
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

January 2018 

A CMIP5 Ensemble Assessment Of Durum Wheat Production & A CMIP5 Ensemble Assessment Of Durum Wheat Production & 

Climate Change In North Dakota, Usa Climate Change In North Dakota, Usa 

Timothy Douglas Hochstetler Dillon 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Hochstetler Dillon, Timothy Douglas, "A CMIP5 Ensemble Assessment Of Durum Wheat Production & 
Climate Change In North Dakota, Usa" (2018). Theses and Dissertations. 2233. 
https://commons.und.edu/theses/2233 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator 
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/2233
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2233?utm_source=commons.und.edu%2Ftheses%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


i 
 

A CMIP5 ENSEMBLE ASSESSMENT OF DURUM WHEAT PRODUCTION & CLIMATE 

CHANGE IN NORTH DAKOTA, USA 

 

 

 

 

 

By 

 

 

 

 

Timothy D. Hochstetler Dillon 

Bachelor's of Science, University of Idaho, 2013 

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the  

 

   

 

 

University of North Dakota 

Department of Earth System Science & Policy 

in partial fulfillment of the requirements 

for the degree of  

 

 

 

 

Master of Science 

 

 

 

 

Grand Forks, North Dakota 

May 

2018 

 

 

 

  



ii 
 

 



iii 
 

 

PERMISSION  

Title  A CMIP5 ENSEMBLE ASSESSMENT OF DURUM WHEAT PRODUCTION & THE 

CLIMATE CHANGE IMPACTS ON NORTH DAKOTA, USA 

 

 

Department Earth System Science and Policy 

 

Degree Masters of Science 

 

 

 

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the 

University of North Dakota, I agree that the Library of this University shall make it freely 

available for inspection. I further agree that permission for extensive copying for scholarly 

purposes may be granted by the professor who supervised my thesis work or, in his absence, by 

the Chairperson of the department or the dean of the School of Graduate Studies. It is understood 

that any copying or publication or other use of this thesis or part thereof for financial gain shall 

not be allowed without my written permission. It is also understood that due recognition shall be 

given to me and to the University of North Dakota in any scholarly use which may be made of 

any material in my thesis. 

 

 

   Timothy D. Hochstetler Dillon 

                                  05-09-2018 

 

   

 

 

 

 

 

 



iv 
 

 

TABLE OF CONTENTS 

Introduction ................................................................................................................................... 14 

Growth and Structure ................................................................................................................ 20 

Plants Productivity ................................................................................................................. 20 

Primary Production ................................................................................................................... 22 

C3 vs. C4 Photosynthesis ........................................................................................................ 22 

Wheat Physiology ..................................................................................................................... 23 

Observing Wheat Physiology .................................................................................................... 23 

Germination ........................................................................................................................... 24 

Emergence ............................................................................................................................. 24 

Tillering ................................................................................................................................. 24 

Stem Elongation/Stem Joining .............................................................................................. 25 

Booting and Anthesis (AKA Flowering) ............................................................................... 25 

Dough .................................................................................................................................... 26 

Ripening................................................................................................................................. 27 

Observational Tools ............................................................................................................... 27 

North Dakota Durum Wheat Production ............................................................................... 30 

Durum Interactions with the Environment ................................................................................ 32 

Growing Degree Days (GDD) ............................................................................................... 33 

Precipitation (mm) ................................................................................................................. 35 

Temperature (oC) ................................................................................................................... 37 

Climate Change and CO2 Concentrations ................................................................................. 40 

Climate Change ......................................................................................................................... 40 

The Global Energy Budget .................................................................................................... 42 

Agriculture & Climate Change .............................................................................................. 44 

Effects of Climate Change on Food Availability and Security ............................................. 45 

Impacts of Climate on Plant Pathology ................................................................................. 47 

Representative Concentration Pathway 2.6 ........................................................................... 49 

Representative Concentration Pathway 4.5 ........................................................................... 50 

Representative Concentration Pathway 6.0 ........................................................................... 52 

Representative Concentration Pathway 8.5 ........................................................................... 52 



v 
 

Representative Concentration Pathway: Conclusions ........................................................... 55 

Methodology ................................................................................................................................. 57 

Crop Modelling ......................................................................................................................... 57 

The Agricultural Land Management Alternative with Numerical Assessment Criteria 

(ALMANAC) Model ............................................................................................................. 58 

Modeling with ALMANAC .................................................................................................. 59 

Model Calibration and Validation ......................................................................................... 60 

Model Calibration and Validation Statistics .......................................................................... 62 

Model Processes ........................................................................................................................ 66 

Model Equations ....................................................................................................................... 67 

Study Area ................................................................................................................................. 68 

Climate of North Dakota ........................................................................................................... 69 

Data ........................................................................................................................................... 78 

Downscaled Climate Data ......................................................................................................... 81 

Results ........................................................................................................................................... 83 

Historic Yield Replication Results ............................................................................................ 83 

RCP Simulations of the 2020’s ................................................................................................. 85 

RCP 2.6 Changes ................................................................................................................... 85 

RCP 4.5 Changes ................................................................................................................... 86 

RCP 6.0 Changes ................................................................................................................... 86 

RCP 8.5 Changes ................................................................................................................... 88 

RCP Simulations of the 2050’s ................................................................................................. 89 

RCP 2.6 Changes ................................................................................................................... 89 

RCP 4.5 Changes ................................................................................................................... 90 

RCP 6.0 Changes ................................................................................................................... 90 

RCP 8.5 Changes ................................................................................................................... 91 

Conclusions ................................................................................................................................... 92 

Summary of Future Climate and Yield Changes .................................................................... 116 

Discussion ..................................................................................................................................... 92 

Model Sensitivity Analysis ....................................................................................................... 92 

Methodological limitations ....................................................................................................... 98 

Historic Trends in Climate & Agriculture................................................................................. 99 

Land Use: Agriculture, Oil, and Conservation .................................................................... 100 



vi 
 

Global Durum Production ................................................................................................... 102 

North Dakota Durum Production ........................................................................................ 103 

Impacts on Durum Quality, Price, and Markets .................................................................. 105 

Solutions .................................................................................................................................. 109 

The Cost of Change ............................................................................................................. 109 

Appendix A: Residuals ............................................................................................................... 125 

Appendix B: Climate Forecasts 2020’s ...................................................................................... 118 

RCP 2.6 ................................................................................................................................... 118 

RCP 4.5 ................................................................................................................................... 118 

RCP 6.0 ................................................................................................................................... 119 

RCP 8.5 ................................................................................................................................... 120 

Appendix C: Climate Forecasts 2050’s ...................................................................................... 121 

RCP 2.6 ................................................................................................................................... 121 

RCP 4.5 ................................................................................................................................... 122 

RCP 6.0 ................................................................................................................................... 123 

RCP 8.5 ................................................................................................................................... 123 

References ................................................................................................................................... 125 

 

 

  



vii 
 

List of Figures 

Fig. 1: The levels of three greenhouse gases from year 0 to 2005, using data from ice cores 

(Forester, 2007) ............................................................................................................................. 17 

Fig. 2: The Calvin cycle representing the transformation of CO2 into Glucose and additional 

RuBp production (Dept. Biol. Penn State ©2004). ...................................................................... 21 

Fig. 3: The key differences between C3 and C4 plants. The Calvin Cycle is the common process 

between the two pathways (Ehleringer, 2002). ............................................................................. 22 

Fig. 4: Plant growth including booting stage (Left) and beginning Anthesis (Right) (Miller, 

2001). ............................................................................................................................................ 26 

Fig. 5: Kernel growth and development during Dough and Ripening stages. These stages of 

development are when protein and moisture accumulation increase until the kernel is an amber 

color (UMN extension). ................................................................................................................ 27 

Fig. 6: Zadoks decimal code for the growth of cereal crops. Each stage is identified by an 

observable change in crop growth that indicates the current growth stage, whether it be color or 

development. (Poole, 2005) .......................................................................................................... 28 

Fig. 7: National Durum wheat planted and harvested acres (USDA-NASS, 2017). .................... 30 

Fig. 8: The distribution of average Durum Wheat yield (1981-2005), across North Dakota 

(USDA, 2017). .............................................................................................................................. 31 

Fig. 9: Köppen climate classification of North Dakota which is a mix between semi-arid and 

Warm-summer humid climate.  (Peterson, 2016) ......................................................................... 38 

Fig. 10: The global energy budget representing the balance of incoming solar heat and energy 

versus the outgoing thermal and solar energy (NASA). ............................................................... 43 

Fig. 11: Observed pCO2 levels at the Mauna Loa monitoring station, Hawaii ............................ 44 

Fig. 12: The pCO2 budget of sources and sinks in the Anthropogenic/Environmental system. (Le 

Quéré, 2016) ................................................................................................................................. 45 

Fig. 13: The projected changes in land use under RCP 4.5 (Thomson, 2011). ............................ 50 

Fig. 14: The changes in land use from 2000 to 2100 for RCP 8.5 (Riahi, 2011). ........................ 53 

Fig. 15: Comparison of simulated and observed yield for Bowman County (1981-2005) ........... 63 

Fig. 16: Conceptual flow chart of data input and determination functions for Durum Wheat 

estimation. ..................................................................................................................................... 66 

file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216072
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216072
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216075
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216075
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216076
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216076
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216076
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216077
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216077
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216077
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216078
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216079
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216079
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216080
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216080
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216081
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216081
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216082
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216083
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216083
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216084
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216085
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216086
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216087
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216087


viii 
 

Fig. 17: The S curve representing the increase in LAI over the growing season. The curve is 

restricted by the extinction coefficient and population density (Kiniry, 1992). ........................... 67 

Fig. 18: The climatological data for Tmax, Tmin, and Precip for 1981 - 2005 ............................ 71 

Fig. 19: Counties in the study area. Each defined as a top producer of Durum with data for 1981 - 

2005............................................................................................................................................... 78 

Fig. 20: Durum Historic Average Yields from (1981-2005). ....................................................... 84 

Fig. 21: Simulated Average Yield (t/ha) RCP 2.6. ....................................................................... 85 

Fig. 22: Simulated Average Yield (t/ha) RCP 4.5. ....................................................................... 86 

Fig. 23: Simulated Average Yield (t/ha) RCP 6.0. ....................................................................... 87 

Fig. 24: Average Ys RCP 8.5........................................................................................................ 88 

Fig. 25: Average Yields RCP 2.6 in the 2050’s. ........................................................................... 89 

Fig. 26: Average Yields RCP 4.5 in the 2050’s. ........................................................................... 90 

Fig. 27: Average Yields RCP 6.0 in the 2050’s. ........................................................................... 91 

Fig. 28: Average Yields RCP 8.5 in the 2050’s. ........................................................................... 91 

Fig. 29: Slight changes to the PHU parameter in Burke County shows that yield (t/ha) did not 

significantly change when altered by a small number of thermal units (~50 oC). ........................ 94 

Fig. 30: These simulations (above) and the associated trend lines represent changes in the PHU 

parameter. The lowest (grey) had a PHU of 1444 and increased with each trend line to the top of 

1800………………………………………………………………………………………………96 

Fig. 31: Simulations of '81 to '95 for Bottineau County comparing simulated versus observed 

yields (t/ha)…………………………………………….......…………………………………….97 

Fig. 32: These simulations of Bottineau County 1981 – 2005 compared to Observed values 

measured in (t/ha)………………………………………………………………………………..98 

Fig. 33: Production of Durum Wheat worldwide, measured in million tons…………………...102 

Fig. 34: Total domestic production measured in BU………………………………..………….104 

Fig. 35: Total domestic production measured in BU…………………………………………...105 

Fig. 36: North Dakota Production (BU) and Price received ($/BU) (NASS, 2017). .................. 108 

 

 

 

 

file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216088
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216088
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216089
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216090
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216090
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216091
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216092
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216093
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216094
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216095
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216096
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216097
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216098
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216099
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216100
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216100
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216105


ix 
 

List of Tables: 
Table 1: Code and description of various growth stages from germination to ripening.  aWinter 

cereals only. bAn increase in the solids of the liquid endosperm is notable when crushing the 

seed between fingers. cFingernail impression held; head losing chlorophyll .............................. 29 

Table 2: Examples of growth stages and GDD/AGGD requirements for a wheat crop to reach 

maturity. (Miller, 2001) ................................................................................................................ 34 

Table 3: Changes in land use and GHG emissions under the four RCP's (Hartman, 2013)……..46 

Table 4: Statistical values for 1981 - 2005 representing data for both calibration and 

validation…………………………………………………………………………………………65 

Table 5: Daily Avg. Tmax, Tmin and Precip 1981-2005 for months encompassing the Durum 

season (May to Sept) 1981-2005. ................................................................................................. 70 

Table 7:  Changes in the daily Growing Season (May-Sept) Tmax, Tmin, and Precip from 

historic values (1981-2005) to the simulations of the 2020’s climate. ......................................... 74 

Table 8: Changes in the daily Growing Season (May-Sept) Tmax, Tmin, and Precip from 

simulated 2020’s climate to the simulations of the 2050’s climate……………………………...77 

Table 9: List of parameters used in the ALMANAC modeling process ....................................... 80 

Table 10: List of counties and the associated yield change Yz = (Ys - Y0, r2, and E for 1995 – 

2005 period………………………………………………………………………………………83 

Table 11: Climatological data of 1981 – 2005 color-coded with red and orange as smaller values than the 

yellow and green color-coded cells………………………………………………………………………..84 

Table 12: County Yields with the greatest deviations from the statewide average (1.97 t/ha). ... 87 

Table 13: Example of parameter settings used for sensitivity analysis, WA (Biomass partitioning 

ratio), PHU (Potential Heat Units/AGGD), and Harvest Index (HI)…………………........... ….93 

Table 14: Analysis of Variance (ANOVA) test for the differences between simulations with 

earlier and earlier planting dates (i.e., moved forward by 5, 10, and 15 days).………………….96 

Table 15: Programs offered by local and federal governments to aid in mitigating CC and 

improve agricultural operations. ................................................................................................. 101 

Table 16: Trends in production (BU) from 1981-2005.. ............................................................ 107 

Table 17: Average values for Tmax, Tmin, and Precip under RCP 2.6- 2020………………....118 

Table 18: Average values for Tmax, Tmin, and Precip under RCP 4.5- 2020…………………119 

Table 19: Average values for Tmax, Tmin, and Precip under RCP 6.0- 2020…………………120 

Table 20: Average values for Tmax, Tmin, and Precip under RCP 8.5- 2020…………………120 

file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216156
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216156
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216156
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216157
file:///C:/Users/tdill/Desktop/Final%20DRAFT%20THESIS%20DO%20NOT%20TOUCH.docx%23_Toc506216157


x 
 

Table 21: Average values for Tmax, Tmin, and Precip under RCP 2.6- 2050…………………122 

Table 22: Average values for Tmax, Tmin, and Precip under RCP 4.5- 2050…………………123 

Table 23: Average values for Tmax, Tmin, and Precip under RCP 6.0- 2050…………………123 

Table 24: Average values for Tmax, Tmin, and Precip under RCP 8.5- 2050…………………124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF ABBREVIATIONS 

Precip    Precipitation (mm) that falls during a 24-hour calendar period. 

Temp Temperature (oC) measured as the maximum or minimum over a 24-hour 

calendar period. 

N, S, E, W, NE, NW, etc. The designations for cardinal directions used throughout this paper.  

CC Referred to as both Climate Change and CC throughout the paper. 

Referring to the theory of warming GMST and the associated changes in 

climatic parameters. 

ND Referred to as both North Dakota and as ND for simplification in certain 

contextual settings. 

GDD Growing Degree Day 

AGGD Accumulated Growing Degree Day 

 

 

 

 

 

 

 

 

 



xii 
 

 

 

 

ACKNOWLEDGMENTS 

 I wish to express my sincere appreciation to the members of my Advisory Committee for their guidance 

and support during my time in the master’s program at the University of North Dakota. I would like to 

also thank my wife, friends, and family for their continuous support. I want to especially thank my 

partner, Tiffany Hochstetler Dillon for her patience and understanding when I was unreasonable or 

frustrated. You stood beside me and made sure I didn’t go insane, I cannot express how grateful I am to 

you for your loving commitment. I want to thank my parents and siblings for listening to me on the 

numerous phone calls and texts. Your support has always been appreciated even when I did not show it. 

You are the reason I can be proud of who I am today. Mom and Dad, your commitment to developing 

well rounded and determined children is something you should be very proud of. Thank you so very 

much for everything you have done for me. Lastly, I want to give a mention to Dr. Soizik Laguette who 

taught me that it is okay to not know the answers as long as you then go on to seek the answer. I want to 

thank you for everything you have done in my M.S. education. You are a great teacher, tutor, friend, and 

counselor. Any student who studies under your leadership should be grateful and honored to have such a 

dedicated advisor.  

 

 

 

 

 



xiii 
 

ABSTRACT 

In the United States (US), North Dakota is the largest producer of Durum Wheat (Triticum durum), 

hereinafter referred to as Durum. Durum grain has a high protein content and multiple utilities in 

food products. We investigated the historical trends in Durum production and yield as influenced 

by changes in precipitation (precip) and temperature (temp). The study accounted for variations in 

environmental conditions by running a dynamic crop model in thirteen Durum producing counties. 

The climate of North Dakota is representative of the highly productive agricultural lands of the 

Northern Great Plains, encompassing five US states and two Canadian provinces. The Eastern part 

of North Dakota has a humid continental climate while the western part is semi-arid. Creating a 

distinct West-to-East precip gradient across the state. Low mean average temps (cir. +4 °C), and 

high-temp variability lead to the relatively short growing season (cir. 130 days). Combined with 

limited rainfall (cir. 350 mm in the E and 560 mm in the W), it makes agriculture highly dependent 

on temp and precip. Accordingly, climate change has a high potential impact on crop production 

in the region.  

The ALMANAC crop growth model was used to simulate the production of Durum. Model 

performance was estimated by comparison of simulated yields with historical observations, and 

was found satisfactory using the Nash–Sutcliffe model efficiency coefficient (E) and Coefficient 

of determination (r2) (< 0.50). Uncertainty in projected future climate is addressed using an 

ensemble of 17 Global Circulation Models (GCMs) run under four scenarios. GCM output data 

were further downscaled using MarkSim weather, and daily weather was generated for two 30-

year periods, characteristic of the 2020’s and the 2050’s.
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Introduction 
   

Modern agro-technology stems from advancements in management systems cir. 1200 AD, 

13,000 years after the dawn of agriculture (Harari, 2014; Standage, 2009). Some advances were 

based on natural observations such as a defined growing season and specific crops for each 

season. Other advances were in engineering such as irrigation, watermill, windmill, and, most 

importantly, the plow (Tudge, 2000; Harari, 2014). Farming problems of the past have been 

solved through the evolution of farming technologies (i.e. computers, irrigation, and 

greenhouses) and scientific progress (i.e. climate change, genetics, and GMO’s) (Fitzgerald, 

1991). Ironically, this can create a pattern of apathy in dealing with the variables that negatively 

impact farmers such as land use, or emissions and runoff from industry. In the past these issues 

have been ignored under the assumption that they will be solved by the technological innovations 

of the future (Fitzgerald, 1991; Harari, 2014).  

Science and technology are often implemented as management tools such as guidance software 

for precision pesticide application or the use of satellite imagery and mapping to monitor 

possible weather hazards (Stafford, 2000; Pinter et al., 2003). Any part of the agricultural sector 

that monitors crop growth during the most vulnerable growth stages depends on accurate 

climatological, atmospheric, and ecological conditions that are, at best, predictable with a margin 

of error. Research into climate and atmospheric impacts on agricultural productivity have 

become increasingly important to the stability and security of many nations in the 21st century 

(Schwartz, 2003). The effects of climate change, hereafter CC, will alter this stability as the 

effects are better observed. 
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In several locations around the world, the evidence of CC is visible. Kelly, 2015 formed a highly 

plausible connection between the drought and resulting food crisis in Syria to the regional 

instability that began in 2011 and persists still today (Kelley, 2015). The paper posited that the 

drought and food crisis in Syria forced young people to migrate from rural villages to large 

population centers. High unemployment in cities created an unstable state of public morale and 

armed conflict ensued (Kelley, 2015). Humans bear the responsibility to solve CC as we are the 

cause of CC. 

The effects of CC on temperature (temp) and precipitation (precip) regimes relevant to this study 

are of local or regional scale.  In W North Dakota, the period within the optimal range of temps 

for plant growth is limited to the ~120 to ~130 days between late May to mid to late September 

(Enz, 2002). The location of North Dakota, the geographic center of the North American 

continent, creates a diverse climate with average daily temp and precip extremes as well as 

significant weather phenomena (ie. droughts, floods). These events occur many times a year, 

often during the growing season with significant impacts on the farming communities of the state 

( Enz, 2002). Agriculturally significant regions in western North Dakotas experience frequent 

periods of both high and low precip (Manske, 2012; Enz, 2002).   

The current literature presents the effects of CC in North Dakota on many crops ranging from 

sugar beets to potatoes. However, few articles or studies exist regarding the impacts of CC on the 

production of Durum in North Dakota. The known effects of CC on crop growth and yield are 

primarily due to changes in temp and precip stresses, not necessarily the direct result of increases 

in CO2 (Deryng, 2014).  

The impacts of a slightly increased global temp and increased concentrations of CO2 have been 

predicted to be beneficial to plant growth of certain species, due to Carbon Fertilization 
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(AbdElgawad et al., 2016). In several studies, increased supplies of CO2 created increased 

empirical photosynthetic productivity. It was especially effective in rainfed agricultural systems 

like North Dakota (Nemani et al., 2003; Vanaja et al., 2017)1. 

