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ABSTRACT 

The hydraulic fracturing (also called fracturing, or fracking) technique has been widely 

applied in many fields, such as the enhanced geothermal systems (EGS), the improvement 

of injection rates for geologic sequestration of CO2, and for the stimulations of oil and gas 

reservoirs, especially for unconventional reservoirs with extremely low permeability. The 

key point for the success of hydraulic fracturing operations in unconventional resources is 

to connect and reactivate natural fractures and create the effective fracture network for fluid 

flow from pores into the production wells. To understand hydraulic fracturing technology, 

we must to understand some other affecting factors, e.g. in-situ stress conditions, reservoir 

mechanical properties, natural fracture distribution, and redistribution of the stress regime 

around the hydraulic fracture. Therefore, an accurate estimation of the redistribution of 

pore pressure and stresses around the hydraulic fracture is necessary, and it is very 

important to find out the reactivations of pre-existing natural fractures during the hydraulic 

fracturing process.  

Generally, fracture extension as well as its surround pore pressure and stress regime are 

affected by: poro- and thermoelastic phenomena as well as by fracture opening under the 

combined action of applied pressure and in-situ stresses. In this thesis, the previous studies 

on the hydraulic fracturing modeling and simulations were reviewed; a comprehensive 

semi-analytical model was constructed to estimate the pore pressure and stress distribution 

around an injection induced fracture from a single well in an infinite reservoir. With Mohr-
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Coulomb failure criterion, the natural fracture reactivation potential around the hydraulic 

fracture were studied. Then, a few case studies were presented, especially with the 

application in unconventional natural fractured shale reservoirs.  

This work is of interest in interpretation of micro-seismicity in hydraulic fracturing and in 

assessing permeability variation around a stimulation zone, as well as in estimation of the 

fracture spacing during hydraulic fracturing operations. In addition, the results from this 

study can be very helpful for selection of stimulated wells and further design of the re-

fracturing operations. 
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CHAPTER I 

INTRODUCTION 

1.1. Motivations 

Hydraulic fracturing is a widely used in recent decades as the most efficient stimulation 

technique to initiate a high permeability conduit of fluid in a low permeability reservoir. 

During the hydraulic fracturing operation, a fluid is injected into a well at a pressure high 

enough to fracture the reservoir formation. The process also can also cause opening up of 

natural fractures already present in the formation to improve the productivity of the 

reservoir, as illustrated in the Fig.1.1.  

 

Fig.1.1 Illustration of Hydraulic Fracturing (modified from Carbonell, 1996). 

It is just like the highway between cities and states, interacting with as many as possible 

county roads, connecting little towns and rural areas, and providing the most convenient 
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efficient way for the traffic (Natzke, et al., 2012). Hydraulic fractures are interacting and 

reactivating with natural fractures to form the fracture system as illustrated in an ideal 

fracture system as shown in Fig. 1.2. In fact, at the real reservoir environment, the hydraulic 

fracture could be very complicated by the natural joint system as shown in Fig. 1.3. 

Hydraulic fracturing is also connecting with pore spaces filled with energy fluid and 

providing the higher effective permeability for the low permeable matrix, so that the 

reservoir fluids can flow to the producing wells. 

 

Fig. 1.2 Ideal Fracture “Highway” System. 

For the past over 70 years since the first hydraulic fracturing treatment was done in 1947 

in Hugoton field (Gidley, 1989), the technique of hydraulic fracturing has been widely used 

in energy industry. Nowadays, hydraulic fracturing has become one of the most important 

technique in the stimulation of hydrocarbon wells for increasing oil and gas recovery (e.g., 
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Veatch et al., 1983a, 1983b; Yew, 1997; Economides and Nolte, 2000). More than 70% of 

the gas wells and 50% of the oil wells in North America are stimulated using hydraulic 

fracturing (e.g., Valko and Economides 1995). Moreover, hydraulic fracturing can also be 

applied in the in-situ stress measurement (e.g., Haimson, 1978; Shin et al., 2001), and 

geothermal reservoir stimulations (e.g., Murphy, 1983; Legarth, Huenges, and 

Zimmermann 2005; Nygren and Ghassemi 2005).   

