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ABSTRACT 

This study evaluated warm-season precipitation events in a multi-year (2007-

2014) database of Weather Research and Forecasting (WRF) simulations over the 

Northern Plains and Southern Great Plains. These WRF simulations were run daily in 

support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous 

Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for 

operational forecasts.  

Evaluating model skill by synoptic pattern allows for an understanding of how 

model performance varies with particular atmospheric states and will aid forecasters with 

pattern recognition. To conduct this analysis, a competitive neural network known as the 

Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric 

patterns in an array of nodes that represent a continuum of synoptic categorizations. 

North American Regional Reanalysis (NARR) data during the warm season (April-

September) was used to perform the synoptic typing over the study domains. Simulated 

precipitation was evaluated against observations provided by the National Centers for 

Environmental Prediction (NCEP) Stage IV precipitation analysis.  
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CHAPTER I 

INTRODUCTION 

Background 

 To generate better model forecasts of convective storms and resultant 

precipitation, it is important to continually improve the models that are used to explicitly 

simulate these storms.  Output from so-called Convection Allowing Models (CAMs) such 

as the Weather Research and Forecasting Model (WRF) has the potential to improve 

forecasts by providing greater detail to operational forecasters (Kain et al. 2006). CAMs 

have a horizontal grid spacing of ≤ 4 km, as this is the coarsest spacing to sufficiently 

represent the evolution and structure within Mesoscale Convective Systems (MCS, 

Weisman et al. 1997). Smaller grid spacing is computationally time consuming, so this 

grid spacing is a compromise between being coarse enough to generate forecasts quickly 

enough for operational use and yet fine enough to resolve smaller scale features. Done et 

al. (2004) showed that WRF with 4 km grid spacing could depict realistic MCSs and 

improve the forecasts of convective mode and daily frequency of convection when 

compared to coarser simulations. Similarly, during the 2004 Storm Prediction Center 

(SPC) – National Severe Storms Laboratory (NSSL) Spring Program, convection-

allowing WRF simulations were found to outperform the lower resolution Eta model for 

convective initiation, storm evolution, and convective mode (Kain et al. 2006). These 

benefits have pushed CAMs to the frontier of forecasting. 
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 Despite these advantages, the high resolution of CAMs can make it more difficult 

to evaluate the accuracy of the model’s forecast. Using traditional forecast verification 

statistics that only match spatial placement of storms, a forecast model that generates a 

storm with fine-scale (more realistic) but displaced precipitation maxima scores worse 

when compared to observations than a coarse resolution forecast (less realistic) lacking 

small-scale features (Baldwin et al. 2001). Mass et al. (2002) found that by using 

traditional verification methods such as mean absolute deviation, bias, and root-mean 

square error, there was an increase in accuracy from a model with 36 km to 12 km grid 

spacing, but less of a change when moving from 12 km to 4 km grid spacing. It was 

suggested that the lack of improvement was due to scores which fail to account for fine-

scale features or spatial displacement of convection, a claim further supported by Clark et 

al. (2007).  

 There are alternatives to traditional statistical measures which may be useful in 

evaluating CAM performance. Studies such as Carbone et al. (2002) and Goines and 

Kennedy (2017) utilized Hovmöller diagrams and found that the models have varying 

skill in predicting propagating precipitation and scattered, diurnally forced precipitation. 

Alternatively, performance can be separated by varying meteorological conditions. 

Because precipitation and storm mode is influenced by synoptic patterns (Parker and 

Johnson 2000), a regime based analysis of model performance would help to identify 

specific synoptic patterns that models struggle with, and potentially hint at ways to 

improve model performance. A regime based analysis can range from simpler 

approaches, such as defining the dynamic regime by 500 hPa vertical motion as in 

Tselioudis and Jakob (2002), to more complicated approaches such as k-means 
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clustering. For example, Theobald et al. (2015) utilized the latter method to classify 

synoptic patterns to understand high precipitation events in the Snowy Mountains of 

Australia. 

Self-Organizing Maps (SOMs, Kohonen et al. 1996), a type of competitive neural 

network, have been utilized to discriminate meteorological patterns. In Cavazos (1999), 

SOMs were used to classify winter circulation and humidity patterns for extreme 

precipitation events in Northeastern Mexico and Southeastern Texas. The results helped 

identify differences in atmospheric patterns which were more likely to produce extreme 

precipitation events.  Hewitson and Crane (2002) applied SOMs to average precipitation 

associated with synoptic circulations in an effort to show how SOMs can be used to 

evaluate trends in data, and found that over a 40 year period the same synoptic circulation 

results in more precipitation now than it did 40 years ago, illustrating the usefulness of 

SOMs in climate studies. Cassano et al. (2006) used SOMs to analyze synoptic patterns 

in the Arctic during the summer and winter seasons using sea level pressure data from ten 

global climate models (GCMs) and reanalysis data. The study found that SOMs were 

useful in evaluating differences between ensemble simulations and reanalysis data, as 

well as differences between ensemble members. More recently, SOMs were used to 

identify cloud biases in climate models under different synoptic patterns (Kennedy 2011) 

and improve the climatology of clouds (Kennedy et al. 2016). Because of the range of 

patterns generated in SOMs based on the input cases, they are useful to evaluate model 

performance and to determine trends in data when cases are grouped and analyzed based 

on the atmospheric pattern.  
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Overall, the use of SOMs has largely been confined to long term datasets and 

climate studies. Historically, studies of CAMs such as WRF studies have been limited to 

shorter time periods or specific case studies. The few number of cases in past studies has 

prohibited the use of clustering techniques. In recent years, however, CAMs have been 

operated daily. For example, the National Severe Storms Laboratory (NSSL) has run 

daily 4 km WRF simulations in support of the Hazardous Weather Testbed (HWT). 

Making use of eight years of model runs from 2007-2014 allows for a long enough 

duration that SOMs could be applied. This provides the opportunity for a unique look at 

model performance for varying synoptic regimes over an extended time period.  

Purpose of the Study 

 This study will evaluate how the performance of the NSSL WRF in simulating 

precipitation amounts varies for different synoptic patterns. These patterns will be 

classified using SOMs. The average precipitation bias for each pattern will be calculated 

to determine how, if at all, the precipitation bias varies. Because CAMs have 

predominately been used for convective forecasts, only the warm season (April-

September, 2007-2014) will be investigated. Considering the entire country does not 

experience the same frequency of synoptic patterns and that SOMs offer a Euclidean look 

at these regimes, the United States has been sectioned into five regions to be analyzed 

separately. These regions include the Southern Great Plains (SGP), Northern Plains (NP), 

Midwest (MW), Gulf Coast (GC), and Northeast (NE), with a focus on the SGP and NP 

regions (Figure 1).  
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Figure 1. The Northern Plains and Southern Great Plains regions of interest in this study. Blue boxes represent the 

domains for the classification of meteorological patterns and the smaller red boxes represent the areas where 

precipitation was analyzed.  

Impacts of the Study 

  Evaluating model biases by synoptic pattern has a number of direct impacts on 

the meteorological community. First, this type of study will aid forecasters in using CAM 

data in operational forecasting by recognizing model trends for particular synoptic 

patterns (e.g. pattern recognition). Second, this work has the potential to shed light on the 

physical reasons when the model is struggling and provide insight on how to improve the 

model. Finally, as climate change occurs, synoptic patterns may become more or less 

frequent, rendering a model more or less useful based on how well precipitation is 

simulated under a particular pattern. 
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CHAPTER II 

METHODOLOGY 

Datasets and Techniques 

 This section provides details regarding the datasets and techniques used to 

complete this study. To classify synoptic patterns the National Center for Environmental 

Protection (NCEP) North American Regional Reanalysis (NARR) is used.  Rainfall 

measurements come from the NCEP Stage IV precipitation dataset. The evaluated model 

is the National Severe Storms Lab (NSSL) version of the WRF model run in support of 

the NOAA HWT. The SOM technique is also described.   