In other studies, plants grown under compounded increases in temp exhibited signs of increased 

temp stress and an overall decrease in growth (Rosenzweig, 2002; Rosenweig, 2000). Adding to 

temp stress are potential changes in the accumulation or frequency of precip. Negative impacts 

of increased pCO2, via the precip and temp changes, may be detrimental to plant growth during 

specific growth stages, either stimulating or retarding growth. An increase in the quantity of 

precip is usually beneficial, as precip is a limiting factor of growth. The exception being when 

too much precip falls at one time causing increased disease or damage (Rosenzweig, 2002; 

Rosenweig, 2000). 

Global increases in the “greenness of the planet” (AKA terrestrial net primary productivity) can 

be associated with the climate-driven impacts such as carbon fertilization, nitrogen deposition, 

and forest regrowth (Nemani et al., 2003). The amount of carbon fixed in the ecosystem, species 

diversity, and usable biomass production across the landscape are due to global differences in 

photosynthetic pathways (Ehleringer, 2002). Changes in pCO2 will also influence photosynthesis 

and plant growth (Nemani et al., 2003). Likewise, elevated pCO2 and the method of carbon 

fixation will influence the spatial distribution of precip, temp, diseases, and plants in North 

Dakota (ND) (Vaughan, 2016).  

pCO2 surpassed 400 parts per million by volume (ppmv) threshold in 2013 and has continued to 

increase (Monastersky, 2013). The International Panel on Climate Change (IPCC), an 

                                                           
1 These empirical studies only consider the benefits of additional CO2 to photosynthesis and not 

the negative impacts of increased pCO2 on climate variables. 
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international cooperative effort of scientists to understand our changing climate, published an 

assessment of Earth’s atmosphere and concluded that CO2 emissions have been increasing from 

pre-industrial years (the 1880's) to today (Fig. 1) (Forster, 2007).  

Under current predictions, major Green House Gas (GHG) emissions will continue to increase at 

a rate consistent with the actions of the emitting nations of the world (Forster, 2007). 

CC theory calculates that if global GHG emissions increases, the mean annual surface temp 

(MAST) will increase and, in turn, the global climate will change (Adhya, 2009). Major GHG’s 

include Carbon Dioxide (CO2), Methane (NH4), and Nitrous Oxide (N2O), all of which are 

emitted during food production (Adhya, 2009). Over the remainder of the 21st century, each 

nation will influence the concentrations of GHG’s via policy and industrial initiatives. Affecting 

the global agriculture on which humanity depends (Adhya, 2009). The infinite possible futures 

for GHG emissions and climate were consolidated and categorized by the IPCC to form four 

contrasting scenarios. Each scenario was assigned to research teams in participating nations 

(RCP’s 2.6, 4.5, 6.0, 8.5), each with various levels of interaction between humanity, industry, 

and climate (Barrow, 2000). Each of these scenarios represents a coherent, internally consistent 

Fig. 1: The levels of three greenhouse gases from year 0 to 2005, using 
data from ice cores (Forester, 2007) 
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and plausible description of a probable future state of the world (Barrow, 2000). These logical 

trajectories are based on current and historical trends in climate, agriculture, extreme weather, 

biology, economics, population, and social factors (Moss, 2010). 

Global effects on climate will not reflect local temp or precip. Therefore, researchers employ a 

method known as downscaling to convert large global forces and processes (i.e. ENSO, 

cyclones, increasing global temps, and deep ocean convection) into local weather effects (i.e. 

daily maximum temp (Tmax), minimum temp (Tmin), wind speed, and precip) (Barrow, 2000). 

This data can then be used in research of crop/climate interactions to determine the impacts of 

these forces on the production of plants (Barrow, 2000).  

The effects of climate on Durum is not well established for North Dakota. Wienhold, 2017 

estimated that C3 crops across the Northern Great Plains would experience increased yields and 

photosynthesis with decreased photorespiration in higher CO2 environments (Wienhold, 2017). 

However, cereal crops that experienced increased yield often coincided with decreases in quality 

and protein content (Wienhold, 2017). However, certain changes in the environment could lead 

to decreased yield from stress factors such as increased temps during grain filling and pollination 

events (Wienhold, 2017). There is sufficient evidence to assume that the intensity and frequency 

of precip events will increase from historic levels (Kunkle, 2003). If these events occur during 

the critical pollination or grain filling stages, the productivity of Durum grain formation will 

decrease in turn affecting yield (Wienhold, 2017). This would create precip regimes that could 

reduce yield, promote disease proliferation, and force farmers to switch crops (Rosenzweig, 

2000; Rosenzweig, 2002). Those who continue to farm will likely observe increased temp stress, 

disease, and potentially diminished yield (Rosenzweig, 2000; Rosenzweig, 2002). Researchers 

utilize models to better understand and predict plant responses to these changes (Haefner, 2012). 
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These models, specifically crop models, simulate crop growth and production under varying 

environmental and meteorological conditions. 

The Agricultural Land Management Alternatives with Numerical Assessment Criteria 

(ALMANAC) model simulates crop growth, competition and the relationship between plants and 

climate (Baez-Gonzalez, 2015). The main function of a model is to simulate impacts of field-

level management using data defining environmental, soil, or water conditions (Baez-Gonzalez, 

2015).  The result is a measure of production at the farm level, reported as an annual yield 

measured as Tons per Hectare (t/ha) or Bushel per acre (BU/acre) (Ewert, 2007). This simulated 

result is the reflection of a real-world agricultural operation with similar growing conditions. 

These models help researchers advance agricultural productivity (Ewert, 2007). 

The goal of this study is to determine the possible changes in the production of Durum (t/ha) 

resulting from CC in North Dakota. This study uses observed historical yields, downscaled 

climate data, ALMANAC crop model, and field management data to simulate the production of 

Durum in North Dakota. The current and simulated future trends of Durum production may be 

useful to lawmakers, farmers, and future research. Current production spans most of the W and N 

border counties and some C counties of the state. 

Simulating potential yields under several projected climates will provide insight into Durum 

production during the 2020’s and 2050’s. This maintains the assumption that production 

practices remain constant and temp and precip changes are the drivers of change in Durum 

production. 
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Literature review 

Growth and Structure 

Plants Productivity 

Melvin Calvin received a Nobel Prize in Chemistry for the discovery of photosynthesis, the 

process of using photons (γ), which is solar energy, to drive the production of sugars for plant 

growth (eq. 1) (Calvin, 1952).  

6𝐶𝑂2 + 6𝐻2𝑂 + [𝛾] →  𝐶6𝐻12𝑂6 + 6𝑂2                      01   

The process begins using chlorophyll, a chemical within plant leaves that absorbs photons 

(Calvin, 1952). Photosynthesis also requires Carbon Dioxide (CO2) and Dihydrogen Monoxide 

(Water/ H2O) to stimulate plant growth (eq. 1) (Zhu, 2008; Calvin, 1952).  All plants use one of 

three types of photosynthesis: C3, C4, and CAM. Each requires the same basic components of 

growth (Eq. 01) (Waller, 1979). C3 and C4 are the two dominant photosynthetic pathways of 

plants in North Dakota with CAM plants being more common in warmer climates (Waller, 

1979).   

These three photosynthetic pathways evolved over millennia to create more and more efficient 

primary producers (Gowik, 2011; Elheringer, 1991). Gas exchange in photosynthesis is 

significant and likely evolved due to changes in ancient levels of CO2 (Ehleringer, 1991). Given 

this interaction between climate and plants, the efficiency of photosynthesis will increase to 

overcome the possible impacts of elevated CO2 in the future. An understanding of the Calvin-

Benson Cycle (hereafter C-Cycle) is required to understand how plant production will be 

affected under elevated pCO2 requires (Calvin, 1952). 

 The C-Cycle is a set of chemical reactions that take place in the plant cell beginning when CO2 

is added to the cycle. Within the plant cell, CO2 undergoes a series of chemical reactions each 
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requiring the expenditure of energy in the form of ATP and NADPH (Fig.2) (Gowik, 2011; 

Ehleringer, 1991; Calvin, 1952). The end products of the C-Cycle are Glucose, other organic 

compounds, and additional RuBP for perpetuating the C-Cycle (Fig. 2) (Calvin, 1952).  

 

Fig. 2: The Calvin cycle is representing the transformation of CO2 into Glucose and additional RuBp production (Dept. Biol. Penn 
State ©2004). 

This process takes several iterations to create a Glucose molecule (AKA Sugars and 

carbohydrates) since only one Carbon is added per iteration of the C-Cycle. Regardless of the 

pathway, sugars are essential to plant growth making this process the backbone of all 

photosynthesis (Ehleringer, 2002). The differing pathway designations, (C3, C4, and CAM), refer 

to the method of transporting Carbon from the atmosphere to the chloroplast where the C-Cycle 

can begin (Ehleringer, 2002; Yamori, 2014). The two dominant pathways in agricultural plants 

are C3 and C4 (Ehleringer, 2002). 
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Primary Production 

C3 vs. C4 Photosynthesis 

The two most significant methods of converting atmospheric CO2 into organic carbon (i.e., 

biomass) are the C3 and C4 photosynthetic pathways (Calvin, 1952; Ehleringer, 2002). Both vary 

in the method of carbon fixation, the quality of biomass production quality, and the isotopic 

composition of CO2 re-released into the atmosphere (Calvin, 1952; Ehleringer, 2002). The key 

differences between C3 and C4 plants are the physiological, structural and chemical processes of 

carbon fixation (Ehleringer, 2002). In C3 plants the CO2 molecule is transported into the 

Mesophyll cell where the C-Cycle occurs (Fig. 3a). In C4 photosynthesis, the CO2 molecule is 

also transported into the Mesophyll Cell, but once there, the CO2 is turned into an intermediate 

compound, Oxaloacetate (C4 acid) (Fig. 3b) (Calvin, 1952; Ehleringer, 2002).  

Fig. 3: The key differences between C3 and C4 plants. The Calvin Cycle is the common process between the two pathways 
(Ehleringer, 2002). 

The C4 acid is then transported into the Bundle Sheath Cell where C4 is converted back to CO2, 

and the C–Cycle occurs (Fig. 3b) (Ehleringer, 2002). The efficiency of processing CO2 through 

B. A. 
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these pathways is based on environmental temp and the structural differences between the 

photosynthetic pathways themselves (i.e., Mesophilic C-cycle vs. Bundle Sheath C-cycle).  

In environments with lower pCO2 and/or high temp, C4 plants are less likely to photorespiration 

making them more efficient than C3 plants (Ehleringer, 2002). Meanwhile, in environments with 

elevated CO2 or at cooler temps, the efficiency of photosynthesis is greater in C3 plants because 

photorespiration is unlikely to occur (Ehleringer, 2002).  

Wheat Physiology 

The seeds that are planted by a farmer are likely produced using genetic editing or are enhanced 

to reduce the impacts of disease, drought, or to maximize yields (Elias, 2005). As a semi-arid 

crop, Durum is often produced in areas with severe weather conditions (Troccoli, 2000; Elias, 

2005). A heavy dependence is placed on the adaptability of these new varieties to different 

environmental conditions, ensuring high yields and protein content (Troccoli, 2000). The field 

and seed preparations the farmer applies are based on soil conditions, past harvest knowledge, 

and recommendations from agencies or institutions like the United States Department of 

Agriculture (USDA) and North Dakota State University (NDSU) (NASS, 1997). Once planted, 

the seed goes through the stages of growth from seed to harvest including Germination, 

Emergence, Tillering, Stem Elongation, Booting, Anthesis, Milk, Dough, and Ripening (Zadoks, 

1974).  

Observing Wheat Physiology 

Each phase of growth results in observable changes in plant physiology such as leaf development 

and grain filling (Nelson, 1984). Farmers use these visible signs to monitor the progress of the 

crop from emergence to harvest. Monitoring the crop can aid in recognizing and reducing the 

damage to water and temp stress. Temp stress during the early stages of growth, “may reduce the 



24 
 

number of seeds but have minimal effect on seed [health]” (Nelson, 1984). These stresses have 

the most impact during the Tillering and Anthesis stages of growth (Akram, 2011). In cereal 

crops, the combined stress during these stages can negatively impact growth and reduce yield 

(Akram, 2011). 

Germination 

In germination, the seed takes hold of the soil and absorbs water (Almansouri, 2001). After 

swelling with water from the soil, the endosperm cracks the outer amber shell of the seed kernel. 

The structures that leave the seed via the crack include the roots and the primodia, followed by 

the coleoptile (Nelson, 1984).  The latter grows to the surface and becomes the first leaf (Nelson, 

1984). The roots grow laterally into the soil to increase the structural support of the plant 

(Nelson, 1984). These structures maintain a firm grasp on the soil and fortify the coleoptile while 

the plant emerges to the surface (Almansouri, 2001).  

Emergence 

After germinating, the plant accrues more biomass to grow taller, create more leaves, and emerge 

through the soil. Emerging plants are extremely sensitive to atypical precip events (i.e., floods, 

droughts, snow, hail) (Rozensweig, 2002; Rosenzweig, 2000). It has been observed that exposure 

to extreme precip has a negative effect on the number of seeds the plant will have at maturity 

(Maccaferri, 2008). A plant at the end of emergence can have up to six main roots and three 

leaves (Acevedo, 2006; Nelson, 1984). Once grown, these leaves absorb photons to begin 

photosynthesis (see Plant productivity). The Emergence phase ends when the first tiller emerges 

(Acevedo, 2006).  

Tillering 

 The “Tillering Stage” has begun when the first leaves are fully formed and the first tiller has 

emerged from the soil. Tillers attach the leaves to the main stem and add more structural support 
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to the plant (Acevedo, 2006). The growth of a root to support the tiller does not begin until the 

tiller is supporting three leaves. If a tiller fails to produce three leaves, then a root will not form, 

and the tiller will fall off the plant (Acevedo, 2006).  

At the end of the tillering stage, the main stem will stop initiating new leaves, and the shift in 

plant production will be towards vertical and reproductive growth (Acevedo, 2002; Zadoks, 

1974). This marks the shift from the vegetative phase to the reproductive phase.  

Stem Elongation/Stem Joining 

At the end of the tillering stage, the leaf nodes are stacked at the bottom of the plant. The plant 

stem will begin to grow taller with the nodes growing farther apart (Acevedo, 2002). The plant 

elongates like a collapsible telescope, and as the plant extends upward, the leaves will grow and 

organize to optimize light interception (Nelson, 1984). The plant develops the flag leaf to protect 

the grain residing in the head of the plant. The full development of the flag leaf and achieving its 

final vertical position ensures grain protection.  The flag leaf is the primary photosynthetic organ 

for grain filling and indicates the start of the booting stage (Nelson, 1984; Abbad, 2004).  

Booting and Anthesis (AKA Flowering) 

The head of the wheat plant grows and swells with moisture throughout the booting stage and is 

protected by the flag leaf. At the end of the booting stage, the plant appears matured except for 

having smaller grains and a green color (Fig. 4, Left) (Abbad, 2004). 

Durum is a self-pollinating plant which means that during anthesis/ flowering the plant uses both 

female and male reproductive structures that mature simultaneously within the flower (Nelson, 

1984). The onset of anthesis is marked by the observation and development of the tiny white 

anthers (aka. Flowers) (Fig. 4, Right).  
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The pollination of Durum anthers occurs within a week after flowering is complete (Acevedo, 

2006). The kernel absorbs moisture and develops a rich endosperm. Endosperm development can 

be stunted by drought or water stress during the anthesis stage (Acevedo, 2006). This is normally 

the stage where additional water may be applied to reduce negative impacts of disease or illness.  

A key attribute of the Anthesis growth stage is the sensitivity of the crop to photoperiod (Sanna, 

2014). Photoperiod is the length of day in a specific spatial location dictating the length of the 

day and temp. Photoperiod is a key factor in the initiation of reproductive growth. If a plant, like 

Durum, is sensitive to the photoperiod then a minimum day length must be achieved to initiate 

Anthesis (aka flowering) (Sanna, 2014). Once this is achieved, the post-anthesis processes are 

considered reproductive growth including kernel development and ripening (Masoni, 2007). 

Dough 

 In the Dough stage, the moisture collected during anthesis is mixed with the sugars produced 

during photosynthesis to create a starch-rich endosperm with a milky dough structure (Zadoks, 

1974). During this period the starches will increase, and the endosperm will grow (Zadoks, 

Fig.4: Plant growth including booting stage (Left) and beginning Anthesis (Right) (Miller et al., 
2001). 
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1974). Once this begins, the grain can be checked for moisture content by denting the outside 

with a fingernail or tool. Initially, the kernel is easily dented with a fingernail2, representing the 

soft dough stage (Zadoks, 1974). As the grain continues to swell with starches, the kernel dries 

and hardens (Verma, 1998). The end of the Dough stage is easily visible by the color of the plant 

stem which will appear dry and amber colored. 

Ripening 

Ripening is the optimal time for harvesting a Durum crop. Modern mechanized harvesting 

techniques employ a machine called a combine harvester which requires increased moisture in 

the plant (16%), thus an earlier harvest date (Zadoks, 1974). The harvesting process removes the 

endosperm which is the desired food part consumed by humans. The engorged endosperm makes 

the grain kernels large and swollen. The unique amber color, large kernel size, and high protein 

content of the grain makes it very desirable (Fig. 5) (Zadoks, 1974). 

Observational Tools 

Producers worldwide use observational growth stages to monitor the progress of crops, a critical 

task if production occurs in a hostile environment. Producing Durum in North Dakota is a 

challenge with several environmental and climatic variables harming or slowing growth. 

Therefore, close monitoring and observation is key to producing a superior harvest. Some tools 

                                                           
2 A common method in cereal production is to use one’s fingernail to dent the outer shell of the grain to figure out 

the stage of grain development and plan harvest.  

Fig. 5: Kernel growth and development during Dough and Ripening stages. These stages of 
development are when protein and moisture accumulation increase until the kernel is an 
amber color (UMN extension). 
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developed to aid farmers in estimating the progress of their crop are growth scales based on 

observable changes in plant physiology. 

The various stages of growth are observable with the naked eye and are classified into a scale. 

The Zadok scale is the most comprehensive and easiest to use (Fig. 6) (Zadok, 1974). This scale 

shows the stages of development as well as an accompanying code classification for cereal crop 

development (Fig. 6). Ranging from 0 to 99, the scale is broken into four larger stages of growth, 

tillering, stem extension, heading, and ripening (Table 1) (Zadok, 1974). Each stage 

encompasses several observable changes in physiology (Zadok, 1974). These changes are 

indicators to the farmer to conduct certain operations such as fertilizer application. For example, 

the entirety of the Tillering stage is coded 20 to 29 (Fig. 6) (Zadok, 1974). 

Fig.6: Zadoks decimal code for the growth of cereal crops. Each stage is identified by an observable change in crop growth that indicates the 
current growth stage, whether it be color or development. (Poole, 2005) 
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Knowing the exact stage of crop growth is essential to decision making since certain practices 

may be lethal to the crop during vulnerable stages. Durum is sold based on quality, a feature that 

is influenced by the timing and intensity of nitrogen application. Therefore, the timing of these 

applications needs to be timed accurately using observable scales like Zadoks. 

Table 1: Code and description of various growth stages from germination to ripening.  a: Winter cereals only. b: An increase in 
the solids of the liquid endosperm is notable when crushing the seed between fingers. c: Fingernail impression held; head losing 
chlorophyll 
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North Dakota Durum Wheat Production 

The production of North Dakota Durum is best evaluated using data available from the National 

Agricultural Statistics Service (NASS). The average Durum production (BU) has decreased (r2 = 

0.21) an annual average of 48,672,700 BU from 1981 to today (USDA, 2017). This is connected 

to the similar decreasing trend in planted and harvested acres (Fig. 7). Meanwhile, yield 

(BU/acre) (r2 = 0.44) has increased significantly over the same period (USDA, 2017).  

 

The average annual production data for North Dakota shows a decline in the average statewide 

production from 2008 – 2010 (USDA, 2017). The annual losses are estimated at 1.6 million 

metric tons, an estimated value of ~$464 million. Despite this decline, North Dakota represents 

60% of national production and ~67% of planted domestic Durum hectares from 2008 - 2010 

(USDA, 2017). Planted acreage decreased from ~1.50 million acres (1997) to ~2.30 million acres 

(2011) continuing until 2013 when acreage increased continuing to 2016 (USDA, 2017).  

Fig. 7: National Durum wheat planted and harvested acres (USDA-NASS, 2017). 
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In North Dakota, Joppa, Tioga, Divide, Carpio, and Alkabo are the top five cultivars3 planted in 

the state, representing 66% of acres planted (U.S. Wheat Associates, 2016). Each variety has 

different growth characteristics such as height, disease resistance, or drought tolerance (U.S. 

Wheat Associates, 2016). The acreage is unevenly distributed with highest Durum production in 

the W and lowest in the E. Meanwhile, the distribution of yields is opposite with high yield in the 

E and lower in the W, S, & SW (Fig., 8) (U.S. Wheat Associates, 2016). Per the NASS data 

yields for North Dakota have historically ranged from a low of 0.53 t/ha in Stark County during 

the nationwide drought in 1988 to the record highest observed yield of 4.05 t/ha in Hettinger 

County in 2009 (USDA, 2017).  

Despite increases in yield, largely due to advances in seed engineering, the farmer’s net income 

barely breaks even (Prat, 2017). A farmer’s subpar economic return can be associated with the 

effect of increased diseases such as vomitoxin (VOM) in local and regional harvests (Prat, 2017; 

Friskop, 2017). Durum happens to be more susceptible to disease than other crops (Prat, 2017). 

This increased risk of disease is expressed in the price premiums they receive. Excellent quality 

                                                           
3 A cultivar is a unique crop subspecies which is genetically different from the parent plant and from other 
genetically altered varieties. 

