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ABSTRACT 

The neurocognitive sequelae of a sport-related concussion and its management are 

poorly defined. Emerging evidence suggests that the residual deficits can persist one year 

or more following a brain injury. Detecting and quantifying the residual deficits are vital 

in making a decision about the treatment plan and may prevent further damage. For 

example, improper return to play (RTP) decisions in sports such as football have proven to 

be associated with the further chance of recurring injury, long-term neurophysiological 

impairments, and worsening of brain functional activity.  

The reliability of traditional cognitive assessment tools is debatable, and thus attention 

has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-

concussive alterations. In this study, we calculated neurocognitive deficits in two different 

datasets. One dataset contains a combination of EEG analysis with three standard post-

concussive assessment tools. The data for this dataset were collected for all testing 

modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three 

different trials. Another dataset contains post-concussion eyes closed EEG signal for 

twenty concussed and twenty age-matched controls. For EEG assessment, along with linear 

frequency-based features, we introduced a set of time-frequency and nonlinear features for 

the first time to explore post-concussive deficits. In conjunction with traditional frequency 

band analysis, we also presented a new individual frequency based approach for EEG 

assessment. A set of linear, time-frequency and nonlinear EEG markers were found to be 
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significantly different in the concussed group compared to their matched peers in the 

healthy group. Although EEG analysis exhibited discrepancies, none of the cognitive 

assessment resulted in significant deficits. Therefore, the evidence from the study highlight 

that our proposed EEG analysis and markers are more efficient at deciphering post-

concussion residual neurocognitive deficits and thus has a potential clinical utility of proper 

concussion assessment and management. 

Moreover, a number of studies have clearly demonstrated the feasibility of supervised 

and unsupervised pattern recognition algorithms to classify patients with various health-

related issues. Inspired by these studies, we hypothesized that a set of robust features would 

accurately differentiate concussed athletes from control athletes. To verify it, features such 

as power spectral, statistical, wavelet, and other nonlinear features were extracted from the 

EEG signal and were used as an input to various classification algorithms to classify the 

concussed individuals. Various techniques were applied to classify control and concussed 

athletes and the performance of the classifiers was compared to ensure the best accuracy. 

Finally, an automated approach based on meaningful feature detection and efficient 

classification algorithm were presented to systematically identify concussed athletes from 

healthy controls with a reasonable accuracy. Thus, the study provides sufficient evidence 

that the proposed analysis is useful in evaluating the post-concussion deficits and may be 

incorporated into clinical assessments for a standard evaluation of athletes after a 

concussion. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation  

A concussion is a complex pathophysiological procedure which is induced by a direct blow 

to the head, neck, face or any other part of the body that transmits an impulsive biomechanical 

force to the head, affecting the brain [1]. In the US alone, sport and physical activity cause nearly 

4 million concussions each year [2], [3]. It is critical to assess concussion and mild traumatic brain 

injury (mTBI) with high accuracy to avoid anxiety, sensitivity and cognitive biases which appear 

as post-concussion syndrome. Moreover, insufficient follow-up and treatment can put the post-

concussive person under the risk of neurobiological depression with anxiety resulting in a longer 

concussion recovery time. Therefore, proper understanding and measuring of concussions are 

essential to treat the psychological factors as a means of effective prevention, which, in turn, can 

lead to a rapid post-concussion recovery period. When examining performance metrics related to 

motor control, it is well established that individuals diagnosed with the post-concussion syndrome 

can show marked impairments in reaction times [4], visual motor processing [5], gait stability [6], 

postural balance [7] and dynamic gait analysis [8], [9]. More importantly, it is a primary concern 

for both amateur and professional athletes. Because the symptoms of concussions sometimes go 

unnoticed or are self-reported and tend to subside within 1-2 weeks [10], many athletes fail to seek 

immediate and proper medical care. Furthermore, high school athletes tend to purposely avoid 

reporting their concussions in order to prevent being “benched” during subsequent games [11]. 
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Though almost all recreational participants express their concern about post-concussion syndrome, 

most competitive athletes keep quiet about their minor physical discomforts or even deny 

considerable pain for the sake of pursuing their career goals. Although athletes’ willingness of 

accepting risks greatly varies with the competition stages, game completion levels and types of 

sports, it’s more likely that many individuals will choose to continue to play with a concussion 

rather than remove themselves from competition [12]. However, such a decision can pose a risk to 

their health with the potential for repeated head trauma [13]. Athletes have been shown to suffer 

from cognitive deficits up to three years after their brain injury incidents, exhibiting lower 

performance on select neuropsychological tasks when compared to an age-matched non-concussed 

group [14]. 

Detecting and quantifying the residual deficits are vital in making a decision about the 

treatment plan and may prevent further damage. For example, improper return to play (RTP) 

decisions in sports such as football have proven to be associated with the further chance of 

recurring injury, long-term neurophysiological impairments, and worsening of brain functional 

activity. The reliability of traditional cognitive assessment tools is debatable, and thus attention 

has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-

concussive alterations. These ongoing debates about the degree of impairment concussion inflicts 

on physiological systems motivated us to work to find out a potential measurement tool which can 

expose the long-term cognitive impairment after an analytical study of EEG signals and help us to 

better understand the truer neurophysiological status after a concussion, along with the presence 

of a more positive neurocognitive and clinical assessment. To test our hypothesis, we utilized 

visual (King-Devick (K-D) Test), postural (Balance Error Scoring System (BESS)) and 

neurological (Immediate Post-Concussion Assessment and Cognitive Testing battery (ImPACT)) 
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tests, along with a novel EEG spectral analysis that computes the distinguishing features from each 

individual component of EEG, as well as from the set of conventional frequency bands.   

1.2 Concussion  

Sport-Related Concussion (SRC), is a type of traumatic brain injury that is initiated by a 

sudden blow to head, a fall or any other injury that shakes the brain inside the skull, and affects 

the brain function [15] . After the injury, sometimes the affected people will suffer from obvious 

symptoms of a concussion, like forgetting what happened immediately before the injury or passing 

out. But, it is also possible to have a concussion without realizing it. Concussions are particularly 

common in the contact sports, such as football, rugby, soccer, and hockey. Besides contact sports, 

other causes may include blows to the head, bumping your head when you fall, being violently 

shaken, and car accidents. Though usually most of the people recover fully after a concussion, for 

some people, symptoms may persist for days, weeks, or longer. The recovery after a concussive 

incident may be slower among teens, older adults or young children [16] . People with one or 

multiple concussion in the past are also at risk of having another one and may also find that it takes 

longer to recover with a concussion history [17].                                

 According to Head Injury Hotline [18], a concussion is “A complex pathophysiological 

process affecting the brain, induced by a violent blow, shaking or other non-penetrating injury to 

the brain.”  
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Figure 1. Concussion [18] 

According to CDC Physicians Toolkit [19], the evolving definition of concussion is, “A 

concussion (or mild traumatic brain injury) is a complex pathophysiological process affecting the 

brain, induced by traumatic biomechanical forces secondary to direct or indirect forces to the head. 

Disturbance of brain function is related to neurometabolic dysfunction, rather than 

structural brain injury, and is typically associated with normal structural imaging findings (CT 

Scan, MRI) ”[19].  

Concussion may or may not result in a loss of consciousness. Concussion results in a 

collection of symptoms including physical, emotional, cognitive, and sleep-related disturbances. 

The recovery is a progressive process and the symptoms may persist for several minutes, hours to 

days, weeks, months, or even lengthier in few cases. The CDC physicians toolkit suggests 

physicians remember the following points immediately after a concussion [16]: 

 “ Following a concussion, there are metabolic chemical changes that take place in the brain. 

 Brain injury can occur even if there is NO loss of consciousness. 

 More than 90% of concussions DO NOT involve loss of consciousness. 

 Memories of events BEFORE and AFTER the concussion are MORE accurate 

assessments of SEVERITY than the loss of consciousness. ” 
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The definition of concussion defined by first and third international conference of concussion 

is “a complex pathophysiological process affecting the brain, induced by traumatic biomechanical 

forces” and recommended five conditions for concussion [19]: 

1. Concussion can be initiated by a direct blow to the head, face, neck, or elsewhere in the 

body that transmits an impulsive or rotational force to the head. 

2. A concussion usually results in the quick onset of short-lived neurologic impairment that 

resolves spontaneously. 

3. Concussion may result in neuropathological deviations, but the acute clinical symptoms 

hardly reveal a functional disorder in lieu of structural injury.  

4. Concussion results in a graded set of medical syndromes that may or may not involve loss 

of consciousness; determination of clinical and cognitive symptoms often follows a sequential 

course. 

5. A concussion is normally associated with grossly normal structural neuroimaging studies. 

 

 According to CDC report, youths are at increased risk of concussion as 65% of the 

concussions occur in children between 5 to 18 years of age [20]. These children are at a larger risk 

for traumatic brain injury as the brain of a pediatric athlete is still  young and developing and the 

tissue of this brain is not able to recover as rapidly as an adult brain [16]. This young population 

is  more vulnerable to metabolic and neurochemical changes, their axons are not yet properly 

myelinated or insulated, their shoulder and cervical musculature are less developed causing in a 

reduced ability to absorb any mechanical energy through their bodies, and moreover, they are less  

likely to follow proper techniques to minimize risk [19]. Though majority will recover within the 

first 3-4 weeks, in some cases symptoms persist for much longer and 5-10% last a lifetime [21]. 
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1.2.1 Concussion Pathophysiology 

Our brain is one of the softest organs, encircled by spinal fluid and sheltered by the hard skull. 

Generally, the fluid, encircling the brain acts like a cushion that saves the brain from knocking the 

skull. But if the head or the body is hit hard, the brain can strike into the skull and thus cause 

injuries. There are numerous ways to sustain a concussion. The common methods include 

playground injuries, falls, fights, bike accidents and car crashes.  

When the head strikes a hard object creating a concussion-type injury, it creates linear or 

rotational forces causing an acceleration and deceleration of the brain and thus results in a transient 

alteration of the brain function [19], [22].  

 

Figure 2. Concussion Pathomechanics [18] 

The alteration in the brain can occur on the side of the force, or the opposite side of the force. 

Figure 3 shows a linear injury whereas Figure 4 shows a rotational injury. 
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Figure 3. Linear injury [19] 

 

Figure 4. Rotational injury [19] 

According to Dr. Micky Collins [19], Director UPMC Sports Medicine Concussion Program, 

the force creates a wave of energy that flows through the brain tissue to trigger neuronal 

dysfunctions. This includes a complex cascade of ionic, physiologic, and metabolic dysfunction, 
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and sometimes is also referred to as a neurometabolic cascade of concussion. The concussion 

symptoms are generated due to this cascade and also because of microscopic axonal dysfunctions. 

In most cases, these dysfunctions are generally self-resolved itself and in most of the cases, the 

patients are fully recovered. However, while the brain is still in the recovering phase, a reduction 

in cerebral blood flow may result in cell dysfunction, eventually increasing the susceptibility of 

the cell to a second injury [16]. During normal neuron function, the components of the neuron 

including the dendrites, axon, nerve cell body, and synapse, work together in a process whereby 

the signal reaches the neuron and then the signal travels down the axon to the following cell 

through the synapse by means of neurotransmitters, triggers the subsequent cell with a particular  

message as shown in Figure 5 (a), (b) and (c). 

 
(a) 
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(b) 

 
(c) 

Figure 5. Neuronal function for a ‘Normal Brain’ [19] 

 

However, during injury, the neuron discharges its K+ (Potassium), which flares out of the cell 

body and toxic Ca2+ (Calcium) ions blast into the cell, leading to metabolic dysfunction as shown 

in Figure 6 (a), (b) and (c). 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 6. Neuronal function following a concussion [19]  

These alterations of the brain develop some physical, cognitive and behavioral changes  

described as concussion symptoms.  
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1.2.2 Concussion Symptoms 

 The symptoms of a concussion are not fixed and may differ depending on the severity of the 

injury and also with the person injured. The concussion is also referred as a "mild" brain injury 

sometimes. It is important to comprehend that, concussions may not be a life-threatening injury, 

but they can still be very serious. The symptoms caused by concussion are subtle and sometimes 

may not be found right away; but they may start days or weeks following the incident. Rest is 

essential after a concussive injury as it helps the brain to reconcile the symptoms. It is suggested 

that, at the very beginning phase of recovery, a concussed person may limit their physical activities, 

as well as activities that require a lot of concentration, for example studying, playing video games 

or working on the computer [15]. These activities may worsen the already existed concussion 

symptoms like a headache or tiredness. Then, when the healthcare provider agrees, the concussed 

person can start to return to his/her normal activities slowly. All the cognitive, somatic and 

affective concussion symptoms are listed in Table 1 [16]. 
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Table 1. Concussion symptoms [16] 

COGNITIVE SOMATIC AFFECTIVE 

1. Confusion 

2. Post-traumatic amnesia  

3. Retrograde amnesia 

4. Loss  of consciousness  

5. Disorientation 

6. Feeling “in a fog,” 

“zoned out” 

7. Vacant Stare 

8. Inability to focus 

9. Delayed verbal and 

motor responses 

10. Slurred/incoherent 

speech 

11. Excessive drowsiness 

12. Balance problem 

1. Headache 

2. Fatigue 

3. Disequilibrium, dizziness 

4. Nausea/vomiting 

5. Visual disturbances 

(photophobia, blurry/double 

vision) 

6. Phonophobia 

7. Balance problems 

8. Sleeping more/less than usual 

9. Trouble falling asleep 

1. Emotional lability 

2. Irritability 

3. Sadness 

4. Nervousness or 

anxiety 

 

Table 2 highlights the most reported concussion symptoms based on a study conducted with 

1438 concussed athletes (1-7 days following a concussion)[23]. 
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Table 2. Most reported concussion symptoms (in percentage) [23]  

Serial Number Symptom Percentage 

1 Headache  75% 

2 Difficulty Concentrating  57 % 

3 Fatigue  52 % 

4 Drowsiness 51 % 

5 Dizziness 49 % 

6 Foggy 47 % 

7 Feeling Slowed Down 46 % 

8 Light Sensitivity  45 % 

9 Balance Problems 39 %  

10 Difficulty with Memory 38 % 

 

1.2.3 Concussion Diagnosis 

For the diagnosis of concussion, normally the health care provider will do a physical exam 

and ask about the injury. The injured person most likely will have a neurological exam, which 

checks vision, balance, coordination and reflexes. The healthcare provider also conducts an 

examination to evaluate memory and cognition. In some severe injury cases, the concussed athletes 

may have a brain scan like MRI or a CT scan. A scan can check for a skull fracture or bleed, as 

well as inflammation in the brain. A various multifaceted approach which can capture the 

variability of deficits following an injury is proposed by several agencies for the assessment and 
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management of concussion. Commonly used evaluation tools used for concussion are described 

as follows. 

 Physical Evaluation 

Physical evaluation normally takes place on the sideline within the first few minutes or 

immediately after an injury. A concussion management survey showed that more than 85% of 

physicians use this physical/clinical evaluation as the primary concussion assessment tool [24]. 

The physical evaluation includes questionnaires about the history and a complete testing of motor, 

nervous and sensory systems by the team medical staffs following an injury. The history questions 

provide information about the existence of previous concussion, symptoms that are unrelated to 

the current injury or any other post-concussive symptoms. The nervous evaluation mainly assesses 

the cranial nerves and give emphasis to the pupillary reflex.  