NCEP NARR 

 The NCEP NARR is a reanalysis dataset with a variety of output variables useful 

for synoptic typing across the Continental United States (CONUS). NARR uses the 

NCEP Eta model and its 3D-VAR Data Assimilation System (EDAS) to assimilate 

observational data from radiosondes, satellites, aircraft, and surface observations. Unique 

to this reanalysis, assimilation of precipitation is performed to insure that model 

precipitation is close to observed values (Mesinger et al. 2006). The improved 

precipitation in NARR has been verified in studies by Becker et al. (2009) and Bukovsky 

and Karoly (2007). The data available dates from 1979 to present with 32 km horizontal 
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grid spacing, 45 layer vertical levels, and 3 hourly output (Mesinger et al. 2006). The 

output variables make NARR useful in representing the atmospheric state and it is 

significantly improved over previous NCEP reanalysis datasets (Mesinger et. al 2006). 

Variables used in this study include mean sea level pressure (MSLP), 900 hPa relative 

humidity (RH) and winds along with 500 hPa RH, winds (u and v components), and 

geopotential heights. These variables were selected because the two levels are frequently 

utilized in an operation setting. Additionally, these variables provide insight into moisture 

and flow at lower and upper levels. The 500 hPa geopotential heights were used to 

calculate 500 hPa geopotential height anomalies across domains of interest in order to 

mitigate seasonal variations which can bias SOMs (Kennedy et al. 2016). Additionally, 

900 hPa RH and winds were used rather than surface values because there is less 

confidence in the accuracy of surface variables in NARR (Mesinger et al. 2006).  Overall, 

Kennedy et al. (2011) has shown that NARR compares well with observed soundings 

over the Southern Plains, making it a useful dataset in representing the synoptic patterns 

in this study.  

NCEP Stage IV 

Stage IV data mosaics the regional hourly, six-hourly, and 24-hourly precipitation 

analyses produced by the 12 River Forecast Centers (RFCs) over the CONUS (Figure 2). 

The process of producing Stage II and III products, which are then used for Stage IV, is 

described in Briendenbach et al. (1998) and is summarized below. 
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Figure 2. Domains for the 12 RFCs. From http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/. 

Generation of Stage IV data begins with estimated hourly precipitation totals from 

the National Oceanic and Atmospheric Administration (NOAA) National Weather 

Service (NWS) Next-Generation Radars (NEXRAD). This product is known as Stage I 

precipitation data. RFCs adjust this data using precipitation gauges to create Stage II data. 

This Stage II merged dataset is computed out to 230 km from the radar using the hourly 

digital precipitation (HDP) product from the Stage I Post Processing System.  This is 

done by computing the mean bias between the gauges and radar using a Kalman filter 

approach (Smith and Krajewski 1991) and is then used to adjust the HDP rainfall 

estimate. To account for inconsistent radar biases due to range or precipitation type (e.g. 

convective or non-convective), the importance of the radar estimate increases with 

increasing distance from the gauge. The Stage II estimates for multiple radars within the 
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RFC domain are then mosaicked to create the Stage III product. Where two or more 

radars overlap, the office has the choice of using either the mean or maximum value. 

Stage III also allows for interactive quality control of the radar and rain gauge 

precipitation amounts. 

The Stage III products from each RFC are mosaicked by NCEP into a national 

product, retaining the manual quality control performed by the RFCs (Lin and Mitchell 

2005). Because not all RFCs use the same precipitation quality control algorithms, there 

can be discontinuities between offices (Prat and Nelson 2015, Goines and Kennedy 

2017). However, Wescott et al. (2008) and Gourley et al. (2010) compared Stage IV data 

with other products which do not use manual quality control and found that Stage IV data 

outperforms those products. In addition, Wu et al. (2012) illustrated the quality of Stage 

IV data by using it to evaluate other precipitation products.  

NSSL-WRF 

This study utilizes NSSL-WRF simulations from 2007-2014, which were run in 

part to support the Hazardous Weather Testbed (HWT) Spring Forecasting Experiment 

for operational forecasts. An advantage over short term verification studies is that the 

eight years’ worth of simulations allow for analysis of the model’s performance under 

different synoptic regimes without the daily or small-scale variations in performance 

which can skew results when only one or a few cases are analyzed. The longer dataset is 

beneficial from a statistical perspective of including more cases from each synoptic 

regime. The NSSL-WRF model configuration is version 3.4.1 and has 4-km horizontal 

grid spacing with 35 vertical levels and a 24 second time step. The initial and boundary 



10 
 

conditions are obtained from interpolation of the 40 km North American Mesoscale 

Forecast System (NAM) and the microphysics parameterization scheme used is the WRF 

Single Moment microphysics scheme with 6 water classes (WSM 6):  water vapor, cloud 

water, rain, graupel, cloud ice, and snow (Hong and Lin 2006). Radiation schemes 

include the Dudhia shortwave scheme (Dudhia 1989) and RRTM longwave radiation 

(Mlawer et al. 1997). Land-atmosphere interactions are simulated using the Noah land-

surface model (Mitchell et al. 2005). Boundary layer and turbulence are parameterized by 

the Mellor–Yamada–Janjic (MYJ) scheme (Janjic 1994). The model uses the positive 

definite advection (PDA) scheme for moisture variables, which has been shown to 

improve precipitation verification (Hahn and Mass 2009). It is initialized at 0000 and 

1200 UTC with forecasts out to 36 hours. This study utilizes the 0000 UTC run and only 

the 12-36 hour (1200-1100 UTC) time period each day to allow for model spin-up in the 

first 12 hours. While newer versions of the WRF model and individual parametrizations 

are available (e.g. double moment vs. single moment microphysics schemes), this 

configuration has been kept because of the familiarity that Storm Prediction Center (SPC) 

forecasters have with the model (personal communication, Greg Carbine, SPC). 

Self-Organizing Maps 

 Self-Organizing Maps (SOMs) allow the user to represent the data in an array of 

classes known as nodes that self-organize and represent an entire continuum of the 

dataset (Kohonen et al. 1996). This is similar to k-means clustering; however, a 

neighborhood function smooths the data and allows for classes that span the dimensions 

of the dataset. The nodes are initialized off of random values and as training vectors are 

added to the SOM, the node with the minimum Euclidian distance from the input vector 
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is selected and the case is classified to the winning node (Hewitson and Crane 2002). 

Through an iterative training process, each node is modified towards the input vector 

while surrounding nodes are partially modified (Kohonen et al. 1996). The training 

occurs in two steps, first by iterating over each case once with a large learning rate and 

neighborhood radius to orient the SOM. In the second step, the input cases are iterated 

over multiple times with a lower learning rate and neighborhood radius to converge to a 

final solution. This process allows the nodes to self-organize where nodes are related to 

one another via a two-dimensional feature map with more similar nodes closer together 

and less similar nodes farther apart, such that the corners of the SOM tend to represent 

the extreme cases with a smooth continuum in between (Sheridan and Lee 2011). 

Methods 

Case Selection 

Precipitation bias in a model can occur for several reasons. The model may produce 

precipitation for the wrong atmospheric state or produce too much or too little 

precipitation for an atmospheric state. To understand these types of biases, two types of 

SOMs were developed. First, climatology SOMs were created using every day during the 

time period (2007-2014, April - September), regardless of precipitation, to determine 

whether the model has precipitation biases (positive or negative) across any of the 

synoptic patterns. Precipitation analysis was done for a 5°x 4° (longitude by latitude) area 

within a larger 19˚x15˚ region for synoptic patterns to focus on precipitation occurring at 

the center of the pattern. A sensitivity test using 2.5˚x2˚ and 1˚x1˚ areas showed that the 

5x4 area exhibited the best correlation of model precipitation with observations. 
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The second type of SOM was developed from only precipitating cases. Utilizing a 

cumulative distribution function (CDF) of daily precipitation, cases were selected by 

thresholds that determined a specified percentage of rain within the CDF. While 

precipitation occurs over many different patterns, this type of SOM allowed for an 

analysis of patterns that have a significant contribution to annual rainfall. The cases 

examined using this technique contributed to the upper 50% and 90% of daily 

precipitation totals in each of the five regions, as those are potentially high-impact events. 

