ions truly belong the peak and which belong to the background. AMDIS 

allows to provide two options of matching with MS library where reverse matching seems to be 

better. It also allows to setup number of parameters to get optimal results. The data files can be 

processed either as a single files or in batch. 

The overall process consist from 3 major steps, deconvolution, identification, and generation of 

report. The deconvolution can be performed either one-by-one (single data file) or as a batch 

(multiple files). 

1. Deconvolution 

Single data file 

File -> Open (pick data file to process) 

Analyze -> Analyze GC-MS data (finds all the peaks in the data file) 

Analysis Settings:  

Identif. pane offers matching with library, it seems the reverse search1 provides higher quality 

data and applies to library matching  

  – Type of analysis allows to use retention indexes. We use “Simple”, because we don’t 

use retention indexes 

                                                      
 

1 Reverse Match Factor (RMF) is the normalized dot product with square-root scaling of the submitted mass 
spectrum and the library mass spectrum, but the elements that are not present in the library mass spectrum are not 
included. 
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The instr. pane sets the instrumental parameters, such as m/z range, which ensures only mass 

range available is used for matching. Threshold is a basic parameter for discriminating peaks by 

size. The selecting of “Low, Medium or High” setting automatically determines, which noise level 

will be utilized. For “Low setting” the signal threshold will then be set slightly lower than the 

determined noise level. For “Medium setting” it will be set at or near to the noise level and for 

“High” it will be a little above. With the default value of “Off”, the analysis will use the signal 

threshold value stored in the data file. 

 

We left other settings unaltered. 
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The deconvolution pane offers omitting certain m/z values. Adjacent peak subtraction (None, 

One, Two) – sets whether subtraction from one side or from both sides, default value is “One”. 

Resolution (Low, Medium, High), Sensitivity (Very High, High, Medium, Low, Very Low) and Shape 

requirements (High, Medium, Low) set those parameters, while higher setting leads to significant 

increase of processing time and number of targets per peak. The default values are “Medium” 

for all three of them. We generally use default settings, e.i. “One, Medium, Medium, Medium), 

with threshold either “Low”, or “Medium” 

The library panel allows to choose from pre-defined RI libraries. 

The QA/QC pane allows to insert typical values for solvent tailing and column bleed. 

The scan sets pane covers the possibility of different scan sets in the analysis, to use, the box in 

instrument panel has to be checked (USE SCAN SETS). 

The filter pane covers filters for the analysis of chromatogram. 

Save 

Pressing “Run” analyzes the file based on last saved settings 

Multiple files 

File -> Batch job -> Create and Run Job 

It uses the last saved settings for analyzing (described under single files) 

This is particularly useful for analysis of more samples where we want to process them all by one 

method. 

2. MS analysis 

After the chromatogram is deconvoluted, we can proceed to identification of the peaks using full 

NIST library.  

Analyze -> Search NIST library 
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The red box – how many hits program reports, either based on concrete number, minimal match 

factor (i.e. if we want only hits more than 75%) or probability2  

The blue box – there is possibility to omit already identified compounds from the first step, 

however, it is better to analyze everything again, because the NIST library offers better hits. 

The green box – here either exact number of peaks is analyzed or peaks above the threshold. 

Zero means all the compounds, however, it’s possible to discriminate peaks based on their size. 

The yellow box – library can be chosen here. 

                                                      
 

2 percentage probability threshold that hits must exceed to be reported (not sure what it actually does, may 
have connection with RI related search) 
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3. Generating report 

File -> Generate Report … 

 

It creates a txt file with all the information found about the compound – including data file name, 

CAS number, tentative identification and the information in the red box on figure below. There 

is possibility to save all the generated hits, or just the first. 
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Table A.1 Summary of previous studies focusing on simultaneous GC-MS determination of acids, saccharides and polyalcohols in various sample matrices. 

 Target analytes  Sample preparation   

Sample matrix Acids Saccharides Polyalcohols 
Concentration 
range Derivatization 

Pre-
treatment 

Method 
analysis Ref. 

apricots 

phosphoric, 
succinic, citric, 
palmitic, stearic, 
galacturonic, malic, 
quinic, tartaric 

fructose, turanose, 
maltose, glucose, 
sucrose, trehalose, 
raffinose, xylose, 
galactose 

mannitol, 
sorbitol, 
inositol 2.52500 µg/mL  

hydroxylamine 
in pyridine 
HMDS with TFA evaporation GC-IT-MS [1] 

plant tissue 

lactic, malic, 
pyruvic, citric, 
ascorbic 

fructose, glucose, 
sucrose 

pinitol, 
mannitol, 
sorbitol, 
inositol 

25125 µM 
LOD: 3-76 ng 

hydroxylamine 
in ACN 
HMDS with TFA SPE GC-FID [2] 

apricots 

ascorbic, citric, 
malic, quinic, 
tartaric, succinic 

fructose, maltose, 
raffinose, trehalose, 
xylose 

inositol, 
mannitol, 
sorbitol 0.014 mg/mL 

pyridine 
HMDS 
TMCS evaporation GLC-FID [3] 

sour cherry 
apple 
ber fruit 

succinic, decanoic, 
malic, tartaric, citric, 
quinic, galacturonic, 
stearic 

fructose, glucose, 
sucrose, xylose, 
rhamnose, raffinose 

inositol, 
sorbitol 2.52500 µg/mL 

hydroxylamine 
in pyridine 
HMDS with TFA evaporation GC-IT-MS [4] 

 

fumaric, maleic, 
malonic, malic, 
oxalic, succinic, 
tartaric; arachidic, 
capric, myristic, 
nonadecanoic, oleic, 
palmitic, stearic 

arabinose, galactose, 
glucose, lactose, 
maltose, mannose, 
ribose, xylose 

erythritol, 
glycerol, 
inositol, 
mannitol 1050 µg/mL 

methoxylamine 
HCl in pyridine 
BSTFA (1% 
TMCS) evaporation GCxGC-TOF-MS [5] 
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Table A.1 cont. 

 Target analytes  Sample preparation   

Sample matrix Acids Saccharides Polyalcohols 
Concentration 
range Derivatization 

Pre-
treatment 

Method 
analysis Ref. 

soil NRb 

ribose, rhamnose, 
arabinose, xylose, 
fructose, 
mannose, 
glucose, galactose NR 10800 µg/mL 

hydroxylamine 
and 4-
dimethylamine 
in pyridine-
methanol  hydrolysis GC-FID [6] 

atmospheric 
aerosol 

Glycolic, malonic, maleic, 
succinic, glutaric, 
mandelic, malic, 
hydroxybenzoic, adipic, 
pimelic, phthalic, 
suberic, azelaic 

arabinose, 
mannose, 
galactose, 
glucose, 
levoglucosan, 
trehalose, 
maltose NR 

0.515 µg/L 
LOD: 17 ng/m3 

BSTFA (1% 
TMCS) with 
pyridine   GC-MS [7] 

urine 
atmospheric 
aerosol 

oxalic, methylmalonic, 
malonic, maleic, 
methylsuccinic, succinic, 
fumaric, glutaric, adipic, 
pimelic, phthalic, 
suberic, oleic, linoleic, 
azelaic, sebacic 

rhamnose, 
arabinose, xylose, 
mannose, 
glucose, 
levoglucosan, 
sucrose, maltose, 
lactose, mezitose 

xylitol, 
arabitol, 
mannitol, 
inositol NR 

BSTFA/ 
MTBSTFA   GC-MS [8] 

bacteria 

citric, fumaric, lactic, 
malic, oxaloacetate, 
pyruvic 

2-deoxyglucose, 
fructose, glucose, 
ribose xylitol 

0.250 µg/mL 
LOQc: 0.10.7 
mmol/g 

ethoxylamine in 
pyridine, MSTFA 
with pyridine  GC-MS [9] 

rye grass 

ascorbic, benzoic, citric, 
fumaric, gluconic, 
glyceric, hydroxyl-
benzoic, isocitric, maleic, 
malic, nicotinic, oxalic, 
pyruvic, succinic, tartaric NA NR 50 mg/L 

BSA,TMCS, TMSI 
with pyridine 

dried @50C 
for 60h GCxGC-TOF-MS [10] 
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Table A.1 cont. 

 Target analytes  Sample preparation   

Sample matrix Acids Saccharides Polyalcohols 
Concentration 
range Derivatization 

Pre-
treatment 

Method 
analysis Ref. 

basidiomycetes Uronic 

arabinose, ribose, 
fructose, 
galactose, 
glucose, 
disaccharides NA NR 

hydroxylamine 
in pyridine 
HMDS with TFA evaporation GC-IT-MS [11] 

flour NR NR NR NR 
TMSI with 
pyridine  GC-MS [12] 

fruit pulp NR 

arabinose, xylose, 
fructose, glucose, 
sucrose NR NR 

BSTFA with 
pyridine  
BSTFA with 
aniline  
BSTFA with ACN  evaporation GC-MS [13] 

parsley leaves 
fruits quinic 

apinose, 
arabinose, 
fructose, glucose, 
sucrose, raffinose, 
melezitose 

sorbitol, 
inositol, 
chrysoeriol, 
stigmasterol, 
sitosterol 580 ng/µL 

hydroxylamine 
in pyridine 
HMDS with TFA evaporation GC-IT-MS [14] 

atmospheric 
aerosol 
soil 
sediment NR 

glucose, 
levoglucosan, 
sucrose sorbitol 

1.2120 µg/mL 
LOD: 130360 
ng/mL 

BSTFA with 
pyridine evaporation GC-MS [15] 

honey 

Benzoic, phosphoric, 
succinic, malic, shikimic, 
citric, isocitric, quinic, 
margaric, stearic NR 

Hydromethyl-
furfurol 0.54 mg/mL 

hydroxylamine 
in pyridine 
HMDS with TFA evaporation GC-MS [16] 

orange juice 

oxalic, succinic, fumaric, 
malic, tartaric, citric, 
quinic, glutaric, 
galacturonic 

xylose, arabinose, 
ribose, rhamnose, 
fructose, glucose, 
sucrose, maltose, 
raffinose 

sorbitol, 
mannitol, 
inositol 80110 µg/mL 

methoxylamine 
HCl in pyridine 
MSTFA  evaporation  GC-MS [17] 
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Table A.2 Optical microscope images of succinic acid samples 

Image Description 

 

JR96-1 

 

A – Kawasaki 

Obtained: 6/22/2012 

White small grains 

 

JR96-2 

 

B – Myriant 

Obtained: 6/22/2012 

White medium grains 

 

JR96-3 

 

C – Rick 18 

Obtained: 6/22/2012 

White huge grains  

Unpleasant odor 
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Table A.2 cont. 

  

JR96-4 

 

D – Rick 20 

Obtained: 6/22/2012 

White medium grains 

 

 

JR96-5 

 

E – 11007 

Obtained: 6/22/2012 

White medium flakes 
 Unpleasant odor 

 

JR96-6 

 

F – 11006 

Obtained: 2/28/2012 

White small grains 

Unpleasant odor 
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Table A.2 cont. 

 

JR96-7 

 

G – 111101A 

Obtained: 2/28/2012 

White small grains  

Unpleasant odor 

 

JR96-8 

 

H – E. coli 

Obtained: 12/7/2012 

Yellow small flakes 

Unpleasant odor 

 

JR96-11 

 

K – 120303 

Obtained: 12/7/2012 

White small flakes 

Unpleasant odor 
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Table A.2 cont. 

 

JR96-12 

 

L – 111001A 

Obtained: 12/7/2012 

White medium grains 

 

JR96-13 

 

M – 10018 

Obtained: 12/7/2012 

White small grains 

Unpleasant odor 

 

JR96-14 

 

N – 10022 

Obtained: 12/7/2012 

White medium grains 
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Table A.2 cont. 

 

JR96-15 

 

O – 10023 

Obtained: 12/7/2012 

White small grains 

 

JR96-16 

 

P – 120401 

Obtained: 12/15/2012 

White small grains 

 

Microscope used to obtain images was Olympus SZX12 with Fiber Optics lenses (Olympus 
Corporation, Japan), with 450x magnification. Image was captured with DP-70 camera (Olympus 
Corporation, Japan) 
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Table A.3 Contaminants observed upon BSTFA derivatization of ACN extract of petroleum based and initial processed succinic acid samples. 

    A - Petroleum     K - initially processed     

     

MS lib. 
match   

MS lib. 
match   

tr12 name 

Percent 
response
c 

Adjusted 
Per. 
Resp.d We Rf 

Percent 
response 

Adjusted 
Per. 
Resp.  W R Confirmed 

0.316 formic acid 0.01% 0.015 87 87 0.05% 0.035 94 94 * 
0.403 acetic acid 0.02% 0.024 89 91 0.26% 0.172 91 92 * 
0.517 methyl ester hexanoic acid      0.01% 0.007 35 43   
0.571 methyl-propanoic  acid 0.0004% 0.0005 67 78        
0.585 alanine      0.04% 0.026 66 72   
0.589 dimethylsulfone      0.02% 0.013 84 89 * 
0.610 benzotriazol-5-amine, 1-phenyl-      0.03% 0.020 53 84   
0.631 ethanediol 0.04% 0.043 92 93      * 
0.629 1,2-benezenedicarbonitrile      0.01% 0.008 63 69   

0.635 silane, (2-furanylmethoxy)trimethyl-      0.01% 0.006 56 64   
0.658 aminoethanol 0.003% 0.004 59 80        

0.660 butanediol      0.04% 0.026 86 91 * 
0.671 lactic acid 0.004% 0.005 76 77 0.45% 0.304 94 94 * 
0.680 glycolic acid 0.003% 0.004 83 83      * 
0.689 indene      0.00% 0.002 73 88   
0.692 alanine      0.02% 0.015 88 88   
0.703 butanediol      0.00% 0.001 63 75   
0.706 oxalic acid 0.004% 0.005 86 90      * 

0.715 methyl butanol 0.01% 0.015 69 70        
0.718 hydroxybutyric acid      0.02% 0.016 90 91 * 
0.722 oxypentanoic acid      0.02% 0.016 75 76   

0.730 
phenol, 2-amino-4,6-bis(1,1-
dimethylethyl)-      0.00% 0.003 39 58   
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Table A.3 cont. 