 
Fig.1.3 Geometry of Fracture Network (Modified from Warpinski, 1987). 
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In the unconventional resources, including tight gas sandstones (TG), gas shale (GS), coal-

bed methane (CBM), and oil shale, the hydraulic fracture itself cannot increase too much 

of the production by the limitation of its size. Fortunately, all most all oil and gas reservoirs 

are natural fractured. The fracture network system, after stimulated by the hydraulic 

fracturing operations, can give orders of magnitude increase in effective permeability in 

the reservoirs.   

Therefore, the key point for the success of hydraulic fracturing operations in 

unconventional resources is to connect and reactivate natural fractures and create the 

effective fracture network for fluid flow from the tight pores into the production wells. 

However, to efficiently hydraulic fracturing the well and reactivate as much as possible the 

natural fractures is not an easy operation. This requires the understanding of the in-situ 

stress conditions, the reservoir mechanical properties, the natural fracture distributions, and 

the redistribution of the stress regime around the hydraulically induced fracture. Therefore, 

an accurate estimation of the redistribution of pore pressure and stresses around the 

hydraulic fracture is necessary, and it is very important to find out the reactivations of pre-

existing natural fractures during the hydraulic fracturing process.  

The fracture extension as well as pore pressure and stress regime around the fracture are 

affected by: poroelastic and thermoelastic phenomena, as well as by fracture opening under 

the combined action of applied pressure and in-situ stresses. A couple of numerical studies 

and analytical methods have been completed for the potential of natural fracture 
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reactivations which resulted from pressurization of the hydraulic fracture analyzation. 

However, most analytical methods could not consider all the details of the reservoir 

conditions, while the advanced numerical methods are too complex for practical field 

application. Therefore, the objective of this study is to provide a model more accurate than 

the simple analytical models and relatively easier-to-use than the numerical software for 

field application.  

1.2. Literature Review 

There are thousands of publications each year talking about the mechanics and designs of 

hydraulic fracturing. Lots of numerical methods or analytical models are proposed on every 

aspect of the hydraulic fracturing process, from the fracture initiation, propagation, to the 

closure, and to the re-fracturing. The interactions between hydraulic fractures and the 

natural fractures are also discussed by many researchers in either conferences or journal 

articles especially in recent years since the shale boom in Unites States. In this thesis, some 

of the previous studies will be reviewed, especially those researches on the poroelastic and 

thermoelastic effects, stress shadow from fracture compression, and the interactions 

between hydraulic fracture with the natural fractures in unconventional reservoirs.  

Geertsma (1966) firstly considered the potential of poroelastic effects on influencing the 

hydraulically driven fracture propagation. Oil bearing rock is a two-phase system which 

are affected by the poroelastic effects. However, Geertsma concluded that these effects 



6 

 

were to be insignificant in practical situations. A couple years later, Cleary (1980) 

suggested that poroelastic effects could be expressed as “back-stress”. At the same year, 

Settari studied poroelastic effects through a similar approximation (Settari, 1980). 

A poroelastic Perkins-Kern-Nordgren (PKN) fracture model based on an explicit moving 

mesh algorithm was studied by Detournay (Detournay, et al. 1990). The poroelastic effects, 

induced by leak-off of the fracturing fluid, were treated in a manner consistent with the 

basic assumptions of the PKN model. Their model was formulated in a moving coordinates 

system and solved using an explicit finite difference technique.  

Perkins and Gonzalez (1985) presented a semi-analytical model of a waterflooding induced 

fracture emanating from a single well in an infinite reservoir. Their model has two 

important features. First, the leak-off distribution is two-dimensional with the pressure 

transient moving elliptically outward into the reservoir with respect to the growing fracture. 

Second, their model incorporated the effect of thermoelastic, which can change the 

reservoir rock stresses and therefore has influence on the fracture propagation pressure. It 

was shown that cooling of the reservoir rock by the injection of cold water may cause the 

elongation of fractures. 

Koning (1985) presented an analytical model for waterflood-induced fracture growth under 

the influence of poroelastic and thermoelastic changes in reservoir stress. In his work, a 

model was presented in which the leak-off distribution in the reservoir is allowed to eolve 
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from 1-D perpendicular to fracture surface to 2-D radial with respect to the fracture. A three 

dimensional calculation of poroelastic changes in reservoir stress at the fracture face is 

performed analytically for a quasi-steady state pressure profile including elliptical 

discontinuities in fluid mobility. 

The effect of fracture pressurization on the stress redistribution was studied using the 

solution for calculating the stresses distribution around a flat elliptic crack (Jaeger and 

Cook, 1979). In addition, Pollards (1987) also provided the solution for the calculation of 

the stress changes around an elliptic fracture by including the effect of fracture 

pressurization.  

