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ABSTRACT 

 Recent research suggests that ion bombardment is more effective than micrometeoroid 

bombardment in albedo darkening of mature lunar soils, whereas micrometeoroid bombardment 

may act on longer timescales and is more effective in modifying the spectral features of a 

surface. This, in turn, may be extrapolated to suggest the following: 1) Increased intensities of 

ion bombardment would correlate negatively with the surface reflectivity of airless, silicate-

bearing bodies known to express lunar-style space weathering, such as S-type asteroids, and 2) 

beyond that of sputtering and ion implantation, there is a gradient of potential interactions 

between the two weathering processes that may be relevant to space weathering at large, where 

via the processes of mineral metamictization and structural weakening, ion bombardment may 

act as a necessary precursor to micrometeroid bombardment in lunar-style space weathering. 

Because heliosphere research (i.e., the Ulysses spacecraft) reveals that the speed of solar wind 

rises with solar latitude from the equatorial plane to the poles, the possibility of a correlation is 

suggested between the albedo of a given S-type asteroid surface and its orbital inclination. In 

other words, more highly-inclined asteroids would be exposed to higher-intensity solar ion 

bombardment, which would thereby result in darker (or more quickly darkened) mature surfaces. 

This proposition is explored via the statistical analysis of a sample group of S-complex airless 

bodies, resulting in a statistically-significant negative correlation between orbital inclination and 

albedo at the 75% confidence level. An overall space-weathering scheme is proposed, and 

implications for space weathering mechanisms as they relate to orbital parameters are discussed. 
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1.0  INTRODUCTION 

The exposed surfaces of asteroids and other airless bodies in the Solar System experience 

abstruse forms of geophysical weathering that can act to affect both an object’s reflectivity 

(albedo) as well as its spectral signature (Hendrix and Vilas, 2006).  Known generally as, “space 

weathering,” the overall process has been considered a persistent complicating factor in the 

remote sensing of asteroid and planetary mineralogy and is believed to be typified (with notable 

exceptions) by the sort of weathering seen on the lunar surface, which expresses in the 

ultraviolet-visible-near-infrared (UV-vis-NIR) range from 0.2-2.7 µm as overall darkening, a 

reduction in the intensity of silicate mineral absorption bands, and an increase in spectral slope 

toward longer wavelengths, i.e., spectral reddening (Adams and McCord, 1971). This has been 

demonstrated over time to relate to nanophase iron entrained within a thin glass patina on 

exposed lunar regolith grains (Pieters et al., 2000). Research into the processes of space 

weathering has been driven in large part as a result of what is referred to as the “S-

asteroid/ordinary chondrite conundrum,” which references the fact that the spectra of the most 

common type of inner Main Belt asteroids (S-types) and the most common type of meteorites 

(ordinary chondrites) do not agree (Bell et al., 1989). While space weathering has been 

classically viewed as a process limited to airless body soil or regolith, ample evidence exists that 

space weathering operates on exposed rock as well (Noble, et al., 2011). 

Despite the fact that space weathering has been linked both to ionizing radiation exposure 

as well as micrometeoroid impacts (Hapke, 2001) and has been studied in some detail on several 

airless bodies in the solar system, (e.g., on the Moon, Mercury, 243 Ida, 433 Eros, 25143 
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Itokawa, 6 Hebe, 4 Vesta), determining precisely how space weathering operates has proven an 

elusive goal. Space weathering effects vary dramatically between similar asteroids that would 

otherwise be expected to experience similar space weathering (Gaffey, 2010), and space 

weathering effects have been reportedly difficult to reproduce under laboratory conditions in a 

consistent way (Hemingway et al., 2015). Additionally, while it has been demonstrated that a 

parametric approach to the remote sensing of asteroid composition utilizing band centers and 

area ratios can “see through” space weathering effects to enable a corrected view of underlying 

mineralogy (Gaffey, 2010), a definitive space-weathering paradigm that successfully predicts the 

weathering effects observed across the Solar System has yet to be formalized. One possible 

solution to these discrepancies takes the form of an admission that space weathering results not 

from a single mechanism but is instead the result of a complex interrelationship between solar, 

mineralogical, orbital, and other airless body characteristics, the proper identification of which 

will be critical in untangling space weathering as a whole. This sentiment was converted 

succinctly by Thomas et al. (2014) into a justification for research when they declared that 

assessing the combination of measured characteristics, “can increase the scientific return beyond 

that of the individual datasets.”    

Therefore, it is sensible to review what are believed to be the primary two space 

weathering contributors (ion and micrometeoroid bombardment), explore potential 

interrelationships between ionizing radiation exposure and other potential space weathering 

processes, and examine space weathering effects in the context of previously-unconsidered 

asteroid orbital parameters. In this way, a refined understanding of space weathering and its 

drivers may be produced, with an eye toward identifying obscured trends and consequent areas 

of future potential research. 
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2.0  BACKGROUND 

  In order to fully explore the aspects of space weathering relevant to this work, it is 

necessary to establish a working knowledge of the fundamental physical characteristics of the 

target material (S-type asteroids), the space radiation environment and the heliosphere, and the 

effects of charged particles on the physical properties of materials. Respectively, these topics are 

briefly reviewed. 

2.1.  S-TYPE ASTEROID COMPOSITION AND TAXONOMY  

The S-type asteroids are compositionally typified as iron and magnesium silicates and are 

most commonly found between 2 and 3 astronomical units (AU) from the Sun. Absorption band 

analyses have revealed that the S group is compositionally diverse, likely including both 

chondritic and achondritic bodies and representing in a majority of cases differing proportions of 

olivine and pyroxene, which serve to control observed spectral features (Gaffey et al., 1993). 

Specifically, S-type asteroid mineralogies range from dunites (pure olivine) through that of 

ordinary chondrites to nearly pure orthopyroxenes.  

Because only very few S-type asteroids have been visited by spacecraft in order to obtain 

high-resolution imagery, the primary remote-sensing technique for determining the composition 

of S-types are diagnostic absorption features in reflectance spectra associated with the presence 

of crystalline olivine and pyroxenes; these include a three-band composite absorption feature for 

olivine centered roughly at 1 µm, and two absorption features for pyroxenes, with one absorption 

band centered approximately at 1 µm, referred to as “Band I,” and the other centered at 2 µm, 

referred to as “Band II” (Cloutis et al.,1986). These are caused by the presence of Fe2+ in the 
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crystal matrix. Usefully, the positions of each band are also olivine-and-pyroxene-sensitive. For 

example, an increasing Band I center correlates to an increasing presence of olivine. Further, the 

combination of these Band I and Band II absorption features (the ratio of the area of Band II to 

the area of Band I) have been related to the abundances of pyroxene and olivine, known as the 

Band Area Ratio, or BAR. 

For the purposes of this analysis, the Small Main-Belt Asteroid Spectroscopic Survey 

(SMASS) Phase-II classification scheme for asteroid taxonomy is employed (Bus & Binzel, 

2002). The SMASS scheme is similar in initial form to the earlier Tholen (1989) classification 

scheme, which was created by combining reflectance spectra and albedo data to arrive at a 

general discrimination of asteroids by presumed mineralogical composition. The Tholen 

classification, itself built upon the older taxonomy proposition by Chapman et al. (1975), 

established what is arguably the most frequently-referenced classes of asteroids: carbonaceous 

(C), silicaceous (S), and X-types (which are often generalized as metallic, or M-type asteroids). 

However, unlike Tholen’s work, the SMASS taxonomy did not consider object albedo in its 

methodology, relying instead on features revealed by high-resolution reflectance spectra. This is 

the driving distinction in the context of the present work, given that asteroid albedo is the 

dependent variable under consideration (see Sections 5.0 and 6.0).   

Specifically, the SMASS effort resulted in the spectral discrimination of several S-group 

types that are inferred to be mineralogically distinct from the main S-type. This taxonomy 

preserved previously-identified taxonomic classes, such as A, Q, and R-types (Tholen, 1984), 

which each possess moderate to deep 1-µm (Band I) absorption features, while adding K and L-

types, which possess shallow 1-µm bands. Additionally, the SMASS classification was able to 

further resolve possible transitional spectral types within the standard S-type complex, classified 
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as Sa, Sk, Sl, Sq, and Sr. The spectral zones for these subtypes are presented in Figure 1 (adapted 

from Bus & Binzel, 2002).  

   

Figure 1.  Spectral component plot for the S-type asteroid complex 

This figure illustrates transitional S-subtypes (modified from Bus & Binzel, 2002). Parameterization of the spectral 

data was achieved via principal component analysis (PCA) according to Tholen (1984). Accordingly, PC2’ is plotted 

on the vertical axis and refers to the second-largest fraction in dataset variance, which in this case is sensitive to the 

depth of the 1-µm absorption band (silicate indicator); “Slope,” on the horizontal axis, refers to the object’s 

normalized spectral slope.  

Due to the possibility that these subtypes are either compositionally distinguishable from 

the main S-type or represent a gradient between weathered and unweathered surfaces of the same 

type (see Q-type discussion, below), they in either case potentially provide an opportunity to 

evaluate specific S-type weathering effects. Especially considering that unweathered olivine 

tends to be more reflective than pyroxene, it is possible that parallel weathering trends might be 
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elucidated in subgroups with varying mineral abundances, empirically pointing toward 

underlying “native” albedos that may differ due to variations in intrinsic mineralogy. To this end, 

the prospective mineralogical distinctions between the Sk, Sl, Sq, and S subtypes are briefly 

reviewed below1.  

The Sk-subtype is transitional with the K-type asteroids, which are themselves typified as 

being low albedo (~0.09) and spectrally similar to primitive CV/CO-type chondrites (Bell, 

1988). The Sl-subtype, by contrast, has been typified by spectral similarity to differentiated 

ureilites (Dunn et al., 2013), which possess a slightly higher albedo (~0.18) but relatively flat 

reflectance spectra. Being spectrally similar to LL-type chondrites (Dunn et al., 2013), the Sq-

subtype is transitional between S-type and Q-type asteroids, which have a slightly higher-still 

albedo (~0.20) and bear the greatest similarities to ordinary chondrites than any other asteroid 

class. In fact, some have suggested that core S-types are simply Q-types that have undergone 

space weathering and are regarded as a potential key to the resolution of the ordinary chondrite 

conundrum2. Lastly, the Sr-subtype, being spectrally similar in several cases to primitive 

achondrites as well as to basaltic achondrites, are transitional to the R-type asteroids, which are 

relatively-bright albedo bodies (~0.384) with strong olivine and pyroxene absorption features 

(Majess et al., 2008). 