 Imaging 

Sport-related concussion mainly results in functional deficits rather than structural or physical 

deficits. That’s why there is good evidence in the literature showing imaging techniques such as 

MRI, X-ray or CT scan unable to find out concussive deficits unless there was any structural 

change in the brain [25]. But newer techniques like functional MRI (fMRI) can provide neural 

function information and be used with a dual-task paradigm for concussion assessment [26]. Other 

techniques like magnetic source imaging (MSI), can track real-time brain activity by conducting 

through brain, skull and scalp without distorting [27].  

With the improvement of technology, the understanding of post concussive deficits should 

also improve. The use of newer techniques like MSI, PET and SPECT for concussion management 

is still limited to researchers only because of accessibility, cost and availability. Use of image 

techniques like MRI, X-ray and CT scan may be helpful for identifying life-threatening concussive 
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injuries and can be used as a precaution if other more advanced techniques are not available. But 

most of the case, during sideline testing for mild concussions, imaging techniques are not available 

and so continuous monitoring of symptoms through another neurophysiological testing can 

provide immediate insights about the injury. 

 Self- Report Symptoms 

The interaction between athletes and their physician or medical staffs after a concussion are 

typically completed through some self-reported symptom checklist. Commonly used symptom 

scales to quantify the severity are the Post-Concussion Symptom Scale (PCSS), Head Injury Scale 

(HIS) and Graded Symptom Checklist (GSC). A survey with 2750 certified athletic trainer 

conducted by Notebaert et al. showed that about 85% of the athletic trainers use a self-reported 

symptom score list as a part of their evaluation battery [24]. The baseline assessment is important 

for self-reported evaluation as the symptoms reported by the athletes after an injury may be present 

at baseline [29]. The reliability of self-reported symptom evaluation is questionable as the 

evaluation results solely depend upon the interaction between the athletes and the medical 

professional and may vary with the desire of the athletes to return to play. So caution should be 

taken by clinicians while relying solely on self-reported symptoms and the use of a multifaceted 

assessment technique is highly recommended. 

 Sideline Assessments 

The athlete may display some changes in their cognitive, postural, and visual or symptom 

reports following a concussion. These deficits observed immediately after a concussion can be 

used to obtain a measure of concussion severity and can provide invaluable information for 

concussion management. Most commonly used sideline device for a concussion assessment 
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includes King Davick (KD) test, Standardized Assessment of Concussion (SAC), and Sport 

Concussion Assessment Tool (SCAT). 

The K-D test is a two-minute rapid number naming assessment in which an individual reads 

numbers aloud quickly from test cards total time required to complete the task is calculated to 

evaluate any visual processing deficits after a concussion [30]. 

The SAC is a neurocognitive examination that was specifically intended for the assessment of 

athletes who have concussions on the sideline of play. The test components include orientation, 

memory, concentration, and delayed recall. Athletes who had concussion scored significantly 

different than athletes who did not, with scores 48 hours post-injury returning to baseline values 

for the injured group [31]. A decline in SAC score at the time of injury is 95% sensitive and 76% 

specific in accurately classifying injured and uninjured subjects. Reliability analysis demonstrated 

a test-retest reliability of 0.53 [31]. 

 Neuropsychological Tests 

Neuropsychological tests batteries have gathered a large attention from the athletic training as 

tools for a cognitive assessment of function before and following a concussion.. Several 

computerized neuropsychological platforms have recently been developed and include the 

Automated Neuropsychological Assessment Metrics, Cogsport, Headminder, and Immediate Post-

Assessment of Concussion Test [4], [37]–[39]. These platforms increase higher sensitivity and 

more precise measures for the  reaction time. Moreover, the computerized battery is easy to be 

administered in small groups without sacrificing the reliability. Evidence from a huge amount of 

liturature supports the use of neuropsychological testing for a concussion assessment. The 

suggestion from the literature suggests that the recovery patterns for collegiate and professional 

athletes following concussion lasts for hours [32], [40] up to 7 days [34], [41]. Following a 



29 

concussive injury, individuals typically show transient deficits in cognitive functioning that can 

frequently be noticed through neuropsychological testing. These tests are measured to be the gold 

standard in concussion assessment sometimes, but they have never been assured for use with 

concussed athletes [42]. Further, there has been no consensus among researchers as to which 

neuropsychological tests within the battery are the most sensitive in identifying change following 

a concussion [43]. 

 Posturography 

Following concussive injuries, athletes may have difficulty assimilating information from the 

three aspects of the balance mechanism. Though the somatosensory aspect seems to remain 

normal, incorporation between the visual and vestibular components have found to be not 

functioning accurately [34]. 

The two most frequently used postural assessment tools are the Balance Error Scoring System 

(BESS) and Neurocom Sensory Organization Test. The Sensory Organization Test (SOT)  has a 

force plate that can measure angles and the forces that are produced at the ankle, hip and knee. The 

test systematically varies visual and somatosensory referencing in an attempt to individually 

evaluate the three components of the balance mechanism (visual, somatosensory and vestibular). 

The SOT is considered as the gold standard for the assessment of postural stability in concussion; 

however, the SOT is very expensive and it is not portable. The BESS was developed as an objective 

assessment tool to be used by clinicians with least training and cost for the sideline evaluation of 

the postural steadiness after a concussion incident. Athletes suffering from a concussion have 

found to expose deficits in postural balance while using the SOT and BESS assessment for up to 

5 days postinjury in a collegiate population; the recovery to the pre-injury states  typically 

occurring within 4 to 7 days. Postural evaluation within a concussion battery has been proven as 
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postural deficits following injury were present after symptoms resolution and cognitive deficits 

dissipated [34], [44]. Concussion assessment tools are recommended in combination to obtain 

complete information regarding deficits post-concussion. Broglio and colleagues [45] found that 

neuropsychological testing in combination with self-reported symptoms produces a sensitivity of 

89% to 96% following a concussion. As the discrepancies after a concussion carry the similar 

variability as the individuals who have a concussion, a multidimensional approach provides 

information regarding as many deficit areas as possible. Obtaining the most information possible 

will enable clinicians to offer quality care and management while providing good, reliable, and 

safe return-to-participation decisions. 

1.3 Current Trends in Literature for Concussion Assessment and Management 

With the advancement of concern about sports medicine, at present the clinicians and 

researchers have a variety of tools available for evaluating the post-concussion deficits and 

rehabilitating the athletic injuries. In most cases, these tools offer the clinicians evidence about the 

presence of the injury and the severity of the symptoms. But the clinicians need to recommend a 

timeframe for the rehabilitation and suggest the return to play timeline after a concussion incident. 

In the case of sport-related concussion, no simple tests are available that can be implemented in 

the brain to determine the actual severity of a head injury and assist the clinicians in establishing 

a goal for rehabilitation and a timeline for a return to play. Due to the complexity of concussion 

injuries, it is required that the clinicians use a variety of tools to gather as much information as 

possible, but most of the cases, the tendency is to determine the return-to-play decision based on 

the athlete's self-reported symptoms and their ability to perform some sport-specific tasks without 

a resurgence of concussive symptoms [46]–[48]. It can be dangerous to solely rely on this 
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information for an important decision like a return to play timeline, since it can only provide a 

partial picture of the injury [24]. 

A multidimensional protocol has been suggested by various authors in the literature [25], [46], 

[47], [49]. The recent statement published by the National Athletic Trainers' Association (NATA) 

suggests to include the symptom checklists, postural stability assessment and neuropsychological 

testing together for concussion assessment [49]. A baseline testing is important on these measures 

for the athletes who are participating in contact sports with a high risk of  concussion; however, it 

is also recommended that, if the resources are available, then all athletes should obtain the baseline 

assessment. If baseline testing is available, the follow-up testing should be performed to assist 

during the decision procedure for return to play. The use of all the available information about the 

post-injury condition may be the best method to ensure the safe return of an athlete to play after 

an injury. 

1.3.1 Postural Stability Assessment: 

Postural stability has become an integral part of the post-concussion assessment for many 

athletic trainers. Clinicians, however, sometimes question the viability of instituting preseason 

baseline testing and the value of these results in making return-to-play decisions. A lot of studies 

were performed to examine the efficacy of postural study and the course of recovery on various 

postural stability measures after sport-related concussion. The postural stability test conducted by 

Guskiewicz et al. with 36 concussed athletes at day 1, 3 and 5 post-injury using the Sensory 

Organization Test on the NeuroCom Smart Balance Master System and the Balance Error Scoring 

System revealed that the postural stability deficits were significantly poorer than both baseline 

scores and scores from matched control subjects' on post-injury day 1 [36]. Another study 

conducted by Guskiewicz et al. on 19 healthy and 19 concussed athletes on days 1, 3, 5 and 10 
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days postinjury using the Chattecx Balance System for three eye conditions and also for three 

surface conditions to measure sway index and center of balance suggested that the concussed group 

revealed increased postural sway compared with the control group on day 1 post-injury through 

all platform conditions, and for the foam platform condition on day 3 [50]. The center of balance 

analysis for the same subjects discovered that the injured athletes’ center of balance was farther 

away from the baseline on day 1 post-injury in comparison with the subsequent tests (p < .05) [50]. 

Riemann et al. also investigated the efficacy of the clinical balance testing procedure in terms of 

BESS tests and the NeuroCom Smart Balance Master for Sensory Organization Testing for the 

detection of acute postural stability disruptions at 3 post-injury time intervals (days 1, 3, and 5) 

[51]. The statistical analysis resulted in significantly higher postural instability in the mild head 

injury subjects through BESS test battery, with the foam surface revealing significant differences 

at day 3 post-injury [51]. A Sensory Organization Test analysis also highlighted significant group 

variations on day 1 post-injury [52]. A retrospective cross-sectional study conducted by Sonsoff 

et al. with 224 individuals (among them 62 mTBI participants) to assess postural control associated 

with the history of concussion using the NeuroCom Sensory Organization Test (SOT) postural-

assessment battery revealed minimal alterations in the SOT indices between individuals with and 

without a history of concussion or mTBI (P > .05) [53]. Unlike traditional measures of postural 

control, while author conducted nonlinear dynamical measures using approximate entropy on the 

‘center of pressure’ time series data, individuals with a history of mTBI displayed different 

postural dynamics compared to the individuals with no history of mTBI [53]. So the author 

hypothesized that the lack of group differences in traditional SOT measures but the presence of 

deficits during in-depth nonlinear study raises questions about the ability of the traditional balance 

assessments tools to readily identify the deficits beyond the severe stage of injury [53]. Thus, it is 
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required for the clinicians to be aware of these limitations of traditional measures and comprehends 

that more sensitive and accurate procedures of both static and dynamic balance may disclose the 

clinically significant changes in postural stability  present due to the persistent effects of 

concussion [53]. The first approximate entropy based study conducted on the center of pressure 

data collected from 29 concussed athletes revealed that, the approximate entropy values of time 

series data decreased immediately at 48 to 96 hours after injury, compared with the healthy 

preseason state and, approximate entropy values remained significantly depressed even among 

athletes whose initial postural instability had resolved [54]. So the author concluded that the effects 

of the cerebral concussion might persist for longer than 3 to 4 days on postural stability control, 

even among the athletes who have no signs of unsteadiness. Slobounov et al. conducted a virtual 

time-to-contact (VTC) based study to measures of postural stability on 12 concussed athletes on 

30 days post-injury along with traditional COP based measure (COP area, velocity and stability 

index) and reported that, though no significant differences were found for any of the standard COP-

based measures of postural control, there were significant variations in the absolute values of VTC,  

mode and range of VTC at the deflection points, at the day 30 post-injury [55]. Shannon and Renyi 

Entropy-based study conducted by Cao et al. reported postural instability in athletes at least 10 

days post-concussion through the calculation of the area of COP and fractal analysis of COP 

motion time courses and suggest that entropy analysis appears promising as a sensitive measure 

of effects of mTBI on postural sway [56]. 

1.3.2 Neuropsychological Testing 

The practice of neuropsychological testing for the management of sport-related concussion is 

gradually becoming more familiar among the sports medicine clinicians and researchers. Recent 

research suggests that, the practice of using these comprehensive approaches may benefit the team 
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physicians and the athletic trainers to identify the signs of a concussion that is not identified 

through the routine clinical examination [33], [50], [52]. Moreover, the use of these tests can 

reduce some of the presumptions from the return-to-play (RTP) decision following a concussion, 

as the subjective nature of the post-concussion symptoms makes this assessment very challenging 

[36]. Even though the consequences of an athlete's premature RTP after a concussion can be 

potentially catastrophic, often the RTP decisions are taken based on assumption rather than 

certainty [36]. The life-threatening consequences of a second-time syndrome are well documented 

in the literature [57]–[61] and should be an important concern for all sports-medicine personnel.  

Recent research has established that even in case of a mildly concussed athletes, there can be 

a noticeable memory decline, enduring for at least 7 days after the injury [62], [63]. These data 

have led to a reexamination of previous return-to-play guidelines and a reconsideration of return-

to-play standards that were heavily symptom-based. The Vienna Concussion Centre has recently 

endorsed neurocognitive testing as a “cornerstone” for concussion management and identified this 

test as a cooperative piece of information to assist the diagnosis and management of concussions 

[25]. This position was reassured by the second international conference held in Prague in 2004 

[64]. The role of neurocognitive testing in the diagnosis and management of concussion has been 

emphasized because of the potential unreliability of the athletes’ self-reported symptoms. The 

minimization of post-concussion symptoms (PCS) is a well-known phenomenon at all levels of 

competition [65], [66]. An athlete’s apparent fear of elimination from a game or the anxiety of 

losing his/her position on the team may tempt the athlete to deny or underreport postconcussive 

symptoms [67]. Moreover, previous research has hypothesized that premature RTP may be a 

dangerous practice, particularly in children, as there is a probability of heightened degree of 

vulnerability present in this group [17], [68]. 
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The most popular test battery designed specifically for sports-related concussion is Immediate 

Postconcussion Assessment and Cognitive Testing (ImPACT), which is a computer-aided 

neurocognitive test battery [67]. This is a widely used program, allowing completion of 

neurocognitive testing in an expeditious and standardized manner. The ImPACT test battery has 

endured widespread validation over multiple studies and is presently used throughout all 

professional and amateur sports [63], [69]–[71]. 

In one study, Iverson used the ImPACT to evaluate post-concussion recovery [71]. Findings 

highlighted that the athletes who exhibited 3 of 4 reliable deficits, relative to their baseline levels 

of functioning, were 94.6% likely to necessitate at least 10 days to recover to be asymptomatic at 

rest and also while demonstrating intact neurocognitive functioning [71]. Furthermore, the study 

also suggested  that the summation of the Post-Concussion Symptom Scale (PCSS) score was 

higher for the protracted recovery group, presenting that athletes with more symptoms require a 

longer time to recover [71].  

Current large-population outcome studies using symptom- and neurocognitive-dependent 

measures after sports concussion highlight that typical recovery from sports concussion occurs 

within 10 to 14 days of injury [71]–[73]. Guskiewicz et al. examined the course of recovery with 

36 concussed athletes (at postinjury days 1, 3, and 5) and 36 matched control by measuring their 

neurocognitive functioning using a combination of neuropsychological tests including Trail-

Making Test, Stroop Color Word Test, Wechsler Digit Span Test and Hopkins Verbal Learning 

Test [36]. The analysis conducted for the ‘Trail-Making Test’ and ‘Wechsler Digit Span Test 

Backward’ resulted in a reasonable recovery curve that was able to link the lowered 

neuropsychological performance to the concussive injury [36]. Another ImPACT based 

neurocognitive testing conducted by Kampen et al. involving 122 concussed athletes at 2 days 
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post-injury along with  70 healthy matched control resulted into  significantly different 

“Abnormal” test performance for statistical analysis with reliable change index scores [67]. More 

than 280 peer-reviewed studies and 145 independent studies used ImPACT as a concussion 

management tool [74]. 

