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ABSTRACT 

 This thesis performs an intercomparison of reanalysis datasets with the goal of 

determining their respective proficiency in representing severe weather environments 

capable of producing phenomena such as strong wind, large hail, and tornadoes. A select 

reanalyses is then used to investigate the climatology and trends in pertinent severe weather 

parameters over a three-decade period from 1986-2015. 

 The intercomparison is performed by comparing a peer-reviewed dataset of Rapid 

Update Cycle 2 (RUC-2) proximity soundings to collocated soundings derived from the 

nearest grid point in six different modern reanalyses. These soundings are compared via 

various parameters related to severe weather such as: Convective available potential energy 

(CAPE), effective storm relative helicity (EFFSRH), and supercell composite parameter 

(SCP). Parameters are calculated using SHARPpy, which is an open source, peer reviewed 

python sounding analysis package modeled after the Storm Prediction Center’s (SPC) 

Sounding and Hodograph Analysis and Research Program (SHARP). 

 Representation of severe weather environments varies across the reanalyses and the 

presented results have ramifications for climatological studies that use these datasets. In 

particular, thermodynamic parameters such as CAPE show the widest range in variations, 

and this property feeds back to other parameters that incorporate thermodynamic 

information directly or indirectly through the effective layer. As a result, better segregation 

of soundings by storm type is found for fixed-layer shear parameters. 
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Although no reanalysis can exactly reproduce the results of earlier RUC-2 studies, many 

of the reanalyses can broadly distinguish between environments that are significantly 

tornadic vs. nontornadic. Overall, the reanalyses found to have the most favorable error 

characteristics for severe weather environments are the North American Regional 

Reanalysis (NARR) and the Japanese 55-Year Reanalysis (JRA55).  

 Given the results of the first objective, NARR is used to understand the climatology 

and trends in severe weather parameters across the contiguous United States. A suite of 

severe weather parameters is calculated for the full domain of NARR by taking “pseudo-

soundings” at each grid point. It is found that the spatial distribution of average severe 

weather climatologies are similar to prior studies but tend to have significantly larger 

magnitudes. It is also found that certain severe weather parameters may be increasing over 

select regions, while others have either a neutral trend or are decreasing over time.  

The raw data used for this study, i.e. a suite of severe weather parameters for the 

full domain of NARR, will be made publicly available. This dataset is potentially useful to 

members of the climate science and atmospheric science communities. This is due in part 

to the large amount of computational resources and time that were required to produce this 

dataset.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

 Severe Weather in Atmospheric Reanalyses 

 Atmospheric reanalyses combine historical observations with a fixed data 

assimilation scheme and underlying model to achieve a dynamically consistent, gridded 

representation of the atmosphere. This process fills data void regions, and, for this reason, 

reanalyses are commonly used to investigate various questions related to past weather 

events and climate. For example, reanalyses have shed light on the climatology and trends 

of severe weather environments given the numerous issues with observed reports 

associated with these events (e.g. Brooks et al. 2003, Brooks et al. 2007, Gensini and 

Ashley 2011, Romero et al. 2007, Blamey et al. 2016). Based off this climatological work, 

reanalyses have also been used to assess the fidelity of these environments in climate 

simulations (Marsh et al. 2007, Trapp et al. 2007). In summary, reanalyses are a key piece 

of the puzzle to determine how severe weather events may or may not change in a warming 

climate.   

 Since reanalyses are run at resolutions inadequate to resolve the processes that 

dictate severe weather events, alternative methodologies must be employed to relate 

reanalysis output to the potential for severe weather. One such way is to identify favorable 

environments by calculating diagnostic parameters such as Convective Available Potential 

Energy (CAPE) and 0-6km Bulk Wind Difference (BWD) from reanalyzed vertical profiles 

of the atmosphere. Parameter based evaluation of severe weather environments is rooted 
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in earlier forecasting studies, which utilized observed proximity soundings to discriminate 

between types of convection or the phenomenon produced (e.g. Davies 1993, Johns et al. 

1993, Rasmussen and Blanchard 1998). Ideally, these soundings should be taken within 

the inflow environment of the storm, but this can significantly limit the number of samples 

for analysis. Further, there is risk of limiting the representativeness of the sounding due to 

interference from the storm itself (so-called convective contamination). Despite these 

issues, the viability of proximity soundings has been well documented in prior literature. 

 In lieu of observed soundings, the rise of mesoscale models has led to analyzed or 

forecast soundings being used as pseudo proximity soundings for convective events 

(Thompson et al. 2003, Davies 2004, Thompson et al. 2007, Reames 2017). Thompson et 

al. (2003) (hereafter T03) found that Rapid Update Cycle-2 (RUC-2, Benjamin et al. 2004) 

soundings were a good proxy for observed soundings and contained errors that were 

generally “…within 0.5° C for temperatures, 0.2 g kg-1 for mixing ratios, and 1 m s-1 for 

wind speed (all close to the ranges for radiosonde accuracy)”. Additionally, T03 concluded 

that “Overall, the RUC-2 analysis soundings appear to be a reasonable proxy for observed 

soundings in supercell environments.” 

 Given this information, it seems plausible that reanalyses can provide pseudo 

proximity soundings (hereafter proximity soundings) for convective events, especially for 

regions with ample observations. This concept was used by Brooks et al. (2003), who 

analyzed environments in the NCAR/NCEP (Kalney et al. 1996) reanalysis. Despite being 

coarse compared to the latest generation of reanalyses (~200km grid spacing with 6-hourly 

increments), this dataset allowed for proximity soundings to be taken within previously 

used definitions such as within three hours and 180 km of an event (T03). This was built 
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upon by Brooks et al. (2007) who examined the annual cycle of severe weather 

environments from the NCAR/NCEP reanalysis. Marsh et al. (2009) extended this 

framework to simulated soundings from the Community Climate System Model 3 

(CCSM3) to investigate European severe weather environments in past and future climates.  

 Since these earlier studies, a number of reanalyses now exist, which leads to the 

question of whether severe weather environments are similar amongst these datasets. 

Overall, the capability of these reanalyses to represent severe weather environments is 

somewhat unclear. Kennedy et al. (2011) demonstrated that large differences in the vertical 

profiles of variables can exist between reanalyses, specifically the North American 

Regional Reanalysis (NARR, Mesinger et al. 2006) and the Modern-Era Retrospective 

Reanalysis for Research and Applications (MERRA, Rienecker et al. 2011). This would 

suggest that derived parameters, which are useful for investigating convective events, could 

differ significantly between reanalyses. This clouds the utility of these datasets for applied 

forecasting and climatological studies.  

 Although some work has been done to clarify this ambiguity in the representation 

of severe weather environments, most studies have focused on the NARR. Gensini et al. 

(2014) noted that kinematic variables were best represented by this reanalysis, while 

thermodynamic variables were generally overestimated and had regional biases. This study 

also demonstrated that sharp gradients in temperature associated with the elevated mixed 

layer (EML) were not adequately resolved by NARR in most soundings. In a study of high 

CAPE, low shear severe weather events, Sherburn et al. (2016) found that surface based 

CAPE (SBCAPE) calculated from the NARR did not strongly correlate with SBCAPE 
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values from the Storm Prediction Center’s (SPC) Surface Objective Analysis (SFCOA). 

Additionally, the NARR overestimated SBCAPE in comparison to SFCOA. 

 Although the error characteristics of the NARR regarding severe weather 

parameters have been relatively well documented, a comprehensive study of all current 

generation reanalyses has never been completed. Many of these other reanalyses have been 

used in past studies to identify regional properties or trends in severe weather parameters. 

This has been done without knowledge of the capability of the reanalysis to represent 

severe weather environments, at least in comparison to other reanalysis datasets. For 

example, Blamey et al. (2016) used the Climate Forecast Systems Reanalysis (CFSR) to 

examine trends in severe weather over South Africa while Allen and Karoly (2013) 

performed a similar analysis with the European Interim Reanalysis (ERA-Interim, Dee et 

al. 2011) to determine the inter-annual variability and influence of El Niño-Southern 

Oscillation (ENSO) on severe thunderstorms in Australia. ERA-Interim has also been used 

to investigate the relationship of rainfall extremes to atmospheric properties (Lepore et al. 

2014). It is possible that the use of a different reanalysis could have produced different 

results.  

 

Trends in Severe Weather Environments 

 Some studies have suggested that occurrence of environments favorable for severe 

weather may be increasing due to a changing/warming climate (Marsh et al. 2007, Gensini 

and Brooks 2008, Hoogewind et al. 2017, etc.). However, there are numerous difficulties 

associated with accurately determining trends or climatologies regarding severe weather 

(e.g. Brooks et al. 2003, Brooks et al. 2007, Gensini and Ashley 2011, Romero et al. 2007, 



 5 

Blamey et al. 2016). One of the primary issues is that severe weather phenomena occur on 

relatively small spatial and temporal scales. For example, tornadoes are typically on the 

order of 100s of meters wide and typically last for only a few minutes. This makes it 

impossible to resolve individual convective storms within the current generation of 

reanalyses or climate models, which typically have horizontal grid spacing on the order of 

tens to hundreds of kilometers.  

  One solution to this problem is the process of dynamical downscaling in which 

temporally and spatially coarse data from a Global Climate Model (GCM) or reanalysis is 

used as the boundary conditions for high-resolution regional model. For example, 

Hoogewind et al. (2017) used the Weather Research and Forecasting (WRF) model to 

perform dynamical downscaling of the Geophysical Fluid Dynamics Laboratory Climate 

Model, version 3 (GFDL CM3) for historical (1971–2000) and future (2071–2100) periods. 

They found that the proxy for severe weather occurrence (vertical velocity > 22 m s-1) 

becomes more frequent by the end of the twenty-first century, primarily in the spring and 

summer months. However, dynamical downscaling is not without its drawbacks. It requires 

immense computational power to complete the simulations which makes it unfeasible for 

large areas or long time periods. There are also numerous other issues, including 

differences in physics packages between models, which are discussed in Hong and 

Kanamitsu (2014). 

 Tang et al. (2017) also utilized dynamical downscaling to study changes in the 

Great Plains low-level jet (GPLLJ). The GPLLJ is a wind speed maximum found within 

the lowest 2-3 km of the troposphere that typically develops in the evening hours of the 

Great Plains spring and summer season. This feature is important for convective storms 
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due to its ability to rapidly transport moisture from the Gulf of Mexico as well as to greatly 

increase the low level wind shear. This increase in wind shear is associated with an increase 

in tornado frequency during the evening hours. Tang et al. (2017) projected an increase in 

nocturnal GPLLJ frequency in the spring and summer, and persistence of current 

climatological patterns for daytime and cool season GPLLJs. 