    A - Petroleum     K - initially processed     

     

MS lib. 
match   

MS lib. 
match   

tr12 name 

Percent 
response
c 

Adjusted 
Per. 
Resp.d We Rf 

Percent 
response 

Adjusted 
Per. 
Resp.  W R Confirmed 

0.736 pentenoic acid      0.04% 0.027 57 67   

0.743 

hydroxylamine, O-
(pentafluorobenzyl)-N-
(trimethylsilyl)-      0.72% 0.483 83 85   

0.746 L-valine (bisTMS)      0.12% 0.081 78 78 * 
0.747 10-nonadecanamine      0.002% 0.001 67 74   
0.753 hydroxymethylpentanoic acid      0.01% 0.004 68 71   
0.757 ethyl succinate      0.06% 0.043 80 80 * 
0.763 benzoic acid 0.01% 0.008 90 90      * 

0.765 glycerol      0.06% 0.041 60 62   
0.770 glycerol 0.001% 0.001 70 70 0.01% 0.010 83 87 * 
0.774 hydroxyhexanoic acid      0.01% 0.005 39 52   
0.778 butanetriol      0.01% 0.006 78 79   
0.784 diphenoxybenzene      0.004% 0.003 50 64   
0.789 3,4-dimethoxymandelic acid      0.01% 0.008 48 72   
0.792 methyl succinic acid 0.03% 0.033 82 84        
0.793 dihydroxypropanoic acid      0.003% 0.002 54 57   
0.798 pyrimidine      0.02% 0.015 67 68   

0.814 malic acid isomer      0.12% 0.077 55 55   
0.821 pentanedioic acid 0.000% 0.0004 48 77 0.03% 0.021 74 75 * 
0.842 357(10),181(60),176(50),147(100)      1.44% 0.966      
0.851 hydroxypentanoic acid      0.01% 0.003 44 44   
0.854 malic acid 4.49% 5.403 91 94 0.03% 0.022 85 91   
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Table A.3. cont. 

    A - Petroleum     K - initially processed     

     

MS lib. 
match   

MS lib. 
match   

tr12 name 

Percent 
response
c 

Adjusted 
Per. 
Resp.d We Rf 

Percent 
response 

Adjusted 
Per. 
Resp.  W R Confirmed 

0.860 hexanedioic acid 0.003% 0.004 61 63      * 

0.860 
acetamide, N,N-dimethyl-(4-
phenyl)diphenyl-      0.02% 0.012 63 82   

0.862 threitol      0.01% 0.008 55 57   

0.870 
2,9-dimethyl-3,4,5,10-tetrahydro-
2H-azepinol[3,4-b]indol-1-one      0.08% 0.050 53 55   

0.872 proline 0.001% 0.001 79 82        
0.877 pentitol      0.00% 0.003 57 57   
0.884 dihydroxypentanedioic acid      0.002% 0.001 47 48   

0.892 glyceric acid 0.004% 0.005 79 80        
0.902 hexanoic acid derivative      0.01% 0.010 58 77   

0.903 phenylpyridine      0.01% 0.005 42 83   
0.907 succinyl lactate 0.003% 0.003 72 74 0.01% 0.004 54 70   
0.910 xylonic acid      0.003% 0.002 55 58   
0.925 octanedioic acid 0.001% 0.001 48 48      * 
0.930 phthalic acid 0.03% 0.031 91 93        
0.933 heptulose      0.01% 0.005 71 74   
0.953 arabinoic acid lactone      0.01% 0.007 62 71   

0.959 terephthalic acid 0.00001 0.001 84 84        
0.960 arabinose      0.001% 0.001 56 61   
0.967 citric acid      0.10% 0.066 48 51   
0.971 tetradecanoic acid 0.00001 0.001 41 43      * 
0.975 arabinose      0.01% 0.003 68 76   
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Table A.3 cont. 

    A - Petroleum     K - initially processed     

     

MS lib. 
match   

MS lib. 
match   

tr12 name 

Percent 
response
c 

Adjusted 
Per. 
Resp.d We Rf 

Percent 
response 

Adjusted 
Per. 
Resp.  W R Confirmed 

0.978 glucose      0.01% 0.005 72 74   
0.992 heptanol derivative      0.05% 0.035 83 88   
0.995 arabinose      0.002% 0.002 67 73   
1.000 o-terphenyl (IS) 0.83% 1.000 90 90 1.49% 1.000 79 79 IS 
1.006 lyxose      0.001% 0.001 58 71   
1.013 glucose      0.03% 0.021 74 84   
1.028 hexadecanoic acid 0.02% 0.023 89 91 0.01% 0.007 72 75 * 
1.080 octadecanoic acid 0.03% 0.036 83 85 0.01% 0.009 68 72 * 
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Figure A.0.1 Comparison of elution of succinic acid and its isomer methylsuccinic acid using developed GC-MS program 
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APPENDIX B 

Table B.1 Determination of bioactive fractions of Pulicaria jaubertii 

    Fraction1 
  Control  PJM PJH PJD PJA 

Endpoint        

Triacylglyceride2 
(mg/mg protein) 

 1.45 (0.18)  0.61 (0.15)* 1.15 (0.24) 0.90 (0.07)* 1.01 (0.27) 

GSH3 
(nmol/mg protein) 

 28.5 (2.3)  10.9 (1.2)* 14.2 (2.5)a 12.2 (3.7)* 24.5 (4.4) 

GSSG3 
(nmol/mg protein) 

 0.53 (0.12)  0.95 (0.29) 1.03 (0.24) 1.01 (0.22) 0.65 (0.18) 

        
Gene Expression4        
NQO1  1.00  6.2 (0.8)* 2.4 (0.5) 7.6 (0.8)* 1.6 (0.1) 
GR  1.00  2.7 (0.1)* 1.7 (0.1) 3.3 (0.5)* 1.3 (0.1) 
GCLC  1.00  5.7 (0.1)* 1.6 (0.5) 7.1 (1.2)* 1.4 (0.4) 
GPx1  1.00  1.2 (0.2) 1.1 (0.1) 1.5 (0.6) 1.5 (0.7) 
GPx3  1.00  7.0 (0.5)* 5.7 (0.1)* 12.2 (0.9)* 1.4 (0.1) 
GPx4  1.00  1.6 (0.2)* 1.3 (0.2) 1.7 (0.2)* 1.6 (0.0) 
Catalase  1.00  3.2 (0.3)* 2.8 (0.7)* 2.9 (0.3)* 1.6 (0.0) 
SOD1  1.00  1.4 (0.5) 1.5 (0.5) 1.1 (0.4) 1.6 (0.1) 
SOD2  1.00  1.5 (0.4) 1.5 (0.2) 1.5 (0.1) 1.1 (0.1) 

* significantly (p ≤ 0.05) different from the Control (vehicle only) treatment using one way 
ANOVA.  
1 Pulicaria jaubertii methanol fraction (PJM); PJ hexane fraction (PJH); PJ dichloromethane fraction 
(PJD); PJ aqueous fraction (PJA); NADPH;Quinone Oxidoreductase 1 (NQO1); Glutathione 
reductase (GR); glutamate cysteine ligase catalytic unit (GCLc); Glutathione peroxidase (GPx); 
Superoxide dismutase (SOD); 2Triacylglyceride content was measured after treating 3T3-L1 
preadipocytes with the fractions following the seven-day differentiation regimen. Data are the 
mean ± the SD for three independent experiments (n = 3); 3 GSH and GSSG were measured 
following a 6 hr exposure of 3T3-L1 preadipocytes to the fractions. Data are the mean ± the SD 
for three independent experiments (n = 3); 4 Gene expression analysis was performed on 3T3-L1 
preadipocytes 48 hrs following a single exposure to the fractions. Data are the mean ± the SD for 
three independent experiments (n = 3). 
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Table B.2 Compounds observed in Pulicaria extract and its fractions using GC-MS. Amount is reported as percentage of TIC together with amount normalized by internal 
standard amount. Only compounds with amount higher than 0.5% were reported. 

  MeOH crude extract   Hexane fraction   DCM fraction   Water-methanol fraction 
MS library 
match 

Name r12
 Amounta % of IS r12 Amount % of IS r12 Amount % of IS r12 Amount % of IS Wb Rc 

Carvotanacetone 0.661 0.59% 4% 0.665 30.98% 376% 0.663 4.23% 7%    91 92 

Octanoic acid, 4-methyl-, methyl ester       0.743 1.28% 2%    60 62 

2H-Pyran-2-one, 5,6-dihydro-4,6,6-trimethyl-       0.752 3.52% 6%    66 84 

Cyclohexanone, 2-pentyl-       0.760 2.72% 5%    64 66 

Cyclohexanone, 2-ethyl-       0.764 3.02% 5%    70 74 

8-Hydroxycarvotanacetone       0.771 3.58% 6%    87 88 
3-Cyclohexene-1-carboxylic acid, 4-methyl-2-
oxo-, methyl ester       0.832 2.58% 4%    71 72 

o-Terphenyl (IS) 1.000 14.82% 100% 1.000 8.23% 100% 1.000 59.87% 100% 1.000 92.30% 100%   

n-Hexadecanoic acid 1.031 12.01% 81% 1.031 7.99% 97% 1.120 6.05% 10%    90 90 

n-Hexadecanoic acid    1.063 5.36% 65%       91 95 

2-Cyclopentene-1-tridecanoic acid    1.103 3.15% 38%       60 62 

α-Linolenic acid 1.105 27.69% 187% 1.106 25.32% 308%       87 88 

Octadecanoic acid       1.194 4.23% 7%    81 81 

Pregnane derivative          1.206 1.25% 1% 37 54 

Pentacosane    1.235 2.76% 34%       88 88 
1,2-Benzenedicarboxylic acid, mono(2-
ethylhexyl) ester    1.246 9.63% 117%       94 95 

1-Docosene 1.299 3.14% 21% 1.300 3.18% 39%             76 83 
a”amount” denotes normalized percent of TIC, b”W” denotes weighted library match; c”R” denotes reversed library match  
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Table B.3 Compounds observed in Pulicaria extract and it's fractions using GC-MS after derivatization with BSTFA. Amount is reported as percetage of TIC together with amount 
normalized by internal standard amount. Only compounds with amount higher than 0.5% were reported 

  MeOH crude extract  Hexane fraction  DCM fraction  Water-methanol fraction MS library match 

Name r12
 Amounta % of IS r12 Amount % of IS r12 Amount % of IS r12 Amount % of IS Wb Rc 

Carvotanacetone 0.665 5.36% 336% 0.666 18.77% 1418% 0.663 1.59% 15%    91 91 

Glycerol 0.674 7.09% 444%    0.673 3.05% 28% 0.674 12.64% 473% 93 93 

Butanoic acid, 4-amino-          0.821 1.02% 38% 85 91 

D-Fructose          0.958 1.50% 56% 81 88 

D-Fructose 0.961 3.81% 238%       0.961 3.89% 146% 91 94 

Pregnane derivative 0.980 3.69% 231%       0.979 5.19% 194% 56 60 

D-Glucose 0.995 3.70% 231%       0.995 4.92% 184% 92 97 

o-Terphenyl (IS) 1.000 1.60% 100% 1.000 1.32% 100% 1.000 10.72% 100% 1.000 2.67% 100% 93 93 

Inositol 1.022 8.16% 510%       1.022 14.95% 560% 86 86 

Inositol 1.022 3.43% 215%          54 55 

Talose 1.032 7.96% 498%       1.032 12.59% 471% 92 93 

Hexadecanoic acid 1.064 6.96% 435% 1.065 20.25% 1529%       89 95 

Inositol 1.079 10.17% 636%    1.083 0.99% 9% 1.079 17.56% 657% 88 89 

Linoleic acid    1.130 8.41% 635%       89 92 

α-Linolenic acid 1.132 9.16% 573% 1.134 22.43% 1694%       91 97 

Glycerol galactoside 1.164 1.93% 121%       1.164 3.02% 113% 81 94 

Pregnane derivative       1.212 2.95% 27%    60 77 

Estratriene derivative 1.274 1.11% 69%    1.274 2.74% 26% 1.276 2.71% 102% 90 92 

Adenosine 1.277 1.51% 94%       1.277 1.63% 61% 80 89 

Tricosanoic acid    1.315 5.00% 378%       86 87 

Catechin-like compound 1.378 5.70% 356%    1.378 5.79% 54% 1.378 3.25% 122% 74 80 

Cinnamic acid 1.382 1.29% 81%    1.382 7.94% 74%    46 59 

Catechin-like compound 1.383 7.36% 460%    1.383 41.16% 384%    58 70 

Cinnamic acid 1.384 1.23% 77%       1.384 16.81% 157% 1.382 1.48% 55% 57 71 
a”amount” denotes normalized percent of TIC, b”W” denotes weighted library match; c”R” denotes reversed library match
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APPENDIX C 

Preparation of RES-d5, R3G-d5, and R3S-d5. 