Another important neurophysiological test battery is Standardized Assessment of Concussion 

(SAC), which is a brief neurologic screening instrument initially developed to provide sports 

medicine personnel with a standardized technique of assessing athletes within minutes of 

sustaining MTBI during competition [75], [76]. Earlier studies have demonstrated the SAC’s 

utility as a sensitive and accurate method of detecting mental status and neurologic abnormalities 

immediately following sports-related concussion, but did not scientifically observe the reliability 

of alteration in SAC performance as an indicator to reveal the clinically meaningful variations in 

neurocognitive status due to injury [31], [75]. The study conducted by Barr et al. to test the 

sensitivity and specificity of SAC on 50 concussed and 68 non-injured athletes resulted in 94% 

sensitivity and 76% specificity  and thus provided supports indicating that the SAC is a valid 

instrument for detecting the immediate effects of mild traumatic brain injury [77]. 

A prospective cohort study where 94 concussed and 56 noninjured controls underwent 

assessment of symptoms, cognitive functioning, and postural stability by using Graded Symptom 

Checklist (GSC), Balance Error Scoring System (BESS), Standardized Assessment of Concussion 

(SAC), and a combination of neuropsychological test batteries (detailed in [41], immediately after 

the concussion, 3 hours after the injury, and 1, 2, 3, 5, 7, and 90 days post-injury provided a 

valuable insight to develop the clinical management system for the athletes recovering from 

concussion [41]. The study revealed that athletes with concussion displayed more severe 

symptoms that gradually resolved by day 7; immediate post-concussion balance deficits, that 



37 

dissipated within 3 to 5 days after injury; and cognitive impairment that improved to baseline 

levels within 5 to 7 days post injury on average [41]. There were no significant differences revealed 

in terms of symptoms or functional impairments between the concussed and control groups 90 

days after the injury [41]. 

Although numerous studies have used neuropsychological tests to document cognitive 

impairment following MTBI, there is a debate about the role of injury-related and non-injury 

related factors contributing to neuropsychological test performance in this population [78], [79]. 

Additionally, cognitive functions such as attention, processing speed, and working memory, which 

seem to be the most sensitive to variation after MTBI, are considered to transmit the least “hold” 

worth in test-retest conditions. Specifically, these functions are not only reported to be affected by 

MTBI, but are also likely to be sensitive to the effects of various factors comprising anxiety,  

physical pain and fatigue [80]. Consequently, the neuropsychologist assessing a patient with a 

concussion after a period of days, weeks, or months following an injury is frequently faced with 

the challenging task of separating the effects of cognitive deficiencies from other potential 

confounding influences. 

1.3.3 Electrophysiological Assessment 

A concussion is a complex pathophysiological procedure affecting the brain [81] and it is 

critical to assess concussion with high accuracy to avoid anxiety, sensitivity and cognitive biases, 

which appear as post-concussion syndrome. Moreover, insufficient follow-up and treatment can 

put the post-concussive person at the risk of neurobiological depression with anxiety resulting in 

a longer concussion recovery time. Therefore, proper understanding and measuring of concussions 

are essential to treat the psychological factors as a means of effective prevention, which, in turn, 

can lead to a rapid post-concussion recovery period. Despite a large number of assessment tools 
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and studies, the reliability of these tests needs to be validated because most of these tools are 

designed to estimate a subject's performance while performing simple tasks that can reflect 

individual judgment. Evidently, the challenges in concussion assessment have led to the studies 

exploiting the sensitivity of EEG spectral features to mild, moderate, and severe traumatic brain 

injury over the time span as short as 15 days to four years post-concussion. Researchers have 

accomplished the quantitative analysis of the EEG signals collected from the concussed subject to 

evaluate the post-concussion physical and clinical recovery. Additional studies suggest that the 

EEG spectral profile varies with acute mTBI due to the change in the cognitive state during the 

resting stage [82], [83]. In essence, the spectral profile of EEG is also altered in acute mTBI and 

during any anomaly of consciousness. However, researchers argue whether mTBI can evoke long-

term variations in spectral information. In addition, identification of any long-term change is 

sometimes controversially attributed to psychiatric comorbidity such as posttraumatic stress 

disorder (PTSD). So far, long-term neurological changes have remained indistinct. Nevertheless, 

many findings support that brain volume and white matter can be affected by mTBI [84]. Likewise, 

the resting state activation stage can be sensitive to mTBI. Another study found that EEG 

measurement was able to predict the return to play better than other measurement types [85]. 

Notably, one study examined EEG and showed that frequency information changes for as long as 

six months after the mTBI occurrence [86]. All these findings underscore the fact that the power 

of each frequency component of EEG can reveal significant physiological and clinical findings. 

Though there is a necessity to examine the details of spectral patterns after a mTBI incident, only 

a relatively small number of studies compared the spectral profiles just with a group of frequencies 

bounded under specific bands. 
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One of the most challenging problems associated with concussion is that currently there are 

no standardized, objective measures that can discern whether an individual has sustained a 

concussion or not [87]. This is particularly problematic given the wide heterogeneity of the 

mechanism of injury, the potential severity of the brain injury, and the resulting symptoms [87]–

[89]. Thus, efforts to identify concussions from predictable symptoms collected upon preliminary 

examination may lead to inaccurate conclusions about the nature of the brain injury. Moreover, a 

study on sports concussions showed that common concussion symptoms, such as loss of 

consciousness and amnesia, are not very good predictors of outcome and severity of concussion 

[81]. Frequently used concussion assessment tools, like Balance Error Scoring System (BESS), 

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), and King-Devick (K-

D) test, depend on some common postural  stability and neurological measures [90], [91]. It should 

be noted that the symptoms associated with a concussion can be very subtle and some previous 

studies have shown that the physical and neurological symptoms of concussion are usually 

resolved within a one-week period [32], [92]. Consequently, the reliability of these traditional 

measures is questionable and can provide erroneous athletes’ return-to-play (RTP) decisions [87].  

Since the symptomatology at the time of concussion has proven not very useful in predicting 

outcome and severity, the hope is that EEG might be useful in this regard. EEG analysis has been 

used for concussion assessment over the last thirty years. Geets et al. tested 300 patients with 

concussion and reported a decrease in power in major EEG frequency bands and focal 

abnormalities within 48 hours of a concussive incident [93]. Tebano et al. showed an overall 

decrease in the beta frequency band and a shift in mean frequency in the alpha band towards lower 

power [94]. The reduction of theta power [95] accompanying a transient increase of alpha-theta 

ratios was identified as a residual symptom in concussion patients [96], [97]. The most 
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comprehensive EEG study, using a database of 608 mTBI patients up to eight years post-injury, 

revealed: i) an increased coherence in frontal-temporal regions; ii) a decreased power differences 

between anterior and posterior cortical regions; and iii) a reduced alpha power in the posterior 

cortical region, all of which were attributed to mechanical head injury [98]. Our previous study 

involving adolescent athletes revealed an increase in the delta frequency band along with a 

decrease in the beta and gamma frequency band power spectral densities in previously concussed 

athletes [91]. Although several studies have provided substantial evidence of alteration in EEG 

patterns in concussed individuals [44], [90], [98], a controversial report indicating no unique EEG 

features associated with concussion, especially post-injury, was also reported [99].  
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CHAPTER 2  

RESIDUAL DEFICITS: COMBINED EEG AND COGNITIVE STUDY 

Concussion assessment is a challenge as many athletes show a tendency to underreport their 

symptoms. Moreover, no single approach appears sufficient for a sensitive and concrete 

concussion assessment. Our current study hypothesized that combining evaluations of multiple 

modalities such as brain alteration recordings and neurocognitive assessment can provide a set of 

characteristic “signatures”. We believe that this collective approach will better determine not only 

injury severity and recovery timeline but it will also allow coaches to make sensible RTP decisions. 

In this work, a comparison of the neurocognitive and electrophysiological performance of athletes 

with no history of concussion to those athletes with previous concussion history was made. The 

goal of this comparison was to highlight any potential differences between these athletes 8 to 12 

months post-injury. 

The goal of the current research is to look into the spectral profiles as a potential measurement 

tool which can expose the long-term cognitive impairment after an analytical study of EEG signals. 

To test our hypothesis, we utilized visual (King-Devick (K-D) Test), postural (BESS) and 

neurological (mPACT) tests, along with a novel EEG spectral analysis that computes the 

distinguishing features from each individual component of EEG, as well as from the set of 

conventional frequency bands. We also utilized novel time and nonlinear feature-based analysis to 
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evaluate the EEG of injured and healthy athletes that provide unique and complementary measures 

of post-concussion deficiencies.  

2.1 Methodology 

2.1.1 Participants  

The study was performed following the experimental protocol approved by the Institutional 

Review Board (IRB) of the University of North Dakota. The study included a total of 21 male 

participants between 14 to 17 years of age who were recruited from the Grand Forks area high 

schools. The participation was voluntary, and the participants had the right to withdraw any time 

from the study. Written consent for participation was collected from the athletes and also from 

their parents or guardians. Each participant had to complete a demographic information form with 

previous concussion history before data collection.  

Individuals who met our protocol inclusion criteria were recruited for this concussion analysis 

study and assigned to a particular group based on the history of concussion. The healthy group 

consists of 14 subjects (Age 15.86 ± 0.67 years, Height: 1.75 ± 0.09 m, Weight: 72.82 ± 10.03 Kg) 

with no history of concussion while the concussed group has 7 subjects (Age 15.97 ± 0.74 years, 

Height: 1.77 ± 0.09 m, Weight: 73.20 ± 12.56 Kg) who suffered from one or multiple previous 

concussions. Following the established criteria of American Academy of Neurology [100] and 

state law of North Dakota [101], concussions were identified and diagnosed by a physician, who 

was assigned by the concussion management team of the school.  

All participants were actively participating in sport and athletes with concussion history made 

a complete return to play within four weeks of injury. All athletes with a history of concussion (12 

days to 15 months from injury) reported being symptom-free at the time of testing. Control 
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participants were teammates who had never suffered a sport or non-sport related brain injury. 

Concussed participants’ post-concussion status is shown in Table 3.  

Table 3. Concussed participants demographic information 

Concussed 

Participants 

Number of 

concussion 

Loss of 

consciousness 
Confusion Amnesia 

Post-

concussion 

RTP days 

Days from concussion incident to data 

collection  

From  

incident 1 

From 

incident 2 

From 

incident 3 

1 2 No Yes Yes 14 263 216 - 

2 1 No Yes Yes 21 118 - - 

3 1 No No No 7 267 - - 

4 3 No Yes Yes 10 462 297 162 

5 2 No Yes Yes 25 92 65 - 

6 1 No No No 10 127 - - 

7 1 No No Yes 15 12 - - 

 

From each subject, the traditional assessment data and EEG signals were collected in three 

different trials with 30-days’ time difference between the trials. Therefore, the total number of data 

collection trials for the healthy group was three multiplied by fourteen (total 42 trials) and for the 

concussed subject was three multiplied by seven (total 21 trials). 

2.1.2 Postural Data Collection Protocol 

For postural stability assessment, we used BESS. This test was done based on the phenomena 

that postural stability deficits occur after a concussion. An objective recording of postural sway 

was introduced to overcome individual data acquisition error during data collection. A Wii Balance 

Board was used to record COP (center of pressure) data during BESS (Fig. 7). 
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Figure 7. Experimental setup for postural data collection during BESS single leg stance. 

2.1.2.1 Balance Error Scoring System (BESS) 

 The BESS is one of the most popular tests used to find balance deficit in concussed and 

fatigued athletes [102]. The BESS offers a portable, objective and cost-effective method of 

assessing static postural stability and control. If expensive and sophisticated postural stability 

assessment tools are unavailable, the BESS can be used to evaluate the effects of mild head injury 

or concussion on static postural stability/control. Information obtained through this clinical 

balance tool can be used to assist the clinicians in making RTP decisions following mild head 

injury.  

 Two testing surfaces need to complete the BESS test: floor/ground and foam pad. The purpose 

of  using the foam pad is to generate an unstable surface that will eventually create a more 

challenging balance task, and will vary based on body weight. It has been theorized that, with the 
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increase of body weight, the foam will deform more around the foot and therefore, the weightier 

the person, the foam will deform more [103]. As the foam distorts around the foot, there is an 

increase in the support on the lateral planes of the foot. Moreover, the increased contact area 

between the foam surface and the foot has also been hypothesized to raise the tactile sense of the 

foot, consequently helping to increase the postural stability [104]. The increase in the tactile sense 

is reported to cause further sensory information to be directed to the CNS and as the brain processes 

this additional information, it can develop better decisions while responding to the unsteady foam 

surface [104].  

 Twenty seconds of COP data were collected from each subject for six trials while performing 

three different tasks for two different surfaces described in Table 4 [103]. Types of errors recorded 

during a test are listed in Table 5 [103].  

Table 4. BESS data collection protocol [103] 

Record errors, max of 10 errors each stance/surface Firm Surface Foam Surface 

Double Leg Stance: Standing with feet side by side 

(touching), hands on the hips and eyes closed 

20 Seconds 20 Seconds 

Single Leg Stance: Standing on the non-dominant foot, the 

hip is bent to approximately 30 and the knee is flexed to 

approximately 45. Hands are placed on the hips and eyes are 

kept closed. 

20 Seconds 20 Seconds 

Tandem Stance: Standing heel to toe on a firm/foam surface 

by placing the non-dominate foot in the back. The heel of the 

dominant foot should be in touch with the toe of the non-

dominant foot.Hands are placed on the hips and eyes are kept 

closed. 

20 Seconds 20 Seconds 
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Table 5. BESS error types [103] 

BESS Errors 

1. If hands are moved off iliac crest 

2. Opening eyes during data collection 

3. Step off, stumble or fall from the surface 

4. Moving hip for more than 30 degrees from fixed position 

5. Lifting heel or forefoot 

6. To be out of test position for more than 5 seconds  

The BESS test error is calculated by adding one error point for each error during 

the 6, 20-second trials for both firm and foam surface. 

 

Figure 8 shows all the six stances on firm and foam surface for BESS data collection. 

 

Figure 8. BESS data collection stances [103] 
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 Each of these six subtests is performed for 20 seconds. Deviation from proper stance is referred 

to an error, and the total number of errors during the subtests are counted. Other performance 

measures include the resultant sway per second, resultant sway, sway along the x- and y-axis, and 

maximum displacement along x- and y-axis for each trail of the BESS test for all three sessions of 

data collection.  

2.1.3 Visual Data Collection Protocol 

The deficiencies of attention and visual movements due to a concussion were measured 

using King Davick (KD) test. 

2.1.3.1 King-Devick (K-D) Test 

The K-D test is a test of the visual system and is based on measurement of the speed of rapid 

number naming [105]. The K-D test is faster than other standardized tests like ImPACT, Military 

Acute Concussion Evaluation (MACE) and the sports concussion assessment tool (SCAT 3) as it 

takes just two minutes to complete the testing and thus is more practical in case of sideline 

application [105].  K-D test performance has been shown to correlate with suboptimal brain 

function in concussion [106], [107]. The test procedure included one demonstration card with three 

test cards, as shown in Fig. 9.  
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Figure 9. Demonstration card and test cards used during the K-D Test [106]  

 

The athletes need to name the numbers from the three test cards rapidly without any error. 

The score for the test is calculated by combining the amount of the three times, in seconds, required 

to read the three cards. The test involves attention, rapid eye movements as well as language 

operation. These three functions may be adversely affected, resulting in a poor K-D test 

performance. The test purports to measure any suboptimal brain functional deficits after a 

concussion incident, as well as sometimes reflects deficits due to sleep deprivation, Parkinson’s 

disease, hypoxia and multiple sclerosis. 
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2.1.4 Neuropsychological Data Collection Protocol 

For neuropsychological data collection we have used ImPACT as More than 280 peer-

reviewed studies and 145 independent studies used ImPACT as a concussion management tool 

[74].   

