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ABSTRACT 
The focus of this thesis is to study the pore structures along with mechanical properties of the shale 

rocks from the Bakken Formation. The pore structures that are obtained from the SEM image 

analysis method showed that total surface porosity of the studied samples is less than 12% and that 

organic porosity is not the main contributor to total porosity for the samples analyzed. Clay 

minerals and feldspar have a positive influence on porosity while quartz, pyrite, and TOC has a 

negative impact. The results from the multifractal theory and lacunarity methods based on the 

segmented SEM images indicated that pores distribution and size in Bakken shale are 

heterogeneous. 

Regarding gas adsorption analysis, the results showed that all range of pore sizes: micro (<2 nm), 

meso (2-50 nm) and macro-pores (>50 nm) exist in the Bakken shale samples. Meso-pores and 

macro-pores are the main contributors to the porosity for these samples. In comparison with the 

Middle Bakken, samples from the Upper and Lower Bakken exhibited more micro pore volumes. 

The deconvolution of the pore distribution function from the combination of N2 and CO2 

adsorption results proved that five typical pore size families exist in the Bakken shale samples: 

one micro-pore, one macro-pore and three meso-pore size clusters. In order to analyze the 

heterogeneity of the pore structures from gas adsorption, multifractal method was applied to 

analyze adsorption isotherms (CO2 and N2).  

The results explained that the generalized dimensions derived from CO2 and the N2 adsorption 

isotherms decrease as q increases, demonstrating a multifractal behavior. Samples from the Middle 

Bakken demonstrated the smallest average H value and largest average α10-- α10+ for micropores 
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while samples from the Upper Bakken depicted the highest average α10-- α10+ for the meso-

macropores. This indicated that the Middle Bakken and the Upper Bakken have the largest 

micropore and meso-macropore heterogeneity, respectively. The impact of rock composition on 

pore structures showed that organic matter could increase the micropore connectivity and reduce 

micropore heterogeneity.  

This study was followed by mechanical analysis of shale samples from the Bakken. Statistical grid 

nanoindentation method was applied to analyze mechanical properties of the Bakken. Then the 

Mori-Tanaka scheme was carried out to homogenize the elastic properties of the samples and 

upscale the nanoindentation data to the macroscale. The discrepancy between the macro-

mechanical modulus from the homogenization and unconfined compression test was less than 15% 

which was found acceptable. The creep analysis of the samples describes that minerals with 

various mechanical properties exhibit different creep behavior. Under the same constant load and 

time conditions, the creep displacement of hard minerals would be smaller than the soft ones. On 

the contrary, the changes in mechanical properties (storage modulus, loss modulus, complex 

modulus, and hardness) of hard minerals are larger than soft minerals. The results from curve 

fitting led us to conclude that the changes in creep displacement, storage modulus, complex 

modulus and hardness with respect to the creep time would follow a logarithmic function.
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CHAPTER 1 

INTRODUCTION 

1.1. Overview and Motivation 

This thesis is focusing on characterizing different properties of shale rocks and is mainly composed 

of several published journal papers. Four chapters are dedicated to the pore structures using SEM 

image analysis and gas adsorption. The porosity and pore heterogeneity of shale rocks are 

quantified via these methods. The last three chapters present the results from mechanical properties 

(Young’s modulus, Hardness and creep behavior) of the shale rocks using nanoindentation 

method. 

The Bakken Formation which is one the major unconventional reservoirs in the nation is an Early 

Mississippian late Devonian organic-rich shale, located in the Williston Basin covering areas in 

the states of Montana, North Dakota and southern Saskatchewan in Canada (Pitman, 2001). The 

importance of this study is that previous studies have shown that shale oil formations have different 

characteristics compared to shale gas reservoirs and less studied. In terms of the TOC, most of 

shale gas reservoirs have 5% (Yang et al., 2017), whereas the Bakken has TOC more than 10% 

(Liu et al., 2016), but also its relationship with nanopores that exist within the organic matter 

becomes very complex (Liu, et al., 2016). This lack of correlation can be interpreted due to an 

inaccurate estimation of the pores, particularly the nanopore within the organic matter. In addition, 

so far most of the research that has been done to study the nanopore structures addressed the shale 

gas reservoirs while very few research articles can be found on the shale oils.
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Pore structure and mechanical properties are two important parameters for the reservoir to be 

quantified. Pore structures can affect the reservoir quality such as the storage capacity and the mass 

transport potential of hydrocarbon (Anovitz and Cole, 2015) while mechanical properties can 

influence the wellbore stability and the design of the hydraulic fracturing (Kissinger et al., 2013) 

which is now one of the most widely used tools in the Bakken and other unconventional shale 

plays. Quantitative understanding of these two parameters can assist the companies to make better 

developing schedules and field operations, thus increasing the ultimate production and the 

economic profits.   

1.2. Thesis Outline  

This thesis covers two main topics through 7 chapters: quantifying the pore information from SEM 

image analysis (Chapter 2 and Chapter 3), pore information from gas adsorption (Chapter 4 and 

Chapter 5), studying the mechanical properties using nanoindentation (Chapter 6-8). Chapter 2 to 

chapter 8 are based on the published journal papers. 

From Chapter 2, we start by analyzing the geochemical properties of the Bakken shales using 

Rock-Eval and vitrinite reflectance. This is followed by presenting field emission scanning 

electron microscope (FE-SEM) data to analyze the porosity. For this chapter, our attention was to 

understand the relationship between the geochemistry and pore structures of the Bakken shale. 

This was done to provide a better insight to the potential correlations between the rock 

compositions (minerals and organic matter) and porosity (Liu et al., 2018a).  

In addition to porosity, pore heterogeneity is another parameter that affects the transport ability of 

the oil and gas shale formations. The heterogeneity of the pore structures from the SEM images 
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are described in Chapter 3. We used multifractal theory and lacunarity method to analyze the same 

shale samples and compare the results (Liu and Ostadhassan 2017). 

Chapter 2 and Chapter 3 are based on the SEM image analysis mostly. However, due to the 

limitation of the SEM, pores within 9 nm are very hard to characterize. In order to get the pore 

information with pores less than 9 nm, gas adsorption is employed in Chapter 4 to quantify the 

pore structures. We calculated the pore volume, pore size distribution and pore size clusters of the 

Bakken shale using gas adsorption data. The comparison of pore structures of the Upper/Lower 

Bakken Formation and the Middle Bakken Formation based on gas adsorption data are also 

described in this chapter (Liu et al., 2017). 

Following chapter 4, we addressed pore heterogeneity from gas adsorption data in chapter 5. We 

analyzed micropore and meso-macro pore heterogeneity, respectively. We compared the 

micropore heterogeneity and meso-macro pore heterogeneity of the Upper/Lower Bakken and the 

Middle Bakken. In addition, the influence of the rock compositions (minerals and organic matter) 

on micropore heterogeneity and meso-macro pore heterogeneity is also discussed in this chapter 

(Liu et al., 2018b). 

Chapter 6 is focused on the mechanical properties of the Bakken shale samples in nanoscale using 

nanoindentation. In this chapter, we reported the typical nanoindentation curves and the 

mechanical information of the Bakken shale (Young’s modulus and hardness). Based on the 

energy method, the fracture toughness of the samples is analyzed and the correlations between 

fracture toughness and Young’s modulus is also described in this chapter (Liu et al., 2016). 

Considering chapter 6, we realized that nanoindentation can measure the mechanical properties in 

nanoscale. However, whether nanoindentation data can be used to estimate the mechanical 
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properties of shale in macroscale is still unknown. In chapter 7, we applied the grid indentation 

method and attempted to upscale nano-micro scale mechanical data to estimate the macroscale 

properties. The comparison of the homogenized value and the data from the uniaxial compression 

tests are discussed in the chapter (Liu et al., 2018c). 

Creep data which can represent the long-time behavior of the samples (shale cap rocks for 

example) can also be derived from nanoindentation testing. In chapter 8, we used nano-DMA to 

measure the changes in displacement with respect to mechanical properties by focusing on creep 

time during testing procedure (Liu et al., 2018d). 
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CHAPTER 2 

CHARACTERIZATION OF GEOCHEMICAL PROPERTIES AND 

MICROSTRUCTURES OF THE BAKKEN SHALE 
Abstract  

Research on unconventional shale reservoirs has increased dramatically due to the decline of 

production from conventional reserves. Geochemical properties and pore microstructures are 

known to be important factors that affect the storage capacity and nano-mechanical properties of 

self-sourced organic- rich shales. In this study, eleven shale samples were collected from the Upper 

and Lower Members of the Bakken Formation for the analysis of mineralogy, geochemical 

properties, and pore structure. Bulk pyrolysis analysis was conducted using the default method and 

two modified methods, namely the reservoir and the shale reservoir methods. Although all three 

methods showed the Bakken samples to be organic-rich and to have considerable remaining 

hydrocarbon generating potential, it was the shale reservoir method that gave the highest 

hydrocarbons yield because it captured most of the lighter thermo-vaporizable hydrocarbons. 

Thus, the shale method is considered to be more appropriate for the geochemical analysis of the 

Bakken samples. This method also showed that most of the remaining potential is due to the 

cracking of heavy hydrocarbons, NSO compounds (Resins + Asphaltenes) and kerogen. The 

organic matter in the samples is mixed II/III type (oil and gas-prone), is thermally mature, and 

plots at the peak of the oil window. The VRo-eq values, based on solid bitumen Ro measurements 

and conversion, ranged from 0.85% to 0.98 %. The pore structures obtained from the image 

analysis method showed that total surface porosity of the samples ranged from 3.89% to 11.56% 
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and that organic porosity is not the main contributor of total porosity for the samples analyzed. 

The pore structures of the samples are heterogeneous due to differences in lacunarity values. 

Results of the impact of mineralogical composition on pore structures demonstrate that clay 

minerals and feldspar have a positive influence on porosity while quartz, pyrite, and that TOC has 

a negative impact.      

2.1. Introduction  

Since commercial production from shale-gas reservoirs began, research on shales has increased 

significantly. There is still much research needed in shale oil reservoirs, specifically on the topic 

of characterizing the nature of pore structures and geochemical properties (Loucks, et al., 2009). 

Pore structure properties analysis can assist in accurately understanding the storage and migration 

properties of the gas and oil while geochemical analysis can help to assess the quantity, quality, 

and thermal maturity of the sedimentary organic matter from the perspective of hydrocarbon 

generation, retention, and expulsion (Carvajal-Ortiz and Gentzis, 2015). Many researchers have 

studied shale gas reservoirs, including the Barnett shale (USA) (Loucks, et al., 2009, 2012), 

Marcellus shale (USA) (Marcon, et al., 2017; Gu et al., 2015), Longxi shale (China) (Shao et al., 

2017; Jiao et al., 2014), a Toarcian shale (Germany) (Houben et al., 2016), Boom Clay(Belgium) 

(Hemes et al., 2015), and Posidonia Shale (Germany) (Klaver et al., 2016).  In recent years, 

mercury intrusion porosimetry (MIP) (Mastalerz et al, 2013), nuclear magnetic resonance (NMR) 

(Karimi et al., 2015), gas adsorption (Shao et al., 2014), small angle neutron scattering (Clarkson 

et al., 2013) and SEM image analysis (Loucks, et al., 2009; Klaver et al., 2016; Curtis et al., 2012; 

Deng, et al., 2016) have been applied to characterize the pore structures of shales. Field emission 

SEM, which has a much higher resolution than conventional SEM, shows great ability in 

characterizing the nanopores in shale formations. Combined with the Ar ion beam milling which 

reduces artifacts from mechanical polishing (Bowker, 2003; Nelson, 2009), Focused Ion Beam 
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Scanning Electron Microscopes(FIB-SEM) and Broad Ion Beam Scanning Electron Microscopes 

(BIB-SEM) have been widely used as an acknowledged tool for the quantitative characterization 

of the pore structures (Loucks et al., 2009; Klaver et al., 2012, 2016). For geochemical analysis, 

open system programmed pyrolysis (Rock-Eval pyrolysis) and organic petrography (visual 

kerogen analysis and vitrinite reflectance) are the usual methods (Carvajal-Ortiz and Gentzis, 

2015). These methods will be used here to analyze the pore structure and geochemical properties 

of the Bakken Formation, an organic-rich self-sourcing shale.  

The Bakken oil field, as a typical unconventional reservoir, is one of the largest shale oil fields in 

the world. The Bakken Formation is composed of three different members. Most researchers focus 

on analyzing the properties of the Middle Bakken member only, which is the main production zone 

[i.e. mechanical properties (Sayers and Dasgupta, 2014; Havens and Batzle, 2011; Zeng and Jiang, 

2009) and fracturing/ refracturing potential (Cheng and Wang, 2012; Ruhle, 2016; Wilson 2014)]. 

Studies on the Upper and Lower members, which are considered to be source rocks, is limited.  

The properties of the pore structures, the geochemical properties of these rocks and their 

correlations are still not fully understood. In this paper, we apply the Rock-Eval and organic 

petrology to analyze geochemical properties of the Upper/Lower Bakken shale samples while use 

SEM image analysis to characterize the pore structures. The objectives of this study are to: (1) 

derive the geochemical properties of the shales such as TOC, Ro; (2) characterize the pore 

structures of the Upper and Lower Bakken Shale Members, including porosity; (3) quantify the 

complexity and heterogeneity of the pores; and (4) determine if there is a relationship between 

porosity and geochemical properties. 

2.2. Geological Setting 

The Bakken Formation is a thin organic rich mudstone/sandstone unit, located in the Williston 

Basin (Fig. 2.1). The basin is intracratonic, elliptical, and underlies most of western North Dakota, 

http://www.sciencedirect.com/science/article/pii/S0166516212001747
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northeastern Montana and extends into Canada. It is separated into three distinct members, the 

Upper, Lower and Middle Bakken. The Bakken Formation only occurs in the subsurface and has 

no outcrop. The study area was located in North Dakota (Fig. 2.2), near the center of the Williston 

Basin. 

The upper and lower members of the Bakken Formation have a high organic matter content (an 

average of 8% and 10% TOC, respectively), with a maximum in the upper member being 20% and 

in the lower member 30% (Smith and Bustin, 1995; Sonnonberg et al., 2011; Jin et al., 2015). The 

two members serve as both the source and seal for the generated hydrocarbons, while the Middle 

Bakken, composed of mixed carbonates and fine-grained clastics, is classified as an 

unconventional reservoir rock (Fig. 2.3) (Pitman et al., 2001). The Bakken Formation is broken 

into nine different lithofacies, with the upper and lower members characterized as a single 

lithofacies, named Mb. Lithofacies Mb is composed primarily of black clay and silt, with 

amorphous organic material and is thinly laminated. Authigenic pyrite and calcite are abundant in 

lithofacies Mb. The Middle Bakken is divided into eight lithofacies, which are further subdivided 

into three sub-units; A, B and C. Sub-unit A is a basal mudstone, sub-unit B is a 

mudstone/sandstone unit, and sub-unit C is an upper mudstone similar to sub-unit A (Pitman et al., 

2001). 

Deposition of the Bakken Formation occurred during the Late Devonian and Early Mississippian 

time periods. The formation is part of the Upper Kaskaskia Sequence, which was a cycle of rapid 

transgressions with slow, intermittent progradation. The Lower and Upper Bakken Members were 

deposited during a rapid sea-level rise and deposition was restricted to deeper portions of the basin 

(Gerhard et al., 1991). The rapid transgression created a deep marine distal setting, with deposition 

occurring below the storm wave base. The authigenic pyrite nodules present, in both the upper and 
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lower member, are evidence that the bottom water was anoxic with minimal interactions between 

the sediments and storm waves, creating a uniform black shale. The middle member was deposited 

following a rapid sea-level drop, causing an erosional boundary between it and the lower member. 

The environment of deposition was coastal marine, which varied from a cycle of offshore to lower 

shore face and transgressed into the deep marine environment of the Upper Bakken Shale (Smith 

and Bustin, 1995). 

 

 

Fig. 2.1. Map of the Williston Basin and Bakken Formation extent in the United States. 
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Fig. 2.2. Study area in the Williston Basin, North Dakota. The two wells studied are identified as Well #1 and Well 

#2. 

 

Fig. 2.3. Stratigraphic column of the Bakken Formation (after Pitman et al., 2001). 
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2.3. Samples and Methods 

2.3.1. sample collection.  

In order to select suitable Bakken shale samples for the various analyses, the North Dakota Industry 

Commission (NDIC) database was first searched to identify wells that have an economic 

production history (over the past 5 years). Information collected by reviewing numerous 

geophysical logs (e.g., sonic, density, gamma-ray, etc.) was also used in selecting the appropriate 

wells and drilling locations. TOC content, and thermal maturity maps available within the database 

were also reviewed. The two wells chosen (Fig. 2.2) were also selected based on the fact that Upper 

and Lower Bakken intervals are similar.  For this study, the impact of maturity was not considered 

-- the samples analyzed have similar thermal maturity (i.e., in the oil generation window of the 

North Dakota portion of the basin) (Jin et al., 2015). Of the 11 samples analyzed from the two 

wells, six were from the Upper Bakken Shale and five were from the Lower Bakken Shale. Rock 

chips were taken from the Upper and Lower Bakken shale intervals and they were used to complete 

the analysis. The depth and description of the samples are shown in Table 2.1.   

Table 2.1. Sample depth and description 

  Sample  Formation/ Member  Depth (ft) Sample description  

Well #1 

#1 

Upper Bakken 

10433 Shale: Black to dark brownish gray, firm, hard in part  

#2 10435.7 Shale: Dark brownish gray, black, firm, hard in part  

#3 10436.4 Shale: Dark brownish gray, black, firm, hard in part  

#4 
Lower Bakken 

10541 Shale: Black, dark brownish gray, hard, platy  

#5 10555 Shale: Black, dark brownish gray, hard, platy  

Well #2 

#6 

Upper Bakken 

11158 Shale: Gray Brown, dark gray in part, firm to hard  

#7 11159 Shale: Gray Brown, dark gray in part, firm to hard  

#8 11162 Shale: Gray Brown, dark gray in part, firm to hard  

#9 

Lower Bakken 

11201 Shale: Gray Brown, dark gray in part, firm to hard  

#10 11203 Shale: Gray Brown, dark gray in part, firm to hard  

#11 11205 Shale: Gray Brown, dark gray in part, firm to hard  
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2.3.2. geochemical properties analysis.  

Bulk pyrolysis methods, such as Rock-Eval pyrolysis, have been used widely to characterize the 

organic matter type, maturity level, and source-rock potential of organic-rich rocks, and can also 

be used to quantify the total organic carbon (TOC) of the samples. In this study, approximately 

60-70 mg per sample were used, and the detailed procedures outlined in Behar et al. (2001) were 

followed. The instrument used was the Rock-Eval 6 analyzer, commercialized by Vinci 

Technologies in France. Three different Rock-Eval methods were utilized and compared in this 

study: default method, reservoir method, and shale reservoir method. The difference between these 

three methods is based on their different temperature programs. Fig. 2.4 illustrates the schematic 

of the Rock-Eval temperature program of three different methods. For the default method, the 

sample was placed in the pyrolysis chamber and is heated at 300°C isothermally for 3 minutes, 

and then the temperature was increased to 650°C at a rate of 25°C/min. For the reservoir method, 

the temperature was kept at 150°C for 10 minutes (for calculating the S1r), then the temperature 

was increased to 650°C at 25°C/minute (for calculating the S2a and S2b). For the shale reservoir 

method, the initial temperature was 100°C, then the temperature was increased to 200°C at 25°C 

/min and held constant for 3 minutes (for the Sh0 calculation), then increased to 350°C at 25°C 

/min and held there for 3 minutes (for the Sh1 calculation), and, finally, to 650°C at 25°C /min 

(Romero-Sarmiento et al., 2015).  
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Fig. 2.4. Schematic of the Rock-Eval temperature program of three different methods (Romero-Sarmiento et al., 

2015). 

For vitrinite reflectance (Ro) analysis, the whole-rock samples were crushed to 20 mesh (850 μm) 

particles, mixed with the epoxy resin and hardener (ratio of 2:1) and left to harden under vacuum 

conditions for 24 hours (Hackley et al., 2015). The samples were polished to ensure the surface is 

scratch and relief free by using Buehler EcoMet/ AutoMet 250 automated polishing equipment. A 

Carl Zeiss Axio Imager A2m microscope, equipped with a white light source and a UV light to 

analyse the reflectance in oil (Ro) and fluorescence, was used for reflectance measurements and 

visual kerogen analysis. 

2.3.3. SEM analysis.  

The roughness of the surface from standard grinding and polishing methods can influence the 

quantitative pore structure analysis (Bowker, 2003; Nelson, 2009; Loucks et al., 2009). In order to 

avoid the irregularities caused by the mechanical polishing due to the differential hardness of 

components, the argon-milling method was used to derive a much flatter surface. Samples, which 

were taken parallel to the bedding, were trimmed down to a 0.5 cm square cube. Then, all faces of 

the cube were smoothed out by hand with a Buehler polishing wheel using 600-grit silicon carbide 

grinding paper. The samples were mounted to the ion mill sample holder and placed in the Leica 
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EM TIC 3X argon ion mill. After that, all samples were milled at an accelerating voltage of 8kV, 

with a gun current at 3mA for 8 hours. Finally, samples were removed from the ion mill’s sample 

holder and mounted on a clean SEM stub using carbon paint. An FEI Quanta 650 FE-SEM 

instrument was applied to capture the surface of the prepared samples. All the images were taken 

under a low vacuum mode with 15 Kv voltage and 60 Pa pressure. The working distance is 

approximately 10 mm and the spot size is 3. Fig. 2.5 shows the surface prepared after the argon 

milling.     

 

Fig. 2.5. Sample preparation for ion milling. 

 

2.3.4. Mineral composition analysis.  

The mineralogical composition was analyzed by X-ray diffraction (XRD). Sample powders with 

size less than 625 mesh were put in the Bruker D8 Advanced X-ray diffractometer. The scanning 

measurements were performed at the rate of 2◦/min in the range of 3-90◦. The relative mineral 

percentages were estimated by calculating the curve of the major peaks of each mineral with 

correction for Lorentz Polarization (Chen and Xiao, 2014). 
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2.3.5. Pore structure quantification analysis. 

2.3.5.1. Image processing.  

In order to investigate the pore structures from the gray scale SEM images, Image J, a very 

powerful commercial software widely applied in image analysis in other fields, was used (Liu and 

Ostadhassan, 2017; Chen et al., 2014). For the backscattering electron images (BSE) or the 

secondary images (SE) of shales, the pores have low gray scale values while the solid components 

have a high gray scale value. After selecting an appropriate threshold value, all of the images were 

segmented into the binary image where the black pixels (larger than the threshold value) represent 

the solid matrix and the white pixels (smaller than the threshold value) show the pores (Schneider 

et al., 2012). Fig. 2.6 shows the work flow of the imaging process for the shale sample. In this 

study, a critical overflow point technique was applied, which is related to the inflection of the 

cumulative brightness histogram. This was done in order to find the accurate upper threshold value 

to segment the images (Wong et al., 2006). Following this, porosity and pore size were quantified. 

 

Fig. 2.6. Image process.  
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2.3.5.2. Fractal analysis.  

Due to its strong ability to characterize the irregular or the fragmented shape of natural features as 

well as other complex objects that traditional Euclidean geometry fails to describe, fractal 

geometry has become a powerful tool to characterize pore structures. The box-counting method, 

defined by Russel et al. (1980), was applied to calculate the fractal dimension. This technique is 

used to obtain scaling properties of 2-D fractal objects by covering the 2-D image with a range of 

boxes of size ε and counting the number of boxes N. Each box contains at least one pixel 

representing the objects under study. This procedure is then repeated for a range of ε values. The 

different box counting numbers N covering the pore space at various grid sizes ε can thus be 

obtained. Finally, the following equation is used to calculate the fractal dimension: 
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2.4. Results and Discussions  

2.4.1. Rock-Eval analysis.   

Three pyrolysis temperature programs were applied to obtain the TOC and other parameters. Fig. 

2.7 shows the pyrolysis program of Sample 1 using the three different methods. Fig. 2.7(a) 

represents the default method and shows that part of the low-molecular weight hydrocarbons is 

lost because the high starting temperature of this method – i.e., 300°C. Comparing the default 

method with the reservoir method that starts heating the sample at 150°C (Fig. 2.7b) and with the 

shale reservoir method that starts heating the sample at 100°C (Fig. 2.7c), it becomes obvious that 

the shale reservoir method can capture most of the lighter thermo-vaporizable hydrocarbons that 

are otherwise lost. To illustrate this, the “S1” equivalent (S1=S1r+S2a) from the reservoir method 

to the “S1” equivalent (S1=Sh0+Sh1) from the shale reservoir method and the S1 values from the 

default method was compared. The results (Fig. 2.8) show that the S1 equivalents from the shale 

reservoir method are the highest by <0.5 to almost 2 mg HC/g rock (average is about 1 mg HC/g 
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rock). This shows that the shale reservoir method is the best-suited for assessing the extractable 

hydrocarbon compounds in these unconventional shale reservoirs. For the Lower Bakken 

Formation, the reservoir method reports 26% higher S1 yield compared to the default method, and 

the shale reservoir method yields 45% higher S1 compared to the default method. For the Upper 

Bakken, the reservoir method yields 24% higher S1 than the default method while the shale 

reservoir method reports 37% higher S1 than the default method.  

The results of the Tmax calculated from the three methods are shown in Fig. 2.9. The Tmax values 

derived from the three methods have a very narrow range, within 2℃, which is considered to be 

within our analytical error. Tmax values are largely invariant regardless of the pyrolysis method 

used. Based on our lengthy experience on tens of thousands of samples (with varying organofacies 

and thermal maturity) that we have analyzed worldwide, we have seen that Tmax is invariant when 

the S2 yields are much greater than the S1 values (i.e., when the S1 values contribute very little to 

the shape of the S2) (unpublished Core Laboratories data, 2016). Tmax is known to be affected, 

while using the Shale Play method, in samples where S1 is high (sometimes as high as) compared 

to the S2 (see Romero Sarmiento et al., 2015), thus significantly influencing the shape of the S2 

(or Sh2) peak. Clearly, this is not the case in the Bakken samples used in this study because the S2 

values are at least one order of magnitude greater than the S1 values. In our opinion, this is the 

reason why our Tmax values are relatively invariant (at least within the analytical error) regardless 

of the pyrolysis method used.  



 

19 
 

 

(a)  Default Method. 

 

(b)  Reservoir Method. 

 

(c) Shale reservoir method. 

Fig. 2.7. Rock-Eval data analysis programs of Sample 1 using the three different methods. 
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Fig. 2.8. Comparison of the S1 peak from default method and the S1 equivalent from the reservoir and shale 

reservoir methods.    

  

 

Fig. 2.9. Comparison of the Tmax derived from the three methods. 

Based on the shale reservoir method, the geochemical analysis data for all 11 samples is shown in 

Table 2.2.  
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Table 2.2. Geochemical analysis results of the samples, using the shale reservoir method 

Sample 

TOC 
*Oil in 

Rock  

Light 

Oil% 

Heavy 

Oil% 

NSO or 

KERO% 

wt%  
bbl 

oil/ac-ft 
% TOC % TOC % TOC 

#1 12.80 201.61 3.25 3.16 93.58 

#2 16.83 196.35 1.95 2.80 95.25 

#3 13.54 194.38 2.66 3.19 94.14 

#4 12.30 240.79 3.61 4.36 92.02 

#5 14.02 263.56 3.46 4.22 92.32 

#6 13.06 199.42 2.75 3.49 93.76 

#7 10.09 181.69 3.46 3.90 92.63 

#8 11.46 239.48 3.95 4.60 91.45 

#9 16.96 260.71 2.99 3.29 93.72 

#10 10.21 249.11 5.16 4.81 90.02 

#11 10.55 222.18 4.19 4.42 91.39 

                    Note: bbl/ ac-ft means barrels per acre-foot. Explanations of these parameters can be seen in appendix 

The data in Table 2.2 show that all Bakken Shale samples used in this study are organic-rich and 

have considerable remaining hydrocarbon generating potential. The thermo-vaporizable 

hydrocarbons are very low and most of the remaining potential is due to the cracking of heavy 

hydrocarbons, NSO (Resins + Asphaltenes) and kerogen. The organic matter plots in the mixed 

II/III type (oil and gas-prone) region and in the oil window zone (mature stage of hydrocarbon 

generation) are shown in Fig. 2.10. A positive intercept with the TOC axis in Fig. 2.10a indicates 

the possible existence of approximately 1.5wt% residual or ‘dead’ carbon in the Bakken Shale 

(e.g., Cornford et al, 1998). In addition, the samples from each well were plotted based on whether 

they came from the Upper or the Lower Bakken intervals (Fig. 2.10a). Samples from the Upper 

and Lower Bakken have almost identical S2 values in Well #2 whereas the Upper Bakken has 

slightly higher S2 values than the Lower Bakken in Well #1 over the same TOC range. The 

‘dogleg’ trend seen in Fig. 2.10a suggests that these two Bakken intervals likely have different 

organofacies. The same reasoning was applied by Halpern and Cole (1994) to explain the trend 
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seen in their samples. Furthermore, organic petrologic evidence showed the Lower Bakken to be 

richer in marine alginite [mostly very long (>200 micrometers) Leioshaeridia, as shown in Fig. 