 From a historical standpoint, the relative scarcity of severe weather also makes 

obtaining an entirely accurate record of events nearly impossible given past and current 

reporting methods. Many of these issues are examined in Brooks and Doswell (2001), 

Doswell et al. (2005), and Verbout et al. (2006). Since raw reports alone are not an adequate 

source of information, another route must be taken. As was previously discussed, a 

common solution to these issues is the use of diagnostic parameters such as CAPE, wind 

shear, and various combinations thereof (T03, T07, etc.). These parameters provide a view 

of the overall severe weather environment within which storms may exist within and serve 

as a proxy for severe weather occurrence. The relatively sparse network of upper air 

observations that typically only record data twice daily limits the usefulness of a purely 

observation-based approach. However, the relatively recent development of atmospheric 

reanalyses has allowed for the creation of a much larger dataset of severe weather 

parameters using “pseudo-soundings”. This method was employed by Brooks et al. (2003) 

using the NCEP /NCAR Reanalysis (R1, Kalnay et al., 1996) to develop a severe weather 

climatology over North America. A similar approach was used by Gensini and Ashley 

(2011) using the newer North American Regional Reanalysis (NARR, Mesinger et al. 

2006), which boasts a much higher spatial and temporal resolution (~32 km, 3 hrly 

respectively). It is important to note that the use of diagnostic parameters to evaluate severe 
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weather does not consider the actual occurrence of severe weather phenomena, but rather 

the potential for severe weather occurrence.  

 

Purpose of Study 

 The primary goal of this thesis is to identify the characteristics of severe weather 

environments in the latest generation of atmospheric reanalyses. To do so, these datasets 

are compared to a database of RUC-2 proximity soundings from Thompson et al. (2007, 

hereafter T07). Aside from identifying characteristics of common severe weather 

parameters, this effort will explore whether reanalyses can reproduce earlier work from 

T03 and T07 that has identified differences in thermodynamic and kinematic environments 

by storm type.  

 This study offers several benefits. First, it will provide proper context to earlier 

literature that has focused on specific reanalyses. Second, the performance of these 

reanalyses will provide insight into which datasets should be used for future studies to 

examine the characteristics of severe weather phenomena. If a particular reanalysis can 

reproduce the results of T03 and T07, this may open the door to building a database of 

proximity soundings for rarer events such as long-track tornadoes that have a notoriously 

low sample size. Finally, these results will aid climatological studies, such as inter-

comparisons between reanalyses and historical and future climate simulations.  

 The second goal of this thesis is to produce a dataset of severe weather parameters 

for the full domain of NARR at each grid point. NARR was chosen due to favorable error 

characteristics (King and Kennedy 2018) compared to other modern reanalyses, in addition 

to its relatively high spatial and temporal resolution (~32 km and 3 hourly, respectively). 
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Parameters are calculated using the Sounding and Hodograph Analysis and Research 

Program in Python (SHARPpy) package (Blumberg et al. 2017) at every grid point within 

NARR, with grid points over water and grid points with 2 m temperatures below freezing 

excluded to speed up the computational process. This dataset of severe weather parameters 

will be made publicly available. As this dataset was computationally expensive to produce, 

it will prove potentially useful to members of the climate science and atmospheric science 

communities needing a record of severe weather parameters for North America from 1979 

through 2016.  

 To demonstrate the potential uses of this dataset, a climatology of severe weather 

parameters within NARR for a 30-year period from 1986-2015 is produced. Areas in the 

United States east of the Rocky Mountains are the primary focus. This serves to ensure that 

the average distribution of parameters within the dataset is reasonable as compared to prior 

studies that have conducted similar analyses. Finally, trends in various parameters are 

calculated at each grid point to determine any changes in environments favorable for severe 

weather over the time period of the dataset.  
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CHAPTER 2 

REANALYSIS DATASETS 

 

Overview 

The reanalyses chosen for the intercomparison include the North American 

Regional Reanalysis (NARR), ECMWF interim Reanalysis (ERA-Interim), 2nd Modern-

Era Retrospective Analysis for Research and Applications (MERRA2, Gellaro et al. 2017), 

Japanese 55-year Reanalysis (JRA55, Kobayashi et al. 2015), 20th Century Reanalysis 

(20CR, Compo et al. 2011), and the Climate Forecast System Reanalysis (CFSR, Saha et 

al. 2010). These datasets represent the latest generation of reanalyses, and as such, older 

datasets, such as NCAR/NCEP global reanalysis and first generation of MERRA, were 

omitted. It should be noted that the 5th generation of ERA (ERA5) is in production, but 

data were unavailable for analysis at the time of this thesis.  

A unique aspect of reanalyses is the wide number of products generated. Due to 

space constraints and user purposes, reanalyses are often subsetted in space and/or time. A 

good example is NARR, which provides 29 isobaric levels vs. the original 45 model layers. 

For other reanalyses, multiple datastreams may exist. MERRA 2 includes datastreams that 

have atmospheric variables output in different time intervals, grid spacing, and on different 

vertical levels (model level vs. isobaric). Ideally, proxy soundings should have high 

temporal, spatial, and vertical resolutions to be most representative of the convective 

environment. To this end, datastreams were selected that maximized these properties for 

three-dimensional atmospheric variables. Grid spacing information along with datastream 

locations are also provided in Table 1. One important thing to note is the difference in 
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vertical resolution between reanalysis datasets. The difference in vertical resolution, 

especially at lower levels of the atmosphere, would theoretically have a large impact on 

parameters such as Convective Inhibition (CIN) that rely on having the lowest few hundred 

meters of the atmosphere adequately resolved. A synopsis of each reanalysis dataset is 

provided in the following section. For a more in-depth description of each dataset, the 

reader is referred to the primary publications that describe these datasets (Table 1).  

 

Reanalysis Dataset Details 

NARR 

 NARR is a regional reanalysis that was developed with the goal of improving upon 

the NCAR/NCEP global reanalysis (R1) by more accurately capturing the regional 

hydrological cycle, diurnal cycle, and other important features. This dataset was completed 

in 2004 following a 6-year development phase. NARR utilizes the NCEP Eta model and 

its Data Assimilation System (32-km, 45-layer resolution with 3-hourly output). It 

incorporates hourly assimilation of precipitation, a recent version of the Noah land surface 

model, as well as numerous other datasets that are additional or improved compared to R1. 

The currently available data for this reanalysis spans from 1979-2016 and is updated on a 

regular basis. Some of the reported highlights of the NARR dataset is a significantly more 

accurate analysis of precipitation, as well as 2 m temperatures and 10 m winds as compared 

to R1 (Kalney et al. 1996).  

 

ERA-Interim 
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ERA-Interim is produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) partly in preparation for the ERA5 reanalysis that will replace the 

older ERA-40 reanalysis. The ERA-Interim covers the time period of 1979 onwards, and 

is updated in near real-time. The reanalysis utilizes a 12-hourly 4D variational analysis 

scheme (4D-Var) data assimilation scheme for upper-air atmospheric state. The 4D-Var 

analysis in ERA-Interim is obtained by successive linearizations of the model and 

observation operator (Dee et al. 2011, Courtier et al. 1994, Veersé and Thépaut, 1998). 

This is a vast improvement from the earlier ERA-40 that utilized a 3D variational analysis 

scheme (3D-Var; Courtier et al., 1998) scheme. The analysis itself is produced using the 

ECMWF IFS that incorporates a forecast model with coupled atmosphere, land surface, 

and ocean waves. Additionally, the observations being assimilated into the reanalysis 

increase from the start of the data availability to the finish, largely due to increasing satellite 

data (Dee et al. 2011).  

 

MERRA2 

 The MERRA2, which is produced by NASA’s Global Modeling and Assimilation 

Office (GMAO), represents an upgrade to MERRA. It includes assimilation of 

observations that were not available to its predecessor, such as aerosols and additional 

satellite data. MERRA2 also includes updates to the Goddard Earth Observing System 

(GEOS) model and analysis scheme. It is designed to be a stepping stone between the 

original MERRA and the next generation of integrated Earth system analysis (IESA) 

currently under development at GMAO. Additional improvements from MERRA include 
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a reduction of data gaps/jumps and reduced biases and imbalances in the water cycle 

(Gellaro et al. 2017). 

 

JRA55 

 The JRA55 reanalysis dataset is produced by the Japan Meteorological Agency 

(JMA) and is the second global reanalysis produced by the agency. The reanalysis covers 

the time period of 1958 to present, which coincides with regular global radiosonde 

observations. The primary purpose behind the development of this dataset was to improve 

on the prior iteration, the Japanese 25-year Reanalysis (JRA25). As with other reanalyses, 

this second-generation reanalysis provides marked improvements relative to its 

predecessor. Most notably, the JRA55 includes newly available and improved observations 

as well as an updated data assimilation system (TL319 version of JMA’s operational data 

assimilation system, Kobayashi et al. 2015). JRA55 also remedied a cold bias in the lower 

stratosphere that was present in JRA25 along with incorporating numerous other 

corrections. 

 

20CR 

 The 20CR is an internationally developed dataset with the goal of producing a 

global atmospheric circulation dataset for the entirety of the 20th Century. The 20CR only 

assimilates surface pressure, as well as monthly sea surface temperatures and sea ice 

distributions. The primary purpose of this reanalysis is use in climate model validation. An 

Ensemble Kalman Filter data assimilation system (Whitaker and Hamill, 2002) is utilized 

in 20CR, as is a new version of the NCEP atmosphere-land model. The atmosphere-land 
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model is used to generate first-guess fields with interpolated sea-surface temperature and 

sea-ice concentrations being used as boundary conditions. This, in addition to assimilation 

of surface pressure leads to the generation of the reanalysis dataset.  

 

CFSR 

The CFSR is a high resolution, global reanalysis produced by NCEP-NCAR as an 

update to prior generation global reanalysis (R2). The CFSR dataset spans from 1979 

through 2010 and utilizes a coupled atmosphere–ocean–land surface–sea ice system. The 

CFSR has a horizontal grid spacing of approximately 38km (T382) with 64 levels from the 

surface to 0.26 hPa. The reanalysis assimilates most available observations, including 

satellite data. According to Saha et al. (2010): “Satellite observations were used in radiance 

form, rather than retrieved values, and were bias corrected with ‘spin up’ runs at full 

resolution, taking into account variable CO2 concentrations. This procedure enabled the 

smooth transitions of the climate record resulting from evolutionary changes in the 

satellite”.  

 

 

 

 

 

 

 

 



 14 

Table 1. Properties of reanalysis datastreams used in this study. Primary references for 
these reanalyses are also provided.    

Reanalysis Horizontal 

Grid 

Spacing 

Vertical 

Levels  

Temporal 

Spacing 

Source Reference 

NARR ~32 km 29 3-hourly ESRL/PSD1 Mesinger 

et al. 

(2006) 

ERA-

Interim 

~80 km 

(T255) 

60 6-hourly  NCAR RDA2: 

ds627.0 

 

Dee et al. 