2.1.4.1 Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) 

The ImPACT battery is the most common computerized test that can be used in cognitive 

concussion assessment [63]. The test battery consists of three different measures: Demographic 

data, neuropsychological tests, and the Post-Concussion Symptom Scale (PCSS). The assessment 

results from these three sections are combined to assist in accurate evaluation and management of 

concussion [108]. The demographic data section mainly consists of all the important sport, 

medical, and concussion history related information.  

For the neuropsychological test sections, ImPACT (version 3.0) contains six different 

neuropsychological tests, and each of these tests is intended to target different parts of cognitive 

functioning comprising attention, verbal and visual memory, control, reaction time and processing 

speed. Neurocognitive tests were used to evaluate various aspects of cognitive functioning such as 

working memory, attention span, attention time, problem solving ability, response variability, and 

reaction time for both the healthy and concussed group of athletes by conducting six 

neurophysiological tests called word memory, symbol match,  design memory, color match, X’s 

and O’s,  and three letter memory test. Five composite scores were generated from these subtests 

(Table 6) [109]. Combining the results from these six different tests, a set of composite scores are 

produced containing separate measures named verbal memory, visual memory, motor speed, 

reaction time and impulse control. The detailed description of these tests can be found at [63], [69], 

[110]. 
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Table 6. ImPACT composite scores [63] 

Composite 

Scores 

Neurocognitive Domain 

Measured 

Better Performance 

Indicator 

Verbal Memory 
Word Memory + Symbol 

Match memory score. 
Higher score 

Visual Memory 
Design Memory + X's and O's 

percent correct. 
Higher score 

Processing Speed 
Weighted Average of Response 

to 3 interference tasks. 
Higher score 

Reaction Time 
Average weighted reaction time 

for correct responses. 
Lower score 

Impulse Control 
Number of incorrect distractors 

+ Number of Errors. 
Lower score 

Total Symptom 

Scores 

22 symptoms (headache, 

dizziness, balance problem, etc.): 0-

7 for each symptom. 

Lower score 

 

 The last section named PCSS is also utilized in the ImPACT battery study [69]. The scale is 

reported by various sports organizations to manage and track post-concussion symptoms [63], 

[70]. This section has a 21-symptom checklist which mainly asks the athlete to specify a rate for 

each symptom on a scale of one to seven, with zero representing no presence of a symptom and 

six representing a severe symptom. 

An ImPACT test was performed by all participants during all three trials. 

2.1.5 EEG Data Collection Protocol 

EEG data analysis was used for electrophysiological assessment since it is one of the most 

used tools to evaluate dysfunctions associated with brain signals. Advantages of EEG also include 
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its availability, effectiveness of analyzing these types of data and its noninvasive nature. Moreover, 

existing evidence indicates that EEG recordings can detect abnormal brain activities in 

asymptomatic concussed athletes, demonstrating superior sensitivity over neuropsychological 

assessments [111]. 

EEG activities were measured using a 9-lead wireless B-Alert headset [112]. Electrode 

impedance was kept below 50 kΩ. During data collection, the left mastoid was used as a reference, 

and the right mastoid was used as a ground. The sampling rate for data collection was 256 Hz, and 

data were acquired by placing nine electrodes at F3, F4, Fz, C3, C4, Cz, P3, P4 and POZ locations 

as shown in Fig. 10.  

 
   

Figure 10. Experimental setup for EEG data collection with brain map of 9 electrode 

locations [112] 

  The data were collected for 5 minutes from all 21 subjects during different trial sessions 

each under three conditions: vigilant task (VT), eyes open (EO), and eyes closed (EC). These 
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were done to create high engagement, low engagement, and distraction status for both healthy 

and concussed subjects. Details of this protocol are shown in Table 7.  

Table 7. EEG data collection tasks 

Tasks Action Status 

Vigilance Task Choose between primary vs. secondary or tertiary 

task every 1.5 to 3 seconds. 

High Engagement 

Eyes  Open Respond to visual probe every 2 seconds. Low 

Engagement 

Eyes Closed Respond to audio tone every 2 seconds. Distraction 

 

The same procedure was followed at all different trials for all subjects. 

2.2 Data Analysis 

ImPACT data were analyzed from five composite scores called verbal memory score, visual 

memory score, processing speed score, reaction time score and impulse control score for both 

healthy and concussed athletes.  

For the K-D test, the total time required to complete the task was calculated for each healthy 

and concussed subject. The average times for healthy and concussed athletes were compared to 

assess the performance.   

The BESS test analysis was done by calculating the average x and y-axis sway (cm) in addition 

to the total number of balance errors for each healthy and concussed subjects to measure their 

postural performance.  

In order to verify the deficits between healthy and concussed groups for these three test 

batteries, statistical analysis was performed without knowledge of groups. EEG data were analyzed 

to find out the linear, nonlinear and time domain deficits between healthy and concussed groups. 
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2.2.1 Statistical Analysis  

The deficits between healthy and concussed groups were verified using statistical analysis, 

and the measurements were performed without knowledge of groups. The Shapiro-Wilk test was 

applied to ascertain the normality of the data. For normally distributed data, a two-tailed Student 

t-test, followed by Bonferroni’s post hoc test when applicable was implemented; otherwise, 

Wilcoxon rank sum test was considered. The values in the manuscript are presented as mean ± 

standard deviation format with statistical significance set at (p<0.05). The test of significance was 

performed using the MATLAB Statistical Toolbox[113]. 

2.2.2 EEG Data Analysis 

 High-pass and low-pass filters were applied to the digitized data, forming a 1–40 Hz (24 

dB/octave) bandpass filter. The first and last 10 s of each 5-min recording during EO, EC, and VT 

conditions were rejected to eliminate state transitions. Randomly occurring large amplitude with 

power ≥ 3 standard deviations with respect to clean EEG was removed. Then, the stereotypical 

noise like eye movements, eye blinks, muscular activity, line noise, motion related signal, and 

heart signals was cleaned by using well-established Independent Component Analysis procedure 

of EEGLAB detailed previously [114], [115]. Any other nonstereotyped or residual artifact was 

removed through visual inspection of the raw data.  

 The clean EEG data was then segmented into 1-second epochs containing 256 data points. 

Power spectral density (PSD) was determined by computing Fast Fourier Transformations (FFT) 

with a 10% Hanning window on each segment to determine spectral power (μV2) for 1 to 40 Hz 

frequency bins of each EEG channels. The PSD of the individual bins were then averaged and 

logged to calculate PSD of conventional EEG frequency bands named delta (1–4 Hz), theta (4–8 

Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30-40 Hz). After calculating the PSD for each 
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channel and bands, overall PSD was calculated by calculating the mean PSD across all nine 

referential channels for both individual frequency bins and five frequency bands. Linear and 

nonlinear features were then extracted from the five frequency bands and also from each of 1 to 

40 Hz EEG frequency bins. 

 This innovative analysis achieved a new range of frequencies with significant differences 

between healthy and concussed groups even when the band base analysis was not adequate to 

reveal the deficits. Moreover, in this paper, we present an exploration of the usefulness of several 

features for use in concussion detection, which aims at providing accurate feedback as early as 

possible. Along with the traditionally used band power estimates, we computed some time domain 

as well as nonlinear features from each EEG frequency band and then again computed all the 

features from each individual frequency bins. The parameters extracted from EEG signal are 

explained as follows. 

2.2.2.1 Linear Features  

 Power spectral density analysis was performed to extract the linear features from the signal. 

The extracted features were; (i) average spectral power for five frequency bands and (ii) the 

spectral power for each of the individual frequency from 1 Hz to 40 Hz. 

2.2.2.2 Time domain Feature 

 Most popular features used for concussion analysis are EEG band based power spectral 

density. In this paper, we introduce new features for concussion assessment called Time Domain 

Parameters that are also known as Hjorth parameters. The features are inspired by the fact that they 

have been previously used in EEG based experiments like Vidaurre et al. used Hjorth parameters, 

in their brain-computer interface (BCI) study [116] whereas Cecchin et al. used Hjorth parameters 
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for seizure assessment from raw scalp EEG signals [117]. The parameters introduced by Hjorth 

[118] are three features defined as follows: 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥(𝑡)) = 𝑣𝑎𝑟(𝑥(𝑡))………..…………………………..(1) 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥(𝑡)) = √
𝑣𝑎𝑟(

𝑑𝑥(𝑡)

𝑑𝑡
)

𝑣𝑎𝑟(𝑥(𝑡))
  ……………………………………(2) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥(𝑡)) =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(

𝑑𝑥(𝑡)

𝑑𝑡
)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥 (𝑡))
…………………………………..(3) 

 

    The first parameter, Activity, calculates the alteration of time signal and characterizes the signal 

power. Mobility is computed by calculating the square root of the variance of the first derivative 

of the signal divided by the activity and thus specifies the average frequency or proportion of 

standard deviation of the spectral power. Complexity describes the change in frequency by 

comparing the Mobility of the first derivative of the signal with the signal’s mobility, and for more 

resemblance between the signals, the value converges to one. These three parameters consider the 

frequency component of the signal itself and thus remain more robust against the errors due to 

overfitting or non-stationarities of the signal [117]. To reduce the complexity of calculation, these 

three parameters were calculated in a stationary mode of signal separately for each EEG channel 

of the entire signal. Thus, the extracted parameters were three features per channel and, as a whole, 

a feature vector for each parameter. 27 features (3 features for nine channels) were extracted and 

then averaged for all channels. 

2.2.2.3 Nonlinear Features 

 Different nonlinear parameters have been shown significantly useful in the diagnosis of 

neurological disorders. Nonlinear parameters like approximate entropy (ApEn), Hurst exponent, 
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and Correlation dimension have been used for automatic diagnosis of seizure onset and reported 

as a promising approach in differentiating normal, pre-ictal and epileptic seizure from EEG signals  

[119].  

    In the field of cortical neuronal dynamic study, the existence of long-range temporal correlation 

(LRTC) is considered a potential observed phenomenon as it is proven to be gradually reduced 

with the power-spectrum [120]. The LRTC property of an amplitude-time signal has vital 

importance as it is found to have a relationship with the distributed neural network [121]. Poil et 

al.  reported the coexistence of LRTC property of amplitude time series with neuronal avalanche 

activity [122], and thus recommended a relationship between oscillatory activity detected in the 

EEG and the criticality hypothesis [122], [123]. Using these hypotheses, Shew et al. suggested a 

possible connection between optimal functioning and LRTC in the amplitude of oscillations [120]. 

Moreover, the significance of the LRTC property has also been proven in numerous clinical studies 

linking a number of neuronal diseases (including schizophrenia [124], Alzheimer's disease [125], 

major depressive disorder [126], and epilepsy [127] with altered LRTC properties. To quantify the 

degree of change in LRTC property in a signal, the Hurst exponent (H), (explained in a later 

paragraph) is measured [120]. Hurst exponent was used by Holler et al. for the disorder of 

consciousness studies [128] whereas Culic et al. reported this property to be important to 

differentiate epileptic patients [129].  

   Another nonlinear parameter that was calculated was ApEn. ApEn is a widely known 

mathematical algorithm, which computes the predictability of time series data by quantifying the 

regularity and complexity in the signal. ApEn quantifies the logarithmic likelihood of the patterns 

in the signal that remain closed on next incremental comparisons [130]. 
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 Values of the ApEn parameter have been reported significantly different between EEGs 

collected from epileptic seizure patients and normal EEG signals [131]. Guo et al. present a method 

based on approximate entropy for classifying the EEG regarding the existence and absence of 

seizures using the neural network with 99.85% accuracy [132].  

    Inspired by these publications, we tested the efficacy of these features to distinguish healthy and 

concussed athletes in this study. Approximate entropy (ApEn) and Hurst exponent were extracted 

as the nonlinear features to measure synchrony and complexity of the EEG signal as explained in 

the following sections. 

Approximate Entropy 

 ApEn was calculated for each frequency (1 to 40 Hz) and for each of five frequency bands of 

EEG data for all three different conditions in order to find out if there was any relationship between 

the randomness of EEG data along with a concussion. A lower value of approximate entropy 

specifies that the EEG data is more deterministic whereas a higher value of ApEN determines the 

data is more random. This feature was calculated using the ApEn function provided by Kijoon Lee 

in the MATLAB central file exchange [133]. The tolerance chosen for ApEn calculation was two 

standard deviations. 

Hurst Exponent 

 The Hurst exponent (H) calculates the extent information presented by a signal is related to the 

history of the signal. The value of H varies from 0 to 1; 0< H < 0.5 indicates the samples in the 

signals are far apart and independent and thus the signal is short-range dependent. However, if 0.5 

< H < 1, then the value is said to contain LRTC, with higher values of H representing a stronger 

LRTC property [134]. The Hurst exponent is thus known as the index of long-range dependence48. 
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The value of H was calculated for each channel over the entire EEG signal. A total of 9 components 

for 9 EEG channels were extracted for each signal. 

2.3  Results 

 In this study, we calculated neurocognitive deficits combining EEG analysis with three 

standard post-concussive assessment tools. We utilized visual (K-D Test), postural (BESS) and 

neurological (ImPACT) tests, along with a novel EEG spectral analysis that computes the 

distinguishing features from each individual component of EEG, as well as from the set of 

conventional frequency bands. Data were collected for all testing modalities from 21 adolescent 

athletes (seven concussive and fourteen healthy) in three different trials. For EEG assessment, 

along with linear frequency-based features, we introduced a set of time-frequency (Hjorth 

Parameters) and nonlinear features (approximate entropy and Hurst exponent) for the first time to 

explore post-concussive deficits. In conjunction with traditional frequency band analysis, we also 

presented a new individual frequency based approach for EEG assessment that provides unique 

and complementary measures of post-concussion deficiencies. The results of all analyses are 

described in following sections. 

2.3.1 Postural Deficits Result in terms of BESS Test 

  Postural deficits in terms of the BESS associated with concussion showed no significant 

difference between healthy and concussed group. Average sway per second was calculated using 

a modified Wii balance board during the BESS assessment for healthy group (group average 

sway=3.25±0.67 cm) and concussed group (group average sway=3.06±0.70 cm). The number of 

average BESS errors reported by the healthy group were twenty-eight compared to thirty-one 

reported by the concussed group. Though the average sway scores exhibited by both groups were 
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quite similar, the concussed group reported more errors than their healthy matched controls.  The 

t-test resulted in no significant differences (Average sway: p-value = 0.55, Number of errors: p-

value = 0.37) between the groups regarding average sway and number of errors. 

2.3.2 Visual Deficits Result in Terms of K-D Test 

 K-D test measures the deficiencies of attention and eye movements by capturing the speed of 

rapid number naming. The athletes who sustained concussions required slightly more time to 

complete the task than their peers in the healthy group (by approximately 0.3%), but the deficits 

did not reach a level of significance (Healthy group: 52.91±10.81, Concussed group: 53.10±11.21; 

p-value = 0.955).   

2.3.3 Neurophysiological Deficits Result in Terms of ImPACT Test 

 The healthy and concussed groups were not significantly different with regard to age but were 

significantly different based on the number of prior concussions. A two-tailed t-test was performed 

to evaluate the differences in neuropsychological test performance regarding ImPACT battery 

between the concussed and control groups. Table 8 presents the detailed descriptive statistics for 

verbal and visual memory, processing speed, and reaction time composite scores. 