Fig. 8: The distribution of average Durum Wheat yield (1981-2005), across North Dakota (USDA, 2017). 
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grain is worth between $5.50 and $6.00 per bu. Grains often require cleaning to meet processors 

quality standards since the fetching price for VOM infected grain is between $1.8 and $3 per bu. 

(Triccolli, 2000). 

 The impact of VOM is best analyzed by looking at the cost of reversing or cleaning an infected 

crop. A farmer’s contract with a grain buyer is contingent on the quality and the health of the 

crop. Should a crop fail to reach quality standards, the farmer then would have to either pay to 

have the grain cleaned and hope it is of proper quality, or pay out the value of the contract 

(Vaughn et al., 2016). The estimated economic impact of FHB outbreaks in the Midwest Durum 

crops is ~$1billion annually (Vaughn et al., 2016). 

 The cost of cleaning the infected grain is between $7,000 to $15,000 in equipment rentals to 

clean and create a higher-quality grain for a better market price. The risk of infection and cost of 

cleaning is great enough that it may currently outweigh the premium received for planting 

Durum (Prat, 2017). In 2016, the ND and neighboring Canadian Durum crops suffered a heavy 

impact from VOM (Prat, 2017). 

Durum Interactions with the Environment 

Durum is produced in the Mediterranean basin of Southern Europe, the desert areas of Mexico, 

the Northern Plains and Southeast of the US and neighboring Canada (Ranieri, 2015). Cool, dry 

locations where Durum is grown will be altered in response to climate changes and pCO2 levels 

(Vocke, 2013). This has and will continue to force suitable planting areas to shift N and W, 

across the American/Canadian geopolitical border and into Montana, where temps are predicted 

to remain cool (Vocke, 2013). 
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Growing Degree Days (GDD) 

The measure of Growing Degree Days (GDD’s) is used to estimate the effects of temp on crop 

growth and potential yield by assigning a heat value for each day of the growing season (eq. 02) 

(Miller et al., 2001). The calculation of GDD uses an average daily temp and a “Base Temp” 

(TBase) to determine the amount of heat energy available for daily growth (Miller et al., 2001). 

TBase is the point below which plant metabolism slows, and development stops, essentially 

entering a state of dormancy until air temps increase above the TBase. The theoretical TBase value 

for most wheat species is between 0 and 4 ℃, 0 ℃  for Durum (Miller et al., 2001) (eq. 02). To 

calculate the GDD for a specific day, the TBase is subtracted from the daily average temp (eq. 02) 

(Miller et al., 2001).  

𝐺𝐷𝐷 =  (
𝑇𝑀𝑎𝑥 + 𝑇𝑀𝑖𝑛

2
) − 𝑇𝐵𝑎𝑠𝑒                             (02)         (𝑀𝑖𝑙𝑙𝑒𝑟 𝑒𝑡 𝑎𝑙. , 2001)           

Like TBase, TUpper is the maximum temp for growth. TUpper is a point at which, when exceeded, 

plant growth will stop due to water loss. In North Dakota, the frequent temp extremes often 

exceed the max temp thresholds causing plant stress. In areas like North Dakota, the frequent 

pattern of temp extremes is likely to increase in the future increasing significance of GDD and 

AGGD in crop growth and development (Miller et al., 2001). 

As an example, a typical growing season day in North Dakota with a TMax of 27℃ and a TMin of 

14℃ would have an average daily temp of 31℃. Using the general Durum 𝑇𝐵𝑎𝑠𝑒  value of 0℃, 

this day would have a GDD value of 29℃. In this example, a Hard-Red Spring Wheat plant with 

the GDD requirement structure as shown in table 2 would require ~4 to ~6 days of these temps to 

accumulate the 125 – 160 GDD℃ needed to complete the Emergence stage (Miller et al., 2001). 

This will continue, requiring more to reach each of the other growth stages and finally reaching 
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the total AGGD of 1538 – 1665 ℃.  The day described in this example is an optimized scenario 

with ideal temps and no negative weather impacts (Table 2). However, days like this are often 

accompanied by precipitation events and temps too hot for plant development. This makes an 

upper temp threshold a second barrier to plant growth. 

The key difference between the maximum and minimum temp thresholds for growth are the 

plant responses to these extremes (Reyer et al., 2013). At the minimum temp threshold, the plant 

metabolism slows to a state of dormancy, and at the maximum threshold, photorespiration will 

occur (Reyer, 2013; Atkinson, 1996). When the GDD calculation is used in conjunction with 

plant growth observations, a link between growth and thermal energy is obvious (Atkinson, 

1996). A well-trained farmer will become accustomed to the growth of the crops cultivated on 

his or her land. This will be supplemented with assistance from accurate management schedules 

(i.e., planting and harvesting dates) from federal and local institutions (Rosenzweig, 2002).  

Laboratory studies have shown that prolonged exposure to hot temps during critical growth 

stages will lead to crop developmental stress, disease, increased mortality, or all the above. The 

plants are especially susceptible to these forcing during photosensitive stages of growth like 

Germination and Anthesis (Brown, 1997; Rosenzweig, 2002). A change in this GGD thermal 

Table 2: Examples of growth stages and GDD/AGGD requirements for a wheat crop to reach 
maturity. (Miller et al., 2001) 
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value, a unitless measure of heat energy accumulated over a solar day, will impact the health and 

yield of the crop (Rosenzweig, 2002; Miller, 1997). 

Growth models use artificially generated or observed meteorological data to calculate the daily 

GDD allocation for a specific crop, location, region, or time. In general, the spatial distribution 

of temp across North Dakota are hotter in the S and cooler in the N counties. Any change in the 

quantity or distribution of AGDD across the season will have direct impacts on the growth of the 

plants and the timing of growth stages (Sinclair, 2010). It is, therefore, important that models 

simulate the various scenarios under which a change in available GDD can occur via a change in 

climate (Atkinson, 1996).   

In Feng 2012, the link between weather, climate, and yield was explored determining that an 

increase of 10 GDD’s over the entire season resulted in a modest increase in yield of 0.57%. 

More interestingly, under extreme heat waves, it was found that yield would decrease by 6.76% 

for every ten days above the max temp threshold (Feng, 2012). The study confirmed that 

extremes in temp are a threat to growth. 

The estimated changes in temp and these impacts on agriculture have driven agronomists and 

crop geneticists to minimize the detrimental effects of temp on growth (Feng, 2012). Energy and 

research objectives are being diverted from focusing on maximizing crop yield to enhancing 

genetic protective mechanisms from thermal and environmental damage (i.e., drought and 

disease resistance) (Feng, 2012; Ritchie, 1991).  

 Precipitation (mm) 

Durum in North Dakota is produced in the Southwest (SW), Northwest (NW), and along the 

Northern (N) to the Northeast (NE) border with few planted acres in the rest of the state 

(Jensen,1998).  
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Precip is a critical component of plant growth and yield. On average, during the heading and 

filling stage, a wheat plant uses approximately 6.44 mm of water and even a slight increase of 

only 20 mm in the seasonally accumulated precip can greatly impact crop growth and yield 

(Jensen, 1998). Grain Yield (GY) of Durum was studied under several precip regimes, and 

results showed that the plant health varied based on the quantity, type, and temporal distribution 

of precip throughout the growing season (Qaderi, 2009). The physiological implications of 

precip changes on agriculture are not limited to prolonged drought but also to increased precip 

(Qaderi, 2009).  

It is well documented that increased precip frequency could lead to the mortality of crops from 

and prolonged crop exposure to saturated soil conditions (Prat, 2017). Altogether, prolonged 

exposure to these conditions could promote mold growth, root rot, parasites, and fungal diseases 

(Rosenzweig, 2002; Porter, 2005). It has been suggested that crop diseases such as septoria leaf 

spot diseases (Septoria tritici and S. nodorum) will become more prevalent with excess precip 

and temps because of CC (Prat, 2017). 

One crop disease of specific concern in ND is the Fusarium Head Blight (FHB) which affects 

wheat cultivars and is extremely destructive to crops causing crop mortality and grain infection 

(Prat, 2017; Mesterhazy, 1995). Furthermore, it is expected that warming temp coupled with 

increased precip may migrate these crop diseases to unprecedented locations in the northern 

latitudes (Smith, 2014). It is likely that precip will increase due to CC soon, with greater 

uncertainty later in the 21st century (McCarthy et al., 2001). Should winter seasonal precip 

increase, both liquid and solid, it is likely that fields may be too wet in the Spring and the 

planting date will be delayed (McCarthy, 2001). 
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In Spring 2017, farmers postponed planting until the fields dried out, and then it snowed several 

inches just a week later (Kennedy,2017). The struggles between agriculture and water resources 

are a result of the E to W precip and N to S temp gradients (Jensen, 1998). These spatial 

gradients are heavily influenced by geography, climate, and the movement of continental air 

masses (Jensen, 1998). All of which heavily influence Durum production in North Dakota.  

 In the W, the average annual precip is 33.0 cm and increases to 51.0 cm in the E (Munski et al., 

2018). This is attributed to a higher climatological influence of the Gulf of Mexico, which is the 

primary source of moisture for the state, in the S of the state than the N (Jensen,1998). 

Historically, 50 to 60 % of annual liquid precip falls between the months of April and July. 

Making this period the ideal season for growing summer crops. This, coupled with often 

substantial amounts of solid precip in the winters, makes North Dakota an ideal location for 

agriculture with large spring melts (Jensen, 1998). 

The spatial gradient of average annual total PRECIP is 25 to 50 mm higher in the E than in the 

W. The elevation slope gradually increases from W to E (Jensen 1998). Divide, Dunn, 

McKenzie, and Williams counties all receive greater amounts of PRECIP due to the higher 

elevations in those areas (Jensen 1998). The primary precip related issue facing North Dakota, 

both current and anticipated, is too much precip causing disease and promoting crop failure 

(Rosenweig, 2002; Johnson, 1982). However, this does not eliminate the effect of drought. 

Despite significant impacts from decreased precip, in many C3 crops the main effect of changes 

in climate will be related to increased temp and in turn, decreased precip.   

Temperature (oC) 

As a C3 plant, Durum stomata will close in the event of extreme temp events, especially ongoing 

heat waves (Porter, 1999). This will initiate photorespiration causing a decrease in 

photosynthetic efficiency and O2 production (see C3 vs. C4 photosynthesis) (Porter, 1999). Crops 
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that are exposed to increased and/or prolonged temps often have decreased yield, protein, and 

moisture, and increased occurrences of crop mortality (Porter, 1999; Qaderi, 2009). In addition, 

these temps can cause decreases in plant biomass via increased evapotranspiration and stomatal 

conductance (Qaderi, 2009). 

Like all living things, plants have a metabolism that regulates organ development, phonological 

processes, respiration, senescence, and nutrient uptake. The rates of these processes are 

influenced by several factors; one is the ambient air temp (Porter, 1999; Qaderi, 2009). Since 

plant function and development are heavily temp dependent, increases in temp could cause plants 

to develop/grow faster than under lower temps (Qaderi, 2009). The range of ideal temps for crop 

growth is species and spatially dependent, and any change will affect plant physiology and 

growth (Porter, 1999; Qaderi, 2009; Jensen, 1998). One effect that will alter plant growth 

changes in regional and local climate. 

 Fig. 9: Köppen climate classification of North Dakota which is a mix between semi-arid and 
Warm-summer humid climate.  (Peterson, 2016) 
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There are four different climate types that make up North Dakota climate per the Köppen 

classification system. This system breaks climate zones into a three-part descriptive indicator 

consisting of the main climate group, a seasonal precipitation type, and the heat level (Fig. 9) 

(Kottek, 2006). However, two are dominant and occupy most the study area, Dfb (Warm-

summer continental) and Bsk (Cold semi-arid) (Fig. 10) (Kottek, 2006). These climate types 

have frigid winters with temps frequently reaching -28.8 oC and hot summers reaching 32.2 oC 

(Jensen, 1998).  

The western third of the state has a BSk or “cold semi-arid climate” with hot, dry summers and 

cold winters (Kottek, 2006). There is a greater difference in daily temp in the W than in the E. 

North Dakota has cold winters, hot summers, high precip in the E and lower precip in the W 

(Kottek, 2006).  

The months with the greatest number of continuous days with temps above 90 oF occurred during 

the months of July and August (Jensen, 1998). There are ~8 – 14 days per year where temps 

reach or exceed 90 oF in the NE (Jensen, 1998; Qaderi, 2009). Meanwhile, in the SW and SC 

region, these temps occur more than 32 days per year (Jensen, 1998).  

ND has a continental climate with light to moderate intensity precip, low humidity, and high-

speed winds (Jensen, 1998). Extreme high and low temp are unique features of the ND climate. 

The growing season can experience long periods of prolonged hot weather and resulting drought 

with extreme temp variability (Kottek, 2006). ND experienced a statewide drought in Summer of 

2017 which could threaten the production of some crops, including Durum.  

In laboratory settings, high-temp conditions affected all stages of grain development (Altenbach, 

2003). With high temps having a significant impact on the duration of water uptake, this could 

become damaging to ND agriculture which is mostly rain-fed (Altenbach, 2003). Lastly, it was 
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observed that kernel health decreased as moisture accumulation in the kernel decreased 

(Altenbach, 2003; Jensen, 1998). These key climatological factors (i.e., temp and precip) play a 

significant role in the production of healthy, high-quality Durum. 

Climate Change and CO2 Concentrations 

Climate Change 

Weather consists of daily temp and precip while climate consists of long-term temp and precip 

trends and other natural phenomena related to global thermal regulation (i.e., ENSO, Deep 

Ocean Convection, Hadley Cells, etc.). Our understanding of the Earths’ atmospheric circulation 

is based on decades of observation. Experts in meteorology and climatology have used these 

observations to establish a well-founded understanding of how the Earth regulates temp via air 

circulation and the global water cycle. Therefore, climatologists and meteorologists are qualified 

to discuss the effects of increased pCO2 on climate. Their current scientific consensus established 

a link between pCO2 and the changes in observable climate variables (i.e. Tmax, Tmin, and 

Precip). 

The concentrations of gases in the atmosphere (CO2, and NH4) can be sampled from gas pockets 

trapped in ancient ice. The main paleoclimate GHG’s were H2O(v), CO2, and NH4. NOx and 

CFC’s are absent since these are sourced from anthropogenic activities. The ice core data shows 

that levels of pCO2 and other GHG’s have changed over millennia and global climate responds 

according to these changes. Higher pCO2 and other GHG’s coincide with periods of warmer 

average global temp.  

Recent human behavior and the impact on the natural cycling of GHG’s began during the 

industrial revolution (the 1880's). This trend continues today with steadily increasing coal, oil, 

and natural gas emissions. This trend of increasing pCO2 has been observed from 1960 to 2017 
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and is expected to increase. Global pCO2 increased from 316.91 ppmv to 406.42 ppmv during 

this period (Tans, 2016). This is a total change of 89.51 ppmv (28%) over 57 years. 37.13 ppmv 

(41%) of which occurred between 2000 and 2017. Other phenomena that have been observed 

related to CC include biotic and meteorological changes such as glacial melting and the 

migration of plant and animal species to regions with more suitable climates. To study the 

potential changes in climate, the Intergovernmental Panel on Climate Change (IPCC) created 

scenarios of future climate (RCP’s 2.6, 4.5, 6.0, and 8.5) (Bjørnæs, 2013). 

The purpose of these IPCC Climate scenarios is to identify changes in climate using radiative 

forcing goals without identifying a specific method of achieving said goal (Bjørnæs, 2013). 

These scenarios were created by several research institutions in the Netherlands, United States, 

Japan, and Austria with assistance from contributing scientists around the world. Each scenario 

is “representative” of potential practices that will result in the desired radiative forcing goal 

(w/m-2) (Bjørnæs, 2013). These scenarios meet guidelines developed by research teams and the 

IPCC (Pachauri, 2014). 

The research institutions that made these models analyzed the scientific and real-world 

implications of changes in climate over the 21st century. The areas studied include GHG 

emissions, energy dependence, population growth, economic growth, and technological 

advancement. Unlike previous generations of scenarios created by the IPCC which pigeonholed 

the method of achieving this goal (i.e., energy independence or population), these new scenarios 

do not take this approach (Bjørnæs, 2013). It allows for innovation and unique combinations of 

mitigation strategies that meet local or regional needs. 

The original strategy was a decision maker, usually a nation's executive branch, to choose a 

scenario and then commit to making decisions that will achieve the target radiative forcing by 
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2100. This method allows a decision maker to investigate the best technologies and scientific 

approaches that will aid in achieving this goal for the specific nation and in turn the Earth.  

The four RCP scenarios (2.6, 4.5, 6.0, 8.5) are used in conjunction with 17 General Circulation 

Models (GCM’s) to create 68 simulations which ensure the distribution of the Earths temp and 

precip is not misrepresented in models by the nuanced differences between GCM’s. The RCP 

nomenclature corresponds to increases in net radiative forcing by the year 2100 using trends in 

current land use and emissions identified in the literature. (i.e., “RCP 2.6”equals a net increase in 

radiative forcing of 2.6 W/m2) (Bjørnæs, 2013). RCP’s 2.6, 4.5, 6.0 and 8.5 create possible paths 

to achieving the increases in net radiative forcings for each scenario. These scenarios do not 

describe specific policies or practices that will achieve the goals (i.e., one-child policy, agrarian 

economy, etc.). Instead, these scenarios set a radiative forcing goal and communities or nations 

may choose the interventions, and mitigating strategies they feel are appropriate to reduce local 

contributions to the increasing Greenhouse Effect.  

The Global Energy Budget 

Earth regulates its Mean Annual Surface Temperature (MAST) of the planet using winds, ocean 

currents, and other forces. This process maintains a state of thermal energy balance across the 

planet. This natural state of balance has been and is continuously altered by human activities. 

Even the behavior of our ancient ancestors had a small impact on ecology and even contributed 

to emissions of GHG’s. The small effect of our ancestors was multiplied as human populations 

grew and technology advanced. It was the advancement of technology and science, circa 1600’s 

to 1880’s, that allowed for the contributing human emissions to increase and detrimentally 

impact the climate. 
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The Earth Energy budget describes the balance between light and heat energy that enters the 

Earth’s atmosphere (Fig. 10: A) versus the amount that radiates off the Earth back to space (Fig. 

10: B). This budget is usually balanced, so the Earth is emitting the same amount of energy as is 

entering the system. The methods for radiating this energy back to space occur during 

evaporation, conduction, and convection (Fig. 10: D). In some locations, this energy is even used 

to heat homes via geothermal energy. 

This energy that leaves the earth’s surface from this balanced energy system radiates back into 

the atmosphere (Fig. 10: B). This energy then interacts with chemicals in the atmosphere 

(GHG’s), and instead of exiting into space, the energy is re-radiated back to the Earth’s surface 

and absorbed (Fig. 10: C). The more GHG’s put into the atmosphere, the greater the amount of 

A 

C 

D 

B 

Fig. 10: The global energy budget representing the balance of incoming solar heat and energy versus the outgoing thermal 
and solar energy (NASA). 
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energy re-radiated back to Earth and the greater the increase in the MAST. This theory has 

guided climatologists to the conclusion that the radiative forcing will increase between 2.6 and 

8.5 w/m2, an increase that corresponds to an increase of ~2 oC in Global MAST (Bjørnæs, 2013). 

One way to mitigate this increase in radiative forcing and in turn temp is to mitigate and reduce 

the emissions of GHG’s.  

Agriculture & Climate Change 

Land use significantly contributes to CC. Agricultural, Forestry, and Other Land Use (AFOLU) 

activities emit significant amounts of carbon dioxide (CO2), methane (CH4), and nitrous oxide 

(N2O) into the atmosphere (Smith, 2014). From pre-history to the 1800’s, the main sources of 

agricultural GHG emissions are from deforestation and agriculture land conversion via slash and 

burning methods. Since the 1800’s these GHG emissions have increased and were furthered in 

1909 with the advent of industrial nitrogen fixation. This increase has continued well into the 21st 

century (Fig. 11). North Dakota cereal crops use such nitrogen fertilizers, the strategic application 

of which can have a significant benefit to increasing yields. 

Fig. 11: Observed pCO2 levels at the Mauna Loa monitoring station, Hawaii 
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The final agricultural contributions to GHG emissions are from seed production, transportation, 

and end-user waste (i.e., packaging). These contributions are difficult to estimate and are 

considered negligible when compared to other sources of agricultural emissions such as machines 

and fertilizer. Taking a look at how carbon moves throughout the Earth, we observe that fossil 

fuels contribute ~9 GT of carbon a year. It is well established that natural carbon sequestration, 

the storage of carbon from the atmosphere in the ocean and in biotic life, does not occur as quickly 

as the annual release of additional carbon into the atmosphere. The current contributions of 

agriculture to CO2  emissions will increase as fertilizers and demand for agricultural land use 

increases. The reality is only exacerbated by increased food demand from a burgeoning global 

human population.  

Effects of Climate Change on Food Availability and Security 

Food availability is defined as the production and health of food commodities, while food 

security is the distribution of and access to these commodities for a given population. The effects 

of CC on food security will be significant. Droughts and floods are expected to be more frequent 

Fig. 12: The pCO2 budget of sources and sinks in the Anthropogenic/Environmental system. 
(Le Quéré, 2016) 
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causing damage to crops. Heat waves will cause temp stress and kill plants. These changes in 

climate will alter the distribution and availability of food in the future. One non- climate-related 

challenge affecting food availability is the number of humans on Earth. As of April 2017, the 

human population has reached 7.25 billion individuals, and the United States is the third most 

populated nation with 326.6 million. The population is growing and, when coupled with the 

impacts of CC, many people will see changes in diet and food resources (Rozenberg, 2015). 