R3G-d5 and R3S-d5 were prepared from RES-d5 as described for the non-deuterated analogs.3,4 RES-d5 

was prepared from toluene-d8, as shown in Fig 1, relying on the previously developed condensation of  3,5-

dimethoxybenzyl diethylphosphonate with anisaldehyde.3 4-Bromotoluene-d7 and 1-bromo-4-

(bromomethyl)benzene-d6 were prepared from toluene-d8 according to the reported method,5 relying on the 

highly para-selective electrophilic bromination in presence of NaY zeolite.6 Thus, obtained 1-bromo-4-

(bromomethyl)benzene-d6 was converted to anisaldehyde-d6 as follows. 

1-Bromo-4-(methoxymethyl)benzene -d6. A round bottom flask was charged with sodium methoxide (5 

M in methanol, 2.06 mL) and anhydrous methanol (5 mL).  1-Bromo-4-(bromomethyl)benzene-d6  (875 mg, 3.41 

mmol) in methanol (10 mL) was then added and the resulting reaction mixture was stirred at room temperature 

under nitrogen for 15 h. Methanol was evaporated under reduced pressure and the obtained residue was 

diluted with ethyl acetate (15 mL). The organic layer was washed subsequently with 1N HCl (15 mL), water (15 

mL) and with brine (15 mL). The resulted organic layer was dried with anhydrous magnesium sulfate, filtered 

and volatiles were evaporated under reduced pressure.  The residue was purified by column a quick 

chromatography on silica gel (1:9, EtOAc/hexane), and immediately used in the next step. Yield: 566 mg (80%). 

Rf = 0.4 (1:7, EtOAc/hexane). 1H NMR (CDCl3, 500 MHz): δ 3.38 (s, 3H). 13C NMR (CDCl3, 125 MHz): δ 137.0, 131.2 

(t, JCD = 25 Hz), 129.0 (t, J = 25 Hz), 121.3, 73.1 (nonet, JCD = 21 Hz), 58.2. 

1-Methoxy-4-(methoxymethyl)benzene-d6. To the solution of sodium methoxide (5 M in methanol, 26.5 

mL) anhydrous dimethylformamide (15 mL) was added under nitrogen. After stirring the mixture for 10 min at 

room temperature (rt), copper(I) iodide (1.95 g, 10.2 mmol) was added and stirred at 90 oC until the solution 

turned to pale yellow. A solution of 1-bromo-4-(methoxymethyl)benzene -d6 (450 mg, 2.56 mmol) in 

                                                      
 

3 . Jungong CS, Novikov A V (2012) Practical Preparation of Resveratrol 3-O-Β-D-Glucuronide. Synth Commun 42:3589–3597. 
4 Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, Mo S, Li Y, Cushman M (2010) Selective Synthesis 

and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites. J. Med Chem. 53: 5033–5043. 
5 Wacker SA, Kashyap S, Li X, Kapoor TM (2011) Examining the Mechanism of Action of a Kinesin Inhibitor Using Stable Isotope 

Labeled Inhibitors for Cross-Linking (SILIC) . J. Am. Chem. Soc. 133: 12386-12389. 
6 Smith K, El-Hiti GA, Hammond MEW, Bahzad D, Li Z, Siquet C (2000) Highly Efficient and Selective Electrophilic and Free 

Radical Catalytic Bromination Reactions of Simple Aromatic Compounds in the Presence of Reusable Zeolites.  J. Chem. Soc. Perkin 
Trans. 1 2745–2752. 
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dimethylformamide (10 mL) was then added, and stirred for additional 5.5 h at 100 oC. Upon completion, the 

reaction mixture was brought to rt and quenched with ethyl acetate followed by 1N HCl. The product was 

extracted to diethyl ether (15 mL) and washed the organic layer with 1 N HCl (15 mL), water (15 mL) and brine 

(15 mL) followed by drying with anhydrous magnesium sulfate and filtering. Volatiles were removed under 

reduced pressure and purification of the crude product was performed by column chromatography on silica gel 

(1:5, EtOAc/hexane). The pure product was obtained as a pale yellow liquid with 265 g (77%). Rf = 0.30 (1:3, 

EtOAc/hexane): 1H NMR (CDCl3, 500 MHz): δ 3.82 (s, 3H), 3.37 (s, 3H). 13C NMR (CDCl3, 125 MHz): δ 159.6, 130.4, 

129.4 (t, JCD = 24 Hz), 113.8 (t, J = 24 Hz), 73.9 (nonet, JCD = 21 Hz), 58.1, 55.7. HRMS (ESI) calculated for C9H7D6O2 

[M+H] 159.1286, found 159.1273. 

Anisaldehyde-d5. A round bottom flask was charged with 1-methoxy-4-(methoxymethyl)benzene-d6 

(200 mg, 1.26 mmol) in 5 mL of acetonitrile/water (1:2). Ceric ammonium nitrate (1.39 g, 2.53 mmol) was then 

added to the reaction mixture and stirred for 6 h at rt. Upon completion, the reaction mixture was diluted with 

water (10 mL) and the product was extracted to dichloromethane (3 x 10 mL). The combined organic layers were 

dried with anhydrous magnesium sulfate, filtered and concentrated under vacuum. Purification by 

chromatography on silica gel (1:7, EtOAc/hexane) provided the product with 150 mg (84%) as colorless viscous 

oil. 1H NMR (CDCl3, 500 MHz): δ 3.88 (s, 3H). 13C NMR (CDCl3, 125 MHz): δ 190.9 (t, JCD = 26 Hz), 165.0, 132.0 (t, 

JCD = 24 Hz), 130.1, 114.3 (t, J = 24 Hz), 56.0. HRMS (ESI) calculated for C8H4D5O2 [M+H] 142.0910, found 

142.0869. 
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Figure C.1 ESI-TOF-MS spectrum acquired using FIA in negative mode for RES, showing deprotonated molecular ion 227.07137 and 
confirmation ion 228.07765 (electrolyte: 0.1 mM acetic acid; fragmentor: 225 V; capillary: 3500 V) (A), R3G, showing 
deprotonated molecular ion 403.103456 and confirmation ion 227.07137 (no electrolyte; fragmentor: 200 V; capillary: 4500 V) (B), 
and R3S, showing deprotonated molecular ion 307.028182 and confirmation ion 227.07137 (electrolyte: 1 mM ammonium 
acetate; fragmentor: 175 V; capillary: 4500 V) (C), with proposed fragmentation pathways inset, with all but the sodium adducts 
confirming previous interpretations [64,68,76,77]. 

(
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Figure C.2 Response (based on MS peak area) of RES, R3G, and R3S deprotonated ions at three capillary voltages (A) and four 
fragmentor voltages (B), determined in the negative mode using FIA with 50% MeOH/H2O solvent. (For RES, R3G, and R3S, 
fragmentor and capillary p<0.0005.)  
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Figure C.3 Response (based on MS peak area) of deprotonated RES ions, from DOE optimization of nebulization conditions, 
determined in the negative mode using FIA with 50% MeOH/H2O solvent. (For gas temperature, nebulization pressure, and flow 
rate: p<0.0005; gas temperature and nebulizer pressure p=0.001, gas temperature and flow rate p=0.001, nebulizer pressure and 
flow rate p=0.033.)  
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Figure C.4 ESI-TOF-MS spectrum of suspected resveratrol sulfate derivatives X1 (A) and X2(B) acquired using in negative mode.  
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Table C.1: Summary of LC-MS methods previously used for detection of RES and its metabolites in blood and tissue matrices 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

rat plasma t-RES, t-RES-gluc centrifugation and vortexing 
with IS 

LC-
MS/MS 

column: C18; flow rate: 1.0 
mL/min; injection volume: 20 
µL; isocratic mobile phase with 
25 mM ammonium 
acetate/65% MeOH 

ESI; 
negative 

calibration range: 
5–5000 ng/mL 
(plasma); IS: 
naringenin 

Marier 2002 
[12] 

mouse 
serum 

t-RES, c-RES, t-
R3G, c-R3G, t-
R3S, t-R4'G, t-
R4'S 

centrifugation and vortexing 
with ACN 

LC-MS, 
LC-
MS/MS 

column: C18; flow rate: 0.2 
mL/min; injection volume: 10 
µL; gradient mobile phase with 
A: 26.5 mM formic acid, B: ACN 

ESI; 
negative 

IS: naringenin; 
calibration range: 
NRc 

Yu et al. 
2002 
[2] 

human, 
mice, rat 
plasma 

t-RES, c-RES, t-
RES-gluc, t-RES-
sulf 

extraction with ethyl acetate, 
evaporation, reconstitution in 
20% MeOH 

LC-
MS/MS 

column: C18; flow rate:  0.2 
mL/min; injection volume: 50 
µL; mobile phase with A: 10% 
MeOH, B: 70% MeOH 

ESI; 
negative 

NR Meng et al. 
2004 
[13] 

human 
serum 

t-RES, t-R3G, t-
R4'G 

extraction with ethyl acetate in 
presence of NaH2PO3 
centrifugation with IS, filtration, 
evaporation, , reconstitution in 
MeOH 

LC-
MS/MS 

column: C18; flow rate: 0.2 
mL/min; gradient mobile phase 
with  A: 26.5 mM formic acid, B: 
26.5 mM formic acid/MeOH 

ESI; 
negative 

calibration range: 
2.5–2500 ng/mL 
(MeOH); LOD: 1 
ng/mL; IS: 
carbamezepine 

Vitaglione et 
al. 2005 
[14] 
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Table C.1 cont. 

Sample 
matrix 

Target 
analytesa 

Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

human 
plasma 

t-RES, t-RES-
digluc, t-RES-
gluc, t-RES-
disulf, t-RES-
sulf, t-RES-
sulfogluc 

acidification, vortexing, 
evaporation, reconstitution in 
MeOH/H2O 

LC-
MS/MS 

column: C18; flow rate: 0.249 
mL/min; injection volume: 30 
µL; gradient mobile phase with 
A: 5 mM ammonium 
acetate/isopropanol, B: 
MeOH/2% isopropanol 

ESI; 
negative 

NR Boocock et 
al. 2007 
[15] 

human 
plasma 

t-RES, t-R3S, t-
R3,4'S, t-R3,5'S, 
t-R3G, t-R4'G, t-
R2,4'G, t-R2,4G 

extraction with ACN, 
centrifugation, evaporation, 
reconstitution in MeOH 

LC-
MS/MS 

column: C18; flow rate not 
reported; injection volume: 80 
µL (plasma); gradient mobile 
phase with A: 26.5 mM formic 
acid, B: ACN 

ESI; 
positive 

NR Burkon & 
Somoza 
2008 
[3] 
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Table C.1. cont. 

Sample 
matrix 

Target 
analytesa 

Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

rat 
plasma, 
tissues 

t-RES, t-RES-
gluc, t-RES-sulf 

plasma: SPE with MeOH, tissue: 
homogenized with MeOH, 
vortexed, extraction, 
centrifugation, evaporation 

LC-
MS/MS 

column: C18; flow rate: 1.5 
mL/min; injection volume: 100 
µL; gradient mobile phase with 
A: 524 mM acetic acid, B: 20% 
phase A/80%ACN 

ESI; 
negative 

NR Juan et al. 
2010 
[4] 

mouse 
plasma 

t-RES, c-RES, t-
RES-gluc, c-RES-
gluc,  t-RES-sulf, 
c-RES-sulf, t-
RES-sulfogluc, c-
RES-sulfogluc, 
RES-digluc 

vortexed with ACN and 
supernatant mixed with water 

LC-
MS/MS 

column: C18; flow rate: 0.3 
mL/min; injection volume: 15 
µL; gradient mobile phase with 
A: 26.5 mM formic acid, B: ACN 

ESI; 
negative 

NR Raal et al. 
2009 
[20] 

rat tissue t-RES, t-RES-
gluc, t-RES-sulf 

homogenization with MeOH, 
vortexed, centrifugation, 
evaporation, reconstituted in 
MeOH 

LC-
MS/MS 

column: C18; flow rate: 1.0 
mL/min; injection volume: 20 
µL; gradient mobile phase with 
A: 10% ACN, B: 80% ACN 

ESI; 
negative 

IS: naproxen Wang et al. 
2008 
[21] 
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Table C.1 cont. 