Table 8. Group means and standard deviations for ImPACT composite scores of healthy 

and concussed groups 

 

Composite Scores 
Healthy Group Concussed Group 

F value p-Value 
Mean ± SD Mean ± SD 

Verbal Memory Index 89.86 ±7.84 87.57±9.25 0.58 0.59 

Visual Memory Index 86.57±5.58 81.71±6.55 0.59 0.12 

Motor Speed Index 40.38±5.82 37.23±5.17 0.81 0.23 

Reaction Time Index 0.62±0.09 0.65±0.12 0.39 0.55 

Impulse Control Index 6.14±3.30 5.71±3.30 0.93 0.78 

Total Symptom Score Index 2.93±2.13 3.14±3.53 0.12 0.89 
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 Though a number of studies reported the ability of the ImPACT to differentiate healthy and 

concussed groups, our analysis revealed no significant difference in any composite scores between 

the groups.  

2.3.4 Neuronal Deficits in Terms of EEG Band-Power following Concussion 

The EEG analysis was conducted to extract the neuronal deficits following a concussion. 

Athletes in the concussed group exhibited an increase in delta and theta bands, and a decrease in 

alpha, beta and gamma frequencies compared to their uninjured peers during all three testing 

conditions. As indicated in Table 9, the difference reached the significance level for the increase 

in delta band and decreased in alpha, beta and gamma frequency bands for all three conditions. 

 

Table 9. Power deficit between healthy and concussed group 

 Subject Delta(μV2) Theta(μV2) Alpha(μV2) Beta(μV2) Gamma(μV2) 

Condition  Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

VT 

Condition 

Healthy 4.24±0.16 3.38±0.51 3.08±0.23 2.47±0.17 1.97±0.18 

Concussed 4.81±0.25* 3.59±0.17 2.63±0.26* 2.07±0.30* 1.51±0.24* 

EO 

Condition 

Healthy 4.34±0.26 3.47±0.34 3.12±0.36 2.49±0.31 1.95±0.13 

Concussed 4.84±0.32* 3.66±0.39 2.68±0.24* 2.13±0.19* 1.57±0.21* 

EC 

Condition 

Healthy 4.23±0.35 3.43±0.29 3.20±0.16 2.46±0.27 1.92±0.12 

Concussed 4.67±0.47* 3.61±0.32 2.84+0.35* 2.13±0.34* 1.50±0.35* 

* denotes significant differences between healthy and concussed group at p-value = 0.05 
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2.3.5 Neuronal Deficits in Terms of EEG Individual Frequency Power following 

Concussion 

This analysis considered individual EEG frequencies to find gaps between healthy and 

concussed groups. Figure 11 shows the results of both frequency band and individual frequency 

analysis for three experimental conditions (EO, EC, and VT). The dashed black line shows the 

confidence level of p=0.05. The solid red lines show the p-value for each frequency band (delta, 

theta, alpha, beta, and gamma bands). The bars in each frequency band show the p-value for 

individual frequencies.  

The athletes who sustained a concussion had a range of frequencies with a significant 

difference from the healthy group during EO condition (1-3 Hz, 9-10 Hz, 20-24 Hz, 27-30Hz, and 

34-38 Hz) as shown in Figure 2(a). A very similar, but not all range of significance was exhibited 

during EC condition (1-3 Hz, 6-7 Hz, 9-10 Hz, 15-17 Hz, 20-24 Hz, 28-30 Hz, and 35-38 Hz) as 

shown in Figure 11(b). The significant individual frequencies exhibiting the deficits between 

healthy and concussed groups during VT condition were (1-3 Hz, 6-7 Hz, 9-10 Hz, 19-30 Hz, 34-

38 Hz) and were much consistent with EO condition as shown in Figure 2(c). 
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Figure 11. Level of significance for individual frequency bins. A set of individual frequencies 

from EEG data exhibits power spectral density deficits between healthy and concussed athletes. The 

x-axis in the figure shows the individual frequencies and Y-axis shows the level of significance deficits. 

The color of bars is different based on each frequency band, and the level of significance for each 
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EEG frequency band is shown by red lines. The p-value vs. frequency is shown during three 

conditions (a) eyes open (EO) (b) eyes closed (EC), and (c) vigilant task (VT).   

 

2.3.6 Neuronal Deficits in terms of Nonlinear Features from EEG Individual Frequency 

following Concussion.  

In the final analysis, nonlinear features were calculated in order to find out if new features 

extracted from the EEG data can tabulate the deficiencies due to a concussion. The extracted 

features were approximate entropy, activity, mobility, complexity and Hurst exponent features. 

While calculating these features for EEG frequency bands (delta, theta, alpha, beta, and gamma), 

no significant deficits were found between healthy and concussed athletes. But when the analysis 

was done for individual frequencies instead of frequency bands, interesting outcomes were 

exhibited. A set of individual frequencies was found for each nonlinear feature which can reveal 

significant deficits between healthy and concussed athletes as reported in Fig. 3. As shown in 

Fig.12(a) for EO condition, the frequencies indicating significant deficits between healthy and 

concussed groups in terms of 2 or more nonlinear features are 1-2 Hz, 19 Hz, 21 Hz, 23 Hz, 25 

Hz, 31 Hz, 33 Hz and 37 Hz. For EC condition, Figure 12(b), the range of frequencies with deficits 

in two or more features was for 1-2 Hz, 13 Hz, 16 Hz, 34 Hz and 37 Hz, and for VT condition, 

from Figure 12(c), the range was 1-2 Hz, 8 Hz, 15-16 Hz, 26 Hz, 34-35 Hz and 37 Hz. The most 

efficient nonlinear features to reveal deficiency following concussion were approximate entropy, 

activity and Hurst exponent feature. 
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Figure 12. Frequencies with a significant difference in approximate entropy, activity, 

mobility, complexity and Hurst exponent between healthy and concussed athletes for three 

conditions: (a) eyes open (EO), (b) eyes closed (EC), and (c) vigilant task (VT). 

 

2.4 Discussion 

Residual damage to the brain due to concussion can often evade clinical detection. Enhancing 

ways in which concussion is assessed is pivotal, specifically in susceptible individuals such as 
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adolescent athletes where functional deficits can be elusive and seriously underreported. Better 

assessment is also essential since early identification of the signs of a concussion can progress 

positive outcomes and thus suggests that there is a clear need for an effective evaluation approach 

to efficiently assess and quantify high-risk individuals such as athletes who may have already 

sustained a concussion. The current study aims to test the hypothesis that the concussion disrupts 

the normal brain activities of a person. To detect these deficits, we combined the BESS, K-D test, 

ImPACT, and EEG analysis to capture the postural, suboptimal, neurophysiological and neuronal 

deficits following a concussion. 

Evidence from the previous studies [52], [90] shows that the balance impairment regarding 

the BESS is most pronounced during the time of injury and 24 hours post injury but appears to 

resolve by day five after a concussion incident. The balance deficit through the BESS in our 

research resulted in no significant difference between the healthy and concussed group and thus 

strengthened the already established hypothesis [52], [90] that the postural deficits resolve within 

a brief period post-injury and therefore may suggest that the BESS is not sensitive enough to 

interpret any residual deficits associated with long-term concussion history. 

As expected, the K-D test, which is mainly a rapid screen tool and typically used immediately 

after concussion [30], was unable to detect any deficits in our study. This can be explained by the 

fact that the related visual deficits due to a concussion were resolved during the several months’ 

time gap between the concussion incident and data collection.  

The ImPACT was reported by multiple sports-related concussion studies as a potential tool to 

detect the impaired neurocognitive functioning due to concussion [63], [69], [108]. Also, some 

studies showed neuropsychological baseline assessment models like ImPACT could assist the 

diagnosis of subtle neurocognitive deviations in athletes after a concussion incident [63], [110]. 
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Though several studies demonstrated that a history of concussion is associated wi th poorer 

performance in ImPACT [110], the role of concussion history remains a controversial issue, with 

various studies yielding no relationship between concussion history and ImPACT performance 

[69]. The results of this manuscript suggest that there is no significant effect of a history of 

concussion associated with performance measured by ImPACT, which is understandable, as 

ImPACT is an immediate post-concussion paradigm, and due to the long time gap between 

concussion incident and data collection, the sensitivity of the test deteriorates with time. 

To capture the signature neuronal deficits exhibited by concussed athletes that distinguish 

them from their healthy peers, we evaluated several approaches utilizing a set of linear, time-

frequency based features along with nonlinear features extracted from EEG signals. In conjunction 

with band base analysis, this study undertook a systematic exploration to find out the deficits 

within specific frequency bins from 1 to 40 Hz.  The system works by following four main steps: 

data acquisition, data preprocessing, feature extraction (power spectral, time domain and 

nonlinear) and statistical analysis (functional deficits detection).  

For band base analysis, EEG was divided into traditional frequency bands (delta, theta, alpha, 

beta, and gamma). After normalization, power spectral density analysis revealed a significant 

difference between healthy and concussed athletes. There are several findings of interest. First, the 

PSD features collected from frequency sub-bands played an important role in distinguishing 

concussed individuals. Discriminative features were observed in delta, alpha, beta and gamma 

frequency bands. A difference was also noted at theta frequency band. It should be pointed out that 

similar frequency bands were targeted in some previous EEG studies of concussion [111], [135], 

[136]. An increase in delta and theta frequency and a decrease in beta frequency were also reported 

by McCrea et al.50 and Slobounov et al. [111]. The discrimination at reported by different 
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frequency bands can indicate significant neuronal dysfunction. According to Demos et al. [136], 

an increase in delta frequency may indicate brain injuries, learning problems, or difficulties with 

cognition. The decrease in alpha band power exhibited through the analysis partially overlaps with 

the results reported by Thatcher et al. in a previously conducted mTBI based study [98]. The 

decrease in alpha power exhibited by concussed athletes compared to control peers may be 

interpreted as a reflection of reduced cortical excitability [137]. A substantial decrease in beta and 

gamma power was also revealed by the analysis. Certain levels of beta waves allow easy focus and 

involvement in conscious thought and logical thinking, whereas a decrease in beta waves may 

point to poor cognition, difficulty in concentration [136]. Moreover, a movement plan based study 

in terms of reaction time and endpoint error reported that a decrease in beta power is correlated 

with higher end point error [138]. A study conducted by Kwon et al. demonstrated a reduced 

gamma power by schizophrenia patients and concluded that the deficit might reveal a less effective 

local neuronal synchronization to external stimuli in the thalamic sensory oscillations or in the 

sensory cortex [139]. A decrease in gamma power was also reported to be correlated with lower 

consciousness in the anesthesia study conducted by Pritchett et al. [140]. Several studies also 

reported that a decrease in gamma power is frequently related to an increase in the low-frequency 

range (delta frequency band) power [141], [142] and interpreted to be related to lower neuronal 

activity of the brain region that operates to generate behavior [143]. All these specific power 

increases in the slower frequency band (delta), combined with the decrease of power in faster 

frequency bands (alpha, beta, gamma) exhibited by concussed athletes may imply that their 

neurological status is not as sound as their healthy matched peers in the control group are. 

Though a lot of studies revealed significant differences in EEG sub-bands, there is no 

signature profile to indicate increase or decrease of band powers associated with concussion. That 
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is why the pathophysiology of concussion is considered heterogeneous and not yet completely 

understood. To reinforce our EEG-based functional deficits hypothesis, in an innovative approach, 

the PSD based analysis for each of the EEG individual frequencies was conducted. After analyzing 

189 cases, i.e., three different trials in three different conditions (EO, EC, VT) for 21 subjects as 

shown in Figure 11, it was concluded that four ranges of frequencies are more efficient in 

highlighting deficits following a concussion. These ranges are slow delta (1-2 Hz), slow alpha (9-

10 Hz), fast beta (20-30 Hz) and fast gamma (34-39 Hz). A similar individual frequency-based 

analysis conducted by us on eyes closed EEG collected from a different dataset of 20 healthy and 

20 immediate concussed athletes also resulted in a nearly similar range of frequencies (1-2 Hz of 

delta band, 8-10 Hz of the alpha band, 24-29 Hz of the beta band and 34-36 Hz range within the 

gamma band) [144]. To date, no individual frequency based study was conducted for concussion 

assessment and more collaborative research is needed to establish a direct relationship of these 

frequency bins with a concussion. The decrease in alpha band frequency bins exhibited through 

individual frequency analysis partially overlaps with the results reported by Thatcher et al. in a 

previously conducted mTBI based study [98]. An increase in theta band frequency bins during VT 

task may be associated with ADHD, depression, hyperactivity, impulsivity, and inattentiveness 

[52]. The individual frequency-based analysis also revealed significant differences in the upper 

level of beta bands compared to the lower level frequency bins. Oscillatory activity in the beta 

band was previously reported to reflect the presence of inhibition of the process of the ongoing 

motor task [145].  

Elgendi et al. demonstrated an Alzheimer disease (AD) study and reported that new optimized 

frequency ranges (4–7Hz, 8–15Hz, 19–24Hz) resulted in better classification accuracy than the 

traditional frequency bands for the diagnosis of AD [146]. Similarly, if we consider the 
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neurological deficits observed in individual frequency bins, as well as in the conventional 

frequency bands as a whole, the most reliable interpretation is that these deficits may be a 

consequence of their injury and can possibly be used as a concussion assessment index to identify 

the concussed athletes at the time of injury or during the post-concussion recovery period.  

In the second phase of this study, a set of time-domain and nonlinear features were extracted. 

These features have been proven to be suitable to characterize neurological disorders like epilepsy, 

attention-deficit/hyperactivity disorder (ADHD) and Alzheimer disease in the literature [147]. It 

was hypothesized that the time domain and nonlinear feature based study could reveal new aspects 

and provide more information regarding the complex and chaotic nature of the EEG data. As 

reported by Mohammadi et al. [148], quantitative measures of chaos and non-linear features are 

convenient descriptive tools to characterize electrophysiological abnormalities in neuropsychiatric 

disorders that are not evident in linear analysis. To show the effectiveness of these features for a 

concussion, in a similar approach to power analysis, the features were calculated for both 

frequency bands and individual EEG frequencies. Though the concussed athletes exhibit different 

values for Hjorth time domain parameters and nonlinear parameters like approximate entropy and 

Hurst exponent, none of the parameters showed a significant difference compared to their healthy 

peers for traditional EEG frequency bands. However, when the analysis was done for each 

frequency, it was noted that significant differences were observed for certain frequencies as shown 

in Figure 12(a-c).  

The observation of significantly different nonlinear features also revealed important notions 

about concussed athletes. The concussed athletes exhibited a decrease in Hjorth complexity and 

mobility. It has been reported by Pezard et al. [149] that depressive subjects tend to display lower 

complexity than controls. Moreover, Hamida et al. [150] reported the decreased complexity and 
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mobility are associated with insomniac subjects. Approximate entropy quantifies the amount of 

regularity in data by calculating the upcoming amplitude values of the signal based on the 

knowledge of the preceding amplitude values [151]. Sohn et al. [152] reported a significantly 

lower approximate entropy for a group of ADHD subjects compared to matched controls and 

hypothesized that the patients might not have sufficient levels of cortical activation to reach the 

requirements of attention-demanding tasks. Following their hypothesis, a significant decrease in 

approximate entropy exhibited by concussed athletes may point out that their cortical information 

processing is altered compared to healthy athletes. Moreover, many pathological disorder studies 

like schizophrenia, posttraumatic stress disorder, panic disorder, and epilepsy reported lower 

complexity in pathological states compared to healthy subjects [153]. The notion claimed by the 

authors is that the lower EEG complexity is attributed to the abnormal neural integration in the 

above-mentioned mental disorders [124] and thus a lower value of ApEn demonstrated by 

concussed athletes in our study implies that they may still have some irregularity in their neural 

integration. 