These changes will place additional strain on the production, transportation, storage, and 

distribution of food commodities. Increases in food demand will force producers to use more 

fertilizers and increase irrigation to produce higher yields on fewer available hectares of land 

(Fig. 12). Changes from a climate that affect the distribution of food will also affect the 

distribution of human populations. Under future climate change affects coastal areas will 

experience flooding and permanent inundation. These inundated coastal areas will force 

populations to migrate from cities suffering under increasing population and negative coastal 

climate effects (i.e., hurricanes, tsunamis, winter storms) (Neumann, 2015).  

Table 3: Changes in land use and GHG emissions under the four RCP's (Hartman, 2013). 

Scenario 

Component 
RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

GHG 

Emissions 

High Mitigation 

Very Low 

Baseline 

Medium-low 

Mitigation 

Very Low 

Baseline 

High Mitigation 

Medium 

Baseline 

No Mitigation 

High Baseline 

Agricultural/ 

Land 

Conversion 

Medium 

(Cropland & 

Pasture) 

Very Low 

(Cropland & 

Pasture) 

Medium 

(Cropland) 

Very low 

(Pasture) 

Medium 

(Cropland & 

Pasture) 

Air Pollution Medium- Low Medium 
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The effects of CC such as sea level rise, air pollution, and other effects outlined in the RCP’s will 

likely alter our behavior in land management and food production (Table 3). Since the increasing 

global population is a key driver of CC it begs the question, how will the population be fed? 

CC in regions where agricultural production or processing is a key economic sector can be 

devastating. In North Dakota, ~40% of the population is employed in the agricultural sector with 

many towns and cities centered near highly productive agricultural land. The National 

Agricultural Statistics Service (NASS) ranked North Dakota as one of the top ten producers of 

wheat for grain, soybeans, corn for grain, and forage land for hay (NASS, 2017; Stoval, 2016). 

North Dakota is also the top producer of Durum used for pasta despite a production decrease 

from 2010 to 2014 when production reached a low of 18 million Bushels (BU) (NASS, 2017). 

The 2016 North Dakota Durum harvest it was the largest since 2000 reaching 58 million Bu 

(NASS, 2017). The production significance of North Dakota should incentivize the research and 

development of methods to increase resilience to the effects of CC.  

Increases in yield may continue for several years despite the overwhelming biological evidence 

that agricultural systems will be negatively impacted by CC (via drought and heat stress). The 

efforts of research institutions like the NDSU Durum Breeding Program which produces 

cultivars that are disease resistant and high yielding to protect the agricultural industry from 

environmental damage.  

Impacts of Climate on Plant Pathology 

Disease accounts for no less than 10% of global food production losses estimated at ~220 billion 

USD. The economic significance alone justifies the mass of literature on the topic. When the 

conditions are perfect, the relationship between illness, environment, and the host plant create 

disease. Changes in environmental conditions are likely to enhance the creation of disease in the 
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future. This is based on anticipated changes in temp and precip. However, the numerous disease 

types and extensive diversity in regional climates where the plants are produced creates a wide 

range of plant – disease relationships. Many of the negative effects of CC and increased CO2 are 

related to changes in plant physiology that in turn benefit disease transmission and infection. For 

example, the increase in photosynthetic behavior in the plant from enhanced pCO2 will create 

more biomass (i.e., roots, shoots, and leaves). However, this will provide additional glucose and 

tissue for sugar dependent pathogens such as rusts or mildews (Ghini, 2008). Likewise, increases 

in the crop canopy density can promote the spread of diseases via leaf to leaf transfer. There are 

some positive effects of CC on combatting disease such as the decreased spread of stomata 

invading pathogens by decreasing the frequency of stomal opening periods. 

One of the biggest threats are the impact change in climate will have on the frequency of disease 

favorable climate conditions. Increased extreme temp and precip events will increase the 

frequency of disease and crop mortality. Increased climatic variability will make accurate crop 

moisture and soil management difficult. Disease is likely to proliferate given difficulties 

managing or predicting these critical components of growth. 

In North Dakota, cereal crops and livestock are commonly infected with diseases which can 

affect yield as well as animal and human health (Friend, 1982). The primary disease affecting 

Durum crops in North Dakota is Fusarium Head Blight (AKA Scab, FHB). FHB alone can harm 

crop yield, but more importantly, it produces a toxin called Deoxynivalenol (DON or VOM) 

(Bond, 2017). Per the Food and Drug Administration (FDA), VOM concentrations allowed for 

safe consumption must not exceed 1 ppm in products for human consumption, 5 ppm for swine 

feed, and 10 ppm for poultry feed (Bond, 2017). In large quantities, it will make humans and 

animals sick. 
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It has been argued that CC will enhance the ability of agro-systems to respond to diseases by 

implementing biocontrols (Ghini, 2008). This reality would require enhanced technology and 

increased awareness of the complexity within the agro-system. The necessary technology is 

advancing and can now identify crop diseases early allowing for the culling individual sick 

plants to preserve crop health (i.e., disease identifier for an Android phone) (Xie, 2016). Due to 

CC, technologies like this and public awareness of disease impacts will become more important 

in the future. However, the development of such technology is dependent on the continued study 

of the impact CC has on disease. 

Representative Concentration Pathway 2.6 

The Netherlands Environmental Assessment Agency developed RCP 2.6 which has the lowest 

increase in net radiative forcing of the four scenarios (2.6 w/m2) by 2100 (Monastersky, 2013). 

These increases in net radiative forcing are estimated at ~ 3 W/m2 (~490 ppmv pCO2) by 2050. 

Under this scenario, the trend will decrease into the latter half of the century to 2.6 W/m2 (~445 

ppmv pCO2) in 2100 (Bjørnæs, 2013). If successful, this scenario would represent several 

important changes in pollution and GHG emissions such as decreased NH4 emissions (Bjørnæs, 

2013; Van Vuuren, 2011).  

The peak and decline trend in pCO2 under RCP 2.6 can be achieved via the application of 

stringent policies to reduce GHG emissions. These strategies will counteract the increasing 

demand for energy and fuel from the growing population (Bjørnæs, 2013).  

Under RCP 2.6, the use of land for agricultural and pasture production is expected to increase by 

2100. An increase that is accelerated by the increased demand for bioenergy and biofuel 

production (Fig. 13) (Thomson, 2011; Van Vuuren, 2011). The 2.6 scenario also estimates the 

state of several socioeconomic factors compared to the other four scenarios such as: 
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1. A global human population of 10.1 billion individuals by 2100 

2.  The greatest increase in Gross Domestic Product (GDP)  

3.  The greatest decrease in oil consumption  

4. The greatest increases in global energy efficiency per person (Bjørnæs, 2013) 

5. Increase in GMST of 1°C by 2100 (Newbold, 2015) 

It should be noted that as of Spring 2017, pCO2 is 409 ppm. Decreasing industrial or agricultural 

emissions will decrease net radiative forcing. Due to the ambitious nature of RCP 2.6, the 

number of socioeconomic and political changes required will be greater than any other scenario. 

However, the reward of containing temp increases would significantly benefit humanity and the 

best-case scenario for global climate. 

Representative Concentration Pathway 4.5 

The RCP 4.5 scenario was developed by the US Pacific Northwest National Laboratory. The 4.5 

literature represents several policies and measurable changes to reach the radiative forcing goal 

including: 

1. Low CO2 emissions  

2. Stable CH4 emissions  

3. Decreased fossil fuel dependence  

Fig. 13: The projected changes in land use under RCP 4.5 (Thomson, 2011). 
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4. Increases in GMST of 1.75°C by 2100 (Newbold, 2015) 

In the RCP 4.5 scenario, GHG emissions and air pollution are mitigated with a medium level of 

strategies and very low starting pCO2 baseline values (Bjørnæs, 2013; Van Vuuren, 2011; 

Thomson, 2011).  

The increasing development of crop and pastureland acres from previous levels remains lower 

under RCP 4.5 than scenarios 6.0 and 8.5. RCP 4.5, like 2.6, still requires extensive agricultural 

production to support the growing global population. This increased demand will likely change 

the human diet by 2100 (Bjørnæs, 2013; Van Vuuren, 2011; Thomson, 2011).   

A 4.5 W/m2 increase in net radiative forcing translates to a pCO2 level of ~538 ppm by 2100 

(Van Vuuren, 2011; Thomson, 2011). The differences between the RCP 2.6 and 4.5 scenarios 

mainly aim at fossil fuel use and land management. These differences create different trajectories 

in radiative forcing. The objectives of the RCP 2.6 scenario include the greatest decrease in fossil 

fuel use while RCP 4.5 has a smaller decrease in use. Under the RCP 4.5 scenario, there is an 

increasing global demand for bioenergy crops and food use. By mid-century, the primary driver 

of land use change will likely be for land intensive meat production. The scenario then expects 

that as population growth stabilizes, demand for food-producing land would decrease 

accordingly (Thompson, 2011). 

 It should be noted that the stringent demands of RCP 2.6 may not be fiscally feasible within the 

current United States political and economic system making RCP 4.5 a more realistic goal for 

decision makers. 
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Representative Concentration Pathway 6.0 

RCP 6.0 is a second intermediate scenario with some of the same changes seen in RCP 4.5 such 

as a medium level of climate mitigation and a medium starting pCO2 baseline (Van Vuuren, 

2011). The socioeconomic status and behavior under RCP 6.0 relative to the other scenarios in 

2100 include: 

1. A human population of 8.7 billion individuals  

2. Heavy oil consumption  

3. Intermediate energy intensity per person (Bjørnæs, 2013) 

4. An increased GMST of 2.5 °C (Newbold, 2015) 

This scenario has a heavy reliance on fossil fuels comparable to current demand. Under this 

scenario, CO2 emissions rise and peak near 2060. After reaching 175% of today’s levels in 2060, 

the pCO2 decreases to 125% of today's value in 2100 (Bjørnæs, 2013; Van Vuuren, 2011). 

Ineffective climate mitigation strategies, combined with a medium level of land conversion to 

cropland, creates an increase in GHG emissions from the agricultural sector. With these 

increases in emissions and fossil fuel dependence, a net increase in radiative forcing and temp is 

likely. A net radiative forcing 6.0 W/m2 translates to pCO2 level of ~ 670 ppm by 2100 (Bjørnæs, 

2013; Van Vuuren, 2011).     

Representative Concentration Pathway 8.5 

The 8.5 scenario represents the greatest increase in radiative forcing, reaching 8.5 W/m2 by 2100 

(Riahi, 2011). This scenario represents very little economic development departing from 

business as usual. RCP 8.5 deserves the most attention because of the serious implications a do-

nothing strategy would have on climate and agriculture. Some of the possible socioeconomic 

factors for the RCP 8.5 scenario include: 
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1. A total global economic growth by 2100 of $321.5 trillion in 2017 USD. 

2. A human population of 12 billion individuals  

3. A “medium” level of land conversion for agricultural or pasture use 

(Fig. 16) (Neumann, 2015; Riahi, 2011) 

4. High-energy and fossil fuel demands  

(Riahi, 2011) 

5. Increased GMST of 5 – 6 °C by 2100 (Newbold, 2015) 

The most extreme scenario of future climate, RCP 8.5, has a net radiative forcing of 8.5 W/m2 

equaling a pCO2 of ~ 550 ppm (Riahi, 2011). These pCO2 increases continue throughout the 21st 

century with relatively unmitigated emissions of GHG’s. 

This scenario is driven by a 20% increase in agricultural land use by 2100, an increase necessary 

to support the growing population thereby amplifying the amount of N2O required by global 

Fig. 14: The changes in land use from 2000 to 2100 for RCP 8.5 (Riahi, 2011). 
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agricultural operations and enhancing the role of agriculture as a driver of CC (Fig. 14) (Riahi, 

2011). 

RCP 8.5 is not entirely dismal, with some positive changes being made such as a decrease in SO2 

emissions of 25% by 2030 (Riahi, 2011). This positive change in SO2 is overshadowed by the 

negative impacts of such a scenario. RCP 8.5 has increased relevance in 2017 given the recent 

changes to the structure of the United States federal government regarding environmental and 

natural resource management policies. To achieve this radiative forcing, funding, and 

implementation of climate mitigation strategies would have to be widely ignored as is indicated 

under the scenario policy guidelines for RCP 8.5. Through unregulated emissions, a policy 

approach that ignores CC and contributing factors are one of the most significant drivers of CC.  

The impact of 8.5 on coastal communities will cause inundation of coastal areas possibly 

requiring the relocation of millions of individuals. Coastal areas have always been ideal locations 

for settlement due to water access, and of the cities above 5 million individuals, 66% are settled 

along the coasts of Earth's continents (Abadie, 2016). In 19 coastal European cities, the estimated 

annual cost of preserving these ancient cities is $40 billion USD (Abadie, 2016). There are 13 

similar American cities that are projected to reach over 4 million individuals by 2100 (A total of 

~52 million individuals). These include coastal cities such as New York, Los Angeles, Miami, 

Houston, Boston, Washington D.C, Detroit, Chicago, and Seattle (Neumann, 2015). Should the 

population increase and the sea level rise, then these 52 million individuals in the 13 coastal 

American cities would need to be relocated inland (Hoornweg, 2013). This coastal inundation 

poses a threat to all land managers. Even sparsely populated inland communities (i.e., North 

Dakota, Montana, South Dakota, Wyoming) are at risk of an even larger problem, inland 

migration.  
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Representative Concentration Pathway: Conclusions 

The simulations of future climate and the potential impacts on Durum production in North 

Dakota is primarily based on the changes in climatic parameters during the growing season. The 

season from May to September covers most of the process from fields drying/planting to harvest. 

Therefore, historical production is based on the distribution of daily Tmax, Tmin, and Precip 

during these months.  

 Many of the estimated impacts of RCP 8.5 are apocalyptic while RCP 2.6 has a relatively 

unaltered climate. RCP 2.6 reverses many of the anthropogenic impacts on climate while 8.5 

does not. These two scenarios are opposite, and therefore the net changes in climate are opposed. 

Given the knowledge that the effects of CC will affect the most vulnerable population first, an 

applicable litmus test for any CC-related policy approach can be adapted from the words of Vice 

President Hubert Humphrey. He said, “The moral test of [a policy] is how that [policy] treats 

those who are in the dawn of life, the children; those who are in the twilight of life, the elderly; 

those who are in the shadows of life; the sick, the needy and the handicap.” As previously stated, 

under the effects of CC, the frequency and intensity of diseases, famines, and droughts will 

increase (Rozenberg, 2015). These climate changes increase the mortality of the homeless and 

impoverished population, a population that is expected to grow in the future. The WHO 

estimates that the effects of CC on regional weather alone will kill an average of 150,000 

individuals annually. (Patz, 2005). It is reasonable to predict that changes in the distribution and 

frequency of regional weather will change disease outbreaks, crop management, food security, 

and yield. The compelling accumulation of research eludes to a future of negative heat-related 

impacts on human health and daily life.  
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These scenarios were created based on human behavior and the climate-altering decisions made 

regionally and nationally. Likewise, agriculture is heavily linked to changes in human behavior 

and land management techniques. Therefore, changes in the agricultural sector can either 

contribute to increasing the net radiative forcing (i.e., increased mechanized farming, land 

clearing for agricultural use, and poor water conservation techniques) or decrease the net 

radiative forcing (i.e., using biofuels instead of fossil fuels, and using tilling methods that reduce 

erosion).  
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Methodology  

  Crop Modelling 

A crop model represents a real-world system, using parameters of growth and available resources 

to represent agricultural production of a crop commodity over a land area (Haefner, 2012). Their 

versatility and wide application make crop models essential for research into food production, 

security, and associated land use studies (Haefner, 2012). Practitioners and researchers in the areas 

of food security, crop/plant science, and meteorological science depend on the ability of crop 

models to determine the impact of possible changes in crop growth characteristics (i.e. maturation 

timing), environmental factors (i.e. GDD), or human behavior (i.e. planting and crop rotation 

schedules) (Haefner, 2012). 

Models are commonly used to solve crop production problems. In this study, the area of production 

is a county spatial level, and the crop is the cereal crop, Durum. One of the main objectives of 

using this crop model is to determine the impact of changes in climate variables on Durum 

production in 13 North Dakota counties. Crop modeling and yield calculation estimation 

techniques are often successful at estimating the potential yield (Yp) of a crop or agrosystem 

(Kiniry, 1992). However, Yp represents yields under pre-defined/ideal growing conditions. 

Compared to Yp, observed yield (Yo) suffers from extraneous factors not accounted for in the 

model (Kiniry, 1992). These include factors such as pests or disease that the model cannot predict 

or replicate without more data. One of the more common applications used in this study of crop 

modeling uses pre-developed modeling scenarios to replicate historical yields and then simulate 

future yields. (Haefner, 2012).  

Agroecosystem management is modeled using parameters defining agricultural practices and plant 

growth/physiology (Xie, 2003). For example, planting density (plants/m2), fertilizer application 

(lbs/acre), and planting depth (mm) are all determined by the farmer and have a significant impact 
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on plant growth (Xie, 2003). Interspecies competition is regulated in the agricultural system via 

weeding, herbicide, or other chemical applications and is also regulated in the model using a plant 

population density (Xie, 2003). 

 Estimates of the climatological impact on growth are used as guidelines for cropping systems. A 

model can simulate historical and forecasted yields using general parameters for crop physiology 

(Xie, 2003). The model used for this study is the Agricultural Land Management Alternative with 

Numerical Assessment Criteria (ALMANAC) model which simulates annual yield (t/ha) (Kiniry, 

1992). 

The Agricultural Land Management Alternative with Numerical Assessment Criteria 

(ALMANAC) Model 

Crop models are used to understand the production of agroecosystems in the future. One of the 

key benefits of using a crop model is simulating plant growth and climate scenarios without 

needing field experiments, test sites, or even plants. The model used for this study is the 

Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) 

model which employs a deterministic approach to plant growth (Kiniry, 1992). Modeled 

relationships between physical states (i.e. growth stages) and natural resources use a variety of 

mathematical functions of growth. For example, ALMANAC and its predecessor EPIX have very 

strong replication of water stress on biomass production. In ALMANAC, these include, “light 

interception by leaves, biomass accumulation, partitioning of biomass into the grain, water use, 

nutrient uptake, and growth constraints such as water, temp, and nutrient stress” (Kiniry, 1992). 

Parameters of crop growth and development use subroutines to compute certain variables key to 

crop growth (i.e., Beers Law). These variables, in turn, influence the distribution of resources to 

other processes in the model such as allocating basic resources for growth (i.e., directing biomass 

to be structural or reproductive growth or Precip to various parts of the plant) (Xie, 2003).  
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Modeling with ALMANAC 

The amount of crop model literature dedicated to the calibration and validation of crop models 

outweighs the amount of literature on the application of these models. The key processes simulated 

in ALMANAC are related to plant growth and field management. The discrepancy is likely caused 

by the daunting data requirement, parameters, and complexity of running models (Kiniry, 1992). 

One such model with extensive input requirements is the ALMANAC model.  

For instance, the fraction of light intercepted by the leaf canopy is described using Beers Law and 

the Leaf Area Index (LAI) (Kiniry, 1992).  LAI is the measure of leaf area divided by the ground 

area covered by shaded by the leaves (eq. 03). This describes the light interception by leaves the 

proportion of which declines exponentially as total leaf density and the distance from the top of 

the canopy to the ground increases (eq. 03) (Flenet, 1996; Baez-Gonzalez, 2015).  

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1.0 − exp(−𝑘 ×  𝐿𝐴𝐼)         (03) 

(Flenet, 1996) 

In eq. 03, “k” is the extinction coefficient representing the quantity of light per unit of 

photosynthetic leaf area. The extinction coefficient is a measure of photosynthetic efficiency that 

varies by plant species (Flenet, 1996; Johnson, 2009). 

All model parameters use equations like the one for light interception. The result of one equation 

will sometimes be used as an input for other parameter equations. All of these parameters and 

equations are combined to create an annual value of crop production referred to as potential yield 

(Yp), sometimes called “grain yield” or “harvestable yield.” 
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Yp is the biomass accumulated in the harvested portion of the plant as a percentage of total biomass 

(grain biomass/total biomass) (Sinclair, 2010). Harvested yields are reported annually by farmers 

and summarized on a county basis by the NASS and the U.S. Dept. of Agriculture (USDA).  

This study uses ALMANAC and annual Yo from NASS to simulate a modeling environment like 

operations in the real world. Environmental and management data are used to test different 

variables that may be sensitive to the modeling of Durum Wheat and may have a significant impact 

on Yp (Haefner, 2012). 

To model crop yields in ALMANAC, it is important to first replicate historical yields for a 

multidecadal period. Like the 25-year period from 1981 to 2005 used for this study. Modeling Yp 

only simulates yield based on the data provided and the model capabilities. Due to these 

limitations, information regarding pest infestations, disease, changes in politics or management 

practices would need to be incorporated in a unique way that ALMANAC cannot currently 

accommodate. 

Model Calibration and Validation 

Models require calibration and sensitivity analysis to determine the effects of individual 

parameters on yield (Kiniry, 1992). Yo values are compared to Ys to ensure that the model reflects 

a realistic agricultural operation over time. A sensitivity analysis uses model parameters and 

determines how Ys responds to the changes (i.e., changing parameter A will cause a reaction in Ys 

or not). This process uses ALMANAC based literature to determine the impact, range, and 

response of parameters to crop physiology (i.e., PHU, HI). Nevertheless, several parameters still 

require “tuning” to replicate historical crop Yo from 1981-2005. These parameters are related to 

plant physiology and are frequently changed with each new cultivar produced resulting in 

increased yields due to ~30 years of genetic modification. Parameters are generalized to represent 
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this change in genetics and, to overcome this issue, several parameters are adjusted to reflect this 

modification, mainly HI and PHU/AGGD.  