2.2.  THE NOMINAL SOLAR SYSTEM MICROMETEOROID (DUST) ENVIRONMENT  

In situ data recorded by two spacecraft largely inform the present understanding of the 

ambient micrometeoroid (i.e., dust) environment in the interplanetary space of the inner Solar 
                                                             
1 The Sa-subtype is omitted here, as no bodies of this subtype are present within the population of the present study. 

2 Binzel et al. (2004) present a statistical size-distribution argument that at diameters greater than 5 kilometers, 
regolith production and evolution quickly react to space weathering processes, modifying the surfaces of Q-type 
asteroids to S-types. 
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System, those being the Galileo and Ulysses spacecraft; the two craft used identical 

instrumentation to record dust impacts across the inner solar system along their interplanetary 

trajectories, which were either largely parallel to or almost perpendicular to the Solar System’s 

invariant plane, respectively (Grun et al., 1992a; Grun et al., 1992b). The orbital trajectories are 

presented in Figure 2 (adapted from Grun et al., 1997). 

   

Figure 2.  Trajectories of the Galileo (dashed, green) and Ulysses (dashed, yellow) spacecraft 

The Sun is at the center, with the Earth, Jupiter, and Galileo trajectories within the Solar System invariant plane 

(shaded). The first portion of the Ulysses craft’s trajectory was also in the plane of the ecliptic, until a Jupiter 

encounter was used to move the craft to a high-inclination orbit of 79 degrees. 

By combining the datasets produced by these two spacecraft, a rough understanding of 

the overall latitudinal and radial distributions of micrometeoroids is produced (Grun et al., 1997). 

Specifically, the inner Solar System dust was found to be composed of at least two distinct types.  
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The first, interplanetary dust, was found to possesses grains with a wide range of masses (from 

10-16 to 10-6 grams, g) that are located at “low” inclinations nearer to the plane of the ecliptic 

(i.e., heliospheric latitudes below 30 degrees). The second general type, referred to as interstellar 

dust, was found to be composed of grains with a narrower range of smaller masses (from 10-14 to 

10-12 g), located at “high” inclinations and ecliptic latitudes (i.e., heliospheric latitudes greater 

than 50 degrees). Simultaneously, Ulysses data revealed that the micrometeroid impact rate 

averaged as low as 0.3 impacts per day at high ecliptic latitudes, whereas within the ecliptic 

plane, the impact rate rose to up to 1.5 impacts per day (Kruger et al., 2010). The overall 

relationship between dust density at a given heliographic latitude and the inclination of orbiting 

dust is governed by Equation 1, below, which establishes the (perhaps intuitive) reality that in 

order for a micrometeoroid to reach a given heliographic latitude, its solar orbital inclination 

must be at least that large (modified from Grun et al., 1997):  

𝑖	 ≥ 	𝜆     (1) 

Further, the lowest-mass particles were also generally found to be the fastest, with the 

high-inclination, 10-14 to 10-12 g mass band having velocities from 5-11 kilometers per second 

(km/s), and the low-inclination, 10-16 to 10-6 g ecliptic dust having velocities from 2-45 km/s, 

with an overall average value of 20 km/s (Kruger et al., 2010). This yields the reality that high-

inclination micrometeoroid impacts appear five times less likely than impacts within the ecliptic 

plane, and on average, high-inclination micrometeoroid strikes are generally less massive and 

less energetic than their ecliptic counterparts. 
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2.3.  THE NOMINAL SOLAR SYSTEM IONIZING RADIATION ENVIRONMENT 

The ambient environment of the Solar System is typified by a dynamic mix of charged 

particles (ions) originating from multiple high-energy sources that are local, galactic, or extra-

galactic in origin (Tribble, 2003). These sources include the Sun, other stars in the Milky Way, 

galactic processes (e.g., galactic cores), and interactions of the particles produced by these 

sources with the surfaces (and atmospheres) of celestial bodies, which produce secondary 

radiation (e.g., albedo neutrons).   

Of these multiple radiation sources, particles continuously emitted by the Sun dominate 

the Solar System’s radiation environment by number. This so-called “solar wind” results from 

the supersonic expansion of the outer atmosphere of the sun, or solar corona, and is composed 

predominantly of ionized hydrogen (~95%), with trace contributions of ionized helium (~5%) 

and heavier elements (~0.1%) (Killen et al., 2012). Due to the fact that interplanetary space is 

dominated by these charged particles produced by the Sun, the regions of space filled by the 

solar wind have been described as the “heliospheric medium” (Balogh et al., 2001). The solar 

magnetic field interacts with and spatially moderates this expanding, hot material, which is 

ejected from the Sun with velocities ranging from 250 to greater than 800 kilometers per second 

(km/s) for “slow” and “fast” solar wind, respectively (Gosling & Pizzo, 1999; Durante & 

Cucinotta, 2011).3 An average speed in the plane of the ecliptic of 400 km/s is often used to 

represent generalized solar wind (Killen et al., 2012). While many researchers cite average solar 

wind proton energies of a thousand electron-volts (1,000 eV, or 1 keV) over long timescales for 

the purposes of solar wind simulations and modeling (e.g., Starkuhina, 2006), these slow and fast 

solar wind velocities equate to average proton particle energies ranging from 100 eV to 
                                                             
3 During Solar Particle Events (SPEs), such as coronal mass ejections, the speed of emitted solar wind can more 
than double when compared with nominal values, while the solar wind ion density can grow by a factor of 10. 
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approximately 3.5 keV (Durante & Cucinotta, 2011). Likewise, while an average proton particle 

density value of 5 per cubic centimeter (cm-3) is also often used to represent generalized solar 

wind (e.g., Killen et al., 2012), the average slow wind particle density is in actuality closer to 11 

cm-3, while the fast solar wind particle density is closer to 3 cm-3, nearly an order of magnitude 

lower (Balogh et al., 2001). Note also that these nominal values are punctuated by episodic Solar 

Particle Events, which lead to bursts of coronal protons with particle energies up to more than a 

billion electron volts (GeV). 

In contrast to solar wind, so-called Galactic Cosmic Rays, or GCRs, (a legacy misnomer 

referring to interstellar ions), are orders of magnitude fewer in number than solar wind particles, 

arrive to the Solar System isotropically, but dominate in terms of particle energies – up to GeV 

intensities and higher. This is owing to the fact that GCRs result from much more energetic 

processes (e.g., supernovae). It is also particularly noteworthy that these two particle fields (solar 

wind and GCRs) are inversely related to one another. Because the solar wind acts as a carrier for 

the Sun’s magnetic field through interplanetary space, increased solar activity strengthens the 

interplanetary magnetic field (IMF) and attenuates arriving GCRs. Likewise, periods of reduced 

solar activity correlate to an increase in the number and energy of arriving GCRs able to 

penetrate deep into the inner Solar System. However, due to the overall reduced GCR flux when 

compared to the solar wind, it is solar wind that is considered to be the mechanism of primary 

concern with respect to ion bombardment and space weathering. 

2.4.  THE HELIOSPHERE 

While the average values described in Section 2.3 are commonly employed when 

modeling solar ion bombardment across geologic timescales, it is worth noting that the 

heliosphere is dynamic, with nontrivial variations based on period in the Solar Cycle and 
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distance from the invariant plane of the Solar System. For example, the relationship between the 

energy of the heliospheric medium (solar wind) and heliographic latitude is an important one, 

particularly regarding the potential role(s) of ion bombardment in space weathering processes.  

Consequently, when seeking to describe the principal characteristics of the heliospheric medium 

with respect to space weathering, there are three relevant factors to consider. 

2.4.1.  SOLAR WIND ENERGY HELIOGRAPHIC LATITUDE DEPENDENCE 

First, the Sun expresses a sharp, bimodal latitude dependence of solar wind speeds during 

Solar Minimum (Suess, 1999).  During this time, so-called “slow” solar wind speeds are found in 

the solar equatorial plane, which is approximately aligned with the plane of the ecliptic. 

Governed by the IMF and the solar current sheet in this region, this radiation possesses speeds of 

approximately 300-400 km/s (~100 eV) and is organized by closed, near-surface magnetic 

structures into a band or “streamer belt” aligned with the Sun’s magnetic equator. The transition 

from slow to so-called “fast” solar wind under these conditions occurs at approximately ±15 

degrees heliographic latitude and may extend to ±25 degrees (Balogh et al., 2008), though the 

transitions are also measured to be abrupt – as sharp as 1.5 degrees in span. The fast wind 

remains relatively constant from the terminus of this transition zone to the solar poles, where the 

solar wind possesses speeds of greater than 800 km/s (~3.5 keV). This fast solar wind is 

generated by the open magnetic field structure aligned with the axis of the Sun’s magnetic 

dipole, generating regions known as polar “coronal holes.” Traditionally, this general schematic 

of solar wind characteristics is used to represent the average ion bombardment environment for 

bodies in the Solar System, which implies that during and in proximity to Solar Minimum, 

airless bodies with more inclined orbits will experience more energetic ion bombardment than 
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bodies orbiting within or very near to the plane of the ecliptic. This heliographic latitude-

dependence for solar wind energy is depicted in Figure 3. 

 

Figure 3.  Radial plot of Solar Minimum solar wind speed as measured by the Ulysses spacecraft 

Obtained by the Ulysses spacecraft SWOOPS sensor during Solar Minimum, which highlights slow wind at the 

solar equator and fast wind approaching the poles. Blue and red-colored lines represent the orientation and overall 

state of the solar magnetic dipole, which drives the IMF. (Image credit: ESA)  

2.4.2.  SOLAR AXIS OBLIQUITY 

Secondly, the Sun’s rotational axis possesses non-zero obliquity with respect to the 

angular momentum vector of the rest of the system of planets that orbit it. In other words, the 

Sun’s axis of rotation is tilted from the invariant plane of the Solar System, with published 

values of the tilt of the Sun’s equatorial plane ranging from 5.8 to 7.25 degrees (Heller, 1993; 

Balogh et al., 2001; Souami & Souchay, 2012; Bailey et al., 2016). Additionally, near Solar 
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Minimum, the magnetic dipole does not perfectly align with the rotation axis but is instead tilted 

with respect to it by tens of degrees (Balogh et al., 2008). This is illustrated in Figure 4. 

   

Figure 4.  Diagram of the tilted solar dipole relative to the Sun’s rotation axis 

Modified after Pizzo (1991) to include the tilt of the solar rotation axis, this highlights the pattern of fast-slow solar 

wind interactions that would be experienced while orbiting the Sun, or while the Sun rotates, during an organized 

dipole state (i.e., Solar Minimum). 

The implication of this obliquity on airless bodies with respect to the transition zone 

between slow and fast solar wind is non-trivial. At first glance, it may seem that the orbital 

inclination of a given airless body would be expected to correlate directly to positive and 

negative heliographic latitude of the same value, i.e., only objects with orbital inclinations 

inclined more severely than 15 degrees would be expected to experience any transitional or fast 

solar wind in the regions greater than ±15 degrees heliographic latitude. However, it becomes 

obvious when including solar obliquity and dipole tilt considerations that bodies with orbital 
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inclinations as low as 9 degrees could reach through the transition zone into the fast solar wind 

for a significant portion of their orbits.   