2.11c] whereas the Upper Bakken contained less algal matter (mainly Prasinophytes) and of 

considerably smaller size (Fig. 2.11e-f). Thus, it is likely that two different organofacies are 

responsible for the S2 vs. TOC trend.    

 

(a) Plot of S2 vs. TOC as a function of kerogen types  

 

(b) Kerogen maturity analysis  

Fig. 2.10. Kerogen type and maturity analysis. 
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2.4.2. Dispersed organic matter and Vitrinite reflectance. 

Fig. 2.11 shows that the organic matter in those samples is comprised of two types of bitumen, a 

solid bitumen having light gray color in Sample #2 (Fig. 2.11a) and a low-reflecting bitumen 

having dark-grey color with internal orange reflections in Sample #5 (Fig. 2.11b). Also present is 

an oil-prone type of marine alginite (Leiosphaeridia-type) having mostly dull-yellow to orange or 

even light-brown fluorescence color under UV light excitation in Sample #4 (Fig. 2.11c) and 

diffuse hydrocarbons generated from algal matter in Sample # 5 (Fig. 2.11d). The fluorescence 

color of the alginite suggests that VRo is close to peak oil generation, i.e., at 0.90% 

(Mukhopadhyay, 1992). The samples are almost devoid of inertinite (type IV organic matter) and 

contain very little primary vitrinite (part of gas-prone type III organic matter).  In the absence of 

reliable primary vitrinite particles, the vitrinite Ro-equivalent was calculated using the Jacob 

formula (Jacob, 1989) for all samples. In the sample from 10,435.7 ft, the depth at which the 

photomicrograph (Fig. 2.11a) was taken, the mean BRo is 0.77% and the mean VRo-eq is 0.88%. 

The VRo-eq calculated from the Tmax of the sample using the default Rock-Eval 6 pyrolysis 

method is 0.89% using the Barnett Shale model (Jarvie et al., 2001).  Therefore, reflectance, 

fluorescence, and pyrolysis data all point to the dispersed organic matter being thermally mature 

and in the middle stage of the oil window (at or near peak oil generation). The remaining samples 

have VRo-eq values ranging from 0.85% to 0.98% (Fig. 2.12), thus confirming the mature stage 

of the organic matter. 
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Fig. 2.11 cont 

   

Fig. 2.11. Photomicrographs of Bakken Shale samples: (A) Well #1, Upper Bakken at 10435.7 ft, BRo=0.83% (VRo-

eq=0.91%) showing primary bitumen (Bit) diffusing in the matrix; (B) Well #1, Lower Bakken at 10555 ft, 

BRo=0.29%, low-reflecting bitumen (L-Bit);  (C) Well #1, Lower Bakken at 10541 ft, VRo-eq=0.90%, thin-

walled Leiosphaeridia alginite (Alg) having dull-yellow fluoresce; and (D) Well #1, Lower Bakken at 10555 

ft, dark greenish-brown weakly-fluorescing bitumen (Bit) generated from alginite; (E) and (F) Well #1, Upper 

Bakken at 10436.4 ft, showing small Prasinohyte algnite (Alg). Photos A and B were taken under white light, 

photos C-F were taken under UV light. Excitation filter is at 465 nm and combined beam splitter and barrier 

filter have a cut at 515 nm.  

 

Fig. 2.12. Vitrinite reflectance of the 11 Bakken samples.  

The plot of TOC vs. vitrinite reflectance-equivalent values is show in Fig. 2.13. The data illustrates 

that samples with high TOC do not have the highest VRo values. The reason there is no clear 
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relationship between TOC and VRo is that the maturity range of the 11 samples selected from the 

two wells varies very little (VRo-eq ranges from 0.85% to 0.98%). Within such a narrow thermal 

maturity range and with such high TOC samples, one would not expect to see a clear relationship 

between the two parameters. 
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Fig. 2.13. The relationship between TOC and VRo-Eq. 

2.4.3. Pore morphology.  

Based on the results of Rock-Eval analysis, we picked the two samples (#2 and #9) with the highest 

TOC. Fig. 2.14 shows the SEM images of those two samples. Energy Dispersive X-ray 

Spectrometry (EDS) was applied to characterize the mineral compositions of the two samples. 

Quartz can be determined by the the presence of silicon and oxygen elements while K-feldspar can 

be characterized by the existence of potassium, silicon and oxygen and the trace of aluminum 

(Alstadt et al., 2016).  The high concentrations of Fe (Iron )and S (Sulphur) can be used to indicate 

the pyrite mineral  and the concentration of “Ca” can be used to study the presence of calcite. For 

the organic rich shale samples, the presence of organic matter can be identified by the large 

percentage of carbon atoms. (Abedi et al., 2016). Under low magnification, aligned mica flakes 

(mica) are visible and a discrete organic particle (op) belonging to a unicellular marine alginite is 
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noted. The bright white material is pyrite (py) and organic material appears black (Fig. 14a). Most 

of the fine to coarse silt-size grains are quartz (Q). Calcite (ca) noted in Sample 1 appears light 

gray in Fig. 2.14 a, while dolomite rhombs (d) are scattered across Sample 2 (Fig. 2.15a). No 

obvious pores can be found. Once the magnification was increased, pore-filling organic material 

(om) is seen intermixed within the siliceous and detrital clay matrix. A pyrite framboid (py), 

dolomite rhomb (d), and discrete organic particle (op) are noted (Fig. 2.14 b, Fig. 2.15b). For both 

samples, the organic particles are mostly non-porous. When the magnification is increased further, 

both samples have inter-particle pores along the edge of the organic matter and grain (Fig. 2.14c, 

Fig. 2.15c).  Fig. 2.16 shows the representative EDS spectrum for each mineral in the shale 

samples. 

Overall, in the 11 Bakken Shale samples analyzed, the organic matter is mostly non-porous. Inter-

particle and intra-particle pores are the main pore types, which is quite different from the findings 

in many shale gas reservoirs where organic matter pores dominate the shale gas rock pore types 

(Milliken et al., 2013). 
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(a)  Grain and pore morphology (BSE)                         (b) Zoom in image of (a) (SE) 

 

 (c) Zoom in image of (b) (SE) 

Fig. 2.14. Grain and pore morphology of Sample #2  (op donates discrete organic particle; py, d, dc, q, ca , KF and 

om represent pyrite, dolomite, detrital clay, quartz, calcite, potassium feldspar and pore-filling organic material, 

respectively).   
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(a)  Grain and pore morphology (BSE)                         (b) Zoom in image of (a) (SE) 

 

(c) Zoom in image of (b) (SE) 

Fig. 2.15. Grain and pore morphology of Sample #9 (op donates discrete organic particle; py, d, dc, q, ca , KF and 

om represent pyrite, dolomite, detrital clay, quartz, calcite, potassium feldspar and pore-filling organic material, 

respectively).  
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(a) Organic matter  

 

(b) Quartz 

 

(c) Pyrite  
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Fig. 2.16 cont. 

 

(d) Dolomite 

 

(e) K-feldspar 

 

(f) Calcite 
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Fig. 2.16 cont. 

 

(g) Mica 

Fig. 2.16. The representative EDS spectra for each mineral in samples #2 and #9 analyzed.  

2.4.4. Quantitative pore structures analysis. 

To quantitatively analyze the pore structures of the samples, the method of representative 

elementary area (REA) was used. REA for a porous medium has a minimum averaging area that 

will yield a value representative of the whole. The porosity indicator was used to determine the 

REA by analyzing the influence of the magnification on porosity (Saraji and Piri, 2015). For the 

samples studied, it was found that as the magnification was reduced (scan area increased), the 

porosity value oscillated until it remained steady under a critical magnification. The scan area 

under this critical magnification point was used as the REA. Fig. 2.17 shows the determination the 

REA of Sample #9 from Well #2, depth 11201 ft. 
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Fig. 2.17. The determination of the REA of Sample # 9 using a porosity indicator. 

 

Based on determination of the REA, surface porosities of the samples were calculated. Table 2.3 

shows that all the samples have abundant pore counts and most of the samples have very low 

porosity values (less than 10%). The data in Table 2.3 show that samples having high pore counts 

do not necessarily translate to also having high porosity values. This is because pore counts refer 

to the number of pores that exist in the samples while porosity refers to the ratio of the pore volume 

to the total sample volume. The study by Saraji and Piri (2015) shows that samples with large pore 

size and small pore counts can still have large porosity values. Thus, porosity should be determined 

by the combination of pore size and pore counts, not by pore counts alone. Pore counts were 

analyzed in this study because they can be used to analyze the fractal behavior of the pore 

structures, which will be discussed next.  

 

 

 

 

0 200 400 600 800 1000 1200

0

2

4

6

8

10

 

 

P
o

ro
si

ty
, 

%

Box length, um

Critical point



 

34 
 

Table 2.3. Porosities of the samples calculated from SEM images at their REA 

 Well  Sample  
Bakken 

Location  
Porosity, % 

Pore 

counts 

Well #1 

#1 
Upper 

Bakken 

9.71 9823 

#2 8.58 14895 

#3 3.89 8968 

#4 Lower 

Bakken 

9.59 21196 

#5 7.26 18443 

Well #2 

#6 
Upper 

Bakken 

9.97 5752 

#7 4.70 9818 

#8 9.63 12435 

#9 
Lower 

Bakken 

6.70 16837 

#10 7.67 10334 

#11 11.56 19495 

 

The complexity properties of the pore structures were further studied by using fractal methods. 

Fig. 2.18 shows that the fractal dimensions are larger than 1.8 (dimensionless). By using the box 

counting method to calculate the fractal dimension in 2D, the fractal dimension value is expected 

to be in the range from 1 to 2 (dimensionless). When a value approaches or is close to 2, the pore 

structure is very complex (Liu et al., 2017).  The D value of all the samples is above 1.8, which 

illustrates that all samples have very complicated pore structures.  
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Fig. 2.18. The fractal dimension and lacunarity values of the samples. 
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The pore counts were plotted versus the fractal dimension, and a positive correlation was observed. 

The fractal dimension increases as the number of pores increase (Fig. 2.19).  The positive 

relationship results from the fact that as the number of pores increases, the complexity of the pores 

also increases. This results in an overall increase in the fractal dimension and complexity of the 

pores (Dathe et al., 2001; Tang et al., 2012). 
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Fig. 2.19. The relationship between pore counts and fractal dimension. 

The correlations between mineralogical composition and TOC content on one hand and the pore 

counts and porosity on the other were also investigated. The results are shown in Table 2.4. The 

data illustrate that the samples used in this study have the same minerals but in different weight 

ratios. In order not to eliminate the influence of one parameter on the other based on the bivariate 

plots, when in fact the parameter may exert a significant influence when it is joined by another 

independent parameter, PLS (partial least-squares regression) was applied. The composition of the 

samples (Quartz, Pyrite, Clay, Feldspar, and TOC) was treated as the independent parameter, and 

porosity and pore counts were used as the dependent variables. The fit parameters of the PLS 

model are shown in Table 2.5. The results show that for the porosity/pore counts, clays and feldspar 

have positive influence on the porosity/pore counts while quartz and pyrite has negative effects on 
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the porosity/pore counts. The increase of TOC can decrease the porosity/pore counts due to the 

extensive occurrence of non-porous organic matter. Among all components, TOC affects the 

porosity and pore count the most in this study. 

We used the SEM quantitative analysis method to determine the pore parameters that could cause 

uncertainty due to resolution limitation. The minimum pore size we could analyze is 10 nm, which 

means that pores smaller than 10 nm that may exist in the shale samples cannot be detected by the 

SEM. Other methods, such as USANS (Ultra-Small-Angle Neutron Scattering) and gas adsorption, 

will be applied in a future study to analyze those pores smaller than 10nm and to study their impact 

on the pore parameters. A previous study (Liu and Ostadhassan, 2017) showed the presence of 

fractures and pores in Bakken Shale samples using the circularity index. The present study 

considers fractures as a special type of pores in the shale. It combined pores and fractures to 

analyze the impact of mineralogical composition on the pore structures (Deng et al., 2016). Our 

study did not consider whether the fractures are artifacts or real. Since our samples were prepared 

using the Argon ion milling method instead of standard mechanical polishing, it is expected that 

any artifacts will be fewer. However, one can still find artifacts between the different mechanical 

phases (i.e. solids and organic matter), which could be incorrectly interpreted as being inter-

particle pores. One reliable way to distinguish whether a fracture is real or artificial is by using the 

EDX mapping method. 

Table 2.4. Mineralogical composition of the samples (in wt%) 

 Samples Quartz, % Pyrite, % Clays, % Feldspar, % TOC, % 

#1 39.01 2.45 17.11 26.18 12.72 

#2 47.88 2.15 18.82 8.42 17.45 

#3 55.97 2.43 23.18 2.83 14.16 

#4 41.30 5.01 29.88 9.67 12.12 

#5 27.31 1.36 2.04 51.90 14.92 

#6 39.92 2.30 39.23 3.33 14.71 

https://neutrons.ornl.gov/usans
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#7 50.82 4.65 22.39 4.91 13.87 

#8 52.14 5.30 26.97 2.25 10.10 

#9 43.66 2.65 32.70 2.74 11.62 

#10 36.20 4.28 27.15 5.43 17.73 

#11 16.10 0.05 62.60 3.13 10.57 

 

Table 2.5. PLS model fitting results 

Variable 
Porosity Pore counts 

Fit value Standard deviation Fit value Standard deviation 

Intercept 13.11 2.60 21894.92 3014.58 

Quartz, % -0.07 0.04 -113.50 45.95 

Pyrite, % -0.17 0.24 -295.43 470.20 

Clays, % 0.03 0.03 44.93 65.11 

Feldspar, % 0.01 0.02 19.23 69.33 

TOC, % -0.19 0.11 -316.77 165.71 

 

2.5. Conclusions  

The following conclusions are drawn from the analysis of the pore structures and geochemical 

properties of 11 Bakken Shale samples. 

1) Of the three Rock-Eval analysis methods, the shale reservoir method is the best-suited method 

to characterize the geochemical properties of Bakken Shale, followed by the reservoir method. The 

shale reservoir method shows the Bakken to be organic-rich with considerable remaining 

hydrocarbon generating potential.  

2) The thermo-vaporizable hydrocarbon content is very low; most of the remaining potential is 

due to the cracking of heavy hydrocarbons, NSO (Resins + Asphaltenes) and kerogen. The organic 

matter of the samples studied is mixed II/III type (oil and gas-prone) and plots in the oil window 

zone (mature stage of hydrocarbon generation). 

3) Organic matter is dominated by solid bitumen. Two types of bitumen were identified. The low-

Ro bitumen exhibits dull-yellow to light-brown fluorescence. Oil-prone marine alginite having 
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dull-yellow fluorescence was also identified. The vitrinite reflectance equivalent (based on the 

solid bitumen) ranges from 0.85% to 0.98%, indicating a level of maturity equivalent to peak oil 

generation.  

4) Pores of various sizes (mostly in the nanoscale range) are widely distributed in the Upper and 

Lower Bakken samples. The majority of the organic matter is non-porous. 

4) The porosity in the Bakken samples is low -- most of the samples have values less than 10%. 

Fractal dimension is a useful indicator and can reflect the complexity of the pore structures of the 

shale samples.  

5) Clay minerals and feldspar have a positive influence on the porosity and pore counts while 

quartz, pyrite, and TOC have a negative influence. TOC affects the porosity and pore counts the 

most. 

Appendix I. Definitions/formulae of the parameters from the Rock Eval method 

For the Shale reservoir method: 

• Oil in rock = 21.89 * (Sh0 + Sh1)  

• Light oil, % = Sh0 (%)  

• Heavy oil, % = Sh1 (%) 

• Sh0 refers to the thermo-vaporizable light hydrocarbons (C1-C15) 

• Sh1 refers to medium-heavy oil or thermo-vaporizable hydrocarbons (C15-

C40)  

• Sh2 refers to the cracking of the remaining heavy hydrocarbons, NSO and/or 

kerogen,  

• NSO% = Resins + asphaltenes %; undefined if TPIs < 0.4 (TPI refers to 

Reservoir Production Index) 

• Kerogen % = Kerogen %; undefined if TPIs > 0.4 
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• TPIs= Production index for this method (Sh0+Sh1/Sh0+Sh1+Sh2) 

For the reservoir method: 

• S1r = Thermo-vaporizable light hydrocarbons (C1-C15)  

• S2a = Heavy oil or thermos-vaporizable hydrocarbons (C15-C40)   

• S2b = Cracking of remaining heavy hydrocarbons, NSO and/or kerogen  

• TPIr = Reservoir production index = (S1r+S2a/S1r+S2a+S2b) 

• Tmaxb = Pyrolysis temperature S2b 

• Oil in rock = Thermo-vaporizable light + heavy hydrocarbons (S1r + S2a). This 

is equivalent to the S1 parameter from the Standard Rock-Eval method (Bulk-

Rock method used for source-rock analysis)  
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CHAPTER 3 

QUANTIFICATION OF THE MICROSTRUCTURES OF BAKKEN SHALE 

RESERVOIRS USING MULTIFRACTAL AND LACUNARITY ANALYSIS 
Abstract  

Pore structures are one of the most important factors affecting the hydro-mechanical properties of 

the reservoirs. Unlike the homogeneous pore structures in sandstones, the pores in the shale 

formations are heterogeneous and more complex to characterize due to the diagenesis and 

geological processes that they experienced. The heterogeneous rock pore structures can influence 

not only the flow properties of the oil and gas but also the fracture initiation and propagation 

characteristics which can impact the hydraulic fracturing performance, a common technique to 

increase the total production in tight shale formations. Therefore, quantifying the heterogeneities 

of the pore structures in unconventional shale formations carries a great importance. In this paper, 

we collected the samples from Bakken formation, which is a typical unconventional oil shale 

reservoir in North America. We applied image analysis method to study the pore structures. After 

segmentation of these images, we determined the representative elementary area (REA) of the 

samples based on the relationships between porosity and magnification ratios. Multifractal theory 

and lacunarity methods were applied to analyze the pore structures. Multifractal parameters were 

used to describe the pore probability distributions and the lacunarity value was applied to quantify 

the heterogeneity of the pores. The impact of the mineral compositions on heterogeneity values is 

also discussed.  Finally, a new REA indicator, which contains the porosity and heterogeneity 

information, was proposed.



 

47 
 

3.1. Introduction 

The Bakken shale in the Williston Basin in Montana, North Dakota (USA), is one of the largest 

unconventional shale oil plays in the world. The Bakken Formation consists of three members with 

the Middle Bakken Member, which is composed of mixed carbonates and fine-grained clastic, 

being the primary production zone. 

The significant interest in production from unconventional plays including oil and gas shales has 

called for several studies to better characterize such complex resources. Pore structures which are 

distributed widely in the shale rocks can influence the hydrocarbon storage capacity and 

transportation properties (Anovitz and Cole, 2015). The pores existed in the shale may also impact 

the mechanical properties of the formation which can potentially affect the performance of 

hydraulic fracturing operations (Boadu,2000; Sanyal et al., 2006; Wang et al., 2012, Yuan et al., 

2015a, b). Unlike the homogeneous pore structures in sandstones, the pores in shale formations 

are always heterogeneous. The heterogeneities which can be identified over the various scales from 

nanometers to meters will result in different properties of the rocks even at the same porosity 

(Vasseur, et al., 2015).  The impact of the heterogeneity of the pore structures on shale’s properties 

needs to be understood in order for economic production. 

In the recent years, several methods have been introduced with some being applied to characterize 

the pore structures of the shale formation. Mercury Injection Capillary Pressure (MICP), Nuclear 

Magnetic Resonance (NMR) and image analysis are some of these techniques (Novitz et al., 2015; 

Somayeh et al., 2015, Deng, et al., 2016). MICP determines the largest entrance to a pore, instead 

of the actual pore size (Giesc, 2006), and the high injection pressure will distort, compress and 

damage the pore structures especially for the shale formations which has plenty of clay minerals 

(Liu et al., 2016a,b). The NMR, as a non-intrusive physical method, can be used to identify the 

pore structures of tight rocks (Odusina and Sigal, 2011). However, the sample preparation for the 
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NMR is very cumbersome, and the extraction and injection of the liquid can potentially damage 

the weak pore structures of the rock which can limit the accuracy of the NMR method, and the 

variations that occur in surface relaxtivity introduces error in the results (Liu, et al., 2016a, c). 

Image analysis techniques such as field emission scanning electron microscope (FESEM), 

transmission electron microscope (TEM) and atomic force microscope (AFM) can be applied to 

capture the pore structure of shale formation and can be further combined with statistics analysis 

method to quantify the pore structures such as pore size and pore shape distributions (Loucks et 

al.,2009; Javadpour, 2009, 2012; Liu, et al., 2016a,c; Bernard, et al., 2011; Klaver et al., 

2012,2016).  Heterogeneity analysis of the pore structures of shale formations still needs further 

studies. 

Since Mandelbrot introduced the concept of the fractal (Mandelbrot,1977), measuring fractal 

dimensions has become a common practice for describing the properties of the porous media 

quantitatively (Jiang, et al., 2016; Chen, et al., 2015). The fractal dimension characterizes the 

average properties which is very suitable for the homogeneous rocks but is not able to describe the 

variations from the average (Gould, et al., 2011). The multifractal analysis which decomposes the 

self-similar measures into intertwined fractal sets, characterized by their singularity strength can 

provide more information about how the pore distributed than the single fractal dimension (Li, et 

al., 2012). The multifractal theory has been applied to study the pore structures of different kinds 

of rocks such as chalk, carbonate and shale gas formations and the results have been promising 

(Muller and McCauley, 1995,1996; Xie, et al., 2010). Lacunarity, which characterizes the 

distributions of the pores, has been applied in the study. The main applications of this method are 

in the medical and agriculture fields (Li, et al., 2012; Utrilla-Coello, et al., 2013; Neves, et al., 
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2014). However, Lacunarity analysis has rarely been used to describe the texture properties of rock 

formations, especially for the unconventional reservoirs such as shale formations. 

In this paper, we analyzed the pore structures of the shale rocks from Bakken Formation by using 

image analysis method. Multifractal dimensions and lacunarity method were applied to quantify 

the pore probability distributions and the heterogeneities of the pore structures. Based on the study 

of the magnifications on porosity and heterogeneity, we proposed a new method to determine the 

representative elementary area of the heterogeneous shale rocks. 

3.2. Methodology 

3.2.1. Sample description, preparation and SEM imaging. 

The detailed procedure of these steps can be seen in section 2.3.3 and section 2.3.5.1. 

3.2.2. Multi-fractal theory.  

The single fractal dimension which is widely used to study the porous structures cannot describe 

the complex structures with subsets of regions having various properties. However, the multifractal 

theory, which considers the amount of mass inside each box, appears to be able to characterize the 

pore structure properties.  

For the measurement of fractal dimension, the number N(ε) of features of certain size ε scale as 

(Chhabra and Jensen, 1989, Mendoza, et al., 2010) 

0~)(
D

N
−       ,                                  (3-1) 

where D0 is called the fractal dimension, which is frequently be expressed as:  


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D

→
=    ,                              (3-2) 

D0 can be derived by counting the number of boxes with various sizes to cover the object under 

investigation and then estimating the slope value from the log-log plot. 
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Then, the following equation will be applied to quantify the local densities by estimating the mass 

probability in the ith box: 

Tii NNp /)()(  =   ,                                (3-3) 

Where Ni(ε) is the number of pixels containing mass in the  ith box and NT is the total mass of the 

system. Thus the probabilities in the  ith box Pi(ε)  can be written as the following equation:  

i

iP
 ~)( ,                                                (3-4) 

where αi is the singularity strength which can characterize the density in the ith  box (Feder, 1988; 

Halsey et al., 1986).  

For multifractal measurements, a probability distribution is measured as: 

)(~)]([ qq

i

ip    ,                                                       (3-5) 

where q is the exponent expressing the fractal properties in different scales of the object. τq can be 

defined as: 
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=  ,                               (3-6) 

and the generalized dimension Dq which is related with q can be expressed as (Halsey et al., 1986): 

)1/()( −= qqDq  ,                                                           (3-7) 

Also, we can use the relationship between parameters of f(α) versus α to calculate the multifractal 

spectra: 

)(~)(  fN −
,                                                                  (3-8) 

Where N(α) is the number of boxes for which probability Pi(ε) has singularity strengths between 

α and α+dα. f(α) contains the same information of generalized dimensions Dq and can be defined 

as (Halsey et al., 1986, Chhabra and Jensen, 1989): 
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)()())(( qqqqf  −= ,                                              (3-9) 

Where α(q) can be defined as: 

dqqdq /)()(  = .                                                         (3-10) 

3.2.3. Lacunarity.  

In order to quantify the heterogeneities of the pore structures of the sample, lacunarity was 

introduced to solve this kind of problem. Lacunarity which was introduced by Mandelbrot (1983) 

is a counterpart of the fractal dimension which can be used to describe the size distributions. 

Lacunarity measures the deviation of a geometric object that has translational invariance and can 

be thought as a measure of gapiness of the geometric structure. If the structure has more wide or 

large gaps, the structure has higher lacunarity value. 

The gliding-box counting algorithm was applied to calculate the lacunarity in this paper by 

utilizing a moving window (Smith et al., 1996; Plotnick et al., 1996). A box of size r is positioned 

at the upper left corner of the image and the number of the occupied sites can be regarded as the 

box mass. Then the box is moved one column to the right and the box mass is again counted. This 

process is repeated over all rows and columns of the image producing a frequency distribution, 

mass M, of the region that we studied. The number of the boxes with the size r containing a mass 

(M) of the image was designated by n(M,r), with the total number of boxes counted designated by 

N(r). If the image size is P, then:  

2)1()( +−= rPrN                                                (3-11) 

Then the probability distribution Q(M, r) can be calculated by the frequency distribution (Backes, 

2013; Plotnick et al., 1993): 

)(

),(
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rN

rMn
rMQ =                                                  (3-12) 

The first and second moments of this distribution are defined by:  
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),()1( rMMQA =                                            (3-13) 

),(2)2( rMQMA =                                               (3-14) 

Then the lacunarity of this box size is defined as:  

2)1(

)2(
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The statistical behavior of Ʌ(r) can be understood by recognizing that: 

)()1( ruA =                                                             (3-16) 

)()( 22)2( rruA +=                                               (3-17) 

Finally, we can get (Allain and Cloitre, 1991; Malhi et al., 2008) 
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Here σ2(r) is the variance of the number of sites per box and u(r) is the mean value of the number 

sites per box. Then we can repeat this process with different box size and get the set of the 

lacunarity values at various box size. 

3.3. Results   

3.3.1. REA determination. 

It is well known that the results of image analysis are closely related to the image resolution or the 

scale at which the image is looked at. In general, as the scale increases the variation in the 

properties reduce and beyond a certain scale it remains unchanged. This scale is known as the 

representative elementary area (REA) in 2D and correspondingly representative elementary 

volume (REV) in 3D (Saraji and Piri, 2015; Deng, et al. 2016).  
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Fig. 3.1. Impact of magnification ratio on pore structures of Sample 12. 