 Parameters such as PHU and HI change with time and are adjusted or averaged to replicate historic 

yields (1981-2005). HI is a calculation related to the distribution of photosynthetically created 

biomass within the plant. A plant that allocates as much biomass to reproductive growth as possible 

(high HI) is likely to be shorter, due to the decreased biomass assigned to structural growth. The 

diversity of short dwarf and semi-dwarf Durum cultivars being produced are examples of cultivars 

with modified HI values and high yields. HI is a popular parameter for genetic modification. 

having increased from only 32% in the early 1900’s to 49% in the 1980’s and continuing to 

increase today (HI ≈0.50) (Rasmusson et al., 1984). In these simulations, several of the counties 

had HI values ~0.40. Meaning, ~40% of total available biomass is partitioned to reproductive 

growth. Meanwhile, PHU/AGGD is averaged from estimated planting dates and data available 

from the North Dakota Agricultural Weather Network (NDAWN). NDAWN calculates these 

values using daily Max and Min temps (See Growing Degree Days).  

Lastly, the parameters defining the management of North Dakota Durum production can be 

defined as constants via “best management practices.” This guidance comes from federal agencies 

and academic research institutions (e.g., Optimal application of fertilizer [kg/m2], 

planting/harvesting dates and management practices) (Haefner, 2012).  

The process of changing these crop physiologies and management parameters to replicate a 

specific set of spatially specific historic yields is called model calibration. The calibration of 

yield production was completed for the 13 counties in the study area. The simulations were 

temporally representative of 1981-1995 and 1996-2005 for calibration and validation 

respectively. After “tuning” the model parameters to replicate the yields of the calibration period 
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and the results are statistically significant, the validation process can begin. To help confirm that 

the model functions independently of what temporal or weather data is being inputted, the 

process needed to be replicated for the second period using the same parameters. These 

simulations are evaluated just as with the calibration process.  

After computing a successful statistical relationship between YS and YO, forecasted climate data 

can be applied. With its base parameters held constant, the model will represent the changes in 

the input Tmax, Tmin, and PRECIP under four RCP 2.6, 4.5, 6.0, 8.5. The simulations utilized 

17 Global Circulation Models (GCM’s) to represent differing models of the Earths complex 

climate system. The specific forcing’s from future climate data are then applied to the 

ALMANAC model.  

Model Calibration and Validation Statistics 

After simulating county yields for calibration or validation, it was important to determine the 

statistical accuracy of the simulation via comparing the Ys to the Yo. It was important also to have 

multiple statistics to prevent from falsely equating any relationship, cause, or effect. Historical 

yields from 1981 – 2005 were split into two equal time periods. One period was for calibration 

(1981 – 1995) and one for validation (1996 – 2005). When the ALMANAC model was being 

calibrated for a county, the Ys and Yo were compared using the Pearson Correlation (ρ), Nash 

Sutcliffe coefficient of model efficiency (ENS), and the Root Mean Square Error (RMSE). Each of 

these statistics serves unique purposes in ensuring the data are not misinterpreted. However, as a 

means of expediting and removing inadequate simulations, a linear regression was the first statistic 

applied to allow for visual data analysis (Fig., 15) 
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For graphical representations of yield comparisons and associated residual plots see Appendix A. 

Pearson Correlation Coefficient 

The Pearson Correlation Coefficient (ρ) is a measure of the linear relationship between two 

datasets. Computed using the Pearson function in excel, this measure establishes the association 

between the two variables being tested. A value closer to one indicates a strong positive 

correlation between the two sets of values, meaning that changes in one dataset (Ys) are like the 

change in (Yo).  

Nash–Sutcliffe model efficiency coefficient 

The Nash–Sutcliffe model efficiency coefficient (ENS) is a measure of the predictive power of a 

model. This statistic is commonly used in hydrological models such as SWAT. For this study, 

ENS was used to determine ALMANACs ability to predict yields.  ENS values closer to one 

indicate a more powerful ability to predict the next years’ value.  

y = 0.5968x + 0.6267

R² = 0.50  n=25
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Fig. 15: Comparison of simulated and observed yield for Bowman County (1981-2005) 
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Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is a measure of predictive error between the Ys and the 

Yo. This statistic uses the difference between Ys and Yo as a “residual value.” The standard 

deviation of these values measures the distance the values are from the regression line. This 

value indicates the difference between a typical Ys and Yo within the dataset. RMSE also has the 

unit of measure associated with the data being examined. For this study, it is measured in t/ha, 

and an adequate Ys value will be within 1.00 t/ha of Yo values.  

Statistical Values for the Calibration & Validation Combined Datasets  

(1981-2005) 

The simulated yields for 1981 – 2005 used ENS, Pearson, and RMSE statistics as the basic 

thresholds for determining simulation adequacy. For Pearson and ENS, the standard value for an 

adequate simulation uses a level of 95% confidence (0.05). Meanwhile, RMSE was considered 

adequate if within 1.00 t/ha.  

The simulations for 1981-1995 were tested with these statistics, and each county passed the 

thresholds for statistical significance. The simulations for the validation period were then added 

as extensions to the calibration period, thus, creating a dataset of Ys from 1981-2005 which could 

be compared to Yo values. The three statistical tests were then applied to the entire data period 

(1981 – 2005) (Table, 4). Successful application of these statistics should indicate a suitable 

modeling environment for 2020’s and 2050’s simulations.  

Using the parameters which created the historical simulations with adequate statistical 

correlations ensured that the modeling environment remained unchanged. The only changing 

factors are the climatological data and the time period being simulated. 
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Table 4: Statistical values for 1981-2005 representing data for both calibration and validation. 

  

Avg. Yo 

(t/ha) 

Avg. Ys 

(t/ha) 
ENS Pearson 

RMSE 

(t/ha) 

Bottineau 2.08 2.09 0.14 0.51 0.43 

 Bowman 1.82 1.72 0.43 0.71 0.35 

 Burke 1.96 2.06 0.39 0.67 0.33 

Cavalier 2.21 2.24 0.17 0.41 0.60 

 Divide 1.92 1.67 0.37 0.79 0.41 

 Hettinger 2.18 2.11 0.36 0.63 0.43 

 McKenzie 1.90 1.71 -0.17 0.68 0.49 

  McLean 2.01 1.96 0.27 0.54 0.42 

 Morton 1.67 1.68 0.58 0.76 0.29 

Mountrail 1.95 1.97 0.45 0.69 0.33 

 Pembina 2.66 2.71 0.11 0.45 0.59 

 Stark 1.92 1.88 0.45 0.67 0.38 

 Towner 2.01 2.07 0.17 0.46 0.41 

The statistical measures of these parameters indicate that all 13 counties had adequate statistical 

values for the calibration period (1981-1995). For validation, 12 of the 13 counties had adequate 

statistical measures, McKenzie County being the exception. When evaluated as a continuous 

dataset of Ys values, the data from 1981 – 2005, these statistics indicate the ability of the model 

to simulate historical yields. 
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Model Processes 

The essential functions of the model used in this study are the crop physiology and field 

management parameters. The model can overlay these parameter groups with external climate 

and geographical/soil data to produce yields for these areas.    

The conceptual flow chart (Fig. 16), incorporates various data sources such as climate data (a), 

crop physiology (b), management parameters (c), as well as model corrective processes (d) 

(adjusting parameters and re-simulation).  

a 

b 

c 

d 

Fig. 16: Conceptual flow chart of data input and determination functions for Durum Wheat estimation. 
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Model Equations 

Almanac was designed for simulating the competition for resources between two plant species. 

The model procedurally inputs the external data into key equations that dictate plant growth and 

behavior. The key equations include competition for light, LAI curve, PHU curve, and other 

parameters which aid in simulating growth. For example, the fraction of daily incoming solar 

radiation that is intercepted by the leaf canopy is expressed as: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1.0 − exp(−𝑘 × 𝐿𝐴𝐼)   𝑒𝑞. 04        

The relationship between LAI and the extinction coefficient (k) creates a curve of light 

interception that increases as the plant grows and LAI increases (eq. 04, Fig. 17). This curve of 

light interception is a function of plant height, population density, and growth stage. Older plants 

have a larger LAI, and a greater quantity of light intercepted by leaves. 

The accurate simulation of light interception and photosynthetic activity depends on the 

equations of LAI (Eq. 05, Fig. 17).  

𝐹 = 𝑋 / [𝑋 + exp(𝑌1 − 𝑌2 × 𝑋)]       𝑒𝑞. 05      

Fig. 17: The S curve representing the increase in LAI over the growing season. The curve is restricted by the 
extinction coefficient and population density (Kiniry, 1992). 
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In eq. 05, X is the population density, Y1 and Y2 are points along the curve, and K is the 

extinction coefficient. These parameters influence the amount of light intercepted by leaves as 

the plant grows and the LAI increases.  

The ALMANAC model then uses functions for plant height, HI, and population density to 

determine crop growth and competition between individual plants. As the season progresses, the 

model assigns the number of preset GDD’s for the simulation and then computes the annual 

yield. 

Study Area 

The North Dakota climate is unique because of the state’s geographic location as the center of 

North America between 45º56,’ and 49º00’ N. This location is a significant driver of the climate, 

influencing the length of the day, temp distribution, and precip gradient. It is this angle of incoming 

solar radiation that creates the differences in temp and day length that we observe moving from 

the hot equatorial regions to the cold polar regions.  

North Dakota is the 39th state in the United States and was largely settled for natural resources and 

a large flat landscape deemed suitable for agriculture. The Regions of Interest (ROI) for this study 

include 13 of the 53 counties in North Dakota. County selection is based on the top Durum 

producing counties in North Dakota. They are primarily located in the W, N, and NW (NASS, 

2017).  Historical climate variables in North Dakota are observable using weather data. For 

example, average Tmin values are colder in the N half of the state than in the S half of the state with 

a higher Avg. Tmax in the S half than in the N half.  

The angle of incoming solar radiation in North Dakota is important for selecting crops that grow 

well in the region. Day length or “Photoperiod” is dictated by the solar angle and, in North Dakota, 

results in nine-hour winter days and up to 16-hour summer days (Jensen, 1998). This contributes 
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to the extreme seasonal variation in temp and dictates the N to S temp gradients (Millet, 2009). 

The interaction of large continental-scale air masses is unhindered with little topography to reduce 

wind speed. These mixing air masses create a range of extreme temps that frequently exceed 40°C 

in the summer and drop below -40°C in the winter (Millett, 2009). The W to E precip gradient has 

an average annual accumulation of ~350 mm in the W and ~500 mm in the E (Laird et al., 1996). 

This precip accumulation is a combination of liquid precip and snowmelt. Snow is an important 

source of moisture for early spring crop growth representing nearly a quarter of the annual total.  

The Winter months from ~Nov. to ~Mar. play a significant role in the preparation of the land for 

a Spring and Summer growing season. The accumulation of snow, high winds, and low soil temp 

are common features of North Dakota winters. When the melted snow permeates into the soil and 

temps increase, the available moisture is stored for the Spring/Durum season. The unique 

geographic position, continental wind interactions, and topography of North Dakota are indicative 

of the agricultural commodities produced. 

North Dakotas’ chief agricultural commodities include Barley, Canola, Corn, Dry Beans, 

Flaxseed, Honey, Livestock, Potatoes, Pulse Crops, Soybean, Sugarbeets, and Spring/Durum 

Wheat. Of these, North Dakota is the top producer of 8 commodities (italicized). Per the North 

Dakota Department of Agriculture, the agricultural production and associated industries sector 

employed 42% of North Dakotans and represented roughly $4.1 billion in cash receipts in 2010.  

North Dakota is a large producer of several globally consumed agricultural commodities, and the 

production capability is based on the climate and geography. Changes in these factors place North 

Dakota in a position of significance in agricultural production.  

Climate of North Dakota 

The historical climate of North Dakota has a distinct spatial distribution tied to changes in 

elevation and geographic features which define the precip distribution. North Dakota has hotter 
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Tmax and Tmin values in the SW and S with cooler values in the N and NE (Fig. 18). 

Meanwhile, daily precip (May-Sept) is generally higher in the E and NE than in the W and SW 

(table 5). 

 Table 5: Daily Avg. Tmax, Tmin and Precip 1981-2005 for months encompassing the Durum season (May to Sept) 1981-2005. 

Region Ag District County 1990's_Tmax: (oC) 1990's_Tmin: (oC) 1990's_Precip: (mm) 

NW 

10 Burke 23.30 8.70 1.92 

10 Divide 23.12 8.63 1.72 

10 Mountrail 23.14 8.29 1.88 

NC 20 Bottineau 23.71 8.71 1.88 

NE 

30 Cavalier 21.72 8.69 2.16 

30 Pembina 23.23 9.74 2.13 

30 Towner 22.54 8.85 2.07 

WC 
40 McKenzie 24.76 8.60 1.70 

40 McLean 23.55 9.20 2.04 

SW 

70 Bowman 24.31 9.31 1.64 

70 Hettinger 24.90 9.26 1.70 

70 Stark 24.15 8.87 1.90 

SC 80 Morton 24.23 9.91 1.97 

Statewide Avg. 
(oC) 23.59 8.98 

1.90 
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Fig. 18: The climatological data for Tmax, Tmin, and Precip for 1981 - 2005 
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Climate of the 2020’s 

In the simulations of the 2020’s, the view of climate in the near future is focused the W, C, SW, 

NC, and NE study regions primarily. The climatological variables of the growing season4 

provide insight into the distribution of plant growth resources (i.e., thermal energy and moisture).  

In the historical climate data (1981 – 2005) average daily precip ranged from a low of 1.64 mm 

in the W to 2.16 mm in the E/NE. The spatial distribution of higher daily precip in the E and 

lower in the W is a feature that is observed in historical climate data (1981 – 2005), and the four 

RCP climate scenarios. It should also be noted that the Northern Divide, a geographic feature, 

crosses from the NW corner of the state and cuts across to the SE corner (Gonzalez, 2003). The 

Northern Divide separates the major drainage systems with all water to the E of the Divide going 

to the Hudson Bay Drainage and everything to the W going to the Missouri Drainage. This is a 

likely driver of the precip distribution across the state. 

The historical trend of temp is cooler daily Tmax and Tmin in the N and NE of the study area 

with hotter values in the C, S, and SW (Table 7). The distribution of daily Tmax values did not 

change from historical values to the predictions of the 2020’s. The Tmax values under the four 

scenarios had increased from the historic Tmax values (~22.00 – 25.00 oC) to 2020’s values 

(~23.00 – 26.00 oC) for each scenario (RCP’s 2.6, 4.5, 6.0, 8.5). Tmin values historically ranged 

between ~8.00 – 10.00 oC. This increased to a Tmin low of ~10.00 oC and highest of 11.79 oC. 

These scenarios of the 2020’s represent a drier and hotter state (decreases in precip, increases in 

Tmax and Tmin). 

                                                           
4 Growing season covers the period of May to September. This is to accommodate the variety of days in which 

farmer’s plant crops. These planting days depend on soil moisture content and the occurrences of field flooding and 

could span from mid-late May and even early June.  
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The historical distribution of Tmax and Tmin remained unchanged across all RCP’s in the 

2020’s with hotter counties in the S and SW and cooling in the NE and N border which remained 

cooler. Daily Tmin during the growing season increased across all counties and scenarios 

ranging from a low of ~1.40 oC in Bowman County (RCP 6.0) to the greatest increase of ~2.00 

oC in McLean County (RCP 8.5).  

Tmax increases were greatest under RCP 8.5, lower in 4.5 and 6.0, and the lowest in RCP 2.6 

with the greatest increase in daily Tmax occurring in Towner county (RCP 8.5 of ~2.00 oC). 

Meanwhile, Bowman county in the SW had the lowest increase in Tmax of ~1.50 oC. Lastly, 

changes in daily precip varied from county to county. However, overall daily precip decreased in 

the intermediate and upper scenarios (4.5, 6.0, and 8.5) and increased in many counties in the 

RCP 2.6 scenario.  
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Table 3:  Changes in the daily Growing Season (May-Sept) Tmax, Tmin, and Precip from historical values (1981-2005) to the simulations of the 2020’s climate. 

 

 Tmin: 2020’s/Hist Tmax: 2020’s/Hist Precip: 2020’s/Hist 

  RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 

Bottineau 1.62 1.53 1.51 1.91 1.62 1.64 1.65 2.06 0.04 -0.11 -0.10 -0.30 

Bowman 1.45 1.51 1.37 1.72 1.48 1.68 1.69 1.94 0.01 -0.06 -0.05 -0.01 

Burke 1.58 1.59 1.49 1.82 1.57 1.70 1.65 2.03 0.16 -0.09 0.12 -0.08 

Cavalier 1.60 1.46 1.43 1.83 1.69 1.65 1.61 2.09 -0.04 -0.02 0.05 0.03 

Divide 1.58 1.61 1.49 1.80 1.53 1.66 1.62 1.98 0.35 0.22 0.14 0.19 

Hettinger 1.48 1.50 1.41 1.77 1.52 1.65 1.72 1.98 0.16 0.03 -0.14 0.07 

McKenxie 1.56 1.62 1.49 1.79 1.53 1.71 1.70 2.01 0.27 0.00 0.03 0.01 

McLean 1.61 1.63 1.52 1.93 1.61 1.69 1.72 2.09 -0.02 -0.03 -0.22 -0.24 

Morton 1.57 1.56 1.49 1.88 1.61 1.67 1.75 2.06 0.10 0.12 -0.05 0.00 

Mountrail 1.60 1.67 1.51 1.88 1.57 1.71 1.68 2.06 0.07 0.20 0.04 -0.02 

Pembina 1.58 1.43 1.41 1.76 1.69 1.66 1.57 2.06 -0.16 -0.18 -0.24 -0.02 

Stark 1.50 1.56 1.43 1.80 1.54 1.71 1.73 2.04 0.18 -0.03 -0.10 -0.20 

Towner 1.63 1.52 1.47 1.89 1.67 1.67 1.63 2.10 0.11 -0.07 0.01 -0.20 
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Climate of the 2050’s 

The growing season precip of the NE and C part of the state (i.e., Morton, McLean, and Stark) 

had more wet/moderate precip under each scenario. Meanwhile, the rest of the counties 

surrounding the C region as well as the SW and NW region had low precip in each scenario. 

Under the RCP 2.6 scenario, only three counties experienced decreases in precip with others 

experiencing mild increases or little to no change. Under the other three scenarios (RCP’s 4.5, 

6.0, 8.5) seven or eight counties had decreases in precip.  The counties with the greatest 

decreases from the 2020’s to the 2050’s were in the NE with Pembina, Cavalier, and Towner 

having significant decreases in daily precip across all RCP’s. Meanwhile, Bowman and Hettinger 

remained the lowest in daily precip from May – September. Across each scenario of the 2050’s 

only Divide County had increases in each RCP simulation with Morton increasing in the 2.6 and 

6.0 scenarios and McKenzie in the 2.6 scenarios. 

Daily temp maximums (May-Sept) increased in the 2050’s compared to the 2020’s from ~0.60 

oC in RCP 2.6, to ~1.00 oC in RCP 6.0. The RCP 4.5 and 8.5 scenarios had the greatest increases 

of ~2.00 oC and ~2.40 oC respectively. The daily growing season temp distribution remained 

unchanged only with the SW regions becoming hotter. Meanwhile, temp minimums decreased 

by ~0.45 oC (RCP 2.6), ~1.45 oC (RCP 4.5), ~1.00 oC (RCP 6.0), and ~2.00 oC (RCP 8.5) (table 

8). 

 The daily minimum temp increased from the 2020’s to the 2050’s in all counties. The greatest 

Tmin increases between scenarios were in the RCP 8.5 (~0.43 oC) and the lowest increases in the 

RCP 2.6 (~2.10 oC). The minimum Tmax increase was ~0.52 oC in Pembina county (RCP 2.6) 

and a maximum increase of 2.94 oC in Morton county (RCP 8.5). The spatial distribution 
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remained the same as the 2020’s and historical data with hotter temps in the S and SW and 

cooler temps in the N and NE for both Tmax and Tmin.   

Precip decreased unilaterally across all scenarios with only a few counties in each scenario 

having no or little to no change. The greatest decrease in daily precip was 0.43mm in Pembina 

county (RCP 8.5). At a maximum, precip increased by 0.19 mm in Morton county (RCP 6.0).   
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Table 4: Changes in the daily Growing Season (May-Sept) Tmax, Tmin, and Precip from simulated 2020’s climate to the simulations of the 2050’s climate 

 

  Tmin: 2020's - 2050's Tmax: 2020's - 2050's Precip: 2020's - 2050's 

  RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 RCP 2.6 RCP 4.5 RCP 6.0  RCP 8.5 

Bottineau 0.47 1.5 0.95 2.19 0.66 1.93 1.00 2.84 -0.09 -0.04 0.00 0.16 

Bowman 0.47 1.29 0.93 1.98 0.68 1.90 1.19 2.88 -0.02 0.02 0.03 -0.09 

Burke 0.49 1.47 0.93 2.15 0.71 1.97 1.06 2.79 -0.20 -0.03 -0.15 0.04 

Cavalier 0.4 1.42 1.02 2.19 0.56 1.90 0.97 2.83 0.00 -0.25 -0.24 -0.22 

Divide 0.5 1.49 0.96 2.14 0.75 1.99 1.07 2.80 -0.17 -0.10 -0.05 -0.06 

Hettinger 0.42 1.4 0.92 2.03 0.62 1.97 1.20 2.93 -0.18 -0.15 0.07 -0.10 

McKenxie 0.49 1.46 0.93 2.12 0.74 2.05 1.13 2.87 -0.16 -0.10 -0.07 -0.08 

McLean 0.4 1.48 0.93 2.11 0.60 1.96 1.08 2.88 -0.03 -0.22 0.18 -0.03 

Morton 0.35 1.45 0.92 2.09 0.53 1.96 1.13 2.94 -0.07 -0.22 0.19 -0.07 

Mountrail 0.45 1.45 0.95 2.11 0.68 2.00 1.10 2.86 -0.15 -0.37 -0.05 -0.15 

Pembina 0.34 1.33 1.03 2.14 0.52 1.87 0.93 2.80 -0.02 -0.11 0.12 -0.43 

Stark 0.45 1.4 0.94 2.03 0.65 2.00 1.19 2.90 -0.19 -0.04 0.05 0.17 

Towner 0.42 1.44 1.01 2.19 0.60 1.92 0.99 2.85 -0.13 -0.13 -0.20 -0.08 
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Data 

There are distinct differences in model inputs that will alter Ys outcomes (i.e., crop physiology 

parameters). The relevant parameters, determined from the literature are relevant to plant 

physiology and interactions with the environment. Estimated yield outcomes (YS) represent the 

production of a potential real-world agroecosystem. However, each model type has strengths and 

weaknesses. To determine the accuracy of ALMANAC YS must be compared to YO from the 

NASS records. To model YS, a significant amount of data must be tailored to the specific 

location being modeled.  