To begin to understand these effects, the astrodynamics of an inclined orbiting body 

become particularly relevant as it relates to what may be considered the residence time, or 

fraction of each orbit, that a body spends at a given heliographic latitude. Generally-speaking, for 

an ideal, circular Kepler orbit about the Sun (or any other body), an orbiting object inclined less 

than 90 degrees spends the greatest amount of time near its “northernmost” and “southernmost” 

latitudes while spending the least amount of time near to the equator. Specifically, where i is an 

object’s inclination and σ represents a heliographic latitude of interest, the fraction of time, f, 

spent in a given (heliographic) latitude is mathematically described by Equation 2, below 

(modified from Bate et al., 1971): 

                     f(σ) = 1/π  * cos(σ) / (sin2i – sin2σ)1/2 ;  -i < σ < i                 (2) 

Assuming a 7.25-degree solar obliquity (Balogh et al., 2001), all airless body orbital 

inclinations would consequently need to subtract 7.25 degrees to each the northern and southern 

extents in terms of heliographic latitude. For example, an airless body with an orbital inclination 

of 20 degrees actually orbits between 12.75 degrees north and 27.25 degrees south heliographic 

latitude. According to Equation 1 (assuming a circular orbit and no precessional motion), the 

object spends more than 40% of its orbit in the fastest solar wind in the southern latitudes. These 

fractions of an orbit might be considered a sort of “residence period” for any airless body spent 

exposed to fast solar wind. And while this example is not wholly realistic in terms of orbital 

parameters, the implication is that even if an airless body only grazes the fast solar wind by the 

numbers, based on orbital dynamics averaged over geologic time, it will in reality spend an 

appreciable portion of its orbital life being exposed to it. 
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2.4.3.  PERIODIC SOLAR DIPOLE REORGANIZATION 

Third, it is important to note that the solar magnetic dipole is generally not coherent nor 

aligned with the Sun’s axis of rotation during Solar Maximum, at which time the field is chaotic 

and highly complex, with streamer belts and coronal holes observed at all latitudes. Figure 5 

presents the solar wind radial plot observed by the Ulysses spacecraft during Solar Maximum. 

 

Figure 5.  Radial plot of Solar Maximum solar wind speed as measured by the Ulysses spacecraft 

Measured by the Ulysses spacecraft SWOOPS sensor during Solar Maximum, the figure highlights fast and slow 

winds at all latitudes, consistent with Solar Maximum activity. Scale (km per second) is identical to Figure 3. Blue 

and red-colored lines represent the orientation and overall state of the solar field and IMF. (Image credit: ESA)  

Likewise, the field is increasingly coherent but strongly misaligned with the solar axis of 

rotation when leaving Solar Maximum and approaching Solar Minimum, a period known as the 



 

 16 

“declining phase.” Instead, during the declining phase, the solar dipole has been observed to be 

substantially inclined with rest to the axis of solar rotation (Gosling & Pizzo, 1999). Indeed, this 

dipole tilt has been measured to be as severe as 30 degrees with respect to the rotational axis 

before returning to a traditional equatorial-aligned orientation during the subsequent Solar 

Minimum (Suess et al., 1998). Figure 6 presents an illustration of this pattern across the Solar 

Cycle. 

 

Figure 6.  Diagram of the variation of the Solar Cycle coronal magnetic field  

Patterned after the classic depiction by Suess et al. (1998), this figure illustrates from left to right the highly-

organized dipole generally aligned with the rotation axis during Solar Minimum, the highly chaotic magnetic field 

during Solar Maximum, and the highly inclined solar dipole during the Declining Phase, respectively.  

This reality greatly extends the apparent heliographic latitude of fast solar wind emission, 

which in turn regularly exposes a much wider range of objects with lower orbital inclinations to 

fast solar wind than would be expected given the more conventional view of the heliosphere 

presented in Section 2.3.1 and 2.3.2. However, as this exposure is cyclical, those bodies with 

inclinations exceeding the Solar Minimum fast-wind threshold heliographic latitudes would still 

be expected to be exposed to more fast wind than those in equatorial orbits, and so the Solar 

Maximum chaos and declining phase dipole inclination can arguably be ignored without 

jeopardizing the orbital inclination-solar wind dependence argument upon which the present 



 

 17 

work relies. This in mind, it remains important to understand that a gross approximation is being 

made when generalizing fast and slow solar windspeeds as being in organized heliographic 

latitude bands only observed during Solar Minimum. 

2.5.  ION BOMBARDMENT AND MINERAL AMORPHIZATION/WEAKENING 

In literature concerning space weathering, ion bombardment as a physical process tends 

to emphasize “sputtering” as a primary weathering mechanism (e.g., Rodriguez-Nieva et al., 

2011). This describes the process of recoil particles being ejected from an incident surface in 

response to ion collisions, with focus drawn more to the availability of freed particles to interact 

as part of the weathering process than to the remnant effect on the material from which the 

particle was freed. However, the bombardment of surficial materials with any ion of sufficient 

energy to cause atomic displacements within a crystal lattice can result in further, significant 

microstructural changes to the material’s molecular/mineral structures, e.g., mineral 

amorphization, point defects, and solute aggregates (Zinkle, 2012). It has even been shown that a 

lone heavy ion can form a nanometer-scale crater on the surface of a material if it is possessive 

of impact energies equal to or greater than 5 keV, blurring the distinction between 

micrometeoroid impact ejecta and incident bombarding ion sputtering (Djurabekova et al., 2012). 

These structural changes have been shown to significantly change physical and mechanical 

properties of affected materials, making them more susceptible to further degradation via 

secondary processes4. Specifically, depending on overall dose delivered, the changes in an 

irradiated material’s physical and mechanical properties include the induction of crystalline-to-
                                                             
4 This is a subject of great interest to manufacturers of materials subject to regular bombardment by proximal 
nuclear reactors or ion accelerators, which forms a bulk driver for research in this area. In the case of the former, 
hydrogen embrittlement acts in concert with structural embrittlement and damage to the alloys composing reactor 
containment vessels. In the case of the latter, the build-up of electric fields in a vacuum leads to plasma-escape ions 
that damage containment walls. 
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amorphous phase transitions due to the ion collision sequence’s ionization cascades. This can 

cause material swelling of 5-30% by volume as well as a reduction in the material’s elastic 

modulus; also, the so-called “hardening” of the material matrix may occur, which for many 

materials is correlated with a lowered fracture toughness (Zinkle, 2012). Both of these effects 

would result in the overall weakening of an irradiated material. Figure 7 presents a generalized 

diagram of these ion bombardment effects. 

   

Figure 7.  Generalized energetic ion bombardment material effects   

Adapted from Kuhlman et al. (2015), this figure presents a generalized depiction of the material effects initiated by 

energetic ion bombardment, depicted in red. These include sputtering from the surface (in purple), surficial erosion, 

damage to the near-surface mineral structure, i.e., amorphization (in purple), lattice displacements and defects along 

the ion collision sequence (in purple), and ion implantation.  

For example, consider that the typical threshold energy necessary to cause a single atomic 

displacement from a crystal lattice is 30-50 eV (Zinkle, 2012). In this case, even a low-speed-

solar-wind proton (with an energy equivalent of 100 eV) possesses enough energy to displace 
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two atoms from a mineral crystal lattice per collision. Likewise, a fast-solar-wind proton (~ 3.5 

keV) has the potential to displace on the order of 175 atoms per interaction. With an average 

areal irradiation rate of 5 ions impacting per square centimeter per second (cm-2 s-1), for slow 

solar wind this equates to more than 300 million atomic displacements per square centimeter per 

year (cm-2 yr-1) in an asteroid’s outermost surface material, while for fast solar wind this equates 

to nearly 30 billion atomic displacements cm-2 yr-1, a nontrivial difference of nearly two orders of 

magnitude. In each of these cases, research indicates that a fraction of each displacement cascade 

remains in clusters of non-correct but stable positions, i.e., that stable defects are created within 

the material’s molecular framework. These defects are known to manifest in the presence of 

anisotropic crystal habit planes as the irradiation-induced growth and/or creep of individual 

crystal grains, which creates large grain-boundary stresses in polycrystalline materials. This, in 

turn, results in the loss of material strength described above as well as in grain boundary 

fractures at the macroscopic level (Zinkle, 2012).  

In a broad sense, this may all be generalized as radiation-induced weakening and 

potential embrittlement of a material. While this weakening itself cannot cause the formation of 

nanophase-iron-entrained space-patina, it certainly appears plausible that such a process could 

enable or enhance a secondary process, such as micrometeorite impacts, to do so.  
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3.0  PURPOSE 

 The primary purpose of this study is to determine the direction and degree of correlation 

or association between the albedo of a representative population of S-type airless bodies 

(asteroids) and their respective orbital inclinations, which relates to the overall intensity of 

heliospheric medium (solar wind) exposure, where “intensity” refers to energy, a function of 

inclination, as opposed to overall flux, which is a function of semi-major axis. Consequently, the 

specific purpose of this work is to 1) test the null hypothesis that there is no statistically-

significant linear association between the variables of albedo and orbital inclination for the target 

population of S-type asteroids when analyzed in bulk as well as by associated subtypes and orbit 

type, 2) analyze the covariance of the albedo-inclination regression lines for each of the S-

subtypes, and 3) utilize the information derived from the primary investigation to hypothesize a 

weathering process, either as a single mechanism or combination of separate mechanisms, that 

accounts for the apparently contradictory expressions of space weathering observed amongst S-

type asteroids. 
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4.0  STATEMENT OF THE PROBLEM 

 Conflicting expressions of space weathering persist on airless bodies of similar 

composition and distance from the Sun. On the mature surfaces of S-type asteroids, these 

expressions include the lowering of surface reflectivity (albedo) without a modification of 

spectral features, the modification of spectral features without affecting albedo, or combinations 

of both effects (i.e., approximating lunar-style space weathering). To date, the precise 

mechanism or interaction of mechanisms necessary to produce these weathering effects has not 

been identified but has been demonstrated to relate to at least two primary processes: ion 

bombardment and micrometeoroid bombardment. It is sensible, then, to pursue work intended to 

discriminate the effects of these processes based on other parameters, e.g., orbital characteristics.
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5.0  SCOPE 

 The scope of this study is to statistically analyze two variables, albedo and orbital 

inclination, for a target population limited to the S-type asteroids for which suitable orbital, 

albedo, and compositional information is available. This necessarily restricts the study 

population to a collection of Near-Earth Asteroids (NEAs) and one Mars-Crossing Asteroid 

(1992 AX). The product of this work will be the degree of significance of correlation between 

the two variables for the total target population, several subsets of the total population, and the 

degree of covariance of the regression lines for the population subsets. 