The cases in the CDF90 SOM were responsible for 87.7% of the seasonal precipitation in 

SGP and 86.9% of the seasonal precipitation in NP, while CDF50 SOM cases were 

responsible for 46.7% of seasonal precipitation in SGP and 45.8% of seasonal 

precipitation in NP. These more detailed SOMs provide better insight into mechanisms 

that may be responsible for any model precipitation bias. In summary, three sets of SOMs 

were produced for each region: 

 Climatological: Produced from all available warm season days (precipitating and 

non-precipitating).  

 CDF90: Produced from precipitation days within the upper 90% of the CDF  

 CDF50: Produced from precipitation days within the upper 50% of the CDF  

A full list and description of the SOMs created is shown in Table 1. 
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Table 1. List and description of the SOMs used in this study.  

SOM Region Number of 

Cases 

SOM Dimensions 

(x,y) Description 

climo SGP 1366 9x6 all days 

cdf90 SGP 387 7x4 at least 3 mm of total precip 

cdf50 SGP 106 6x3 at least 12 mm of total precip 

climo NP 1374 9x6 all days 

cdf90 NP 421 7x4 at least 2 mm of total precip 

cdf50 NP 111 6x3 at least 8 mm of total precip 

climo MW 1367 9x6 all days 

cdf90 MW 516 7x4 at least 2 mm of total precip 

cdf50 MW 216 7x4 at least 8 mm of total precip 

climo GC 1369 9x6 all days 

cdf90 GC 505 7x4 at least 3 mm of total precip 

cdf50 GC 156 6x3 at least 9 mm of total precip 

climo NE 1335 9x6 all days 

cdf90 NE 436 7x4 at least 3 mm of total precip 

cdf50 NE 131 6x3 at least 10 mm of total precip 

 

SOM Generation 

To create the SOMs, the variables selected from NARR data were averaged to a 

1˚ x 1˚ longitude by latitude, grid. This grid-spacing provides synoptic to meso-alpha 

scale detail in the SOM-generated synoptic patterns. This grid was then utilized for the 

previously mentioned 19 ˚ x 15 ˚ area for each domain. In total this yielded a vector of 

285 (19 x 15) elements for any given variable. As shown in Figure 1, the area over which 

the synoptic patterns are made is significantly larger than the area where the precipitation 

is evaluated. This is done to ensure precipitation events lie well within the large-scale 

synoptic pattern and forcing. 

SOMs were trained using all of the atmospheric variables previously described; 

near-surface and 500 hPa levels were chosen as these levels are often used in an 
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operational setting and therefore useful for pattern recognition purposes. The variables 

were normalized to a common range such that each variable provided equal weight to the 

classification of the SOM.  

Common to many clustering algorithms, the user must determine the appropriate 

number of classes (or nodes; “class” may be used interchangeably with “node” hereafter). 

Too few classes can cause important differences in atmospheric states to be smoothed out 

while too many classes can result in classes that never occur and have no cases classified 

to a specific node. The number of classes selected was based on work by Kennedy et al. 

(2016). Climatology SOMs were created with 54 classes (9x6) while SOMs made for the 

precipitating cases, discussed below, had 28 (7x4) or 18 (6x3) classes. These numbers 

ensured that cases were classified into each and every node of the SOMs. Typically a 28-

class scheme was used unless the number of cases fell below 150, and then an 18-class 

scheme was used. This helped ensure every class would have at least one case classified 

to it because there would be fewer classes when fewer cases were to be classified.  

The SOMs were generated using freely available SOM_PAK software (Kohonen 

et al. 1996) and generation of the SOMs followed the methodology of Kennedy et al. 

(2016). The selected and normalized variables from NARR, at 0000 UTC to capture 

environment when convection is more likely to occur, were put into input vectors to train 

the SOM. With 285 points the each region (19x15) and 8 variables, vectors were 2280 

elements long. Each SOM was initialized ten times and the SOM with the smallest 

average error (based off classified Euclidean distance) was saved and used in this study. 

The SOM settings used in this study are summarized in Table 2. An example of the 

classification technique is provided in the Results section. 
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Table 2. SOM settings used in this study. 

SOM settings Value 

Trials 10 

Training Length (stage 1) # of cases 

Training Length (stage 2) # of cases *100 

Learning Rate (stage 1) .05 

Learning Rate (stage 2) .01 

Neighborhood Radius (stage 1) Xdim-1 

Neighborhood Radius (stage 2) 1 

 

Precipitation Evaluation 

Precipitation for the SOM was plotted as the average precipitation total for the 

cases in each class, averaged over the 5˚ x 4˚ domain. This size was chosen to be large 

enough to account for precipitation that may be spatially displaced but still small enough 

to focus on precipitation that was well within the forcing of the synoptic pattern. This 

study analyzed not only the total precipitation and respective model bias, but also the bias 

in six-hour increments throughout the case day. This was done to evaluate how the 

precipitation bias evolved as the day progressed. The days were sectioned off as follows: 

1200-1700 UTC, 1800-2300 UTC, 0000-0500 UTC, and 0600-1100 UTC. 

Statistical Analysis 

To determine the statistical significance of biases, SOMs were reduced to six 

patterns by grouping similar atmospheric patterns together. This aided the analysis by 

increasing the number of cases classified to each pattern, which made statistical testing 

more robust. In addition, this is useful in an applied sense because forecasters can quickly 

identify a pattern from six predominant patterns vs. trying to distinguish patterns in the 

larger SOMs.  
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To objectively group classes, patterns were grouped together based on the mean 

Euclidian distance between classes. This was done by selecting the vector of data 

representing one class and comparing it to all other classes and calculating the difference, 

much in the same way as one would measure the distance between two points. This 

process was performed for each class within the larger SOM. A set pattern was 

established to group similar classes. For the 7x4 (28 class) SOMs, four classes were 

grouped together in each of the corners while six classes were grouped together in the 

center (Figure 3). This configuration resulted because corner classes were spread further 

apart (in distance) than those in the center. Less classes were grouped at the corners 

because the spread in classes is larger, resulting in higher error with surrounding classes. 

The same method was used to group cases for the 6x3 (18 class) SOMs, shown in Figure 

4. From there the average synoptic patterns could be plotted and the average bias for the 

new patterns was recalculated. This method of grouping together patterns from the 

original SOM rather than creating a new SOM with fewer classes was used to allow for 

the defining features of the SOM to still be distinguishable rather than being smoothed 

out by the SOM generation process. 
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Figure 4. Euclidian distance of each class from class 1 (upper left) for the SGP CDF50 SOM. Bold black boxes 

indicated which classes where averaged together for statistical analysis of 6x3 SOMs. 

 

  

Figure 3. Euclidian distance of each class from class 1 (upper left) for the SGP CDF90 SOM. Bold black boxes 

indicated which classes where averaged together for statistical analysis of 7x4 SOMs. 

Figure 4. Euclidian distance of each class from class 1 (upper left) for the SGP CDF50 SOM. Bold black boxes 

indicated which classes where averaged together for statistical analysis of 6x3 SOMs. 
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To calculate whether the differences in the biases were statistically significant 

between grouped SOM classes, a z-test was used (Equation 1).  

𝒛 =
(𝒙𝟏̅̅̅̅ −𝒙𝟐̅̅̅̅ )

(𝑽�̂�𝒓[𝒙𝟏̅̅̅̅ −𝒙𝟐̅̅̅̅ ])
𝟏
𝟐⁄  

  ( 1 ) 

For this study, the null hypothesis represents the situation where the mean precipitation 

bias being compared between classes is equal. To reject this hypothesis at the 95% 

significance level, the numerator must be approximately double the denominator (z ≥ 

1.96). Results from these tests are discussed in Chapter III. 