(2011) 

MERRA 2 ~ 50 km 

(0.5°) 

72 3-hourly NASA GES 

DISC3 

inst6_3d_ana_Nv 

 

Gelaro et 

al. (2011) 

20CR (V2) ~200 km 

(T62)  

28 6-hourly ESRL/PSD1 Compo et 

al. (2011) 

JRA55 ~55 km 

(T319) 

60 6-hourly NCAR RDA2: 

ds628.0 

 

Kobayashi 

et al. 

(2015) 

CFSR ~38 km 

(T382) 

64  6-hourly NCAR RDA2: 

ds094.0 

 

Saha et al. 

(2010) 

1 https://www.esrl.noaa.gov/psd/data/gridded/ 
2 NCAR Research Data Archive: https://rda.ucar.edu/ 
3 NASA Goddard Earth Sciences Data and Information Services Center: 
https://disc.sci.gsfc.nasa.gov/ 
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CHAPTER 3 

METHODS 

 

Reanalysis Comparison 

Reanalyses were compared to the RUC-2 proximity soundings from T07. This 

dataset contains 1185 proximity soundings that are separated into the following categories:  

• “significantly tornadic” (F2-F5 tornadoes, denoted as sigtor),  

• “weakly tornadic” (F0-F1 tornadoes, denoted as weaktor),  

• “nontornadic” (discrete non-tornadic supercells, denoted as nontor), 

•  “marginal” (marginal supercellular structure, denoted as mrgl), 

• “non-supercell” (discrete, non-supercells, denoted as nonsuper). 

The nontornadic category was further split into surface-based and elevated storms (denoted 

as elevnt). This was performed by evaluating the effective inflow layer (T07). If the 

effective inflow layer was above ground level, the storm was classified as elevated.  

RUC-2 model soundings were chosen in lieu of radiosonde data due to the temporal 

and spatial availability of the data, the availability of the T07 dataset with discrimination 

of soundings by storm type, and the performance of RUC-2 in representing the true 

atmospheric state (T03, Coniglio 2012). The RUC-2 soundings from T07 were compared 

to each reanalysis via numerous severe weather parameters that have been calculated from 

the proximity soundings. While some of these variables (such as CAPE and CIN) are 

provided by the reanalyses (and were presumably calculated using all model levels), 

documentation regarding these calculations is sparse. For example, there is no guarantee 

that all reanalyses use similar parcels (e.g. surface based) or the virtual temperature 
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correction (Doswell and Rasmussen 1994). For example, ERA-Interim uses an 

approximation for CAPE for the purposes of computational efficiency that leads to values 

~20% higher than those calculated using virtual temperature (ECMWF, 2017). Because of 

these issues, severe weather parameters were calculated independently, using the Sounding 

and Hodograph Analysis and Research Program in Python (SHARPpy) package. This 

package has been developed to closely emulate methods developed by the SPC, which have 

been rigorously tested (Blumberg et al. 2017). 

The proximity soundings for each reanalysis were selected by identifying the 

nearest grid-point to the T07 RUC-2 grid-point identifiers. Of the original 1187 samples 

within T07, twenty-two soundings, not associated with METAR locations, could not be 

identified and were not used. Two additional soundings did not have parcel traces 

completed due to erroneous values, and these soundings were also discarded.  

Once the closest reanalysis grid-point was determined, the appropriate reanalysis 

time-step was selected. To understand how temporal variability may impact the analysis, 

as well as mitigate potential issues with convective contamination or passage of mesoscale 

features responsible for convective events, times were selected in two different ways: 

1) Closest time to each RUC-2 sounding (e.g. 00 UTC for a 23 UTC RUC-2 

analysis) 

2) Closest time prior to each RUC-2 sounding (e.g. 21 UTC for the case above). 

Once points were selected from each reanalysis, a vertical profile was extracted and 

required variables (temperature, dewpoint, u-component of wind, v-component of wind, 

height, and pressure) were passed to SHARPpy to compute desired parameters. This 

process was completed twice for each reanalysis: once while including surface variables (2 
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m temperature, 2 m dewpoint temperature, 10 m u-component of wind, 10 m v-component 

of wind, surface height, and surface pressure), and once starting from the first model layer. 

Additionally, for those reanalyses that did not utilize a hybrid-sigma pressure coordinate 

system, checks were performed to ensure that model layers below ground were not used. 

A full list of the severe weather parameters calculated using SHARPpy for this study is 

provided in Table 2. The net result of the process was four different calculations of 

parameters: 

1) Closest spatial and temporal point with surface variables, 

2) Closest spatial and prior temporal point with surface variables, 

3) Closest spatial and temporal point without surface variables, 

4) Closest spatial and prior temporal point without surface variables. 

In most cases, the first calculation (closest in space and time, with surface variables) 

yielded the highest correlations with RUC-2 soundings. Using the prior time step (i.e. 

methods 2 and 4) yielded the lowest correlations, especially for kinematic variables. In the 

interest of time, calculations using the prior time step were only completed for NARR and 

JRA55. Table 3 shows correlation coefficients for each calculation method for these two 

reanlayses. The inclusion of surface variables typically had little effect on thermodynamic 

variables (e.g. correlations for NARR MLCAPE varied from 0.74 to 0.75 with the inclusion 

of surface variables, whereas JRA55 MLCAPE went from 0.68 to 0.69 for the calculations 

involving the closest temporal point). Correlation decreased slightly for NARR SBCAPE 

when including surface variables (0.70 to 0.66), which is likely due to the tendency of 

NARR to overestimate surface temperatures. Low-level shear parameters, parameters that 

include the effective layer, and composite parameters typically benefited from the inclusion 
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of surface parameters, especially for NARR. Broadly speaking, these results also hold true 

for other reanalyses. For example, not including surface variables (but still taking the 

closest temporal point) resulted in a correlation of 0.56 between ERA-INT and RUC-2 for 

SBCAPE, whereas including surface variables increased the correlation to 0.60 (Table 4). 

Overall, relatively small deviations can be noted across most reanalyses and variables 

(especially for surface-based parameters). As such, these results (from the first calculation) 

are presented herein. 

Provided the objectives, SHARPpy was first used to reproduce the RUC-2 results 

of T03 and T07. Some differences should be expected between these studies. First, the 

sample size is slightly different. Second, there are some possible differences in the 

calculations of sounding parameters between SHARPpy and the Skew-T Hodograph 

Analysis and Research Program (NSHARP; Hart and Korotky 1991) used in T03 and T07. 

Although most parameters are nearly identical to NSHARP, those dependent on storm 

motion (e.g. ESRH) show more variability (Halbert et al. 2015). SHARPpy (by default) 

uses the ID method (Bunkers et al. 2000) for calculating storm motion vectors whereas T07 

used radar identified centroids. Considering reanalyses may be used to study historical 

events that do not have radar data available or a priori knowledge of storm motion, 

identified storm motion vectors in SHARPpy were not modified. 

Overall, results are similar to T03 and T07 (Fig. 1). Although the sample size 

increased from T03 and T07, box and whiskers plots of MLCAPE look similar to Fig. 6 in 

T03 (Fig. 1a). MLCAPE decreases from median values of 2220 to 1070 J kg-1 from sigtor 

to nontor supercells. This compares to the original values of 2152 to 952 J kg-1 in T03. Box 

and whiskers plots for effective SRH subject to the parcel constraints of CAPE ≥ 100 J kg-
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1 and CIN ≥ -250 J kg-1 are also shown (Fig. 1b, Fig 8 in T07). Similar to T07, ESRH 

decreases markedly across the categories with median values ranging from 225 to 19 m2s-

2. The largest difference between this study and T07 occurs in the mrgl category. In this 

case, the storm motion is likely closer to the mean wind vector versus the vector derived 

from the ID method (Bunkers et al. 2000). As a result, storms with less deviant motion 

have reduced ESRH. 

 

Climatology 

Pseudo-soundings were taken at each grid point in NARR for the full time period 

of data availability (1979-2016). NARR was chosen for this analysis based upon prior 

results indicating favorable error characteristics compared to other modern reanalyses 

(King and Kennedy 2018) as well as a comparatively high spatial resolution (~32km). 

Additionally, NARR has been used in past research to determine severe weather 

climatologies (ex. Gensini and Ashley 2011), which makes a more direct comparison to 

past research possible. Given that 30 years is commonly used to determine a climatology, 

this thesis focused on the period 1986-2015. Soundings were taken at 00 UTC to allow for 

direct comparison to prior studies and observations. Additionally, only grid points over 

land and where temperatures were above freezing were considered. This was done to 

minimize the computational resources needed, and because parameters favorable for severe 

weather are unlikely to exist in sub-freezing temperatures. Parameters associated with the 

pseudo-soundings were computed using SHARPpy. A table of all computed parameters is 

provided in Table 2. 
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 To enable a more direct comparison to prior studies (i.e. Brooks et al. 2003, 

hereafter B03; and Gensini and Ashley 2011, hereafter GA11) and ensure that the average 

distribution of parameters was reasonable, a climatology of severe weather parameters was 

developed. Similar to these earlier studies the annual mean number of days of parameters 

exceeding specific threshold values were calculated (e.g. days exceeding 2000 J kg-1 of 

CAPE). 

While parameters can be explored individually, CAPE alone has a somewhat 

limited use in detecting environments that are potentially favorable for severe weather. 

CAPE can be useful in discriminating between environments of varying levels of severity, 

however, other parameters, especially those that include information about wind shear, 

tend to be better predictors (Rasmussen and Blanchard 1998). For example, many summer 

days are characterized by large CAPE values, but storms do not develop due to either too 

much CIN or lack of a forcing mechanism. Additionally, an environment may have large 

CAPE but little to no wind shear, which significantly limits the possibility of severe 

weather (Rasumussen and Blanchard 1997, T03, T07). Therefore, wind shear information 

should be included to produce a reasonable climatology of severe weather environments. 

A simple parameter was developed by B03 that is a combination of 0-6 km wind shear and 

CAPE. This technique was also used by GA11 in their expansion of the work done by B03 

to examine the climatology of potentially severe environments from 1980-2009. The basic 

formula for this parameter from GA11 is: 

 

0 − 6$%	'() ∗ +,-./0 
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Values above 10,000 are typical for basic severe weather, whereas values of 20,000 and 

30,000 represent environments capable of significant severe and significant tornadoes, 

respectively (GA11). This parameter is referred to as the composite C proximity parameter 

in GA11 and the same term will be used herein for the sake of consistency. Although the 

time periods differed between this thesis, B03, and GA11, the comparison of overall severe 

weather parameter distributions should still be valid. 