 The data considered in this effort is derived from two sources. First, visible wavelength 

spectra for near-Earth and Mars-crossing S-type bodies were obtained as part of Phase II of the 

SMASS study (which includes published orbital parameters). Secondly, albedo measurements 

were obtained from the Spitzer near-Earth object survey (i.e., Harris et al, 2011; Mueller et al., 

2011; Trilling et al., 2010; Thomas et al., 2011; Thomas et al., 2014), which were cross-

referenced with the SMASS-II population to produce a total of 71 target S-type bodies with 

albedo information and each with a spectral classification as either a generic S-type object or one 

of the sub-types Sk, Sl, Sq, or Sr (Binzel et al, 2004)5. This dataset is included as Table 1, below. 

The dataset is also plotted as Figure 8a, below, which depicts the bodies under study in principal 

spectral component space, in the manner after Bus & Binzel (2002).  

 

                                                             
5 In employing a method reliant only on spectra, it was recognized that the use of SMASS classifications as a proxy 
for general mineralogy in this inclination-albedo study preempts a corruption problem possible with other datasets 
where albedo was also used to derive asteroid classification information. 
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Table 1 – Asteroid information used in the present study 

  Asteroid Asteroid Provisional Orbit SMASS Inclination Albedo Albedo Albedo 
  Number Name Designation Type Type  (degrees)   Error (+) Error (-) 

 
433 Eros 1898 DQ AMO S 10.8 0.23 - - 

 
1627 Ivar 1929 SH AMO S 8.5 0.09 0.12 0.05 

 
1685 Toro 1948 OA APO S 9.4 0.327 0.08 - 

 
1865 Cerberus 1971 UA APO S 16.1 0.5 0.29 0.21 

 
1866 Sisyphus 1972 XA APO S 41.2 0.07 0.09 0.04 

 
7977 - 1977 QQ5 AMO S 25.2 0.06 0.06 0.03 

 
3122 Florence 1981 ET3 AMO S 22.2 0.21 0.20 0.10 

 
4957 Brucemurray 1990 XJ AMO S 35 0.18 - - 

 
7822 - 1991 CS APO S 37.1 0.28 0.18 0.12 

 
15745 Yuliya 1991 PM5 AMO S 14.4 0.24 0.18 0.11 

 
6047 - 1991 TB1 APO S 23.5 0.8 0.44 0.35 

 
6455 - 1992 HE APO S 37.3 0.31 0.42 0.18 

 
32906 - 1994 RH AMO S 18.9 0.14 0.11 0.08 

 
13651 - 1997 BR APO S 17.2 0.34 0.29 0.21 

 
16834 - 1997 WU22 APO S 16 0.43 0.28 0.20 

 
100756 - 1998 FM5 AMO S 11.5 0.26 0.19 0.14 

 
100926 - 1998 MQ AMO S 24.2 0.37 0.22 0.16 

 
85818 - 1998 XM4 APO S 62.7 0.3 0.23 0.15 

 
85953 - 1999 FK21 ATE S 12.6 0.076 0.05 0.04 

 
86326 - 1999 WK13 AMO S 34.3 0.27 0.21 0.12 

 
357022 - 1999 YG3 APO S 34.5 0.18 0.14 0.08 

 
18882 - 1999 YN4 AMO S 36.8 0.18 0.15 0.09 

 
20790 - 2000 SE45 AMO S 8.3 0.1 0.11 0.05 

 
- - 2000 YF29 APO S 6.3 0.27 0.16 0.11 

 
54686 - 2001 DU8 AMO S 33.2 0.35 - - 

 
200840 - 2001 XN254 AMO S 1.9 0.65 0.26 0.28 

 
- - 2002 AQ2 AMO S 11.7 0.2 0.12 0.10 

 
10115 - 1992 SK APO S 15.3 0.38 0.24 0.17 

 
96590 - 1998 XB ATE S 13.6 0.11 0.09 0.05 

 
208023 - 1999 AQ10 ATE S 6.5 0.46 0.25 0.22 

 
12923 Zephyr 1999 GK4 APO S 5.3 0.2 0.16 0.09 

 
22099 - 2000 EX106 APO S 9.8 0.29 0.16 0.12 

 
285540 - 2000 GU127 APO S 8.5 0.32 0.18 0.16 

 
25143 Itokawa 1998 SF36 APO S 1.6 0.41 0.20 0.18 

 
35107 - 1991 VH APO Sk 13.9 0.26 0.20 0.11 

 
5407 - 1992 AX MCA Sk 11.4 0.199 0.08 - 

 
18736 - 1998 NU AMO Sk 2.8 0.25 0.19 0.14 

 
162142 - 1998 VR ATE Sk 21.8 0.14 0.10 0.07 

 
55532 - 2001 WG2 APO Sk 38.5 0.14 0.12 0.06 

 
1980 Tezcatlipoca 1950 LA AMO Sl 26.9 0.47 0.43 0.24 

 
1917 Cuyo 1968 AA AMO Sl 23.9 0.27 0.21 0.14 

 
137064 - 1998 WP5 AMO Sl 19.5 0.29 0.25 0.14 

 
54690 - 2001 EB AMO Sl 35.4 0.24 0.21 0.11 

 
1863 Antinous 1948 EA APO Sq 18.4 0.11 0.08 0.05 

 
4183 Cuno 1959 LM APO Sq 6.7 0.1 0.10 0.05 
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  Asteroid Asteroid Provisional Orbit SMASS Inclination Albedo Albedo Albedo 
  Number Name Designation Type Type  (degrees)   Error (+) Error (-) 

 
2340 Hathor 1976 UA ATE Sq 5.9 0.6 0.28 0.21 

 
2063 Bacchus 1977 HB APO Sq 9.4 0.27 0.21 0.16 

 
4947 Ninkasi (large) 1988 TJ1 AMO Sq 15.7 0.32 0.20 0.17 

 
4947 Ninkasi (small) 1988 TJ1 AMO Sq 15.7 0.5 0.29 0.25 

 
99907 - 1989 VA ATE Sq 28.8 0.24 0.19 0.11 

 
5587 - 1990 SB AMO Sq 18.1 0.29 0.43 0.19 

 
6053 - 1993 BW3 AMO Sq 21.6 0.069 0.10 0.05 

 
7358 Oze 1995 YA3 AMO Sq 4.7 0.08 0.10 0.04 

 
344074 - 1997 UH9 ATE Sq 25.5 0.36 0.23 0.15 

 
175729 - 1998 BB10 APO Sq 11.5 0.43 0.24 0.21 

 
137062 - 1998 WM APO Sq 22.5 0.32 0.23 0.14 

 
85938 - 1999 DJ4 APO Sq 9.1 0.28 0.23 0.13 

 
40267 - 1999 GJ4 APO Sq 34.5 0.28 0.28 0.14 

 
66959 - 1999 XO35 AMO Sq 20.6 0.28 0.20 0.16 

 
137799 - 1999 YB AMO Sq 6.8 0.31 0.21 0.17 

 
203015 - 1999 YF3 AMO Sq 26.8 0.19 0.14 0.11 

 
36284 - 2000 DM8 APO Sq 46.8 0.19 0.16 0.09 

 
138258 - 2000 GD2 ATE Sq 32.1 0.44 0.22 0.20 

 
20826 - 2000 UV13 APO Sq 31.9 0.18 0.31 0.12 

 
141052 - 2001 XR1 APO Sq 17.7 0.22 0.08 0.05 

 
31346 - 1998 PB1 AMO Sq 6 0.2 0.14 0.11 

 
2062 Aten 1976 AA ATE Sr 18.9 0.2 - - 

 
12711 Tukmit 1991 BB APO Sr 38.5 0.19 0.14 0.09 

 
16657 - 1993 UB AMO Sr 25 0.09 0.09 0.04 

 
9400 - 1994 TW1 AMO Sr 36 0.14 0.16 0.10 

  

11398 - 1998 YP11 AMO Sr 15 0.176 0.19 0.09 
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Figure 8.  Spectral component plot for the present study S-type asteroid population   

Spectral component plot for the S-type asteroids included in this study, illustrating S-complex subtypes by plotting 

PC2’ against normalized spectral slope, as in Bus & Binzel (2002). Compare to Figure 1, for reference.  
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6.0  METHODS 

 The proposed procedure is analytical in nature and centers on the statistical analyses of a 

set of S-type asteroids, airless bodies known as a class to experience varying styles of space 

weathering, whose compositional distinctions were discriminated based on a methodology that 

did not include measurements of albedo (i.e., SMASS-II, see: Bus & Binzel, 2002). The selection 

of this target population (refer to Section 5.0 for more information) is due to the fact that one of 

the two primary variables to be considered is itself asteroid albedo, referred to here as y, or the 

dependent variable. The other variable is asteroid orbital inclination, referred to here as x, or the 

independent variable. Nominative variables to be included in secondary analyses include asteroid 

type/subtype as well as NEA orbit type (i.e., Amor, Apollo, and Aten).  

This asteroid population, included in Section 5.0 as Table 1, results in a total N value of 

71. Organized by asteroid type and subtype, the first statistical test to be performed is to 

determine the direction and significance of the correlation coefficient, r, between albedo (y) and 

orbital inclination (x) for the target population and various subsets thereof. This takes the form of 

a linear (or Pearson), two-tailed correlation analysis between x and y in each case (S-type and 

subtype), where the null hypothesis is formulated as [-critical value] > r < [critical value], 

representing no statistical association between the variables; the alternative hypothesis therefore 

takes the form, [-critical value] < r > [critical value], representing a statistical association 

between the variables (Natrella, 2005). The second statistical evaluation to be performed is an 

analysis of covariance between the regression lines produced for the subtypes analyzed in the 

first analysis, which will compare a calculated P value, or the probability that given a true null 
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hypothesis for the observations would be produced, to an established significance level, a. 

Finally, as a form of cross-check against the primary evaluation, the last analysis to be performed 

is to determine the direction and significance of the correlation coefficient, r, between albedo (y) 

and orbital inclination (x) amongst the total target population organized not by SMASS subtype 

but rather by orbit type amongst the same population. This is in order to evaluate whether or not 

trending based on proposed “freshening” mechanisms is present in the dataset, and further, if any 

trends agree with the conceptual relationship to orbit type as described in Section 7.6. 

Due to the small available sample size and the wide uncertainty in published albedo 

values, for the purposes of this study a significance level, a, of 0.25 was selected, which 

represents a 75% confidence level in the ability to potentially confirm or reject the null 

hypothesis based on the available data. In other words, the a of 0.25 implies that there is a 25% 

chance that any correlation observed that serves as a basis for rejecting the null hypothesis is not 

real and is instead an artifact of natural variability in the sample population, otherwise known as 

a Type I error. Considering the small sample size and high degree of potential intrinsic error for 

the population of asteroids under consideration, this level of risk is viewed by the author to be 

acceptable and the effort to identify possible or likely relationships. 