The ALMANAC model utilizes data like soil types from the USGS Web Soil Survey (WSS) 

program. For example, WSS data is provided as a set of folders containing tabular, spatial, soil, 

Fig. 19: Counties in the study area. Each defined as a top producer of Durum with data for 1981 - 2005. 
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and geographic data which must be confined within the model to the coordinates of the region of 

interest. For this study, this was focused on the SW, SC, WC, NC, NW, and NE regions of the 

state (Fig. 19). 

The soil data is then mapped with either historical daily weather data from the PRISM climate 

group at the University of Oregon or with forecasted future weather data from a previous study. 

Climate data from the University of Oregon PRISM climate group must be formatted using 

specific cell by cell rules to create compatible files for use in the model. This spatially specific 

data is available from a multitude of government and NGO resources (i.e. PRISM, NASA, 

WorldClim, NOAA). Crop physiology and field management are gathered from a variety of 

literary sources (Xie, 2003). The model simulates plant growth by incorporating atmospheric, 

soil, and management data to determine the amount of biomass the plant will accumulate and 

then turn into yield.  

The Management parameters are derived from the literature (i.e., scientific articles, newspaper 

resources, federal agency recommendations, educational instructions and annual production 

reports). Some of the key parameters gathered from these sources to replicate historical yields 

include nitrogen/fertilizer application and available potential heat units (PHU/AGGD). PHU/ 

AGGD were acquired from the North Dakota Agricultural Weather Network (NDAWN) which 

provides an AGGD calendar based on historical weather data. The NDAWN website uses a set 

planting date and then calculates the AGGD from that day onward for the rest of the year. The 

AGGD for the location is then chosen based on the harvest date set in the model. Other required 

parameters include tilling, planting, harvesting dates, and population density (Table 9). The 

management parameters are applied to the model informing how the field is to be cared for 

during the growing season. 
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Table 5: List of parameters used in the ALMANAC modeling process 

Crop physiology parameters represent specific functions of plant growth and include the Harvest 

Index (HI), Biomass Energy Ratio (WA), and Leaf Area Index (LAI) (Table 9). These determine 

the distribution of available biomass, water resources, and photosynthetic efficiency of each 

plant in the crop. Each of these parameters is defined as fractions of the total value, allowing 

Operations Parameter Definition Actual Value 

Management 

Year, Month, Day of 

Operation 

Operation schedule (i.e., irrigation, fertilizer 

application, tilling). 

 

Fertilizer (FNO & 

FPO) 

Amount of Organic Nitrogen and Phosphorous 

applied (Kg/HA) 

FNO = 200 

FPO = 50 

PHU 
Potential Heat Units/ Accumulated Growing 

Degree Days 

 

Plant Population Plant population density/Seeding Rate (plants/m2) 330 

Crop 

Physiology & 

Growth 

Biomass-Energy Ratio 

(WA) 

The potential (unstressed) growth rate (including 

roots) per unit of intercepted photosynthetically 

active radiation (PAR). 

 

Harvest Index (HI) 

 

The ratio of grain yield to total plant biomass (%), 

and is mostly constant for a species of plant but 

can vary between different cultivars of the same 

species. 

 

DLAI, DLAP1, DLAP2 

DLAI – The fraction of the growing season in heat 

units divided AGGD. (maturity is the point where 

Leaf Area Index starts to decline). 

DLAP1 & DLAP2 – two points along the DLAI 

growth curve representing a nonlinear rate of 

change. 

DLAI = 0.60 

DLAP1 = 31.07 

DLAP2 = 57.950 
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expression as a percent. These parameters restrict or enhance the growth of the plant to achieve 

the desired result (e.g., direct or restrict biomass regulation) (Fig. 16).  

 PHU, WA, and HI values are adjusted in ALMANAC to create Ys values that accurately 

replicate Yo. This is to increase the statistical significance of E and ρ between Ys and Yo for 

datasets from 1981 – 2005.  

Downscaled Climate Data 

Measuring the production on a county or local scale requires downscaled climate data because 

global climate data is not adequate for simulations at smaller scales (i.e., counties). The method 

for transforming global data into county data is known as downscaling (Maurer, 2008; Jones, 

2013. The production of this data is essential to including local-scaled weather into the modeling 

of county yields. For example, daily precip is generated using “latent heat balance as air is 

transferred from cell to cell” (Jones, 2009). This creates daily weather data (i.e., precip, Tmax, 

Tmin). The MarkSim™ software for downscaling climate data uses a statistical downscaling 

method simulating the lengths of wet and dry spells (Trzaska, 2014). This downscaling 

methodology was replicated for this study area based on a previous research project that used 

downscaled climate data for the Devils Lake region. This methodology created future climate 

data for two 30-year periods representing the climate of the 2020’s and the 2050’s. The 

methodology for the downscaling process is best described as follows: 

“The [climate] scenarios were developed using synthetic weather patterns [and] computed with 

[the] Marksim weather generator (Jones et al., 2008). … [These scenarios] us[e] the standard 30-

year climate period (WMO, 1983) of 1981 – 2010.”  

“Future climate scenarios were generated using projections of 17 CMIP5 GCMs included into the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) of the World Climate Research 

Programme. For details see MarkSim model documentation (Jones, 2013). Multiple GCM runs 
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under four different radiative forcing scenarios were used to generate a statistical ensemble of 

projections, accounting for model uncertainty (Arnell et al., 2004), which is an accepted way of 

dealing with GCM biases (for a list of previous studies see Faramarzi et al., 2013). Four 

Representative Concentration Pathways (RCPs) were used for the radiative forcing scenarios: 

RCP2.6, RCP4.5, RCP6, and RCP8.5 (Moss et al., 2010), with the numeric part of the name 

indicating the additional radiative forcing in 2100 relative to the base climate (W/m2). Further, to 

account for the spatial bias in the GCM climate ensemble, the projections were statistically 

downscaled with Marksim weather generator (Jones et al., 2008) with the 1981–2010 Weather 

patterns used for the base climate. Furthermore, to account for the climate variability, the weather 

samples were grouped into 1-year periods and then reshuffled multiple times. 

This process, when applied to this study of Durum producing countries in North Dakota, created 

68 simulations representing the four RCP’s and 17 GCM’s for each county for a total of 1,768 30-

year weather samples characteristic of 2020’s and 2050’s climates. Each provides the minimum 

weather data requirement of daily Tmax, Tmin, and precip.  

  



83 
 

Results 

Historical Yield Replication Results 

Prior to use in creating trusted results, the crop model must be calibrated and validated using 

historical data. Calibration and validation, hereafter C & V, of ALMANAC used adjusted 

parameters to create YS values that are compared to YO. All 13 counties were stimulated for 1981 

– 2005 with adequate statistical relationships using the Ens and r2. An Ens or r2 value ≥ 0.05 is 

considered statistically significant, with higher values indicating a stronger relationship between 

Yo and Ys. The successful calibration of county yields for 1981 – 1995 resulted in adequate 

correlations. Using the same parameters with different weather data (representing 1996-2005) the 

validity of the C process is confirmed. The statistical measures for this period represent the 

uninterrupted simulation of Durum yields for 30 years, 1981 – 2005 (Table 10). 

Table 10: List of counties and the associated yield change Yz = (Ys - Y0, r2, and E for 1995 – 2005 period. 

Name 

Avg. Diff in Yo and 

Ys r2 Nash 

Bottineau -0.01 0.26 0.14 

Bowman 0.10 0.50 0.43 

Burke -0.10 0.45 0.39 

Cavalier -0.03 0.17 0.17 

Divide 0.25 0.62 0.37 

Hettinger 0.07 0.39 0.36 

McKenzie* 0.19 0.46 -0.175 

McLean 0.05 0.30 0.27 

Morton -0.01 0.58 0.58 

Mountrail -0.02 0.48 0.45 

Pembina -0.06 0.20 0.11 

Stark 0.04 0.45 0.45 

Towner -0.09 0.22 0.17 

                                                           
5 The McKenzie County simulations for 1996 to 2005 were the only non-significant results. This county had a successful calibration but 

validation was unsuccessful. It is possible that after 1995 a new variable may have affected yields causing poor correlation between Yo and Ys for 
1996 – 2005. 
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North Dakota Durum production in the 2020’s and 2050’s is based on 68 simulations per county 

for each period. The baseline for these simulations uses historical average yields from 1981 – 

2005. Historical yields are generally higher in the NE in Pembina (2.66 t/ha), lower in the SW in 

Bowman (1.82 t/ha) and milder average yield in the NW in Divide (1.92 t/ha) (Fig. 20). The 

distribution of crop yield is heavily linked to the spatial distribution of Tmax, Tmin, and 

PRECIP. As we will recall, the NE of the state has increased precip compared to the drier W and 

SW region of the state. Meanwhile, the N is cooler than in the S (Table 11).  

Table 11: Climatological data of 1981 – 2005 color-coded with red and orange as smaller values than the yellow and green 
color-coded cells. 

Historic 1981-2005 

Region Ag. District Tmax  Tmin PRECIP 

NW 10 10.39 -2.67 1.06 

NC 20 10.48 -2.93 1.18 

NE 30 9.16 -2.78 1.25 

WC 40 11.97 -1.67 1.07 

SW 70 12.99 -0.91 1.07 

SC 80 11.21 -1.64 1.14 

Average Yo (t/ha), Historic (1981 – 2005) 

Fig. 20: Durum Historic Average Yields from (1981-2005). 
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RCP Simulations of the 2020’s 

RCP 2.6 Changes 

 The Avg.Ys increased from historical average yields (1981-2005) in the counties that follow the 

Missouri River such as Morton, McLean, and Mountrail (Fig. 21). All other counties had a 

decrease in 2020’s yields (Fig. 21). Average statewide yields decreased ~3.0 % from 2.01 to 1.95 

t/ha. The spatial distribution of yields in the 2020’s is still higher in the NE and decreasing in the 

central region of the state to ~2.00 t/ha ± 0.25. The lowest yields for RCP 2.6 are in Divide, 

Burke, and Bowman counties which were below 1.66 t/ha.  

Average Ys (t/ha), RCP 2.6 (2020’s) 

Fig. 21: Simulated Average Yield (t/ha) RCP 2.6. 
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RCP 4.5 Changes  

The second climate scenario, RCP 4.5, represents a change in emissions and mitigating policies 

to reduce the human influence on CC. The increases in Tmax and Tmin, coupled with the 

changes in precip, create the conditions for decreases in Durum yield under RCP 4.5 in the 

2020’s. Estimated yields in the 2020’s, ranged from 2.02 t/ha to 1.59 t/ha with a statewide trend 

of decreasing yield from 2.01 to 1.96 t/ha, a 2.49% decrease. Yield distribution remains 

unchanged with higher yields in the NE and lower yields in the W and SW under RCP’s 4.5, 2.6 

and under historical conditions (1981 – 2005). The same four counties along the Missouri River 

saw increases in yield as in RCP 2.6 (Fig. 22).  

RCP 6.0 Changes  

In RCP 6.0, the second intermediate scenario, the radiative forcing is expected to stabilize by 

2100 resulting in a net increase of 6.0 W/m2. This scenario is consistent with a heavy reliance on 

fossil fuels and increased demand for agricultural land conversion to feed the growing global 

population.  

Average Ys (t/ha), RCP 4.5 (2020’s) 

Fig. 22: Simulated Average Yield (t/ha) RCP 4.5. 
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These changes coupled with changes in precip and temp will affect the climate of North Dakota 

and in turn yield (Fig. 23). The statewide Tmax and Tmin increased by 1.20 and 1.30 °C 

respectively with Tmax and Tmin remaining higher in the S and lower in the N (Fig. 23). The 

trend of lower temps in the NE and higher temps in the SW is consistent for RCP 6.0 in the 

2020’s.  

In the 2020’s avg. Ys increased in 8 counties ranging from 0.01 to 0.41 t/ha. McKenzie, McLean, 

Morton, Mountrail, and Stark, had decreases in yield ranging from 0.05 and 0.47 t/ha. The 

climate of North Dakota is hotter and drier and may be the cause of decreased Ys in most 

counties. The statewide average yield decreased by 0.04 t/ha from the historical value of 2.01 

t/ha (1981 – 2005) to 1.97 t/ha in the 2020's (table 12).  

Table 6: County Yields with the greatest deviations from the statewide average (1.97 t/ha). 

County RCP 6.0 Ys – 2020’s 

Burke 1.60 

Bowman 1.62 

Divide 1.67 

Mountrail 2.26 

Pembina 2.64 

 

Fig. 23: Simulated Average Yield (t/ha) RCP 6.0. 

Average Ys (t/ha), RCP 6.0 (2020’s) 
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RCP 8.5 Changes  

RCP 8.5 is a scenario with the greatest increase in radiative forcing, 8.5 W/m2 by 2100. This 

change will likely increase GMST anywhere from 2.0 to 2.6°C. The increases in Tmax, Tmin, 

and changes in precip make the RCP 8.5 scenario the hottest and driest scenario provided by the 

IPCC. This scenario is the greatest threat to the production of North Dakota Durum in the 

2020’s. The Avg. Ys decreased from 2.01 t/ha (1980 – 2005) to 1.93 t/ha in the 2020's. Despite 

this statewide decrease, 8 counties experienced an average increase of 0.23 t/ha with the other 

five counties decreasing an average of 0.16 t/ha. The spatial distribution of yield has not changed 

with higher yields in the NE and C regions and lower yields in the W and SW (Fig. 24). 

 

 

 

Average Ys (t/ha), RCP 8.5 (2020’s) 

Fig. 24: Average Ys RCP 8.5 
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RCP Simulations of the 2050’s 

The 2050’s represent a period midway through the end of century estimates.  The repercussions 

of increases in radiative forcing manifest as daily observable factors. The IPCC AR5 scenarios 

represent changes in temp, precip, ENSO, PDO and many other climate variables (Pachauri, 

2014; Hartman, 2013). Trends observed in the 2050’s are not guarantees of 2100 values. For 

example, in the RCP 2.6, 4.5, and 6.0 scenarios, radiative forcing increases to a certain decade 

and then decreases until 2100. The only scenario with continued increases throughout the 21st 

century is RCP 8.5.  

RCP 2.6 Changes 

Under the RCP 2.6 yield decreased by an average of 0.08 t/ha from the 2020’s to the 2050’s in 

the NE counties. For example, Pembina decreased from 2.66 to 2.53 t/ha and, in the NW, where 

Divide decreased from 1.92 to 1.62 t/ha. The greatest changes were in McKenzie and McLean 

counties which increased from the historical (1981 – 2005) values to the 2020’s (Fig. 25). 2050’s 

yields maintain the same distribution with higher Ys in the NE and decreasing as you move W 

and SW (Fig. 25).   

Average Ys (t/ha), RCP 2.6 (2050’s) 

Fig. 25: Average Yields RCP 2.6 in the 2050’s. 
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RCP 4.5 Changes 

Precip in the 2050’s decreased under the RCP 4.5 from 2020 levels. Increases in Tmax and Tmin 

will continue creating a drier and hotter North Dakota climate in the 2050’s. Thus, the Ys 

continued to decrease from 1.95 t/ha in the 2020’s to 1.87 t/ha in the 2050’s. Meanwhile, 

Mountrail, Morton, and Pembina still produce yields above 2.00 t/ha. The only county with Ys 

increases from 2020’s to 2050’s was Morton with an increase of 0.01 t/ha (Fig. 26). 

RCP 6.0 Changes 

The second intermediate scenario (RCP 6.0) aims for a net radiative forcing of 6.0 W/m2 by 2100 

(Van Vuuren, 2011). Ys decreased an average of 0.17 t/ha under RCP 6.0 from the 2020’s to the 

2050’s. These yields reflect a dry, hot climate with only four counties achieving average yields 

above 2.00 t/ha in the 2050's compared to 3 counties in the 2020’s and 6 counties for the entire 

period from 1981-2005 (Fig. 27).  

 

Average Ys (t/ha), RCP 4.5 (2050’s) 

Fig. 26: Average Yields RCP 4.5 in the 2050’s. 
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RCP 8.5 Changes 

 The final scenario, RCP 8.5, is considered a do-nothing scenario representing the most extreme 

effects of unmitigated CC on North Dakota. The temp increases and precip decreases under 8.5 

make it the hottest and driest scenario. These climatic changes make this scenario the greatest 

threat to Durum production. Under RCP 8.5, Ys decreased an average of 0.28 t/ha from the 

2020’s to the 2050’s. Like other scenarios, the distribution of yields remained unchanged with 

lower yields in the W and SW, and higher yields in the NE (Fig. 28).  

Average Ys (t/ha), RCP 6.0 (2050’s) 

Average Ys (t/ha), RCP 8.5 (2050’s) 

Fig. 27: Average Yields RCP 6.0 in the 2050’s. 

Fig. 28: Average Yields RCP 8.5 in the 2050’s. 



92 
 

Discussion 
This study of North Dakota Durum used a model to replicate historical yields for a 25-year 

period (1981 – 2005). Several observations of historical climate and agricultural trends were 

revealed in the study, such as the increasing number of acres planted with high yielding cultivars. 

Another observation from the study was the statewide production response to a nationwide 

drought like the one from 1988 – 1989 which caused significant decreases in yield and 

production. Using modeling and the projected trends of multiple key factors, an assessment of 

Durum production trends is possible.  

Model Sensitivity Analysis 

The simulation of historical yields, 1981 – 2005, was achieved using three parameters which are 

important to the replication of past Durum production. Xie et al. 2003, discussed that certain 

parameters in ALMANAC have significant effects on yield compared to other parameters. Those 

with the greatest effects on yield include  

• Harvest Index (HI) which determines the amount of biomass partitioned to the grain  

• Radiation Use Efficiency (WA) which is the amount of dry matter per unit of intercepted 

light.  

• Potential Heat Units (PHU) which is the total amount of heat/thermal energy available to 

the plant growth process over the season.  

These parameters dictate plant growth within the simulation and have a considerable influence 

on grain/yield formation. The PHU parameter is key to the transition from one growth stage to 

another (See Durum Interactions with the Environment). Knowing the range of common HI, 

WA, and PHU values are helpful in simulating yields. HI values ranged from 0.25 to 0.30 at the 

turn of the century. This seems laughable compared to the varieties planted in the latter part of 
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the 20th century with HI values of 0.35 to 0.40. These parameters, (HI, WA and PHU) were 

altered in the study one at a time to determine the response of yield (t/ha) to each parameter 

change. Increasing HI caused an increase in harvestable yield and decreasing HI had the opposite 

effect. Increasing WA means more biomass is being distributed to grain/yield production and 

less to structural growth causing an increased yield response. One example was in Bottineau 

County which served as a test area for simulating (table 13).  

Table 13: Example of parameter settings used for sensitivity analysis, WA (Biomass partitioning ratio), PHU (Potential Heat 
Units/AGGD), and Harvest Index (HI) 

Bottineau Sim:  ’81 - ‘95 

Sim WA PHU HI 

1 35 1783 0.42 

2 35 1783 0.40 

3 35 1783 0.39 

4 35 1783 0.38 

  5* 35 1783 0.37 

6 35 1783 0.36 

Bottineau Sim:  ’96 - ‘05 

  1* 35 1783 0.37 

2 35 1783 0.40 

Unlike HI and WA, PHU is not a malleable parameter available for genetic manipulation. 

Instead, this parameter is dictated by the daily thermal energy available to the plant and totaled 

throughout the growing season (i.e., Growing Degree Day calculation) from the climate data. 

The range of the PHU parameter was selected from the North Dakota Agricultural Weather 

Network (NDAWN) where a GDD’s schedule for wheat is generated from historical weather 

data. After providing the simulation planting date, the GDD’s are tallied from planting to 

harvest. This schedule provides a cumulative total for a given growing season. However, 

AGDD/PHU totals are computed for each growing season using weather data meaning annual 

PHU values can vary from year to year. 



94 
 

 This parameter was altered in many simulations to encapsulate the best fitting average 

PHU/AGGD values for each county. Generating an average PHU value required the range of 

PHU totals for each year and using this range to calibrate the model. PHU is a climatological and 

management parameter in ALMANAC. While PHU does represent the amount of thermal energy 

available to the plant over the growing season, this parameter is also used as a management tool 

for monitoring the progress of the crop. Often influencing management decisions (i.e., water and 

fertilizer operation schedules). After generating an average PHU range for each county, possible 

values for the PHU parameter were tested often ranging between 1600 and 1800 oC, 

A simulation of historical yields, only altering the PHU, shows the total amount of PHU 

achieved in that specific year. This represents how much thermal energy was available from the 

weather data (i.e., Tmax and Tmin) for the year. This annual PHU value is “capped” or limited 

by the model input value (ex. if the PHU parameter is set to 1785 oC, then the PHU available for 

any year of the simulation is ≤1785 oC). The yield response to alterations in PHU varied 

depending on the magnitude of the alteration. 
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Fig. 29: Slight changes to the PHU parameter in Burke County shows that yield (t/ha) did not significantly change when 
altered by a small number of thermal units (~50 oC). 
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For example, in Burke County, it was simulated that a slight change in PHU did not have a 

significant impact on YS (Fig. 29). These two simulations used the same HI and WA values of 

0.28 and 35% respectively. PHU was adjusted from the 1783 oC in Sim 2 to 1800 in Sim 6 with 

minimal effect on yield (Fig. 29). Observing this response in multiple counties indicated that a 

minor change in PHU has minimal effect in altering yields. This makes sense because a small 

variation in PHU values happens every year.  