 Trends in various parameters were calculated by taking the number of days 

exceeding a predetermined threshold each year and performing a simple linear regression 

analysis at each grid point. The slope of the linear regression was used to determine whether 

the parameter in question has been increasing or decreasing over the 30 year period of this 

study. Statistical significance was determined using the Wald Test with t-distribution of 

the test statistic from the SciPy stats module in Python. This module outputs a p-value 

which represents the probability of obtaining the observed result given that the null 

hypothesis is true. In this case, the null hypothesis (the statement being tested), is that the 

slope is zero. In short, anywhere the p-value is less than 0.05, the null hypothesis can be 

rejected and it can be safely assumed that the slope is statistically significant. One of the 

primary assumptions that must be met for the statistical significance testing to be valid is 

that the errors (residuals) are normally distributed. This condition was tested using the 

Shapiro-Wilk test for normality. The test statistic is defined as: 

( = ∑345
6 738 3

9

∑345
6 83:8 9 , 

where ; <  is the ith order statistic,	; is the sample mean, and the constants =< are given by:  

=<, … , =@ = ABCD5

ABCD5CD5A 5/9. 
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Grid points where the p-value was less than 0.05 (meaning the null-hypothesis that the 

errors come from a normal distribution can be rejected) were discarded from the 

significance tests.  
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Table 2. List of calculated parameters provided by SHARPpy. Details for these 
parameters are found in Blumberg et al. (2017). Asterisks denote kinematic parameters 
that indirectly include thermodynamic information via the effective layer (Thompson et 
al. 2007). Mean values are taken from the surface to 400 hPa. 
 
Kinematic Parameters Thermodynamic 

Parameters  

Composite Parameters 

0-1km SRH CAPE (SB, ML, MU) K index 

0-3km SRH CIN (SB, ML, MU) Fixed STP 

*Effective SRH LCL (SB, ML, MU) CIN STP 

0-1km bulk shear LFC (SB, ML, MU) SCP 

*Effective bulk shear EL (SB, ML, MU) Total totals 

0-1km helicity LI (SB, ML, MU) SWEAT index 

0-3km helicity BRN (SB, ML, MU)  

Critical angle Max. profile temp  

 Mean mixing ratio  

 Mean theta  

 Mean theta e  

 Mean relative humidity  

 Perceptible water  
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Table 3. Correlation coefficients for each method of parameter calculation for NARR and 
JRA55 as compared to RUC-2 for select parameters. 
 
 mlcape sbcape shear1km effsrh scp 

NARR      

Closest Time - With Sfc 

Vars 

0.7542 0.6594 0.7809 0.6575 0.6524 

Closest Time - No Sfc Vars 0.7438 0.6982 0.7193 0.5911 0.6086 

Prior Time - With Sfc Vars 0.7594 0.6625 0.7689 0.653 0.6454 

Prior Time - No Sfc Vars 0.7503 0.6996 0.7256 0.5891 0.5988 

JRA55      

Closest Time - With Sfc 

Vars 

0.6894 0.6371 0.7548 0.6484 0.6633 

Closest Time - No Sfc Vars 0.6811 0.6167 0.7554 0.6485 0.6679 

Prior Time - With Sfc Vars 0.6512 0.6543 0.7391 0.5896 0.624 

Prior Time - No Sfc Vars 0.6367 0.5921 0.7269 0.6006 0.6387 

 

 

 

 

 

 

 

 

 



 25 

Table 4. Correlation coefficients of popular parameters from the reanalyses compared to 
RUC-2. Cooler (warmer) colors represent stronger (weaker) correlations. 
 

Variables NARR  ERA  MERRA 2  20CR  JRA55  CFSR  
sbcape 0.66 0.60 0.64 0.56 0.64 0.36 
sbcin 0.37 0.33 0.21 0.17 0.37 0.17 
mlcape 0.75 0.66 0.62 0.53 0.69 0.46 
mlcin 0.54 0.39 0.28 0.15 0.39 0.24 
mucape 0.70 0.62 0.66 0.57 0.68 0.42 
mucin 0.38 0.25 0.33 0.19 0.34 0.23 
srh1km 0.78 0.72 0.74 0.58 0.76 0.72 
srh3km 0.78 0.73 0.76 0.57 0.80 0.76 
effsrh 0.66 0.55 0.63 0.46 0.65 0.60 
stpfix 0.68 0.63 0.68 0.37 0.70 0.54 
scp 0.65 0.64 0.68 0.36 0.66 0.59 
stpcin 0.57 0.56 0.62 0.27 0.61 0.46 
hel1km 0.68 0.67 0.68 0.63 0.71 0.65 
hel3km 0.79 0.73 0.75 0.68 0.79 0.77 
blkshear1km 0.66 0.60 0.64 0.56 0.64 0.36 
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Table 5. As in Table 4 except for biases (reanalysis – RUC-2). Warmer (cooler) colors 
represent positive (negative) biases.   
 

Variables NARR  ERA  MERRA 2  20CR  JRA55  CFSR  
sbcape 212.0 -1021.9 -1415.6 -896.8 -40.6 -1148.7 
sbcin 34.9 37.1 11.5 34.6 14.8 -10.7 
mlcape -269.6 -1063.3 -1305.3 -955.3 -184.5 -942.7 
mlcin 20.8 22.3 9.4 14.7 -11.4 -12.5 
mucape 30.7 -1196.8 -1615.6 -1126.3 12.0 -1179.8 
mucin 13.2 11.3 -5.6 4.5 0.7 -10.9 
srh1km -22.9 -8.1 21.1 -59.7 -16.9 -25.0 
srh3km -17.6 6.7 38.8 -89.7 -28.9 -19.8 
effsrh -31.4 -59.0 -40.1 -89.0 -35.2 -40.0 
stpfix -0.2 -0.7 -0.8 -0.9 -0.3 -0.8 
scp -1.3 -4.7 -5.0 -5.5 -2.3 -3.3 
stpcin -0.3 -0.7 -0.8 -0.9 -0.4 -0.7 
hel1km -29.9 -6.6 23.3 -23.8 -18.5 -17.0 
hel3km -30.9 -14.4 25.5 -77.0 -43.5 -20.4 
blkshear1km -1.6 1.5 2.8 -5.1 -0.00 -1.0 
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Figure 1. Box and whiskers plots of (A) MLCAPE and (B) ESRH for RUC-2 proximity 
soundings sorted by storm type. Shaded boxes enclose the 25th to 75th percentiles while 
black lines and numbers represent the medians. Whiskers extend to the lowest and 
highest values excluding outliers. Median values are printed.  
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CHAPTER 4 

EXAMPLE CASES 

 

To demonstrate how reanalyses depict severe weather environments, two example 

cases were chosen from T07: 3 May 1999 (Oklahoma City, OK) and 18 July 2004 (Grand 

Forks, ND).  These events were selected based on varying meteorological environments as 

well as scales of impact. 

 

3 May 1999 OKC 

The Oklahoma event on 3 May 1999, was a significant severe weather outbreak 

that generated 69 tornadoes from 10 distinct supercell thunderstorms. Considering the 

primary purpose in this paper is to compare the suite of reanalyses to RUC-2, a full 

discussion of this event is not included. Rather, the reader is referred to Thompson and 

Edwards (2000), which provides an excellent overview of the complex surface and upper 

level features that contributed to the tornado outbreak. Besides this paper, Burgess et al. 

(2002) detailed a radar-based discussion of the event using WSR-88D and Doppler on 

Wheels (DOW) radars. Additional information on the event can be found in Markowski 

(2002), Roebber (2002), and Stensrud and Weiss (2001). 

Surface analyses for this event at ~00 UTC 4 May 1999 are provided in Fig. 2. The 

primary features to note in this figure for all reanalyses are: 

• The surface cyclone centered over northeastern Colorado and western 

Nebraska 

•  A broad region of lee troughing with low-level advection of moisture 
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• A dryline  

There are a few notable differences from the RUC-2 (Fig. 2a). The extent of moisture and 

values of dewpoints varied across the warm sector (70-77 °F, 21-25 °C at OKC). Many of 

the reanalyses had a more diffuse dryline, while the 20CR (Fig. 2e) had a weaker, more 

northerly displaced cyclone. Many of these properties are expected due to reduced spatial 

and temporal resolution of the reanalyses and, in the case of 20CR, the ensemble nature of 

this reanalysis. 

Upper air patterns at 500 hPa for this event are depicted in Fig. 3. Like many 

outbreaks, this event was associated with a shortwave trough and ~50kt jet streak 

embedded within larger-scale southwesterly flow. While the jet was present in the 

reanalyses, there were some subtle differences in both the positioning and magnitude of 

the jet between RUC-2 (Fig. 3a) and the reanalyses (Fig. 3b-g). Using the 50kt isopleth as 

a guideline, 20CR (Fig. 3e) appears to most poorly represent the event. The jet maxima 

over western Oklahoma, which is apparent in RUC-2 and other reanalyses, was absent for 

20CR. Other differences include a slight low bias in NARR (Fig. 2b) for the local maxima 

just west of OKC, and a lack of higher magnitude winds over southern Texas in JRA55 

(Fig. 2f).  RAOB data from this time included a 65kt, 45kt, and 50-55kt observation over 

southern TX, the TX panhandle, and New Mexico, respectively.  This suggests that, 

compared to observations, NARR may have had the best agreement aside from any 

possible observation errors.  

To understand the vertical structure of the environment, soundings for this event 

are shown in Fig. 4. Variations in lapse rates, depth of moist and dry layers, effective inflow 

layers, hodographs, and surface temperature/dewpoint spreads are apparent in the 
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reanalyses. These factors contribute to a spread of values in derived parameters. Even the 

RUC-2 sounding from 23 UTC on 3 May 1999 at OKC (Fig. 4a) has noticeable differences 

with the 00 UTC OUN sounding on 4 May 1999 (Fig. 5). Although, given the proximity 

to ongoing convection, this should not be surprising.  

Calculations of CAPE varied across the datasets. Observed and RUC-2 analyzed 

MLCAPE (SBCAPE) for this case were 2886 (3222) and 4199 (3891) J kg-1, respectively.  

Reanalysis calculated CAPE fell largely into two camps with JRA55, NARR, and CFSR 

producing reasonable estimates (3681-2950 J kg-1 for MLCAPE) while 20CR, ERA-

Interim, and MERRA 2 grossly under-reanalyzed this variable (1413-978 J kg-1). The 

reasons for these differences are varied, but some of the more obvious factors include a dry 

bias in the boundary layer for ERA-Interim (Fig. 4c) and warmer mid-level temperatures 

for MERRA 2 (Fig. 4d). While NARR (Fig. 4b) and JRA55 (Fig. 4f) had the highest values 

of MLCAPE and a similar effective inflow layer to RUC-2, the higher values of CAPE can 

be attributed in part to a warm bias at the surface. This property led to higher LCL heights 

than observed.  