Fig. 3.1 illustrates that under the low magnifications, we can find large pores whereas under high 

magnifications, more of small size pores will appear in the image. We keep the center of the image 

fixed, change the magnification, and study the impact of the magnifications on the porosity of 

Sample 12, which is presented in Fig. 3.2a. Looking at Fig. 3.2b, the porosity keeps steady as the 

magnification increases and varies after the magnification reaches a critical value. The critical 

point at which the porosity starts to change can be regarded as the indicator for the REA. Therefore, 

the scan area corresponding to this magnification, i.e. 176um176 um was chosen as the REA 

which is comparable with the results from other shales by other researchers (Toarcian shales 

200um200um: Houben et al., 2016; Boom clay 155um155um: Hemes et al., 2015; Posidonia 

shale hils area, 140um140um: Klaver et al., 2016; Opalinus clay 250um 250um, Houben et al., 

2014).  
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(a) Schematic of the REA analysis method  
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(b) Impact of the magnification ratios on the pore area fractions  

Fig. 3.2. REA determination of Sample 12 

3.3.2. Multifractal analysis. 

Based on the determination of the REA, we segmented all the samples into binary format. Then 

we did multifractal analysis of all the samples. The mean of generalized dimensions (Dq) versus 

variable q (between -10 and +10) for the five samples are shown in Fig. 3.3. 
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Fig. 3.3. Generalized dimensional spectra for the images of the five samples. 

Fig. 3.3 shows that all samples follow a sigmoid fit and exhibit pronounced decreasing Dq values 

with increasing q. D0, D1 and D2 are the three parameters that are commonly used for the 

multifractal analysis. D0 is called the capacity dimension which provides the average values of the 

analyzed structure distribution, indicating the complexity of the pore structures. D1 is called the 

information dimension and D2 is the correlation dimension (Li et al., 2012). The values of these 

parameters for the samples tested in this study are listed in Table 3.1. 

The parameters in Table 3.1 demonstrate that all the five samples have the same characteristics: 

D0>D1>D2 confirming that the pore distributions of the five samples are multifractal. Sample 16 

has the highest D0 value while Sample 14 showing the smallest demonstrating that Sample 16 has 

the most complex pore structures as opposed to Sample 14 with the least complex pore structures. 

The ratio of D1/D0 is an indication of the dispersion of the porosity with respect to the pore size 

since it provides the information of proportional variation instead of the absolute variation 

(Mendoza et al., 2010). Sample 13 and Sample 14, correspondingly, carry the largest and lowest 

ratio D1/D0 among the five samples tested in this study. 
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Table 3.1. Values of D0, D1 and D2 for the five samples 

  D0 D1 D2 D1/D0 

Sample 12 1.7394 1.7149 1.6990 0.9859 

Sample 13 1.7846 1.7716 1.7576 0.9927 

Sample 14 1.7243 1.6495 1.5993 0.9566 

Sample 15 1.7637 1.6930 1.6419 0.9599 

Sample 16 1.8496 1.8289 1.8115 0.9888 

 

The multifractal spectrum can be plotted to visualize the distribution of the pores of the samples. 

Fig. 3.4a illustrates the relationship between α(q) and q of the five samples. Similar to Dq, α(q) 

also decreases as q increases. As q <0, α(q) decreases steadily followed by a sudden drop. Fig. 3.4b 

shows the relationship between f(α) and α(q). Due to the difference of the D0 values in the five 

samples tested, a shift is observed in the crest of the spectra from top to the bottom, which 

corresponds to the apex of the spectrum. Sample 16 has the largest f(α)max value due to its largest 

D0 value among all the samples. 
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(a) α(q) versus q                    (b) f(α) versus α(q) 

Fig. 3.4. The multifractal spectrum of the five samples tested. a) α(q) versus q and b) f(α) versus α(q). 
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Table 3.2. Values of Δα and asymmetry values of singularity spectrum (A) of samples 

Sample  αmax αmin α0 Δα A 

12 2.1688 1.5615 1.7711 0.6073 0.5270 

13 2.3009 1.6157 1.7973 0.6852 0.3606 

14 2.2210 1.4062 1.8156 0.8148 1.0099 

15 2.1826 1.3855 1.8464 0.7971 1.3709 

16 2.2792 1.6544 1.8748 0.6248 0.5450 

 

From the curves in Fig. 3.4a, we can read the values of αmax and αmin, which indicate the fluctuation 

of maximum and minimum probability of pixels (Costa and Nogueira, 2015). The related extension 

of singularity length Δα which is defined as Δα = αmax - αmin can be calculated and the curve 

asymmetry of singularity spectrum (A) can be quantified based on the following equation (Hu et 

al., 2009; Shi et al., 2009): 

0max

min0





−

−
=A                                         (3-19)      

The values of A calculated for the samples are shown in Table 3.2. The data in this Table show 

that Sample 3 has the highest value of the Δα whereas Sample 12 experiencing the lowest value. 

Sample 14 has the largest probability distribution and strongest multifractality. The asymmetry 

values of Sample 12, 13 and 16 listed in Table 3.2 are less than 1, i.e. the curve is left skewed, 

indicating the domain of low exponents and slight fluctuation, while the values of Sample 14 and 

Sample 15 are larger than 1, demonstrating the domain of large exponents and large fluctuation. 
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Fig. 3.5. Homogeneity of the five samples. 

The magnitude of the difference in the values of α0 and D0 is a measure of heterogeneity (Li et al., 

2012). Fig. 3.7 shows the plot of α0 versus D0 of the five tested samples. The data points of all 

samples deviate from the 450 line indicating that the samples are heterogeneous and should be 

described by the multifractal spectra rather than the monofractal dimension. From Fig. 3.5, it can 

also be found that the distance between Sample 14 and the 450 line is the largest, indicating that 

Sample 14 is the most heterogeneous one among all these samples. 

3.3.3. Lacunarity analysis. 

We changed the window moving size and calculated the related lacunarity. Fig. 3.6 shows the grids 

of the image at different scales for Sample 12, as an example. Then we plotted lacunarity values 

against a range of different moving window sizes and the results presented in logarithmic axes. 

Fig. 3.7 shows that the lacunarity values vary as the box size changes. In all cases, as the box size 

increases, the lacunarity value decreases. This is because at small spatial scales, the moving 

window size is much smaller than the size of the dominant textual components of the image, and 

most boxes are either mostly occupied or left empty. As a result, the variance of the number of 

occupied sites in a moving window is large, resulting in high lacunarity. As the box size increases, 

the size of the moving window increases and becomes larger than any repeating spatial pattern in 
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the image, the variance in the number of the occupied sites in the moving window diminishes and 

the lacunarity tends to unity (and its logarithm value tends to zero) (Malhi et al., 2008). The plots 

of Sample 12 and Sample 13 show lower values than those of Sample 14, 15 and 16, showing 

smaller lacunarity values. 

 

                             

Fig. 3.6. SEM image of Sample 12 divided by grids with different length scale. 
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Fig. 3.7. Lacunarity analysis of five samples.  

The mean lacunarity, which is to put the heterogeneity from one perspective and one series of grid 

sizes into an average, was calculated based on the following equation (Costa and Nogueira, 2015): 

),(

]))(/)(1([ 2

rMn

rur
i

+
=                                  (3-20) 

The results of the calculations for the five samples are shown in Fig. 3.8. 
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Fig. 3.8. Lacunarity values of five tested samples. 

This figure shows that Sample 14 has the highest lacunarity value whereas Sample 13 has the 

lowest. As it was mentioned earlier, the sample with higher lacunarity exhibits larger gaps in the 

image, indicating more heterogeneity. Overall, from the lacunarity analysis, Sample 14 exhibits 

the most heterogeneous pore structure among all samples. We compared the heterogeneity analysis 

using both lacunarity and multifractal fractal methods. The results showed that we could derive 

the same results, i.e. Sample 14 is the most heterogeneous and Sample 13 is the most homogeneous 

among all the testing samples, which demonstrates that multifractal theory and lacunarity method 

can derive same results regarding the samples’ heterogeneity.  



 

61 
 

One of the important reasons for the existence of the difference in the heterogeneity between the 

samples is due to the difference in their mineral compositions. Study of the mineral compositions 

of the five samples was done with an intention to derive some relationships between the mineral 

compositions and heterogeneities. Fig. 3.9 illustrates the influence of some primary mineral 

compositions of the samples we analyzed on the heterogeneity values. Based on the data of the 

five samples we can find that the relationships between the heterogeneity value and quartz and 

clay minerals can be described using the logarithmic function, while no clear correlation being 

observed between the heterogeneity and pyrite.  

 

 

Fig. 3.9. Impact of the mineral compositions on the heterogeneity properties. 
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3.4. Discussions 

The representative elementary area is necessary for the digital rock studies in order to use the 

properties of the porous rock under nano or micro scale to cover the macro scale properties. Since 

the introduction of using porosity as the indicator to determine the REA proposed by (Bear and 

Batchmet, 1990), REA has been applied in the field of soil (Vandenbygaart and Protz, 1990) and 

recently been used in shale rocks (Saraji and Piri, 2015; Deng et al., 2016).  However, the 

remaining question is if this method is applicable for determining the REA images of the 

heterogeneous porous medium like shale? To answer this question, we plotted the lacunarity value 

and porosity value in Fig. 3.10 and found that no obvious correlations between  and  can be 

established meaning that porosity cannot be used as a parameter to quantify the heterogeneity of 

the pore structure of these samples. The shortcoming of this method is the lack information about 

the heterogeneity which is an important parameter in shale pore structures.  

We took Sample 12 as an example to further discuss the present REA model. For this sample, we 

chose 176um176 um as the REA. Then we randomly moved this scan size across the whole 

sample surface to capture some images. Fig. 3.11 illustrates that the five images have similar 

porosity results but have various heterogeneities values, showing that using the porosity indicator 

to find the REA in shales cannot guarantee that all the images have the same heterogeneous 

properties. Thus, porosity indicator is not suitable for determination of the REA in shales, which 

are naturally heterogeneous. A new indicator, which combines the porosity and heterogeneity, 

should be used to determine the REA in heterogeneous pores such as shales. 

We analyzed the impact of the magnification on the heterogeneity of Sample 12 which can be 

shown in Fig. 3.12. The heterogeneity value varies as the magnification decreases and then under 

a critical magnification value, the heterogeneity value keeps steady which is similar as the porosity 

in Fig. 3.4. We find the critical magnification point that the heterogeneity value starts to change as 
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the REA(heterogeneity), then we compare the scan size of REAporosity and REA(heterogeneity), and choose 

the larger scan size as the new REA. We also took Sample 12 as an example and found the scan 

size 600um600um as the new REA. Then we randomly used this size to capture images through 

Sample 1 surface and the analysis results are presented in Fig. 3.13. The results showed that all the 

images have similar porosity and heterogeneity. The new indicator which includes both 

heterogeneity and porosity information can be a better indicator to describe the REA of 

heterogeneous samples like shale. In this paper, we focused on using the SEM to determine the 

REA of the shale porosity which is a 2D approach. For the 3D digital rock images, we should use 

the REV (representative elementary volume) to study the pore structures. However, similar to the 

REA determination in this paper, we also need to consider both porosity and heterogeneity 

information to consider the REV for heterogeneous rocks. 
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Fig. 3.10. Relationship between Λ and φ. 
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Fig. 3.11. Comparison of the properties of the image at the same scan size (176um176.39um). 

 

Fig. 3.12. Relationship between heterogeneity and magnification. 
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Fig. 3.13. Comparison of the properties of the image at the same scan size (600um600um). 
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3.5. Conclusions  

The representative elementary area (REA) of five samples from Bakken Formation estimated from 

their SEM images based on the porosity indicator. Multifractal theory and lacunarity methods, 

being newly introduced in Petroleum Engineering applications, were applied to analyze the 

heterogeneities of pore structures of the shale samples under their REA using the porosity 

indicator. The variations of Dq with respect to q showed the existence of the multifractal properties 

of the pore structures. Sample 14 has the largest Δα which indicates its most complex probability 

distributions among all samples. The calculations of the lacunarity value, which can reflect the 

heterogeneous properties, showed that Sample 14 has the highest lacunarity value demonstrating 

that this sample has the most heterogeneous pore structure. The results of the heterogeneity 

analysis from the two indicators, i.e. multifractal value α0/D0 and lacunarity value Λ, are consistent 

with each other. Finally, we proposed a new indicator for REA determination for shale pore 

structure analysis based on the combination of heterogeneity and porosity. 
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CHAPTER 4 

NANOSCALE PORE STRUCTURE CHARACTERIZATION OF THE 

BAKKEN SHALE IN THE USA-GAS ADSORPTION ANALYSIS 
Abstract  

Understanding the pore structures of unconventional reservoirs such as shale can assist in 

estimating their elastic transport and storage properties, thus enhancing the hydrocarbon recovery 

from such massive resources. Bakken Shale Formation is one of the largest shale oil reserves 

worldwide located in the Williston Basin, North America. In this paper, we collected a few samples 

from the Bakken and characterized their properties by using complementary methods including X-

ray diffraction (XRD), N2 and CO2 adsorption, and Rock-Eval pyrolysis. The results showed that 

all range of pore sizes: micro (<2 nm), meso (2-50 nm) and macro-pores (>50 nm) exist in the 

Bakken shale samples. Meso-pores and macro-pores are the main contributors to the porosity for 

these samples. Compared with the Middle Bakken, samples from Upper and Lower Bakken own 

more micro pore volumes. Fractal dimension analysis was performed on the pore size distribution 

data, and the results indicated more complex pore structures for samples taken from the Upper and 

Lower Bakken shales than the Middle Bakken. Furthermore, the deconvolution of the pore 

distribution function from the combination of N2 and CO2 adsorption results proved that five 

typical pore size families exist in the Bakken shale samples: one micro-pore, one macro-pore and 

three meso-pore size families. The studies on the correlations between the compositions and the 

pore structures showed that mostly feldspar and pyrite affect the total pore volume of samples from 

Middle Bakken Formation whereas clay dominates the total pore volume of samples from Upper 
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/Lower Bakken Formation. TOC and clay content are the major contributors to the micro-pore size 

family in the Upper/ Lower Bakken. Also, it was observed that the increase of hard minerals could 

increase the percentage of macro-pore family in the Middle Bakken Formation. 

4.1. Introduction  

The recent advancements in horizontal drilling and hydraulic fracturing have significantly 

increased the recovery from unconventional shale reservoirs such as Bakken shale. The Bakken 

“shale”, located in the Williston Basin in Montana, North Dakota (USA), and southern 

Saskatchewan (Canada), is now the second largest hydrocarbon reservoir in the USA. Compared 

with massive studies of shale gas reservoirs, such as the Barnett (Bowker, 2007), Marcellus (Wang 

and Reed, 2009), Albany (Strapoc et al., 2010), Long maxi (Cao et al., 2015), Perth (Labani et al., 

2013), Toarcian (Houben et al., 2016), Boom clay (Hemes et al., 2015), Posidonia Shale (Klaver 

et al., 2016), Opalinus clay (Houben et al., 2014), the study of shale oil reservoirs is still limited 

and in the primary stages. Consequently, the physical properties, especially the porosity and pore 

size distributions of shale oil formations (i.e. Bakken shale) are still poorly understood. Porosity 

and pore size distributions are the most important parameters in shale reservoirs which influence 

the mechanical, storage and transport properties of the porous media (Boadu, 2000; Sanyal et al., 

2006; Wang et al., 2012). In comparison to the conventional reservoirs such as sandstone or 

limestone, the pore structures in shale reservoirs are more complex due to the abundance of the 

nano-pores. 

According to the International Union of Pure and Applied Chemistry (IUPAC) (1994) 

(Rouquerolb, 1994), pores can be divided into three categories: micro-pores (<2nm), meso-pores 

(2-50nm) and macro-pores (>50nm). Many researchers have applied this criterion to analyze the 

pore structures of shale gas formations with various analytical methods. Field emission scanning 

electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic force 

http://www.sciencedirect.com/science/article/pii/S0166516212001747
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microscopy (AFM) are the image analysis methods to semi-quantify the pores (Klaver  et al., 2016; 

Loucks  et al., 2009; Javadpour , 2009; Javadpour  et al., Liu and Ostadhassan, 2017; Bernard et 

al., 2012; Klaver et al., 2012). Low-pressure gas adsorption, mercury injection capillary pressure 

(MICP), small angle neutron scattering (SANS), nuclear magnetic resonance spectroscopy (NMR) 

are other common techniques to quantify the pore size distributions (Novitz and Cole, 2015; 

Somayeh et al., 2015; Deng et al., 2016; Clarkson et al., 2013; Daigle et al., 2016; Zhao et al., 

2017; Zhao, 2016). With respect to MICP, the potential shortage is that under high pressure of 

around 60,000 psia, the injection of mercury will distort, compress and damage the pore structures 

especially if the sample contains a large amount of compressible clay minerals (Bustin et al., 2008). 

The theoretical calculation shows that MICP cannot measure the pores with sizes below 3.6 nm, 

while the practical limit will be higher (Kuila et al., 2013). A significant number of pores in the 

shale which are less than 3.6 nm is too small to be characterized by the MICP. Regarding nuclear 

magnetic resonance (NMR), the relaxation time (T2) increases as the pore size increases, which 

can be used to characterize the pore size distributions. However, the sample preparation for NMR 

is complicated and the extraction and injection of the liquid can potentially damage the weak pore 

structures of the rock. This process can limit the accuracy of NMR, and the variations that would 

occur in surface relaxation render the results inaccurate (Novitz et al., 2015). 

Gas adsorption is of major importance of measuring the pore structures over a wide range of porous 

materials. Since Dewar (1994) reported the adsorption nitrogen and other gases at liquid air 

temperature when studying the composition of the atmosphere gases, nitrogen has become a 

potentially available adsorption material. The monumental work on the monolayer adsorption by 

Langmuir (1917) attracted a great interest from researchers for the interpretation of adsorption 

data. In the 1930s, Benton and White (1932) published on the existence of the multilayer 

http://www.sciencedirect.com/science/article/pii/S0166516212001747
http://www.sciencedirect.com/science/article/pii/S0264817211001450
http://www.sciencedirect.com/science/article/pii/S0166516212001747
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adsorption of nitrogen at the temperature of 77K. Brunauer and Emmett applied gas adsorption to 

analyze the surface area of samples (Emmett and Brunauer, 1937). In 1938, the publication of the 

Brunauer-Emmett-Teller (BET) theory, which is the extension of the Langmuir monolayer 

adsorption model to a multilayer adsorption model, provided researchers the theoretical method to 

determine the surface area of porous medium (Brunauer et al., 1938). In the late 1940s, by using 

the Kelvin equation, Barrett, Joyner, and Halenda (BJH) proposed a method (Barrett et al., 1951) 

to derive the pore size distributions from the appropriate nitrogen isotherm. The BJH method is 

still one of the most popular methods used to date. In the early 2000s, based on the established 

principles of statistical mechanics and assuming a model solid structure and pore topology, the 

DFT method was proposed and has been an important tool in characterizing the pore size 

distribution of porous samples (Ravikovitch et al., 2000). 

For the geological materials, such as rocks, gas adsorption has been applied frequently nowadays 

to study the shale formations (Cao et al., 2016; Ross and Bustin, 2009; Sun et al., 2016). One 

limitation of nitrogen, which originates from the gas molecule and pore throat sizes, makes it 

inaccurate in characterizing the micro-pore size range (less than 2nm). CO2 adsorption was then 

used to analyze the micro-pores since it works well in the media containing pores less than 2 nm 

(Tang et al., 2003). The combination of nitrogen and CO2 can give us information about the whole 

pore size distributions less than 200nm.  

The purpose of this work is to provide extensive information on the pore size and structure using 

gas adsorption methods (N2 and CO2). In addition, the impacts of the mineral compositions on the 

pore structures of Bakken shale is investigated. 
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4.2. Experiments Procedure 

4.2.1. Sample preparation.  

The Bakken Formation consists of three members (Fig. 4.1): Upper Bakken and Lower Bakken 

that are dark marine shales with high organic content and serve as both the source and trap for the 

generated hydrocarbons, whereas the Middle Bakken, composed of mixed carbonates and fine-

grained clastics, is the main production unit (Ostadhassan et al., 2013; Sonnenberg et al., 2011).  

In this study, 12 samples were collected from Upper Bakken (Sample #17, #18, #19, #20, #21), 

Middle Bakken (Sample #22, #23, #24, #25, #26) and Lower Bakken (#27, #28) to conduct 

experimental pore structure analysis. 

 

Fig. 4.1. Stratigraphic column of Bakken Formation (Li et al., 2015). 

The nano-darcy permeability of the Bakken formation makes the diffusion, penetration, and 

equilibration of the gas molecules impossible or impractical for the intact samples. In order to 

solve this problem, the samples were crushed in order to decrease the path length for the gas to 

access the entire pore structures and acquire the equilibrium within a reasonable time. Based on 

the study by Kuila and Prasad (2013), the creation of the new surfaces during the crushing process 

will not affect the pore structure data within the range of investigation. In this paper, samples were 

crushed to <250 um to be used for gas adsorption analysis (Labani et al., 2013). 
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4.2.2. Mineral composition analysis.  

X-ray diffraction (XRD) was used to analyse the mineralogical compositions of the samples. 

Sample powders with sizes less than 650 mesh were put in the Bruker D8 Advance X-ray 

diffractometer. The scanning measurements were performed at the rate of 2°/min in the range of 

3-90°. The relative mineral percentages were estimated by calculating the curve of the major peaks 

of each mineral with correction for Lorentz Polarization (Chen and Xiao, 2014). 

4.2.3. Geochemical analysis. 

Rock-Eval pyrolysis is applied to quantify the total organic carbon (TOC) and thermal maturity. 

Following the detailed procedures proposed by Behar et al. (2001) (Behar et al., 2001), 60-70 mg 

of each sample was used for the analysis. In this study, we applied the shale reservoir method to 

carry out the Rock-Eval analysis. Shale reservoir method is best-suited for assessing the 

hydrocarbon potential in these unconventional shale reservoirs compared with other two methods 

(default method and reservoir method). This is because the shale reservoir method captures the 

thermos-vaporizable (light) hydrocarbons in the C1-C15 range (Romero-Sarmiento et al., 2015). 

The initial temperature was 100°C, which was increased to 200°C at 25°C /min steps and held 

constant for 3 minutes (for Sh0 calculation), then the temperature is increased to 350°C at 25°C 

/min steps and held steady for 3 minutes (for Sh1 calculation), and finally raised to 650°C at 25°C 

/min steps. For vitrinite reflectance (Ro) analysis, the whole-rock samples were crushed to 20 mesh 

(850 um) particles, mixed with the epoxy resin and hardener (ratio of 2:1) and left to harden under 

vacuum conditions for 24 hours (Hackley et al., 2015). The samples were polished to ensure that 

the surface is scratch and relief free by using Buehler EcoMet/ AutoMet 250 automated polishing 

equipment. A Carl Zeiss Axio Imager A2m microscope, equipped with a white light source and a 

UV light to analyse the reflectance in oil (Ro) and fluorescence, was used for reflectance 

measurements and visual kerogen analysis. 
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4.2.4. Gas adsorption.  

Prior to adsorption measurement, the samples were degassed for at least 8 hours at 110℃ to 

remove moisture and volatile in the sample pores. Low-pressure nitrogen was measured on a 

Micromeritics® Tristar II  apparatus at 77K. Carbon dioxide adsorption was measured on a 

Micromeritics® Tristar II plus apparatus at 273K. Gas adsorption volume was measured over the 

relative equilibrium adsorption pressure (P/P0) range of 0.01-0.99, where P is the gas vapor 

pressure in the system and P0 is the saturation pressure of nitrogen.  

The gas adsorption experimental data was used to quantify the amount of the gas adsorbed at 

different relative pressures (P/P0) where P0 is the saturation pressure of the absorbent and the P is 

gas vapour pressure in the system.  

For the surface area determination, we used the multipoint to calculate the BET. We plotted a 

straight line ]1)/[(/1 0 −PPv  as the y axis and P/P0 (range as the 0.05-0.3) as the x axis, which is 

also called the BET plot according to the requirement of ISO 9277 (2010). The value of the slope 

and the y intercept of the line were used to calculate the monolayer adsorbed gas quantity and the 

BET constant. The surface area can then be calculated from the BET (Brunauer, Emmett and 

Teller) theory (Brunauer et al., 1938). 

For nitrogen adsorption, the total volume can be derived from the total amount of vapor adsorbed 

at the relative pressure (P/P0) which is close to 1, assuming that the pores are filled with the liquid 

adsorbate. The average pore radius of the sample can be calculated as: 

S

V
rp

2
= ,                    (4-1) 

where V is the total amount of the nitrogen adsorbed, and S is the surface area derived from the. 

To calculate the pore size distribution (PSD) from the nitrogen adsorption, BJH and DH model 

cannot give the realistic description of micro-pore filling which can lead to an underestimation of 
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pore sizes for micro pores and even the smaller meso-pores (Ravikovitch et al., 1998). In this 

study, we applied density functional theory (DFT) molecular model due to its applicability in 

determining the PSD in micro-pore scale as well as meso-pore scale (Do and Do, 2003). The 

carbon dioxide adsorption data were interpreted using the non-local density functional theory 

(Amankwah and Schwarz, 1995; Fan and Ziegler, 1992).  

4.3. Results  

4.3.1. Mineral composition and geochemical properties. 

Table 4.1 summarizes the mineral compositions of the samples obtained from the XRD analysis. 

The results showed that quartz, pyrite, feldspar, and clay minerals are the main minerals that exist 

in the Bakken samples. Samples from the Upper and Lower Bakken have similar mineral types. 

The results in Table 4.2 show the data of the geochemical properties where that the samples from 

the Upper and Lower Bakken have rich organic matters with TOC of more than 10%. The vitrinite 

reflectance-equivalent (VRo) of the samples (converted from bitumen VBo using the equation: 

VRo=VBo*0.618+0.4) varied from 0.64% to 1.12%. Sample 17 is the immature sample whereas 

Sample 21 has the highest maturity value. 

Table 4.1. Mineral composition analysis results of the Bakken samples 

Samples Bakken Formation Quartz, % Pyrite, % feldspar, % clay, % dolomite, % calcite, %  

#17 Upper Bakken 56.50 23.40 8.90 11.20 0.00 0.00 

#18 Upper Bakken 65.20 2.83 3.30 27.00 0.00 0.00 

#19 Upper Bakken 16.90 2.80 55.00 24.00 0.00 0.00 

#20 Upper Bakken 46.80 2.70 3.90 46.00 0.00 0.00 

#21 Upper Bakken 48.10 4.58 15.20 25.30 7.00 0.00 

#22 Middle Bakken 42.50 2.76 13.00 15.83 22.50 0.00 

#23 Middle Bakken 37.54 0.10 11.10 14.50 11.00 25.70 

#24 Middle Bakken 38.25 2.29 13.20 13.60 25.00 7.60 

#25 Middle Bakken 24.74 1.09 9.50 42.22 12.40 9.80 

#26 Middle Bakken 16.85 0.67 6.39 62.94 5.24 7.50 

#27 Lower Bakken 58.00 5.90 2.50 30.00 0.00 0.00 

#28 Lower Bakken 44.00 5.20 6.60 33.00 0.00 0.00 
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Table 4.2. TOC and maturity analysis of the Upper and Lower Bakken samples 

Samples Bakken Formation VRo-eq, % TOC, % 

#17 Upper Bakken 0.64 14.27 

#18 Upper Bakken 0.87 13.54 

#19 Upper Bakken 0.89 17.53 

#20 Upper Bakken 0.89 13.97 

#21 Upper Bakken 1.12 13.00 

#27 Lower Bakken 0.94 16.96 

#28 Lower Bakken 0.90 10.55 

4.3.2. Nitrogen gas adsorption.  

4.3.2.1.  Nitrogen gas adsorption curve analysis.  

Fig. 4.2 represents the nitrogen gas adsorption data for all samples. At the extremely low relative 

pressure, the pores exhibit micro-pore filling and the amount of the adsorption will depend on the 

micro-pore volume. Then as the relative pressure increases, the multilayer adsorption will be 

formed. The knee-bend in Fig. 4.2a in the adsorption isotherm indicates the completion of the 

monolayer and the beginning of the multilayer, which can reflect the existence of the meso-pores 

and macro-pores. At the higher relative pressure, the gas in the pores starts to condense. It should 

be mentioned that gas condensation at various pressures takes place in pores with different sizes. 

For the desorption part of the Middle Bakken samples (Fig. 4.2b), as the relative pressure 

decreases, the quantity of gas adsorption decreases. Then, the desorption curve was forced to 

coincide with the adsorption curve which is caused by the “tensile strength effect” (Groen et al., 

2003). The hysteresis loop between the adsorption and desorption can be viewed in Fig. 4.2b due 

to the existence of the meso-pore pores in the Middle Bakken samples.  