For reference, the degrees of freedom for a two-tailed Pearson analysis, df, are equal to 

N-2. Accordingly, it follows that for the total selected population of S-complex asteroids in the 

present study, df = 69. Consequently, at the 75% confidence level, the critical value for the entire 

study population is ±0.1380, and so [-0.1380 > r < 0.1380] describes the statistical conditions 

under which the null hypothesis is confirmed, while [-0.1380 < r > 0.1380] describes the 

statistical conditions under which the null hypothesis is rejected and the alternative hypothesis is 
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confirmed. The full range of statistical parameters and criteria for the dataset are included as 

Table 2, below. 

 
Table 2 – Statistical parameters/criteria for the target asteroid population 

  Asteroid Sample Degrees of Significance  Critical 
  Type Population (#) Freedom (df) Level (a)* r-value 

 
S-total 71 69 0.25 0.1380 

 
S-only 34 32 0.25 0.2028 

 
Sk 5 3 0.25 0.6347 

 
Sl 4 2 0.25 0.7500 

 
Sq 23 21 0.25 0.2500 

 Sr 5 3 0.25 0.6347 
 Amor 32 30 0.25 0.2094 
 Apollo 29 27 0.25 0.2207 

  

Aten 9 7 0.25 0.4284 

Note: The divided rows represent data partitioning by subtype and by orbit type, respectively; the sum of 
the last group is one less than the total, which is due to the exclusion of one Mars-Crossing Asteroid in the 
population. 

* The confidence level for the analyses to be performed on the target S-type asteroid population under 
study is 75%. 
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7.0  LITERATURE REVIEW 

In establishing the current state of research relevant to the present work, a review of 

literature regarding space weathering mechanisms, space weathering on airless bodies in the 

Solar System, and a proposed anti-weathering process was performed. Additionally, an overall 

space weathering scheme patterned after the Hemingway et al. (2015) work on the Renier 

Gamma lunar anomaly was also suggested. Respectively, these topics are briefly reviewed.  

7.1.  WEATHERING MECHANISMS – CHARGED PARTICLES  

Given the ubiquity of charged particles (ions) in the space radiation environment, much 

research attention has been paid to the potential contribution of three ion-bombardment-based 

space weathering mechanisms. The first of these is so-called “sputtering” of individual atoms 

from the surfaces of planetary bodies (Hapke, 2001), which are composed of generally porous 

materials (Noble et al., 2001). The physical process of sputtering in/from porous materials is 

highly complex, involving the bombardment of irregular surfaces (correlating to different angles 

of incidence), the angular and depth distribution of the ejected (sputtered) atoms and/or 

molecules as they relate to the molecular geometry of the material, and the re-deposition of 

atoms within and upon the internal and external surfaces of the material (Rodriguez-Nieva & 

Bringa, 2013). In the context of space weathering, it is believed that sputtering not only causes 

the atomic erosion or recession of a target surface (Kuhlman et al., 2015), but it is also 

responsible for the disassociation of iron from iron-bearing silicates and the subsequent 

deposition and accumulation of nanophase iron on material surfaces (Noble et al., 2007). 

However, it is worth noting that Brunetto and Strazzulla (2005) found sputtering to be physically 
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relevant only for ion flux densities greater than 1 ´ 1018 ions per cm2 per second (cm-2 s-1), 

whereas the slow and fast solar wind proton flux densities are only 3.7 ´ 108 cm-2 s-1 and 2.0 ´ 

108 cm-2 s-1, respectively (Balogh et al., 2001). This would seem to suggest that sputtering alone 

cannot be responsible for physical space weathering effects. 

Secondly, the role of direct ion irradiation in solid materials is a process that has been a 

periodic focus of research, although it seems to a lesser degree than either the sputtering process 

described above or ion implantation as will be discussed below. In the present case, the 

progressive amorphization of a target’s surficial micro-crystalline mineral structure has been 

found to occur due to the elastic collision of incoming ions and mineral nuclei, which results in 

both the darkening as well as the reddening of the UV-VIS-NIR spectral slope (Brunetto & 

Strazzulla, 2005). It is noteworthy that this was found to occur at lower particle flux densities 

than sputtering, e.g., < 1 ´ 1017 cm-2 s-1. Their work demonstrated that solar wind irradiation, 

acting via the amorphization of the micro-crystalline structure of the uppermost layers of the 

target material, is a physical mechanism that acts in near-Earth space on a time-scale less than 

106 years. This understanding is further enhanced by the practical work of Brunetto & Strazulla 

(2005), which finds that higher ionization energies correlate to more efficient albedo darkening 

and slope reddening. 

The third solar-ion-bombardment process is that of ion implantation. In this case, solar 

protons (ionized solar hydrogen) in the 1 keV energy range can implant in the first 100 

nanometers of surface material as hydrogen (Farrel et al., 2015). This, in turn, can function to 

reduce iron as part of the overall weathering process.   
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7.2.  WEATHERING MECHANISMS – IONS VS. MICROMETEORITES  

The proposition of a relationship between micrometeorite bombardment and the optical 

effects of space weathering reaches back nearly than a half-century (e.g., Hapke et al., 1975). At 

the time, the accumulation of dark, agglutinitic glass via micrometeorite impact melting of 

regolith was identified as an important contributor to the process of space weathering.  However, 

the presence of the glass itself could not explain the spectral reddening associated with mature 

lunar soils (Kohout, et al., 2014). Since that time, it has been shown via pulse-laser laboratory 

simulations that the impacts of high-velocity, interplanetary dust particles result in the formation 

of nanophase iron and replicate the changes in optical properties observed on weathered bodies 

(Noble et al., 2011). Accordingly, these micrometeorite weathering effects are believed to be 

driven by the vaporization of surface materials and the formation of impact glasses incorporating 

nanophase iron particles (Sasaki & Kurahashi, 2004).  

While solar wind was initially considered to be responsible for the production of 

weathering-linked nanophase iron via sputtering and ion implantation, research performed by 

Sasaki et al. (2001) demonstrated that the presence of hydrogen was unnecessary and that vapor 

deposition during micrometeorite impacts alone could be responsible for the production of 

nanophase iron. This cast into doubt which of the two space weathering processes (solar wind or 

micrometeorite impacts) were dominant or necessary. Consequently, the relative importance of 

ion bombardment versus micrometeoroid bombardment in producing nanophase iron is unclear 

to this day (Blewett et al., 2016). 6 However, it is worth noting that laboratory research has 

indicated that solar wind as a weathering mechanism is more efficient at spectral reddening and 

                                                             
6 The salient inverse point may therefore be made that laboratory research appears to demonstrate that 
both meteorite and ion bombardment processes are capable of producing the entrained nanophase iron 
associated with space weathering. 
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darkening than vapor coating by micro-meteorite impacts (Brunetto & Strazzulla, 2005). 

Intriguingly, Brunetto et al. (2007) suggest based on laboratory results that micrometeoroid-

bombardment-induced spectral reddening might be connected with a structural or morphological 

materials process, such as mineral amorphization.   

While the typical micrometeorite environment in the plane of the Solar System is fairly 

well defined, commonly cited in dust impact research with values such as an impact rate for 1-

µm interplanetary dust of approximately 10-4 m-2 s-1 and an impact velocity of roughly 20 km/s 

(e.g., Kissel & Kruger, 1987), the micrometeorite field at higher inclinations is more difficult to 

define. This current reality owes largely to the fact that so few spacecraft with adequate 

instrumentation have traveled to or through these higher-inclination environments. For these 

values, we must rely on information from the dust impactor instrumentation carried aboard the 

Ulysses spacecraft (Grun et al., 1992b), which revealed that generally, micrometeoroid mass and 

impact frequency decrease with increasing heliospheric latitude (Kruger et al., 2010). Section 2.2 

provides additional discussion. 

7.3.  LUNAR SPACE WEATHERING  

With a veritable sea of compositional and orbital variability in the population of airless 

bodies exposed to space weathering in the Solar System, one of the primary challenges is 

determining what space weathering information is “signal,” and what is “noise.” If one considers 

each weathered body in the Solar System as having the ability to reveal a portion of the 

weathering “puzzle,” then a top-level overview of the current understanding of space weathering 

actions on bodies in the Solar System is warranted. In this light, it is sensible to begin with the 

most accessible example of space weathering, which is found on Earth’s Moon. 
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Compared to the spectrum of freshly-powdered lunar rock, lunar soil that has undergone 

space weathering expresses reduced reflectance (i.e., lowered albedo), an increase in spectral 

slope (or spectral “reddening”), and muted mineralogical absorption bands (Blewett et al., 2016).  

Freshly exposed lunar material has been shown to gradually mature on the lunar surface until it 

reaches a steady-state of interrelating processes, referred to as the “equilibrium color.”  These 

optical changes have been related to the formation of impact glasses (Hemingway et al, 2015) 

and the accumulation of nanophase iron on and within regolith grains. This nanophase iron can 

be produced by the reduction of iron in silicates as well as by vapor deposition, potentially 

distinct processes caused either by micrometeoroid bombardment or solar-wind ion sputtering, or 

the production could result from a combination of solar wind hydrogen implantation 

“preparation” of a surface prior to a micrometeorite impact (Blewett et al., 2016).   

However, and perhaps of critical importance to a more refined understanding of space 

weathering at large, are two recent lunar findings. The first discovery is that the equilibrium 

color of mature lunar soil, as well as 950 nm/750 nm band ratio, has been shown to vary 

predictably with lunar latitude; higher albedo trends toward the poles, and darker albedo trends 

toward the lunar equator. This links weathering effects to the flux of weathering contributors, 

those being either ion or micrometeoroid (Hemingway et al., 2015). The second discovery is that 

the magnetization of lunar crust has been strongly correlated with surficial albedo anomalies 

such as Reiner Gamma, located at the western side of the Oceanus Procellarum, which serves as 

a now-classic example of what is known as a “lunar swirl” (El-Baz, 1972). A computational 

validation of the magnetic nature of the swirls was performed most recently by Poppe et al. 

(2016), confirming that the swirls are magnetic in nature. Figure 9 presents an image of the 
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Reiner Gamma feature, which highlights the albedo features that correspond to the presence of 

remnant, local geomagnetic field lines. 

 

Figure 9.  Image of the Renier Gamma lunar swirl   

The Reiner Gamma lunar swirl as imaged by NASA's Lunar Reconnaissance Orbiter. Visible light and dark bands 

indicate the presence of remnant crustal magnetic fields, where light areas indicate less-weathered surfaces, and 

darker surfaces indicate more-weathered surfaces. (Image credit: NASA LRO WAC science team)  
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In fact, the implications of magnetically-correlated lunar swirls becomes a critical 

“Rosetta stone” for untangling the potential roles of solar ion bombardment versus 

micrometeoroid bombardment in lunar-style space weathering. To the point, Hemingway et al. 