Sample 
matrix 

Target 
analytesa 

Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

human 
plasma 

t-RES vortexed with IS, SPE with 50% 
MeOH/THF 

LC-MS column: C18; flow rate not 
reported; injection volume: 5 
µL; gradient mobile phase with 
A: water, B: MeOH 

ESI; 
negative 

calibration range: 
0.5–100 ng/mL; 
LOQ: 0.5 ng/mL; 
IS: naringenin 

Nunes et al. 
2009 
[16] 

rat serum, 
liver 

t-RES liver: ground in MeOH, filtration, 
evaporatation, reconstituted in 
MeOH; plasma: centrifugation 
with ethyl acetate, evaporation, 
reconstitution in MeOH 

LC-
MS/MS 

column: C18; flow rate: 0.2 
mL/min; gradient mobile phase 
with A: 26.5 mM formic acid, B: 
26.5 mM formic acid/MeOH 

ESI; 
negative 

LOD: ppb 
(specific number 
NR) 

Vitaglione 
et al. 2009 
[17] 

rat 
plasma, 
small 
intestine, 
liver 

t-RES, t-R3G, t-
R4'G 

extraction with IS and ethyl 
acetate, evaporation, 
reconstitution in MeOH 

LC-
MS/MS 

column: C18; flow rate: 0.2 
mL/min; injection volume: 20 
µL; gradient mobile phase with 
A: ACN, B: water 

ESI; 
negative 

LOQ: 0.4 ng/mL; 
IS: genistein 

Zhou et al. 
2009 
[22] 

pig 
plasma 

t-RES,  t-RES-
digluc, t-R3G, t-
RES-sulf, t-RES-
sulfogluc, 

vortexed and centrifuged with 
ACN, evaporation, 
reconstitution in MeOH/ water, 
filtration 

LC-
MS/MS 

column: C18; flow rate: 1.0 
mL/min; injection volume: 50 
µL; gradient mobile phase with 
A: 265 mM formic acid, B: ACN 

ESI; 
negative 

NR Azorín-
Ortuño et al. 
2010 
[10] 
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Table C.1 cont. 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

rat tissues  t-RES, t-RES-gluc, t-RES-
sulf 

extraction with ethyl 
acetate and IS, vortexed, 
centrifugation, 
evaporation, 
reconstitution in MeOH 

LC-
MS/MS 

column: C18; flow rate: 0.2 
mL/min; injection volume not 
reported; isocratic mobile 
phase with 60% ACN 

ESI; 
negative 

calibration range: 
0.1–100.0 ng/mL 
(tissue 
homogenates); 
LOQ: 0.1 ng/mL; 
IS: apigenin 

Liu et al. 
2010 
[23] 

pig 
tissues, 
organs, 
fluids 

t-RES, c-RES, t-R3G, t-
R4'G, t-RES-digluc, t-
RES-disulf, t-RES-sulf, t-
RES-sulfogluc, t-RES-
trisulf, DHR,  DHR3G,  
DHR-digluc, DHR-disulf, 
DHR-sulf, DHR-
sulfogluc, DHR-trisulf 

vortexed and centrifuged 
with ACN, evaporation, 
reconstitution  in MeOH 
and acidified water, 
filtration 

LC-
MS/MS 

column: C18; flow rate: 1.0 
mL/min; injection volume: 50-
80 µL; gradient mobile phase 
with A: 265 mM formic acid, B: 
ACN 

ESI; 
negative 

calibration range: 
0.05–10 µM (in 
organs and 
fluids); LOD: 
0.025 µM (5.7 
ng/mL RES)–0.05 
µM (DHR); LOQ: 
0.05 µM (11.4 
ng/mL RES)–0.25 
(DHR) µM; IS: 
quercetin 

Azorín-
Ortuño et al. 
2011 
[5] 

mouse 
serum 

t-RES, t-R3G vortexed with acid and 
MeOH, incubation, 
centrifugation, SPE with 
MeOH and acetic acid, 
evaporation, 
reconstitution in 
ACN/water  

LC-MS column: C18; flow rate not 
reported; injection volume: 10 
µL;gradient mobile phase with 
A: 1 mM ammonium 
bicarbonate/2% isopropanol; B: 
ACN/2% isopropanol 

negative calibration range: 
10–10,000 
ng/mL, 33.3–
33,333 ng/mL; 
LOD: 21 ng/mL 
(RES), 10 ng/ml 
(R3G); IS: 
naproxen 

Johnson et 
al. 2011 
[24] 
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Table C.1 cont. 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

rat 
plasma 

t-RES vortexed with IS, MeOH, 
and ethyl acetate, 
centrifugation, 
evaporation, 
reconstitution in MeOH 

LC-
MS/MS 

column: C18; flow rate: 1.0 
mL/min; injection volume: 20 
µL; isocratic mobile phase with 
48% ACN 

APCI; 
negative 

calibration range: 
0.1–500 ng/mL 
(plasma); LOQ: 
0.1 ng/mL; IS: 
daidzein 

Su et al. 
2011 
[25] 

rat 
plasma 

t-RES, t-RES-gluc, t-RES-
sulf 

vortexed with ACN, 
centrifugation, 
evaporation, 
reconstituted in MeOH, 
vortexed and centrifuged 
with water 

LC-
MS/MS 

column: C18; flow rate: 0.25 
mL/min; injection volume not 
reported; gradient mobile 
phase A: 5 mM ammonium 
acetate/2% isopropanol, B: 
MeOH/2% isopropanol 

ESI; 
negative 

calibration range: 
5–1000 ng/mL 
(plasma); LOQ: 5 
ng/mL IS: 13C6-
RES 

Kapetanovic 
et al. 2011 
[18] 

dog 
plasma 

t-RES, t-R3G, t-R3S vortexed with IS and ACN, 
centrifugation, 
evaporation, 
reconstituted in MeOH or 
ACN/MeOH, vortexed 
and centrifuged with 
water 

LC-
MS/MS 

column: C18; flow rate: 0.25 
mL/min; injection volume: 25 
µL; gradient mobile phase (for 
resveratrol) with A: 5 mM 
ammonium acetate/2% 
isopropanol, B: MeOH/2% 
isopropanol; gradient mobile 
phase (for metabolites) with A: 
26.5 mM formic acid, B: 26.5 
mM formic acid/ ACN 

ESI; 
negative (t-
RES, t-R3S) 
and 
positive (t-
R3G) 

calibration range: 
5–1000 ng/mL 
(RES and R3G in 
plasma), 10–
2000 ng/mL (R3S 
in plasma); LOQ: 
5 ng/mL RES and 
R3G), 10 ng/mL 
(R3S); IS: trans-
resveratrol-13C6 

Muzzio et al. 
2012 
[11] 
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Table C.1 cont. 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

mouse 
plasma 

t-RES, t-R3G, t-
R4'G, t-R3S, t-R4'S 

vortexed with 
ascorbic acid and IS, 
centrifugation 

LC-MS/MS column: C18; flow rate: 1.0 
mL/min; injection volume: 10 µL; 
gradient mobile phase with A: 5 
mM ammonium acetate, B: 
MeOH 

ESI; 
negative 

calibration range: 10–
10,000 ng/mL (RES, 
R3G, R4'G in plasma); 
3.57–3570 ng/mL (R4'S 
in plasma), 2.46–2460 
ng/mL (R3S in plasma); 
LOQ: 3.57 ng/ml (R4'S), 
2.46 ng/ml (R3S), 10 
ng/ml (R4'G, R3G and 
RES); IS: 
acetaminophen 

Iwuchukwu 
et al. 2012 
[19] 

human 
plasma 

t-RES, c-RES, t-R3G, 
c-R3G, t-R3S, c-R3S, 
t-R4'G, c-R4'G, t-
R4'S, c-R4'S, 
DHR3G, DHR3S, 
DHR4'G, DHR4'S 

SPE with acidified 
MeOH and ethyl 
acetate, evaporation, 
reconstitution in 
mobile phase 

LC-MS/MS column: C18; flow rate: 0.5 
mL/min; injection volume: 15 µL; 
gradient mobile phase with A: 
8.73 mM acetic acid, B: 70% 
acetone/30% ACN/6.99 mM 
acetic acid 

ESI; 
negative 

NR Rotches-
Ribalta et al. 
2012 
[26] 
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Table C.1. cont. 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

human 
urine 

t-RES, c-RES, t-R3G, 
c-R3G, t-R3S, c-R3S, 
t-R4'G, c-R4'G, t-
R4'S, c-R4'S, DHR-
gluc, DHR-sulf, t-
RES-disulf, c-RES-
disulf, t-RES-
sulfogluc 

SPE with acidified 
MeOH, ethyl acetate 
and ammonia (5%) in 
MeOH, evaporation, 
reconstitution in 
mobile phase 

UPLC-
MS/MS 

Column: C18; flow rate: 1 
mL/min; injection volume: 5 μL; 
gradient mobile phase with A: 
8.33 mM acetic acid or 10 mM 
ammonium acetate in in water, 
B: 70% acetone/30% ACN 

ESI; 
negative 

Calibration range: 1-
1000 ng/mL (urine); 
LLOQ: 0.48 ng/mL (t-
RES), 1.41 ng/mL (t-
R3G), 0.36 ng/mL (t-
R3S); IS: trans-
resveratrol-13C6, 
taxifolin 

Rotches-
Ribalta et al. 
2012 
[27] 

rat 
plasma 
and urine 

t-RES, t-RES-gluc, t-
RES-sulf 

Extraction with ACN, 
centrifugation, 
evaporation and 
reconstitution with 
mobile phase  

LC-MS/MS Column: C18; flow rate: 1 
mL/min; injection volume: 5 μL; 
gradient mobile phase with A: 
0.1 % phosphoric acid in water, 
B: 0.1 % phosphoric acid in ACN 

ESI; 
negative 

Calibration range: 0.2-
10 μM (45-228 ng/mL 
t-RES); LOD: 0.1 μM 
(22.8 ng/mL t-RES) 

Setoguchi et 
al. 2014 
[8] 
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Table C.1 cont. 

Sample 
matrix 

Target analytesa Sample preparation Analysis 
method 

LC conditions Ionization Quantification Reference 

rat hearth 
tissue and 
urine 

t-RES, t-R3S, t-R3G Precipitation with 
trifluoroacetic acid, 
extraction with 
MeOH, vortexed and 
centrifuged, 
evaporated and 
reconstituted with 1% 
formic acid in 50% 
MeOH 

UPLC-MSn Column: C18; flow rate: 0.2 
mL/min; gradient mobile phase 
with A: 0.1 % formic acid in 
water, B: 0.1 % formic acid in 
ACN 

ESI; 
negative 

NR Bresciani et 
al. 2014 
[9] 

aanalyte abbreviations: t=trans, c=cis, RES=resveratrol, R3G=resveratrol-3-O-glucuronide, R4'G=resveratrol-4'-O-glucuronide, 

gluc=glucuronide, R3S=resveratrol-3-sulfate, R4'S=resveratrol-4'-sulfate, sulf=sulfate, digluc=diglucurnoide, disulf= disulfate, 

sulfogluc=sulfoglucuronide, trisulf=trisulfate, DHR=dihydroresveratrol, R3,4'S=resveratrol-3,4'-disulfate; t-R3,5'S=resveratrol-3,5'-disulfate, 

R2,4'G=resveratrol-2-C-β-D-/4'-O-β-D-diglucuronide, R2,4G=resveratrol-2-C-β-D-/4-O-β-D-diglucuronide 
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Table C.2 ESI conditions for RES samples introduced to TOF-MS via LC for DOE optimization in negative mode (FIA, 
50% MeOH/H2O solvent, drying gas at 350 °C and 10 L/min; nebulization pressure at 25 psig). 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 1* none** 3500 125 

1 1 none 3500 150 

1 1 none 3500 175 

1 1 none 3500 200 

1 2 none 4000 125 

1 2 none 4000 150 

1 2 none 4000 175 

1 2 none 4000 200 

1 3 none 4500 125 

1 3 none 4500 150 

1 3 none 4500 175 

1 3 none 4500 200 

1 4 0.1 mM acetic acid 3500 125 

1 4 0.1 mM acetic acid 3500 150 

1 4 0.1 mM acetic acid 3500 175 

1 4 0.1 mM acetic acid 3500 200 

1 5 0.1 mM acetic acid 4000 125 

1 5 0.1 mM acetic acid 4000 150 

1 5 0.1 mM acetic acid 4000 175 

1 5 0.1 mM acetic acid 4000 200 

1 6 0.1 mM acetic acid 4500 125 

1 6 0.1 mM acetic acid 4500 150 

1 6 0.1 mM acetic acid 4500 175 

1 6 0.1 mM acetic acid 4500 200 

1 7 0.55 mM acetic acid 3500 125 

1 7 0.55 mM acetic acid 3500 150 

1 7 0.55 mM acetic acid 3500 175 

1 7 0.55 mM acetic acid 3500 200 

1 8 0.55 mM acetic acid 4000 125 

1 8 0.55 mM acetic acid 4000 150 

1 8 0.55 mM acetic acid 4000 175 

1 8 0.55 mM acetic acid 4000 200 

1 9 0.55 mM acetic acid 4500 125 

1 9 0.55 mM acetic acid 4500 150 

1 9 0.55 mM acetic acid 4500 175 

1 9 0.55 mM acetic acid 4500 200 

1 10 1 mM acetic acid 3500 125 
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Table C.2 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 10 1 mM acetic acid 3500 150 