However, larger changes in PHU had a more significant impact on simulated yield. In many 

counties, the PHU values were adjusted at wider intervals when the NDAWN range for the PHU 

parameter settings was largely making a good simulation of past yields difficult (Fig. 30). Using 

multiple simulations in these counties, it was observed that lower PHU values had lower 

simulated yields than higher ones. For example, Cavalier County was evaluated using 14 

simulations, six of which had the same HI and WA with altered PHU values. These simulations 

used a wide range from 1444 oC to 1800 oC and as PHU increased so did YS (t/ha) (Fig. 30). 
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Sim 5: PHU 1444 Sim 6: PHU 1700 Sim 7: PHU 1750
Sim 8: PHU 1800 Observed Values 1:1

Fig. 30: These simulations (above) and the associated trend lines represent changes in the PHU 
parameter. The lowest (grey) had a PHU of 1444 and increased with each trend line to the top of 1800. 
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While evaluating parameters for sensitivity to change, it was deemed prudent to evaluate the 

impact of altering key management and timing values. Simulations were run to see if reducing or 

increasing the field prep period influenced yield. Lastly, simulations tested the effect of moving 

the planting date forward and backward.  

Simulations use preset management parameters such as a planting and fertilization schedule that 

incorporates a field preparation process prior to seeding. To test the significance of this 

parameter, the planting date was moved forward by increments of five days in Bowman county, 

resulting in three simulations with earlier planting dates. In each of these simulations, the field 

preparation day remained one day prior to seeding.  Yields in these simulations varied with 

preset parameters or using modified planting dates. However, using an analysis of variance test 

(ANOVA), it was determined that these three simulations with modified planting dates were not 

significantly different from each other (F<F crit) (Table 14). This indicates that altering the 

planting date by ± 5 – day increments, for a total of 15 days did not result in a statistically 

significant change in yield (Table 14).  

Table 14: Analysis of Variance (ANOVA) test for the differences between simulations with earlier and earlier planting dates (i.e., 
moved forward by 5, 10, and 15 days). 

SUMMARY       

Groups Count Sum Average Variance   

5-day increase 10 17.05 1.705 0.089294   

10-day increase 10 17.34 1.734 0.079471   

15-day increase 10 17.72 1.772 0.061751   

ANOVA 

Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.02258 2 0.01129 0.146931 0.864039 3.354131 

Within Groups 2.07465 27 0.076839    

Total 2.09723 29         
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After this was tested, an examination of moving the field prep day was tested by changing the 

field day prep from 1 day prior to seeding to 5 and 10 days prior to seeding. It was found that 

setting the field preparation earlier than the planting date had no effect on yield (Fig. 31).  

After altering these parameters, a simulation of 1981 to 1995 created a series of simulations 

which were compared to the Yo values and evaluated using ρ and the Ens. A simulation with high 

ρ and Ens has yields that generally follow the same pattern as the YO values. This is indicative of 

the model’s ability to replicate historical yields for 1981 – 2005.  

For example, while simulating Bottineau historic yields, the simulation number 005 had the best 

replication of historical yields (t/ha) with a ρ = 0.78 and an E = 0.59. The E value was the highest 

of the six simulations performed. This simulation had lower yields than observed values eight of 

the 15 years from 1981 to 1995 and over simulated seven years of the period. Using the 

parameters for this 1981 –1995 simulation, (WA: 35, PHU: 1783, HI: 0.37), a second simulation 

of the 1996 to 2005 period was conducted. The results of this simulation were added to the 

Fig. 31:  Simulations of '81 to '95 for Bottineau County comparing simulated versus observed yields (t/ha). 
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original simulation (4981 – 2095) to create a continuous simulation from 1981 to 2005 (Fig. 23). 

The simulation overestimated the observed yields (t/ha) 11 times and underestimated 14 times.  

Methodological limitations 

Limitations of this methodology are either mathematical or systematic in nature. An example of 

a mathematical limitation within ALMANAC is the lack of a parameter to represent disease or 

pest stresses on crop physiology and growth. It is possible to incorporate these effects into the 

model by altering growth characteristics to replicate the effect of these stressors but were not for 

this study. A systems limitation is the model's ability to quantify a concept (i.e., accept future 

simulation dates or alternate management or genetic profiles mid-simulation). Some models may 

tackle these issues, but ALMANAC does not. Adding variables to the model will occur over time 

with new knowledge of agronomy or modeling. This limitation is inherent and does not 

invalidate other aspects of the study. These factors that are extraneous to plant growth (ex. 

pollution impact on growth) can be considered after modeling. The investigator can replicate the 

impact of the variable by applying common knowledge of the stressor based on the literature. For 

example, it is known that molds and diseases negatively affect crops and proliferate under 

“ideal” climatic conditions. If these “ideal” conditions increase in the future, then it can be 

predicted that the occurrences of molds and diseases will also increase. If these insect or disease 
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Fig. 31: These simulations of Bottineau County 1981 – 2005 compared to Observed values measured in (t/ha). 
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stress factors can be expressed as different stress factors such as water stress, then these external 

factors might be folded into the model. The systemic limitations of modeling are unknowns and 

impacts devoid of data/research. These can be socio-political uncertainties including government 

regulation or war. These uncertainties create so many variables the error and data would be 

overwhelming.  

An appropriate systemic target would look at the trends in current sociopolitical events and 

attempt to predict specific decadal trends (i.e., What will the rise of nationalism do to agriculture 

in a specific nation?). However, this methodology would require titanic amounts of data, some of 

which is not available. This would require an understanding of phenomena and processes that 

remain too complex to our understanding. The understanding of methodological limitations 

allows for insight into areas of potential improvement or development. Results of a scientific 

study are often provided with an error which does not represent a lack of foundational scientific 

understanding but rather a mathematical error which guides the interpreter along with a general 

trend or conclusion that is likely to occur. If the limitations and error are appropriate for the 

study, then the study has statistical merit and may be valuable. 

Historical Trends in Climate & Agriculture  

Global CC is analyzed using a variety of temporal resolutions ranging from brief monthly or 

daily intervals like GHG emissions or long-term geologic periods like the millennia of countless 

ice ages (Hartmann, 1994).  However, this study focuses on the short-term trends in agriculture 

(<100 years) meaning any discussion should be curtailed to meet this timeline. First, it is 

important to highlight the role of Agriculture in society. 

• Agriculture has and continues to change the diets, migration patterns, lifestyles, culture, 

social hierarchy, and conflict of people all over the world.  
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• Agriculture is and will always be a significant economic sector to mid-western American 

states. 

• Investing in agro-technology helps to solve social issues (i.e., poverty, wages, 

employment) 

Higher yielding crops like wheat have historically been important in compensating for small 

planting areas via the high seeding density (Harari, 2014). Therefore, it is not surprising that 

modern human diets are based on cereal crops. Cereal crops are a driver of our population 

growth over the past 1,000 years. An increase that will continue as humanity reaches the 

predicted global population of ~11 billion individuals by 2100 (UN Department of Economic 

and Social Affairs, 2017).  

 Land Use: Agriculture, Oil, and Conservation 

The common accepted scientific consensus is “clear that the dominant cause of the rapid change 

in the climate of the past half century is human-induced increases in a number of atmospheric 

greenhouse gases, including carbon dioxide (CO2), chlorofluorocarbons, methane, and nitrous 

oxide." (2012). Recognizing this crisis, 197 nations signed, and 147 ratified the Paris Climate 

Accords to reduce carbon emissions and mitigate CC (Jayaraman, 2016). The Paris Climate 

Accords were designed to politically commit the powerful nations of the world in the common 

goal of reversing global climate trends by enacting new climate mitigation policies. In the US, 

these policies include broad legislation to protect large bodies of animals or ecosystems like 

those available through the USDA Farm Service Agency (FSA) (table 15). Or these could be 

focused legislation to reduce emissions or protect a specific watershed. These policies will have 

a positive impact on mitigating CC and enforcing environmental protections. American climate 

mitigation strategies and measures may have diminished in 2017, but as of the previous year, 
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several programs have enhanced the production of agricultural commodities. These programs 

improve the lives of those who farm the land with the added benefit of mitigating CC and 

helping people’s lives.  

Table 7: Programs offered by local and federal governments to aid in mitigating CC and improve agricultural operations. 

Program Services Provided 

Conservation Reserve Program 

 

Pays a yearly rental payment in exchange for 

the removal of environmentally sensitive land 

from agricultural production and planting 

species that will improve environmental 

quality. 

Emergency Conservation Program 

 

Provides funding and technical assistance for 

farmers and ranchers to restore damaged 

farmland from natural disasters. Also, provide 

emergency water conservation measures 

during severe droughts. 

Farmable Wetlands Program 

Designed to restore wetlands and wetland 

buffer zones to farmland, FWP provides 

farmers and ranchers with annual rental 

payments in return for restoring wetlands and 

establishing plant cover.  

Grassland Reserve Program 

 

Prevents grazing and pasture land from being 

converted into cropland or used for urban 

development, in exchange for voluntarily 

limiting the future development of their land, 

farmers receive a rental payment. 

Source Water Protection Program 

 

Designed to protect surface and groundwater 

as drinking water for rural residents. The 

program targets areas for aid based on their 

water quality and population.  

(Source: USDA-FSA) 

As of July 2014, North Dakota, Kansas, and Colorado lead in the creation of “Permanent 

Wildlife Habitat” under the CRP program enrolling a combined 2,126,750 acres (Stubbs, 2014). 

However, the number of acres enrolled will likely shrink due to diversions of funding for 

agriculture to other environmental sectors (i.e., grass/wetland restoration). Balancing these two 

land-use sectors is only made more complex when the petroleum-based natural resources in the 

Bakken Oil Field and the Dakota access pipeline are considered (Volcovici, 2017). 
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Global Durum Production 

 Durum Wheat is produced in several parts of the world, the highest producing areas being the 

climatic regions where pasta is commonly a consumed foodstuff consumed. Most of the Durum 

production occurs in the Mediterranean, North Africa, and SW Asia, all areas where wild wheat 

species were first cultivated in ancient times (Sicignano, 2015). The US was the 5th largest 

producer of Durum worldwide from 2011 to 2014 behind the EU, Syria & Turkey, Canada, and 

North Africa (Fig. 33). The only single nation that produces more than the US is Canada which 

makes it a more accurate to combine the US and Canada into one region (Fig. 33). 

It's simple preparation requirements, versatility as a key carbohydrate, and easy storage and 

transportation aid in feeding millions annually (Sicignano, 2015). Many of the populations in 

these regions depend on Durum to produce flatbreads or couscous, a primary source of energy 

and carbohydrates for many people in the near east and in Africa. Meanwhile, the best quality 

Durum grain is milled into a fine flour called semolina. Semolina is made from the best quality 

Fig. 32: Production of Durum Wheat worldwide, measured in million tons (Source IGC, CWB) 
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of grain and is used with water to create a sticky dough that can be processed via machines into 

multiple forms of pasta. 

Much of the grain produced in North American is of superior quality and is used to create the 

semolina for pasta. Other nations with inferior quality Durum will import end-use pasta products 

or raw grain from North American Durum growers. Durum produced in North America is often 

exported internationally, creating possible issues related to the transportation of these goods. 

Transportation (i.e., import and exports) is impacted by changes in political landscapes (i.e., 

Brexit, the Syrian conflict, and conflicts in North Africa).  

As discussed previously, many of these geopolitical issues are driven by changes in spatial 

distributions of climate, weather, and geopolitical variables (i.e., temp, precip, revolution, war, 

famine, plague). Any effort to decipher such massive global events and the fallout is riddled with 

complications. Even domestic production is a complex system of cooperation between farmers, 

regulating agencies, political influences (i.e., Unions and lobbies), and consumers. It is not 

unreasonable to draw conclusions based on current events, but these conclusions are often 

seemingly unconnected. For example, changes that are driven by changes in spatial distributions 

of climate, weather, and geopolitical variables (i.e., temp, precip, revolution, war, famine, 

plague). Many of which are difficult to predict or understand until post hoc analysis is applied.  

North Dakota Durum Production 

ND currently represents ~60% of the US domestic Durum production (BU) and ~67% of total 

planted/harvested Durum acres. The remaining ~40% of production occurs in Arizona, 

California, Minnesota, Montana, and South Dakota. North Dakotas status as the largest domestic 

producing state remained relatively unchanged given the statistically significant decreases in 

domestic production (BU) and planted/harvested acres (Fig. 34 and 35).  Cultivars released from 
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North Dakota’s breeding program are grown on over 93% of Durum hectares in North Dakota 

and surrounding regions. The remaining 7% of hectares are planted with cultivars released by 

breeding programs in Canada and private companies. 

Durum has one key use, pasta production. This means the Durum market is inherently smaller 

than that of other wheat markets and that any shortage will likely result in significant price 

increases for the consumer. 

Durum produced in North Dakota has a reputation for superior quality, especially for semolina 

color and gluten strength. Pasta manufacturers want cultivars with strong gluten to ensure the 
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desired quality of the finished product. This creates strong demand from domestic and foreign 

pasta producers for excellent ND Durum. In 2017 producers from North Africa visited the state 

to learn more about producing superior quality Durum grain and products.   

Impacts on Durum Quality, Price, and Markets 

Durum is in competition with Hard Red varieties for planting acres. Often a poor previous year 

coupled with poor forecasts will incentivize farmers to produce Hard Red varieties rather than 

Durum. To remain economically competitive, new durum cultivars must produce higher yields or 

at least equal to Hard Red cultivars while maintaining high protein and quality to be considered 

for planting.  

To understand the economic costs associated with producing Durum wheat under future CC, an 

estimation of the production impact of changes in precip and temp must be evaluated. 

The most substantial threat to Durum production is the increased propagation of disease like the 

outbreaks that occurred from 1993 to 1998 (Nganje, 2004). Fusarium is caused by wet field 

conditions. Making it likely that changes in the frequency or distributions precip and temp will 

only increase the damage from FHB on yield and quality. From 1998 to 2000 North Dakota 

incurred 41% of all direct impacts from FHB outbreaks. The total damage to the Durum crop 

from FHB was ~$70 million USD (Nganje, 2004). The Fusarium impact from 1998 to 2000 is a 

reasonable case study of widespread impacts of disease on Durum production in North Dakota. 

A deep analysis of economic impacts of disease during these years said,  

“In North Dakota, FHB losses in wheat from 1998 through 2000 averaged more than 10% of the 

value of the wheat crop while barley losses averaged almost 26% of the total crop value over the 

same period.” (Nganje, 2004) 
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It was also estimated that every dollar lost to FHB creates more than double the economic loss in 

secondary economic sectors of Durum production. Nganje 2004 provides an upper measure of 

FHB economic losses related to yield decreases and abandoned acres (Nganje, 2004). However, 

secondary economic impacts are likely a more crucial factor in the production of Durum in ND. 

Should changes in temp and precip increase the rates of FHB infection, then the overall costs for 

cleaning will increase with the demand for machine rental and cleaning services.  

Farmers will be required to clean harvested grain more and more in the future to meet quality 

standards. Since the trends of decreasing planted and harvested acres are likely to continue, those 

that continue to plant Durum will need to produce superior quality grain.  

For example, a TriQ machine is commonly used to clean grain like Durum, Spring, and other 

Wheat species which require cleaning services. These services and machines can sort 

approximately 25,000 kernels per second or ~100 BU/hour. NDSU calculated that the statewide 

average cost of cleaning infected grain with chemical treatment is $2.87/BU and an average of 

$0.73/BU w/o chemical treatment.  

Other costs that may be required to deal with CC and FHB include economic investments into 

irrigation tech to combat with drought or waterlogged fields. These future costs remain potential 

unknowns since North Dakota Durum is currently rainfed and may require these services in the 

future. 
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Table 16: Trends in production (BU) from 1981-2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is unlikely that a change in the production of Durum to a different crop such as corn or 

soybean will occur. Overall state production acreage has been decreasing from 1981 – 2016 

(table 16). However, individual county production has decreased in 40% of study area counties 

and increased by 53% with the remainder being Mountrail with no production trend. This is 

consistent with the overall trend in decreasing production (BU) statewide. It is more likely that 

farmers will diversify the crop profile as needed but will keep Durum in the rotation hoping the 

international market will be promising. In the wake of current decreases in Durum production, 

there are no new counties “filling in” and planting Durum. 

# County Trend R2 

1 Bottineau D 0.61 

2 Bowman I 0.38 

3 Burke I 0.11 

4 Cavalier D 0.63 

5 Divide I 0.16 

6 Hettinger I 0.25 

7 McHenry D 0.43 

8 McKenzie I 0.50 

9 McLean D 0.06 

10 Morton I 0.28 

11 Mountrail N 0.00 

12 Pembina D 0.28 

13 Stark I 0.52 

14 Towner D 0.70 

15 Williams I 0.73 



108 
 

The USDA estimated domestic Durum production at 104 million BU in 2016, up 20 million, or 

24%, from 2015 (84 million BU) (Fig. 36) (NASS, 2017). The r2 between total production (BU) 

and price ($/BU) is 0.44 from 2000 to 2015 indicating that as production (BU) decreased, price 

($/BU) increased. This price reaction to changes in production (BU) is statistically significant. 

No other combination of the three variables, yield (BU/acre), production (BU), and price ($/BU), 

had statistical significance.  

The impacts of CC on North Dakota Durum production have not been extensively researched. 

However, evidence agrees that the impacts on ND will follow the global trend with spatially 

specific changes of increasing temp and varied changes in precip.  

The 2016 Durum harvest had an average statewide yield of 3.15 t/ha which is 0.30 t/ha lower 

than the ten-year average of 2.85 t/ha (2005 – 2015) (NASS, 2017). This information would 

normally be optimistic if 2017 news and reports didn’t estimate that the Durum planted area will 

be 17% lower than the 2015 – 2016 average which was hit heavily by vomitoxin.  

Fig. 36: North Dakota Production (BU) and Price received ($/BU) (NASS, 2017). 
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Solutions 

Should Durum production continue to decrease, an alternate strategy or crop commodity will be 

required. For example, North Dakota has a production permit to grow industrial hemp classified 

as a form of “Grain” production. The North Dakota Farmers Union has strongly recommended 

for congressional authorization to produce industrial hemp on a larger scale in North Dakota 

(Johnson, 2014). Within the study area, Cavalier, Hettinger, and the Langdon region 

encompassing NE counties have been identified as suitable locations for industrial hemp 

production (Hanson et al. 2017). Industrial hemp is a new grain commodity used on a trial basis 

for planting by North Dakota farmers and grows during months that would directly compete with 

a Durum growing season (Johnson, 2014). The planting dates would be between March and May 

with harvest between September and November, the same as Durum. The addition of this crop 

would open the state’s economy to a wealth of industrial commodities including food from 

grains and oils, building materials, paper, textiles, personal hygiene products, and alternative 

fluids or biofuels (Johnson, 2014). In North Dakota, one of the few trial states in the nation, five 

producers with 70 acres cultivate industrial hemp for grain (Johnson, 2014). Industrial hemp 

would be a crop in direct competition with certain producers of Durum and Hard Red Wheat 

especially in NE counties where trials have been successful.  

The Cost of Change 

When discussing the limitations of crop models, it is important not to forget the significant 

benefits they provide. Analyzing historical patterns in yield and production provide perspective 

into the future production of Durum in ND. When discussing Durum modeling, the results 

represent:  

“drought stress, nutrient stress, and cold temperature and hot temperature stresses, but 

[if] the main causes of yield variability are something else, then the correlations 
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[between Yo and Ys] will be low.  I have seen it often.” – Jim Kinery (Personal 

Communication) 

The model results vary based on forecasted climate data including trends in daily weather 

parameters (Tmax, Tmin, and precip). Decreasing trends in Durum yields across all RCP’s by 

~0.07 – 0.10 t/ha in the least and most extreme scenarios (2.6 and 8.5 respectively), indicating a 

negative crop response to CC. This decrease continued in the 2050’s and may be the first sign of 

diminishing Durum production in ND. YS decreased in the 2050’s an additional 0.07 – 0.27 t/ha 

from the 2020’s yields. 

Climate impacts are visible in Bowman and Divide Counties which have a historical average 

yield of 1.77 and 1.80 t/ha respectively. In the 2020’s and 2050’s these yields could drop as low 

as 1.56 t/ha in Divide and 1.46 t/ha in Bowman. These decreases in production (BU) are already 

observable in 2017. As of May 14, North Dakota planted acres were down from this time last 

year but still above the 5-year average. ND production conditions were dry statewide except for 

the extreme north. The state did get some rain with recent Spring showers, but much of ND’s 

Durum growing counties were affected by the infrequent rains this year.  

Internationally, Durum crops in competing nations such as Algeria and Morocco are not 

suffering major setbacks. This has led some experts to believe that there will be little 

international demand for US Durum unless there is an interest in expensive, high-quality Durum 

from the other Durum producing nations.  
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To summarize: 

Changes in climate will impact every sector of society. Those who will be most affected include 

those that rely on the delicate balance of human stewardship, nature, and the energy sources held 

therein (i.e., agriculture, coal, natural gas, and oil). To extract these resources, conflict over land 

use may arise as they have in the Bakken Oil Fields of McKenzie County, ND or struggles over 

land management like those seen regarding the Dakota Access Pipeline from 2016 – 2017 

(Whyte, 2017). The complicated interactions between fossil fuels, humans, and the environment 

will only worsen under future CC. It is evident that the combative demand for land between the 

agricultural and energy sector will come to a headway that can only be resolved via legislation.  