(2015) consider that micrometeroid flux, like solar wind, varies with latitude due to decreasing 

angle of incidence. However, micrometeoroid flux would not be expected to vary significantly 

across the relatively discrete location of a lunar swirl. In contrast, solar wind flux would be 

reduced both with latitude as well as with lunar swirls, where strong geomagnetic fields act to 

shield the lunar surface from charged-particle bombardment. Therefore, after finding statistical 

equivalence in the observed lunar latitudinal color variation and the color variations expressed in 

lunar swirls, the researchers were able to conclude that solar wind flux, and not micrometeoroid 

flux, must be a dominant contributor to at least the albedo-darkening aspect of the space 

weathering process in the lunar case, and micrometeoroid flux was thereby eliminated as the 

driving lunar space weathering mechanism.   

Further, Hemingway et al. (2015) evolve their suggested model to match observations by 

proposing that a solar-wind-flux-dependent form of weathering is rapid, reaching equilibrium on 

timescales of 105 to 106 years, with an albedo maturation effectiveness approximately 3.6 times 

that of micrometeorite impacts but with only a small effectiveness in altering mineralogical 

absorption features. Micrometeroite impacts, on the other hand, are suggested to possess greater 

effectiveness in altering absorption features and are implied to operate on much longer 

timescales, working to bring terrain of varying states of maturation to a broader temporo-spatio 

color equilibrium driven by the micrometeorite flux and physical regolith mixing, sorting, and 

fining processes.   
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As it has been previously established, because ion bombardment will act to significantly 

weaken the structural properties of a material (Brunetto & Strazzulla, 2005; Djurabekova et al., 

2012; Zinkle, 2012), it is tempting to integrate the two processes by proposing that ion 

bombardment functions as an essential precursor for classical, lunar-style space weathering, 

which is herein proposed as a hybrid style of weathering that includes both ion bombardment and 

micrometeorite impacts (Poppe et al., 2016). By extension, under a condition of reduced ion flux, 

a slower rate of micrometeorite-only weathering is implied, which is more efficient at altering 

mineral absorption features but is less effective at maturing surficial albedo. 

7.4  SPACE WEATHERING ON MERCURY 

Mercury also appears to undergo lunar-style space weathering, where fresher material 

correlates to higher reflectance (higher albedo) and is less red than mature Mercurian soils 

(Blewett et al., 2016). Because Mercury is known to possess a global magnetic field, it can be 

argued that if ion bombardment were a dominant contributor to space weathering processes (as 

has been recently suggested in the lunar case), one would also expect the degree of magnetic 

protection to vary with latitude toward the magnetic poles and weathering rates to correlate with 

it (Sarantos et al., 2007). Because no such albedo-latitude relationship has yet been identified, 

untangling the driving mechanisms behind lunar-style weathering has been frustrated in the first 

order by the Mercury example. 

However, by assessing relevant differences between Mercury and the Moon, potential 

explanations for the discrepancies in style between lunar and Mercurian space weathering can be 

unearthed. The first of these pertinent differences include the fact that the dust flux on the 

Mercury surface is approximately ten times higher than the rate of infalling dust found at the 

lunar surface. Secondly, due to both orbital parameters of orbiting dust and the larger mass of the 
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planet itself, micrometeoroid impact velocity is nearly twice that experienced on the lunar 

surface (Sasaki & Kurahashi, 2004). Together, this results in approximately 14 times more 

impact melt and 20 times the production of impact vapor on the Mercurian surface than on the 

lunar surface (Blewett et al., 2010).   

Consequently, in the Mercury case, while weathering is lunar-styled in terms of 

expression, it is entirely possible that the rate of space weathering by micrometeorite 

bombardment overwhelms the effects of ion bombardment, tipping the scales in favor of 

micrometeorite bombardment as the dominant weathering process on Mercury. Given the 

findings of Hemingway et al. (2015), this would suggest the existence of a boundary condition as 

one moves toward the inner Solar System where the dominance of solar wind as a primary 

weathering mechanism gives way to that of micrometeorite bombardment due to overall greater 

impact energies. Secondarily, this suggests that an overall mass limit exists beyond which the 

energy of micrometeorite bombardment can overwhelm other mechanisms (see the discussion of 

trending in albedo and object size in the following section). 

7.5  DIVERSE SPACE WEATHERING ON S-TYPE ASTEROIDS 

Perhaps the most intriguing portion of the space weathering phenomenon concerns the 

apparently contradictory nature of weathering observed on S-type asteroids (Gaffey, 2010).  

While one might expect lunar-style space weathering to occur on Near-Earth Asteroids (NEAs) 

as well as Main Belt objects due to their similar compositions and exposure rates, the reality is 

much less straightforward and implies at least three separate styles of weathering (albedo-

darkening without spectral modification, spectral modification without albedo-darkening, and 

those that express both albedo-darkening and spectral modification, i.e., lunar-style space 
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weathering). Figure 10 presents a schematic diagram of these styles, which is adapted from 

Gaffey (2010). 

 

Figure 10.  Schematic diagram of space weathering spectral-albedo correlations   

Combined schematic representation of space weathering spectral–albedo correlations for the key examples of the 

Moon (Luna) and S-type asteroids 243 Ida and 433 Eros. Axis arrows indicate the direction of increasing value, and 

plotted arrows indicate the apparent effect of increased weathering on each body (Adapted from Gaffey, 2010).  

Indeed, complicating factors include the reality Thomas et al. (2011) and Trilling et al. 

(2010) report a persistent positive trend in the overall albedo of S-complex (and Q-complex) 

objects with decreasing object diameter. However, due to the relative novelty of orbiting or fly-

by opportunities to obtain detailed measurements of S-type asteroid surfaces, there are only four 

key examples of well-studied S-complex (or related) asteroids in terms of their varied forms of 

space weathering. These are briefly reviewed in the subsections to follow. 

7.5.1  –  243 IDA  

A Main Belt object nearly 31 km in diameter, 243 Ida expresses a departure from lunar-

style space weathering, where spectral reddening and absorption-weakening were observed, but 

its albedo, at a value of 0.262, has remained relatively unaltered (Gaffey, 2010; Blewett et al., 
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2016). The work of Hemingway et al. (2015) suggests that strong absorption modification 

features without strong albedo effects would implicate micrometeorite impacts as a driving 

weathering mechanism. With an orbital inclination of only 1.1 degrees, 243 Ida would not be 

expected to experience any enhanced fast solar wind exposure when compared to the nominal 

radiation exposure in the Solar System invariant plane. 

 

Figure 11.  Asteroid 243 Ida   

Asteroid 243 Ida and moon Dactyl as imaged by the Galileo spacecraft in 1994. (Image credit: NASA/JPL)  

7.5.2  –  433 EROS  

A ~33 km-long Near Earth Asteroid (NEA), 433 Eros clearly expresses a lunar-style 

albedo relationship, where more mature soils are darker and an overall albedo of 0.25. However, 

these reflectance characteristics do not correlate with the expected spectral reddening or 

absorption band weakening (Gaffey, 2010; Blewett et al., 2016). The work of Hemingway et al. 

(2015) suggests that strong albedo effects without modified color or absorption features 

implicate solar wind as a driving weathering mechanism. With an orbital inclination of 10.8 
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degrees, 433 Eros would be expected to experience enhanced fast solar wind exposure, located 

between 15 and 18 degrees heliographic latitude, when compared to the nominal radiation 

exposure in the Solar System invariant plane. 

 

Figure 12.  Asteroid 433 Eros   

Asteroid 433 Eros as imaged by the NEAR Shoemaker spacecraft in 2000. (Image credit: NASA/JPL)  

7.5.3  –  951 GASPRA  

A ~12 km diameter S-type asteroid located in the Main Belt, 951 Gaspra is notable in that 

it obeys lunar-style space weathering. Specifically, surface darkening (overall albedo of 0.246) 

correlates with spectral reddening and weaker absorption bands (Gaffey, 2010; Blewett et al., 

2016). The work of Hemingway et al. (2015) suggests that true lunar-style weathering represents 

an equilibrium state between shorter and longer-period weathering rates related to ion and 

micrometeoroid flux rates. With an orbital inclination of 4.1 degrees, 951 Gaspra would not be 

expected to experience any enhanced fast solar wind exposure when compared to the nominal 

radiation exposure in the Solar System invariant plane. However, it may be noteworthy that its 
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orbit carries it closer at maximum (11.35 degrees) to the 15-degree fast-wind transition zone than 

objects more squarely within the Solar System invariant plane. 

 

Figure 13.  Asteroid 951 Gaspra   

Asteroid 951 Gaspra as imaged by the Galileo spacecraft in 1991. (Image credit: NASA/JPL)  

7.5.4  –  25143 ITOKAWA  

Similar in space weathering expression to 243 Ida, 25143 Itokawa is a NEA that 

evidences spectral reddening associated with band weakening but without a strong albedo 

relationship (Blewett et al., 2016). 25143 Itokawa possesses a wide range of surface reflectivity, 

with albedo values ranging from 0.23-0.53. The work of Hemingway et al. (2015) suggests that 

strong absorption modification features without strong albedo effects would implicate 

micrometeorite impacts as a driving weathering mechanism. This is bolstered by the return of 

sample grains from Itokawa that showed the presence of variable mictization (compared to the 

thicker amorphous silicate layers observed on lunar grains), evidence of vapor deposition, along 



 

 42 

with smaller nanophase iron particles (<10 um), which appear to efficiently redden spectra 

without darkening it (Noguchi et al., 2011). Like 243 Ida, with an orbital inclination of only 1.65 

degrees, 25143 Itokawa would not be expected to experience any enhanced fast solar wind 

exposure when compared to the nominal radiation exposure in the Solar System invariant plane.  

 

Figure 14.  Asteroid 25143 Itokawa   

Asteroid 25143 Itokawa as imaged by the Hayabusa spacecraft in 2005. (Image credit: JAXA/ISAS)  

7.6  ANTI-WEATHERING “FRESHENING” PROCESSES 

Lastly, recent propositions have speculated that space weathering mechanisms may be 

further obfuscated by working against so-called “freshening” mechanisms, such as the fly-by and 

gravity perturbation mechanism proposed by Binzel et al. (2010) and further evolved by DeMeo 

et al. (2014). This concept describes a means for gravitational interactions with larger bodies to 

perturb and disrupt the orientation of weathered surface grains, effectively resetting the apparent 

weathering condition of the surface (akin to kicking over a rock covered with patina in the 
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Mojave Desert). While the existence of such a mechanism is currently debated, this process is 

believed to operate more strongly on airless bodies that travel furthest inward into the Solar 

System, thereby maximizing the potential opportunities for gravitational interactions with the 

inner planets. By extension, this may prove relevant as an additional source of space weathering 

heterogeneity among airless bodies, and this “planetary-encounter theory” will be revisited in the 

analysis section to follow. 