  



19 
 

 

 

 

CHAPTER III 

RESULTS 

General Characteristics 

Prior to investigating the SOMs, average biases were calculated for the three sets 

of cases, and these biases were calculated for the entire forecast period of each case 

(1200-1100 UTC). These biases were further broken down into 6-hr increments 

throughout the day to evaluate how the precipitation bias evolved (Table 3). A few 

notable properties stand out and these results are consistent with work from Goines and 

Kennedy (2017). First, NSSL WRF simulations generally over predict total daily 

precipitation, regardless of region. Second, the positive bias is associated with a strong 

diurnal signal in convection, as seen by larger positive biases between 1800-2300 UTC.  

This positive bias is offset by negative biases during the overnight hours (0600-1100 

UTC) for nearly every region except the NE.  The CDF50 sets of cases for the MW, GC, 

and SGP regions show that the negative bias for the daily average is due to a strong, 

negative nocturnal precipitation bias which overcomes the positive bias from earlier in 

the day. In the remaining regions for the CDF50 cases, positive biases are lower than the 

more comprehensive lists of cases, again because of the strong negative bias occurring 

overnight for these higher precipitation cases. For these regions, the overnight negative 
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bias is not high enough to balance out the daytime positive bias. This suggests that 

overall positive biases are the result of weaker precipitating cases, because the negative 

nocturnal bias is dominant for the heavier precipitation cases. Further, the significant 

overnight negative biases predominately occur in regions where propagating, nocturnal 

convection occurs and contributes significantly to observed precipitation (Carbone et al. 

2002). This result is consistent with Goines and Kennedy (2017) who found shorter 

precipitation streaks within Hovmöller diagrams across this region for the NSSL WRF 

model. 

Table 3. Average precipitation bias for the SOMs. Biases are separated by time period; total refers to the entire day 

(1200-1100 UTC). Color shading, ranging from dark blue (strongly negative) to white (near zero) to dark red (strongly 

positive), is used to more easily see the patterns in this table. 

Region SOM Cases Average Bias (mm)                                                                                                                                                                Description 

      Total 

1200 to 

1700 UTC 

1800 to 

2300 UTC 

0000 to 

0500 UTC 

0600 to 

1100 UTC   

SGP climo 1366 0.24 0.13 0.23 0.13 -0.25 all days                                                                                       

  cdf90 387 -0.38 0.10 0.39 0.15 -1.02 at least 3mm of precip 

  cdf50 106 -2.90 -0.03 0.20 -0.39 -2.68 at least 12mm of precip 

NP climo 1374 0.57 0.13 0.28 0.20 -0.02 all days 

  cdf90 421 0.99 0.21 0.53 0.43 -0.19 at least 2mm of precip 

  cdf50 111 0.25 0.20 0.72 0.09 -0.76 at least 8mm of precip 

MW climo 1367 0.46 0.02 0.39 0.15 -0.10 all days 

  cdf90 516 0.49 -0.07 0.67 0.28 -0.39 at least 2 mm of precip 

  cdf50 216 -0.31 -0.15 0.88 -0.02 -1.03 at least 8 mm of precip 

GC climo 1369 0.74 0.20 0.50 0.05 -0.01 all days 

  cdf90 505 0.90 0.29 0.65 0.04 -0.08 at least 3 mm of precip 

  cdf50 156 -0.12 -0.18 0.41 -0.04 -0.30 at least 9 mm of precip 

NE climo 1335 0.64 0.11 0.41 0.03 0.10 all days 

  cdf90 436 0.93 0.09 0.70 -0.06 0.19 at least 3 mm of precip 

  cdf50 131 0.31 -0.19 0.46 -0.34 0.39 at least 10 mm of precip 
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Example SOM 

To illustrate how the SOM technique works, Figure 5 shows a plot of the 500 hPa 

winds and geopotential heights for 20 May 2013, one of the precipitation cases selected 

for SGP. The SOM here is for the SGP CDF90 cases (which include 20 May 2013) at 500 

hPa, and shows patterns ranging from troughs on the left side of the SOM to flow out of 

the southwest or northwest in other areas of the SOM (Figure 6). This case had strong 

upper-level flow out of the southwest associated with an upper-level trough. The SOM 

precipitation domain is outlined in blue on the figure. On the SOM this is a class that also 

has strong flow out of the southwest. Figure 7 shows the mean Euclidian distance - or 

average error - between that individual case and each class, showing how the case is 

classified to the class that is the close match (has the lowest error). This is a way to 

illustrate how the SOM technique matches individual cases to classes. 

Figure 5. The 500 hPa analysis from the NARR for 0000 UTC on 20 May 2013. Solid black lines are geopotential 

heights (meters) while wind magnitudes (knots) are plotted using the traditional station model (wind speed and 

direction) as well as shaded. 
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Figure 6. The 500 hPa height anomalies for a 7x4 (28-class) SOM centered on SGP. Positive (negative) height 

anomalies are represented by red (blue) shades. The black box identifies the class in which the 20 May 2013 case was 

matched to. 

Figure 7. Euclidian distance for 20 May 2013 on the SGP CDF90 SOM. Error values are unitless.  
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Southern Great Plains (SGP) 

 The climatology SOM, which includes precipitating and non-precipitating days, 

for the SGP region is shown in Figure 8 (near-surface analyses), and Figure 9 (500 hPa 

analyses). SGP is characterized by synoptic patterns ranging from mid-latitude cyclones 

under southwest flow aloft (upper-left side of the SOM) to upper-level ridging and 

northwest flow aloft associated with surface high pressure (bottom-right side of the 

SOM). Nested within these climatological patterns are regimes conducive for 

precipitation which are of interest for this study (Figure 10). Not surprisingly, classes 

with higher precipitation totals are generally found on the left-hand side of the SOM. 

While surface patterns vary across these classes, the broad categorizing feature of these 

states is southwesterly flow at 500 hPa (Figure 9). A few precipitating classes are found 

outside of this region. Along the top-right side of the SOM, there is a region with higher 

precipitation totals (Figure 10). Under these states, there exists weak low pressure (Figure 

8; top right) and flow out of the northwest. These patterns also tend to see higher 

precipitation amounts overnight (0600-1100 UTC) than during the rest of the day (Figure 

11). 
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Figure 8. Near-surface analyses for the 9x6 (54-class) SGP climatology SOM. MSLP is contoured with dashed lines 

while filled contours represent 900 hPa RH. Cool (warm) colors represent drier (moister) air. 

 

 

 

Figure 9. Climatology SOM for SGP 500 hPa geopotential height anomalies. Blues indicated negative height anomaly 

and red indicates positive height anomaly. 
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Figure 10. Daily average precipitation for the SGP climatology SOM. 

 

Figure 12. Daily average precipitation bias for the SGP climatology SOM. 
Figure 11. Average precipitation in six-hour increments for the SGP climatology SOM. 1200-1700 UTC (a), 1800-2300 

UTC (b), 0000-0500 UTC (c), 06000-1100 UTC (d). 

a b 

c d 
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Biases for the NSSL WRF vary across the climatological SOM (Figure 12). 

Higher bias amounts, whether positive or negative, tend to occur for the classes on the 

left side that see higher precipitation amounts. However, as the day progresses a pattern 

begins to develop in the bias. While daytime (1200-1700 UTC and 1800-2300 UTC) 

precipitation bias is mostly positive, precipitation bias overnight (0000-0500 UTC and 

0600-1100 UTC) becomes negative (Figure 13). This is seen across most of the SOM and 

also with the patterns in the upper-right where there is the smaller region of higher 

precipitation amounts. It is also worth noting that there is more variability in precipitation 

amounts overnight and the highest precipitation amounts occur during this time. 

 

Figure 12. Daily average precipitation bias for the SGP climatology SOM. 

 



27 
 

The selection of CDF90 and CDF50 cases largely falls within the higher 

precipitation classes (Figures 14 and 15), as would be expected. Figure 16 shows the 

percent of cases in each class that had precipitation, and many of the classes with a high 

percentage of precipitation cases were among those selected. However, some classes that 

had CDF cases selected have lower percentages of days with precipitation occurring 

(precipitation amounts greater than .1 mm), indicating that the class has high variability 

in rainfall meaning either a lot of precipitation occurs or none at all.  