1 10 1 mM acetic acid 3500 175 

1 10 1 mM acetic acid 3500 200 

1 11 1 mM acetic acid 4000 125 

1 11 1 mM acetic acid 4000 150 

1 11 1 mM acetic acid 4000 175 

1 11 1 mM acetic acid 4000 200 

1 12 1 mM acetic acid 4500 125 

1 12 1 mM acetic acid 4500 150 

1 12 1 mM acetic acid 4500 175 

1 12 1 mM acetic acid 4500 200 

1 13 0.1 mM ammonium acetate 3500 125 

1 13 0.1 mM ammonium acetate 3500 150 

1 13 0.1 mM ammonium acetate 3500 175 

1 13 0.1 mM ammonium acetate 3500 200 

1 14 0.1 mM ammonium acetate 4000 125 

1 14 0.1 mM ammonium acetate 4000 150 

1 14 0.1 mM ammonium acetate 4000 175 

1 14 0.1 mM ammonium acetate 4000 200 

1 15 0.1 mM ammonium acetate 4500 125 

1 15 0.1 mM ammonium acetate 4500 150 

1 15 0.1 mM ammonium acetate 4500 175 

1 15 0.1 mM ammonium acetate 4500 200 

1 16 0.55 mM ammonium acetate 3500 125 

1 16 0.55 mM ammonium acetate 3500 150 

1 16 0.55 mM ammonium acetate 3500 175 

1 16 0.55 mM ammonium acetate 3500 200 

1 17 0.55 mM ammonium acetate 4000 125 

1 17 0.55 mM ammonium acetate 4000 150 

1 17 0.55 mM ammonium acetate 4000 175 

1 17 0.55 mM ammonium acetate 4000 200 

1 18 0.55 mM ammonium acetate 4500 125 

1 18 0.55 mM ammonium acetate 4500 150 

1 18 0.55 mM ammonium acetate 4500 175 

1 18 0.55 mM ammonium acetate 4500 200 

1 19 1 mM ammonium acetate 3500 125 

1 19 1 mM ammonium acetate 3500 150 

1 19 1 mM ammonium acetate 3500 175 
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Table C.2 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 19 1 mM ammonium acetate 3500 200 

1 20 1 mM ammonium acetate 4000 125 

1 20 1 mM ammonium acetate 4000 150 

1 20 1 mM ammonium acetate 4000 175 

1 20 1 mM ammonium acetate 4000 200 

1 21 1 mM ammonium acetate 4500 125 

1 21 1 mM ammonium acetate 4500 150 

1 21 1 mM ammonium acetate 4500 175 

1 21 1 mM ammonium acetate 4500 200 

2 1 none 4500 125 

2 1 none 4500 150 

2 1 none 4500 175 

2 1 none 4500 200 

2 2 none 3500 125 

2 2 none 3500 150 

2 2 none 3500 175 

2 2 none 3500 200 

2 3 none 4000 125 

2 3 none 4000 150 

2 3 none 4000 175 

2 3 none 4000 200 

2 4 0.1 mM acetic acid 4500 125 

2 4 0.1 mM acetic acid 4500 150 

2 4 0.1 mM acetic acid 4500 175 

2 4 0.1 mM acetic acid 4500 200 

2 5 0.1 mM acetic acid 4000 125 

2 5 0.1 mM acetic acid 4000 150 

2 5 0.1 mM acetic acid 4000 175 

2 5 0.1 mM acetic acid 4000 200 

2 6 0.1 mM acetic acid 3500 125 

2 6 0.1 mM acetic acid 3500 150 

2 6 0.1 mM acetic acid 3500 175 

2 6 0.1 mM acetic acid 3500 200 

2 7 0.55 mM acetic acid 3500 125 

2 7 0.55 mM acetic acid 3500 150 

2 7 0.55 mM acetic acid 3500 175 

2 7 0.55 mM acetic acid 3500 200 

2 8 0.55 mM acetic acid 4500 125 
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Table C.2 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 8 0.55 mM acetic acid 4500 150 

2 8 0.55 mM acetic acid 4500 175 

2 8 0.55 mM acetic acid 4500 200 

2 9 0.55 mM acetic acid 4000 125 

2 9 0.55 mM acetic acid 4000 150 

2 9 0.55 mM acetic acid 4000 175 

2 9 0.55 mM acetic acid 4000 200 

2 10 1 mM acetic acid 4000 125 

2 10 1 mM acetic acid 4000 150 

2 10 1 mM acetic acid 4000 175 

2 10 1 mM acetic acid 4000 200 

2 11 1 mM acetic acid 3500 125 

2 11 1 mM acetic acid 3500 150 

2 11 1 mM acetic acid 3500 175 

2 11 1 mM acetic acid 3500 200 

2 12 1 mM acetic acid 4500 125 

2 12 1 mM acetic acid 4500 150 

2 12 1 mM acetic acid 4500 175 

2 12 1 mM acetic acid 4500 200 

2 13 0.1 mM ammonium acetate 4000 125 

2 13 0.1 mM ammonium acetate 4000 150 

2 13 0.1 mM ammonium acetate 4000 175 

2 13 0.1 mM ammonium acetate 4000 200 

2 14 0.1 mM ammonium acetate 4500 125 

2 14 0.1 mM ammonium acetate 4500 150 

2 14 0.1 mM ammonium acetate 4500 175 

2 14 0.1 mM ammonium acetate 4500 200 

2 15 0.1 mM ammonium acetate 3500 125 

2 15 0.1 mM ammonium acetate 3500 150 

2 15 0.1 mM ammonium acetate 3500 175 

2 15 0.1 mM ammonium acetate 3500 200 

2 16 0.55 mM ammonium acetate 4500 125 

2 16 0.55 mM ammonium acetate 4500 150 

2 16 0.55 mM ammonium acetate 4500 175 

2 16 0.55 mM ammonium acetate 4500 200 

2 17 0.55 mM ammonium acetate 3500 125 

2 17 0.55 mM ammonium acetate 3500 150 
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Table C.2 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 17 0.55 mM ammonium acetate 3500 175 

2 17 0.55 mM ammonium acetate 3500 200 

2 18 0.55 mM ammonium acetate 4000 125 

2 18 0.55 mM ammonium acetate 4000 150 

2 18 0.55 mM ammonium acetate 4000 175 

2 18 0.55 mM ammonium acetate 4000 200 

2 19 1 mM ammonium acetate 3500 125 

2 19 1 mM ammonium acetate 3500 150 

2 19 1 mM ammonium acetate 3500 175 

2 19 1 mM ammonium acetate 3500 200 

2 20 1 mM ammonium acetate 4000 125 

2 20 1 mM ammonium acetate 4000 150 

2 20 1 mM ammonium acetate 4000 175 

2 20 1 mM ammonium acetate 4000 200 

2 21 1 mM ammonium acetate 4500 125 

2 21 1 mM ammonium acetate 4500 150 

2 21 1 mM ammonium acetate 4500 175 

2 21 1 mM ammonium acetate 4500 200 

     

*The fragmentor was set to 125, 150, 175, and 200 V, in that order, during each run. 

**In all statistical analyses of ESI conditions, the runs with no electrolyte were entered 
twice. 
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Table C.3 ESI conditions for R3G samples introduced to TOF-MS via LC for DOE optimization in negative mode (FIA, 
50% MeOH/H2O solvent, drying gas at 350 °C and 10 L/min; nebulization pressure at 25 psig). 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 1 none 3500 125 

1 1 none 3500 150 

1 1 none 3500 175 

1 1 none 3500 200 

1 2 none 4000 125 

1 2 none 4000 150 

1 2 none 4000 175 

1 2 none 4000 200 

1 3 none 4500 125 

1 3 none 4500 150 

1 3 none 4500 175 

1 3 none 4500 200 

1 4 0.1 mM acetic acid 3500 125 

1 4 0.1 mM acetic acid 3500 150 

1 4 0.1 mM acetic acid 3500 175 

1 4 0.1 mM acetic acid 3500 200 

1 5 0.1 mM acetic acid 4000 125 

1 5 0.1 mM acetic acid 4000 150 

1 5 0.1 mM acetic acid 4000 175 

1 5 0.1 mM acetic acid 4000 200 

1 6 0.1 mM acetic acid 4500 125 

1 6 0.1 mM acetic acid 4500 150 

1 6 0.1 mM acetic acid 4500 175 

1 6 0.1 mM acetic acid 4500 200 

1 7 0.55 mM acetic acid 3500 125 

1 7 0.55 mM acetic acid 3500 150 

1 7 0.55 mM acetic acid 3500 175 

1 7 0.55 mM acetic acid 3500 200 

1 8 0.55 mM acetic acid 4000 125 

1 8 0.55 mM acetic acid 4000 150 

1 8 0.55 mM acetic acid 4000 175 

1 8 0.55 mM acetic acid 4000 200 

1 9 0.55 mM acetic acid 4500 125 

1 9 0.55 mM acetic acid 4500 150 

1 9 0.55 mM acetic acid 4500 175 

1 9 0.55 mM acetic acid 4500 200 

1 10 1 mM acetic acid 3500 125 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 10 1 mM acetic acid 3500 150 

1 10 1 mM acetic acid 3500 175 

1 10 1 mM acetic acid 3500 200 

1 11 1 mM acetic acid 4000 125 

1 11 1 mM acetic acid 4000 150 

1 11 1 mM acetic acid 4000 175 

1 11 1 mM acetic acid 4000 200 

1 12 1 mM acetic acid 4500 125 

1 12 1 mM acetic acid 4500 150 

1 12 1 mM acetic acid 4500 175 

1 12 1 mM acetic acid 4500 200 

1 13 0.1 mM ammonium acetate 3500 125 

1 13 0.1 mM ammonium acetate 3500 150 

1 13 0.1 mM ammonium acetate 3500 175 

1 13 0.1 mM ammonium acetate 3500 200 

1 14 0.1 mM ammonium acetate 4000 125 

1 14 0.1 mM ammonium acetate 4000 150 

1 14 0.1 mM ammonium acetate 4000 175 

1 14 0.1 mM ammonium acetate 4000 200 

1 15 0.1 mM ammonium acetate 4500 125 

1 15 0.1 mM ammonium acetate 4500 150 

1 15 0.1 mM ammonium acetate 4500 175 

1 15 0.1 mM ammonium acetate 4500 200 

1 16 0.55 mM ammonium acetate 3500 125 

1 16 0.55 mM ammonium acetate 3500 150 

1 16 0.55 mM ammonium acetate 3500 175 

1 16 0.55 mM ammonium acetate 3500 200 

1 17 0.55 mM ammonium acetate 4000 125 

1 17 0.55 mM ammonium acetate 4000 150 

1 17 0.55 mM ammonium acetate 4000 175 

1 17 0.55 mM ammonium acetate 4000 200 

1 18 0.55 mM ammonium acetate 4500 125 

1 18 0.55 mM ammonium acetate 4500 150 

1 18 0.55 mM ammonium acetate 4500 175 

1 18 0.55 mM ammonium acetate 4500 200 

1 19 1 mM ammonium acetate 3500 125 

1 19 1 mM ammonium acetate 3500 150 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 19 1 mM ammonium acetate 3500 175 

1 19 1 mM ammonium acetate 3500 200 

1 20 1 mM ammonium acetate 4000 125 

1 20 1 mM ammonium acetate 4000 150 

1 20 1 mM ammonium acetate 4000 175 

1 20 1 mM ammonium acetate 4000 200 

1 21 1 mM ammonium acetate 4500 125 

1 21 1 mM ammonium acetate 4500 150 

1 21 1 mM ammonium acetate 4500 175 

1 21 1 mM ammonium acetate 4500 200 

2 1 none 4000 125 

2 1 none 4000 150 

2 1 none 4000 175 

2 1 none 4000 200 

2 2 none 3500 125 

2 2 none 3500 150 

2 2 none 3500 175 

2 2 none 3500 200 

2 3 none 4500 125 

2 3 none 4500 150 

2 3 none 4500 175 

2 3 none 4500 200 

2 4 0.1 mM acetic acid 4500 125 

2 4 0.1 mM acetic acid 4500 150 

2 4 0.1 mM acetic acid 4500 175 

2 4 0.1 mM acetic acid 4500 200 

2 5 0.1 mM acetic acid 3500 125 

2 5 0.1 mM acetic acid 3500 150 

2 5 0.1 mM acetic acid 3500 175 

2 5 0.1 mM acetic acid 3500 200 

2 6 0.1 mM acetic acid 4000 125 

2 6 0.1 mM acetic acid 4000 150 

2 6 0.1 mM acetic acid 4000 175 

2 6 0.1 mM acetic acid 4000 200 

2 7 0.55 mM acetic acid 3500 125 

2 7 0.55 mM acetic acid 3500 150 

2 7 0.55 mM acetic acid 3500 175 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 7 0.55 mM acetic acid 3500 200 