Another nonlinear feature with a significant difference was the Hurst exponent. Higher values 

of Hurst exponent indicate a stronger long-range temporal correlation of amplitude fluctuations of 

EEG35. In accordance with the result reported by Geng et al. [154] in their epileptic study, a 

decreased Hurst exponent exhibited by concussed athletes in our study implies that the degree of 

anti-correlation of concussed athletes is larger than that of healthy athletes. 

The most efficient frequencies indicating the deficits were found to be 1-2 Hz, 21-23 Hz, 26 

Hz and 34-37 Hz. Among the EEG task condition, EO and VT conditions were found to be more 

efficient in identifying hidden deficits due to a concussion. Though conventional band base 

analysis revealed no significant difference between healthy and concussed athletes regarding time 
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domain and nonlinear features, individual frequency analysis was efficacious to exhibit these 

hidden discrepancies. These differences at specific frequencies would remain unnoticed if only 

conventional frequency bands were considered. Ultimately, this study exposed the fact that EEG 

analysis for each frequency is equally as important as conventional bands to evaluate the 

neurological dysfunction following a concussion. 
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CHAPTER 3  

AUTOMATIC CLASSIFICATION OF POST-CONCUSSION DEFICITS  

Concussion, also called mild traumatic brain injury (mTBI), is one of the most concerning and 

least understood neurological injuries. Although many studies have focused on the clinical aspects 

of concussion, not enough studies have been conducted to extract meaningful features from EEG 

signals, which could lead to the development of automatic classifications of concussed athletes. A 

number of studies have clearly demonstrated the feasibility of supervised and unsupervised pattern 

recognition algorithms to classify patients with various health-related issues such as utilizing 

neural networks to detect seizure activity [155] and support vector machine (SVM) for ADHD 

detection [156]. We hypothesized that a set of robust features would accurately differentiate 

concussed athletes from control athletes. Therefore, the objective of this analysis was to detect 

residual brain deficits through linear and nonlinear analysis of Electroencephalogram (EEG) 

signals and design an algorithm to classify concussed and control athletes. 

3.1  Methodology 

3.1.1 Concussion EEG Database Search  

In order to develop a classification algorithm for detecting athletes with post-concussion 

deficits, we were looking for a larger database since we just have a database with 21 participants. 
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The separate database also verified the efficacy of the EEG analysis algorithm developed by us in 

the previous chapter to detect the post-concussion residual deficits. It was a challenge to collect a 

database since there is no publicly available database for concussion assessment.  To assemble this 

new database, we developed a list of the available dataset from the published concussion 

assessment literature. Table 10 listed our search for the dataset. 

Table 10. List of datasets 

Serial 
No. 

Paper title Author 
Name 

Contact information EEG 
Datatype 

Subject Subject 
information 

Details 

1 Residual brain 

dysfunction 
observed one-year 

post-mild 
traumatic brain 

injury: Combined 
EEG and balance 
study 

Semyon 

Slobounov,  

sms18@psu.edu,  

slobounovsm@ninds.nih 

19 Channel  49 concussed 

subjects 

 Pennsylvania 

State University 
athletes 

EEG data at 

baseline, on day 
7, 15, 30 days, 6 

months and 12 
months post-

injury 

2 Acute Effects and 
Recovery After 
Sport-Related 

Concussion:A 
Neurocognitive 

and Quantitative 
Brain Electrical 

Activity Study 

Michael 
McCrea,  

michael.mccrea@phci.org 10 minutes of 
eyes closed 
resting EEG 

recording on 
the 

BrainScope 

396  baseline 
test_ 28 
concussed_2

8 matched 
control 

396 football 
players from 8 
high schools and 

2 colleges in the 
midwestern 

United States 

EEG data at 
baseline, on day 
1, 3, 5, 8 and 45 

days post-injury 

3 Residual 

alterations of brain 
electrical activity 

in clinically 
asymptomatic 
concussed 

individuals: An 
EEG study 

Semyon 

Slobounov 

sms18@psu.edu,  

slobounovsm@ninds.nih 

2 min. 128 

channel, eyes 
open sitting, 

eyes closed 
sitting, eyes 
open 

standing, and 
eyes closed 

standing.  

12 control, 7 

concussed 

 Pennsylvania 

State University 
athletes 

  

4 Source-domain 
Spectral EEG 

Analysis of 
Sports-Related 

Concussion via 
Measure 
Projection 

Analysis 

1. Ozgur 
Balkan 

2. Scott 
Makeig 

1. obalkan@ucsd.edu 
2. smakeigucsd.edu 

64 channel, 
eyes closed 

for 5 minutes 

21 
concussed, 

33 healthy,  

Uni of British 
Columbia 

Athletes 

3 months after a 
concussion 

5 Changes in 

Functional Brain 
Networks 
following Sports-

Related 
Concussion in 

Adolescents 

Naznin Virji-

Babul 

naznin.virji-babul@ubc.ca 64 channel, 

resting state 
EEG 

9 concussed, 

33 control 

Uni of British 

Columbia 
Athletes 

2 months after a 

concussion 

6 Preliminary 
evidence of 

reduced brain 
network activation 

in patients with a 
post-traumatic 
migraine 

following 
concussion 

Anthony P. 
Kontos1 

akontos@pitt.edu 128 channel 
EEG for 

go/no-go task 

37(15 
concussed 

with 
PTM+22 

concussed 
without 
PTM) 

concussed, 
20 healthy 

School and 
college-aged 

athletes and 
students 

recruited from 
concussion 
clinic 

1,2, 3, and 4-
week postinjury 

7 Measuring brain 

electrical activity 
to track recovery 
from sport-related 

concussion 

William B. 

Barr  

William.barr@nyumc.org five frontal 

electrode 
sites 

59 injured 

athletes and 
31 controls 

NYU Langone 

Medical Center 
Emergency 
Department 

(ED)  

at the time of 

injury and at 8 
and 45 days 
afterward 
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8 Time Course of 
Clinical and 

Electrophysiologic
al Recovery After 
Sport-Related 

Concussion 

Leslie 
Prichep 

Leslie.Prichep@nyumc.org EEG was 
collected 

from 
forehead 
locations  

65 male 
athletes with 

concussion  

Male athletes 24 hours after a 
concussion, with 

follow-up at 8 
and 45 days post 
injury 

9 Long-term 

electrophysiologic
al changes in 

athletes with a 
history of multiple 
concussions 

Louis De 

Beaumonta 

louis.de.beaumont@umontreal.ca ERP data  47 concussed Male athletes 31 months for 

athletes in the 
multi-concussion 

group and 59 
months for the 
single-

concussion 
group. 

10 An EEG Severity 
Index of 
Traumatic Brain 

Injury 

Robert W. 
Thatcher,  

rwthatcher2@yahoo.com 19 channel _ 
2 to 5 min 
eyes closed 

resting EEG 

108 
concussed 

Defense and 
Veterans Head 
Injury Program 

(DVHIP), 

 Average Interval 
was 224 days 
(range 15–1,436 

days). 

 

After contacting all the corresponding authors listed in the Table, we were able to collect a 

dataset with 20 health and 20 concussed subjects EEG data from Dr. Naznin Virji Babul of the 

University of British Columbia. All the analysis done on this collected database is described in 

this chapter. 

3.1.2 Participants of Collected Dataset 

 The data were collected by Dr. Naznin Virji-Babul and her team from University of British 

Columbia (Vancouver, Canada) and were shared with us. A total of 40 male adolescent athletes 

were recruited for participation in this study. Twenty participants (age: 16.0±0.9 years) were 

clinically diagnosed with a subacute sport-related concussion, less than three months prior to data 

collection and were recruited as the concussed group for this study. Twenty participants (age: 

15.8±1.3 years) were recruited as the control group, with no self-reported history of previous 

concussion. The participants were recruited from the Whitecaps FC Residency soccer program in 

Burnaby, British Columbia, Canada, along with some participants from minor league ice hockey 

teams in Vancouver. Athletes with any neurological disorders like ADHD, learning disability, 

mental disorders, psychiatric treatment or use of psychotropic medication and substance abuse 

were excluded from the study. Adolescent athletes were selected as participants since it is a well-
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known hypothesis that adolescents are more sensitive to concussion than adults, with prolonged 

symptoms and a lengthier RTP timeline [72], [157]. Written and informed consent for participation 

was collected from the athletes and from their parents or guardians. Each participant participated 

voluntarily in the study and completed a demographic information form with previous concussion 

history before data collection. All experimental protocols of this study were approved by the 

University of British Columbia Institutional Review Board (IRB). All the experiments were 

performed as per the guidelines and regulations set by the research ethics board of the University 

of British Columbia. The participants had an option to terminate the data collection any point.  

3.1.3 EEG Data Collection Protocol 

 EEG data were recorded for five minutes from each participant using a 64-channel Hydrogel 

Geodesic Sensor Net (EGI, Eugene, OR) under eyes-closed resting conditions. Since our ultimate 

goal is to develop an EEG based sideline concussion-assessment tool, the EEG data collection task 

was designed as simple as possible with five-minute eyes closed resting condition only, so that the 

procedure would be easier after a concussion incident. The sampling rate for data collection was 

250 Hz to minimize the computing time and the scalp-electrode impedance was less than 50 KΩ.  

Figure 13 shows the locations of electrode placement on the scalp for an EEG recording using 64-

channel Hydrogel Geodesic Sensor Net (Electrode map used from Electrical Geodesics, Inc, 

Eugene, OR). Each electrode captures electrical activity reflecting information pertaining to brain 

function. 
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Figure 13. Locations of electrode placement for EEG recording using 64-channels [158] 

3.2 EEG Data Analysis 

EEG data were collected from twenty concussed and twenty age-matched controls. A set of 

power-spectral, wavelet, statistical and nonlinear features were extracted to identify the post-

concussion abnormalities. Various techniques were applied to classify control and concussed 

athletes. The performance of the classifiers was compared to ensure the best accuracy. A list of 

EEG biomarkers was found to be significantly different between control and concussed group even 

though the concussed subjects were declared clinically asymptomatic. 

3.2.1 EEG Data Preprocessing 

To remove the high-frequency noises, EEG signals were band-pass filtered from 1 Hz to 50 

Hz using a digital Butterworth IIR band-pass filter. Channels that are not consistently correlated 

with the time series of other channels were removed as noise. Large amplitude artifacts with power 
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more than or equal to three standard deviations with respect to clean EEG were cleaned. Any 

artifact that was not detected by the software’s artifact rejection toolbox were eliminated visually. 

Epochs that contained movement artifacts such as eye blinks, heartbeats or eye movements were 

eliminated from further analyses. A minimum of four minutes of artifact-free EEG with a 5-second 

epoch was used for further analysis. Using EEGLAB [114], zero phase-shift was applied to each 

of the artifact-free records. To compute the power spectra of the signal, Fast Fourier Transform 

(FFT) based power calculation was implemented for each epoch and the then averaged across them 

for the following frequency bands: delta (1-4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 

Hz), and gamma (30–40 Hz). Instead of absolute power, we computed the relative power for each 

frequency to ensure the homogeneous data processing. The power for each of the frequency from 

1 Hz to 40 Hz was also computed. 

3.2.2 Analysis using discrete wavelet transform 

The EEG signal is inherently non-stationary in nature, and the application of Fourier transform 

is contingent on stationary (constant mean and variance with respect to time) signal behavior. 

Thus, it is not ideal to apply Fourier transforms directly to such signals. In a situation like this non-

stationary EEG data, a time-frequency based method such as wavelet transform is preferable. 

Wavelet analysis uses a variety of different probing functions. EEG applications may require 

bilateral transformations, so it would be preferred to use a transform that can accurately recover 

the original signal by producing the minimum number of required coefficients. The discrete 

wavelet transform (DWT) accomplishes this by limiting the variations in translation and scale.  

The selection of suitable wavelet and the number of levels of decomposition is critical during 

the analysis of signals using DWT. The number of decomposition levels was chosen based on the 

dominant frequency components of the signal. The selection of levels is performed such that the 
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portion of the signal that correlated more with the frequencies essential for signal classification is 

restored in the wavelet coefficients. Since the EEG signals do not have any frequency components 

of interest above 30 Hz [159], the number of levels was chosen to be 6. Thus, the signal was 

decomposed into details D1–D6 and approximations A1-A6. These approximation and detail 

records were reconstructed from the Daubechies 8 (DB8) wavelet filter. Daubechies wavelet was 

chosen since it is the most common orthogonal wavelet that follows the admissibility conditions 

and thus allows the reconstruction of the original signal from its wavelets coefficients [160] and 

found to effective in EEG analysis for neurological disorders like ADHD and epilepsy [161], 

[162]. Different orders (2, 4, 6, 8, 12… 20) were examined for the analysis of post-concussion 

deficits. Daubechies wavelet with order 8 (db8) was found to be most suitable through our analysis 

to detect post concussive deficits as the lower order wavelets of this wavelet-family were found to 

be too coarse to represent EEG spikes properly whereas very high orders were too oscillatory 

[163]. Figure 14 (a) shows the approximate and detailed coefficients of EEG signal taken from a 

control subject whereas Figure 14 (b) shows those for a concussed subject. All data analysis using 

DWT was performed using MATLAB [164]. 
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Figure 14. Approximate and detailed coefficients of EEG signal taken from: (a) control 

subject (b) concussed subject. 

3.2.3 Linear and Nonlinear Analysis for EEG Feature Extraction  

To identify the post-concussion deficits, below listed linear (power spectral, wavelet, 

statistical), and nonlinear features were extracted from the EEG signals. 

3.2.3.1 Power Spectral Features 

Five power spectral density features over the EEG frequency bands – alpha, beta, gamma, 

delta, and theta – were extracted.  

3.2.3.2 Wavelet Features 

Wavelet features were extracted using Debouches 8 wavelet transform. The extracted wavelet 

features provide a compact representation showing the energy distribution of the EEG signal with 
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respect to time. The various detail and approximate wavelet coefficients entered into the feature 

matrix are as follows: 

i. The mean of absolute values of the detail (D1-D6) and approximate (A1-A6) coefficients 

[12 features]. 

ii. The average power of the wavelet detail (D1-D6) and approximate (A1-A6) coefficients in 

each signal [12 features]. 

iii. The standard deviation of the wavelet coefficients in each signal [12 features]. 

3.2.3.3 Statistical Features 

 The skewness and kurtosis of EEG signals were extracted as statistical features. These features 

were successfully employed for classification in prior studies [165], [166].  

3.2.3.4 Nonlinear Features 

Nonlinear features were extracted to measure synchrony, complexity, and frequency of the 

signal. The details of the extracted features in this study are as follows: 

Hjorth Parameters: Hjorth parameters [118] include activity, mobility, and complexity. 

Activity characterizes the signal power by computing the change in time signal, mobility calculates 

the average frequency of the spectral power and complexity specifies the alteration in frequency 

of the signal. Each of these features was evaluated separately for each channel to the whole signal. 

Thus, the extracted parameter was a feature per channel and, as a whole, a feature vector for each 

parameter. A total of 3 features (mean value of the three features for all channels) were extracted.  

Partial Directed Coherence (PDC) Feature and Directed Transfer Function (DTF):  The 

PDC and DTF [167] were calculated with functions provided by Omidvarnia [168], including 

functions from the BioSig toolbox [169] and the arfit toolbox [170]. PDC and DTF are the full 

multivariate spectral measures that compute the directed influences between a given pair of signals 
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of a multivariate dataset [167], [171]. These features are based on the concept of Granger causality 

and they compute the direction of information flow among the time series [172], [173]). Two 

features were extracted from each signal. 