 

 

 

Figure 13. Average precipitation bias in six-hour increments for the SGP climatology SOM. 1200-1700 UTC (a), 1800-

2300 UTC (b), 0000-0500 UTC (c), 0600-1100 UTC (d). 

a b 

c d 
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Figure 14. Distribution of CDF90 classes within the SGP climatology SOM. 

Figure 15. Distribution of CDF50 classes within the SGP climatology SOM. 
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Figure 16. Percent of days in each class with precipitation. 

CDF90 

 Generation of SOMs based on only precipitating days yields more variation in 

patterns responsible for these events. Figures 17 and 18 depict the near-surface and 

upper-level analyses, respectively, for the CDF90 SOM. SGP is characterized by a 

variety of patterns responsible for precipitation events.  In lee of the Rocky Mountains, 

the majority of cases have a dryline in the west.  Stronger forced events are found on the 

right hand side (RHS) of the SOM, as evident by the stronger surface lows (Figure 17) 

and coincident with the faster upper level flow implied by upper level troughs with 

tightly packed height anomalies (Figure 18). Additional patterns of note from Figures 17 

and 18, respectively, include warm fronts under shortwave troughs (upper left of SOM) 

and relatively weak surface forcing underneath northwesterly flow (bottom center of 
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SOM). While cases are relatively well distributed across the classes of the SOM, some 

variability does exist in the number of cases classified to each class, particularly in the 

upper-center of the SOM (Figure 19).  

 

 

Figure 17. Near-surface analyses for the SGP CDF90 SOM. 

 

Figure 18. The 500 hPa geopotential height anomalies for the SGP CDF90 SOM. 
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Figure 19. Number of cases in each class of the SGP CDF90 SOM. 

Average daily precipitation amounts for the SOM range from less than 7 mm to 

nearly 19 mm, with higher amounts (>13 mm) occurring along the edges (Figure 20). 

Because the patterns on the edges of the SOM tend to represent those that are less similar 

to other patterns, this suggests that these higher precipitation patterns are not as well 

represented. As precipitation evolves throughout the day, Figure 21 shows that the 

patterns in the upper-left associated with surface warm fronts and upper-level troughs are 

more likely to have precipitation in the morning (1200-1700 UTC) and daytime (1800-

2300 UTC).  Meanwhile, patterns on the right with stronger cyclones and upper-level 

forcing or patterns with weaker surface patterns and northwest flow aloft have more 

precipitation during the late afternoon (0000-0500 UTC) and overnight (0600-1100 

UTC).  
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Figure 20. Daily average precipitation for the SGP CDF90 SOM. 

 Figure 21. Average precipitation in six-hour increments for the SGP CDF90 SOM. 1200-1700 UTC (a), 1800-2300 UTC 

(b), 0000-0500 UTC (c), 0600-1100 UTC (d). 

a b 

c d 
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WRF precipitation biases for the SGP CDF90 SOM are provided in Figure 22. 

Despite class-to-class variability, patterns of bias are present across the SOM. In 

particular, the highest positive biases are found in the upper-left corner associated with 

high RH and surface warm fronts beneath an upper-level trough. The strongest negative 

biases are found in the upper-right with the stronger surface and upper-level forcing. 

Finally, an area of weaker negative biases (Figure 22) is found for the weakly forced 

events (Figure 17) under northwest upper level flow (Figure 18) in the bottom-center of 

the SOM. The latter cases and the stronger cyclone cases are responsible for the 

significant negative bias found for SGP during the overnight hours (0600-1100 UTC, 

Table 3), and these results are supported by 6-hr precipitation biases (Figure 23). While 

morning and early afternoon biases are predominately positive, biases during the 

overnight period are largely negative. The few cases that have positive biases during this 

latter period are confined to classes that have warm fronts.  Overall, patterns responsible 

for significant nocturnal precipitation are confined to the right side of the SOM. These 

patterns have a high percentage of cases with maximum precipitation occurring overnight 

for each class, indicating that these patterns are responsible for significant, nocturnal 

precipitation events (Figure 24). 
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Figure 23. Average precipitation bias in six-hour increments for the SGP CDF90 SOM.  1200-1700 UTC (a), 1800-

2300 UTC (b), 0000-0500 UTC (c), 0600-1100 UTC (d). 

Figure 22. Daily average precipitation bias for the SGP CDF90 SOM. 

a b 

c d 
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Figure 24. SGP CDF90 percent of cases in each class with maximum six-hour accumulated precipitation occurring for 

0600-1100 UTC. 

Statistical Analysis 

 After grouping the SGP CDF90 patterns as described previously (Chapter II), the 

results are Figures 25, 26, and 27.  The key synoptic pattern features of the original SOM 

are retained even with the additional smoothing due to averaging, with the stronger 

drylines on the right of the SOM and weaker surface patterns with upper-level flow from 

the northwest on the left. Statistical significance for the averaged SOM is shown in Table 

4. Recall that the z-test is being used to show how different the resulting averaged groups 

are from each other. Statistical significance varies across the averaged SOM. For 

example, classes 1 and 2 are not statistically different from each other, while classes 1 

and 3 are. This makes sense because the first two classes have similar positive biases 

whereas class 3 is the strongest negative class in the averaged SOM. Along with class 5 
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which also has a negative bias, these classes have the strongest statistical separation from 

the other patterns. The number of cases contributing to each class is shown in Figure 28, 

and center classes have more cases because there are more original CDF90 classes 

contributing based on the previously determined grouping. 

 

 

Figure 25. Near-surface analyses for the SGP CDF90 averaged SOM. 

Figure 26. The 500 hPa geopotential height anomalies for the SGP CDF90 averaged SOM. 

1 2 3 

4 5 6 

1 2 3 

4 5 6 
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Figure 27. Daily average precipitation bias for the SGP CDF90 averaged SOM. 

 

Table 4. Z-Test statistic results for the SGP CDF90 SOM. Statistically significant results in bold. 

Comparison 

Class 

1 2 3 4 5 6 

1 0 -.797 -4.228 -1.571 -3.041 -.878 

2 .797 0 -3.311 -.668 -1.991 -.089 

3 4.228 3.311 0 3.055 2.149 3.169 

4 1.571 .668 -3.055 0 -1.504 .559 

5 3.041 1.991 -2.149 1.504 0 1.843 

6 .878 .089 -3.169 -.559 -1.843 0 

 

 

 

 

 

 

1 2 3 

4 5 6 
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Figure 28. Number of cases in each class of the SGP CDF90 averaged SOM. 

CDF50 

Many of the CDF50 cases came from the strongest surface cyclone classes which 

were located in the upper-right of the CDF90 SOM (Figure 29). Others come from 

CDF90 classes with upper-level troughing or northwest flow. While similar to CDF90, 

the negative overnight bias signal for the CDF50 cases is much stronger, likely because 

they are higher precipitation events which were previously shown to have a negative 

nocturnal bias in the CDF90 SOM (Table 3).  

1 2 3 

4 5 6 
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Figure 29. Plot depicting where the SGP CDF50 cases are located on the SGP CDF90 SOM. 

Overall, the atmospheric patterns have higher RH values for many of the classes 

(Figure 30) and upper-level forcing is stronger based on the gradient in geopotential 

height anomaly (Figure 31). As would be expected based on the selection of the highest 

50% of precipitation days, precipitation amounts are higher than for the CDF90 cases, 

particularly for classes with higher humidity (Figure 32). The bias is negative for nearly 

every pattern (Figure 33), with the exception being the far bottom right class in the SOM, 

which is positive. This class resembles the warm front classes from the CDF90 SOM 

with strong forcing aloft, which also had positive precipitation biases. While most of the 

precipitation for the SOM occurs from 0000-0500 UTC and 0600-1100 UTC, the class 

with the highest positive bias has the most precipitation in the morning and daytime hours 

(Figure 34). This class also has a positive bias in the model as the day progresses, as 
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opposed to the other classes which have an overwhelmingly negative bias, especially 

overnight (Figure 35).  