2 8 0.55 mM acetic acid 4500 125 

2 8 0.55 mM acetic acid 4500 150 

2 8 0.55 mM acetic acid 4500 175 

2 8 0.55 mM acetic acid 4500 200 

2 9 0.55 mM acetic acid 4000 125 

2 9 0.55 mM acetic acid 4000 150 

2 9 0.55 mM acetic acid 4000 175 

2 9 0.55 mM acetic acid 4000 200 

2 10 1 mM acetic acid 4000 125 

2 10 1 mM acetic acid 4000 150 

2 10 1 mM acetic acid 4000 175 

2 10 1 mM acetic acid 4000 200 

2 11 1 mM acetic acid 4500 125 

2 11 1 mM acetic acid 4500 150 

2 11 1 mM acetic acid 4500 175 

2 11 1 mM acetic acid 4500 200 

2 12 1 mM acetic acid 3500 125 

2 12 1 mM acetic acid 3500 150 

2 12 1 mM acetic acid 3500 175 

2 12 1 mM acetic acid 3500 200 

2 13 0.1 mM ammonium acetate 4000 125 

2 13 0.1 mM ammonium acetate 4000 150 

2 13 0.1 mM ammonium acetate 4000 175 

2 13 0.1 mM ammonium acetate 4000 200 

2 14 0.1 mM ammonium acetate 4500 125 

2 14 0.1 mM ammonium acetate 4500 150 

2 14 0.1 mM ammonium acetate 4500 175 

2 14 0.1 mM ammonium acetate 4500 200 

2 15 0.1 mM ammonium acetate 3500 125 

2 15 0.1 mM ammonium acetate 3500 150 

2 15 0.1 mM ammonium acetate 3500 175 

2 15 0.1 mM ammonium acetate 3500 200 

2 16 0.55 mM ammonium acetate 4500 125 

2 16 0.55 mM ammonium acetate 4500 150 

2 16 0.55 mM ammonium acetate 4500 175 

2 16 0.55 mM ammonium acetate 4500 200 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 17 0.55 mM ammonium acetate 4000 125 

2 17 0.55 mM ammonium acetate 4000 150 

2 17 0.55 mM ammonium acetate 4000 175 

2 17 0.55 mM ammonium acetate 4000 200 

2 18 0.55 mM ammonium acetate 3500 125 

2 18 0.55 mM ammonium acetate 3500 150 

2 18 0.55 mM ammonium acetate 3500 175 

2 18 0.55 mM ammonium acetate 3500 200 

2 19 1 mM ammonium acetate 3500 125 

2 19 1 mM ammonium acetate 3500 150 

2 19 1 mM ammonium acetate 3500 175 

2 19 1 mM ammonium acetate 3500 200 

2 20 1 mM ammonium acetate 4000 125 

2 20 1 mM ammonium acetate 4000 150 

2 20 1 mM ammonium acetate 4000 175 

2 20 1 mM ammonium acetate 4000 200 

2 21 1 mM ammonium acetate 3500 125 

2 21 1 mM ammonium acetate 3500 150 

2 21 1 mM ammonium acetate 3500 175 

2 21 1 mM ammonium acetate 3500 200 

3 1 none 4000 125 

3 1 none 4000 150 

3 1 none 4000 175 

3 1 none 4000 200 

3 2 none 3500 125 

3 2 none 3500 150 

3 2 none 3500 175 

3 2 none 3500 200 

3 3 none 4500 125 

3 3 none 4500 150 

3 3 none 4500 175 

3 3 none 4500 200 

3 4 0.1 mM acetic acid 3500 125 

3 4 0.1 mM acetic acid 3500 150 

3 4 0.1 mM acetic acid 3500 175 

3 4 0.1 mM acetic acid 3500 200 

3 5 0.1 mM acetic acid 4000 125 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

3 5 0.1 mM acetic acid 4000 150 

3 5 0.1 mM acetic acid 4000 175 

3 5 0.1 mM acetic acid 4000 200 

3 6 0.1 mM acetic acid 4500 125 

3 6 0.1 mM acetic acid 4500 150 

3 6 0.1 mM acetic acid 4500 175 

3 6 0.1 mM acetic acid 4500 200 

3 7 0.55 mM acetic acid 4000 125 

3 7 0.55 mM acetic acid 4000 150 

3 7 0.55 mM acetic acid 4000 175 

3 7 0.55 mM acetic acid 4000 200 

3 8 0.55 mM acetic acid 4500 125 

3 8 0.55 mM acetic acid 4500 150 

3 8 0.55 mM acetic acid 4500 175 

3 8 0.55 mM acetic acid 4500 200 

3 9 0.55 mM acetic acid 3500 125 

3 9 0.55 mM acetic acid 3500 150 

3 9 0.55 mM acetic acid 3500 175 

3 9 0.55 mM acetic acid 3500 200 

3 10 1 mM acetic acid 4500 125 

3 10 1 mM acetic acid 4500 150 

3 10 1 mM acetic acid 4500 175 

3 10 1 mM acetic acid 4500 200 

3 11 1 mM acetic acid 3500 125 

3 11 1 mM acetic acid 3500 150 

3 11 1 mM acetic acid 3500 175 

3 11 1 mM acetic acid 3500 200 

3 12 1 mM acetic acid 4000 125 

3 12 1 mM acetic acid 4000 150 

3 12 1 mM acetic acid 4000 175 

3 12 1 mM acetic acid 4000 200 

3 13 0.1 mM ammonium acetate 3500 125 

3 13 0.1 mM ammonium acetate 3500 150 

3 13 0.1 mM ammonium acetate 3500 175 

3 13 0.1 mM ammonium acetate 3500 200 

3 14 0.1 mM ammonium acetate 4500 125 

3 14 0.1 mM ammonium acetate 4500 150 
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Table C.3 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

3 14 0.1 mM ammonium acetate 4500 175 

3 14 0.1 mM ammonium acetate 4500 200 

3 15 0.1 mM ammonium acetate 4000 125 

3 15 0.1 mM ammonium acetate 4000 150 

3 15 0.1 mM ammonium acetate 4000 175 

3 15 0.1 mM ammonium acetate 4000 200 

3 16 0.55 mM ammonium acetate 4000 125 

3 16 0.55 mM ammonium acetate 4000 150 

3 16 0.55 mM ammonium acetate 4000 175 

3 16 0.55 mM ammonium acetate 4000 200 

3 17 0.55 mM ammonium acetate 4500 125 

3 17 0.55 mM ammonium acetate 4500 150 

3 17 0.55 mM ammonium acetate 4500 175 

3 17 0.55 mM ammonium acetate 4500 200 

3 18 0.55 mM ammonium acetate 3500 125 

3 18 0.55 mM ammonium acetate 3500 150 

3 18 0.55 mM ammonium acetate 3500 175 

3 18 0.55 mM ammonium acetate 3500 200 

3 19 1 mM ammonium acetate 4000 125 

3 19 1 mM ammonium acetate 4000 150 

3 19 1 mM ammonium acetate 4000 175 

3 19 1 mM ammonium acetate 4000 200 

3 20 1 mM ammonium acetate 3500 125 

3 20 1 mM ammonium acetate 3500 150 

3 20 1 mM ammonium acetate 3500 175 

3 20 1 mM ammonium acetate 3500 200 

3 21 1 mM ammonium acetate 4500 125 

3 21 1 mM ammonium acetate 4500 150 

3 21 1 mM ammonium acetate 4500 175 

3 21 1 mM ammonium acetate 4500 200 
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Table C.4 ESI conditions for R3S samples introduced to TOF-MS via LC for DOE optimization in negative mode (FIA, 
50% MeOH/H2O solvent, drying gas at 350 °C and 10 L/min; nebulization pressure at 25 psig). 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 1 none 4000 125 

1 1 none 4000 150 

1 1 none 4000 175 

1 1 none 4000 200 

1 2 none 3500 125 

1 2 none 3500 150 

1 2 none 3500 175 

1 2 none 3500 200 

1 3 none 4500 125 

1 3 none 4500 150 

1 3 none 4500 175 

1 3 none 4500 200 

1 4 0.1 mM acetic acid 4000 125 

1 4 0.1 mM acetic acid 4000 150 

1 4 0.1 mM acetic acid 4000 175 

1 4 0.1 mM acetic acid 4000 200 

1 5 0.1 mM acetic acid 4500 125 

1 5 0.1 mM acetic acid 4500 150 

1 5 0.1 mM acetic acid 4500 175 

1 5 0.1 mM acetic acid 4500 200 

1 6 0.1 mM acetic acid 3500 125 

1 6 0.1 mM acetic acid 3500 150 

1 6 0.1 mM acetic acid 3500 175 

1 6 0.1 mM acetic acid 3500 200 

1 7 0.55 mM acetic acid 4500 125 

1 7 0.55 mM acetic acid 4500 150 

1 7 0.55 mM acetic acid 4500 175 

1 7 0.55 mM acetic acid 4500 200 

1 8 0.55 mM acetic acid 3500 125 

1 8 0.55 mM acetic acid 3500 150 

1 8 0.55 mM acetic acid 3500 175 

1 8 0.55 mM acetic acid 3500 200 

1 9 0.55 mM acetic acid 4000 125 

1 9 0.55 mM acetic acid 4000 150 

1 9 0.55 mM acetic acid 4000 175 

1 9 0.55 mM acetic acid 4000 200 

1 10 1 mM acetic acid 3500 125 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 10 1 mM acetic acid 3500 150 

1 10 1 mM acetic acid 3500 175 

1 10 1 mM acetic acid 3500 200 

1 11 1 mM acetic acid 4000 125 

1 11 1 mM acetic acid 4000 150 

1 11 1 mM acetic acid 4000 175 

1 11 1 mM acetic acid 4000 200 

1 12 1 mM acetic acid 4500 125 

1 12 1 mM acetic acid 4500 150 

1 12 1 mM acetic acid 4500 175 

1 12 1 mM acetic acid 4500 200 

1 13 0.1 mM ammonium acetate 4000 125 

1 13 0.1 mM ammonium acetate 4000 150 

1 13 0.1 mM ammonium acetate 4000 175 

1 13 0.1 mM ammonium acetate 4000 200 

1 14 0.1 mM ammonium acetate 3500 125 

1 14 0.1 mM ammonium acetate 3500 150 

1 14 0.1 mM ammonium acetate 3500 175 

1 14 0.1 mM ammonium acetate 3500 200 

1 15 0.1 mM ammonium acetate 4500 125 

1 15 0.1 mM ammonium acetate 4500 150 

1 15 0.1 mM ammonium acetate 4500 175 

1 15 0.1 mM ammonium acetate 4500 200 

1 16 0.55 mM ammonium acetate 4500 125 

1 16 0.55 mM ammonium acetate 4500 150 

1 16 0.55 mM ammonium acetate 4500 175 

1 16 0.55 mM ammonium acetate 4500 200 

1 17 0.55 mM ammonium acetate 4000 125 

1 17 0.55 mM ammonium acetate 4000 150 

1 17 0.55 mM ammonium acetate 4000 175 

1 17 0.55 mM ammonium acetate 4000 200 

1 18 0.55 mM ammonium acetate 3500 125 

1 18 0.55 mM ammonium acetate 3500 150 

1 18 0.55 mM ammonium acetate 3500 175 

1 18 0.55 mM ammonium acetate 3500 200 

1 19 1 mM ammonium acetate 3500 125 

1 19 1 mM ammonium acetate 3500 150 

1 19 1 mM ammonium acetate 3500 175 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

1 19 1 mM ammonium acetate 3500 200 

1 20 1 mM ammonium acetate 4500 125 

1 20 1 mM ammonium acetate 4500 150 

1 20 1 mM ammonium acetate 4500 175 

1 20 1 mM ammonium acetate 4500 200 

1 21 1 mM ammonium acetate 4000 125 

1 21 1 mM ammonium acetate 4000 150 

1 21 1 mM ammonium acetate 4000 175 

1 21 1 mM ammonium acetate 4000 200 

2 1 none 3500 125 

2 1 none 3500 150 

2 1 none 3500 175 

2 1 none 3500 200 

2 2 none 4500 125 

2 2 none 4500 150 

2 2 none 4500 175 

2 2 none 4500 200 

2 3 none 4000 125 

2 3 none 4000 150 

2 3 none 4000 175 

2 3 none 4000 200 

2 4 0.1 mM acetic acid 3500 125 

2 4 0.1 mM acetic acid 3500 150 

2 4 0.1 mM acetic acid 3500 175 

2 4 0.1 mM acetic acid 3500 200 

2 5 0.1 mM acetic acid 4000 125 

2 5 0.1 mM acetic acid 4000 150 

2 5 0.1 mM acetic acid 4000 175 

2 5 0.1 mM acetic acid 4000 200 

2 6 0.1 mM acetic acid 4500 125 

2 6 0.1 mM acetic acid 4500 150 

2 6 0.1 mM acetic acid 4500 175 

2 6 0.1 mM acetic acid 4500 200 

2 7 0.55 mM acetic acid 4000 125 

2 7 0.55 mM acetic acid 4000 150 

2 7 0.55 mM acetic acid 4000 175 

2 7 0.55 mM acetic acid 4000 200 

2 8 0.55 mM acetic acid 4500 125 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 8 0.55 mM acetic acid 4500 150 