Entropy: The time phase based entropy measure Approximate Entropy (ApEn) [174], and 

frequency spectrum based entropy measure Shanon Wavelet Entropy (SWE) [175] were calculated 

from each signal. ApEn computes the randomness or unpredictability of a signal by measuring the 

predictability of succeeding amplitude values. The computation includes embedding the full -time 

series into the phase space and approximating the rate of increment of phase space pattern number 

within a predefined measure [176]. The tolerance chosen for approximate entropy calculation was 

two standard deviations. The details of the algorithm can be found at Bruhn et al. [151]. Shanon 

Entropy computes a measure of the information by analyzing and comparing the probability 

distribution of a signal and SWE is the Shanon entropy in the wavelet domain which measures the 

variation of the signal in each frequency scale [175]. The details of the algorithm used for SWE 

calculation can be seen in Särkelä et al. [177]. 

Hurst Exponent: The Hurst exponent [134], also known as the index of long-range 

dependence, was calculated for each channel over the whole signal. The parameter evaluates the 

correlation properties and self-similarities of a time series by computing the existence and degree 

of long-range dependence in a time series [178]. The value H is defined as: 

𝐻 = log (𝑅 𝑆)⁄
log(𝑇)⁄                                                              4 

where T is the duration of the data sample and  R⁄S is the corresponding value of the rescaled 

range. The mean value of Hurst exponent for all channels was extracted as a feature from each 

EEG signal. 
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Brain-rate: The BioSig implementation [169] of the brain-rate [179] was used to extract brain-

rate from the EEG signal. Brain-rate, also defined as EEG-spectrum weighted frequency, is the 

mean frequency of the brain rhythm and is correlated with the brain’s electric, mental, and 

metabolic activity [179]. The brain-rate was computed in stationary mode for each channel over 

the whole signal and the average value of all channels was extracted as a feature. 

Total features extracted through the EEG analysis for both concussed and control athletes are 

listed in Table 11. 

Table 11. List of features extracted from EEG signal 

Method of 

Analysis 
Features Extracted 

Number of 

Extracted Features 

Power Spectral Power at delta, theta, alpha, beta, gamma 

frequency bands 

5 

Wavelet Mean; standard deviation; and average power 

value of the detail (D1-D6) and approximate 

(A1-A6) coefficients 

36 

Statistical Average skewness; Average kurtosis 2 

Nonlinear Hjorth activity, mobility, and complexity; 

Partial Directed Coherence (PDC); Directed 

Transfer Function (DTF); Approximate 

Entropy; Shannon Entropy; Hurst Exponent; 

Brain-rate. 

9 

 

3.2.4 Statistical Analysis 

All the statistical analysis was carried out using the statistical toolbox in MATLAB [164]. The 

comparison between the control and concussed group was conducted with either independent 

sample two tail t-test or the Wilcoxon rank sum test, based on the normality distribution of the 

continuous variable. The normality of data was verified using the Shapiro-Wilk test. The critical 
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value for tests of significance was set at p<0.05. All the feature values resulted from the statistical 

analysis within the groups were presented as mean ± standard deviation format. 

3.2.5 EEG Classification 

The aim of classification was to distinguish concussed athletes from the healthy control group 

based on the features extracted from their EEG signals. To ensure the best classification accuracy, 

we tested a set of classification techniques including support vector machines (SVM), k-nearest 

neighbor (kNN), random forest, and decision trees.  The state-of-the-art SVM-based classifier was 

applied first. To classify the concussed athletes from healthy ones, we required a binary 

classification approach. To map the data into higher dimensional space, SVM employs linear and 

nonlinear kernels [180]. Linear SVM was initially applied to the extracted features, and then 

nonlinear kernels, such as Gaussian, quadratic, and cubic kernels were tested to improve the 

results.  

The instance-based classification technique kNN was applied next. kNN classifies the data set 

based on the principle that instances having similar properties are in close proximity [181]. 

Different trials with kNN classifiers were conducted by changing the value of k and the best result 

was achieved with k=10. The distance was calculated using Euclidean distance matrix with equal 

distance weight.   

The model's performance was verified next by using the decision tree classifier [182]. 

Different values of splits for the decision tree were tested and based on the performance of the 

classifier, the maximum number of splits was set at twenty. Gini’s diversity index method  [183] 

was used as split criteria. 

Random forest [184] technique was the last classification technique evaluated for the system. 

This technique improves the performance of the decision tree classifier by avoiding the overfitting 
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problem. The best performance was given by the AdaBoost ensemble method with a maximum 

number of splits set at twenty and number of learners set at thirty with a learning rate of 0.1. The 

parameter values were set through trial and error method. 

After testing these classifiers, the best classifier was selected to differentiate the control and 

concussed athletes. The accuracy of a classification technique was determined based on its 

prediction correctness. Since we had a small dataset, to ensure the best evaluation, we applied the 

leave-one-out technique to predict from the classes. The current research problem involves binary 

classification, so in addition to accuracy, we also calculated sensitivity (a measure of true positive, 

TP), specificity (a measure of true negative ratio, TN), and area under the curve (AUC) as other 

performance measures. 

3.3 Results 

The objective was to detect residual brain deficits through linear and nonlinear analysis of 

Electroencephalogram (EEG) signals and design an algorithm to classify concussed and control 

athletes. EEG data were collected from twenty concussed and twenty age-matched controls. A set 

of power-spectral, wavelet, statistical and nonlinear features were extracted to identify the post-

concussion abnormalities. In addition to the analysis based on the conventional frequency band, 

additional analysis for each individual frequency from 1 to 40 Hz was also conducted. Various 

techniques were applied to classify control and concussed athletes. The performance of the 

classifiers was compared to ensure the best accuracy. 

3.3.1  Neuronal Deficits in Terms of EEG Band-Power following Concussion 

Figure 1 lists the neurological deficits in terms of power spectral density (PSD) between 20 

control and 20 concussed subjects for traditional EEG frequency bands. As shown in the figure, 
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the power spectral density analysis resulted in a significant increase in delta and theta power along 

with a significant decrease in alpha and beta band power. 

 

Figure 15. Power spectral density of different EEG frequency bands when normalized. 

* indicates statistically significant difference (p<0.05) between control and concussed athletes 

ensuring robustness of selected feature. 

If the channel spectra are mapped using EEGLAB for each frequency band, the channel-wise 

discrepancies can be observed. Fig. 15 shows a comparison of channel spectra of a control subject 

and a healthy subject for delta, theta, alpha, beta and gamma frequency bands for all channel. As 

seen in Fig. 16, the deficits were mainly in the frontal region of the brain. 
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Concussed 

      

 

Figure 16. Delta, Theta, Alpha, Beta and Gamma spectra comparison between control and 

concussed subjects. 

The first row of Figure 16 shows the channel spectra mapped for a control subject. The second 

row shows the channel spectra mapped for a concussed athlete. 

3.3.2 Neuronal Deficits in Terms of EEG Single Frequency following Concussion  

The spectra based analysis for all frequencies from 1 to 40 Hz was done in the second step to 

reveal the specific frequencies are exhibiting the significant power deficits. Fig. 17 shows the 

comparison of significance level for traditional frequency bands by the solid red lines and all the 

other frequencies from 1 to 40 Hz using the bar graph. Bars representing frequencies within each 

of five frequency bands (Delta, Theta, Alpha, Beta, and Gamma) are colored differently. The black 

dashed line indicates the significance level for p-value at p=0.05. 

From Fig. 15, we can see that not all the frequencies within a particular frequency band (e.g., 

Gamma band) exhibit deficits in control and concussed athletes. However, from Fig.17 it is evident 

that the frequencies with significant deficits within Delta band are 1 Hz and 2 Hz, for Theta are 6 
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Hz and 7 Hz, for Alpha are 8 Hz, 9 Hz, and 10 Hz, for Beta is 16 Hz, 17 Hz, 18 Hz and all the 

frequencies from 24 Hz to 29 Hz. In addition, for Gamma frequency band, though the deficit 

between concussed and control subject was not significant, interestingly within the band, 

significant deficiencies were found at 34 Hz, 35 Hz, and 36 Hz (Fig. 17).    

 

 

Figure 17. Functional deficit significance level for 1 Hz to 40 Hz between control and 

concussed group. 

The black dashed line in Figure 17 indicates the significance level for p-value at p=0.05. The 

bar graphs indicate the p-value for 1 Hz to 40 Hz frequencies. The solid red lines plot the p-value 

for five conventional frequency bands; delta, theta, alpha, beta and gamma bands. 

3.3.3 Neuronal Deficits in Terms of EEG Wavelet and Nonlinear Features 

Table 12 lists the mean, standard deviation, and range of significant wavelet coefficients and 

nonlinear features. Features with a significant difference (p<0.05) between the groups are marked. 

Out of all wavelet detail and approximate coefficients, D3 and D6 revealed a significant difference 

(p<0.05) between healthy control and concussed athletes. Statistical features were unable to 
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highlight the deficits between the groups. For the nonlinear analysis, Hjorth mobility, Hjorth 

complexity, approximate entropy, Hurst component, and brain-rate were significantly different 

(p<0.05) between control and concussed athletes. 

 

Table 12. Mean, standard deviation and range of wavelet features that are significantly 

different between control and concussed athletes and all non-linear features 

 

3.3.4 EEG Classification Results 

To perform the classification operation, the parameters extracted through power spectral, 

wavelet, statistical and nonlinear analysis of EEG signal were congregated to create a feature 

 Control Subjects Concussed Subjects  

Features Mean ± SD Range Mean ± SD Range p-Value 

D3 Coefficients 0.047 ± 0.090 -0.0178 - 0.3423 0.007 ± 0.035 -0.0378 - 0.1365 0.002* 

D6 Coefficients -0.151 ± 0.184 -0.6044 - 0.0733 -0.046 ± 0.140 -0.5061 - 0.1500 0.050* 

Hjroth Activity 91.097 ± 71.841 37.259 - 332.832 85.198 ± 59.018 21.199-271.309 0.785 

Hjroth Mobility 0.230 ± 0.025 0.1920 - 0.2934 0.1913 ± 0.023 0.1503 - 0.2281 0.001* 

Hjroth 
Complexity 

0.480 ± 0.041 0.3811 - 0.5456 0.443 ± 0.057 0.3089 - 0.5281 0.030* 

Brain-rate 6.879 ± 0.341 6.2528 - 7.4704 6.540 ± 0.361 5.8971 - 7.1639 0.026* 

Partial Directed 

Coherence (PDC) 
0.097 ± 0.011 0.0668 - 0.1075 0.097 ± 0.012 0.0621-0.1089 0.875 

Directed Transfer 

Function (DTF) 
0.119 ± 0.008 0.0959 - 0.1245 0.122 ± 0.003 0.1132-0.1243 0.215 

Approximate 
Entropy 

0.708 ± 0.060 0.6374 - 0.8950 0.663 ± 0.060 0.5694-0.7604 0.033* 

Shannon Entropy -0.032 ± 0.103 (-0.419) - 0.055 -0.005 ± 0.063 (-0.18)-0.129 0.322 

Hurst Component 0.564 ± 0.035 0.5249 - 0.6584 0.524 ± 0.036 0.4606 - 0.5741 0.006* 
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matrix, which was used as an input to the classifier. A visualization of two such features (average 

power at delta and theta frequency sub-bands) is presented in Figure 18 for both control and 

concussed athletes. 

 

Figure 18. EEG power at delta and theta frequency bands for control and concussed 

athletes. 

Y-axis in Figure 18 represents the power for delta frequency band, while X-axis represents 

the power at theta frequency band. 

A set of meaningful features is critical for achieving higher classification accuracy. Therefore, 

the potential and significance of features to differentiate concussed and control athletes were 

validated by determining significant deficits between the groups during the statistical test of 

significance (Figure 15 and Table 12). 

Table 13 displays the classification accuracy resulted by the four different classifiers 

experimented in the study.  It shows that the classification accuracy with SVM was highest, 

exhibiting 5% greater performance than the second-best classifier (kNN).  
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Table 12. Comparison of different classifiers 

Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 85.0% 87.0% 83.0% 0.89 

kNN 80.0% 85.0% 75.0% 0.80 

Decision tree 77.5% 75.0% 80.0% 0.84 

Random Forest 80.5% 75.0% 88.0% 0.82 

 

Since SVM exhibited the highest accuracy, within SVM, the system performance for various 

kernel function was also analyzed to find out the best performing kernel. The results of this analysis 

are shown in Table 14. From Table 14, it can be concluded that the cubic kernel outperformed the 

linear, quadratic, and Gaussian SVM kernels.  

Table 13. Comparison of different kernels of SVM classifiers 

Kernel Accuracy Sensitivity Specificity AUC 

Linear 85.0% 87.0% 83.0% 0.89 

Gaussian 90.5% 95.0% 86.0% 0.92 

Quadratic 87.5% 95.0% 80.0% 0.86 

Cubic 95.0% 98.0% 92.0% 0.98 

 

Table 15 shows a comparison of SVM (cubic kernel) classification accuracy calculated 

separately for features extracted through power spectral, wavelet, statistical, and nonlinear analysis 

of EEG signal while used separately for the same classification (classifier used for comparison 

was SVM with the cubic kernel). 
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Table 14. Comparison of accuracy of various features 

Features Accuracy Sensitivity Specificity AUC 

Power Spectral 82.5% 95.0% 70.0% 0.84 

Wavelet + Statistical 67.5% 70.0% 65.0% 0.67 

Nonlinear 85.0% 85.0% 85.0% 0.89 

Power Spectral + Wavelet + 

Statistical 

87.0% 88.0% 86.0% 0.91 

Power Spectral + Wavelet + 

Statistical+ Nonlinear 

95.0% 98.0% 92.0% 0.98 

 

3.4 Discussion 

 Typical recovery time following a sport-related concussion is believed to be rapid, with the 

acute physiological symptoms resolving within hours and the person to be symptom-free within 

10 days post-injury [111]. However, growing evidence shows that the physical, emotional, or 

neurocognitive deficits can persist months or even years and inaccurate diagnosis of the injury 

severity leads to a premature return to play. Therefore, detecting the differential dynamics of the 

neuronal dysfunction in well-controlled experimental settings is important in the area of 

concussion research and that is why the current study was aimed at detecting EEG biomarkers that 

can evaluate the post-concussion deficits even when the athletes were declared clinically 

asymptomatic. Additionally, this study undertook a systematic approach to verify the efficacy of 

the biomarkers to classify the concussed athletes from their healthy matched peers along with a 

comparison of the classification performance of several well-known classifiers.  
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 There are several major findings of interest. First, the power spectral density analysis revealed 

a significant difference in the delta, theta, alpha, and beta frequency sub-bands power between 

control and concussed athletes (Figure 3). It should be noted that similar frequency bands were 

targeted in a number of previous EEG studies of concussion [41], [82], [185]. An increase in delta 

and theta frequency and a decrease in beta frequency was also reported in the literature [90], [111]. 

These discriminations raise concern about the concussed subjects’ neuronal resolution since 

converging evidence shows that the deficits in these frequency bands may have a linear 

relationship with some pathological conditions. According to Demos et al., an increase in delta 

frequency may indicate brain injuries, learning problems, or difficulties with cognition and an 

increase in theta power are associated with ADHD, depression, hyperactivity, impulsivity, and 

inattentiveness [136]. Concussed athletes exhibited a decrease in alpha power and prior studies 

showed that the oscillation of alpha power is negatively correlated with task performance and 

cortical excitability [186]. An inverse association between alpha power and task difficulty has also 

been reported and inferred as alpha sensitivity to cortical idling, task difficulty, and disengagement 

[187].  In accordance with these views, decreased alpha power indicates an increased attention 

demand and/or cerebral effort [188] (Gevins et al., 1997) and may imply that the concussed 

athletes required more effort to remain stable during eyes closed condition. A substantial decrease 

in beta power was also revealed by the analysis while certain levels of beta waves allow easy focus 

and involvement in conscious thought and logical thinking, and a decrease in beta waves may point 

to poor cognition [136]. 