 

 

Figure 30. Near-surface analyses for the SGP CDF50 SOM. 

 

  

Figure 31. The 500 hPa geopotential height anomalies for the SGP CDF50 SOM. 
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Figure 32. Daily average precipitation for the SGP CDF50 SOM. 

Figure 33. Daily average precipitation bias for the SGP CDF50 SOM. 



42 
 

    
Figure 35. Average precipitation bias in six-hour increments for the SGP CDF50 SOM. 1200-1700 UTC (a), 1800-2300 UTC 

(b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

Figure 34. Average precipitation in six-hour increments for the SGP CDF50 SOM. 1200-1700 UTC (a), 1800-2300 

UTC (b), 0000-0500 UTC (c), 0600-1100 UTC (d). 

a b 

c d 

a b 

c d 
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Cases are not as well distributed for this SOM, with higher numbers of cases 

occurring in patterns along the edge of the SOM (Figure 36). This suggests that there is 

variability in the synoptic patterns here and the more extreme, or outlier, patterns are not 

as well represented by the SOM. 

Figure 36. Number of cases in each class of the SGP CDF50 SOM. 

Statistical Analysis 

Grouping the SGP CDF50 classes together as described previously results in 

Figures 37, 38, and 39. As before, the key pattern features are retained in this averaged 

SOM. The only positive class is in the lower right of the averaged SOM, where the high 

positive bias associated with a strong warm front in the full CDF50 SOM was located. 

Statistical significance for the averaged SOM are shown in Table 5. Here the only 

statistical significance comes from class 4 being different from classes 3 and 6. Class 4 is 
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a weaker surface pattern under northwest flow aloft, while classes 3 and 6 are stronger 

dryline classes with either zonal or southwest flow aloft. The results of the z-test show 

that there is less statistical difference between patterns for the grouped CDF50 SOM in 

comparison to the grouped CDF90 SOM. This is likely caused by less cases contributing 

to the SOM and weakening the statistics (Figure 39). Another contributing factor to less 

significance is that the bias values are more similar to each other in comparison to that 

seen in the SGP CDF90 SOM.  

   

  

Figure 37. Near-surface analyses for the SGP CDF50 averaged SOM. 

1 2 3 

4 5 6 
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Figure 39. Daily average precipitation bias for the SGP CDF50 averaged SOM.  

 

 

Figure 38. The 500 hPa geopotential height anomalies for the SGP CDF50 averaged SOM.

1 2 3 

4 5 6 

1 2 3 

4 5 6 
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Table 5. Z-Test statistic results for the SGP CDF50 SOM. Statistically significant results in bold.  

Comparison 

Class 

1 2 3 4 5 6 

1 0 -.598 -.820 .513 -.706 .789 

2 .598 0 -.307 1.697 -.102 1.555 

3 .820 .307 0 1.946 .240 1.752 

4 -.513 -1.1697 -1.946 0 -2.119 .534 

5 .706 .102 -.240 2.119 0 1.723 

6 -.789 -1.555 -1.752 -.534 -1.723 0 

 

Figure 40. Number of cases in each class of the SGP CDF50 averaged SOM. 

Discussion 

Overall, the model displays diurnal tendencies with an over prediction of daytime 

precipitation and an under prediction of nocturnal precipitation. Daytime precipitation 

occurs in very small amounts for several classes but the classes with the higher 

precipitation events are largely due to patterns where high RH and surface warm fronts 

coincide with upper-level troughs. Nocturnal precipitation is driven by patterns with 

1 2 3 

4 5 6 



47 
 

strong forcing at the surface and aloft (tighter pressure or height gradients) or by patterns 

with weaker surface forcing and northwest flow aloft. Meteorologically, these are 

believed to be MCSs that originated well away from the domain, then propagated over 

the region during these late hours, a feature seen in Goines and Kennedy (2017). It is well 

documented that MCSs account for a significant amount of warm season precipitation 

across the plains, particularly during June – August (Fritsch et al. 1986) and that these 

MCSs have a large nocturnal component (Maddox 1980; Carbone and Tuttle 2008). This 

is supports the hypothesis of MCSs being responsible for the nighttime negative model 

bias in that the cases contributing to these patterns occur later in the year when MCS 

activity is more common (Figure 41) and the 6-hour time period with highest 

precipitation totals for these patterns is 0600-1100 UTC (Figure 24). In Figure 24 the 

patterns in the upper right with strong forcing at the surface and aloft also have a high 

percentage of cases with maximum precipitation occurring overnight. For these cases, it 

is hypothesized that the convection began as isolated convection and grew upscale as the 

day progressed. These patterns also have a higher negative precipitation bias overnight 

(Figure 23).  
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Northern Plains (NP) 

The NP region experiences a range of patterns, from strong and moist mid-

latitude cyclones with shortwave troughs or flow out of the southwest aloft to weaker and 

drier patterns with zonal flow aloft (Figures 42 and 43). Compared to SGP, the mid-

latitude cyclones have higher relative humidity and stronger upper-level winds. This 

region is not prone to dry lines, and thus, strong gradients in humidity are not common 

within the SOM. Precipitating patterns are primarily confined to the lower-left area of the 

SOM (Figure 44). While precipitation is largely confined to cases with strong 

southwesterly flow aloft, precipitation increases for several classes with northwest flow 

aloft, similar to what was found at SGP. Unlike the former location, however, this local 

maximum is less pronounced.  These are the same patterns that have more precipitation 

occurring in the late afternoon and evening (Figure 45). Patterns with heaviest 

precipitation amounts are also the classes with the highest precipitation bias in the model 

Figure 41. Distribution of SGP CDF90 cases that occur for each pattern by month. April, (a), May (b), June (c), July (d), 

August (e), September (f). 

a b c 

d e f 



49 
 

(Figure 46). While the diurnal trend is less obvious compared to SGP, there is clearly 

more positive bias during the daytime and negative bias overnight (Figure 47).  

 

Figure 42. Near-surface analyses for the 9x6 (54-class) NP climatology SOM. 

 

 

 

Figure 43. Climatology SOM for NP 500 hPa geopotential height anomalies.  
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Figure 44. Daily average precipitation for the NP climatology SOM. 

  

 

 

 

 

 

 

 

 

Figure 45. Average precipitation bias in six-hour increments for the NP climatology SOM. 1200-1700 UTC (a), 1800-

2300 UTC (b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

a b 

c d 
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Figure 46. Daily average precipitation bias for the NP climatology SOM. 

Figure 47. Average precipitation bias in six-hour increments for the NP climatology SOM. 1200-1700 UTC (a), 1800-

2300 UTC (b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

Figure 46. Daily average precipitation bias for the NP climatology SOM. 

a b 

c d 
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The classes that contribute to the CDF90 and CDF50 SOMs for the region 

(Figures 48 and 49) are generally in the lower-left region of the SOM. However, several 

cases come from the right side of the SOM, where many of the classes have a high 

percentage of cases with precipitation occurring (Figure 50). For the selected CDF50 

cases, these come from slightly right by a column in the SOM than the CDF90 cases. 

This also happens to be where the few negative or lower precipitation bias classes are, 

suggesting that these heavier precipitation cases are the nocturnal MCS events. In SGP 

many of the nocturnal events occurred for cases with southwesterly flow aloft and surface 

cyclones. While the cyclones for this region don’t have the classic dryline setup seen in 

SGP, the same upper level flow pattern over low level cyclones exhibits the negative 

precipitation bias which was seen for the higher precipitation cases in the SGP.  

Figure 48. Distribution of CDF90 classes within the NP climatology SOM. 
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Figure 49. Distribution of CDF50 classes within the NP climatology SOM.

Figure 50. Percent of days in each class with precipitation. 
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CDF90  

Patterns for the NP CDF90 SOM are similar to the climatology SOM and range 

from mid-latitude cyclones with upper-level troughs on the right side of the SOM to 

weaker forced surface patterns with zonal or southwesterly flow aloft (Figures 51 and 

52). Regimes with higher precipitation totals (Figure 53) occur in the upper right corner 

of the SOM, where lower level patterns indicate high moisture levels on the north-to-

northwest side of a low pressure center with flow aloft primarily out of the southwest. 