7.7  “HEMINGWAY MATRIX” OF S-TYPE WEATHERING 

 Using the Renier Gamma magnetic deflection-albedo relationship revelation as a guide, 

the Hemingway et al. (2015) research suggests a tantalizing link between space weathering 

driven by solar ion bombardment to instances of more pronounced albedo-darkening and 

reddening effects without associated spectral modifications.7 By extension, the work would 

therefore also link more pronounced modification of spectral absorption features without a 

correlating drop in reflectance to space weathering dominated instead by micrometeorite 

impacts. Lunar-style space weathering, then, would represent a sort of equilibrium state where 

both mechanisms act as contributors to the overall maturation of target surfaces.  

With this in mind, Table 3 presents what is almost certainly an over-simplified matrix, 

referred to here as a “Hemingway Matrix,” of the hypothetical dominant weathering 

mechanism/style and physical/orbital characteristics for each of the four S-complex asteroids 

referenced in the previous sections, which can provide useful context for the analysis to follow.  

 

 

                                                             
7 It is noteworthy that this suggestion agrees with the laboratory work of Brunetto & Strazzulla (2005). 
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Table 3 – Space-weathering style and asteroid orbital attribute matrix 

  Asteroid Orbit Dominant Weathering Diameter Inclination Max Heliographic  
  Name Type Style* (km) (degrees) Latitude** (degrees) 

 
243 Ida Main Belt Micrometeoroid ~31 1.1 18.35 

 
433 Eros NEA Ion Bombardment ~33 10.8 28.05 

 
951 Gaspra Main Belt Lunar ~12 4.1 21.35 

 
25143 Itokawa NEA Micrometeoroid ~0.6 1.6 18.85 

* Inspired by the work of Hemingway et al. (2015), which signals albedo-darkening space weathering as being ion-
bombardment dominant, spectral-modification space weathering as being micrometeorite-dominant, and lunar-style 
weathering as a combination of the two. 

** Max Heliographic Latitude differs from a simple inclination-to-latitude conversion and conveys the maximum 
potential latitude at which a body could spend a significant fraction of its orbit when including the potentially-
coincident effect of solar axial tilt (approx. 7.25 degrees) as well as the tilt of the solar dipole with respect to the 
solar axis (approx. 10 degrees). 

As is evident in Table 3, neither the size nor orbit type of a given asteroid correlate with 

the object’s corresponding hypothesized space weathering style in a straightforward way.  

However, a general correlation to weathering style does exist with respect to an asteroid’s 

maximum heliographic latitude. Following the scheme suggested by the Hemingway (2015) 

research, both styles of space weathering that express albedo-darkening, being lunar-style space 

weathering and ion-bombardment-dominant space weathering, rely on a significant contribution 

of ion bombardment. Given that solar wind (ion) energy increases with heliographic latitude (see 

Section 2.3), it would follow that these styles would correlate with those bodies that have the 

steepest maximum heliographic latitude, and ideally, would extend past the transition zone at 

±15-25 degrees latitude into the consistently-fast solar wind. Table 3 demonstrates this reality: 

951 Gaspra and 433 Eros, the objects with the highest orbital inclinations, are the two airless 

bodies that experience solar-wind dominated or lunar-style space weathering; the maximum 

heliographic latitude reached by each extends well beyond the transition latitude of ±15 degrees 

to either near or beyond the clear fast-wind boundary at ±25 degrees, with the steepest 

inclination of the two experiencing ion-bombardment-dominated weathering. In contrast, both 
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243 Ida and 25143 Itokawa, with inclinations <2 degrees (within the ecliptic), do not approach or 

clearly breach the fast-wind latitudes beyond ±25 degrees, and they each experience 

micrometeorite-dominated space weathering. It is also noteworthy that 433 Eros and 25143 

Itokawa, both NEAs, might otherwise be expected to conceptually experience the same style of 

space weathering. However, the parameter of orbital inclination and resulting maximum 

heliographic latitude serve to clearly divide these two similar bodies into two very different ion 

bombardment regimes, conceptually supporting the present investigation.  
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8.0  RESULTS AND DISCUSSION 

The performance of a series of statistical analyses of the dataset as described in Sections 

5.0 and 6.0, as well as an overview of the consequent findings, is described in the subsections to 

follow. 

8.1  TOTAL S-TYPE STUDY POPULATION  

A plot of the relationship of albedo (Spitzer-based) to orbital inclination in the target 

population (SMASS-based) is presented in Figure 15, below. Note that this includes the entire 

study population of 71 bodies, which includes all S-type and subtype asteroids in the SMASS-II  

 

Figure 15.  Albedo vs orbital inclination for the total S-type study population   

Plot of all available Spitzer telescope-derived albedos for the gross population of SMASS-II S-type and  

S-subtype asteroids. Vertical bars represent albedo error (see Table 1). 
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survey for which there was available Spitzer telescope albedo information, contributing what is 

likely a non-trivial degree of compositional variation to the overall study population. 

Without accounting for potential associated complicating factors, such as compositional 

details of asteroid subtype or orbital parameters other than inclination, a simple linear regression 

demonstrates a small but persistent negative correlation between albedo and inclination. With an 

r-value for the population of -0.1495, the absolute value of which exceeds the critical value of 

0.1380 at the 75% confidence level, the null hypothesis that there is no correlation between 

albedo and inclination can be rejected, and the negative relationship between orbital inclination 

and albedo is thereby shown to be statistically significant. Indeed, with a regression slope of -

0.17% albedo per degree increase in orbital inclination, this trend agrees with what would be 

expected if increased exposure to fast solar wind did serve as a driver for the albedo-darkening 

mechanism of space weathering. However, in order to determine if the presence of S-complex 

subtypes further reinforce or oppose an apparent albedo-inclination relationship, it is necessary 

to evaluate each subtype independently. 

8.2  CORE S-TYPE POPULATION  

 An assessment performed in parallel to the analysis discussed in Section 8.1 but without 

any of the S-complex subtypes included is reported in this section. Perhaps most noteworthy is 

that a linear regression of the S-type “core” asteroids within the study population reveals 

precisely the same trend as that observed in the total population reported in the previous section 

(-0.17% albedo per degree increase in inclination), though in this instance with a slightly 

elevated intercept. This may be interpreted as a slightly higher average unweathered albedo for 

the S-types than the total S-complex average, which will also be considered in the subsections to 

follow. This regression analysis for the restricted S-types is presented in Figure 16. 
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Figure 16.  Albedo vs orbital inclination for the restricted S-type study population   

Plot of Spitzer-telescope-derived albedos for the restricted population of SMASS-II S-type asteroids, from which all 

transitional subtypes have been removed. Vertical bars represent albedo error (see Table 1). 

However, given a calculated correlation coefficient r-value for this analysis of -0.1466 

and a dramatically-reduced sample population of 34 bodies, the absolute value of r determined in 

this instance does not exceed the critical value of 0.2028 at the 75% confidence interval. 

Consequently, this relationship cannot be shown to be statistically significant. In other words, it 

cannot be ruled out that the observed variability in the data is not simply due to intrinsic 

statistical sampling error under a condition where the null hypothesis is true, and there is not 

correlation between albedo and inclination for this population of asteroids. It is worth noting that 

the broad mineralogy of the primary S-type asteroids may be responsibility for a wide variability 

in weathering expression, which in combination with a small sample size could act to reduce the 

statistical significance of the same trending seen in Section 8.1. 
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8.3  Sk-SUBTYPE POPULATION  

 An assessment performed in parallel to the analysis discussed in Section 8.1 on only the 

Sk-subtype asteroids is reported in this section. Despite an extremely small sampling, this group 

expresses the steepest potential correlation between albedo and inclination and also the most 

tightly clustered. This Sk-subtype regression analysis is presented in Figure 17. 

 

Figure 17.  Albedo vs orbital inclination for the restricted Sk-subtype study population   

Plot of Spitzer-telescope-derived albedos for the restricted population of SMASS-II Sk-subtype asteroids. Vertical 

bars represent albedo error (see Table 1). 

The linear regression demonstrates a persistent negative correlation between albedo and 

inclination. With a calculated correlation coefficient r-value for the population of -0.7929, the 

absolute value of which exceeds the critical value of 0.6347 at the 75% confidence level, the null 

hypothesis that there is no correlation between albedo and inclination can be rejected in this case 

despite such a small sample group, and the negative relationship between orbital inclination and 
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albedo is thereby shown to be statistically significant. Indeed, with a regression slope of -0.34% 

albedo per degree increase in orbital inclination, exactly twice that of the total population as well 

as that of the generic S-types, this trend agrees with what would be expected if increased 

exposure to fast solar wind did serve as a driver for the albedo-darkening mechanism of space 

weathering. Given that the K-type asteroids, to which the Sk-subtype is understood to be 

transitional, are known to possess the lowest-albedo of any of the proximal classes to the S-type, 

these results may be in some senses surprising, as it could be reasonably assumed that albedo 

effects might be most difficult to distinguish in this case, making the statistical significance of an 

inclination-albedo correlation all the more noteworthy.  

8.4  Sl-SUBTYPE POPULATION  

 An assessment performed in parallel to the analysis discussed in Section 8.1 on only the 

Sl-subtype asteroids is reported in this section. Representing the smallest sampling of the study 

(four samples), this subtype was seen to express a slightly-steeper inclination-albedo relationship 

than the average (-0.23% albedo per degree increase in inclination). This regression analysis for 

the Sl-subtype is presented in Figure 18. 
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Figure 18.  Albedo vs orbital inclination for the restricted Sl-subtype study population   

Plot of Spitzer-telescope-derived albedos for the restricted population of SMASS-II Sl-subtype asteroids. Vertical 

bars represent albedo error (see Table 1). 

However, given a calculated correlation coefficient r-value for this analysis of -0.1498 

and a sample population of only 4 bodies, it is perhaps unsurprising that the absolute value of r 

determined in this instance does not exceed or even approach the critical value of 0.7500 at the 

75% confidence interval, and so this relationship cannot be shown to be statistically significant. 

8.5  Sq-SUBTYPE POPULATION  

 An assessment performed in parallel to the analysis discussed in Section 8.1 on only the 

Sq-subtype asteroids is reported in this section. With the second-largest sampling in the study but 

one of the widest spread of constituent albedos, this sample group ultimately expressed a 

shallower potential correlation between albedo and inclination than the core S-types (-0.11% 
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albedo per degree increase in inclination). This Sq-subtype regression analysis is presented in 

Figure 19. 