The capillary condensation will occur during adsorption and is proceeded by a metastable fluid 

state while capillary evaporation during desorption occurs via a hemispherical meniscus, 

separating the vapor and the capillary condensed phase (Groen et al., 2003). The sudden 

disappearance of the hysteresis loop in Fig. 4.2b around a certain relative pressure can indicate the 

presence of the small pores less than 4 nm in the Middle Bakken samples. This is due to the 
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hemispherical meniscus that will collapse during the capillary evaporation in pores with the 

diameter less than 4 nm. The shape of the hysteresis loop can indicate the pore type of the porous 

medium. From Fig. 4.2 in the Middle Bakken samples, the desorption part of measurement exhibits 

an obvious yielding point at the critical relative pressure. When the relative pressure becomes 

larger than the critical point, the adsorption and desorption both increase steeply, and the hysteresis 

loop is very narrow which represents the plate type pores in the Middle Bakken Formation. For 

the Upper and Lower Bakken, the hysteresis loop is very wide, and the adsorption and desorption 

portion of the curve is flat from the beginning to the end of desorption, which represents the silt 

type pore. In comparison with Middle Bakken samples, the hysteresis loop in the Upper and Lower 

Bakken samples does not disappear suddenly and there was no obvious forced closure 

phenomenon (Fig. 4.2a and Fig. 4.2c). This indicates that the samples from Upper and Lower 

Bakken Formation contain abundant pores smaller than 4 nm (Cao et al., 2015). The plate-shape 

pores in the Middle Bakken and the silt-shape pores in Upper and Lower Bakken is advantageous 

for the flow of the hydrocarbon due to their excellent openness. None of the samples we analysed 

in this study, showed a horizontal plateau at the relative pressure close to 1, which illustrates that 

the Bakken shale samples still contain a range of macro-pores which cannot be analysed by the 

nitrogen gas adsorption method (Cao et al., 2016; Schmitt et al., 2013).  
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                             (a) Upper Bakken                                                               (b) Middle Bakken 
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(c) Lower Bakken 

Fig. 4.2. Low pressure N2 isotherms for the Bakken shale samples. 

4.3.2.2. PSD analysis from the nitrogen adsorption.  

Due to the tensile strength effect, the pore size distribution analysis which can be estimated from 

the desorption curve, will be limited to 4-5 nm which cannot describe the pore structures 

accurately. So, in this paper, the adsorption branch will be chosen for the PSD analysis. Fig. 4.3 

shows the pore size distribution of the samples based on the DFT theory. The PSD curve of all 

samples exhibited the multimodal characteristic with several volumetric maxima. The pore 

structures were analysed, and the following observations were reached:  

• Middle Bakken has larger pore volume and average pore size diameter than the Upper and 

Lower Bakken (Table 4.3). 

• Positive relationships exist between macro pore volume and average pore diameter (Fig. 

4.4a); total pore volume and pore diameter (Fig. 4.4b). 

• An overall inverse correlation exists between the average pore diameter and the BET 

surface area (Fig. 4.5a). BET shows an increasing trend as the micro-meso pore volume 

increases (Fig. 4.5b) while no obvious relationship can be seen between the macro-pore 

volume and BET surface area (Fig. 4.5c). 
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Fig. 4.3. PSD analysis of Bakken samples using nitrogen adsorption. 
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   (a)                                                                                          (b) 

Fig. 4.4. Average pore diameter versus (a) Macro-pore volume and (b) Total pore volume. 

Table 4.3. Low pressure nitrogen adsorption analysis results 

Samples Bakken Formation 
BET surface area, Total pore volume, Micro-Meso pore, 

Average pore 

diameter, 

m2/g  cm3/100g cm3/100g nm 

#17 Upper Bakken 3.292 0.937 0.829 11.384 

#18 Upper Bakken 3.785 0.887 0.765 9.370 

#19 Upper Bakken 3.481 1.003 0.890 11.525 

#20 Upper Bakken 2.624 0.476 0.435 7.262 

#21 Upper Bakken 4.080 0.747 0.697 7.321 

#22 Middle Bakken 5.021 1.372 1.265 10.929 

#23 Middle Bakken 4.823 1.425 1.256 11.818 

#24 Middle Bakken 2.197 0.998 0.874 18.179 

#25 Middle Bakken 4.765 1.633 1.462 13.711 

#26 Middle Bakken 5.934 1.525 1.409 10.277 

#27 Lower Bakken 4.359 0.499 0.469 4.581 

#28 Lower Bakken 3.897 0.856 0.777 8.784 
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(c) 

Fig. 4.5. BET versus (a) Average pore diameter, (b) Micro-meso pore volume and (c) Macro pore volume. 

4.3.2.3. Fractal analysis.  

Fractal geometry, proposed by the Mandelbrot (1982) (Mandelbrot, 1982), has a strong ability to 

describe the irregular or fragmented shape of natural features as well as other complex objects that 

traditional Euclidean geometry fails to characterize (Lopes and Betrouni, 2009). Fractal dimension 

(D) is the key parameter in the fractal geometry, which can offer a systematic approach to quantify 

irregular patterns. For the gas adsorption theory, several fractal models have been developed such 

as the BET model, fractal FHH model and the thermodynamic model (Avnir and Jaroniec, 1989; 

Cai et al., 2011; Yao et al., 2008). The fractal FHH model which focuses on the capillary 

condensation region of the fractal surface, has been proven to be the most effective method for 

analyzing the fractal behavior of porous medium (Yao et al., 2008). FHH model can be described 

using the following equation:       

)))//(1ln(ln()3(tanln 0PPDtConsV −+=                        (4-2) 

Where V is the total volume of the adsorption, P is the equilibrium pressure, P0 is the saturated 

vapour pressure of the adsorption and D is the fractal dimension. 
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(a)                                                                                    (b) 

Fig. 4.6. Fractal analysis of Bakken Sample (#20). 

Based on previous studies (Sun et al., 2016), the nitrogen adsorption isotherm can be divided into 

two main regions (Fig. 4.6a). Region 1 is the monolayer-multilayer adsorption in which the 

dominant force is van der Waals and Region 2 is the capillary condensation regime with the surface 

tension being the dominant force (Khalili et al., 2000; Qi et al., 2002). We separated the nitrogen 

adsorption isotherm and analysed the fractal behaviour of the two regions respectively. D1 can 

reflect the fractal behaviour of region 1 with D2 representing the fractal behaviour of region 2 (Fig. 

4.6b). The fractal analysis results for the samples are presented in Table 4.4. The results show that 

for all the samples, the fractal dimension of region 2 (D2) is larger than the fractal dimension of 

region 1 (D1). This is interpreted as D2 describes the capillary condensation of gas clumps occurred 

in the shale pores while D1 value represents the mono-multilayer adsorption. As more gas was 

adsorbed, more molecules were available to cover the aggregated outline thus increasing the 

surface fractal dimension (Sahouli et al., 1997; Tang et al., 2016).  D2 is larger than D1 can also 

indicate that the pore structures of the shale samples are more complicated than the pore surface. 

Samples from the Middle Bakken Formation with higher average D1 values and lower D2 values 
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than samples from the Upper and Lower Bakken Formation corresponds to more irregular pore 

surface and less complicated pore structures. 

Table 4.4. Fractal analysis of the Bakken samples 

Samples Bakken Formation Slope D1 R2 Slope D2 R2 

#17 Upper Bakken -0.769 2.231 0.998 -0.368 2.632 0.991 

#18 Upper Bakken -1.297 1.703 0.999 -0.269 2.731 0.993 

#19 Upper Bakken -0.885 2.115 0.997 -0.359 2.641 0.995 

#20 Upper Bakken -0.771 2.229 0.995 -0.376 2.624 0.996 

#21 Upper Bakken -0.952 2.048 0.999 -0.270 2.730 0.994 

#22 Middle Bakken -0.632 2.368 0.999 -0.519 2.481 0.998 

#23 Middle Bakken -1.107 1.893 0.996 -0.456 2.544 0.996 

#24 Middle Bakken -0.868 2.132 0.997 -0.602 2.398 0.999 

#25 Middle Bakken -0.724 2.276 0.996 -0.500 2.500 0.997 

#26 Middle Bakken -0.662 2.338 0.999 -0.470 2.530 0.997 

#27 Lower Bakken -0.818 2.182 0.990 -0.298 2.703 0.999 

#28 Lower Bakken -0.895 2.105 0.994 -0.304 2.697 0.994 

The correlations between the fractal dimension (D2) and the pore structures were analysed further. 

Fig. 4.7 shows that the fractal dimension D2 has a negative linear relationship between the total 

pore volume and the average diameter. The shale samples in the Bakken Formation with smaller 

pore volume and smaller average diameter tends to have higher fractal dimension D2, 

demonstrating that those samples have more complex pore structures.  

 

(a)                                                                                   (b) 

Fig. 4.7. Correlations between the D2 and (a) Total pore volume; (b) Average pore diameter. 
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4.3.3. CO2 adsorption analysis.  

In order to characterize the pores with sizes less than 2 nm, CO2 gas adsorption was applied. Fig. 

4.8 shows the CO2 adsorption isotherms of all samples tested in this study. The CO2 adsorption 

isotherms of the Upper Bakken and Lower Bakken have similar shapes. As the relative pressure 

increases from 0, the adsorption quantity increases rapidly followed by a slow increase after the 

relative pressure reaches a critical point. For the Middle Bakken, the adsorption quantity increases 

with an increasing rate as the relative pressure increases. This is since CO2 is first adsorbed into 

the smaller pores and then into the relatively large pores as relative pressure increases. The 

difference in the CO2 adsorption isotherms between the Upper/Lower and the Middle Bakken 

Formation originates from their different pore microstructures.  
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(c) Lower Bakken 

Fig. 4.8. CO2 adsorption isotherms for Bakken samples. 

 

The results in Table 4.5 show that Upper and Lower Bakken formations own more micro-pores 

(approximately 3 times) than the Middle Bakken. Pores with sizes less than 1 nm exist in the Upper 

and Lower Bakken. Pores with size range of 1 nm to 2 nm are the main contributors to the total 

porosity of micro-pores for the Bakken samples. 

Table 4.5. Pore size analysis from the CO2 adsorption 

Samples Bakken Formation Micro-pore<2nm, cm3/100g Micro-pore<1nm, cm3/100g 

#17 Upper Bakken 0.159 0.025 

#18 Upper Bakken 0.152 0.025 

#19 Upper Bakken 0.126 0.020 

#20 Upper Bakken 0.146 0.025 

#21 Upper Bakken 0.186 0.039 

#22 Middle Bakken 0.048 0.000 

#23 Middle Bakken 0.035 0.000 

#24 Middle Bakken 0.019 0.000 

#25 Middle Bakken 0.028 0.000 

#26 Middle Bakken 0.048 0.000 

#27 Lower Bakken 0.128 0.024 

#28 Lower Bakken 0.090 0.020 
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4.3.4. Full range pore size analysis.  

CO2 adsorption can characterize the pore sizes less than 2 nm while nitrogen performs well in 

quantifying the meso-pores and the macro-pores (less than 200 nm). In this section, the pore size 

distribution results of the two gas adsorption methods were combined in order to analyse the pore 

structures. The blue curve in Fig. 4.9 shows the pore size distributions (less than 200 nm) of several 

samples. In order for quantitative measure of the pore size distributions, deconvolution method 

was applied to determine the mean size and the standard deviation of each pore size family in a 

given distribution. The pore size family can be quantified by the distinct peaks from the pore size 

distribution. Gaussian/normal distribution is commonly used to describe the experiments 

regardless of whatever probability distribution describes an individual experimental result. The 

detailed deconvolution procedure can be found in Ulm (2007) (Ulm et al., 2007). In this procedure, 

it can be assumed that the pores can be divided into J=1, n pore size groups with sufficient contrast 

in pore size distributions. The Jth pore group occupies a volume fraction fJ of the total porosity. 

The theoretical probability density function (PDF) of the single phase, which is assumed to fit a 

normal distribution is defined as:     
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Where JU  and JS  are the mean value and the standard deviation of pore size distributions of the 

phase J=1 to n.  Minimizing the difference between the data from the weighted model-phase 

probability distribution function (PDF) and the experimental PDF using the following equation, 

we can derive the unknowns { fJ , JU  , JS , }: 
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                                                   1
1

=
=

n

J

Jf                                                          (4-5) 

In the above equation, Px (xi) is the measured value of the normalized frequency of the pore size xi 

and m is the number of the intervals (bins).  

To ensure that the pore size groups have sufficient contrast, the overlap of successive Gaussian 

curves representative of the two phases is constrained by the following criterion (Sorelli et al., 

2008).  

                                                        11 ++ ++ JJJJ SUSU                                (4-6) 

The colorful curves in Fig. 4.9 display the deconvolution results of the samples and the red dash 

curve shows the fit sum of the deconvolution phases. The fitting coefficients of all the samples are 

above 0.80, which shows that the models fit the experimental data very well. It can be found that 

the pores in Upper, Middle and Lower Bakken have five typical pore size categories. Table 4.6 

shows the deconvolution results for all samples. The deconvolution results of the samples 

demonstrate that the Bakken samples analysed (Upper, Middle, and Lower Bakken shales) have 

similar pore size families. One pore size category exists in the micro-pore scale with mean value 

around 1.5 nm (Family 1), which is defined as the micro-pore size family and one pore size 

category that is in the macroscale with mean size value larger than 50 nm (Family 5), which is 

defined as the macro-pore size family. The other three pore families belong to the meso-pore scale 

with mean size value 9 nm (Family 2), 24 nm (Family 3) and 34 nm (Family 4), respectively, 

which can be defined as the meso-pore families. Compared with the volume ratios of each pore 

size family, it was observed that the percentage of micro-pore size family is larger in the samples 

from the Upper and Lower Bakken than that of the Middle Bakken. 
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                                       (a) Upper Bakken                                             (b) Middle Bakken 

 

(c) Lower Bakken 

Fig. 4.9. Full pore size distribution from gas adsorption and its deconvolution results. 
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Table 4.6. Deconvolution results of the pore size distributions 

Samples 
Family 1 Family 2 Family 3 

mean, nm SD Volume, % Mean, nm SD Volume, % mean, nm SD Volume, % 

#17 1.386 0.030 0.629 8.772 1.178 10.568 23.977 0.576 13.642 

#18 1.399 0.030 0.588 6.964 0.657 8.050 24.402 0.743 8.877 

#19 1.393 0.026 0.426 8.558 0.803 10.378 23.977 0.424 13.014 

#20 1.409 0.028 2.813 9.685 1.831 10.382 24.319 1.016 22.813 

#21 1.388 0.030 1.017 7.685 1.064 16.880 24.399 1.382 23.998 

#22 1.454 0.027 0.162 10.473 0.342 15.732 23.729 0.431 27.444 

#23 1.544 0.141 0.080 9.378 0.736 12.443 23.716 0.487 11.600 

#24 1.384 0.945 0.125 10.814 0.302 7.836 23.991 0.250 20.080 

#25 1.544 0.455 0.028 9.988 0.581 12.500 23.625 0.284 12.973 

#26 1.528 0.099 0.159 9.976 0.643 15.131 23.431 0.335 16.132 

#27 1.391 0.026 1.105 8.516 1.883 9.131 24.374 0.757 27.651 

#28 1.367 0.036 0.279 7.899 0.629 11.839 23.986 0.475 11.904 

 

Samples 
Family 4 Family 5 

mean, nm SD Volume, % mean, nm SD Volume, % 

#17 34.141 4.638 30.201 66.914 21.395 44.961 

#18 34.007 3.825 37.732 82.680 24.893 44.753 

#19 33.989 3.118 31.495 67.335 15.057 44.688 

#20 34.473 6.505 20.938 52.022 24.583 43.056 

#21 36.442 2.956 8.542 52.305 23.084 49.564 

#22 35.702 1.104 14.365 54.352 6.117 42.296 

#23 34.336 4.535 34.969 78.865 12.470 40.907 

#24 34.933 0.850 18.030 57.438 2.781 53.929 

#25 33.667 2.891 33.927 69.191 8.940 40.572 

#26 32.841 3.684 34.826 61.260 14.844 33.752 

#27 33.966 3.020 26.620 50.326 18.566 35.493 

#28 32.961 3.411 37.000 67.151 30.624 38.977 

 

4.4. Discussion 

4.4.1. Sample compositions versus pore structures.  

Mineralogical compositions can affect the pore structures of samples. The mineral compositions 

of the Upper and Lower Bakken shale samples are similar, but they are different compared to the 

Middle Bakken. To better understand how the compositions, control the pore structures, the Upper 

and Lower shale samples were treated as one group and the Middle Bakken samples as another 
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group. In order to avoid eliminating the influence of one parameter on the other based on the 

bivariate plots, when in fact the parameter may exert a significant influence when it is joined by 

another independent parameter, PLS (partial least squares regression) was applied. Partial least 

squares regression (PLS), which is also known as the bilinear factor model, is a statistical method 

that shows a similarity to the principal components regression. Instead of finding hyperplanes of 

maximum variance between the response and independent variables, this method finds a linear 

regression model by projecting the predicted variables and the observable variables to a new space. 

The governing pore structure parameters (total pore volume, micro-pore volume, meso-pore 

volume and macro-pore volume) will be input as the dependent parameters while the compositions 

of the samples are considered as the independent parameters. 

Table 4.7. Correlations between the pore structures and the compositions of shale samples (Middle Bakken) 

    Dependent variables 

    
Total pore volume, Micro-pore, Meso-pores, Macro-pore, 

cm3/100g cm3/100g cm3/100g cm3/100g 

  Intercept 1.751 0.043 1.554 0.154 

Independent Variables 

Quartz, % -0.003 0.000 -0.003 0.000 

Pyrite, % -0.031 -0.001 -0.028 -0.001 

Feldspar, % -0.015 0.000 -0.014 -0.001 

Clay, % 0.002 0.000 0.002 0.000 

Dolomite, % -0.006 0.000 -0.005 0.000 

Calcite, % 0.001 0.000 0.001 0.000 

  R2  0.531 0.115 0.529 0.083 

Table 4.7 summarizes the PLS fitting model results on the Middle Bakken samples. The results 

demonstrate that pyrite followed by feldspar affects the total pore volume or meso-pore volumes 

most. The total (meso) pore volume increases as the clay minerals and the calcite increases. 

Negative correlations can be found between the total (meso) pore volume and other existing 

minerals such as quartz, pyrite and feldspar. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Principal_component_regression
https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Predicted_variable
https://en.wikipedia.org/wiki/Observable_variable
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Following similar method, the impact of the mineralogical composition on the pore structures of 

the samples from Upper and Lower Bakken Formation were analysed. Since the Upper and Lower 

Bakken samples are rich in organic matter (high TOC content), the TOC can be treated as an 

independent parameter that can potentially affect the pore structures. Table 4.8 shows that clay 

minerals are the most important parameter that influences the total (meso) pore volume of the 

Upper and Lower Bakken. The total pore volume/meso-pore volume increases as the clay content 

decreases. Organic matter has negative influence on the pore volume because the organic matter 

in the samples analysed, and also based on our previous studies, is non-porous. 

Table 4.8. Correlations between the pore structures and the compositions of shale samples (Upper and Lower 

Bakken) 

    Dependent variable 

    
Total pore volume, Micro-pores,  Meso-pores, Macro-pores 

 cm3/100g cm3/100g cm3/100g cm3/100g 

  Intercept 1.175 0.147 0.914 0.114 

Independent Variable 

Quartz, % -0.002 0.000 -0.002 0.000 

Pyrite, % 0.007 0.000 0.006 0.001 

Feldspar, % 0.004 0.000 0.004 0.001 

Clay, % -0.010 0.000 -0.009 -0.001 

TOC, % -0.001 0.000 -0.001 0.000 

  R2  0.590 0.017 0.561 0.353 

 

4.4.2 Mineral compositions versus pore size families. 

Based on the observation from full pore size analysis of integrated gas adsorption, the pores 

existing in the Bakken samples can be grouped into 5 pore size families. The impact of the 

compositions of the samples on the pore size families was also analysed. The compositions of the 

samples were considered as the independent parameter while the volume fractions of the five pore 

size families were considered as the dependent parameter. Similar to the previous part, the Middle 

Bakken samples and Upper/Lower samples were analysed separately. 
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Considering the Middle Bakken samples, Table 4.9 explains that clay minerals and calcite have 

similar effects on the pore size families. As their content increases within the samples, the 

percentage of pore size families 2 and 4 increases while the percentage of pore size families 3 and 

5 decreases.  Regarding pore size family 5 (macro-pore size family), the increase of the hard 

minerals such as quartz, pyrite, feldspar and dolomite increases its volume fraction, which means 

that hard minerals are the main contributors to the macro-pore size family distribution and 

abundance. 

Table 4.9. Correlations between the pore size families and the compositions of shale samples (Middle Bakken) 

    Dependent Variable 

    Family 1 Family 2 Family 3 Family 4 Family 5 

  Intercept 0.088 14.903 9.339 44.261 31.409 

Independent variable 

Quartz, % 0.000 -0.021 0.082 -0.168 0.107 

Pyrite, % 0.003 -0.262 1.002 -2.055 1.313 

Feldspar, % 0.001 -0.094 0.361 -0.740 0.473 

Clay, % 0.000 0.010 -0.037 0.075 -0.048 

Dolomite, % 0.000 -0.038 0.143 -0.294 0.188 

Calcite, % 0.000 0.013 -0.049 0.101 -0.065 

  R2 0.048 0.147 0.512 0.849 0.670 

 

For the Upper and Lower Bakken, it was found that TOC and clay content are the two governing 

parameters controlling the pore size family 1 (micro-pore size family) as seen in Table 4.10. As 

the TOC and clay content increase, the ratio of the pore size family 1 increases, indicating that 

TOC and clay cause the major abundance of micro-pore size family.  
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Table 4.10. Correlations between the pore size families and the compositions of shale samples (Upper and Lower 

Bakken) 

    Dependent variables 

    Family 1 Family 2 Family 3 Family 4 Family 5 

  Intercept -1.040 13.172 6.335 31.756 49.778 

Independent Variable 

Quartz, % 0.007 -0.008 0.040 -0.015 -0.024 

Pyrite, % -0.022 0.023 -0.119 0.046 0.072 

Feldspar, % -0.017 0.018 -0.091 0.035 0.055 

Clay, % 0.043 -0.046 0.237 -0.091 -0.143 

TOC, % 0.070 -0.074 0.384 -0.147 -0.232 

  R2 0.472 0.049 0.201 0.015 0.185 

 

4.5. Conclusions  

In this study, gas adsorption (N2 and CO2) was used to analyse the pore structures of several 

samples from Bakken Formation. Based on the results, the following conclusions were made: 

• Nitrogen gas adsorption showed that the Bakken shale samples have micro-, meso- and 

macro-pores while the meso-pores are the main pore type. Middle Bakken shale samples 

have more pore volumes than that of the Upper and Lower Bakken formations. 

• Fractal dimension analysis demonstrated that pore structures of the Bakken shale samples 

exhibit more complexity than the pore surface. The samples from Middle Bakken in 

comparison to the Upper/Lower Bakken have less complex pore structures. The 

correlations between the fractal dimension and pore structures revealed that the fractal 

dimension (D2) increases as the total pore volume or average pore size decreases, indicating 

that the pore structures in those samples are becoming more complex. 

• CO2 adsorption quantifies the pore sizes smaller than 2 nm. Upper and Lower Bakken have 

more micro-pores (by almost 3 times) compared to the Middle Bakken. Upper and Lower 

Bakken contain pores with sizes smaller than 1 nm while Middle Bakken samples do not 
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have this range of pore sizes. Pores within the size of 1 nm to 2 nm are the major 

contributors to the total micro-pores in Bakken samples. 

• The deconvolution of the total pore size distribution which is estimated in the gas 

adsorption (combination of nitrogen and CO2) experiments provided us with five different 

distinct pore size families. One family in the micro-pore with mean value 1.5 nm, one 

family in the macro-pore with mean size value larger than 50 nm and the rest three pore 

families belong to the meso-pore with mean size values of 9 nm, 24 nm and 34 nm, 

respectively.  

• For the Middle Bakken, feldspar and pyrite are the two major minerals that affect the total 

pore volume. However, for the Upper and Lower Bakken, clays are the most important 

parameter that influences the total pore volume. Hard minerals are the main contributors 

to the volume fraction of the macro pore family in Middle Bakken Formation while TOC 

and clays are the major contributors for the percentage dominance of the micro-pore size 

family in the Upper and Lower Bakken. 
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CHAPTER 5 

 MULTIFRACTAL ANALYSIS OF GAS ADSORPTION ISOTHERMS FRO 

PORE STRUCTURE CHARACTERIZATION OF THE BAKKEN SHALE 
Abstract  

Understanding pore heterogeneity can enable us to obtain a deeper insight into the flow and 

transport processes in any porous medium. In this study, multifractal analysis was employed to 

analyze gas adsorption isotherms (CO2 and N2) for pore structure characterization in both a source 

(Upper-Lower Bakken) and a reservoir rock (Middle Bakken). For this purpose, detected 

micropores from CO2 adsorption isotherms and meso-macropores from N2 adsorption isotherms 

were analyzed separately. The results showed that the generalized dimensions derived from CO2 

and the N2 adsorption isotherms decrease as q increases, demonstrating a multifractal behavior 

followed by f(α) curves of all pores exhibiting a very strong asymmetry shape. Samples from the 

Middle Bakken demonstrated the smallest average H value and largest average α10-- α10+ for 

micropores while samples from the Upper Bakken depicted the highest average α10-- α10+ for the 

meso-macropores. This indicated that the Middle Bakken and the Upper Bakken have the largest 

micropore and meso-macropore heterogeneity, respectively. The impact of rock composition on 

pore structures showed that organic matter could increase the micropore connectivity and reduce 

micropore heterogeneity. Also, organic matter will reduce meso-macropore connectivity and 

increase meso-macropore heterogeneity. We were not able to establish a robust relationship 

between maturity and pore heterogeneity of the source rock samples from the Bakken.
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5.1. Introduction  

Oil and gas unconventional shale and conventional hydrocarbon plays contribute a significant 

amount of petroleum production. Various pore sizes, from nano- to macro- are reported in these 

reservoirs all around the globe; for example, Second White Speckled Shale (Yin et al., 2016), 

Dalong Shale (Wei et al., 2018), Perth Shale (Zou et al., 2017), Bakken Shale (Liu et al., 2017a), 

Barnett Shale (Bowker, 2007), and Marcellus Shale (Wang and Reed, 2009). Therefore, 

understanding the pore structures can result in a deeper insight about the flow and storage 

capabilities of any porous medium (Kirchofer et al., 2017; Aljama and Wilcox, 2017). 

During the past decade, a wide range of methods have been applied to characterize these pores 

including: mercury intrusion porosimetry (MIP) ( Cao and Hu, 2013), gas adsorption method 

(Huang and Zhao, 2017), small angle neutron scattering (SANS) and ultra-small angle neutron 

scattering (USANS) (Clarkson, et al., 2013), nuclear magnetic resonance (NMR) (Zhao et al., 

2017), direct observation methods such as: field emission scanning electron microscope (FE-SEM) 

(Liu and Ostadhassan, 2017; Loucks et al., 2009; Klaver et al., 2012), atomic force microscopy 

(AFM) (Javadpour, 2009; Liu et al., 2016), microfocus X-ray computed tomography (u-CT) (Li et 

al., 2017; Su et al., 2018) and transmission electron microscope (TEM) (Bernard et al., 2012). In 

this regard, each method has advantages and disadvantages. For example, FE-SEM can directly 

detect size and distribution of larger pores but cannot provide any information about micropores 

because of limitations in tool resolution (Liu et al., 2017a). MIP determines the largest entrance of 

mercury into a pore (i.e., pore-throat size) instead of measuring the true pore size (Giesch, 2006). 

Moreover, a high injection pressure rate will potentially damage the pore structures of the shale 

with high clay content (Anovitz and Cole, 2015). The methods that mentioned above can provide 

us with acceptable information about the porosity and pore size distribution (PSD) of rocks. 

However, in addition to PSD and porosity as a quantity, the complexity of the pore network is 

http://www.sciencedirect.com/science/article/pii/S0166516212001747
http://www.sciencedirect.com/science/article/pii/S0264817211001450
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another major parameter that needs to be characterized due to its importance in affecting flow 

properties and gas storage capacity in different rock samples (Li et al., 2015). Notwithstanding the 

importance, understanding the complexity of pore structure and pore network in shale formations 

is still a task that needs further attention. 