 

 

Figure 51. Near-surface analyses for the NP CDF90 SOM. 
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Figure 52. The 500 hPa geopotential height anomalies for the NP CDF90 SOM. 

 

Figure 53. Daily average precipitation for the NP CDF90 SOM. 

Precipitation biases are overwhelmingly positive for this region (Figure 54), as 

expected based on Table 3. Patterns that include cases which primarily occur overnight 
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contribute to the few classes that have negative biases, on the left side of the SOM. 

Understanding the negative bias in this case requires a closer look at the patterns. While 

near-surface patterns are similar across most of the left side of the SOM, upper level flow 

has some variability. The upper left corner features southwesterly flow and the lower left 

corner features northwesterly flow, while the middle patterns which still had the positive 

bias tend to have more zonal flow aloft. These changes in upper level flow have a 

noticeable impact on model bias while lower level patterns remain the same.  

 

Figure 54. Daily average precipitation bias for the NP CDF90 SOM. 

While the signal for negative precipitation bias associated with MCS activity is 

harder to discern, the NP does in fact see this property as well. Precipitation plots for the 

SOM show that precipitation occurs during the daytime for the warm front classes on the 

right side of the SOM and becomes nocturnal for classes on the left side, which are the 



57 
 

weaker forced classes (Figure 55). Precipitation bias throughout the day evolves from 

nearly completely positive during the daytime to a portion on the left side of the SOM 

with a strong negative bias from 0600-1100 UTC (Figure 56). Cases for SOM tend to be 

evenly distributed, except for the lower-left corner of the SOM (Figure 57) where the 

weaker surface patterns with zonal to northwest flow aloft are located. Here a class such 

as the very lower-left corner has over 10 more cases classified to it than the neighboring 

classes. This indicates that the SOM is most likely not capturing the full variability in 

patterns.  

 

    

  

Figure 55. Average precipitation in six-hour increments for the NP CDF90 SOM 

a b 

c d 
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 Figure 56. Average precipitation bias in six-hour increments for the NP CDF90 SOM. 1200-1700 UTC (a), 1800-2300 

UTC (b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

Figure 57. Number of cases in each class of the NP CDF90 SOM. 

a b 

c d 
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Statistical Analysis 

 Grouping the patterns retains the same general pattern properties that are seen in 

the larger SOM, as was also the case for the SGP region (Figures 58 and 59). The 

stronger cyclone classes with higher moisture and warm fronts are on the right side of the 

SOM while the weaker surface patterns are to the left (Figure 58). Pronounced troughs 

remain in the averaged SOM (Figure 59) and bias tendencies are as expected from 

previous results with a gradient in negative to slightly positive biases on the LHS and 

strong positive biases on the RHS (Figure 60).  

 

 

Figure 58. Near-surface analyses for the NP CDF90 averaged SOM. 
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Figure 59. The 500 hPa geopotential height anomalies for the NP CDF90 averaged SOM. 

 

Figure 60. Daily average precipitation bias for the NP CDF90 averaged SOM. 
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Statistically, classes 3 and 6, the classes with the highest positive bias, are 

significantly different for the other classes in the averaged SOM, excluding each other 

(Table 6). Class 4, the negative precipitation bias class, is significantly different from the 

three highest positive bias classes. It is likely that the small group of negative bias that 

was seen for the NP CDF90 SOM in the upper left (Figure 54) is smoothed out because 

of some grouping with positive bias classes. Because there are fewer classes with 

negative precipitation biases in the NP region, the signal averages out when the classes 

are grouped together for analysis. The number of cases contributing to each class is 

shown in Figure 61. 

Table 6. Z-Test statistic results for the NP CDF90 SOM. Statistically significant results in bold.  

Comparison 

Class 

1 2 3 4 5 6 

1 0 .667 2.803 -.685 1.202 2.450 

2 -.667 0 2.461 -1.574 .564 2.053 

3 -2.803 -2.461 0 -3.859 -2.209 -.643 

4 .685 1.574 3.859 0 2.358 3.642 

5 -1.202 -.564 2.209 -2.358 0 1.748 

6 -2.450 -2.053 .643 -3.642 -1.748 0 



62 
 

Figure 61. Number of cases in each class of the NP CDF90 averaged SOM. 

CDF50 

The CDF50 cases for the NP occur within the CDF90 SOM in the upper-right of 

the SOM (Figure 62). This also shows that NP tends to see less nocturnal precipitation 

when compared to the SGP region. The patterns represented in the SOM are strong mid-

latitude cyclones with high moisture accompanied by flow aloft out of the south or 

southwest, or with shortwave troughs (Figures 63 and 64). Many of the cyclone patterns 

on the left side of the SOM are warm front classes. The drier surface patterns represented 

are accompanied by more zonal flow aloft. 

1 2 3 

4 5 6 
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Figure 62. Plot depicting where the NP CDF50 cases are located on the NP CDF90 SOM. 

Figure 63. Near-surface analyses for the NP CDF50 SOM. 
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Figure 64. The 500 hPa geopotential height anomalies for the NP CDF50 SOM. 

Precipitation amounts tend to be similar across the SOM, with the cyclones in the 

lower right producing a little more precipitation than the other classes (Figure 65). Two 

classes in the lower right of the SOM exhibit precipitation values much higher than other 

classes in the SOM. The highest class in the lower center likely sees the highest 

precipitation values because of optimal placement of the warm front (Figure 63) for this 

class, whereas other classes see the warm front shifted slightly farther north. The other 

class in the far lower right likely sees higher precipitation amounts because of the higher 

RH values (Figure 63) seen here compared to the other classes. The bias values are of 

higher magnitude for these CDF50 cases, with larger values for both the positive and 

negative precipitation bias patterns (Figure 66). While the total bias in Table 3 does not 

become negative here as it did for SGP, it does decrease. This is not because there is less 

bias for this SOM, but rather that the negative overnight bias is not enough to overcome 

the positive bias seen across most of the patterns for the rest of the day. This SOM also 

sees more wide spread precipitation during the afternoon (0000-0500 UTC) across most 
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of the patterns. However, the cyclones on the right do see increased precipitation amounts 

during the daytime (1800-2300 UTC) and the classes on the left with weaker surface 

forcing see increased precipitation amounts during the overnight hours (0600-1100 UTC; 

Figure 67). Even with increased precipitation amounts for 0000-0500 UTC, the negative 

precipitation bias continues to dominate with overnight precipitation, indicating that the 

model does not handle nocturnal precipitation well (Figure 68). Many of the strongest 

negative bias classes are on the LHS of the SOM, where the synoptic patterns and heavy 

0600-1100 UTC precipitation amounts indicate that these are likely propagating 

nocturnal MCSs. This SOM also shows a lot of variability in the distribution of cases 

amongst classes (Figure 69). Again, this indicates more variability in the patterns 

represented in this SOM. 
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Figure 65. Daily average precipitation for the NP CDF50 SOM. 

Figure 66. Daily average precipitation bias for the NP CDF50 SOM. 
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Figure 67. Average precipitation in six-hour increments for the NP CDF50 SOM. 1200-1700 UTC (a), 1800-2300 UTC 

(b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

Figure 68. Average precipitation bias in six-hour increments for the NP CDF50 SOM. 1200-1700 UTC (a), 1800-2300 

UTC (b), 0000-0500 UTC (c), and 0600-1100 UTC (d). 

a b 

c d 

a b 

c d 
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Figure 69. Number of cases in each class of the NP CDF50 SOM.  

Statistical Analysis 

The warm front cases on the right and the zonal/northwest flow cases on the left 

(Figures 70 and 71) keep the strong precipitation bias signal that was associated with the 

patterns in the larger SOM (Figure 72). Many of these classes are significantly different 

from one another, something not seen in the SGP CDF50 grouped SOM. While there are 

approximately the same number of cases (Figure 73) in the SGP and NP SOMs, the 

classes here have a higher range in bias values, whereas the SGP CDF50 was largely 

negative. This helps increase the significance of the NP CDF50 averaged classes.  