Kinematic parameters also demonstrated a range in results. Variables such as SRH 

(effective or absolute height) were lower than observed for most of the reanalyses. For 

example, 0-1km SRH values ranged from 155-310 m2s-2 compared to the observed and 

analyzed values of 255 and 309 m2s-2, respectively. Of these reanalyzed values, only 

MERRA 2 (Fig. 4d, 310 m2s-2) fell near this range, and this reanalysis was consistently 

higher than RUC-2 or OUN. Interestingly, this reanalysis arguably had one of the poorest 

representations of the sickle-shaped hodograph that was seen in most of the soundings, and 

this led to helicity values that were consistently higher than RUC-2 or OUN. Although 
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CFSR (Fig. 4g) had a 0-1km SRH lower than observed (due to lower 0-1km bulk shear), 

effective and 0-3km SRH values were also higher than RUC-2 and OUN. For ESRH, this 

is most likely related to an effective layer that was deeper than observed. Other than these 

two examples, the remainder of the reanalyses (NARR, JRA55, ERA Interim, and 20CR) 

were lower than RUC-2 and OUN for SRH.  Despite this issue, these reanalyses were 

within a few knots of EBWD except for 20CR (Fig. 4e).  

 

18 July 2004 GFK 

 The second case study was a more isolated severe weather event in eastern North 

Dakota that produced several tornadoes, one of which was an EF-4. Kellenbenz and 

Grafenauer (2007, hereafter KG07) examined this northwest-flow event and hypothesized 

that evapotranspiration processes were responsible for enhancing boundary layer moisture. 

While KG07 stressed the high MLLCL heights (~1800m), Edwards and Thompson (2009) 

pointed out that while corrected values (~1400m) were high, they still fell within upper 

percentile ranges for multiple studies (e.g. T03). Edwards and Thompson (2009) also 

provided other additional details and corrections to the study by KG07. Regardless of these 

issues, this is a reasonable case to explore due to the larger dewpoint depressions and 

weaker shear compared to 3 May 1999.  

Surface analyses for 19 July 2004, 00 UTC are provided in Fig. 6. Unfortunately, 

RUC-2 analyses were unavailable for this case. Instead, comparisons are made to the 

surface analysis shown in Fig. 6 of KG07. Pertinent features from this figure included a 

surface pressure trough oriented from SW to NE across the region and surface temperature 

(dewpoints) around 83-89 (70-73) °F. While the wind shift is seen in many of the 
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reanalyses, the trough was much harder to discern. Furthermore, the reanalyses had varying 

biases for the surface thermodynamic fields. Although most of the reanalyses and the 

surface analysis had a moist axis in eastern ND, surface dewpoints were too dry (~0-3 °F). 

The reanalyses also had evidence of a thermal ridge that was oriented with the surface 

trough, but the position varied and this led to varying biases across the domain. NARR 

(Fig. 6a) had perhaps the most notable issue with surface temperatures, with values 5-10 

°F too high across the domain.  Gradients were too weak in 20CR (Fig. 2d), and the 

windshift was displaced well north of the observed location. Subjectively, ERA-Interim 

(Fig. 2b) appeared to have the best representation of the surface analysis.  

 Aloft, the region was under prevailing northwest flow at 500 mb (Fig. 7). Compared 

to Fig. 5 in KG07, reanalyses (aside from 20CR, Fig. 7d) captured the pattern quite well 

with a broad area of 30-40kt flow downstream of an upper-level ridge axis, which was 

located just west of the plotted domain. Minor nuances between the reanalyses included a 

weak shortwave trough in NARR (Fig. 7a) and separated maxima in the higher resolution 

reanalyses (e.g. MERRA 2 and CFSR).  

 Proximity soundings at 00 UTC 20 July 2004, were compared to the Grand Forks, 

ND 23 UTC RUC-2 sounding from T07 (Fig. 8). SBCAPE was ~4000 J kg-1 in RUC-2 

(Fig. 8a), NARR (Fig. 8b), and JRA55 (Fig. 8c), while the other reanalyses had 

significantly less instability. This is similar to what was found for the 3 May 1999 case. 

The consideration of MLCAPE worsened the comparison; the closest reanalysis (NARR) 

had a deficit of ~1500 J kg-1. In this case, the primary problem was a lack of moisture 

throughout the boundary layer for the reanalyses. In light of the earlier discussion about 
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this event, one can only speculate whether evapotranspiration (as hypothesized in KG07), 

problems with the boundary layer schemes, or some other cause was to blame.  

Kinematically, this case was weaker than 3 May 1999; RUC-2 had 0-1km SRH 

(EFFSRH) of 105 (225) m2s-2, an EBWD of 22 kts, and 0-1km bulk shear of 13kts. With 

the exception of 20CR (Fig. 8e), which was, once again, too weak, the other reanalyses 

performed well for fixed height parameters, such as 0-1km SRH (85-130 m2s-2) and 0-1km 

bulk shear (11-15 kts). Larger variations were found when the effective layer was 

considered. For example, EFFSRH had a low bias with values from 96-179 m2s2, while 

EBWD ranged from 14-27 kts. Considering effective layers were similar in this case, most 

of this disparity/variation can be attributed to differences in the wind field, which may be 

expected provided the location of the soundings near a boundary.  
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Figure 2. Surface analyses for (A) RUC-2 at 23 UTC 3 May 1999 and (B-G) reanalyses 
at 00 UTC 4 May 1999. Dew point temperatures are shaded, while MSLP and 
temperatures are contoured with black and red lines, respectively.  Select wind barbs are 
shown while yellow stars represent the location for soundings shown in Figure 4. 
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Figure 3. As in Fig. 2 except for 500 mb analyses. Wind magnitudes are shaded while 
geopotential heights are contoured with black lines.  
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Figure 4. Proximity soundings near Oklahoma City, OK for (A) RUC-2 at 23 UTC 3 May 
1999 and (B-G) reanalyses at 00 UTC 4 May 1999. Locations are marked by the yellow 
stars in Figs. 2-3. 
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Figure 5. Observed sounding for Norman, OK (OUN) at 00 UTC 4 May 1999. Because 
the observed OUN sounding ended early (~275 mb, magenta line), the sounding was 
augmented with the RUC-2 proximity sounding above this level to allow for calculation 
of CAPE. 
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Figure 6. 00 UTC 19 July 2004 surface analyses for the reanalyses. Contoured variables 
are identical to Fig. 2.  
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Figure 7. As in Fig. 6 except for 500 mb analyses. Contoured variables are identical to 
Fig. 4.  
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Figure 8. As in Fig. 4 except for locations closest to Grand Forks, ND at 00 UTC 19 July 
2004. 
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CHAPTER 5 

RESULTS 

 

Reanalysis Performance and Comparison 

Results for Part I are broken down into two sections. In section a, statistical 

properties calculated from all available soundings are presented. In section b, results are 

segregated by storm type to understand whether the reanalyses can reproduce the results of 

T07 and T03. 

 

Statistical Results 

Box and whiskers plots for the various convective parameters (Table 2) from each 

reanalysis were compared to those from RUC-2. Results are shown for select variables that 

are more commonly used (Fig. 9). Similar to what was found in the case studies, the 

reanalyses fall into two camps for MLCAPE (Fig. 9a), i.e. NARR and JRA55 have 

comparable values to RUC-2 and the remaining reanalyses are biased low. Compared to 

the median value of 1394 J kg-1 in RUC-2, NARR and JRA55 had values within 250 J kg-

1, and the box and whiskers were overlapped. The other reanalyses on the other hand 

suffered from a large negative bias with median values between 196-455 J kg-1. This 

narrowed the distance between the quartiles, leading to the 3rd quartile of the reanalyzed 

distributions falling either below the median (ERA-Interim, CFSR, and 20CR) or the 1st 

quartile (MERRA 2) of RUC-2. 

Kinematic variables such as 0-1km bulk shear (Fig. 9b) and EFFSRH (Fig. 9c) have 

smaller dichotomies than MLCAPE. In the former case, the reanalysis distributions are 
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similar in width (with exception of 20CR) with median values within +/- 4kts of the RUC-

2 median (12.8 kts).  When the effective layer and storm motion vector is considered to 

calculate EFFSRH, more separation is found between the reanalyses (Fig. 9c). While all 

reanalyses have a substantial negative bias compared to RUC-2, the inclusion of 

thermodynamic information (through the effective layer) causes a separation in the lower 

quartile for JRA55 and NARR vs. the other reanalyses. In short, the lower CAPE values 

(regardless of type of parcel) observed for ERA-Interim, MERRA 2, CFSR, and 20CR 

raise the probability that the criteria for inclusion within the effective layer (CAPE ≥ 100 

J kg -1 and CIN ≥ -250 J kg-1) are not met. Therefore, these layers are narrower, lowering 

the values of EFFSRH. Given that SCP is also a function of CAPE, this property also 

significantly decreases the median and 3rd quartiles of this parameter (Fig. 9d). Although 

only four parameters are shown here (Fig. 9), most other parameters follow similar 

patterns. Overall, thermodynamic variables tend to have a strong negative bias for all 

reanalyses aside from NARR and JRA55. Kinematic variables are better represented by all 

reanalyses, while composite parameters such as SCP or STP are biased low for most 

reanalyses. This latter property is most pronounced in reanalyses that exhibited strong 

negative biases for thermodynamic parameters. These patterns can be further seen in the 

statistical calculations in the following section. 

 To provide a concise way to evaluate the ability of the reanalyses to reproduce 

RUC-2 calculated parameters, correlation coefficients and biases are calculated (Tables 3 

and 4). These correlation values reinforce the notion that reanalyses are more likely to 

struggle with the thermodynamic vs. kinematic properties of the soundings.  While 

moderate to strong correlations are found for CAPE depending on the type of parcel trace 



 43 

(SB, ML, and MU), all reanalyses had difficulty accurately representing CIN regardless of 

how it is calculated. NARR, for example, has a maximum correlation of 0.54 for MLCIN 

with the other reanalyses lagging further behind (e.g. 0.39 for ERA-Interim and JRA55). 

Biases for the reanalyses are generally negative for CAPE and positive for CIN. Exceptions 

to this rule include: SBCAPE for NARR; ML and MUCIN for JRA55; and all CIN values 

for CFSR. Although surface-based parcels generally increase the CAPE and yield lower 

biases, this is at the expense of lower correlations. In most cases, this difference (e.g. 0.66 

vs. 0.75 for NARR) is statistically significant.  

 Reanalyses perform more consistently for kinematic variables, such as fixed level 

SRH and bulk shear (Table 4). Excluding 20CR, correlations for SRH range between 0.72-

0.80. While the reanalyses are biased low for SRH and helicity (with the exception of 

MERRA 2, Table 5), the strong correlations suggest that the reanalyses do a better job 

simulating the wind field versus the thermodynamic profile. However, given the strong 

dependence of storm type on low-level helicity (T07), low biases may mean it is more 

difficult to segregate between categories.  

 The final category of parameters is those that mix thermodynamic and kinematic 

properties. Compared to straight kinematic parameters, the inclusion of thermodynamic 

information leads to decreases in correlations (e.g. 0-1km SRH vs. EFFSRH, Table 4). 