 EEG analysis was conducted for every single frequency ranging from 1 Hz to 40 Hz and 

interesting outcomes were observed displaying considerable variability between the testing 
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paradigms. A set of noble frequency was found that could be used to identify the functional deficits 

between control and concussed athletes. In this study, slow Delta (1-2 Hz), fast Theta (6-7 Hz), 

slow Alpha (8-10 Hz), and 16-18 Hz and 24-29 Hz within Beta reveal significant functional 

deficits. This discrepancy at the specific frequencies would remain unnoticed if only conventional 

frequency bands were considered. Similarly, Gamma frequency band fails to exhibit any 

significant deficit. However, once the Gamma band is analyzed and explored for every single 

frequency, the differences between the control and the concussed groups was unveiled at a range 

of frequency (34-36 Hz). Eventually, this study exposed the fact that EEG analysis for each 

frequency is equally as important as conventional bands to evaluate the neurological dysfunction 

following a concussion. 

 Wavelet-based feature extraction through DWT revealed that the detail coefficients at level 3 

and level 6 provided the biggest difference between the groups as the mean value of these 

coefficients was significantly different between control and concussed athletes (Table 2). Unlike 

power spectral and wavelet analysis, the statistical features like skewness and kurtosis were not 

able to highlight any significant deficits due to concussion, most likely due to the fact that these 

features describe the asymmetry and amplitude distribution of the data around the mean, and any 

correlation between the shape of the distribution of EEG and concussion is yet to be found. 

 The proposed nonlinear analysis of EEG measures appeared to be an effective tool for detecting 

residual cerebral dysfunction due to the concussion. We found five nonlinear features that showed 

a significant difference between control and concussed athletes (Table 2). A decrease in 

complexity, mobility, approximate entropy, Hurst exponent and brain rate was exhibited by the 

concussed group. Converging evidence shows that a decrease in mobility and complexity is related 

to insomniac patients [150]. Moreover, a decrease in mobility was reported to be related to cerebral 
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physical or physiological alteration [121] as well as Alzheimer’s disease [189].  A decrease in 

approximate entropy, which mainly highlights a decrease in complexity of the concussed group 

brain signal, was reported to indicate the incomplete information processing of the brain due to 

inactivation of the previously active neuronal networks of the brain [190]. The decrease in ApEn 

was also exhibited by subjects associated with various pathological conditions like depression 

[149], ADHD [191], epilepsy, post-traumatic stress disorder, schizophrenia and panic disorder 

[153]. The decrease in Hurst exponent highlighted the larger degree of anti-correlation in the brain 

signal and was also exhibited during epilepsy [154] and mental disorders [178]. An anesthesia 

study conducted by Liang et al. reported that the Hurst exponent decreased when the anesthesia 

was deepened [176]. The brain-rate measures the attention and cognition [179] and a decreased 

brain-rate reported in concussed athletes in the study may suggest under arousal condition of their 

brain compared to control athletes. Therefore, from the deficits exhibited by the nonlinear features, 

we can converge that the concussed group brain signal was less complex (due to lower mobility, 

complexity, and approximate entropy) and less awakened (due to lower Hurst exponent, brain 

rate). Among many others, three reasons are reported in the literature which can be responsible for 

the decrease of complexity in EEG signal:  neuronal death, neurotransmitter shortage and loss of 

connectivity of the neural networks [190], [192]. The decrease in these parameters also suggests 

that the randomness of brain activity is reduced as fewer parallel functional processes are active in 

the concussed athlete’s brain [193], [194].   

 As the power spectral, wavelet and nonlinear analysis of EEG signal showed remarkable 

deficits between the groups, it seemed of interest to us to interpret the possible use of these 

parameters to differentiate concussed subjects from healthy peers. Therefore, in the second part of 

the study, we have experimented with this possibility by using the above-mentioned parameters 
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extracted from the EEG signal as input for a classifier to differentiate the concussed athletes. A set 

of classifiers including SVM, kNN, decision tree and random forest were tested using the leave-

one-out method on the data set to find out the best accuracy. As shown in Tables 3 and 4, the 

informative and descriptive features extracted from the EEG, combined with SVM classifier using 

cubic kernel resulted in an accuracy of 95% in the classification of concussed and control athletes. 

The classifier has a sensitivity of 98% (cubic kernel SVM) with an acceptable specificity of 92%. 

The area under the curve was reported as 0.98. Among all the classifiers, the best classification 

performance was exhibited by SVM, which can be justified by the fact that, unlike other classifiers 

which separate the classes using flat plane hyperplane, SVM broadens the concept of hyperplane 

by using kernel functions to build linear boundaries in a high dimensional space through nonlinear 

mappings of the predictors and thus extract better discriminatory information from the feature 

space which makes the classification more accurate [159]. Moreover, the use of cubic kernel 

allowed a more flexible decision boundary in the data space to improve the accuracy [159]. 

 Though the spectral analysis of EEG has been extensively studied in a concussion, its 

usefulness as a concussion detection tool (in isolation) is low [195]. Therefore, the proposed study 

may be used as a concussion detection approach. A very limited work has been done to 

automatically classify concussed athletes from control athletes. With a dataset of 31 control and 

30 concussed athletes, Cao et al. reported an accuracy of 77.1% with a sensitivity of 96.7% and 

selectivity of 69.1% to classify healthy and concussed athletes applying SVM classifier on a set of 

frequency-based features [196]. Garg et al. also implemented an SVM-based classification 

approach using power spectral and wavelet features and reported an accuracy of 88.3% with a 

sensitivity of 85.19% and specificity of 90.91% in distinguishing concussed subjects from matched 

healthy controls [83]. Though our dataset is different from the above-mentioned studies, our 
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approach provided better results in our database on each of the evaluation metrics. As reported in 

Table 5, the use of nonlinear feature combined with other features, improved the classification 

accuracy by 7%. The increase in accuracy by adding nonlinear features may be justified by 

following the already established hypothesis that due to the complex and chaotic nature of the EEG 

signal, quantitative analysis through nonlinear features is convenient to highlight the 

neurophysiological irregularities in pathological conditions that are not apparent through linear 

analysis [197].  

 The high classification accuracy of our analysis verified that the features and discriminant 

functions are robust and gives insight into the combination of power spectral, wavelet, statistical, 

and nonlinear features used for defining the EEG signals. The study provides further light to the 

ongoing debate on literature regarding the cumulative post-concussion effects and suggests that 

these features could be used as biomarkers to reflect the neuronal deficits following a concussion. 

Both in the conventional frequency band based study and the individual frequency based study, 

the concussed athletes recruited more power than the control athletes did. As per suggestion from 

[9] and [10], we can hypothesize that the concussed athletes may not be able to engage appropriate 

resources to complete the task at hand, so they achieve normative functioning by recruiting 

additional brain resources. More importantly, these neurological deficits detected through EEG 

analysis raise considerations about reliability and neurophysiologic validity of conventional 

concussion assessment tools as all the athletes in the concussed group were declared clinically 

asymptomatic. Hence, it is pertinent to emphasize developing an alternative EEG based assessment 

device which can also provide additional information about the deficits in the functional brain 

network [90], [111].  
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CHAPTER 4  

CONCLUSION, CONTRIBUTION AND FUTURE WORK  

4.1 Conclusion 

Accumulated evidence from our study suggested that there may be a residual detrimental 

cognitive and electrophysiological effect of past concussion history. In addition, the findings cross-

validate the efficacy of some widely used neurocognitive and electrophysiological concussion 

assessment tools. Thus, the current study highlights towards a potential application in concussion 

management by providing evidence to identify the athletes who are at risk for sustaining 

physiological deficits and thus can play a significant role in RTP decision.  

The combined neurocognitive and EEG study suggests that EEG analysis is more sensitive 

compared to cognitive testing to decipher persistent sequelae of sport-related concussion. For the 

first time, a set of time domain and nonlinear EEG features was utilized in addition to the standard 

frequency band features to highlight neuronal deficits following a concussion.  In addition, the 

approach of analysis using individual frequencies of EEG was conducted for the first time to study 

concussion. This innovative approach combined with novel features opens a new door to interpret 

subtle post-concussion deficits. While no previous work was done to find the post-concussive 

deficits in individual frequency level, the result demonstrated a new range of frequency, which is 

more successful to reveal the discrepancies. In sum, accumulated evidence from this study suggests 
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that the proposed approach of EEG analysis was successful to identify that the athletes with a 

history of concussive injury still exhibited neurological alterations, despite reporting to be 

symptom-free by standard postural, visual or neurophysiological tests. 

For designing the automatic classification approach, we found that a set of meaningful features 

extracted from the EEG could differentiate concussed athletes from control athletes. The 

application of nonlinear features combined with well-established power spectral, wavelet and 

statistical features provided new information about electrophysiological abnormalities caused by 

concussion, and, thus, were helpful in differentiating a concussed group from healthy controls. The 

classification results indicated that SVM with cubic kernel had superior performance in EEG signal 

classification compared to kNN, decision tree, and random forest classifiers. Therefore, the 

proposed SVM-based diagnostic system can be used in clinical studies as a concussion assessment 

tool along with other modern approaches (e.g., analysis of biomechanical impact, brain-imaging 

studies, duration of symptoms resolution, etc.) and for more accurate return-to-sport participation 

criteria, clinicians can use such a system after concussive episodes. 

4.2 Future work 

The future work will aim at the extensive testing of the proposed algorithm with a larger data 

set consisting of recordings of a large number of subjects so that, more rigorous quantitative and 

qualitative analysis can be performed. Future work would also include EEG data collection from 

participants while doing more rigorous physical or mental task so that the deficits during task 

performance can be highlighted. We would like to give emphasis on improving the classification 

accuracy of two classes, namely healthy and concussed, to detect and predict the concussion from 

EEG signals. In addition, we hope the current outcomes will lead to producing more inclusive 

evaluations in future towards developing an EEG-based sideline device to proactively assess the 
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post-concussion clinical disorders. Thus, our findings will engender more comprehensive 

evaluations towards clinical applicability of concussion assessment for proper diagnosis and 

prevention through accurate RTP decision, as well as managing the treatment and rehabilitation 

efficacy post-concussion.  

4.3 My Contribution 

My contribution to this research was to develop an algorithm to detect post-concussion 

residual deficits from the athletes with a history of concussion. I have also developed an algorithm 

to calculate a set of linear, time-frequency and nonlinear EEG markers that were found to be 

significantly different in the concussed group compared to their matched peers in the healthy 

group. As the result of research conducted in this thesis, the following journal and conference 

papers were published: 

 

1. Tamanna T. K. Munia, Ali Haider, Charles Schneider, Mark Romanick, Collin Combs, & 

Reza Fazel-Rezai, “A Novel EEG Based Spectral Analysis of Persistent Brain Function Alteration 

in Athletes with Concussion History”, manuscript in review at Nature Scientific report. 

 
2. Tamanna T. K. Munia, Shaun Porter , Naznin Virji-Babul, Mark Romanick, and Reza Fazel-

Rezai, “Detection of Residual Brain Deficits in Athletes with Concussion based on Linear and 

Nonlinear EEG Analysis”, manuscript submitted to Clinical Neurophysiology. 

 

3. Tamanna T. K. Munia, Gendreau, J.L., Verma, A.K., Johnson, B.D., Romanick, M., 

Tavakolian, K. and Fazel-Rezai, R., 2016, August. Preliminary results of residual deficits observed 

in athletes with concussion history: Combined EEG and cognitive study. In Engineering in 
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Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the 

(pp. 41-44). IEEE. 

 

4. Tamanna T. K. Munia, Gendreau, J.L., Johnson, B.D., Romanick, M., Tavakolian, K. and 

Fazel-Rezai, R., 2016, May. “Neurocognitive deficits observed on high school football players 

with history of concussion: A preliminary study”. In Electro Information Technology (EIT), 2016 

IEEE International Conference on (pp. 0734-0738). IEEE. 

 

5. Tamanna T. K. Munia, Haider, A. & Fazel-Rezai, R. Evidences of Brain Functional Deficits 

Following Sport-Related Mild Traumatic Brain Injury. in IEEE Engineering in Medicine and 

Biology Society 3212–3215. (IEEE, 2017). 

 

6. Charles M. Schneider, Ajay K. Verma, Tamanna T. K. Munia, Mark Romanick, Kouhyar 

Tavakolian, Reza Fazel-Rezai, “Analysis of Postural Stability Post Concussion using Empirical 

Mode Decomposition” 2017 Design of Medical Devices Conference, Publisher: ASME. 

 

4.4 Other Publications 

1. Tamanna T. K. Munia, Intisar Rizwan i Haque, Abby Aymond, Nicholas MacKinnon, 

Daniel L. Farkas, Minhal Al-Hashim, Fartash Vasefi, Reza Fazel-Rezai, “Automatic 

Clustering-Based Segmentation and Plaque Localization in Psoriasis Digital Images”, 

Accepted NIH-IEEE Special Topics Conference on Healthcare Innovations and Point of 

Care Technologies (Hi-POCT 2017). 

2. Tamanna T. K. Munia, Tavakolian, K., Verma, A.K., Zakeri, V., Khosrow-Khavar, F., 

Fazel-Rezai, R. and Akhbardeh, A., 2016, September. “Heart sound classification from 
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wavelet decomposed signal using morphological and statistical features”. In Computing in 

Cardiology Conference (CinC), 2016 (pp. 597-600). IEEE.  

3. Tamanna T. K. Munia, Alam, M.N., Neubert, J. and Fazel-Rezai, R., 2017, July. 

Automatic diagnosis of melanoma using linear and nonlinear features from digital image. 

In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International 

Conference of the IEEE (pp. 4281-4284). IEEE.  

4. Md N Alam, Tamanna T. K. Munia, Kouhyar Tavakolian, Fartash Vasefi, Nick 

MacKinnon, and Reza Fazel-Rezai. "Automatic detection and severity measurement of 

eczema using image processing." In Engineering in Medicine and Biology Society 

(EMBC), 2016 IEEE 38th Annual International Conference of the, pp. 1365-1368. IEEE, 

2016.  

5. Alam, M.N., Tamanna T. K. Munia and Fazel-Rezai, R., 2017, July. Gait speed 

estimation using Kalman Filtering on inertial measurement unit data. In Engineering in 

Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the 

IEEE (pp. 2406-2409). IEEE. 

6. Md N Alam, Amanmeet Garg, Tamanna T. K. Munia, Reza Fazel-Rezai, and Kouhyar 

Tavakolian. "Vertical ground reaction force marker for Parkinson’s disease." PloS one 12, 

no. 5 (2017): e0175951.  

7. Md N Alam, Tamanna T. K. Munia, Ajay K. Verma, Jau-Shin Lou, Collin Combs, 

Kouhyar Tavakolian, Reza Fazel-Rezai, “A Quantitative Assessment of Bradykinesia 

Using Initial Measurement Unit” 2017 Design of Medical Devices Conference, Publisher: 

ASME. 
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8. Vasefi, F., MacKinnon, N.B., Horita, T., Shi, K.,Tamanna T. K. Munia, Tavakolian, K., 

Alhashim, M. and Fazel-Rezai, R., 2017, April. “A smartphone application for psoriasis 

segmentation and classification” (Conference Presentation). In SPIE BiOS (pp. 1006819-

1006819). International Society for Optics and Photonics. 
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