It is well understood that pore size in shales is not uniformly distributed thus cannot be represented 

by traditional Euclidean geometry (Li et al., 2015; Tang et al., 2010; Wang et al., 2012). Thus, in 

order to describe the complexity that exists in pore structures, fractal theory, initially proposed by 

Mandelbrot (1977), has been widely used instead. A fundamental characteristic of a fractal object 

is that the measured properties are a function of the scale of measurement (Lopes and 

Betrouni,2009). So far, several methods have been proposed and used extensively by researchers 

on methods to define a fractal behavior, such as: box-counting (Russel et al., 1980; Chaudhuri and 

Sarkar, 1995), fractional Brownian methods (Pentland, 1984) and area measurement methods 

(Shelberg et al., 1983; Peleg et al., 1984). The box-counting method was defined by Russel et al 

(1984) and became one of the most popular methods for gas adsorption isotherms data analysis. 

This method is defined by applying different boxes of various lengths to cover the whole signal 

spectrum to be analyzed (Russel et al., 1980; Chaudhuri and Sarkar, 1995). In addition to box-

counting, fractional Brownian is also another method that has been used for fractal analysis and is 

based on a non-stationary model to describe random phenomenon. This model is a generalized 

form of Brownian motion where the expected value of intensity differences between two points 

should be zero. However, the square of the differences should be proportional to the distance 

between these two points and fit the power law (Pentland, 1984). Another commonly used method 

for fractal analysis is the area measurement, which uses structuring elements such as triangle, 

erosion, or dilation of various scales and then computes the area of the signal intensity surface at 
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that corresponding scale. Three algorithms: isarithm method, blanket method, and the triangular 

prism method are the most popular ones in the area measurement methods to calculate the fractal 

dimensions (Shelberg et al., 1983; Peleg et al., 1984; Clarke et al., 1986). 

However, fractal models can only capture a simple fractal behavior that can be described only by 

one parameter-fractal dimension (D0). This parameter describes the irregularity within limited size 

intervals (Li et al., 2015; Martínez et al., 2010; Gould et al., 2011). However, in heterogeneous 

rocks, the pore size distribution (PSD) curve usually fluctuates randomly, jumps off at different 

pore size intervals (Li et al., 2015; Martínez et al., 2010) and the pore size intervals may exhibit 

various types of self-similarity (Li et al., 1999). All these complexities make it difficult to 

characterize PSD curves with one single fractal dimension.  

Considering the above discussion, multifractals can resolve the issue that is a feature of complex 

pore structures in heterogeneous rocks. Multifractals can be counted as the extension of fractals or 

the superposition of monofractal structures (Lopes and Betrouni,2009). Multifractal analysis, 

which decomposes self-similar measures into intertwined fractal sets, is characterized by 

singularity strength of fractal sets and can provide more accurate information about pore structures. 

The multifractal theory has recently been applied to study pore structures of different rock types 

such as chalk, carbonate, and shale gas formations (Muller et al., 1995; Muller, 1996; Xie et al., 

2010). 

Bakken is one of the largest unconventional shale oil plays in the world. The Bakken Formation 

consists of three members: organic-rich Upper and Lower Bakken and the Middle member, which 

is composed of mixed carbonates and fine-grained clastics (Pitman et al., 2001). In previous 

studies, we analyzed the multifractal behavior of pore structures of the Bakken Formation using 

SEM images (Liu and Ostadhassan, 2017). However, it was described that SEM imaging technique 

http://www.sciencedirect.com/science/article/pii/S0264817209001822
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was only able to detect pores that are larger than 9 nm. In order to access and evaluate smaller 

pores, gas adsorption was later acquired. This made it possible to characterize pores beyond SEM 

resolution. Accordingly, gas adsorption (CO2 and N2) was utilized to analyze pore structure of the 

Bakken in another study (Liu et al., 2017a). In our current research approach, we focused on 

applying multifractal method to analyze the complexity of pore structures in a wide range of pore 

sizes, ranging from micro- to macro- that exist in the Bakken both in the reservoir (Middle 

member) and source section (Upper and Lower member) of the formation.  

5.2. Methods and experiments  

5.2.1. Samples.  

In order to study the heterogeneity of pore structures and compare pore network complexity that 

may occur in rocks due to the changes in mineralogy and main constituent components, it was 

decided to study a few samples from each member of the Bakken Formation and compare the 

results. With respect to the goals of this research attempt, 4 samples were selected from the Upper 

Bakken (Sample17, 19, 20, 21), 4 samples were selected from the Middle Bakken (Sample 23, 24, 

25, 26) and 3 samples were selected from the Lower Bakken (Sample 27, 28 and 29). The numbers 

were decided based on sample availability. Thus, a total number of 11 samples were crushed to 

less than 250 μm to be tested by the gas adsorption (CO2 and N2) method.  

5.2.2. Mineralogy and geochemistry analysis.  

A D8 Advance X-ray diffractometer was used to study the mineralogical content of the samples.  

The scanning measurements were performed at the rate of 2°/min in the range of 3-90°. Then, the 

mineral percentages were estimated by calculating the curve of major peaks (Chen and Xiao, 

2014).  In the next step, Rock-Eval 6® was used to quantify the total organic carbon (TOC) of the 

samples. This part is specifically important for the samples selected from the source section of the 

Bakken (Upper and Lower members). To evaluate the TOC of the samples, the trademarked Shale 

Play method by IFP (Institut Franҫcais du Pétrol) was applied, and the geochemical properties 
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were derived following the steps suggested by Behar et al (2001). The temperature program for 

the Shale Play method was set as the following: the initial temperature was 100°C which was 

increased to 200°C at 25°C /min and was then kept constant for 3 minutes (for Sh0 calculation). 

In the next step, temperature was increased to 350°C at 25°C /min and held steady for 3 minutes 

(for Sh1 calculation). Finally, the temperature was raised to 650°C at 25°C /min. The oxidation 

cycle reached up to 850o C. This procedure resulted in measuring all Rock-Eval parameters along 

with TOC of the samples. 

5.2.3. Gas adsorption.  

All samples were degassed for at least 8 hours at 110℃ to remove moisture and volatiles that 

might be present in the samples. Low-pressure nitrogen was measured on a Micromeritics® Tristar 

II  apparatus at 77K while carbon dioxide adsorption was measured on a Micromeritics® Tristar 

II plus apparatus at 273K. Gas adsorption volume was evaluated over the relative equilibrium 

adsorption pressure (P/P0) range of 0.01-0.99, where P is the gas vapor pressure in the system and 

P0 is the saturation pressure of nitrogen (Liu et al., 2017a). We utilized the density functional 

theory (DFT) molecular model to quantify pore size distributions from low temperature N2 

adsorption isotherms (Do and Do, 2003) along with non-local density functional theory to obtain 

and interpret PSD curves by the CO2 adsorption method (Amankwah et al., 1995; Fan and Ziegler, 

1992). Based on the fundamental principles of statistical mechanics in explaining the molecular 

behavior of confined fluids in pore spaces, DFT can be used to describe the adsorption and phase 

behavior of fluids that are confined in the pore structures. Thus, the density functional theory can 

better define the thermodynamics behavior and density profiles of such fluids in a molecular level 

compared to other methods such as Brunauer–Emmett–Teller (BET). Based on the reasons 

explained earlier, DFT, in comparison with other common techniques, can capture the essential 

features of both micropore and mesopore filling fluids and their hysteresis response. This can result 
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in a more reliable assessment of pore size distribution curves over a more complete range of values 

(from micropores to mesopores) (Monson, 2012; Thommes et al., 2015). 

5.2.4. Multifractal analysis.  

The box-counting method, a frequently used method in other studies (Lopes and Betrouni, 2009, 

Russel et al., 1980), was applied to our data to study the multifractal behavior believed to exist in 

our data. In order to execute multifractal analysis in a porous media, a set of different boxes with 

equal length ε should be used and be laid over the interval in the recorded signal to be analyzed. 

The boxes are labeled by index i where N(ε) indicates the total number of boxes with size of ε that 

is needed to cover the interval understudy (the PSD curve). Accordingly, the section of the ith box 

of size ε is denoted as ui(ε). For gas adsorption, relative pressure (P/P0) was taken as the length ε 

(Ferreiro et al., 2009,2010).  

The boxes of length ε were laid over the heterogeneous pattern of the gas adsorption PSD curve. 

The probability mass function for the ith box can be calculated using the following equation: 

Tii NNp /)()(  =          (5-1) 

Where, Ni(ε) is the volume of adsorbed nitrogen for the ith box and NT is the total volume of gas 

that is adsorbed in the pores. Likewise, for each interval of size ε, Pi(ε) can also be defined by an 

exponential function of the following form for each box of size ε as: 

i

iP
 ~)( ,          (5-2) 

where αi is the singularity exponent which represents how singularities of the system approach to 

infinity as ε gets closer to 0 (Feder, 1988; Halsey et al., 1986). For multifractally distributed 

properties of intervals of size ε, N(ε) increases when ε decreases following a power law function 

of the form: 

)(~)( 

  fN −
         (5-3) 
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where Nα(ε) is the number of boxes for which probability mass function of the ith box, Pi(ε), has 

singularity strength between α and α+dα. Then, f(α) represents the spectrum of the fractal 

dimensions that characterizes the abundance in the set with α singularity. Subsequently, α(q) and 

f(α) can be calculated based on the equations that are proposed by Chhabra and Jensen (1989): 
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Here, q is the exponent expressing the fractal properties in different scales of the object. In this 

study, α and f(α) were calculated through a linear regression using Eq. 4 and Eq. 5 with q varying 

from -10 to 10 for successive unit steps. For multifractal applications, a probability distribution 

function is defined as: 
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Where τq is the mass scaling function of order q which can be defined as: 
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thus, the generalized dimension (Dq) which is related to q can be expressed as (Halsey, et al., 

1986): 

)1/()( −= qqDq           (5-9) 

While for q=1, Dq will become: 
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5.3. Results and discussion 

5.3.1. Multifractal analysis of CO2 adsorption.  

The log-log plot of the partition function u(q, ε) versus the length scale ε for the interval of q= -10 

to q=10 at successive intervals of q=1 was created and is shown for the representative samples of 

each member of the Bakken Formation in Fig. 5.1. The plots demonstrated that a linear relationship 

exists between logu(q,ε)  and logε of these representative samples from the Upper, Middle and 

Lower Bakken. This shows the existence of a multifractal behavior for pore size distributions 

(PSD) curves in our samples. The results show a clear distinction between the partition function 

of q>0 and q<0 with negative and positive slopes, respectively. In addition, the regression lines 

are found very close to one another, indicating that most of the measured data can be concentrated 

in a small size domain of the study scale (Ferreiro et al., 2009).  

 

 

(a) Sample 17(Upper Bakken) 
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(b) Sample 23 (Middle Bakken) 

 

(c)  Sample 27 (Lower Bakken) 

Fig. 5.1. Log-log plots of the partition function versus box scale of samples from different members of the Bakken 

from CO2 adsorption isotherms. 

 

Combining Eq. 9 and Eq. 10, the generalized dimensions Dq from CO2 adsorption of all studied 

samples were calculated and are presented in Fig. 5.2. The curves for all samples followed a 

monotonic decrease as q increased. The data, summarized in Table 5.1, represents D0>D1>D2, and 

demonstrates that the distributions of pore size fit a multifractal behavior, in agreement with the 

results derived from Fig. 5.1(Ferreiro et al., 2009). 
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(c) Lower Bakken  

Fig. 5.2. The relationships between Dq and q of the samples from CO2 adsorption isotherms. 

 

D0 represents singularity of non-empty boxes containing some value of porosity under successive 

finer partitions, which is independent of the probability of the porosity in that box. From Table 5.1 

it can be found that the capacity D0 of all samples is the same and equal to 1.  D1, the entropy 

information can characterize the concentration degree of the pore size distribution along the pore 

size intervals. The indicator D0-D1 can be used to describe the degree of uniform distributions 

across a specific range of pore sizes (Li et al., 2015; Song et al., 2018). The results in Table 5.1 
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illustrate that the Middle Bakken has higher D0-D1 values (0.0087 on average) compared to the 

D0-D1 values calculated from the Upper (0.0035 on average) and Lower Bakken (0.0060 on 

average). This verifies that the Middle Bakken has the most clustered style of pore size distribution. 

Thus, we can conclude that the pore size distribution (PSD) in the Upper and Lower Bakken is 

more homogeneous.  Fig. 5.3 shows the pore size distributions of the samples based on CO2 

adsorption. While comparing the pore size distributions of the Eagle Ford Formation, which is a 

calcareous shale that produces both oil and gas in Texas with our samples from the Bakken 

Formation, smaller pore volumes with sizes less than 1 nm were detected (Psarras et al., 2017). In 

this regard, pore size from the Upper Bakken and the Lower Bakken varies from 0.4 nm to 1.8 nm 

while the pore size from the Middle Bakken is measured between 1.2 nm to 1.8 nm. Fig. 5.3 depicts 

that the Middle Bakken with the narrowest pore size range has the most grouped pore size 

distribution, confirming that D0-D1 can be a good indicator to describe the concentration degree of 

pore size distributions. 

D2 is defined as the correlation dimension, which accounts for the behavior of the second sampling 

moments. Table 5.1 shows that samples from the Middle Bakken have smaller D2 values than the 

Upper and Lower Bakken. H, which is (D2+1)/2, and is known as the Hurst exponent (Holmes et 

al., 2017). H can vary from 0.5 to 1 and indicates the degree of the positive autocorrelation. A 

smaller (1-H) value is corresponding to a stronger autocorrelation in size-dependent distribution 

of any property, porosity in this case.  The Middle Bakken has the largest value of (1- H) with the 

average of 0.0076 compared to the samples from the Upper Bakken (0.0038 on average) and Lower 

Bakken (0.0064 on average). This is a representative of the lowest autocorrelation in the size 

dependent distribution of porosity, which agrees with pore size distributions that were found in 

Fig. 5.3. H can also be used to specify the pore connectivity across the pore size network of various 
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sizes, which can affect the permeability or flow through the sample (Martínez et al., 2010). A 

smaller H value represents poor pore connectivity, which was calculated to be the smallest for the 

Middle Bakken. 

 

Table 5.1. Characteristics of the generalized dimension from all the samples from CO2 adsorption  

  D10+ D10- D0 D1 D2 D0-D1 H D10--D10+ 

Sample 17 0.9687 1.0242 0.9997 0.9963 0.9928 0.0034 0.9964 0.0555 

Sample 19 0.9591 1.0298 0.9997 0.9959 0.9918 0.0038 0.9959 0.0707 

Sample 20 0.9724 1.0143 0.9997 0.9975 0.9951 0.0022 0.9976 0.0419 

Sample 21 0.9447 1.0257 0.9997 0.9951 0.9899 0.0046 0.9950 0.0810 

Sample 23 0.9576 1.2511 0.9997 0.9882 0.9806 0.0115 0.9903 0.2935 

Sample 24 0.9599 1.1410 0.9997 0.9900 0.9827 0.0097 0.9914 0.1811 

Sample 25 0.9701 1.0968 0.9997 0.9938 0.9890 0.0059 0.9945 0.1267 

Sample 26 0.9644 1.2029 0.9997 0.9920 0.9867 0.0077 0.9934 0.2385 

 Sample 27 0.9393 1.0345 0.9997 0.9932 0.9862 0.0065 0.9931 0.0952 

Sample 28 0.9243 1.0346 0.9997 0.9930 0.9853 0.0067 0.9927 0.1103 

Sample 29 0.9580 1.0323 0.9997 0.9950 0.9901 0.0047 0.9951 0.0743 

 

The difference between D10--D10+ of the Dq spectrum is that it can characterize the heterogeneity 

of the porosity distribution over the entire pore size range (0-2 nm that was measured by CO2 

adsorption). Table 5.2 shows that samples from the Middle Bakken have the highest D10--D10+ 

value with an average of 0.2100 compared to the samples from the Upper Bakken (0.062 in 

average) and Lower Bakken (0.0933 in average). Overall, considering the micropores that exist in 

the samples, the Middle Bakken has the highest level of heterogeneity in porosity distribution 

while samples from the Upper Bakken have the least degree of heterogeneity in the distribution of 

pore sizes. 
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Fig. 5.3. Pore size distributions of the sample from the CO2 adsorption.  

 

The f(α) curves versus α for all samples are shown in Fig. 5.4, which demonstrates a strong 

asymmetric (around α equal to 1) convex parabolic shape. For the samples from the Upper and 

Lower Bakken, the portion of the curve with the negative slope is wider and extends longer than 

the portion of the curve with the positive slope. In other words, the absolute value of the curve 

tangent on the left side of the symmetry line (around α equal to 1) is larger than the right portion 

of the curve. In contrast, for the samples from the Middle Bakken, the portion of the curve with 
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the positive slope is wider compared with the left portion with the negative slope. All of these 

behaviors explain that pore size distributions (PSD) of all samples exhibit a multifractal behavior.  

The results in Table 5.2 show that the samples from the Middle Bakken have a higher α0 value 

(1.0102 on average) than the samples from the Upper (1.0031 on average) and Lower Bakken 

(1.0054 on average), meaning that the Middle Bakken has a higher degree of pore size distribution 

concentrations over a specific range of pore size. This conclusion verifies the results from Fig. 5.3 

and the Hurst exponent (H).  

The value of α10- - α10+ is used to describe the degree of heterogeneity of the pore size distribution. 

Larger α10- - α10+ can be translated to a more heterogeneous pore size distribution within the 

sample. The calculation revealed that the samples from the Middle Bakken have a larger α10- - α10+ 

value with 0.3240 on average than the samples retrieved from the Upper Bakken (0.1089 on 

average) and Lower Bakken (0.1497 on average). This indicates that the pore size distribution in 

the Middle Bakken has a more internal difference from the multifractal analysis perspective (Do 

and Do, 2003). Thus, pore size distribution in the Middle Bakken is more heterogeneous than in 

the Upper and Lower Bakken. The left side of the f(α) curve with respect to the symmetry line 

represents areas with higher probability density of the pore volume distribution while the right 

portion corresponds to areas with lower probability density (Song et al., 2018). We used a 

parameter known as Rd, which is defined as ((α0- α10+) - (α10--α0)), to show the departure degree of 

the f(α) spectrum from the center or the symmetry line. The results in Table 5.2 display that 

samples from the Middle Bakken all have negative Rd values, indicating that pore size distributions 

in these samples are dominated mostly by areas with higher probability (concentrated areas). In 

contrast, the samples from the Upper and Lower Bakken Formation all have positive Rd values, 
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inferring that pore size distributions of these samples are dominated by areas with lower 

probability (sparse areas). 

 

Table 5.2. Characteristics of the multifractal singularity spectra from CO2 adsorption  

  α0 α10+ α10- α0- α10+ α10--α0 α10--α10+ Rd 

Sample 17 1.0031 0.9483 1.0412 0.0548 0.0381 0.0929 0.0167 

Sample 19 1.0035 0.9295 1.0597 0.0740 0.0562 0.1302 0.0178 

Sample 20 1.0018 0.9484 1.0252 0.0534 0.0234 0.0768 0.0300 

Sample 21 1.0041 0.9063 1.0419 0.0978 0.0378 0.1356 0.0600 

Sample 23 1.0143 0.9475 1.3715 0.0668 0.3572 0.4240 -0.2904 

Sample 24 1.0110 0.9486 1.2207 0.0624 0.2097 0.2721 -0.1473 

Sample 25 1.0062 0.9589 1.1869 0.0473 0.1807 0.2280 -0.1334 

Sample 26 1.0092 0.9469 1.3186 0.0623 0.3094 0.3717 -0.2471 

 Sample 27 1.0059 0.9061 1.0554 0.0998 0.0495 0.1493 0.0503 

Sample 28 1.0060 0.8789 1.0542 0.1271 0.0482 0.1753 0.0789 

Sample 29 1.0043 0.9354 1.0598 0.0689 0.0555 0.1244 0.0134 
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(c) Lower Bakken  

Fig. 5.4. Multifractal singularity spectra f(α) for the Bakken samples from CO2 adsorption isotherms.  

5.3.2.  Multifractal analysis of N2 adsorption.  

The N2 adsorption method can access the pores in the range of meso- to macro-scale which CO2 

adsorption is incapable of detecting since it measures only the distribution of micropores. In this 

part, we will analyze the multifractal behavior of the pore size distribution by nitrogen adsorption. 

For this purpose, the log-log plots of the partition function u(q, ε) versus the length scale ε between 

q=-10 to q=10 at successive intervals of q=1 were made based on nitrogen adsorption isotherms 

and are displayed for representative samples of each member of the Bakken in Fig. 5.5. The curves 

show that pore size distributions from the nitrogen adsorption exhibit a multifractal behavior. 

Similar to the curves in Fig. 5.1, the partition function has a notable difference between q>0 and 

q<0 with negative and positive slopes, respectively. Also, the regression lines are very close to 

each other, indicating that the majority of pore size distributions are concentrated in a small size 

domain of the study scale that was measured by nitrogen adsorption isotherms. 
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(a) Sample 17 (Upper Bakken)  

 

(b) Sample 23 (Middle Bakken)  

 

(c) Sample 27 (Lower Bakken)  
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Fig. 5.5. Log-log plots of the partition function versus box scale of the representative samples from different 

members of the Bakken from N2 adsorption isotherms. 

 

The generalized dimensions from the nitrogen adsorption were calculated and are shown in Fig. 

5.6. Considering all of the samples from the Bakken Formation, Dq decreases as q increases. Table 

5.3 shows the characteristics of the generalized dimension from our samples derived from nitrogen 

adsorption. D0 that was calculated from the nitrogen adsorption isotherms are similar with the 

results obtained by other researchers in the soil science field (Ferreiro et al., 2009;2010). It was 

realized that the Middle Bakken has a larger D0-D1 value (with an average value of 0.2133) in 

comparison to the Upper and Lower Bakken with average D0-D1 values of 0.1964 and 0.1582, 

respectively. This illustrated that the samples from the Middle Bakken have more clustered pore 

size data while samples from the Lower Bakken has a more uniform pore size distribution. Sample 

10 and Sample 6 had the smallest and the largest D0-D1 values, respectively, indicating the most 

and the least uniformity of pore size distributions. This conclusion was also confirmed by the pore 

size distribution curves of each sample shown in Fig. 5.7.  
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Fig. 5.6. Generalized dimensions of the samples from the N2 adsorption. 

Table 5.3. Characteristics of the generalized dimension from all the samples from nitrogen adsorption 

  D10+ D10- D0 D1 D2 D0-D1 D10--D10+ H 

Sample 17 0.3501 1.4604 0.9997 0.7826 0.5661 0.2171 1.1103 0.7831 

Sample 19 0.3480 1.5033 0.9997 0.7841 0.5648 0.2156 1.1553 0.7824 

Sample 20 0.3359 1.2904 0.9997 0.7638 0.5440 0.2359 0.9545 0.7720 

Sample 21 0.4815 1.1767 0.9997 0.8826 0.7307 0.1171 0.6952 0.8654 

Sample 23 0.4119 1.2322 0.9997 0.8253 0.6400 0.1744 0.8203 0.8200 

Sample 24 0.3015 1.3633 0.9997 0.7018 0.4842 0.2979 1.0618 0.7421 

Sample 25 0.3975 1.2675 0.9997 0.7997 0.6147 0.2000 0.8700 0.8074 

Sample 26 0.4240 1.2534 0.9997 0.8190 0.6472 0.1807 0.8294 0.8236 

 Sample 27 0.3438 1.2705 0.9997 0.7790 0.5593 0.2207 0.9267 0.7797 

Sample 28 0.3928 1.4772 0.9997 0.8253 0.6279 0.1744 1.0844 0.8140 

Sample 29 0.5769 1.1476 0.9997 0.9202 0.8220 0.0795 0.5707 0.9110 

 

Fig. 5.7 shows the pore size distribution from the nitrogen gas adsorption. Comparing pore size 

distributions of our samples with other major shale formations such as the Eagle Ford or the 

Barnett, it was found that our samples from the Bakken Formation exhibited much lower pore 

volumes (Holmes et al., 2017). D2 of the samples from the Upper and the Middle Bakken found 

very close in values and smaller than the D2 of the samples from the Lower Bakken. The Hurst 

exponent of the samples from the Lower Bakken found to be the largest, demonstrating that the 
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pore connectivity of the Lower Bakken is the best among these three members. The (1-H) value 

of the samples from the Lower Bakken was calculated to be the smallest, meaning that the Lower 

Bakken samples have the highest autocorrelation degree in a size dependent distribution of 

porosity.  
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Fig. 5.7. Pore size distributions of the samples from the N2 adsorption. 

The difference between D10- and D10+, which is shown as (D10--D10+) of the Dq spectrum, can 

characterize the heterogeneity of the porosity distribution over complete collected pore size 

distribution data. Nitrogen adsorption was capable to detect pore sizes in a range of 2-200 nm in 
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our samples. We found that the Upper Bakken has the highest D10--D10+value with an average of 

0.9788, compared to the Middle and Lower Bakken with average values of 0.8954 and 0.8606, 

respectively. This is interpreted to mean that the Upper Bakken has the most heterogeneous pore 

distribution while the Lower Bakken has the least. 

The f(α) curve of the samples, plotted in Fig. 5.8, expresses a convex parabolic shape, indicating 

that pore size distributions (2-200nm) of our samples exhibit a multifractal behavior.  The results 

in Table 5.4 indicate that samples from the Middle Bakken have a higher α0 value (average of 

1.1407) compared to the samples from the Upper and the Lower Bakken with average α0 values of 

1.1389 and 1.1123, respectively. This is explained by the fact that the Middle Bakken has a slight 

higher concentrative degree of pore size distributions, which also confirms the results in Fig. 5.7 

and the Hurst exponent. Regarding α10--α10+, the Upper Bakken exhibits the largest value followed 

by the Lower and then by the Middle Bakken with average values of 1.1253, 0.9927, and 0.9721, 

respectively. In terms of the internal difference for multifractal analysis of pore size distributions, 

the Upper Bakken with the largest α10--α10+ value and the highest degree of internal difference. 

Consequently, samples from the Upper Bakken are found to be the most heterogeneous ones with 

respect to pore size distributions while the Middle Bakken is the most homogeneous.  The Rd of 

all samples were calculated to be positive, presenting that pore size distributions of these samples 

are dominated mostly by the areas with lower probability (sparse areas). 
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Fig. 5.8. Multifractal singularity spectra, f(α) for the Bakken samples from N2 adsorption isotherms. 
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Table 5.4. Characteristics of the multifractal singularity spectra from N2 adsorption  

  α0 α10+ α10- α0- α10+ α10--α0 α10--α10+ Rd 

Sample 17 1.1550 0.3151 1.6321 0.8399 0.4771 1.3170 0.3628 

Sample 19 1.1524 0.3132 1.6858 0.8392 0.5334 1.3726 0.3058 

Sample 20 1.1660 0.3023 1.3373 0.8637 0.1713 1.0350 0.6924 

Sample 21 1.0823 0.4334 1.2099 0.6489 0.1276 0.7765 0.5213 

Sample 23 1.1262 0.3707 1.2613 0.7555 0.1351 0.8906 0.6204 

Sample 24 1.2211 0.2714 1.4173 0.9497 0.1962 1.1459 0.7535 

Sample 25 1.1540 0.3578 1.3029 0.7962 0.1489 0.9451 0.6473 

Sample 26 1.0613 0.3817 1.2888 0.6796 0.2275 0.9071 0.4521 

 Sample 27 1.1482 0.3094 1.3207 0.8388 0.1725 1.0113 0.6663 

Sample 28 1.1257 0.3535 1.6591 0.7722 0.5334 1.3056 0.2388 

Sample 29 1.0631 0.5193 1.1804 0.5438 0.1173 0.6611 0.4265 

 

It is well understood that CO2 adsorption can be used to analyze pore structures in the microscale 

(<2 nm) while N2 is suitable to detect and characterize the pores in a meso- to macro-scale (2-200 

nm) level (Liu et al., 2017a). The integration of the two methods can help to better understand pore 

size information for pores less than 200 nm. In this study, we acquired multifractal analysis results 

from CO2 adsorption to represent the heterogeneity information of the micropores and then 

combined that with the results from nitrogen adsorption as the heterogeneity information of meso- 

and macropores (2-200 nm). Thus, this will provide us with comprehensive heterogeneity 

information over a wide range of pore sizes. Based on the analysis and results that were presented 

in sections 3.1 and 3.2, it can be concluded that, regarding micropores, the Middle Bakken is the 

most heterogeneous while considering meso- and macropores, the Upper Bakken is the most 

heterogeneous in terms of pore size distributions.  