2 8 0.55 mM acetic acid 4500 175 

2 8 0.55 mM acetic acid 4500 200 

2 9 0.55 mM acetic acid 3500 125 

2 9 0.55 mM acetic acid 3500 150 

2 9 0.55 mM acetic acid 3500 175 

2 9 0.55 mM acetic acid 3500 200 

2 10 1 mM acetic acid 4500 125 

2 10 1 mM acetic acid 4500 150 

2 10 1 mM acetic acid 4500 175 

2 10 1 mM acetic acid 4500 200 

2 11 1 mM acetic acid 3500 125 

2 11 1 mM acetic acid 3500 150 

2 11 1 mM acetic acid 3500 175 

2 11 1 mM acetic acid 3500 200 

2 12 1 mM acetic acid 4000 125 

2 12 1 mM acetic acid 4000 150 

2 12 1 mM acetic acid 4000 175 

2 12 1 mM acetic acid 4000 200 

2 13 0.1 mM ammonium acetate 3500 125 

2 13 0.1 mM ammonium acetate 3500 150 

2 13 0.1 mM ammonium acetate 3500 175 

2 13 0.1 mM ammonium acetate 3500 200 

2 14 0.1 mM ammonium acetate 4500 125 

2 14 0.1 mM ammonium acetate 4500 150 

2 14 0.1 mM ammonium acetate 4500 175 

2 14 0.1 mM ammonium acetate 4500 200 

2 15 0.1 mM ammonium acetate 4000 125 

2 15 0.1 mM ammonium acetate 4000 150 

2 15 0.1 mM ammonium acetate 4000 175 

2 15 0.1 mM ammonium acetate 4000 200 

2 16 0.55 mM ammonium acetate 4000 125 

2 16 0.55 mM ammonium acetate 4000 150 

2 16 0.55 mM ammonium acetate 4000 175 

2 16 0.55 mM ammonium acetate 4000 200 

2 17 0.55 mM ammonium acetate 3500 125 

2 17 0.55 mM ammonium acetate 3500 150 

2 17 0.55 mM ammonium acetate 3500 175 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

2 17 0.55 mM ammonium acetate 3500 200 

2 18 0.55 mM ammonium acetate 4500 125 

2 18 0.55 mM ammonium acetate 4500 150 

2 18 0.55 mM ammonium acetate 4500 175 

2 18 0.55 mM ammonium acetate 4500 200 

2 19 1 mM ammonium acetate 4500 125 

2 19 1 mM ammonium acetate 4500 150 

2 19 1 mM ammonium acetate 4500 175 

2 19 1 mM ammonium acetate 4500 200 

2 20 1 mM ammonium acetate 4000 125 

2 20 1 mM ammonium acetate 4000 150 

2 20 1 mM ammonium acetate 4000 175 

2 20 1 mM ammonium acetate 4000 200 

2 21 1 mM ammonium acetate 3500 125 

2 21 1 mM ammonium acetate 3500 150 

2 21 1 mM ammonium acetate 3500 175 

2 21 1 mM ammonium acetate 3500 200 

3 1 none 4000 125 

3 1 none 4000 150 

3 1 none 4000 175 

3 1 none 4000 200 

3 2 none 4500 125 

3 2 none 4500 150 

3 2 none 4500 175 

3 2 none 4500 200 

3 3 none 3500 125 

3 3 none 3500 150 

3 3 none 3500 175 

3 3 none 3500 200 

3 4 0.1 mM acetic acid 4500 125 

3 4 0.1 mM acetic acid 4500 150 

3 4 0.1 mM acetic acid 4500 175 

3 4 0.1 mM acetic acid 4500 200 

3 5 0.1 mM acetic acid 4000 125 

3 5 0.1 mM acetic acid 4000 150 

3 5 0.1 mM acetic acid 4000 175 

3 5 0.1 mM acetic acid 4000 200 

3 6 0.1 mM acetic acid 3500 125 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

3 6 0.1 mM acetic acid 3500 150 

3 6 0.1 mM acetic acid 3500 175 

3 6 0.1 mM acetic acid 3500 200 

3 7 0.55 mM acetic acid 3500 125 

3 7 0.55 mM acetic acid 3500 150 

3 7 0.55 mM acetic acid 3500 175 

3 7 0.55 mM acetic acid 3500 200 

3 8 0.55 mM acetic acid 4500 125 

3 8 0.55 mM acetic acid 4500 150 

3 8 0.55 mM acetic acid 4500 175 

3 8 0.55 mM acetic acid 4500 200 

3 9 0.55 mM acetic acid 4000 125 

3 9 0.55 mM acetic acid 4000 150 

3 9 0.55 mM acetic acid 4000 175 

3 9 0.55 mM acetic acid 4000 200 

3 10 1 mM acetic acid 4000 125 

3 10 1 mM acetic acid 4000 150 

3 10 1 mM acetic acid 4000 175 

3 10 1 mM acetic acid 4000 200 

3 11 1 mM acetic acid 3500 125 

3 11 1 mM acetic acid 3500 150 

3 11 1 mM acetic acid 3500 175 

3 11 1 mM acetic acid 3500 200 

3 12 1 mM acetic acid 4500 125 

3 12 1 mM acetic acid 4500 150 

3 12 1 mM acetic acid 4500 175 

3 12 1 mM acetic acid 4500 200 

3 13 0.1 mM ammonium acetate 4500 125 

3 13 0.1 mM ammonium acetate 4500 150 

3 13 0.1 mM ammonium acetate 4500 175 

3 13 0.1 mM ammonium acetate 4500 200 

3 14 0.1 mM ammonium acetate 4000 125 

3 14 0.1 mM ammonium acetate 4000 150 

3 14 0.1 mM ammonium acetate 4000 175 

3 14 0.1 mM ammonium acetate 4000 200 

3 15 0.1 mM ammonium acetate 3500 125 

3 15 0.1 mM ammonium acetate 3500 150 

3 15 0.1 mM ammonium acetate 3500 175 
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Table C.4 cont. 

Block Run Electrolyte Capillary voltage Fragmentor voltage 

3 15 0.1 mM ammonium acetate 3500 200 

3 16 0.55 mM ammonium acetate 3500 125 

3 16 0.55 mM ammonium acetate 3500 150 

3 16 0.55 mM ammonium acetate 3500 175 

3 16 0.55 mM ammonium acetate 3500 200 

3 17 0.55 mM ammonium acetate 4500 125 

3 17 0.55 mM ammonium acetate 4500 150 

3 17 0.55 mM ammonium acetate 4500 175 

3 17 0.55 mM ammonium acetate 4500 200 

3 18 0.55 mM ammonium acetate 4000 125 

3 18 0.55 mM ammonium acetate 4000 150 

3 18 0.55 mM ammonium acetate 4000 175 

3 18 0.55 mM ammonium acetate 4000 200 

3 19 1 mM ammonium acetate 4000 125 

3 19 1 mM ammonium acetate 4000 150 

3 19 1 mM ammonium acetate 4000 175 

3 19 1 mM ammonium acetate 4000 200 

3 20 1 mM ammonium acetate 4500 125 

3 20 1 mM ammonium acetate 4500 150 

3 20 1 mM ammonium acetate 4500 175 

3 20 1 mM ammonium acetate 4500 200 

3 21 1 mM ammonium acetate 3500 125 

3 21 1 mM ammonium acetate 3500 150 

3 21 1 mM ammonium acetate 3500 175 

3 21 1 mM ammonium acetate 3500 200 
 

  



 
 
 

144 
 

Table C.5 Nebulization ESI conditions in negative mode for samples introduced to TOF-MS via LC for DOE 
optimization of nebulization conditions for RES (FIA, 50% MeOH/H2O solvent, fragmentor at 175 V; capillary at 
4500 V, electrolyte: 0.1 mM acetic acid in mobile phase). 

Replicate Run Drying gas temp 
(°C) 

Drying gas flow rate 
(L/min) 

Nebulizer pressure 
(psig) 

1 1 200 8 15 

2 2 200 8 15 

1 3 200 10 15 

2 4 200 10 15 

1 5 200 12 15 

2 6 200 12 15 

1 7 200 12 20 

2 8 200 12 20 

1 9 200 10 20 

2 10 200 10 20 

1 11 200 8 20 

2 12 200 8 20 

1 13 200 8 25 

2 14 200 8 25 

1 15 200 10 25 

2 16 200 10 25 

1 17 200 12 25 

2 18 200 12 25 

1 19 250 12 25 

2 20 250 12 25 

1 21 250 10 25 

2 22 250 10 25 

1 23 250 8 25 

2 24 250 8 25 

1 25 250 8 20 

2 26 250 8 20 

1 27 250 10 20 

2 28 250 10 20 

1 29 250 12 20 

2 30 250 12 20 

1 31 250 12 15 

2 32 250 12 15 

1 33 250 10 15 

2 34 250 10 15 

1 35 250 8 15 
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Table C.5 cont. 

Replicate Run 
Drying gas temp 

(°C) 
Drying gas flow rate 

(L/min) 
Nebulizer pressure 

(psig) 

2 36 250 8 15 

1 37 300 8 15 

2 38 300 8 15 

1 39 300 10 15 

2 40 300 10 15 

1 41 300 12 15 

2 42 300 12 15 

1 43 300 12 20 

2 44 300 12 20 

1 45 300 10 20 

2 46 300 10 20 

1 47 300 8 20 

2 48 300 8 20 

1 49 300 8 25 

2 50 300 8 25 

1 51 300 10 25 

2 52 300 10 25 

1 53 300 12 25 

2 54 300 12 25 

1 55 350 12 25 

2 56 350 12 25 

1 57 350 10 25 

2 58 350 10 25 

1 59 350 8 25 

2 60 350 8 25 

1 61 350 8 20 

2 62 350 8 20 

1 63 350 10 20 

2 64 350 10 20 

1 65 350 12 20 

2 66 350 12 20 

1 67 350 12 15 

2 68 350 12 15 

1 69 350 10 15 

2 70 350 10 15 

1 71 350 8 15 

2 72 350 8 15 
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Table C.6 Solvents and electrolytes employed for solvent optimization (FIA, negative mode, drying gas at 350 °C 
and 12 L/min; nebulization pressure at 25 psig, capillary at 4000 V, fragmentor at 175 V). 

Block Analyte Solvent Electrolyte 

1 RES 50% ACN/H2O none 

1 RES 50% ACN/H2O 0.1 mM acetic acid 

1 RES 50% ACN/H2O 0.1 mM ammonium acetate 

1 RES 50% MeOH/H2O none 

1 RES 50% MeOH/H2O 0.1 mM acetic acid 

1 RES 50% MeOH/H2O 0.1 mM ammonium acetate 

2 RES 50% ACN/H2O none 

2 RES 50% ACN/H2O 0.1 mM acetic acid 

2 RES 50% ACN/H2O 0.1 mM ammonium acetaet 

2 RES 50% MeOH/H2O none 

2 RES 50% MeOH/H2O 0.1 mM acetic acid 

2 RES 50% MeOH/H2O 0.1 mM ammonium acetate 

1 R3G 50% ACN/H2O none 

1 R3G 50% ACN/H2O 0.1 mM acetic acid 

1 R3G 50% ACN/H2O 0.1 mM ammonium acetaet 

1 R3G 50% MeOH/H2O none 

1 R3G 50% MeOH/H2O 0.1 mM acetic acid 

1 R3G 50% MeOH/H2O 0.1 mM ammonium acetate 

2 R3G 50% ACN/H2O none 

2 R3G 50% ACN/H2O 0.1 mM acetic acid 

2 R3G 50% ACN/H2O 0.1 mM ammonium acetate 

2 R3G 50% MeOH/H2O none 

2 R3G 50% MeOH/H2O 0.1 mM acetic acid 

2 R3G 50% MeOH/H2O 0.1 mM ammonium acetate 

1 R3S 50% ACN/H2O none 

1 R3S 50% ACN/H2O 0.1 mM acetic acid 

1 R3S 50% ACN/H2O 0.1 mM ammonium acetate 

1 R3S 50% MeOH/H2O none 

1 R3S 50% MeOH/H2O 0.1 mM acetic acid 

1 R3S 50% MeOH/H2O 0.1 mM ammonium acetate 

2 R3S 50% ACN/H2O none 

2 R3S 50% ACN/H2O 0.1 mM acetic acid 

2 R3S 50% ACN/H2O 0.1 mM ammonium acetate 

2 R3S 50% MeOH/H2O none 

2 R3S 50% MeOH/H2O 0.1 mM acetic acid 

2 R3S 50% MeOH/H2O 0.1 mM ammonium acetate 
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Table C.7 Effect of electrolyte concentrations of 0–400 mM acetic acid and 0–40 mM ammonium acetate in 
injected sample (FIA, ACN/H2O solvent, negative mode, drying gas at 350 °C and 12 L/min; nebulization pressure 
at 25 psig, capillary at 4000 V, fragmentor at 175 V). 