 

Figure 19.  Albedo vs orbital inclination for the restricted Sq-subtype study population   

Plot of Spitzer-telescope-derived albedos for the restricted population of SMASS-II Sq-subtype asteroids. Vertical 

bars represent albedo error (see Table 1). 

With a calculated correlation coefficient r-value of -0.0875, the absolute value of r 

determined in this instance does not exceed the critical value of 0.2500 at the 75% confidence 

interval, and so this relationship cannot be shown to be statistically significant. However, if there 

is any truth to the proposition that some S-type asteroids represent weathered Q-type bodies, then 

it is worth considering that a wide distribution of potential albedos in the transitional Sq-subtype 

would be expected, as they may represent fragments of Q-type bodies under varies stages of 

space weathering maturation. 
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8.6  Sr-SUBTYPE POPULATION  

 An assessment performed in parallel to the analysis discussed in Section 8.1 on only the 

Sr-subtype asteroids is reported in this section. With an extremely small sampling of only five 

bodies, this group expresses the shallowest potential correlation between albedo and inclination 

of all of the assessed subtypes in the study population. This Sr-subtype regression analysis is 

presented in Figure 20. 

 

Figure 20.  Albedo vs orbital inclination for the restricted Sr-subtype study population   

Plot of Spitzer-telescope-derived albedos for the restricted population of SMASS-II Sr-subtype asteroids. Vertical 

bars represent albedo error (see Table 1). 

With a calculated correlation coefficient r-value for this analysis of -0.0595 and a limited 

sample population of 5 bodies, the absolute value of r determined in this instance does not 
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exceed the critical value of 0.6347 at the 75% confidence interval. Consequently, this 

relationship cannot be shown to be statistically significant.  

8.7  ANALYSIS OF REGRESSION COVARIANCE BY SUBTYPE 

 While not each of the S-subtypes indicated a significant inclination-albedo trend at the 

given population size, an analysis of covariance was performed between the regression lines for 

each population group in the study (excluding the total population regression, which would 

duplicate all values and artificially inflate the population agreement). These are presented in 

Figure 21. 

 

Figure 21.  Combined plot of albedo vs orbital inclination for all S-complex subtypes   

Plot of albedo-inclination regression lines for the population of S-type and S-subtype asteroids under study. Vertical 

bars represent albedo error (see Table 1). 

 Recall that the null hypothesis for an analysis of covariance between regression lines is 
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that the level of significance (a) for the present study was selected at 0.25. Being that statistical 

significance can be determined by the production of a P value less than the value of a (Natrella, 

2005), the analysis of covariance between the regression lines failed to disprove the null 

hypothesis to an extremely high confidence level, expressing a P value of 0.99552 (where a 

value < 0.25 would have been required to disprove the null hypothesis to the 75% confidence 

level). In other words, the slopes of the regression lines were found to agree to an extremely high 

degree of significance, a finding which suggests one of two options: 1) that those S-subtype 

trends between albedo and inclination that were not found to be statistically significant (see 

Sections 8.2 and 8.4-8.6) were also real but failed the significance test due to a lack of statistical 

robustness resulting from low sample size, or 2) that an as-yet-identified bias exists in the Spitzer 

observational/data collection process or processing methodology, which falsely lowers the 

albedos of objects with increasing inclination. Additional investigation is necessary in order to 

determine which of these options is more likely. 

8.8  CONSIDERING ORBITAL PARAMETERS 

 When considering the global suggestion of a relationship between orbital inclination and 

albedo-darkening due to ion-bombardment-based weathering effects in the context of the 

analysis performed in Section 8.6, it is fruitful to innovate alternative means to disprove the 

hypothesis. With this in mind, an effort to conceptualize inclination-albedo effects against the 

potential effects of “freshening” mechanisms was undertaken (see Section 7.6). From this 

perspective, presuming for the moment that the statistically-significant (to the 75% confidence 

level) findings of the previous section hold true, one would expect a secondary pattern to be 

preserved within the dataset when combined with the driving parameter behind surface 

freshening, which is the probability of planetary interactions. As the likelihood of the 
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interactions goes up with orbit crossings, the NEA orbits types that would be expected to subject 

an airless body to a probability of surface freshening encounters, in order of least to most, are 

Amor (farthest from the Sun and not Earth-crossing), Apollo (farther from the Sun but Earth-

crossing), and Aten (closer to the sun and Earth-crossing). Consequently, if the population of 

NEAs under study were reassessed in terms of orbit type rather than S-subtype, one would still 

expect all populations to express a negative albedo-inclination slope, but the Amor population 

would be predicted to possess the shallowest slope, the Apollo subset would be predicted to 

possess the intermediate slope, and the Aten subgroup would be predicted to have the steepest 

inclination-albedo slope. This regression analysis was performed and is presented as Figure 22. 

 

Figure 22.  Albedo-inclination regression lines for all S-complex asteroids by orbit type  

Plot of albedo-inclination regression lines for the population of S-type and S-subtype asteroids under study, 

organized by orbit type (e.g., Amor, Apollo, and Aten). Vertical bars represent albedo error (see Table 1). 

For the Amor, Apollo, and Aten asteroids in this analysis, it was determined that the 
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-0.1690, respectively, did not exceed the critical values of 0.2094, 0.2207, and 0.4284 at the 75% 

confidence interval. As a result, these albedo-inclination relationships cannot be shown to be 

statistically significant. However, despite failing the significance test, it is worth noting that 

across several asteroid subtypes, the slopes of each of the regression lines by orbit type match the 

predictions for shallowest-to-steepest for Amor (-0.14% albedo per degree inclination), Apollo  

(-0.21% albedo per degree inclination), and Aten (-0.32% albedo per degree inclination), 

respectively. 
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9.0  CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

9.1  CONCLUSIONS 

 Primarily, a statistically-significant relationship was observed between asteroid orbital 

inclination and albedo for the total population group under study, as well as for one of the 

spectral classification subgroups. Secondarily, while the remaining subgroups did not show a 

statistically-significant inclination-albedo relationship, possibly owing to extremely small sample 

sizes, a significant covariance correlation was observed between the inclination-albedo 

regression lines generated for each of the subgroups.  

Together, these findings validate that the direction of potential correlation between inclination 

and albedo for each of the subgroups is the same, and further, that the slopes of each of the 

regression lines agree in a significant way, i.e., they are significantly parallel. 

9.2  LIMITATIONS 

For the subgroups under study, these findings may at worst indicate unacknowledged bias in the 

observational methodology relative inclination and albedo. At best, they may indicate that the 

observed effect is real for each of the S-subtypes but that the sample size is currently insufficient 

to demonstrate such an effect in a statistically-significant way. It is also worth mentioning that 

the work of Trilling et al. (2010) shows that observational surveys may necessarily bias datasets 

against identifying smaller, lower-albedo objects; this may not ultimately alter the slope of any 

apparent inclination-albedo relationship, but it would act to shift the regression intercept for a 

dataset toward higher albedos altogether, increasing the noise-to-signal ratio. While no 

statistically-significant relationship was demonstrated between albedo-inclination and orbit type 
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in the majority of the subgroups, it is worth pointing out that the overall observed orbit-based 

trending agreed with what would be expected if “freshening” processes acted on the NEAs with 

the greatest probability of gravitational interactions, which appears at least on an anecdotal level 

to reinforce the possibility of an inclination-albedo correlation. 

9.3  DISCUSSION AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 Insight gained by this study includes a possible synthesis of weathering and freshening 

mechanisms that operate in opposition or in concert with one-another to produce observed 

weathering patterns. For example, in addition to the potential inclination/ion-

bombardment/albedo relationship suggested by some of the study findings, the literature review 

of space weathering style observed on Mercury suggests a limit with respect to semi-major axis 

beyond which micrometeorite effects overwhelm ion bombardment effects. This provides two 

degrees of freedom. Likewise, airless body orbits that venture farther into the inner Solar System 

and thereby cross a greater number of planetary orbits could be expected to increase the 

probability of planetary interactions; therefore, they would be expected to produce increased 

surficial freshening rates acting in opposition to weathering mechanisms. Additionally, it is 

manifest that an overall increase in airless body mass will enhance micrometeoroid effects due to 

gravitational acceleration while not appreciably affecting ion bombardment energies, which 

could provide another rationale for the size-albedo trending explored by Thomas et al. (2014) 

beyond their general assertion that larger bodies tend to be older and therefore more weathered. 

Figure 23 presents a schematic attempt to integrate each of these processes into an overall 

weathering scheme. 
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Figure 23.  Revised space weathering spectral-orbital-albedo correlation schematic  

Combined schematic representation of proposed spectral–albedo and orbital-albedo optical surface correlations, 

illustrating the hypothetical parameter-space locations of key airless bodies, including the Moon (Luna) and S-type 

asteroids 243 Ida and 433 Eros. Axis arrows indicate the direction of increasing value, and plotted arrows indicate 

the apparent direction of effect of each weathering mechanism (Patterned after Gaffey, 2010). 

 

Figure 24, below, attempts an integrated, semi-geographical diagram of these weathering trends 

as they might operate across the Solar System. 
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Figure 24.  Diagram of proposed spectral-orbital-albedo optical surface correlations  

A diagrammatic representation combining the proposed spectral–albedo and orbital-albedo optical surface 

correlations considered in this study. Arrows indicate the direction of increasing value. 

Given the promising correlations observed in portions of the present analysis using an 

admittedly-restricted dataset, directions for further research include: 1) the collection of new, 

higher-resolution spectral composition data for additional NEAs in order to increase the study 

population size, 2) approach the possibility of utilizing alternative S-type datasets to increase the 

study size, and/or 3) perform a broader inclination-albedo analysis of not only S-type bodies, but 

other compositional asteroid types, as well.  Additionally, given the sustained possibility that 

high(er)-energy ion bombardment may “prepare” an airless body surface for spectral darkening 

and the weakening of absorption bands via micrometeorite impacts, the findings of Sasaki et al. 

(2002) bear particular relevance. Specifically, they found that physical, laser-pulse simulations of 

micrometeorite impacts on olivine/pyroxene/anorthite pellets acted to produce “significant” 

reddening and “widespread” accumulation of nanophase iron, while the same simulations on 
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pure olivine crystals produced no trace of these effects. Likewise, increased significance could 

be assigned to the suggestion of Brunetto et al. (2007) that the role of iron-containing amorphous 

or glassy silicates in the overall weathering tendency of target material is deserving of further 

experimental investigation, which it appears has not been performed to date. Consequently, it is 

the author’s opinion that it would be fruitful to replicate the Sasaki et al. experiment but add 

precursor ion beam irradiation to simulate fast-solar-wind production of amorphous grains via 

mictization prior to or coincident with micrometeoroid bombardment. Thereby, the potential for 

higher-energy ion bombardment to increase a material surface’s sensitivity to micrometeorite-

impact-driven space weathering effects may be directly explored.
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