Figure 5.9 shows the comparison results of micropores and meso-macropores of the samples that 

were analyzed in this study. It can be found that micropores in the Bakken samples are less 

heterogeneous (Fig. 5.9a) and show a larger Hurst exponent (Fig. 5.9b) compared to the meso-
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macropores. This is a good representation that micropores in the Bakken Formation have a better 

connectivity and more homogeneity regarding their distribution. Samples with the largest meso-

macro pore heterogeneity do not have the highest micropore heterogeneity. No clear relationship 

can be found between the micro-pore heterogeneity and meso-macro-pore heterogeneity (Fig. 

5.9c), indicating that the micropore heterogeneity and the meso-macro pore heterogeneity needs 

to be analyzed separately. 
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(b) Hurst exponent 

 

(c) Correlation between the micropore heterogeneity and meso-macropore heterogeneity  

Fig. 5.9. Comparison of the pore structure information of the samples. 

5.3.3. Potential factors affecting heterogeneity of pore structures.  

In order to analyze the factors that could potentially affect the heterogeneity of pore structures, it 

was decided to investigate these factors for micro- and meso-macro size range of pores, separately.  

5.3.3.1. The impact of pore volume.  

We plotted pore volume on the x-axis versus the heterogeneity index (α10--α10+) on the y-axis to 

find whether pore volume has any effect on pore heterogeneity. Based on the results in Fig. 5.10, 

we were not able to establish any strong correlation between pore volume and heterogeneity. 

Therefore, we may conclude that pore volume or porosity as a quantity is not a valid constraint on 

the heterogeneity of the meso-macro pores, which agrees with our previous study that related 

heterogeneity index and porosity using SEM images (Liu and Ostadhassan, 2017). For micropores, 

we can deduce that as pore volume increases, pore heterogeneity appears to have a decreasing 

tendency. 
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Fig. 5.10. Correlations between the pore volume and the heterogeneity of the pores. 

5.3.4.2. The impact of the rock compositions.  

Among our samples, the ones chosen from the Upper and the Lower Bakken are organic-rich while 

the Middle Bakken samples are composed of mostly mixed carbonates and fine-grained clastics.  

Considering this difference in constituent components, we categorized the Upper and Lower 

Bakken under group I and the Middle Bakken as group II in order to study them separately. To 

illustrate if mineralogy can control pore heterogeneity, partial least-squares regression (PLS), 

which is a measure of how one parameter can impact the other one, was employed (Liu et al., 

2017a, b). To apply PLS to our data, rock compositions were taken as the independent variable 

while the pore heterogeneity index (α10--α10+) and the Hurst parameter as the dependent 

components. Table 5.5 and Table 5.6 summarize rock compositions of the samples in group I and 

group II, respectively. In addition, Table 5.7 and Table 5.8 show the PLS results from the samples 

in group I and group II, respectively.   Table 5.5 and Table 5.6 show that quartz is the dominant 

mineral in these samples. The TOC (total organic carbon) of the samples from the Upper and the 

Lower Bakken was recorded more than 10 %wt., reflecting the organic-rich nature of the studied 
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samples with the kerogen been mostly type II marine (Liu et al., 2017b). In addition, the main clay 

mineral in these samples was found to be illite. 

Table 5.7 shows that for micropores within the Upper and Lower Bakken, quartz and clay will 

slightly reduce the pore connectivity and increase the pore heterogeneity whereas pyrite and 

feldspar increase pore connectivity and reduce pore heterogeneity. For meso-macro pores of these 

samples, quartz and clay were found to increase pore connectivity and lower pore heterogeneity 

while pyrite and feldspar have an opposite effect. Among all constituent components, organic 

matter was found to impact both pore connectivity and heterogeneity the most, and for all ranges 

of pore sizes.  We realized that organic matter could increase the micropore connectivity and 

decrease the micropore heterogeneity. This finding can also be an indication of the existence of 

micropores associated with the organic matter.    

Table 5.8 data, which summarize the impact of rock composition on pore heterogeneity of the 

samples from the Middle Bakken, exhibit a slight difference in values than the previous group 

(upper and lower members). The results demonstrate that quartz and pyrite have a negative effect 

on pore connectivity both in micro and meso-macro scale while feldspar, clay, and calcite can 

increase pore network connectivity in micro to macro scale. Dolomite enhances micropore 

connectivity while it deteriorates the connectivity of meso-macro pores. Regarding pore 

heterogeneity, clay, feldspar, and calcite reduce the heterogeneity of both micropores and meso-

macro pores whereas, quartz, and pyrite increase micro to macro pore heterogeneity.  

Table 5.5. Rock compositions of the samples from the Upper and Lower Bakken4 

    Quartz, % Pyrite, % Feldspar, % Clay, % Dolomite, % TOC, % 

Upper Bakken 

Sample 17 48.44 20.06 7.63 9.60 0.00 14.27 

Sample 19 13.94 2.31 45.36 19.79 0.00 17.53 

Sample 20 40.26 2.32 3.36 39.57 0.00 13.97 

Sample 21 41.85 3.98 13.22 22.01 6.09 13.00 
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Lower Bakken 

Sample 27 48.16 4.90 2.08 24.91 0.00 16.96 

Sample 28 39.36 4.65 5.90 29.52 0.00 10.55 

Sample 29 44.36 2.69 2.78 33.22 0.00 10.21 

       

Table 5.6. Rock compositions of the samples from the Middle Bakken4 

  Quartz, % Pyrite, % Feldspar, % Clay, % Dolomite, % Calcite, % 

Sample 23 37.54 0.10 11.10 14.50 11.00 25.70 

Sample 24 38.25 2.29 13.20 13.60 25.00 7.60 

Sample 25 24.74 1.09 9.50 42.22 12.40 9.80 

Sample 26 16.85 0.67 6.39 62.94 5.24 7.50 

 

Table 5.7. PLS results of the Upper and the Lower Bakken 

Variable Micropore H Micropore Index Meso-macro Pore H Meso-macro Pore Index 

Intercept 0.994668 0.130531 0.846872 0.874269 

Quartz -0.000009 0.000086 0.000651 -0.004013 

Pyrite 0.000019 -0.000176 -0.001332 0.008209 

feldspar 0.000007 -0.000069 -0.000520 0.003203 

clay -0.000010 0.000096 0.000721 -0.004444 

Organic matter 0.000064 -0.000595 -0.004487 0.027658 

 

Table 5.8. PLS results of the Middle Bakken 

Variable Micropore H Micropore Index Meso-macro Pore H Meso-macro Pore Index 

Intercept 0.983958 0.957752 0.796001 1.018137 

Quartz -0.000711 0.038123 -0.003635 0.012458 

Pyrite -0.001817 0.085394 -0.024920 0.084494 

feldspar 0.002570 -0.152274 0.010655 -0.039664 

clay 0.000073 -0.003296 0.000416 -0.001281 

dolomite 0.000146 -0.010848 -0.000629 0.001610 

Calcite 0.000077 -0.004418 0.001765 -0.006293 

5.3.4.3.  The impact of maturity.  

Besides total organic content, which could affect the heterogeneity of the pore structures, the 

maturity of source rocks can be another parameter that could significantly influence pore structures 

(Liu et al., 2017b; Löhr et al., 2015). Thus, it is important to investigate if the samples in group I 

are affected by different maturity levels with respect to their pore structures and corresponding 
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heterogeneity. Thermal maturity of the organic matter in source rocks can be evaluated by vitrinite 

reflectance or equivalent reflectance of other macerals, such as solid bitumen in the absence of 

vitrinite (Kuila et al., 2014).  To carry out this analysis, the maturity of the samples was plotted on 

the x-axis versus H and α10--α10+ in two separate plots on the y-axis. Hence, the effect of maturity 

on pore connectivity and pore heterogeneity on the pores at different size scales can be concluded 

from Fig. 5.11. As a result of the plots and for the samples that were analyzed for this study, we 

were not able to establish any strong correlation between maturity and pore connectivity (Fig. 

5.11a, c) and heterogeneity (Fig. 5.11b, d).  

In this study, we attempted to relate different parameters that represent the multifractal behavior 

of PSD curves to pore connectivity of the samples.  Additionally, we investigated the impact of 

various components on pore network and relevant heterogeneities. We also made conclusions on 

how major constituent components may affect heterogeneity and what each multifractal parameter 

may disclose about pore network connectivity. Considering the importance that the existence of 

different pore sizes and their connectivity have on permeability, especially in unconventional 

reservoirs, and in order to validate our conclusions, the use of microcomputed tomography (μCT) 

imaging is necessary. This would be a valuable tool and its use would be highly recommended in 

future studies in order to examine the connectivity of pores in similar samples. 
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Fig. 5.11. Impact of the maturity on the pore connectivity and heterogeneity. 

5.4. Conclusions 

In the presented research, we collected several samples from the Bakken Formation and applied 

multifractal analysis method to characterize the heterogeneity of pore structures on a wide range 

of pore sizes. In order to do so, CO2 and N2 adsorption were employed to detect micro and meso-

macro pores, respectively. Based on this study, the following conclusions were made: 

1. Both CO2 and N2 adsorption isotherms revealed the multifractal nature of different pore 

sizes that were detected in our samples. 
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2. Middle Bakken was found to have the most bundled (concentration) pore size distribution 

in both micropore (<2 nm) and meso-macropore range (2-200 nm). Additionally, the 

samples from the Middle Bakken showed the worst micropore connectivity.  

3. Samples from the Middle Bakken exhibited the most heterogeneous characteristic in 

micropores while the Upper Bakken the most heterogeneous nature of meso and macro 

pores. 

4. We were not able to establish a clear correlation between pore volume and heterogeneity, 

also maturity and heterogeneity and maturity and pore connectivity. 

5. For samples taken from the Upper and the Lower Bakken, quartz and clay were found to 

reduce micropore connectivity and increase micropore heterogeneity while enhancing 

meso-macro pore connectivity and reducing meso-macro pore heterogeneity. Considering 

major constituent components of the samples, organic matter showed to have the most 

influence on pore heterogeneity and connectivity. 

6. For samples taken from the Middle Bakken, quartz and pyrite were found to decrease pore 

connectivity and increase pore heterogeneity of all range of pore sizes whereas clay 

minerals were found to have an opposite effect on pore connectivity and pore 

heterogeneity. 
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CHAPTER 6  

APPLICATION OF NANOINDENTATION METHODS TO ESTIMATE 

NANOSCALE MECHANICAL PROPERTIES OF RESERVOIR ROCKS 
Abstract 

In order to study the mechanical properties of shale samples from Bakken Formation, 

nanoindentation method, an imaging technique borrowed from other engineering disciplines, was 

used. Different types of nanoindentation curves were analyzed and the applicability of the 

nanoindentation theories to study mechanical properties of shale samples at nanoscale was 

demonstrated. Elastic modulus and Hardness of different samples were calculated, compared and 

related to their mineral compositions and microstructures which are detected by 2D XRD and 

FESEM methods, respectively. Results showed that samples with more clay minerals (mainly 

composed of illite) and larger pore structures have less Young’s modulus.  In addition, based on 

the energy analysis method, the fracture toughness at nanoscale was estimated and its relationships 

with Young’s modulus was quantified. It was observed that fracture toughness increases linearly 

with Young’s modulus. This paper presents the results and major findings of this study. 

6.1. Introduction 

As the first commercially successful application in 1950, hydraulic fracturing has been performed 

worldwide in oil and gas wells (King, 2012). Especially in the past decade, hydraulic fracturing 

has been an essential technique to enhance the production of the hydrocarbon from unconventional 

reservoirs such as shale gas, tight gas, shale oil and coal methane. Fracturing increases not only 

the production but also the total reserves that can be produced (Montgomery and Smith, 2010).
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Rock’s elastic and mechanical properties such as elastic modulus, fracture toughness and Poisson’s 

ratio are critical design parameters in hydraulic fracturing. Elastic modulus can influence the 

stability of fractures while fracture toughness – a generic term for analyzing material resistance to 

extension of a crack – can affect the geometry of the fractures (Thiercelin et al., 1989). 

Characterizing and quantifying these parameters has already been studied by many researchers in 

the past (Ghamgosar et al., 2015; Park et al., 2004; Senseny and Pfeifle, 1984; Thiercelin, 1987; 

Too et al., 2015; Zoback, 1978). However, due to the mineralogical variability, mechanically and 

chemically unstable properties of the shale formations, it is very expensive and sometimes even 

impossible to obtain suitable size samples for standard mechanical testing. Nanoindentation, which 

only requires a small sample volume, is a technique to detect the local mechanical properties such 

as Young’s modulus and hardness of the materials. This method has been widely used in material 

science research such as films, biological tissues and other cement-based materials (Naderi et al., 

2016; Tanguy et al., 2016; Xiao et al., 2015). In recent years, researchers began to use this method 

in studying the mechanical properties of shale formations (Kumar et al., 2012; Mason et al., 2014; 

Shukla et al., 2013), however, they limited their studies only in measuring Young’s modulus and 

hardness. In this paper, we report the results of using nanoindentation to study Bakken Formation 

samples from the Williston Basin, which is an unconventional reservoir. Estimation of mechanical 

properties such as Young’s modulus, hardness and fracture toughness of the Bakken Formation 

demonstrates the applicability of the nanoindentation technique in studying shale formations 

geomechanical properties.  
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6.2. Theory and Background 

6.2.1. Nanoindentation curve. 

Nanoindentation is a technique whereby an indenter tip is used to contact the test sample surface 

under a certain mode and the penetration depth along with the related applied load are recorded 

(Hu and Li, 2015).  

 

 

Fig. 6.1. Schematic illustration of indentation load–displacement curve (Hu and Li, 2015). 

Fig. 6.1 shows the typical indentation curve which consists of three stages of loading, holding and 

unloading. In the loading stage, the applied load increases as the penetration depth increase. This 

stage can be regarded as the combination of elastic and plastic deformation, whereas during the 

unloading stage we can assume that only elastic deformation can be recovered, and this is used to 

calculate the mechanical properties.  

6.2.2. Young’s modulus and hardness. 

In order to estimate Young’s modulus and hardness values, several parameters derived from Fig. 

6.1 was analyzed. For instance, contact stiffness S, defined as
max

/ h
dh

dP
S = , which quantifies the 

slope of the upper portion of the unloading part (hmax) is one that can provide us with valuable 

information regarding the mechanical response of the material. In order to eliminate the influence 
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of the bluntness of the indenter on the test results, energy-based analysis was used to calculate the 

initial contact stiffness (Kaushal K. Jha and Arvind, 2012): 

max

max)12(*75.0
h

P
S E −=  ,                        (6-1) 

Where VE is called elastic energy ratios which can be defined as the ratio of the absolute work and 

the elastic work (Fig. 6.2): 

    
e

s
E

U

U
=                                             (6-2) 

Where Us is the absolute work from nanoindentation determined by the area OAhLO whereas Uir 

is the irreversible energy work determined from the area OABhmax and Ue can be calculated from 

the area hfBhmaxhf. 

 

Fig. 6.2. Schematic illustration of the energy analysis for calculation purposes(Kaushal K. Jha and Arvind, 2012). 
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Fig. 6.3. Schematic illustration of the unloading process (Oliver and Pharr, 1992). 

Fig. 6.3 illustrates the unloading process during a typical nanoindentation test, from which it is 

concluded that  

cs hhh +=max ,                                         (6-3) 

Where hs is the vertical surface deflection at the perimeter of the contact and hc is the contact depth. 

hs and hc can be derived using the following equation separately(Hu and Li, 2015; Oliver and 

Pharr, 1992):    

S

P
hs

max=    = 0.75                                    (6-4)     

max
)12(

)1(2
hh

E

E
c

−

−
=




                                        (6-5) 

Once initial contact stiffness and contact depth were derived, the reduced Young’s modulus can 

be calculated as (Oliver and Pharr, 1992): 

  

c

r
A

S
E

2


= ,                                                   (6-6)                            

Where       
25.24 cc hA = .                                      (6-7) 

Finally, the Young’s modulus and hardness parameters can be obtained as: 

i

i

r E

v

E

v

E

22 111 −
+

−
=                                        (6-8) 

 
max

/max

h
A

P
H =                                                       (6-9) 

6.2.3. Toughness measurement using nanoindentation.  

There is a significant growth in the number of researchers who are using nanoindentation methods 

to study fracture toughness for its accurate and repeatable measurement (Kruzic et al., 2009; Scholz 

et al., 2004; Sebastiani et al., 2015; Wang et al., 2015), whereas using nanoindentation method to 
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study the fracture toughness of rocks is very scarce to date. In this paper, we acquired 

nanoindentation technique to study the fracture toughness of shale samples from the Bakken 

Formation. Due to the inhomogeneous nature of the samples and the difficulty in measuring the 

crack length during the nanoindentation process, we applied energy analysis method in this study. 

 The theoretical concept behind the energy analysis method is that the irreversible energy ( irU ) 

can be defined as the difference of the total energy ( tU ) and the elastic energy ( eU ) (Cheng et al., 

2002). Then fracture energy ( crackU ) can be described using the following equation: 

 ppircrack UUU −= .                                        (6-10)          

In this equation ppU is the energy cost due to the pure plasticity which can be calculated using 

the following mathematical relationship: 

]

)(1

)(2)(31
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2
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h

h

h

h
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+−

−= .       (6-11)                           

 Therefore, the critical energy release rate cG  can then be determined as 

  
m

crackcrack

c
A

U

A

U
G =




= ,                             (6-12)                             

Where mA  is the maximum crack area. For Berkovich indenter, the area can be calculated as

2

maxmax 5.24 hA =  .                                         (6-13) 

Finally, the fracture stress intensity factor cK can be computed as: 

 rcc EGK = .                                             (6-14) 
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6.3. Geological Setting and Experiments 

6.3.1. Geological setting.  

All the samples that are tested are retrieved from the wells drilled through the Bakken Formation 

in the State of North Dakota, USA. The Bakken Formation is located in the Williston Basin in 

Montana, North Dakota, and southern Saskatchewan (shown in Fig. 6.4), has become one of the 

largest shale plays in the world. In this paper, we analyzed samples from the Well CHARLIE 

SORENSON 17-8 3TFH. The target Bakken Formation of this well consists of three members: 

Upper, Middle and Lower Bakken. In this well, the upper Bakken is composed of distinctive black, 

blocky, carbonaceous shale with an instant milky cut. Then as ROP decreased with the increasing 

drilling depth, the samples changed from the black Upper Bakken Shale to silty Dolomite, 

indicating the appearance of Middle Bakken Formation. For this well, the Middle Bakken 

Formation has light gray, off white dolomitic siltstone, finely crystalline, with fair intercrystalline 

porosity. And for the lower Bakken Formation, samples were collected as the ROP increased again. 

Samples of the Lower Bakken were typical shale, brownish black in color, fissile, gritty, with 

bright fluorescence and streaming bright yellow cut. Overall, Upper and Lower Bakken is 

composed of shale with an abundance of clay minerals whereas the Middle Member varies in 

lithology and consists of interbedded siltstones and sandstones with lesser amounts of clay 

minerals (Pitman et al., 2001). 

 

Fig. 6.4. Schematic of the area and the well we studied in this paper  
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(a) Raw core samples                                         (b) Prepared samples for tests 

Fig. 6.5. Shale samples used in this study. 

6.3.2. Experiments. 

To get the most accurate results sample, preparation plays a crucial role. The surface of the 

smoothness of the sample specimens is very crucial for the accuracy of the results. Based on the 

combination of log and core photo image analysis, we collected the rock fragments from the 

original cores extracted from the Bakken Formation available at the North Dakota Core Library. 

The samples were broken into small pieces and then put in the resin liquid until the resin becomes 

solid under vacuum conditions. Sand papers of different grit sizes from 600 to 1200 was used to 

polish the sample surface followed by the different grain size of diamond polishers of 5, 3 and 1 

microns. Fig. 6.5a shows the raw samples and Fig. 6.5b represents the prepared samples ready for 

the tests.  

MTS Nanoindenter XP with Berkovich-type indenter (see Fig. 6.6) was used to test the samples. 

Indentation experiments were conducted at room temperature and ambient pressure. The 

instrument operates in a displacement-controlled mode with a loading rate of 20 nm/s. Scores of 

data were collected as the indenter approaches and retracts from the test point. Then data analysis 

was carried to calculate the mechanical properties of the sample. 
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Fig. 6.6. MTS Nano-indenter (Agilent Company) used in this study. 

6.4. Results and Discussions 

6.4.1. Nano-indentation curves analysis. 

All the curves in Fig. 6.7 show the elastic-plastic deformation during the loading process. Fig. 6.7 

a illustrates the typical indentation curve without any abnormal phenomenon. From Fig. 6.7b, it is 

evident that the loading curve shows a normal pattern, however, the unloading curve follows an 

elbow pattern. The pressure beneath the indenter is very high and always increases as the 

indentation depth increases. Once the hydrostatic pressure is larger than the critical point, phase 

transformation occurs (Tabor, 1978). The gradual change of the unloading curve is the result of 

the material expansion during the slow transformation to the amorphous phase, which contributes 

to the indenter uplift (Domnich et al., 2000). Fig. 6.7c shows the “pop in” phenomena in the loading 

curve. This is interpreted due to the cracks forming during the nanoindentation process. When the 

indenter contacts the material, the work by the indenter will change the elastic energy of the 

material once the elastic energy increases to a critical value at some point in the contact field, 

plastic deformation occurs with the increasing load. For the elastic–plastic materials such as rocks, 

their elastic energy is almost invariant within the localized plastic deformation zones. However, 

rocks which are just exterior to this zone and in a state of incipient plastic deformation have less 

elastic energy and the elastic energy decreases significantly as the distance from the contact zone 

increases. The large energy difference in different zones can lead to the formation of the cracks 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.bam.de/de/geraete_objekte/fb67_nanoindenter.htm&psig=AFQjCNFGErwLDNX440dsp28YDpMEMRNZQg&ust=1459954238564053
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(Cook and Pharr, 1990; Lawn et al., 1980; Oyen and Cook, 2009). Fig. 6.7d shows combinations 

of “pop in” and “elbow” phenomena. 

The parameters of curve fitting to the loading and unloading stages of Fig. 6.7a, b, c and d are 

calculated respectively and reported in Table 6.1. The results explain that the loading and 

unloading curves fit the power law functions listed below very well:  

)()(

),(

unloadinghhP

loadingKhP

m

f

n

−=

=


               (6-15) 

Where P and h are the loading force and displacement, respectively. hf is the residual displacement. 

K, n, α and m are constants which can be calculated based on the experiments.  

This is a similar behavior observed in other materials(Lawn et al., 1980), proving that the theory 

of nanoindentation may be used for the calculation of rock mechanical properties.  
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(c) Pop in                                                                     (d)  Pop in and Elbow 

Fig. 6.7. Typical nanoindentation curves identified during testing the Bakken Shale samples. 

 Table 6.1. Curve fitting analysis of the loading and unloading processes, respectively 

    K r1 R2 

Loading 

process 

a 0.00048 1.80591 0.99992 

b 0.00013 1.87968 0.99586 

c 0.00265 1.52325 0.99848 

d 0.02687 1.15039 0.96086 

    α m R2 

Unloading 

process 

a 0.07906 1.22777 0.99450 

b 0.00490 1.50995 0.99044 

c 0.14466 1.21886 0.99238 

d 0.00597 1.62741 0.98771 

 

6.4.2. Elastic modulus and hardness.  

Young’s modulus and hardness of the samples were derived, and their values were plotted versus 

the penetration depth as shown in Fig. 6.8. 
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(a) Hardness value                                          (b) Young’s modulus 

Fig. 6.8. Changes of elastic modulus and Hardness versus penetration depth. Both plots show three distinguished 

stages: 1. Initial rising; 2. Plateau; 3. falling off. 

 

Fig. 6.8 represents the results of a sample for calculating Young’s modulus. From this figure, it is 

concluded that both plots adhere three distinguished stages. During the initial stage, we can assume 

that the contact is elastic, which means that the values of this stage are the mean values and less 

than the real mechanical value of the materials. At larger penetration depth, the influence of the 

substrate on the test values will become more pronounced as is visible from the third stage in the 

figure, so the hardness value extracted from the plateau stage will be considered as the real 

hardness value of the sample. For the Young’s modulus we use the extrapolation technique (see 

Fig. 6.8b). We extended the plot from the second stage to the sample surface (i.e. when 

displacement equals to 0), and where the vertical axis intercept the graph, Young’s modulus of the 

samples is read (Fischer-Cripps, 2006). Following this procedure, for this test point in this sample, 

its hardness value is obtained to be 13.8 GPa  and Young’s modulus equal to 95 GPa .  

Fig. 6.9 shows the elastic modulus and hardness values of the four samples we tested. Sample 30 

is from Upper Bakken Formation while Sample 31, 32 and Sample 33 are from Middle Bakken 

Formation. The data shows that sample 33 has the highest elastic modulus while sample 32 has 
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the lowest values. More research about the properties of the four samples can be seen in the 

following section. 
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Fig. 6.9. Elastic properties of different samples.  

6.4.3. Young’s modulus, hardness, mineral compositions and microstructures. 

In order to study the relationship between the elastic properties, mineral compositions and 

microstructures, the four samples with quite different elastic properties derived from 

nanoindentation test were analyzed by XRD, FESEM.  

6.4.3.1. Mineral compositions.  

X-Ray Diffraction (XRD) was performed on the flat surface of the samples using Bruker D8 

Discover 2D apparatus. For the rock such as shale, having preferred orientation, the percent 

crystallinity measured with the conventional diffractometer is not consistent. While the sample 

orientation has no effect on the full circle integrated diffraction profile from a 2D frame, 2D XRD 

system can measure percent crystallinity more accurately with consistent results(He, 2003). 

Fig. 6.10 presents the images of 3 frames of the 2D XRD scanning for Sample 30. Combining the 

three frames and the relevant signals for 25-115-degree scan angle produces Fig. 6.11. Quantitative 
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measurement of the mineral composition can be obtained by analyzing the signal peaks. The results 

showed this particular sample contained 51.3% clay minerals (mainly illite) and 31.9% quartz. 

Following a similar procedure, we derived the mineralogical compositions for the rest of the 

samples (see Table 6.2).  

Table 6.2. Composition analysis by XRD  

  Sample 30 Sample 31 Sample 32 Sample 33 

Quartz, % 31.9 35.8 37.9 49.4 

Calcite, % 0.0 2.5 2.6 1.7 

Dolomite, % 12.0 0.1 0.3 2.0 

Ankerite, % 0.0 4.0 6.3 3.4 

Pyrite, % 0.0 3.6 5.0 4.8 

K-feldspar, % 4.7 11.2 8.7 9.8 

Albite, % 0.0 7.6 5.1 3.7 

clay minerals, % 51.3 35.2 34.0 25.2 

 

Results show that the two major minerals components of the samples are quartz and clay minerals 

(mainly composed of illite). Due to the small percentage of other minerals, so in this paper, we 

neglect their influence on the mechanical properties. Results show that Sample 30 has the most 

clay minerals (51.3%) and the least amount of quartz (31.3%) whereas Sample 33 has the least 

clay minerals (25.2%) with the highest amount of quartz content (49.4%). Sample 31 and Sample 

32 has similar mineral compositions (Sample 31 has 35.8% quartz and 35.2% clay minerals while 

sample 32 has 37.3% quartz and 34% clay minerals). These results will be cross-validated by the 

SEM analysis of the samples presented in the following subsection.   
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(a)                                                                                  (b) 

 

(c) 

Fig. 6.10.  Image of 3 Frames of 2D XRD scanning for angles of (a) of 25-55°, (b) 55-85° and (c) 85-115° 

representing one sample. 

 

Fig. 6.11. XRD signal of one sample obtained by combining the three frames from Fig. 10. 
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6.4.3.2. Microstructures. 

   

(a) Sample 30                                                      (b) Sample 31 

   

(c) Sample 32                                                         (d) Sample 33 

Fig. 6.12. SEM images of few shale samples from different members of the Bakken Formation. 