Block Analyte Electrolyte Concentration (mM) 

1 RES acetic acid 0 

1 RES acetic acid 0.1 

1 RES acetic acid 1 

1 RES acetic acid 10 

1 RES acetic acid 100 

1 RES acetic acid 400 

1 RES ammonium acetate 0 

1 RES ammonium acetate 0.1 

1 RES ammonium acetate 1 

1 RES ammonium acetate 10 

1 RES ammonium acetate 20 

1 RES ammonium acetate 40 

2 RES acetic acid 0 

2 RES acetic acid 0.1 

2 RES acetic acid 1 

2 RES acetic acid 10 

2 RES acetic acid 100 

2 RES acetic acid 400 

2 RES ammonium acetate 0 

2 RES ammonium acetate 0.1 

2 RES ammonium acetate 1 

2 RES ammonium acetate 10 

2 RES ammonium acetate 20 

2 RES ammonium acetate 40 

1 R3G acetic acid 0 

1 R3G acetic acid 0.1 

1 R3G acetic acid 1 

1 R3G acetic acid 10 

1 R3G acetic acid 100 

1 R3G acetic acid 400 

1 R3G ammonium acetate 0 

1 R3G ammonium acetate 0.1 

1 R3G ammonium acetate 1 

1 R3G ammonium acetate 10 

1 R3G ammonium acetate 20 

1 R3G ammonium acetate 40 
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Table C.7 cont. 

Block Analyte Electrolyte Concentration (mM) 

2 R3G acetic acid 0 

2 R3G acetic acid 0.1 

2 R3G acetic acid 1 

2 R3G acetic acid 10 

2 R3G acetic acid 100 

2 R3G acetic acid 400 

2 R3G ammonium acetate 0 

2 R3G ammonium acetate 0.1 

2 R3G ammonium acetate 1 

2 R3G ammonium acetate 10 

2 R3G ammonium acetate 20 

2 R3G ammonium acetate 40 

1 R3S acetic acid 0 

1 R3S acetic acid 0.1 

1 R3S acetic acid 1 

1 R3S acetic acid 10 

1 R3S acetic acid 100 

1 R3S acetic acid 400 

1 R3S ammonium acetate 0 

1 R3S ammonium acetate 0.1 

1 R3S ammonium acetate 1 

1 R3S ammonium acetate 10 

1 R3S ammonium acetate 20 

1 R3S ammonium acetate 40 

2 R3S acetic acid 0 

2 R3S acetic acid 0.1 

2 R3S acetic acid 1 

2 R3S acetic acid 10 

2 R3S acetic acid 100 

2 R3S acetic acid 400 

2 R3S ammonium acetate 0 

2 R3S ammonium acetate 0.1 

2 R3S ammonium acetate 1 

2 R3S ammonium acetate 10 

2 R3S ammonium acetate 20 

2 R3S ammonium acetate 40 
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Table C.8 Recoveries of spiked RES and R3S from control serum samples following the SPE purification method 
and LC-ESI-HRMS analysis using different electrolytes as the mobile phase. 

 
 RES 

recovery 
(%) 

Corrected RES 
recovery (%)a 

R3S recovery 
(%) 

Corrected R3S 
recovery (%) 

Electrolyte Conc. 
(mM) 

Mean SD Mean SD Mean SD Mean SD 

ammonium 
acetate 

0.025 28 18 121 25 132 36 102 8 

ammonium 
acetate 

0.25 135 37 86 3 173 52 107 6 

ammonium 
acetate 

0.5 119 16 79 7 94 14 78 6 

ammonium 
acetate 

1.0 82 7 86 7 91 4 92 4 

acetic acid 0.25 91 30 79 6 323 76 97 2 
acetic acid 1.0 94 16 73 5 304 20 101 0.5 

aThe corrected values were obtained using the deuterated RSs. 

Table C.9 Calibration parameters and LODs of RES, R3G, and R3S obtained using a linear least square regression. 
The internal standard was pinosylvin with a final concentration of 11.35 µg/mL. 

Analyte RES R3G R3S 

Calibration linear Range (ng/mL) 2.5–46.5  198.1–
6737.1  

6.6–69.3 

Slope 0.006 0.00031 0.001 
Intercept -0.021 -0.139 0.005 
sy 0.0092 0.079 0.0017 
R2 0.9903 0.9940 0.9904 
Instrumental LOD (ng/mL)a 1.3 4.4 1.6 
Serum matrix LOD (ng/mL) 3.7 82 4.7 

a Injection volume was 50 µL. 

Table C.10 Interday and intraday repeatability of RES, R3G, and R3S concentrations (ng/mL) in a representative 
serum sample. The data are presented as mean with one standard deviation (n=3). 

 Intraday Interday 

RES ND ND 
R3S 3775±174 3689±313 
R3G 61±9 55±3 
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APPENDIX D 

Table D.1 Calibration parameters of aldehydes as PFBHA oximes and acids as methyl esters or trimethylsilyl esters 
(denoted TMS). All areas were normalized to area of internal standard (aldehydes – octafluoronaphthalene, acids 
– o-terphenyl) 

Aldehydes k intercept Sy 

Formaldehyde 0.089 1.662 0.0122 
Acetaldehyde 0.012 0.050 0.0006 
Propanal 0.014 0.024 0.0003 
Acrolein 0.003 0.002 0.0001 
Isobutyraldehyde 0.016 0.014 0.0002 
Butyraldehyde 0.031 0.014 0.0002 
Crotonaldehyde 0.015 0.013 0.0009 
Pentanal 0.018 0.013 0.0001 
Hexanal 0.029 0.008 0.0002 
Furaldehyde 0.016 0.009 0.0002 
trans-Hexenal 0.040 0.015 0.0002 
Heptanal 0.030 0.006 0.0003 
Octanal 0.039 0.006 0.0003 
Benzaldehyde 0.070 0.014 0.0004 
Phenylacetaldehyde 0.014 0.007 0.0002 
Nonanal 0.060 0.001 0.0003 
m-Tolualdehyde 0.104 -0.084 0.0023 
Hydrocinnamaldehyde 0.009 0.003 0.00005 
trans-2-Nonenal 0.040 0.007 0.0001 
Decanal 0.033 0.004 0.0002 
Dimethylbenzaldehyde 0.061 0.022 0.0003 
2,4-Nonadienal 0.013 -0.0001 0.0001 
Glyoxal 0.019 -0.050 0.0005 
Anisaldehyde 0.088 0.084 0.0009 
Methylglyoxal 0.024 0.054 0.0005 
4-Hydroxybenzaldehyde 0.099 -0.070 0.0006 
Dodecanal 0.031 0.007 0.0002 
Vanillin 0.006 -0.022 0.0004 
Glutaraldehyde 0.014 0.051 0.0003 
Syringaldehyde 0.070 -1.035 0.0003 

Acids    
Hexanoic 0.081 -0.021 0.0024 
Heptanoic 0.163 -0.607 0.0025 
Octanoic 0.209 -0.908 0.0030 
Nonanoic 0.295 -1.105 0.0065 
Decanoic 0.189 -0.126 0.0065 
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Table D.1 cont. 

Aldehydes k intercept Sy 
Undecanoic 0.199 -0.059 0.0028 
Dodecanoic 0.223 -0.067 0.0022 
Tridecanoic 0.120 -0.005 0.0031 
Tetradecanoic 0.110 -0.002 0.0029 
Pentadecanoic 0.127 -0.005 0.0012 
Palmitic 0.516 -0.529 0.0112 
Heptadecanoic 0.090 -0.003 0.0009 
Stearic 0.280 -0.060 0.0128 
Nonadecanoic 0.327 -0.013 0.0015 
Eicosanoic 0.595 -0.074 0.0019 
Heneicosanoic 0.437 -0.042 0.0023 
Docosanoic 0.416 -0.049 0.0025 
Tricosanoic 0.313 -0.034 0.0035 
Tetracosanoic 0.547 -0.075 0.0024 
Octacosanoic 0.108 -0.009 0.0036 
Oxalic 0.090 -0.083 0.0290 
Malonic 0.070 -0.080 0.0123 
Succinic 0.063 -0.115 0.0029 
Glutaric 0.041 -0.028 0.0040 
Adipic 0.033 -0.020 0.0013 
Pimelic 0.064 -0.058 0.0018 
Suberic 0.029 -0.007 0.0017 
Azelaic 0.035 -0.012 0.0027 
Sebacic 0.105 -0.037 0.0033 
Undecanedioic 0.064 -0.075 0.0218 
Dodecanedioic 0.046 -0.038 0.0027 
Tridecanedioic 0.272 -0.293 0.0005 
Tetradecanedioic 0.080 -0.223 0.0002 
Methyl malonic 0.026 -0.181 0.0003 
Maleic 0.031 -0.024 0.0001 
Methyl succinic 0.014 -0.008 0.0006 
Methyl maleic 0.009 -0.003 0.0007 
Methyl glutaric 0.034 -0.012 0.0018 
Glyoxylic 0.036 -0.005 0.0039 
Pyruvic 0.030 -0.018 0.0014 
Oxopentanoic 0.159 -0.118 0.0032 
Oxalacetic 0.024 -0.018 0.0029 
Ketoglutaric 0.013 -0.007 0.0006 
cis-Pinonic 0.037 -0.008 0.0030 
Ketopimelic 0.009 -0.002 0.0002 
Benzoic TMS 0.054 0.022 0.0019 
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Table D.1 cont. 

Aldehydes k intercept Sy 
Malic 0.035 -0.004 0.0005 
Annisic 0.0003 -0.006 0.0003 
Mandelic 0.106 0.001 0.0006 
Tartaric 0.072 0.110 0.0030 
Salicylic TMS 1.954 -0.100 0.0154 
Vanillic TMS 0.016 -0.008 0.0020 
Homovanillic 0.398 -0.149 0.0107 
Syringic TMS 0.091 0.033 0.0046 

 

Table D.2 Aldehydes and acids observed in WS and UA PM 

 

WS 
(μg/gPM)  

UA 
(μg/gPM)  

Aldehyde mean S.D. mean S.D. 

Propanal  41 3 ND  
Acrolein  ND  ND  
Isobutanal 16 4 ND  
Butanal  168 18 98 6 

Crotonal  ND  ND  
Pentanal  10 2 16 1 

Hexanal  11 2 20 1 

Furaldehyde  33 3 ND  
Heptanal 26 4 ND  
Octanal  ND  ND  
Benzaldehyde 16 1 ND  
Phenylacetaldehyde  214 39 180 22 

Nonanal 8 1 44 14 

m-Tolualdehyde 150 27 ND  
Hydrocinnamaldehyde  31 4 ND  
trans-2-Nonenal ND  ND  
Decanal 26 5 26 5 

2,5-Dimethylbenzaldehyde ND  ND  
2,4-Nonadienal ND  ND  
Glyoxal 548 30 860 123 

Anisaldehyde ND  ND  
Methylglyoxal 103 13 58 6 

4-Hydroxybenzaldehyde 157 14 ND  
Vanillin 1031 106 ND  
Glutaraldehyde 31 1 43 4 
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Table D.2 cont. 

 

WS 
(μg/gPM)  

UA 
(μg/gPM)  

Aldehyde mean S.D. mean S.D. 

Syringaldehyde 2786 286 ND   

Acid         

Hexanoic ND  ND  
Heptanoic ND  ND  
Octanoic ND  ND  
Nonanoic 30 5 ND  
Decanoic ND  ND  
Undecanoic 18 2 ND  
Dodecanoic 19 3 ND  
Tridecanoic ND  ND  
Tetradecanoic 34 4 ND  
Pentadecanoic 30 3 ND  
Palmitic 294 19 957 120 

Heptadecanoic 35 3 40 5 

Stearic 102 10 542 97 

Nonadecanoic 29 2 38 5 

Eicosanoic 93 12 169 15 

Heneicosanoic 93 12 149 13 

Docosanoic 211 21 281 22 

Tricosanoic 134 16 198 18 

Tetracosanoic 269 32 386 32 

Octacosanoic 275 38 617 51 

Succinic 1222 72 79 5 

Glutaric 847 69 64 6 

Adipic 119 18 63 5 

Pimelic 48 2 57 7 

Suberic 36 4 58 7 

Azelaic 81 5 184 24 

Sebacic 32 4 41 5 

Undecanedioic 22 2 32 3 

Dodecanedioic ND  ND  
Tridecanedioic ND  ND  
Tetradecanedioic 31 5 31 2 

Methyl malonic 272 35 379 40 

Maleic 151 19 ND  
Methyl succinic 633 63 10 1 

Methyl maleic 897 112 1179 123 
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Table D.2 cont. 

 

WS 
(μg/gPM)  

UA 
(μg/gPM)  

Acid mean S.D. mean S.D. 

Methyl glutaric 66 1 16 1 

Glyoxylic 115 10 115 9 

Pyruvic 72 5 63 1 

Oxopentanoic 203 19 ND  
Oxalacetic 168 20 ND  
Ketoglutaric 118 6 ND  
cis-Pinonic 87 8 ND  
Ketopimelic 91 9 ND  

Benzoic 146 24 ND  
Malic 719 98 800 25 

Annisic ND  ND  
Mandelic ND  ND  
Tartaric 42 6 7 2 

Salicylic 38 15 ND  
Vanillic 1820 195 42 19 

Homovanillic 874 92 ND  
Syringic 711 116 ND   
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Figure D.1 Effect of sonication on derivatization of aldehydes with ACN/DCM/MeOH (1:8.5:0.5 v/v/v). The arrow 
denotes statistically significant difference between no sonication and overnight sonication (t-test at 95 % 
confidence level). Analysis performed by Mr. Chintapalli [118] 
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Figure D.2 The effect of heat and mixing compared to sonication. A) mixing and heating, b) sonication. Peaks 1-7 
correspond to dimethyl esters of dicarboxylic acids in following order: suberic, azelaic, sebacic, undecanedioic, 
dodecanedioic, tridecanedioic, tetradecanedioic, respectively. Peaks 8-14 correspond to monomethyl esters of 
dicarboxylic acids in following order: suberic, azelaic, sebacic, undecanedioic, dodecanedioic, tridecanedioic, 
tetradecanedioic, respectively. 
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Figure D.3 The comparison of normalized peak area of TMS derivatives of aromatic acids in system with initial 
and increased content of PFBHA.HCl and methanol. 

 

Figure D.4 GC-EI-MS chromatograms showing composition of extracts obtained by sequential extraction of 
aldehydes from WS PM (2 mg)  a) Sonication  with MeOH in the presence of 2 mg WS PM under sonication b) 
Extraction from ACN/DCM/MeOH under sonication c) Soxhlet extraction with MeOH for 18h. Analysis 
performed by Mr. Chintapalli [118]. 
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