Considering parameters that are a combination of CAPE and shear (e.g. SCP and STP), 

biases are largely controlled by the thermodynamic characteristics for a reanalysis. NARR 

and JRA55, which have higher CAPE values, contain the smallest biases for these 

parameters, whereas the other reanalyses are impacted by the low values of CAPE.   
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Comparison of reanalyses to T03 and T07 

The results of T03 and T07 utilizing RUC-2 proximity soundings demonstrate 

certain parameters have skill in identifying environments supportive of supercells and 

tornadoes. In T03, relationships between storm categories and thermodynamic and 

kinematic parameters led to the development of SCP and STP, which are used operationally 

by the Storm Prediction Center (SPC) to help discriminate between severe weather 

environments. T07 defined the effective storm relative helicity (ESRH) and found it is 

more appropriate in discriminating between tornadic and non-tornadic environments than 

its counterpart, storm relative helicity (SRH), which does not take the effective inflow layer 

depth into account. The question remains whether these findings can be duplicated with 

proximity soundings from reanalyses.    

 Prior to presenting the results, it is important to consider what differences are 

needed to discriminate between environments. Similar to the methodology in Reames 

(2017), significant discriminators are defined as those in which the median of a defined 

distribution is below the lower quartile or above the upper quartile of another. To put T03 

and T07 in context of this criterion, the following parameters are good discriminators 

between categories: 

• MLCAPE: sigtor, elevnt, and mrgl / nonsup  

• 0-1km Bulk Shear: sigtor, weaktor and nontor, and mrgl/ nonsup 

• EFFSRH: sigtor, nontor, and nonsup 

• SCP: sigtor, nontor, and mrgl/nonsup 

• STP: sigtor, weaktor/nontor 
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To visualize both the quartiles and probability density functions for the various categories, 

violin plots are shown for select parameters (Figs. 10-14).  

MLCAPE distributions in RUC-2 demonstrate a general decrease and broadening 

of MLCAPE as categories transition from sigtor, weaktor, to nontor categories (Fig. 10a). 

Although sigtor, elevnt, and margl/nonsup meet the criteria for being a good discriminator, 

significant overlap is still found among the categories. For the reanalyses, a quick 

comparison of median values demonstrates the same trend in magnitude, but with 

substantially more overlap. Of the presented datasets, only NARR (Fig. 10b) and CFSR 

(Fig. 10g) successfully discriminate between some of the categories (sigtor and mrgl). 

While JRA55 has MLCAPE on the same order of magnitude of NARR and RUC-2, 

inspection of the individual categories reveals a negative bias for sigtor offset by higher 

values for the other categories. This leads to additional overlap between the distributions, 

and no discrimination. For the other reanalyses, large negative biases for MLCAPE 

narrows the distributions making discrimination impossible. 

As demonstrated by Fig. 11, ESRH is a reasonable discriminator between tornadic and 

non-tornadic events for RUC-2 soundings in T07. Compared to MLCAPE, comparisons 

between the reanalyses and RUC-2 are much better. Qualitatively, the shapes of the violins 

are similar, with a decrease and broadening of the distributions as storm type shifts from 

sigtor to nonsup. As a result, all of the reanalyses, except 20CR (Fig. 11e), discriminate 

between the sigtor and nontor categories. The predominant issue with 20CR is an overall 

negative bias in EFFSRH across all categories. RUC-2 and the other reanalyses have a 

probability maximum located between 150-250 m2s-2, whereas 20CR is located at ~25 m2s-
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2. The overall low bias in EFFSRH results in a mixed bag for discerning between nontor 

and nonsup categories. 

A better kinematic discriminator for these environments in reanalyses is 0-1km bulk 

shear (Fig. 12). While RUC-2 discriminates between categories in a similar fashion using 

this parameter and EFFSRH, a more clearly defined partitioning is found between 

categories for the reanalyses.  Even 20CR, which has the largest negative bias for kinematic 

parameters, has significant separation between categories (Fig. 12e). 

To discriminate between environments supportive of long-lived, rotating updrafts, 

SCP is used (T03). Values > 1 are strongly supportive of supercells as noted by the 

differences between nontor and mrgl/nonsup categories in RUC-2 (Fig. 13a). Due to SCP 

being a product of kinematic and thermodynamic parameters, performance is impacted by 

biases in CAPE. While the distributions in reanalyses are concentrated on a value of 0 for 

the mrgl and nonsup categories, SCP values for stronger categories are biased low. As a 

result, this makes discrimination of supercell and non-supercell categories difficult. Even 

for reanalyses like NARR (Fig. 13b) and JRA55 (Fig. 13f), which have reasonable 

performance for MLCAPE, formal discrimination is limited to non-supercell categories vs. 

strongly and weakly tornadic storms. CFSR (Fig. 13g) is also capable of making this 

distinction, while ERA-Interim (Fig. 13c) and MERRA 2 (Fig. 13d) can only distinguish 

between sigtor and the non-supercell categories.   

STP is used to distinguish between strongly tornadic and nontornadic supercell 

environments with values > 1 maximizing forecast skill between these categories 

(Thompson et al. 2002, T03). SHARPpy provides two versions of this parameter: one based 

on the effective inflow layer and the other with a fixed layer. Based on prior discussion 
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(EFFSRH vs. 0-1km bulk shear), the fixed layer STP is shown in Fig. 14 and discussed 

herein.  As shown in T03 and Fig. 14a, RUC-2 sigtor can be discriminated from all other 

categories as the median of weaktor (0.85) is lower than the 1st quartile of sigtor (0.97). 

Although STP is lower for all reanalyses, NARR (Fig. 14b), ERA-Interim (Fig. 14c) and 

MERRA 2 (Fig. 14d) successfully discriminate between the sigtor and weaktor categories. 

That said, the distance between the 1st quartile of sigtor and median of weaktor is much 

narrower than RUC-2, and more overlap occurs. JRA55 (Fig. 14f) and CFSR (Fig. 14g) 

have more overlap, but can discriminate between sigtor and nontor categories. 20CR has 

the worst overlap and discrimination can only occur between sigtor and mrgl/nonsup cases. 

 

Climatology and Trends in Severe Weather Parameters 

 Results for Part II are broken into two sections. The first section consists of a brief 

climatological evaluation of severe weather variables. The focus of the second section is 

to examine any trends in severe weather parameters during the period of 1986-2015. 

Throughout Part II, various parameters and combinations thereof are examined for varying 

thresholds. In particular, the impact of calculation method choice for CAPE is examined 

(i.e. MLCAPE, SBCAPE, MLCAPE). Since prior studies have listed surface temperature 

and associated moisture increases as possible effects of a changing climate, it would be 

reasonable to assume that those changes may affect surface-based CAPE (SBCAPE) more 

strongly than mixed-level CAPE (MLCAPE). Thresholds for parameters are chosen 

somewhat arbitrarily, albeit with results of parameter based studies (i.e. Rasumussen and 

Blanchard 1997, T03, T07), taken into consideration.  
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Climatology  

One of the simplest ways to examine environments favorable for severe weather is 

to look at a single thermodynamic variable such as CAPE. Fig. 15a shows the number of 

days exceeding a threshold of 2000 J/kg of most unstable CAPE (MUCAPE) calculated 

from NARR for the time period of 1986-2015. Areas with the maximum number of days 

exceeding the chosen threshold are focused near the Gulf Coast region. However, this is 

not historically where one would expect to see a maximum in severe weather occurrence. 

This result also holds true for MLCAPE (Fig. 15b) and SBCAPE (not shown). As was 

previously discussed, CAPE alone is not the best proxy for severe weather occurrence (e.g. 

there are many days with very high CAPE in the plains regions during the summertime that 

are not always associated with severe weather). Therefore, inclusion of wind shear 

information is vital to getting a better idea of the overall capability of an environment to 

produce severe weather. One such way to do this is via the use of the composite C 

parameter (as in Gensini and Ashley 2011, hereafter GA11) which combines 0-6 km shear 

and MUCAPE. An example of the average climatology of this parameter exceeding 20,000 

(i.e. environments favorable for significant severe weather) can be seen in Fig. 16. 

Although there is perhaps marginal improvement from using CAPE alone, the areas of 

maximum days exceeding the threshold are still biased south from reality. Perhaps a more 

useful parameter to examine is SCP (Fig. 17). The spatial distribution of days exceeding 

the chosen threshold (2.0) for this parameter is far more reasonable, albeit with some likely 

overestimation along the east coast.  
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Trends in Environments Favorable for Severe Weather  

 The second portion of this section is an analysis of trends in severe weather 

parameters for the historical period of 1986-2015. The first parameter that is examined is 

CAPE. Overall, days with MLCAPE greater than 2000 J/kg (Fig. 18) have decreased 

during Summer and Fall months (Fig. 18c, 18d). The strongest negative trends (-0.5 to -

1.25 days per year) for this parameter occur over the Central and Southern Plains regions 

as well as areas of the Southeast. Trends for this parameter during Spring months are 

somewhat mixed with areas of statistically significant increase (decrease) over Arkansas 

(Texas coastal region, Fig. 18b). Similarly, days with MUCAPE greater than 2000 J/kg 

(Fig. 19) are primarily decreasing during summer and fall months over portions of the 

Southeast and Southern Plains (-0.25 to -1.6 days per year, Fig. 19c, 19d) and increasing 

during Spring months over the Midwest and portions of the Southeast (0.15 to 0.45 days 

per year, Fig. 19b). SBCAPE (not shown) displays a similar pattern to MUCAPE.  

 Of equal importance to severe weather environments is CIN, which is defined as 

the amount of energy required to lift a parcel to the Level of Free Convection (LFC). Even 

if other atmospheric parameters are favorable for severe convection, if the magnitude of 

CIN is too large, convective initiation will be inhibited. An analysis of the trend in mixed 

layer CIN (MLCIN) exceeding -75 J/kg can be seen in Fig. 20. The most significant trend 

exists for the summer months which shows a statistically significant decrease in the number 

of days with favorable magnitudes of MLCIN over the Southern, Central, and Northern 

Plains regions (Fig. 20c). 

 The next parameter examined is wind shear, which represents the other 

fundamental component of severe weather environments. An example of deep layer (0-6 
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km) shear can be seen in Fig. 21. The slope of the trend line for this parameter is positive 

nearly everywhere in the domain for winter and spring months (Fig 20a, 20b). The largest 

increases (0.3 to 0.75 days per year) are located over portions of the Central and Southern 

Plains. For summer and fall months, the trend is primarily neutral with areas of statistically 

significant decrease over portion of the Northeast (Fig. 21c, 21d). Note that as with CAPE, 

wind shear alone is not a particularly useful way to identify severe weather environments 

(ex. there are many days where there is little to no instability, but large values of wind 

shear). 