Field Emission Gun Scanning Electron Microscope JEOL 6500 apparatus (JEOL Company) was 

used to study the microstructures of the four samples. The results are shown in Fig. 6.12. From 

this figure, it is observed that samples 30, 31 and 33 have, in order, the highest to the least clay 

minerals which are in agreement with the XRD analysis results presented earlier. The results also 

represent that Sample 32 has more pores and fractures than the rest. Comparing the values of 

Young’s modulus and hardness for four different samples which were presented in Fig. 6.9 with 

the SEM and XRD data, it’s concluded that Sample 33 that has the highest Young’s modulus and 
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hardness values, and Sample 32 with the lowest values exhibit more pore structures and fewer clay 

minerals respectively.  

6.4.4. Fracture toughness test 

Based on the energy analysis method, 20 nanoindentation tests were performed on four different 

samples from three members of the Bakken Formation.  

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

R
e

d
u

c
e

d
 m

o
d
u

lu
s

Y
o

u
n

g
's

 m
o

d
u

lu
s

 

 C
o

n
ta

c
t 
s
ti
ff
n

e
s
s

Nanointentaion tests

20

40

60

80

100

120

 

20

40

60

80

100

120

140

 

0 5 10 15 20

0.00E+000

5.00E-008

1.00E-007

1.50E-007

2.00E-007

2.50E-007

3.00E-007

3.50E-007

4.00E-007  U
t

 U
e

 U
pp

 U
crack

Nanoindentation tests

E
n

e
rg

y
, 
J

0.0000000

0.0000001

0.0000002

 

(a)                                                                                            (b) 

0 5 10 15 20

0

50

100

150

200

250

300

350

400

450

 G
C

 K
IC

Nanoindentation tests

N
m

/m
2

0

1

2

3

4

5

6

7

 M
P

a
*m

1
/2

 

(c) 

Fig. 6.13.  Energy analysis results from nanoindentation. (a) contact stiffness, reduced modulus and Young’s 

modulus; (b) total energy, plastic energy, elastic energy and crack energy; (c) energy release rate and fracture 

intensity factor. 

Fig. 6.13a depicts the results of the contact stiffness, reduced modulus and Young’s modulus.  

From this figure, it is seen that the higher contact stiffness, the higher the Young’s modulus is. 
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This is because the contact stiffness is the value of the slope of the nanoindentation curve at hmax. 

Elastic energy increases as the S increases. So, Young’s modulus which can reflect the elastic 

properties of rocks also increases as shown in Fig. 6.14. Fig. 6.13b presents the energy distribution 

corresponding to each nanoindentation test.  Fig. 6.13c depicts the results of the energy release 

rate and fracture intensity factor of the nanoindentation tests, showing the fracture toughness 

increases and the energy release rate increases.  

The average value of ICK from Fig. 6.13c for the samples from the Bakken in nanoscale is around 

3.06 mMPa . Plotting the Young’s modulus versus the toughness values for the samples, a 

linear relationship is developed at the nanoscale as shown in Fig. 6.15. The following equation 

allows us to estimate the fracture toughness from Young’s modulus at nanoscale:  

EK IC 04048.07288.0 +=               (6-16) 

From literature and database, the values of fracture toughness of Bakken formation rocks are rarely 

to be found while the information of elastic modulus is abundant and easily to be derived. Eq.6-16 

gives us a potential estimation of the fracture toughness of Bakken Formation without doing many 

experiments, saving a lot of time and making more profits.  

In this paper, all the mechanical properties such as Young’s modulus, Hardness and fracture 

toughness were calculated under the ambient temperature and pressure which can be a little 

different from the value of the rocks under the real reservoir conditions. Under the reservoir 

conditions, the pore structures will change, and rocks become more plastic due to the high 

temperature and high pressure. Also, in this paper, we only studied the mechanical properties of 

the rock sample in nanoscale, which is not suitable to estimate the rocks in large scale directly due 

to the heterogeneous properties of the rock. In the near future, we will use project nanoindentation 

and phase characterization method to upscale the mechanical properties of the rocks from 
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nanoscale to a large scale and then we will compare the results from true triaxial test and logs to 

confirm the validity of this method, however, at this stage, these results provide a good insight in 

order to understand some nanoscale behavior of these samples, showing the great potential of the 

application of this method to study rock mechanical properties.  
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Fig. 6.14. Relationships between contact stiffness and Young’s modulus. 
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Fig. 6.15. Relationships between Young’s modulus and fracture toughness. 

6.5. Conclusions 

In this study, we applied the nanoindentation method to study the mechanical properties of shale 

samples from Bakken Formation. The analysis of the nanoindentation indicated some abnormal 

phenomenon such as pop in and elbow. The results of this study showed that the theory of 
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nanoindentation can be applied for studying the mechanical properties of rocks at nano-scale. 

Young’s modulus and hardness values were calculated and compared with their mineral 

compositions and microstructures. The results suggested that the more clay minerals and pore 

microstructures present in the samples, the less the elastic Young’s modulus and hardness values 

will be. Based on the energy analysis, fracture toughness of different samples at nanoscale was 

calculated and compared and the relationship with Young’s modulus is developed. The results 

stated that toughness of the samples tested in this study increases linearly with the Young’s 

modulus. The results of this study provide a great potential application of nanoindentation method 

in analyzing the rock mechanical properties and predicting fracture properties required in a 

successful hydraulic fracturing operation in unconventional shale plays (shale gas and shale oil 

formation). Future work is focused to upscale the mechanical properties in nanoscale to macro and 

reservoir scale.  

Nomenclature 

maxh           Maximum displacement, nm  

maxP           Maximum indentation load, mN  

S             Contact stiffness 

E             Elastic energy ratio   

sh             Vertical surface deflection, nm  

ch             Contact depth, nm  

fh             Residual displacement, nm  

rE             Reduced modulus, GPa  

tU             Total energy, J  
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irU          Irreversible energy, J  

ppU           Energy cost by plastic deformation, J  

eU              Energy cost by elastic deformation, J  

crackU        Energy cost by cracks, J  

cG           Energy release rate, 2/ mNm  

ICK     Fracture stress intensity factor,  mMPa  
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CHAPTER 7 

 STATISTICAL GRID NANOINDENTATION ANALYSIS TO ESTIMATE 

MACRO-MECHANICAL PROPERTIES OF THE BAKKEN SHALE 
Abstract  

Retrieving standard sized core plugs to perform conventional geomechanical testing on organic 

rich shale samples can be very challenging. This is due to unavailability of inch-size core plugs or 

difficulties in the coring process. In order to overcome these issues, statistical grid nanoindentation 

method was applied to analyze mechanical properties of the Bakken. Then the Mori-Tanaka 

scheme was carried out to homogenize the elastic properties of the samples and upscale the 

nanoindentation data to the macroscale. To verify these procedures, the results were compared 

with unconfined compression test data. The results showed that the surveyed surface which was 

300 um x300 um is larger than the representative elementary area (REA) and can be used safely 

as the nanoindentation grid area. Three different mechanical phases and the corresponding 

percentages can be derived from the grid nanoindentation through deconvolution of the data. It 

was found that the mechanical phase which has the smallest mean Young’s modulus represents 

soft materials (mainly clay and organic matter) while the mechanical phases with the largest mean 

Young’s modulus denote hard minerals. The mechanical properties (Young’s modulus and 

hardness) of the samples in X-1 direction (perpendicular to the bedding line) was measured smaller 

than X-3 direction (parallel to the bedding line) which reflected mechanical anisotropy. The 

discrepancy between the macromechanical modulus from the homogenization and unconfined 

compression test was less than 15% which was acceptable. Finally, we showed that
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 homogenization provides more accurate upscaling results compared to the common averaging 

method. 

7.1. Introduction  

The Bakken Formation is one of the largest unconventional shale oil plays in the world. The 

average recovery factor of the Bakken Formation is approximately 7% which is much lower than 

the national average level of 30%. This is due to its low porosity and extremely low permeability 

(Clark, 2009) thus horizontal drilling, combined with hydraulic fracturing, are the two commonly 

used technologies that are employed to increase the production from the Bakken Formation. 

Having a good knowledge of the formation’s mechanical properties is very important in the 

placement and design of horizontal drilling and hydraulic fracturing. Reliable estimation of the 

mechanical properties can improve the success rate of the drilling and production and, eventually, 

enhance the overall recovery factor. In a routine laboratory analysis, standard static tri-axial lab 

experiments or dynamic field-scale analysis using sonic logs are normally performed to obtain the 

necessary rock properties (Shukla et al., 2013). However, obtaining standard sized core plugs from 

downhole cores would be challenging and, thus, not considered to be ideal for conducting 

conventional geomechanics testing (Liu et al., 2016). On the other hand, nanoindentation tests, 

which only need a small volume of rock sample, have proven to be a great success in petroleum 

engineering applications to investigate the mechanical properties of shale samples (Shukla et al., 

2013; Kumar et al., 2012; Mason et al., 2014).  

An indentation test is a surface testing method that provides data on the bulk properties of the 

sample using the tools of continuum indentation analysis. In 1901, Brinell was the first to use 

indentation methods by applying a small ball of hardened steel or tungsten carbide against the 

surface of samples to measure their material properties (Brinell, 1901). In the 1950s, Tabor 

suggested the use of empirical relations to transform indentation data into meaningful mechanical 
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properties (Tabor, 2000). Following this, researchers from the former Soviet Union implemented 

the idea of depth sensing techniques to the nanoscale level (Bobko, 2008). In the late 1980s and 

early 1990s, Doerner and Nix (1986) and Oliver and Pharr (1992) expanded the theory to quantify 

the mechanical properties of samples using nanoindentation methods, which have since received 

world-wide attention. 

For homogeneous samples, a single indent or a few indents can provide an estimate of the sample’s 

mechanical properties whereas for a heterogeneous material (i.e., shale) a single indent or a few 

indents cannot provide sufficient information about the properties of the material (Randall et al., 

2009). Shale is composed of different minerals (hard and soft). The limited number of idents on 

the hard or soft minerals can overestimate or underestimate the true mechanical properties of the 

sample. In order to solve this problem, a grid indentation method was developed by Ulm and 

colleagues and was applied to analyze mechanical properties of composites (Constantinides et al., 

2003, 2006a).  The principle of grid nanoindentation is to apply a large number of indents on a 

material surface with specific requirements. First, the number of indents that are carried out on the 

surface should be larger than the representative elementary area (REA). Second, if each indent is 

characterized by the length scale D and depth h, then indentation depth h should be much smaller 

than D. The distance between the grids should be larger than the characteristic size of the 

indentation impression. This is mandatory to avoid interference between the neighboring indents 

and each mechanical phase. Under these conditions, the locus of the indentation has no statistical 

bias concerning the spatial distribution of these phases. Additionally, this will certify that the 

probability of encountering different phases can be equal to the surface fraction which is occupied 

by several phases on the indentation surface (Constantinides et al., 2003, 2006a).  
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Due to its strong ability, researchers have used grid indentation to analyze the mechanical 

properties of cementitious materials (Constantinides, 2006b; Němeček et al., 2011), bone (Ulm, et 

al., 2007), batteries (de Vasconcelos et al., 2016), and steel (Nohava et al., 2010). Grid indentation 

has become an important method to characterize material properties. In the petroleum engineering 

industry, Vialle and Lebedev (2015) applied grid nanoindentation to analyze the heterogeneities 

of carbonate rocks. In shale studies, most researchers are focused on the analysis of indentation 

data at the nanoscale-level, such as the creep characterization (Mighani et al., 2015), understanding 

the mechanical properties of organic matter (Kumar et al., 2012b), or analyzing fluid- shale 

interactions (Yang et al., 2016).  

Nanoindentation can reflect the mechanical properties of the samples in nanoscale. Some 

researchers have used this data to estimate mechanical properties in macroscale. Averaging the 

nanoindentation data from large number of indents is the conventional method that researchers 

have utilized to predict the macroscale properties (Shukla, et al., 2013; Kumar et al., 2012; Alstadt 

et al., 2015; Yang et al., 2016; Zhang et al., 2017). However, sometimes, the discrepancy between 

the averaged data from nanoindentation and the results from macroscale testing such as unconfined 

compression test are obvious. This shows that averaging is not the most suitable method for 

upscaling and better techniques should be proposed to characterize the macroscale properties of 

the materials based on the nanoindentation data.  

The first part of this study is dedicated to the determination of the nanoindentation area based on 

the EDX mineral mapping of samples. The box counting method was applied to analyze the impact 

of the box length on the mineral fractions and to identify the REA (representative elementary area) 

of the sample. This was followed by the statistical analysis of the nanoindentation data. Several 

different mechanical phases were distinguished based on the nanoindentation results. This was 
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followed by homogenization of the elastic properties to the macroscale-level. Finally, the results 

from the homogenization scheme were compared to the results from the macro-scale laboratory 

mechanical tests on core plugs in order to verify the accuracy of the method.   

7.2. Materials and methods  

7.2.1. Materials.  

Four samples from the Bakken Formation were collected for the analysis. Quartz, feldspar, 

dolomite and clay minerals (mainly illite–smectite) were identified as the main mineral 

components in the samples (Liu and Ostadhassan, 2017a). Small pieces of rock (chips), parallel 

and perpendicular to the bedding plane, were taken from the cores and placed into resin for 24 

hours. The roughness of the surface can add length scale to the nanoindentation upscaling problem, 

which can break the self- similarity of the problem (Miller et al., 2008). In order to reduce the 

surface roughness, sand paper of different grit sizes from 600 to 1200 was used to polish the sample 

surface followed by a series of diamond polishers of 5, 3 and 1 microns to ensure that the desired 

surface roughness had been reached. 

7.2.2. Grid nanoindentation.  

Nanoindentation can reflect the bulk properties of a sample using the continuum indentation 

analysis. Fig. 7.1 shows the schematic of a typical nanoindentation curve. The nanoindentation 

curve starts with an initial loading stage followed by the unloading stage. The loading stage can 

be regarded as the combination of elastic and plastic deformation while the unloading stage can be 

viewed as the recovery of the pure elastic deformation that can be used to calculate the hardness 

and Young’s modulus of the indent (Oliver and Pharr, 1992). The detailed calculation about the 

Young’s modulus and hardness can be seen in section 6.2.2.  
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Fig. 7.1. Schematic of the typical nanoindentation curve (Modified from Hu and Li, 2015). 

Shales are highly heterogeneous rocks at the nano- and micro-scale levels (Ulm et al., 2007). In 

order to analyze the mechanical properties of shales, grid indentation analysis was applied in this 

study (Constantinides et al., 2006a). A large number of indents was performed on the sample 

surface and each indent was considered as an independent event.  

7.2.3. Statistical deconvolution.  

Statistical deconvolution was first applied in deconvoluting two signals with little prior knowledge 

about either of them (Eisenstein, 1976). In this study, this method was applied to analyze the results 

from grid nanoindentation in order to separate the mechanical phases. Let N be the number of the 

total indents performed on the shale sample. Then, Young’s modulus and hardness {Mi} and {Hi} 

(i=1, N) can be derived by assuming that shale is composed of J=1, n material phases with 

sufficient contrast in mechanical properties. The following equations are obtained: 

N

N
f J

J = ;         NN
n

J

J =
=1

                        (7-1) 

Where NJ is the number of indents on the mechanical material phase and fJ is the volume fraction 

of the material phase. 
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The phase distribution function is very important in the deconvolution process. In order to keep 

the deconvolution process as automated as possible, a single form distribution with zero skewness 

is most appropriate (Constantinides et al., 2006a). The appropriate probability density function of 

the single phase, which is assumed to fit a normal distribution, is:  
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where 
x

JU  and 
x

JS  are the mean value and the standard deviation of x= (M, H) of all NJ values of 

each phase.  

To ensure that the phases have sufficient contrast in properties, the overlap of successive Gaussian 

curves representative of the two phases is constrained by the following criterion (Sorelli et al., 

2008):  

                                                        
x
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Based on the assumption that each material phase is normally distributed and does not 

mechanically interact with another phase, one could obtain the overall frequency distribution of 

the mechanical properties, X= (M, H), using the following equation: 
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Where PJ is the normal distribution of the material phase and fJ is the volume fraction of the 

material phase which subjects the constraint: 
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From Eq. (7), one can obtain n×5 unknowns { fJ , 
M

JU  , 
M

JS , 
H

JU ,
H

JS }, J=1, n. These unknowns 

can be determined by minimizing the difference between the data from the weighted model-phase 
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probability distribution function (PDF) and the experimental PDF using the following equation 

(Constantinides et al., 2006a): 
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Here, Px
i is the observed value of the experimental frequency density of x (M, H) and m is the 

number of the intervals (bins).  

In this study, Matlab was used to write the code program and perform the statistical deconvolution 

on the data set. 

7.2.4. Analytical elastic homogenization.  

Elastic homogenization is a technique used to upscale mechanical properties from the microscale 

level to a larger scale. The Mori-Tanaka method is one of the most popular methods for the 

homogenization of multiphase elastic composites because it approximates the interaction between 

the different phases assuming that each inclusion is embedded. The average strain in the inclusion 

is related to the average strain by a fourth order tensor (Mori and Tanaka, 1973). The homogenized 

bulk and shear modulus of an n phase material can be calculated by using the following equations:  
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Here, K0 and G0 are the bulk modulus and shear modulus of the reference medium, respectively 

while KJ and GJ are the moduli of the inclusion phases. fJ is the volume fraction of the Jth phase. 

Finally, the elastic properties can be homogenized (Young’s modulus and Poison’s ratio) using 

these set of equations (Mori and Tanaka, 1973): 
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7.3. Results and Discussion  

7.3.1. Determination of grid Nanoindentation area.  

For the grid nanoindentation test, the indentation area was determined initially. In order to upscale 

the mechanical properties of the shale samples, the area over which the indents were performed 

should be larger than the REA (representative elementary area).  The REA is the smallest area that 

can yield a value that can represent the whole sample property which is going to be measured. The 

box-counting method was applied to investigate the REA for the mineral fraction in this study 

(Houben et al., 2016). Fig. 7.2 shows the schematic of the REA determination on the base of 

mineral mapping of Sample 34.  First, one box size was chosen, and the mineral compositions 

under this box size were quantified by using the Nanomin software developed by the FEI 

Company. When the center of the box was accurately determined, the box size and quantified 

mineral compositions within larger box sizes was increased. The changes of the mineral 

compositions due to the variation of the box size were analyzed and the right REA was determined. 

Fig. 7.3a shows that as the box size increases, the fraction of the main minerals and organic matter 

varies until the box size of 250 um is reached, at which stage the mineral compositions become 
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constant. Using this approach, the REA of Sample 34 was found to be 250 um250 um, which is 

comparable to the REA determined using the porosity indicator (Liu and Ostadhassan, 2017b). 

The influence of the box length on the sample density and hardness (Mohs scale) is shown in Fig. 

7.3b.  If the box length is larger than 250 um, the density and the hardness values of Sample 34 

become constant, which shows that one can use the mechanical properties of an area larger than 

the REA to represent the mechanical properties of the whole sample at the macro-scale level. Using 

the same approach, the REA of other three samples were determined.  Based on these REA values, 

it was decided to use 300 um300 um as the nanoindentation area for the samples to ensure that 

the correct box size was used.  

 

 

Fig. 7.2. Schematic of determining the REA of Sample 34 for mineral fractions. 
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(a) Mineral fractions                                            (b) Density and Hardness (Mohs) 

Fig. 7.3. Influence of the box length on properties of Sample 34. 

                                                     

7.3.2. Grid Nanoindentation.  

A Hysitron Triboindenter with a Berkovich indenter was used for the indentation analysis of the 

shale samples. Based on the combination of the image taken under the optical microscope and the 

scaled separability condition (Bobko, 2008), a matrix of 225 indents covering 300 um300 um of 

the sample surface (which is larger than the REA) was chosen. After considering the surface 

roughness and the impact of the neighboring idents, the distance between the neighboring indents 

was selected to be 20um. 

The grid nanoindentation modeling was applied on the samples both perpendicular (X-1 direction) 

and parallel (X-3 direction) to the bedding planes. Fig. 7.4 and Fig. 7.5 show the mechanical 

properties maps of the nanoindentation areas of Sample 34 along the X-1 and X-3 directions, 

respectively.  These images show that the Young’s modulus and the hardness map correlate very 

well; for example, the points with the higher Young’s modulus compare to the higher hardness 

values. The correlation between the two property maps was found to be linear with a positive slope 

(Fig. 7.6) (Liu et al., 2016, 2017a). In addition, from Fig. 7.4 and Fig. 7.5 it is seen that the shale 
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is composed of different mechanical phases. The points with the higher Young’s modulus 

represent stiffer minerals such as feldspar and quartz whereas the points with lower Young’s 

modulus values represent clay minerals and organic matter (Zhu et al., 2007). The histogram of 

Young’s modulus and hardness shown in Fig. 7.7 displays more than one peak, which indicates 

the composite behavior of Sample 34. 

   

(a) Young’s modulus                                                                 (b) Hardness 

Fig. 7.4. Mechanical mapping of Sample 1 along the X-1 direction. 

  

(a) Young’s modulus                                                           (b) Hardness 

Fig. 7.5. Mechanical mapping of Sample 34 along the X-3 direction. 
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(a) X-1 direction                                                                   (b) X-3 direction 

Fig. 7.6. Correlations between Young’s Modulus and Hardness of Sample 34. 
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(a) Young’s Modulus                                                         (b) Hardness 

Fig. 7.7. Histograms of Young’s Modulus and Hardness of Sample 34. 

 

Table 7.1 summarizes the results of the mean mechanical properties of the samples based on the 

grid nanoindentation method. The samples along the X-3 direction display larger values than the 

ones taken along the X-1 direction. The difference between the responses in the two different 

directions shows the anisotropic characteristics of the shale samples. 
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Table 7.1. Nanoindentation results for different samples 

  Direction  Emean, Gpa Hmean, Gpa 

Sample 34 
X-1 32.31 2.16 

X-3  37.83 2.42 

Sample 35 
X-1 22.92 1.32 

X-3  32.71 1.96 

Sample 36 
X-1 32.67 2.72 

X-3  44.66 3.08 

Sample 37 
X-1 29.61 1.91 

X-3  37.54 2.44 

 

7.3.3. Deconvolution.  

Fig. 7.8 and Fig. 7.9 illustrate the deconvolution results of Sample 34 along the X-1 and X-3 

directions, respectively. Both nanoindentation curves can be deconvoluted into three different 

mechanical phases. For Fig. 7.8 a, the indentation response with the first phase (mean value of 

22.34 GPa) likely represents clay minerals and organic matter whereas the third phase with the 

mean of value of 52.53 GPa could be due to the presence of silt inclusions composed mainly of 

quartz, feldspar and dolomite. The third phase with the largest standard deviation indicates the 

largest experimental variabilities. The second phase with a mean Young’s modulus value of 

approximately 31.64 GPa (between 22.34 GPa and 52.53 GPa) can be regarded as the composite 

behavior of clay minerals and silt inclusions. This is because the grid nanoindentation leads to 

random placements of the indentations and some indents occur on the boundary of clay minerals 

and silt inclusions (Bobko, 2008).   

The area below each histogram divided by the area under the combined curve can be considered 

as the measure of the surface fraction of each mechanical phase. Surface fractions can be identical 

to the volume fractions of a perfectly-disordered material, which is known as the Delesse principle 

(1847). Thus, one can derive the volume fractions of each mechanical phase from the 
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deconvolution process. Table 7.2 shows the deconvolution results for all samples. Although all the 

samples, which are along the X-1 direction and X-3 direction, can be deconvoluted into 3 stages, 

the deconvolute data is different. Even with the same mineral composition for the same sample, 

the mean value of mechanical phases 1, 2 and 3 along the X-3 direction is larger than the mean 

value of phases 1, 2, 3 along the X-1 direction, respectively. This proves the mechanical anisotropy 

that is expected from shales. In this regard, a few potential factors can cause shale to represent 

anisotropic behavior which can be summarized as: the stacking of platy shaped clay minerals that 

produces planes of weaknesses in a specific direction, thus preferred orientations are created (Sone 

and Zoback, 2013); the huge amount of organic content in the rock can increase anisotropic 

characteristics of shales (Vernik and Liu, 1997; Ahmadov, 2011). This is interpreted as organic 

material to be anomalously compliant compared to the surrounding minerals (Kumar et al., 2012; 

Ahmadov, 2011) and can become a strong source of mechanical anisotropy if they are distributed 

in a specific direction; finally, the orientation of various minerals such as quartz and feldspar 

during deformation, compaction and crystallization can become a source of anisotropy.  

 

 

(a) Young’s Modulus                                                  (b) Hardness 

Fig. 7.8. The deconvolution results of Sample 34 at X-1 direction. 
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(a)Young’s Modulus                                        (b) Hardness 

                                          Fig. 7.9. The deconvolution results of Sample 34 at X-3 direction. 

Table 7.2. The deconvolution results of Young’s modulus for all samples 

Sample Direction 

Phase1 Phase 2 Phase 3 

mean,  SD,  V, mean,  SD,  V, mean,  SD,  V, 

GPa GPa % GPa GPa % GPa GPa % 

Sample 34 
X-1 22.34 0.52 0.33 31.64 2.74 0.50 52.53 7.67 0.16 

X-3 28.69 0.41 0.21 40.54 1.17 0.73 76.80 6.13 0.07 

Sample 35 
X-1 14.38 0.25 0.26 23.14 1.03 0.61 43.50 3.80 0.14 

X-3 20.06 0.74 0.31 31.19 0.58 0.33 44.95 8.68 0.36 

Sample 36 
X-1 16.96 1.15 0.20 26.76 0.46 0.29 37.00 1.69 0.51 

X-3 21.27 0.68 0.24 33.45 0.73 0.20 50.38 5.17 0.56 

Sample 37 
X-1 19.49 0.50 0.11 26.23 0.91 0.67 50.20 18.69 0.23 

X-3 28.17 0.20 0.69 46.56 0.62 0.14 72.72 1.17 0.17 

 

7.3.4. Homogenization.  

Homogenization is a very important step when upscaling the mechanical properties from the nano- 

or micro-scale to a larger scale level. Based on the discussion in Section 3.1, the mechanical 

properties that are measured within the nanoindentation area can be utilized to represent the 

mechanical properties of the sample at the macro-scale (whole sample). Pores with various sizes 

and shapes are widely distributed in the Bakken Shale, which can affect its mechanical properties. 

For the Berkovich indenter, the indentation measures the elastic response of a material volume 3-
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5 times of the depth of indentation (Larsson et al., 1996). In this study, the mean indent size (depth 

of penetration h) is around 500nm; consequently, the volume under the indenter is estimated as 1.5 

um. Hence, pores smaller than 1.5 um will be included in the nanoindentation analysis (Da Silva 

et al., 2014). However, some pores with sizes larger than 1.5 um may not be detected by the 

nanoindentation tests, which needs to be considered in the homogenization scheme. In order to 

quantify the pores larger than the size limit, the image analysis method was applied to analyze the 

pore size distributions (de Vasconcelos et al., 2016) and derive the pore size distributions of 

Sample 1 with a scan area of 300 um300 um. Following this, the pores that were beyond the 

nanoindentation detection level, were considered in the homogenization process. The Poisson’s 

ratio of the Bakken Shale ranges from 0.2-0.4 (Havens, 2012) and the value of 0.25 for the Mori-

Tanaka homogenization was chosen for this study. The results of the homogenization of all four 

samples (Table 7.3) shows that all samples have larger Young’s modulus along the X-3 direction 

than those taken with respect to the X-1 direction, which is consistent with the results shown in 

Table 7.1.           

Table 7.3. Homogenization results of all samples 

Samples Direction Large Pores, % Ehom, GPa Vhom 

Sample 34 
X-1 1.26 29.81 0.25 

X-3 3.41 36.75 0.25 

Sample 35 
X-1 1.60 21.64 0.25 

X-3 2.44 29.51 0.25 

Sample 36 
X-1 4.30 26.30 0.25 

X-3 2.90 34.65 0.25 

Sample 37 
X-1 2.86 28.05 0.25 

X-3 1.96 34.38 0.25 

7.3.5. Homogenization value VS. macroscale.  

In order to verify the accuracy of this upscaling approach, we compared the results from the 

homogenization scheme and the data that have been measured in macroscale elastic experiments. 

Considering the importance of the elastic properties of the materials, a large number of 
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experimental techniques have been developed such as the static method (Radovic et al., 2004; 

Dvorak et al., 1973) (i.e. tensile, torsion and bedding tests) or the dynamic methods (i.e. resonant 

frequency method (Christaras et al., 1994) and ultrasonic echo-pulse method (Kobelev et al., 

1998)). In this paper, the non-destructive static tests (samples were not taken to failure) to measure 

Young’s modulus were performed using the MTS 816 Rock testing system (Fig. 7.10). Cores with 

the size of 2-inch in length and 1-inch in diameter were taken perpendicular to the bedding planes 

(X-1 direction) and LVDT displacement transducers were mounted on the rock outer surface (Fig. 