Independent of these land use issues, agriculture, and plant growth requires a delicate balance of 

the basic climate parameters responsible for growth, Tmax, Tmin, and precip (Mall, 2006). 

Therefore, any change in the distribution, quantity or quality of sunlight, nutrients, and water 

which plants require will influence growth. For example, Durum yields (t/ha) in North Dakota 

are anticipated to decrease under every scenario/simulation of CC in this study. While these 

decreases will not destroy the Durum industry, they may be indicators of a greater change. Many 

changes in production are driven by increased drought and disease and will worsen under various 

CC scenarios. To make up for this decrease in planted acres, scientists and researchers have been 

increasing Durum yields (t/ha) via facilities like North Dakota State University’s Durum 

Breeding program (NDSU-DWBP). The goal of the program is to, “develop improved Durum 

germplasm for characteristics such as grain yield, maturity, pest resistance, and quality.” All of 

these genetic enhancements will be needed to combat the negative effects of CC on Durum 

production and maximize yields. 
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These modifications have reduced the impact of crop diseases and increased crop yields beyond 

natural capabilities. It is the advancement of crop genetic structures that compensated for 

decreases in produced acres thus far. Genetic yield modifications play a significant role in 

enhancing the nutrition and increasing quantities of food. The average Durum yield of new 

varieties being produced by NDSU-DWBP increased from 1.60 (the 1950's) to 3.11 t/ha (2007) 

(Gunderson, 2007). The natural progression of crop genetics, as well as the efforts of the NDSU-

DWBP, have undeniably benefited Durum grain production. One study showed that Durum 

genetic enhancement increased harvested yield more markedly than increases in bread wheat 

(Marti, 2014). It is likely that these advances will not outpace decreases in planted or harvested 

acres. Lastly, these decreases will be compounded by decreases in the percent of the land area 

classified as arable in the US which has decreased from 1961 (48.9%) to 2014 (44.6%) and is 

anticipated to continue decreasing (Rozenberg, 2015). This raises the question, what are the 

future relationship between agriculture, land use, and climate going to look like in North Dakota? 

Climate, topography, and continental geography are key to determining the vegetation of a 

specific location. A common rule to determine a vegetative change is to look 100 miles to the 

south, and the climate/vegetation of that region will likely be the future vegetation under CC. 

This would mean a hotter and drier climate for North Dakota. Based on this, the agricultural 

economy of North Dakota would be heavily based on corn as it is in the corn belt of the US 

(Kansas, Oklahoma, Nebraska) and as we have seen in SE North Dakota in recent years. Should 

a change from Durum production be necessitated, corn may be a viable alternative. Even if 

Durum remains viable in upcoming decades, an increase in crop diversity will promote security 

for those who farm as a means of primary income. Allowing small operations to withstand the 

altered climatic.  
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Adequate climate conditions and genetic improvements have driven a shift in agriculture from 

wheat varieties to corn and soybeans (Aguilar, 2015). Anecdotally, it was stated that corn was 

not grown north of Bismarck and now it is produced across a greater area of the state. A shift 

accelerated by FHB which devastated wheat yields in the 1990’s (Aguilar, 2015). In just over a 

century, growing season length has extended by nearly 12 days favoring corn production (Weise 

2013).  NDSU climatologist, Adnan Akyüz, told USA today that in Fargo, ND nearly 16% of the 

total thermal energy needed to grow a corn plant to maturity comes from CC effects on temp 

(Weise, 2013). Future climate will only exacerbate this trend creating favorable conditions for 

soybean or corn production in the E half of the state (Aguilar, 2015).  

If yields decrease into the 2020’s as was shown in the simulations of this thesis, then the added 

impacts of disease and drought will drive farmers to switch to a different crop. Making a switch 

is a possible option to access the ethanol and food markets for corn harvests, likely incentivizing 

farmers to either alternate corn and wheat varieties (Spring, Hard Red, or Durum) or switch to 

other crops entirely. No matter what, changes in climate will eventually be costly if not 

anticipated and given adequate preparation. It is important to remember that the soils in the W, 

where Durum is produced, are substandard and may be hostile to many different crops, even 

corn. Therefore, as the state and national populations increase, the efficiency of the land we 

cultivate and the Durum cultivars we plant will need to be improved to provide higher yield and 

meet growing demand. 

The conclusion of this study is that the impact of CC is unilaterally a negative force in the 

production of North Dakota Durum. The simulation results showed decreased yields in the 

2020’s and 2050’s from historical values (1981 – 2005). Even the scenario with the most climate 

mitigation (RCP 2.6) is still likely to result in decreased crop yields, increased disease, and 
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decreased grain quality (Triccolli, 2000). These negative impacts will intensify under the 4.5, 6.0 

and 8.5 scenario.  

Given the possible negative impacts of CC, it would be prudent for ND to re-evaluate and re-

design aspects of the agricultural sector (i.e., introducing increased irrigation, enhanced 

monitoring strategies, disease mitigation measures, etc.) to ensure resilience. However, there are 

opportunities posed by CC. Areas that become unfavorable to wheat production may become 

suitable for alternative crops such as corn or industrial hemp. While the impacts from increased 

temps may not occur for several years, others such as crop disease and pestilence may affect 

harvests soon. Effective technologies and management may aid in overcoming these difficulties. 
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Conclusions  
The amount of core literature explaining the relevance of the four IPCC scenarios in the 21st 

century is overwhelmingly in support of anthropogenic activities as the source of CC (Riahi, 

2011; van Vuuren, 2011; Rogelj, 2012; Hirabayashi, 2013). In 2017, some of the scenarios (i.e., 

RCP 2.6) created to understand future climate are unlikely to remain viable in the presence of 

certain political decisions which will enhance CC. It is undeniable that global changes will 

impact regional and local climates causing temp increases in many locations.  

The agricultural districts with the highest Durum production are located in the W, SW, and C 

regions of the state.  Durum is extremely sensitive to changes in precip and temp. Durum 

producing counties in the W and SW have a higher number of harvested acres even though the 

yield in those counties may be lower than in the E with the lowest planted and harvested acres 

but the highest yields. Rainstorms are already more frequent, with increased intensity and 

increased annual rainfall increasing the concerns of flooding and wet farmland during the pre-

planting period.  

It is expected that increased CO2 will increase yields via the carbon fertilization effect under 

future CC. The CO2 fertilization effect, coupled with a longer growing season, will increase the 

yields and production of many crops in North Dakota. However, increases in temps and precip 

may lead to melting snow and wet fields in the spring. Rising temps may offset the benefits from 

the carbon fertilization effect. However, one of the biggest concerns is the increased temps in the 

early spring which affect water resource distribution throughout the growing season. These 

conditions will hamper production or reduce yield.  
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Summary of Future Climate and Yield Changes  

The four RCP scenarios (2.6, 4.5, 6.0, and 8.5) portray a hotter and drier North Dakota climate in 

the 2020’s and 2050’s. The changes in Durum yield in ND reflect these anticipated effects of CC 

including decreases in Precip and increases in Tmax and Tmin. The average yield decreased in 

response to changes in climate and plant growth (i.e., stomatal opening and closing, increased 

temp stress). In the 2020’s the Avg. annual yield decreased from historical values (1981 – 2005) 

between 0.10 and 0.22 t/ha. Average yields dropped from a historical value of ~2.00 t/ha to 1.91 

t/ha, 1.88 t/ha, 1.89 t/ha, and 1.79 t/ha for RCP’s 2.6, 4.5, 6.0, 8.5, and 2020’s values 

respectively. Meanwhile, yields in the 2050’s continued to decrease with average yields ranging 

from 1.87 t/ha at the highest (RCP 2.6) to a minimum of 1.66 t/ha (RCP 8.5). 

What we observe in the 2020’s and 2050’s is continued decreases in Avg. Ys from historical 

values (1981 - 2005) likely caused by increased temps and decreased precip.  

• Yields are likely to continue decreasing as Tmax and Tmin increase and precip decreases. 

• North Dakota’s climate is predicted to experience increases in Tmax and Tmin and 

changes in the distribution and frequency of precip. 

• Precip events are becoming more intense, and annual rainfall is increasing statewide. 

• Changes to local climates will influence the production of Durum since the crop thrives 

under cool, dry conditions.  

• The differences in yield from the scenario of lower climate impact (RCP 2.6) towards 

scenarios of greater impacts (RCP 8.5), indicates that increases in Tmin and Tmax and 

decreases in precip negatively affect Durum yields in North Dakota.  

Certain regions do experience different climatic change with the SW experiencing decreased 

precip and higher temps in the later part of the century, causing decreased yield. This change will 
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likely make several counties unsuitable for producing Durum such as Hettinger and Stark 

counties. Meanwhile, those counties bordering the Missouri River will benefit from more 

positive features of CC such as the increased drainage of the river ensuring dry fields come 

planting and the increased annual precip in the region. These differences in regional climate 

within North Dakota will alter the distribution of production acres. 

An important feature of the 2050’s is the frequency of counties with Avg. Ys below 2.00 (t/ha). 

In the 2020’s only 8 counties experienced frequent yields below 2.00 t/ha and in the 2050’s this 

increased to 10 counties.  
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Appendix A: Climate Forecasts 2020’s 
 

RCP 2.6 

Under RCP 2.6 the increase in CO2 will likely increase global temp between 0.40 and 1.60ºC by 

2050 (Bjørnæs, 2013; Van Vuuren, 2011). A global change in temp will influence the 

distributions of Tmax, Tmin, and precip at a regional scale and across North Dakota. In the 

2020’s, Precip increased in the NE and decreased in the SW (Table 17). The central region of the 

state has increased precip compared to historical distributions. Precip in the 2020’s increased in 

all but Pembina county, (Table 17).  

Table 17: Average values for Tmax, Tmin, and Precip under RCP 2.6. 

RCP 2.6 - 2020's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 11.97 -0.94 1.16 

NC 20 12.32 -0.93 1.22 

NE 30 11.09 -0.74 1.29 

WC 40 13.55 -0.08 1.02 

SW 70 14.36 0.46 1.13 

SC 80 14.33 1.48 1.22 

 The statewide trend in Tmin increased from -3 °C (1981-2005) to just over -1.0 °C in the 

2020’s. Increases in Tmin were similar. Meanwhile, changes in the 2020’s Tmax (°C) values 

increased in the N border counties. 

RCP 4.5 

The 4.5 scenario sets an ambitious goal of 4.5 W/m2 which would increase GMST by ~1.40 and 

2.00 °C. RCP 4.5 emissions related to land use and productivity are measured as a total 

contribution from agricultural activities not necessarily specific point sources. Meanwhile, the 

positive changes under RCP 4.5 include reforestation programs and decreased demand for 

cropland conversion.  
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Table 18: Average values for Tmax, Tmin, and Precip under RCP 4.5. 

RCP 4.5 - 2020's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 12.08 -0.83 1.11 

NC 20 12.36 -0.94 1.14 

NE 30 10.98 -0.81 1.3 

WC 40 13.7 0.29 1.03 

SW 70 14.46 0.58 1.11 

SC 80 14.07 1.24 1.25 

As far as emissions are concerned, under the 4.5 CH4 emissions stabilize and CO2 slightly 

increases through 2020 which then decline after 2020 (Thomson, 2011). Trends in pCO2 require 

new monitoring methods and CC policies. Precip in the 2020’s changed in many counties 

between -0.82 and + 1.28 meters. The historic Tmax (1981-2005) in North Dakota was spatially 

specific with values of 9.16 °C (NE), 10.42 °C (NW) and 12.74 °C (SW) and increased to 

11.05°C (NE), 12.31°C (NW), and 13.91°C (SW) in the 2020’s (Table 17 & 18). 

The last climate parameter, Tmin, increased in the 2020’s to -0.26 °C from the historic Tmin of -

1.98 °C (Table 7 & 8). The Tmin increases were greatest along the N border of the state (1.90°C) 

with smaller increases in the S and W (1.50°C) (Table 17 & 18). 

RCP 6.0 

The second intermediate scenario, RCP 6.0, aims for a net radiative forcing of 6.0 W/m2 by 2100 

(Van Vuuren, 2011). This radiative forcing is equivalent to 850 ppm pCO2 by 2100. This change 

is likely driven by a continued heavy reliance on fossil fuels and increased use of cropland (Van 

Vuuren, 2011). This continued fossil fuel use creates peaks in pCO2 by 2050 followed by 

decreases closer to 2100. In this scenario, the effect on the 2050’s North Dakota climate is an 

increase in Tmin and Tmax of 1.21 and 1.12 °C respectively (Table 19). The climate will 

experience increases in Tmin and Tmax together with a decrease in precip. However, not every 
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county will experience decreases in precip with 5 counties increasing by an average of 6.00 mm 

(Table 19). 

Table 19: Average values for Tmax, Tmin, and Precip under RCP 6.0. 

RCP 6.0 - 2050's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 12.67 -0.21 1.11 

NC 20 13.1 -0.17 1.17 

NE 30 12.35 0.53 1.32 

WC 40 14.54 1.22 0.99 

SW 70 15.22 1.23 1.09 

SC 80 15.49 2.68 1.33 

 

RCP 8.5 

RCP 8.5 is a scenario with the greatest increase in radiative forcing, 8.5 W/m2 by 2100. This 

change will likely increase GMST anywhere from 2.0 to 2.6°C. In North Dakota, the distribution 

of Tmin is colder along the NE and N border with warmer temps in the SW. Historic Tmin 

values (1981 – 2005) were 1.65°C cooler in the NE than in the SW. The Tmin values expand the 

differences between the colder NE and hotter SW to 2.90°C (table 20).  

Table 20: Average values for Tmax, Tmin, and Precip under RCP 8.5. 

RCP 8.5 - 2020's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 12.16 -0.83 1.13 

NC 20 12.49 -0.88 1.04 

NE 30 11.34 -0.56 1.28 

WC 40 13.65 0.13 1.07 

SW 70 14.53 0.62 1.12 

SC 80 14.22 1.44 1.28 

Meanwhile, the statewide Tmax increased from 11.08 to 12.76°C. The Statewide Tmin also 

increased from -2.05 to -0.25°C (Table 20). The precip distribution remained unchanged from 

1981 – 2005 with higher precip in the E and lower precip in the W (Table 20). Lastly, the 

statewide the precip increased by 0.62 cm.  
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Appendix B: Climate Forecasts 2050’s 
 

RCP 2.6 

In the 2050’s the RCP 2.6 scenario has passed the peak of emissions (490 ppm) and begun 

declining to the pCO2 of 400 ppm nearing 2100. A level is less than the 406 ppm as of 2017. 

This is the only scenario that leads to a net decrease in pCO2 by 2100 (Bjørnæs, 2013; Van 

Vuuren, 2011). To achieve a radiative forcing of 2.6 W/m2, the cumulative emissions of GHG 

would need to be 70% lower than baseline (Van Vuuren, 2011). The 2.6 W/m2 goal would 

increase GMST approximately 2.0°C from baseline values.  

Also under RCP 2.6, land use will continue to change with a ~20% increase in cropland 

conversion for food production. This is coupled with the estimated stabilization of the human 

population at ~9 million individuals by 2100 (Van Vuuren, 2011). Alternatively, the bioenergy 

industry is expected to be a burgeoning industry creating an increased demand for cropland. This 

means that the issue of feeding the population may be subverted by the needs of these other 

industries. 

Pastureland remains relatively stable throughout the rest of the century with any change likely 

tied to increased food demand and population. A shift to a less meat-intensive diet would help in 

reducing the demand on pastureland and in turn, maintain population estimates under the ~9 

billion individual’s thresholds (Bjørnæs, 2013). 
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Table 21: Average values for Tmax, Tmin, and Precip under RCP 2.6. 

 

 

 

 

Tmin increased 2.43°C from historical values (1981 – 2005). With a Tmin in the SW of 0.93°C 

which is higher than in the NW 0.10°C and higher in the NE -0.02°C. Precip in most counties 

decreased with an average decrease of 40mm. The highest precip being in the NE and the lower 

in the S and SW. Meanwhile, Tmax and Tmin increased in the NE between 2.50 and 3.00 °C 

while in the NW, and SW Tmax increased by 1.75 and 1.54°C respectively. Lastly, Tmax and 

Tmin increased by 0.74 and 0.68°C respectively.  

RCP 4.5 

In the 2050’s, the increased pCO2 peaks and then stabilizes at 650 ppm maintaining the trend in 

net radiative forcing of 4.5 W/m2 leading to 2100 (Van Vuuren, 2011). This scenario is 

consistent with several methods of reducing emissions from 2040 – 2100 including decreases in 

cropland conversion (Van Vuuren, 2011). These changes in land use would be critical to 

reducing N2O emissions from agricultural operations. Emissions under RCP 4.5 are strictly 

regulated, and CH4 emissions will decrease and stabilize by 2100 (Van Vuuren, 2011).  

In North Dakota, the statewide precip decreased by 40 mm between the 2020’s and 2050’s. The 

Tmax and Tmin increased by 0.52 and 0.65°C respectively. The Tmax and Tmin increases were 

in Stark County (0.80 °C) and Bottineau County (0.81). While the greatest increases in Tmax 

were in Stark (0.72°C), Burke (0.73°C), McKenzie (0.71°C), and Mountrail (0.71°C) (Table 20). 

RCP 2.6 - 2050's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 12.55 -0.34 1.11 

NC 20 13.05 -0.13 1.17 

NE 30 12.12 0.18 1.29 

WC 40 14.09 0.74 1.06 

SW 70 14.8 0.84 1.08 

SC 80 15.13 2.2 1.22 
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Table 22: Average values for Tmax, Tmin, and Precip under RCP 4.5. 

RCP 4.5 - 2050's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 13.37 0.43 1.12 

NC 20 13.92 0.54 1.16 

NE 30 12.73 0.99 1.43 

WC 40 15.07 1.9 1.01 

SW 70 15.68 1.65 1.11 

SC 80 15.78 2.97 1.31 

 

RCP 6.0 

This radiative forcing is equivalent to 850 ppm pCO2 by 2100. This change likely is driven by a 

continued heavy reliance on fossil fuels and increased use of cropland (Van Vuuren, 2011). This 

continued fossil fuel use creates peaks in pCO2 by 2050 followed by decreases closer to 2100. In 

this scenario, the effect on the 2050’s North Dakota climate is an increase in Tmin and Tmax of 

1.21 and 1.12 °C respectively (Table 23). The climate will experience increases in Tmin and 

Tmax together with a decrease in precip. However, not every county will experience decreases in 

precip with 5 counties increasing by an average of 6.00 mm (Table 23). 

Table 23: Average values for Tmax, Tmin, and Precip under RCP 6.0. 

RCP 6.0 - 2050's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 12.67 -0.21 1.11 

NC 20 13.1 -0.17 1.17 

NE 30 12.35 0.53 1.32 

WC 40 14.54 1.22 0.99 

SW 70 15.22 1.23 1.09 

SC 80 15.49 2.68 1.33 

 

RCP 8.5 

RCP 8.5 provides some disturbing realities for global climate. The most troubling is a possible 

net radiative forcing of 8.5 W/m2 and a corresponding pCO2 of ~1370 ppm by 2100 (Van 

Vuuren, 2011). This pCO2 will increase GMST between 3.70°C and 4.80°C (Van Vuuren, 2011). 
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This increase is the result of changing policies (i.e. adoption of policies that reduce emissions) 

and societal change (i.e., increases in population and demand for land and food). For example, 

the emissions of CH4 under the RCP 8.5 increase rapidly by 2100 adding to the CO2 emissions 

which are already the highest of all four RCP’s. Inaction and ineffective policies will create this 

less than ideal net radiative forcing of 8.5 W/m2.  

The effect of these changes is not only global; there are several changes that will impact 

individuals personally. Including an estimated population of 12 billion individuals by 2100, or 

the significant increase in agricultural production and land conversion. In turn, N2O emissions 

will increase as agricultural activity and land conversion increases. The 2050’s will follow the 

trend created by the effects observed in the 2020’s and the anticipated impacts in 2100. In North 

Dakota, the RCP 8.5 impacts are intensifications of observed changes in previous scenarios.  

 Under the RCP 8.5 precip increases in the SW and decreases in the rest of the state reducing the 

statewide average by 0.02 m. Meanwhile, Tmax and Tmin increased 2.10°C and 1.95°C 

respectively, and Tmax increases ranging from 1.85°C and 2.06 °C. The increases in the Tmin 

range from 1.92°C and 2.22°C.  

 

Table 24: Average values for Tmax, Tmin, and Precip under RCP 8.5. 

 

 

 

 

RCP 8.5 - 2050's 

Region Ag. District Tmax Tmin PRECIP 

NW 10 13.85 1.04 1.17 

NC 20 14.45 1.28 1.17 

NE 30 14.21 2.22 1.31 

WC 40 16.05 2.75 1.02 

SW 70 16.3 2.3 1.09 

SC 80 16.97 4.15 1.36 
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Appendix C: Residuals 
 

These graphs represent the comparison between simulated and observed yield. Included in the 

graphs are the statistics and equations for the linear regression of each set. 
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Residuals 

 

These plots are called residual plots, and they show the over and underestimation of the 

ALMANAC model in each county for the calibration and validation period (1981-2005). 

Residual plots show the difference between simulated and observed yields for the historical 

period representing (1981-2005). A value below 0 represents the simulated yield is lower than 

the observed value for that year. For example, Bottineau has values above 0.00 for the last 3 

years of the simulation (2002 – 2005) indicating that the modeled yields were lower than the 

observed yields. Residual values above 0 indicate that the simulated yield was greater than the 

observed yield.  
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