To incorporate both instability and wind shear information into the analysis, SCP 

was investigated (Fig. 22). The trends in SCP are primarily positive across the southern 

portions of the Midwest as well parts of the Southeast for winter and spring months (0.2 to 

0.48 days per year, Fig. 22a, 20b). The slope of the linear regression of this parameter for 

summer and fall months is varied, with negative slopes over the Southern Plains and 

positive slopes over portions of the Southeast. To gain a better understanding of why these 

trends exist for SCP, each component of the parameter is examined. The equation for SCP 

is given by: 
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ESRH exceeding 100 m2/s2 is discussed first (Fig. 23). This cutoff was chosen as it is a 

typical low-end value for significant severe weather. Note that the areas of positive trends 

for ESRH are over areas where SCP also have a positive trend. Days with EBWD > 15 m/s 
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(Fig. 24) show a pattern similar to that of ESRH, although the magnitudes of trends are 

lower. As was previously discussed, trends in days with MUCAPE exceeding 2000 J/kg 

(Fig. 19) largely match the trends of SCP.  

In summary, these results indicate that parameters favorable for severe weather 

have been primarily increasing during spring months, and decreasing during the summer. 

The strongest trend is for MLCAPE during the summer (Fig. 18). Additionally, it seems 

likely that the magnitude of CIN is increasing during summer months, which would further 

suppress convection (Fig. 20c). The areas where positive trends for both shear and 

instability parameters overlap are most likely to have experienced an increase in favorable 

severe weather environments. SCP (Fig. 22) is a decent representation of this overlap, 

which shows the positive trends are confined to portion of the Midwest and Southeast 

during spring, while negative trends are focused over the Southern Plains regions during 

summer. 

To gain better understanding of reanalyzed trends and to perform a “sanity check”, 

select locations were also examined and compared to parameters calculated from observed 

soundings. The first examined location is OUN (Norman, OK). The time period for this 

site was limited to 1990-2015 since 1990 was the lower limit of data availability for 

observed soundings at OUN. Fig. 25 shows time series plots of days per year with 

MLCAPE > 2000 J/kg for both observations and NARR. Note that the negative trend in 

MLCAPE for summer months (Fig. 25c) exists in both observations and NARR and the 

two datasets have a strong correlation of 0.83. This gives credence to the trend depicted 

over this region as seen in Fig. 18. However, of the two datasets, only the trend depicted 

by NARR is statistically significant (p-value of 0.006). 
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The next location analyzed is JAN (Jacksonville, MS). This location was chosen 

due to Fig. 22, which shows that SCP should be increasing for most months. This trend is 

positive for both NARR and observations for all time periods (Fig. 26). The trend in 

observations is statistically significant for winter and spring seasons (p-values of 0.05 and 

0.03, respectively). 

Trends for other sites and variables were less pronounced. Tables of slopes for all 

months for observations and NARR can be found in Table 6 and Table 7, respectively 

while cutoffs used to calculate these slopes are listed in Table 8. The correlations between 

the two datasets for each site and parameter combination can be seen in Table 9. Most of 

the parameters have strong correlations between the datasets, especially for MLCAPE. 

SBCAPE and MUCAPE had lower correlations (XXX to XXX), at least at select locations 

(ex. correlation of 0.16 for MUCAPE at JAN).  

Since the trends presented above are for time accumulated number of days 

exceeding a threshold, it is unclear how often observations and NARR soundings agree on 

a day-to-day basis.  To better understand this property of the reanalyses, percentages of 

days exceeding a threshold were calculated (Table 10). These percentages were calculated 

by dividing the number of days where the threshold was exceeded in both NARR and 

observations on the same day by the total number of days exceeding the threshold in either 

dataset. As would be expected given prior results, CAPE parameters (MLCAPE, SBCAPE, 

MUCAPE) tended to have a higher percentage of days than other parameters.  
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Table 6. Linear regression slopes (days per year) for parameters calculated from 
observations at select locations. Bolded values are statistically significant (p-value <= 
0.05). 
 
 mlcape sbcape mucape effsrh scp 
OUN -0.2 0.86 0.59 0.05 0.34 
TOP -0.23 0.57 0.12 0.16 0.21 
BIS -0.1 -0.04 -0.11 0.02 -0.02 
JAN -0.49 -0.59 -0.71 0.36 0.4 
DVN -0.05 -0.04 -0.06 0.41 0.38 
ILX -0.11 -0.14 -0.22 0.23 0.4 
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Table 7. As in Table 8, but for NARR. 
 
 mlcape sbcape mucape effsrh scp 
OUN -0.43 -0.4 -0.35 -0.28 -0.4 
TOP -0.29 -0.21 -0.15 -0.07 -0.15 
BIS -0.12 0.06 0.01 -0.02 -0.06 
JAN -0.46 -0.08 -0.09 0.18 0.28 
DVN -0.11 0.14 0.20 0.06 0.05 
ILX -0.01 0.14 0.19 0.11 0.15 
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Table 8. List of variables and associated thresholds used for parameters calculated for 
sites in Tables 7-9. 
 
Variable Threshold 
mlcape 2000 J/kg 
sbcape 2000 J/kg 
mucape 2000 J/kg 
effsrh 100 m2/s2 

scp 2 
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Table 9. Correlation coefficients for parameters calculated from NARR compared to 
parameters calculated from observations at select locations. 
 
 mlcape sbcape mucape effsrh scp 
OUN 0.75 0.64 0.68 0.57 0.38 
TOP 0.81 0.4 0.57 0.78 0.68 
BIS 0.96 0.78 0.79 0.53 0.58 
JAN 0.69 0.2 0.16 0.58 0.59 
DVN 0.83 0.55 0.6 0.67 0.59 
ILX 0.89 0.45 0.52 0.49 0.47 
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Table 10. Percentage of days threshold values were exceeded in both observations and 
NARR. 
 
 mlcape sbcape mucape effsrh scp stpcin 
OUN 0.473 0.626 0.625 0.299 0.397 0.183 
TOP 0.438 0.577 0.588 0.324 0.406 0.208 
BIS 0.304 0.307 0.352 0.123 0.183 0.048 
JAN 0.444 0.779 0.772 0.266 0.31 0.216 
DVN 0.276 0.497 0.526 0.157 0.241 0.072 
ILX 0.314 0.567 0.563 0.21 0.302 0.094 

 
 
 
 

 



 58 

 
 

Figure 9. Box and whiskers plots of (A) MLCAPE, (B) EFFSRH, (C) SCP, and (D) 0-
1km bulk shear for RUC-2 and the reanalyses. 
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Figure 10. Violin plots of MLCAPE for (A) RUC-2 and (B-G) the reanalyses. Besides 
displaying traditional box and whiskers with the median values listed, the area represents 
a kernel density function for the distributions. Wider (narrower) sections of a violin plot 
represent regions where more (less) members of the distributions reside. The width of the 
violins are scaled by the count of values within each bin. 
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Figure 11. As in Fig. 10 except for EFFSRH. 
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Figure 12. As in Fig. 10 except for 0-1km bulk shear. 
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Figure 13. As in Fig. 10 except for SCP. 
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Figure 14. As in Fig. 10 except for STP. 
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Figure 15: Average number of days during the period from 1986-2015 with 00 UTC NARR 
(A) MUCAPE values exceeding 2000 J kg-1 

A

B
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Figure 16: As in Fig.15 but for the product of 0-6km shear and MUCAPE exceeding 20000 
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Figure 17: As in Fig.15 but for SCP exceeding 2. 
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Figure 18: Linear trend in days with MLCAPE exceeding 2000 J/kg for (A) Winter 
(December, January, February), (B) Spring (March, April, May), (C) Summer (June, July, 
August), and (D) Fall (September, October, November) for 1986-2015. Only 00 UTC 
“pseudo-soundings” are considered. Hashing indicates statistically significant slopes with 
the p-value ≤ 0.05. 

 

 

 

 

 

 

 

 



 68 

Figure 19: As in Fig. 18 but for MUCAPE exceeding 2000 J/kg. 
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Figure 20: As in Fig. 18 but for MLCIN exceeding -75 J/kg. 
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Figure 21: As in Fig. 18 but for 0-6 km shear exceeding 40 kts. Only days with nonzero 
MLCAPE are considered. 
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Figure 22: As in Fig. 18 but for SCP greater than 2 
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Figure 23: As in Fig. 18 but for EFFSRH greater than 100 m2s-2 
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Figure 24: As in Fig. 18 but for EBWD greater than 15 ms-1 
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Figure 25: Linear trend in days with MLCAPE exceeding 2000 J/kg for both NARR and 
observations at OUN (Norman, OK) from 1990-2015. 
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Figure 26: As in Fig. 25 but for SCP exceeding 2 at JAN (Jackson, MS). 
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CHAPTER 6 

DISCUSSION 

 

Reanalysis Performance and Comparison 

Overall performance of each reanalysis is linked to the ability of each dataset to 

reproduce the thermodynamic environment. NARR and JRA55 had values of MLCAPE 

within the error bars of RUC-2 (< 500 J kg-1, T03 and Coniglio 2012), while all other 

reanalyses had significant negative biases. Since more recently developed convective 

parameters, such as EFFSRH, SCP, and STP incorporate thermodynamic information, 

these parameters were suppressed for many of the reanalyses. By focusing on parameters 

that relied purely on the wind field, better separation was found between storm types (e.g. 

0-1km bulk shear vs. EFFSRH).  

Discrepancies in the thermodynamic environment may be explained by a number 

of factors. While the quantity of reanalyses and variety of causes precludes an extensive 

analysis herein, an attempt was made to investigate several possible causes: resolution; 

surface and mid-level thermodynamic biases; and convective contamination (which may 

in part cause said biases). 

It is a reasonable assumption that the superior spatial and temporal grid spacing for 

NARR may have led to its improved representation of thermodynamic parameters. To test 

this, NARR was upscaled to a lower resolution by averaging grid-points and using only 

synoptic times (12Z, 18Z, 00Z, 06Z). No statistically significant differences were found 

for almost all of the parameters. This implies that resolution differences are not the primary 
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factor impacting the ability of a reanalysis to accurately portray the thermodynamic 

environment.   

 Because small variations in moisture and temperature can have a large impact on 

CAPE, biases in the thermodynamic properties were explored by generating composite 

soundings for the various storm types (not shown). Although composite hodographs were 

similar amongst the datasets, thermodynamic biases were evident for some of the 

reanalyses. To demonstrate this, box and whiskers plots of biases for surface properties and 

400 mb temperatures are shown in Fig. 27. Many of the biases noted in the case studies are 

also apparent when considering the full dataset. For surface temperatures (Fig. 27a), 

notable reanalyses with biases exceeding the range of RUC-2 errors include NARR 

(+1.5°C) and 20CR (-2.9°C). Smaller biases are found for surface moisture. While all 

reanalyses have slightly negative surface mixing ratios compared to RUC-2, only CFSR 

has a median that falls outside errors quantified in T03 (Fig. 27b). Later work by Coniglio 

(2012) documented surface dewpoint biases for RUC-2 that were 1-2°C too moist. Median 

values for most reanalyses are < 1° C drier than RUC, which is an improvement from RUC-

2 for surface moisture. The lone exception is CFSR, which is biased 2.5° C drier than RUC-

2.  