7.11). The non-destructive test started with increasing the load axially followed by removing the 

load to make sure the displacement follows the same path before the sample reaches its maximum 

strength and fails. The stress- strain curve is plotted in Fig. 7.12 and Young’s modulus was 

estimated from the linear part of the curve. The following figure on the left shows the MTS 816 

rock testing system equipment that was used for the static geomechanics analysis on the samples 

that are prepared and shown on the right. 

   

     Fig. 7.10. Macroscale test equipment.                           Fig. 7.11. Prepared samples for the macroscale test. 
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Fig. 7.12. Estimation of Young’s modulus from macroscale test. 

The estimated values of the elastic modulus of all four samples are summarized in Table 7.4 along 

with the data obtained from the homogenization scheme. The results show that the Young’s 

modulus of the Bakken Shale samples tested were all below 30 GPa and the difference between 

the two different testing methods is less than 4 GPa or 14.5%. This demonstrates that the results 

of the homogenization scheme are reliable and can be used to estimate the mechanical properties 

of the Bakken Shale at the macro-scale level. 

Table 7.4. Comparison of the elastic modulus: Homogenization vs. Macroscale test 

Samples  Direction  
Macroscale, 

GPa 

Ehom, 

GPa 

Difference, 

GPa 
Error, % 

Sample 34 X-1 26.07 29.81 3.74 14.35 

Sample 35 X-1 25.01 21.64 3.37 13.47 

Sample 36 X-1 25.55 26.30 0.75 2.94 

Sample 37 X-1 25.09 28.05 2.96 11.80 

                                  

However, the application of the nanoindentation method is not free of uncertainty. The accurate 

displacement of the indents can help find the limit of pore size that cannot be detected by the 
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nanoindentation tests. In this study, the load control mode for the nanoindentation test (peak load 

value is the same for all indents) was applied. However, the displacement of the indents varies 

from point to point due to the heterogeneous properties of the shale. The average displacement of 

the indenter was utilized as the input value to find the limit of the pore sizes, which can cause some 

minor errors. Another source of uncertainty in the measured values is due to the roughness of the 

sample surface. The standard mechanical polishing method applied in this study still provides 

surface roughness, at least on the order of several tens of nanometers. This can cause scattering in 

the measured indentation modulus and indentation hardness.  

It is noteworthy that to quantify mechanical properties in macro scale by nanoindentation is more 

complicated compared to conventional methods such as unconfined compressive strength and 

triaxial compression testing which can derive the mechanical properties in macroscale directly. 

Despite these limitations, the grid nanoindentation tests still showed strong ability to characterize 

mechanical properties of the Bakken samples. The method allowed us to study the mechanical 

properties at the nano-scale level, which is beyond the standard scale of laboratory testing. 

Nevertheless, the small volume of the samples that was used for the grid nanoindentation test is 

the most useful characteristic of this proposed method.  

7.3.6. Homogenization value vs. Average value.   

The mean Young’s modulus measured by the nanoindentation (Emean) method is one of the 

parameters that many researchers have used to represent the true value of the specimens’ elastic 

property (Shukla, et al., 2013; Kumar et al., 2012; Alstadt et al., 2015; Yang et al., 2016; Zhang et 

al., 2017). In order to assess the validity of this approach, the values obtained at a macro-scale 

level and at the nanoindentation level (Emean) were compared. The results shown in Table 7.5 

represent the values of Sample 34, 36 and 37 and indicate that the discrepancy between Young’s 

modulus values from the macro-scale testing and the Emean is significant. This means that using 
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Emean cannot represent the true elastic properties of the samples. The values from the 

homogenization scheme (Ehom) and the mean value (Emean) were further compared. It was found 

that Ehom is closer to the true Young’s modulus value than Emean, which may infer that Ehom is a 

better representative than the Emean when characterizing the mechanical properties of the Bakken 

Shale at the macro-scale level.  

Table 7.5. Comparison of the elastic moduli: Average value vs. Macro-scale tests 

Samples  Direction  Emean, GPa Macroscale, GPa Difference, GPa  Error, % 

Sample 34 X-1 32.31 26.07 6.24 23.94 

Sample 35 X-1 22.92 25.01 2.09 8.36 

Sample 36 X-1 32.67 25.55 7.12 27.87 

Sample 37 X-1 29.61 25.09 4.52 18.01 

7.4. Conclusion  

In this study, grid nanoindentation was applied to analyze the mechanical properties of a selected 

number of samples from the Bakken Shale Formation. It was shown that the elastic properties of 

the individual mechanical phases could be assessed through the statistical evaluation and 

deconvolution from grid nanoindentation data. By using the analytical elastic homogenization 

method (Mori-Tanaka scheme), the macro-scale elastic modulus of the Bakken Shale samples was 

estimated and compared to the values measured from the standard macro-scale core plug rock 

mechanical testing. The results showed that the values obtained from the homogenization scheme 

are close to those obtained through macro-scale measurements. This indicates that statistical grid 

nanoindentation methods can provide a reliable estimation of the mechanical properties of 

heterogeneous shale rock samples. Statistical grid nanoindentation tests not only are useful for 

evaluating the mechanical properties of rock specimens at the nano/micro-scale level but also can 

be applied to estimate the properties at the macro-scale level. This study provides a great potential 

for the geomechanical investigation of heterogeneous and anisotropic rocks in the petroleum 

industry when core plugs are not available. 
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CHAPTER 8 

NANO-DYNAMIC MECHANICAL ANALYSIS(NANO-DMA) OF CREEP 

BEHAVIOR OF SHALES 
Abstract 

Understanding the time-dependent mechanical behavior of rocks is important from various aspects 

such as: predicting reservoir subsidence that can take place in different scales from depletion 

induced compaction to proppant embedment. Instead of using the conventional creep tests, nano-

dynamic mechanical analysis (nano-DMA) was applied in this study to quantify the displacement 

and mechanical changes of shale samples over its creep time at a very fine scale. The results 

showed that the minerals with various mechanical properties exhibit different creep behavior. It 

was found that under the same constant load and time conditions, the creep displacement of hard 

minerals would be smaller than the soft ones. On the contrary, the changes in mechanical properties 

(storage modulus, loss modulus, complex modulus, and hardness) of hard minerals are larger than 

soft minerals. The results from curve fitting showed that the changes in creep displacement, storage 

modulus, complex modulus and hardness over creep time follow a logarithmic function. We 

further analyzed the mechanical changes in every single phase during the creep time based on the 

deconvolution method to realize each phase’s response independently. Two distinct mechanical 

phases can be derived from the related histograms. As the creep time increases, the volume 

percentage of the hard-mechanical phase decreases, while this shows an increase for the soft 

phases. The results suggest that nano-DMA can be a strong advocate to study the creep behavior 

of shale rocks with complex mineralogy.



 

194 
 

8.1. Introduction 

Failure to taking into account the creep behavior of shale when modeling its mechanical behavior 

may lead to an inaccurate operational design. Examples of these include incorrect predictions of 

depletion due to reservoir compaction, or overestimating the permeability increase as a result of 

hydraulic fracturing while the proppant embedment into the formation has not enhanced 

permeability in reality. The embedment of proppant into the rock is a direct result of creep behavior 

of the formation (Alramahi and Sundberg, 2012; Almasoodi et al., 2014; Bybee, 2007; Li and 

Ghassemi, 2012; Sone and Zoback, 2011). Creep is a term to describe the time dependent behavior 

of the rocks under constant but long-time exposure to the stress which is still below its yield 

strength. Creep happens due to the viscoelastic properties of rocks. Based on the study by Heap et 

al. (2009), the creep in rocks can be divided into three stages: 1) primary or decelerating stage; 2) 

secondary or stationary stage; 3) tertiary or accelerating stage. Uniaxial creep test and multi-stage 

triaxial creep experiments are the common lab testing methods that researchers perform to study 

the creep behavior (Li and Ghassemi, 2012; Sone and Zoback, 2014). These types of studies are 

limited in analyzing the creep behavior at macroscale and need large sample volumes which are 

sometimes not practical to obtain especially from shale formations due to coring issues. Shale is 

known to be a fine-grained sedimentary rock consisting of a mixture of clay, quartz, feldspar, 

pyrite, carbonate, and organic matters forming a highly heterogeneous nanocomposite (Ulm et al., 

2007) and each of these components show different creep behavior. Understanding the 

deformation that occurs while shale undergoes creep at nanoscale can provide an insight into the 

fundamental processes governing on this phenomenon at the larger scale such as properly 

functioning as a cap rock.  

Nanoindentation tests, which only require a small sample volume, are a widely-used method for 

characterizing the mechanical properties of different materials at nanoscale (Naderi et al., 2016; 
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Tanguy et al., 2016; Xiao et al., 2015; Kobelev et al., 1998; Alstadt et al., 2015; Yang et al., 2016; 

Zhang et al., 2017; Kumar et al., 2012; Yang et al., 2016). Analyzing the load-displacement curve 

which is extracted from a nanoindentation experiment, Young’s modulus and the hardness can be 

derived (Oliver and Pharr, 1992). In recent years, nanoindentation has been applied to analyze the 

viscoelastic behavior of various types of materials by applying a constant load and subsequently 

measuring the creep depth as a function of time. Past studies have shown that the creep behavior 

of the samples determined from the nanoindentation at nanoscale in a short time period are 

identical to the behavior from the macro scale tests which are carried out over an extended time 

period. This shows that the nanoindentation creep test can be a reliable representation of the creep 

behavior while it is much less time consuming compared to the tests that are done on a larger scale 

(Vandamme and Ulm, 2009, 2013). It is noteworthy that conventional nanoindentation creep tests 

can only generate Young’s modulus and hardness at the maximum penetration depth and are 

limited in describing the changes in mechanical properties during the creep.  

Since Poynting attempted to use oscillatory experiments in 1902 for analyzing the elastic 

properties of different materials (Menard, 2008), dynamic mechanical analysis (DMA) has been 

used to analyze the properties of metals (Elomari et al., 1995), polymers (Kararli, 1990), bone 

(Yamashita et al., 2001), and concrete (Yan et al., 1999). DMA can be simply described as 

applying an oscillating force to a sample and analyzing the response to that force. For the creep 

analysis, DMA tests can evaluate the mechanical properties under the constant load over the creep 

time continuously. Nano dynamic mechanical analysis (Nano-DMA), a recently developed mode 

in nanoindentation studies which not only characterizes the properties of the sample in nanoscale 

but also measures the mechanical properties continuously during the creep time has proven to have 

a great potential in analyzing the mechanical changes of shales (Herbert et al., 2008). 
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In this paper, we carried out a Nano-DMA test to study the creep behavior of shales. We applied 

the statistical grids method to do the creep data and quantified how the associated creep 

displacement and mechanical properties can change over time. 

8.2. Methods and experiments  

8.2.1. Sample Preparation.  

In order to analyze the creep behavior of shale, we collected one sample (Sample 38) from the 

Bakken Formation, a typical unconventional shale oil reservoir in Williston Basin, North Dakota. 

Small pieces of rocks were taken from cores that were retrieved from a few wells drilled into the 

formation. The samples were taken perpendicular to the bedding plane and then were palced in a 

resin liquid for 24 hours under vacuum conditions, until they became solid. To ensure that the 

sample surface is flat (roughness less than 200 nm), they were polished with successive grades of 

sand paper and were finished with a 0.05 m alumina suspension diamond polisher.  

8.2.2. Statistical grid nanoindentation.  

It is well understood that shales exhibit phase heterogeneity. This will lead to a mechanical 

response that would vary on different measurement scales (nanometers to meters). In order to fully 

understand the mechanical properties of the shale, the grid nanoindentation method was applied to 

remove the mechanical heterogeneity. This technique is based on the repeated indentation in the 

form of a rectangular matrix with a total indentation count up to several hundred. Each indent can 

be regarded independently to be used to calculate Young’s modulus, hardness and other 

mechanical properties (Bobko, 2008). When mechanical properties of each indent were calculated, 

statistical methods were applied to analyze the driven data set. The benefit of this approach is that 

we can use less number of indents to determine the single-phase properties and by increasing the 

number of indents the properties of the homogenized medium can be estimated (Constantinides et 

al., 2006). 
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8.2.3. Nano-DMA.  

A conventional (quasi-static) nanoindentation test involves applying a load to force an indenter 

into the sample surface. The applied load is held over a time period and then withdrawn. In the 

next step, the contact area is determined based on the indenter displacement, thus contact stiffness 

can be calculated. Finally, hardness and modulus values of this test point could also be quantified 

(Oliver and Pharr, 1992). Fig. 8.1 shows the schematic of a conventional nanoindentation or quasi-

static creep test. The main shortage of this method is that one can only get the hardness and 

modulus values at the maximum contact depth (end of the creep test) while the change in these 

properties during the creep test will remain unknown.  

 

Fig. 8.1. Schematic of the typical nanoindentation curve (Hu and Li., 2015) 

In the nano-DMA creep test, the quasi-static force is kept constant while a small oscillation is 

superimposed to allow for the continuous measurement of the contact stiffness (Fig. 8.2).  Since 

modulus is derived at the beginning of the hold segment, the thermal drift error is negligible due 

to the minimal temperature changes on the tip of the indenter. The measured modulus is then used 

to calculate the contact area continuously for the remainder of the test, allowing for a continuous 

and accurate measurement of mean contact pressure and penetration depth over time (Bruker 

company). 
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In this study, the TI 950 TriboIndenter® equipped with a diamond Berkovich probe was used to 

perform dynamic nanoindentation tests on a few shale samples. The probe was oscillated at the 

constant reference frequency of 220HZ in order to measure the contact area. This will enable an 

accurate calculation of the modulus despite the relatively long test time which is normally required 

at low frequencies.31 The creep time in our experiment was set to 60s. 

 

Fig. 8.2. Schematic representation of a nano-DMA creep test. 

8.2.4. DMA parameter analysis. 

Dynamic mechanical analysis is used to characterize the response of different materials under a 

sinusoidal stress or strain oscillation. The following few parameters can be derived from the DMA 

test (Herbert et al., 2008; Yamashita et al., 2001; Les et al., 2004): (1) Storage modulus (E’) and loss 

modulus (E’’). The storage modulus (E’) represents the stiffness of a viscoelastic material and is 

proportional to the energy stored during a loading cycle. The loss modulus is related to the energy 

which is dissipated during one loading cycle. The loss modulus is often associated with internal 

friction and is very sensitive to various ways of molecular motion. (2) Complex modulus (E*) 

which is a combination of the storage modulus (the real part) and loss modulus (the imaginary 

part), reflecting the viscoelastic properties of the material. Complex modulus is defined as the ratio 

of the stress amplitude to the strain amplitude and represents the stiffness of the material; (3) Phase 

angle (δ) which represents the phase difference between the dynamic stress and the dynamic strain 
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in a viscoelastic material that is subjected to a sinusoidal oscillation. If the phase angle is 0°, then 

the material is pure elastic and if the phase angle is 90° then the material is defined to be pure 

plastic. The phase angle between 0-90° shows that the material is viscoelastic; (4) Hardness (H). 

Hardness is a measure of how resistant the material is to various types of permanent changes in 

shape when a certain compression load is applied. (5) Loss factor (tan δ).  This is defined as the 

ratio of loss modulus to storage modulus. It is a measure of the energy loss, expressed in 

recoverable energy, and represents mechanical damping or internal friction in a viscoelastic 

system. The lower the loss factor is, the higher the elastic properties of the material would be. The 

relevant equations to calculate these parameters can be found as follows: 
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In these equations, E’ is the storage modulus and E’’ is the loss modulus; H, P, Ac and tan δ refer 

to the hardness, contact load, contact area and the loss factor, respectively. w is the frequency, Ks 

and Cs are the stiffness and the damping coefficients of the contact which can be calculated using 

the following equations: 
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Here, F0 and Z0 are the force and displacement amplitude; respectively; m, Ki, Ci are the mass of 

the indenter, stiffness of the indenter and damping coefficients of the indenter, respectively and 

are known parameters. 

8.3. Results and discussions  

8.3.1. Data analysis at the beginning of creep. 

In order to study the creep behavior of our shale samples, an area covering 300 µm 300 µm 

surface was chosen based on previous studies (Liu and Ostadhassan, 2017). A total of 225 indents 

were performed with 20 µm distance between the neighboring indents. Fig. 8.3 shows the 

schematic of the nanoindentation matrix. 

 

Fig. 8.3. Schematic of the nanoindentation grid.  

Fig. 8.4a and Fig. 8.4b show, respectively, the maps of storage and Loss modulus at the beginning 

of the creep test. It can be easily found that various test points exhibit different storage and loss 

modulus values, revealing the heterogeneous nature of the tested sample. The points with higher 

storage modulus values (red regions in Fig. 8.4a) perfectly matched with areas of higher loss 

modulus values (red areas in Fig. 8.4b). Fig. 8.5 shows that a good linear relationship exists 

between the storage modulus and loss modulus. In addition, it was found that our shale samples 
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have a larger storage modulus value than the loss modulus (with slope value less than 0.5), 

demonstrating their elastic behavior. 

 

(a) Storage modulus                                                (b) Loss modulus 

Fig. 8.4. The storage modulus and the loss modulus map of the nanoindentation area (at the beginning of creep). 

 

 

Fig. 8.5. Correlations between the loss modulus and storage modulus.  

Complex modulus can be used to determine the viscoelastic properties of the samples. The map of 

the complex modulus of a tested sample covering the nanoindentation area at the beginning of the 

creep is displayed in Fig. 8.6. Similar to the storage modulus, complex modulus varies significantly 
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which reflects the viscoelastic behavior of the sample. Linear relationships exist between the 

complex modulus and storage modulus shown in Fig. 8.7a, and between the complex modulus and 

loss modulus represented in Fig. 8.7b.  

 

Fig. 8.6. Complex modulus map covering the nanoindentation area at the beginning of creep. 
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(b) complex modulus  

Fig. 8.7. Correlations between the complex modulus and storage modulus (a) and loss modulus (b). 

Compared with Young’s modulus which can reflect the elastic properties of the rock, hardness can 

reveal more information about the deformation that has taken place in the sample. This makes H 

to be an important parameter which should be analyzed precisely. The hardness map over the 

nanoindentation area is shown in Fig. 8.8 and the positive linear correlations between the complex 

modulus and hardness exists which is displayed in Fig .8.9. 

 

Fig. 8.8. Hardness map covering the nanoindentation area at the beginning of creep. 

 

y = 0.4053x + 0.2668
R² = 0.9986

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

L
o

ss
 m

o
d

u
lu

s,
 G

P
a

Complex modulus, GPa



 

204 
 

 

Fig. 8.9. Correlations between the complex modulus and hardness. 

8.3.2. Impact of creep on the properties.  

Shales are composed of various minerals with different mechanical properties, thus the creep 

behavior of each mechanical phase might be different under the same stress conditions and creep 

time. In order to better investigate and attain a deeper insight into the creep behavior of shales at 

nanoscale, we chose three points from the grid indents for more detailed analysis. Table 8.1 

summarizes the information about these three data points where Points 1, 2, and 3, respectively 

represent soft minerals, medium hard minerals and hard minerals. These data points are chosen 

based on their complex modulus and Hardness values. 

Table 8.1. Summary of the mechanical properties of the three points 

Points Complex modulus, GPa Hardness, GPa 

Point 1 16.714 0.766 

Point 2 38.451 2.692 

Point 3 56.704 6.819 

 

Plotting the displacement recorded for these three data points as a function of creep time, it can be 

seen that the curve follows a similar trend in all data points (Fig. 8.10). At the beginning, the creep 
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displacement is rapidly increasing and then slows down over time. Under the same creep time, the 

mineral with larger complex modulus and hardness showed less creep displacement. Curve fitting 

technique was used to quantify the changes in displacement while the sample is under creep. The 

results are summarized in Table 8.2, indicating that all three creep curves follow a logarithmic 

function which is similar to conclusions in previous studies (Vandamme and Ulm, 2009; Wu et 

al., 2011). The equation for the logarithmic function was found in the following format: 

cbtay ++= )ln( ,               (8-8) 

where y is the creep displacement (nm); t is the creep time (s); a, b, c are the constants derived 

from curve fitting. a is an important parameter that can be used to characterize the creep behavior. 

The curve with higher a value would express a larger creep displacement. 

Table 8.2. The constants and regression coefficients corresponding to the three points logarithmic functions  

  a b c R2 

Point 1 8.7913 0.7797 -0.5695 0.9919 

Point 2 7.4478 1.8052 -4.5319 0.9990 

Point 3 1.9998 0.4221 0.9926 0.9898 

 

 

Fig. 8.10. The correlations between the creep displacement and creep time.  
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We further analyzed the impact of the creep time on the mechanical and viscoelastic properties of 

these chosen data points. As the creep time increases, loss modulus fluctuates around 0 without 

any distinguishable relationship between the loss modulus and creep time (Fig. 8.11). However, 

considering other properties such as the storage modulus, complex modulus and hardness, as the 

creep time evolves, the changes in these values increases (Fig. 8.12-8.14). Fig. 8.12 explains that 

variations in Point 1 which is measurements on a soft mineral is smaller compared to Point 2 and 

Point 3 from medium hard and hard minerals, respectively. We followed the similar curve fitting 

method that we earlier proposed for the displacement, to quantify the changes of mechanical 

properties during the creep time. Table 8.3 illustrates that Eq. 8 can also describe the effects of the 

creep time on mechanical properties.  

Fig. 8.11: Changes of the loss modulus as a function of creep time. 
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Fig. 8.12: Changes of the storage modulus as a function of creep time. 

 

Fig. 8.13: Changes of the complex modulus as a function of creep time. 
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Fig. 8.14. Changes of the hardness as a function of creep time. 

Table 8.3. Curve fitting results of the storage modulus, complex modulus and hardness 

Properties Points a b c R2 

storage modulus 

Point 1 -0.0564 4.1846 0.0632 0.1897 

Point 2 -0.4052 4.0786 0.7970 0.6508 

Point 3 -0.2797 1.1977 0.0431 0.5404 

Complex modulus 

Point 1 -0.0465 1.4891 0.0420 0.1966 

Point 2 -0.3936 2.9837 0.8041 0.6829 

Point 3 -0.2807 0.8335 0.0398 0.5587 

Hardness 

Point 1 -0.0148 0.5906 -0.0016 0.9834 

Point 2 -0.0724 1.1333 0.0077 0.9864 

Point 3 -0.0907 0.1919 -0.0782 0.8775 

 

8.3.3. Nanoindentation analysis of entire sample. 

We attempted to estimate the overall mechanical properties of the entire nanoindentation area as 

one value. Based on the statistical design of the grid indents, first, we defined the creep behavior 

of each indent, and then used the average value of the measured indents as an estimation for the 

whole surveyed area. Fig. 8.15 shows the displacement curve of the entire nanoindentation area. 

The average displacement value increases as the creep time increases which is similar to Fig. 8.10. 
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Regarding the impact of creep time on mechanical properties, we can find that the initial loss 

modulus decreases as the creep time increases followed by an increase (Fig. 8.16). The other 

mechanical parameters, such as storage modulus, complex modulus, and hardness, demonstrate a 

sharp increase followed by a steady decrease as creep time proceeds (Fig. 8.17-8.19). The decrease 

of the storage modulus indicates that some structures are broken in the rocks during the creep. The 

decline of the hardness value can demonstrate that the resistant ability of the shale to the change 

in shape is decreasing under certain stress intervals. Relating this phenomenon to field operations, 

we can understand one of the reasons for proppant embedment into the fractures, leading to a 

reduction in fracture conductivity and the overall performance of hydraulic fracturing. Analyzing 

the curve fitting results from Table 8.4 indicates as the creep time increases, displacement, storage 

modulus, loss modulus and hardness follow a logarithmic function expressed in Eq. (8). 

 

 

Fig. 8.15. The correlations between the creep displacement and creep time (Whole nanoindentation area). 
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Fig. 8.16. Correlations between the loss modulus and creep time (Whole nanoindentation area). 

 

 

Fig. 8.17. Correlations between the storage modulus and creep time (Whole nanoindentation area). 
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Fig. 8.18. Correlations between the complex modulus and creep time (Whole nanoindentation area). 

 

 

Fig. 8.19. Correlations between the hardness and creep time (Whole nanoindentation area). 
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Table 8.4. Curve fitting results of the average value over the entire sample 

Properties a b c R2 

Displacement  7.4970 0.6038 1.3779 0.9922 

Storage modulus 0.0465 1.4537 0.0823 0.7264 

Complex modulus 0.0420 0.5813 0.0452 0.6761 

Hardness 0.0318 0.4023 0.0150 0.9925 

 

8.3.4. The impact of the creep time on the shale structures.   

In the following section, we studied the changes in rock properties as a function of creep time. 

Fig. 8.20 displays the hardness map of the sample at three different creep time periods. 

  

   (a) 0s                                                                               (b) 33s 

 

                                                                            (c) 58s 

Fig. 8.20. Storage modulus map covering the nanoindentation area as creep time evolves. 
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In order to accurately quantify the variations that are associated with the creep time, we applied 

deconvolution discrimination method to create the histogram of the data set. This method divides 

the data set into different categories that are presented in Fig. 8.21. The deconvolution method was 

proposed by Ulm and his co-authors (Ulm et al., 2007; Bobko et al., 2008) which is used to analyze 

the grid indentation data statistically. Fig. 8.21 shows the deconvolution results from the storage 

modulus map at different creep times. The results are also summarized in Table 8.5. The outcome 

of the deconvolution discrimination explains that the nanoindentation area of our sample can be 

separated into two distinct mechanical phases. One phase with the smaller mean value which can 

represent softer materials whereas the second one expressing higher mean value corresponding to 

harder minerals. The area underneath each histogram, divided by the area under the combined 

curve can be considered as the surface fraction for each mechanical phase. Moreover, based on the 

Delesse principle (Delesse, 1847), we can derive the volume fractions of each mechanical phase 

from the deconvolution process.  Table 8.5 illustrates as the creep time increases, the volume 

percentage of mechanical phase 2 (hard mineral phase) decreases while the volume percentage of 

l phase 1 (soft mineral phase) increases. This is caused by the dislocation creep phenomenon. 

Dislocation is defined as the propagation front line of a slip which is characterized by two 

components 1) the slip plane and 2) slip direction. A collective motion of atoms such as migration 

of crystal dislocations can cause a plastic deformation. The deformation by the dislocation creep 

can result in dynamic recrystallization which can further reduce the grain size. Consequently, 

smaller grains will be formed along the pre-existing grain boundaries making such areas softer 

prior to the dislocation (Karato, 2013). As a result, the volume of hard mechanical phase will 

decrease, and the volume of the soft mechanical phase will increase. 
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                                (a) 0s                                                                         (b) 33s 

 

                                                                                  (c) 58s 

Fig. 8.21.  Histogram of the storage modulus covering the nanoindentation area under different creep time. 

Table 8.5. Comparison of deconvolution results of the sample under different creep time 

  Phase 1, Gpa percentage, % Phase 2, Gpa percentage, % Fitting coefficient 

0s 20.80 68.47 37.41 31.53 0.94 

33s 21.19 70.54 38.07 29.46 0.92 

58s 21.33 71.06 37.35 28.94 0.95 

 

8.4. Conclusions  

In this paper, we applied the new NanoDMA on a few shale samples from the Bakken Formation 

to examine their creep behavior at nanoscale. The following conclusions were drawn from this 

study: 
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1) Shale is a heterogeneous material, but linear correlations can be found between storage modulus 

and loss modulus, complex modulus and storage modulus, and finally between complex modulus 

and hardness. 

2)  Under the same stress and creep conditions, hard minerals expressed less creep displacement 

compared to soft minerals. The changes of properties such as storage modulus, complex modulus 

and hardness of hard minerals are larger than the soft ones. 

3)  We averaged the data of the nanoindentation area to represent the entire surveyed shale sample 

and then analyzed its overall creep behavior. The results showed that the creep displacement, 

storage modulus, complex modulus and hardness follow a logarithmic function with respect to the 

creep time. 

4) Two distinct mechanical phases (hard mechanical phase and soft mechanical phase) can be 

derived from the deconvolution of storage modulus histograms. As the creep time proceeds, the 

volume percentage of hard mechanical phase decreases while the percentage volume of soft 

mechanical phase will increase. 
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