Statistically, the strong negative class is significantly different from the three positive 

bias classes meaning that the WRF model performs differently under these patterns 

(Table 7).  
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Figure 70. Near-surface analyses for the NP CDF50 averaged SOM. 

Figure 71. The 500 hPa geopotential height anomalies for the NP CDF50 averaged SOM. 

 

 

1 2 3 

4 5 6 

1 2 3 

4 5 6 



70 
 

Figure 73. Number of cases in each class of the NP CDF50 averaged SOM.  

Figure 72. Daily average precipitation bias for the NP CDF90 averaged SOM. 

1 2 3 

4 5 6 

1 2 3 
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Table 7. Z-Test statistic results for the NP CDF50 SOM. Statistically significant results in bold. 

Comparison 

Class 

1 2 3 4 5 6 

1 0 .852 2.124 1.190 2.855 2.108 

2 -.852 0 .843 .255 1.610 .836 

3 -2.124 -.843 0 -.585 1.113 -.005 

4 -1.190 -.255 .585 0 1.419 .578 

5 -2.855 -1.610 -1.113 -1.419 0 -1.112 

6 2.108 -.836 .005 -.578 1.112 0 

 

Discussion 

For the NP, precipitation occurs for classes with surface cyclones with flow aloft 

out of the southwest or weaker surface patterns with flow out of the northwest aloft. 

Overall the forcing aloft is stronger than was previously shown for SGP, due to the fact 

that this stronger forcing is necessary to carry moisture far enough into the region to have 

convection occur. Variability in the upper level flow impacts whether the model will over 

predict or under predict precipitation when surface patters are similar. The model over 

predicts precipitation amounts for warm front patterns and under predicts precipitation 

for the weaker surface patterns with northwest flow aloft. These patterns with flow out of 

the northwest and weaker surface features are common patterns for MCSs. These cases 

also occur most frequently in July and August (Figure 74), when MCS activity is more 

frequent (Fritsch et al. 1986). The timing of 6-hr precipitation totals supports this 

hypothesis as these patterns experience their maximum 6-hour precipitation from 0600-

1100 UTC (Figure 75). 
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Figure 75. NP CDF90 percent of cases in each class with maximum six-hour accumulated precipitation occurring for 

0600-1100 UTC. 

 

Figure 74. Distribution of NP CDF90 cases that occur for each pattern by month. April, (a), May (b), June (c), 

July (d), August (e), September (f). 
 

d 

a b c 

e f 
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Case Study  

To test the usefulness of these results in an applied setting, a case study was 

conducted. Observed data at the surface and upper levels were taken at 0000 UTC on 13 

June 2017 and 24-hour accumulated precipitation from Stage IV and NSSL WRF were 

obtained from NCEP’s Environmental Modeling Center (EMC) precipitation verification 

page. Synoptic patterns from SPC (Figure 76) indicate that the patterns most closely 

resemble class 1 from the NP CDF90 averaged SOM (Figures 58 and 59). Figure 60 

indicated that the model should slightly over predict precipitation amounts for this 

regime; however, the precipitation verification (Figure 77) indicates that precipitation 

amounts were under estimated. It is important to note that these patterns did exhibit a 

negative bias in the full NP CDF90 SOM (Figure 54) but these features were smoothed 

out in the averaging process, which was discussed in the NP CDF90 statistical analysis 

section.  

  Figure 76. Surface (left) and 500 hPa (right) analysis for the 13 June 2017 case study. 
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Figure 77. Accumulated precipitation amounts for NSSL WRF (left) and Stage IV (right) for the 13 June 2017 case study. 
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CHAPTER IV 

CONCLUSIONS 

 

 This study evaluated the skill of the NSSL-WRF model at simulating precipitation 

amounts for varying synoptic regimes as an alternative to traditional verification 

methods. Analysis utilized NARR data for constructing synoptic patterns and Stage-IV 

data for observational precipitation. The SOM technique allowed for objective grouping 

of selected cases for analysis by regime. SOMs were trained using NARR data over the 

region of interest and iterated over to converge to a final solution where a continuum of 

synoptic regimes was represented. Classifications within the SOM were then grouped 

together for statistical analysis to determine the significance of the results using a z-test. 

 In the SGP region, precipitation biases are largely dependent on forcing 

and timing. Warm front cases produce a positive bias and precipitation occurs throughout 

the day.  Cases with the most negative bias are those with strong cyclones and upper-

level southwest flow. These are the cases where convection begins 0000-0500 UTC, 

likely as isolated convection, and continues through 0600-1100 UTC, likely growing 

upscale into and MCS. Negative bias is also prevalent for the cases of propagating MCSs 

which exhibit northwesterly flow aloft and are typically nocturnal for the region. Higher 

precipitation events yielded overwhelmingly negative bias across patterns with greater 

bias amount for these cases. It was shown that not only does the model struggle more 
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with the higher precipitation events, but these cases also occur more often overnight 

when the model struggles to produce enough precipitation. 

In the NP region, the model predominately has a high bias of precipitation. For 

this region, precipitation is driven by more strongly forced events as this is essential in 

transporting enough moisture into the region to support significant precipitation. Small 

variations in upper level patterns can yield significant differences in model bias over the 

region. While several classes exhibit weaker surface patterns that are generally the same, 

variations in the upper level flow lead to a negative precipitation bias for cases with 

upper level flow out of the southwest or northwest, but positive bias for cases with more 

zonal flow.  The negative trend in nocturnal precipitation is still apparent, though less 

common in the region. The higher precipitation cases show higher magnitude in bias, 

both positive and negative, indicating that while the model struggle to simulate 

precipitation amounts for high impact precipitation events. When those events happen to 

be nocturnal, precipitation is largely underestimated and when events occur during the 

daytime, which is more often the case in the NP, the model over predicts precipitation 

amounts. 

Overall, the model displays diurnal tendencies in both regions with an over 

prediction of daytime precipitation and an under prediction of nocturnal precipitation. 

Daytime precipitation is largely due to patterns with high RH and surface warm fronts 

with upper-level troughs. Nocturnal precipitation is driven either by patterns with strong 

forcing at the surface and aloft in SGP or by patterns with weaker surface forcing and 

northwest flow aloft in both regions. Meteorologically, the latter are believed to be MCSs 

that originated well away from the domain, then propagated over the region during these 
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late hours, a trend seen to be under predicted in Goines and Kennedy (2017), while the 

former are likely cases of isolated convection which grew upscale as the event 

progressed. This hypothesis is supported by research that has identified that not only are 

MCSs largely nocturnal (Maddox 1980), but that they are also responsible for the 

nocturnal precipitation maxima seen across the plains during the warm season (Carbone 

and Tuttle 2008). The problems with the model under predicting for the MCS patterns is 

of particular concern because this type of convection is responsible for a large portion of 

warm season convection, particularly later in the season in June – August (Fritsch et al. 

1986). In both regions the model struggles more with higher precipitation events. While 

the model struggles to produce enough precipitation overnight in both regions, these 

nocturnal events are more common in the SGP region. Results for the study determined 

that the patterns with the greatest bias amounts were significantly different from other 

classes after statistical testing.  

Future Work 

While model biases have been identified, questions still remain regarding the 

reasons for these biases. Is larger scale precipitation displacement occurring in the 

model? Is the model improperly simulating convective mode?  To address this, this work 

can be expanded to other areas to further examine model performance by synoptic 

regime, such as an object based analysis using Method for Object-Based Diagnostic 

Evaluation-Time Domain (MODE-TD). Such work could identify whether the model 

correctly predicts rainfall area, regions of convective cores and stratiform precipitation, 

or number of precipitation objects. This analysis would be useful in diagnosing how the 

model performs in simulating the appropriate convective mode for synoptic patterns. An 



78 
 

additional area of interest is applying this method for different microphysical schemes to 

determine whether these results are consistent or vary. Both will likely utilize simulations 

run for another facet of the Research to Operations grant, which funded this study. 
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