 Mid-level temperature biases also impact calculations of CAPE for select 

reanalyses (Fig. 27c). Notably, MERRA 2 and 20CR have warm biases of 3°C and 1.5°C, 

respectively, which reduce values for the lifted index and CAPE. Given that these 

reanalyses are also too cool at the surface (Fig. 27b), this is most likely an impact of 

convection occurring. While a full exploration of this issue is beyond the scope of this 

paper, it is worth noting that both of these reanalyses use the Relaxed Arakawa-Schubert 
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(RAS, Moorthi and Suarez 1992) convective parameterization. Common in the climate 

modeling community, a by-product of this choice is a diurnal cycle of convection that is 

closely tied to diurnal heating and production of CAPE (Lee et al. 2007). For these 

reanalyses, CAPE effectively triggers convection earlier in the day which: a) reduces the 

CAPE (Fig. 9a) and b) introduces thermodynamic biases (Fig. 27c). In MERRA-2, for 

example, 70% of the cases had convective precipitation recorded within six hours prior to 

the proximity soundings. 

In summary, the reliance of reanalyses on parameterizations leads to a variety of 

solutions, many of which have consequences regarding thermodynamic and kinematic 

parameters which are frequently used in convective studies. This was also noted in studies 

such as Gensini et al. (2014). This leads one to ponder what impact this may have on 

climatological studies that may use threshold values (e.g. MLCAPE ≥ 1000 J kg-1) to 

diagnose properties, such as the frequency or trends in environments favorable for severe 

convection. Further complicating matters is the question of whether a user should calculate 

parameters such as CAPE or utilize the values provided by the reanalysis.  

Consider, for example, a user of ERA-Interim; the results of this study demonstrate 

that MLCAPE is biased low by ~1000 J kg-1 when calculated independently with 

SHARPpy. As mentioned in Section 3, however, ERA-Interim uses an approximate form 

of CAPE that results in a ~20% positive bias (ECMWF, 2016). Utilizing the included 

values for CAPE in ERA-Interim results in median values 547, 193, and 113 J kg-1 higher 

than the values calculated in this study for mixed-layer, surface-based, and most-unstable 

parcels, respectively. In conclusion, there are a number of choices a user can make and it 

is not immediately clear what the impact may be for climatological studies. What should 
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be evident is that users should use a standard methodology so that results from different 

studies (reanalyses) can be directly compared.  

 

Climatology and Trends in Severe Weather Parameters 

 It is important to validate the climatology portion of this thesis by comparing results 

to prior studies that have performed a similar analysis. Fig. 15a, which shows the number 

of days exceeding a threshold of 2000 J/kg of most unstable CAPE (MUCAPE), 

corresponds to similar figures such as Fig. 2 from GA11 and Fig. 6 from B03. Overall, the 

general spatial distribution of days exceeding the threshold value shows good agreement 

between the studies. The primary differentiating factor is the magnitude of days exceeding 

the threshold. B03 had a maximum around 12 days per year, whereas GA11 had a 

maximum over 40 (the actual maximum is unclear, as the scale is maxed out). Historical 

records of days with severe weather suggest that the numbers from B03 are too low. The 

large discrepancy between this study and the earlier work done by B03 can be partially 

explained by the course resolution of the R1 reanalysis used in that study (~200km). The 

discrepancy between GA11 and this study is potentially due to differences in time period 

and CAPE calculation methods. Interestingly, although Fig. 2 from GA11 is listed as 

MUCAPE, the overall distribution (and magnitude) have better geographical agreement 

with MLCAPE in this study (Fig. 15b). 

Another comparison that can be made between studies is the composite C parameter 

which combines 0-6 BWD and MUCAPE (Fig. 16). Overall, this field resembles Fig. 4 

from GA11. That said, the areas associated with the largest counts are wider and do not 

extend as far northward as they do in GA11.  
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 The historical analysis of severe weather parameters/environments contained 

within this thesis meshes well with prior studies that have found certain parameters to have 

identifiable trends (e.g. Marsh et al. 2007, Gensini and Brooks 2008, Hoogewind et al. 

2017). In general, days with favorable thermodynamic parameters may be increasing 

during spring months (Figs. 18b, 19b) but decreasing during the summer (Figs. 18c, 19c). 

The overall decrease in severe weather potential during summer months is also supported 

by a statistically significant decrease in days with favorable CIN during for the Plains 

regions (Fig. 20c). Other studies such as Hoogewind et al. (2017) have made similar claims 

regarding this trend in CIN over time. This decrease in favorable thermodynamic 

parameters (i.e. decrease in CAPE, increase in CIN) during the summer months, can likely 

be attributed to increasing surface temperatures and decreasing surface moisture over time 

due to a changing climate. Figures 28 and 29 show that these results are consistent with the 

trends in 2m temperature and dewpoint at OUN (Norman, Ok) during the summer months.  

Days with parameters that take the effective layer into account (either directly or 

indirectly, e.g. Figs. 21-23) have shown a tendency to increase over primarily the Midwest 

during the spring and decrease in the Southern Plains during the summer. One potential 

reason for the increase in these parameters during the spring is an increase in the strength 

of the LLJ This ties into studies such as Tang et al. (2017) that have shown that the strength 

of the LLJ may be increasing with a changing climate. An increase in LLJ frequency or 

magnitude would theoretically have a large (positive) impact on parameters that rely 

heavily on the lowest layers of the atmosphere.  
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Figure 27. Box and whiskers plots of biases (reanalysis – RUC-2) for (A) surface 
temperatures, (B) surface mixing ratios, (C) and 400 mb temperatures. 
 



 82 

 
 
 
Figure 28. Trend in 2m temperature from NARR at OUN averaged over 5 year periods 
for Summer (June, July, August) months.  
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Figure 29. As in Fig. 28 but for 2m dewpoint temperature.  
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

Reanalysis Performance and Comparison 

One of the primary objectives of this thesis was to compare a suite of modern reanalyses 

to the T07 dataset of RUC-2 proximity soundings. Besides investigating biases in 

commonly used convective indices, the study explored whether the reanalyses could 

reproduce the results of T03 and T07. To that end, a common sounding analysis package 

(SHARPpy) was used so that direct intercomparisons could be made. Provided below is a 

bulleted list of findings: 

• Thermodynamic performance varied substantially across the reanalyses. Only 

NARR and JRA55 had CAPE values within the error bars of RUC-2. Although 

NARR and JRA55 were technically biased low for MLCAPE, these values may be 

more representable considering documented high biases for RUC-2.  

• Biases in CAPE can be directly related to issues in the thermodynamic fields. Some 

reanalyses, such as MERRA 2 and 20CR, are biased low due to mid-level 

temperatures that are too warm, presumably due to convection contamination, 

while CFSR was impacted by negative biases for surface moisture.   

• Thermodynamic performance negatively impacts reanalyses for composite and 

kinematic parameters that indirectly incorporate thermodynamic information via 

the effective layer. As a result, all reanalyses, except NARR and JRA55, were 

biased low for parameters such as ESRH, SCP, and STP.  
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• The majority of reanalyses reasonably reproduced the kinematic environment with 

nearly uniform correlations for the various parameters. The lone exception was 

20CR, which had significant negative biases. Regardless of reanalysis, performance 

was better for fixed-level shear parameters vs. ESRH. 

• The net result of negative biases led to more overlapped distributions when the 

analysis was segregated by storm type.  While no reanalysis can exactly reproduce 

the work of T03 and T07, many of the reanalyses can broadly distinguish between 

environments that are significantly tornadic versus nontornadic. Better segregation 

is found for fixed-layer parameters versus those that use the effective layer.  

No effort is made to objectively or subjectively rank reanalyses. As the results show, 

performance varies across these datasets. Broadly, JRA55 and NARR do the best job 

representing the thermodynamic environment, and this performance positively impacts 

results for composite parameters and kinematic properties that involve the effective layer. 

Despite this result, analysis segregated by storm type demonstrates the reanalyses’ ability 

to broadly distinguish between significantly tornadic/severe environments and those that 

are unlikely to produce supercells.  

The lone exception to the above statement is 20CR, which performed poorly across all 

categories. It should be stressed that for this reanalysis, the ensemble mean field was used 

creating a somewhat unfair comparison. While this decision was made on the premise that 

no a-priori knowledge of an event should be needed, it is conceivable that a user could 

arbitrary pick ensemble members that better match available observations. 

The presented work offers itself as an initial intercomparison of reanalyses against a 

well-documented dataset of severe convective cases. Outstanding questions include how 
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representative these results are for other regions of the world that are less constrained by 

observations. 

 

Climatology and Trends in Severe Weather Parameters 

The second goal of this thesis was to investigate a reanalysis-based climatology of 

severe weather parameters and determine whether trends exist over the 30-year period from 

1986-2015. It is again important to realize that the climatology and trends in these 

parameters does not necessarily represent the climatology or trends in actual severe 

weather occurrence, but rather the potential for severe weather occurrence. Severe weather 

parameters were calculated at each grid point, at synoptic times for the full domain of 

NARR excluding points over water and points where 2m temperature was below freezing. 

Provided below is a bulleted list of findings: 

• Overall spatial distribution of severe weather climatologies closely matched what 

was found in previous studies such as Brooks et al. (2003) and Gensini and Ashley 

(2011). However, in the case of days with MUCAPE exceeding 2000 J/kg, the 

magnitude of the values in this study was higher than that of either study. The 

reasons for this are likely due to the increased resolution of NARR (compared to 

R1 used in Brooks et al. 2003) as well as differences in CAPE calculation and the 

different time periods used for each study. 

• Trends in CAPE over this period tended to be positive for spring months and 

negative for summer months. The strongest negative trends exist for the Southern 

and Central Plains regions for MLCAPE during the summer.  
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• Days with favorable values of CIN are shown to be decreasing over most of the 

Southern, Central, and Northern Plains regions (i.e. traditional “Tornado Alley” 

regions). This decrease is also statistically significant for the majority of these 

regions.  

• Trends in composite parameters such as SCP followed a similar pattern to CAPE 

with positive trends over the Midwest during the spring, and negative trends over 

the Plains regions during the Summer. This positive trend seem to be at least 

partially due to an increase in low level shear due to the inclusion of the effective 

layer.  

Overall, trends were mixed, and a closer inspection of specific locations show large 

amounts of inter-annual variability. The exact reasons for the trends depicted by this thesis 

are beyond the scope of this study but will need to be further investigated before any 

definitive conclusions can be made. Additionally, more advanced methods to determine 

trends could be employed rather than just using a simple linear regression as was used in 

this study. Additional future work will include the production of severe weather datasets 

for multiple additional reanalyses. Code written in the Compute Unified Device 

Architecture (CUDA) platform is in development to enable processing of these additional 

reanalyses at a much faster rate by utilizing graphical processing units (GPUs). This will 

enable the creation of much larger severe weather parameter datasets (ex. global reanalyses 

such as JRA55 or upcoming ERA5), as well as the ability to utilize all available times (ex. 

all 8 daily times for NARR). 
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