In recent years, Gahssemi and his peers (Ghassemi, et al, 1996, 2005, 2006, 2010, 2011, 

2012, 2016, 2017) have published a series of researches on the numerical modeling and 

simulations of the poroealstic and/or thermoelastic effects on hydraulic fracturing process. 

Those work even coupled with other effects and investigated the rock failure mechanisms 

during hydraulic fracturing and interactions with natural fractures. 

A lot of work have been done on reactivations of the natural fractures (including faults, 

natural fractures, etc.) in rock formations. Jaeger and Cook (1979) gave the Mohr-Coulomb 

failure criterion for rock joints and calculated the shear stress and the normal stress on a 

joint surface using the principal stresses. Furthermore, Mildren et al. (2002) and Nelson et 

al. (2007) introduced the structural permeability diagram technique to estimate the 
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additional treating effective pressure required to reactivate the existing natural fractures in 

rock formations.  

Palmer et al. (2007) used a method to estimate the failed reservoir volume and enhanced 

permeability after stimulation by hydraulic fracturing operations and gave a case study on 

the Barnett Shale. As pointed out by Palmer et al, (2007) greater gas flow rate is correlated 

with a larger “failed reservoir volume” and a higher net fracturing pressure. They 

investigated the shear slip or failure along planes of weakness by pore pressure increases 

during injection of fracturing fluid. By combing the knowledge of in-situ stress, and the 

properties of the planes of weakness (either joints, faults, or natural fractures), they 

calculated the failed distance from the central fracture plane. By matching the failed 

reservoir volume with the volume of the microseismic cloud, they estimated the enhanced 

permeability by stimulation after injection.  

Ge and Ghassemi (2007, 2008, 2011, 2012, 2014) have done some studies in recent years 

on the analytical and semi-analytical methods to analyze the poroelastic, thermoelastic, and 

fracture compression effects on the pore pressure and stress redistributions around a 

hydraulic fracture, as well as their interactions with the natural fractures in the 

unconventional reservoirs. In their work, the pore pressure and stress redistributions were 

studied both in 2-D and 3-D models, which were illustrated with some case studies and by 

comparing with previous research work.   
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Of course, there are lots of other research work on this topic. We will talk about them in 

the following chapters and sections when cited in this thesis.   

1.3. Research Objectives 

The objectives of this study are: 

 Investigate the pore pressure variations around a hydraulic fracture during the 

fracture propagation and waterflooding processes. Research the shear slip or 

failure along planes of weakness by pore pressure increases during injection of 

fracturing fluid. 

 Study the poroelasic and thermoelastic effects on fracture propagation, as well 

as on the pore pressure and stress redistributions around an injection induced 

hydraulic fracture.  

 Research on the induced stress variations by fracture compression. 

 Estimate the stimulated reservoir volume (SRV) and the enhanced permeability 

by the natural fractures reactivations by stresses redistribution from hydraulic 

fracturing operations. 

1.4. Sign Convention 

The sign convention is important for this work. As we know, in different research field the 

sign convention is different. For example, most accepted sign convention in the field of 
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civil engineering considers tensile stress as positive. However, in the field of petroleum, 

compressive stress is often considered as positive for the convenience of underground 

engineering use. In this thesis, in order to be consistent with most of the rock mechanics 

literature, all equations are presented using the compression positive convention. This sign 

convention is adopted for the remainder of this thesis unless otherwise specified. In 

additional, the unit system used in examples and case studies is varied based on each 

specific case with different available data. 

1.5. Dissertation Outline 

This dissertation consists of total eight chapters.  

Chapter I is the introduction, including the motivations, literature review and objectives of 

this work, and the sign convention, as well as the organization of this dissertation. 

Chapter II gives an overview of the hydraulic fracturing history, reviews the mechanics of 

hydraulic fracturing, describes the hydraulic fracturing process and the traditional 

analytical models, and summarizes the recent developments on both analytical and 

numerical models, as well as the poroelasticity and thermoelasticity. It also talks about the 

applications of hydraulic fracturing, focusing on the application in the naturally fractured 

shale reservoirs.  

Chapter III presents the model establishment of this study, describes the methodology and 
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governing equations, and explains the pore pressure distribution around a hydraulic fracture.  

Chapter IV describes the induced stresses by the poroelastic and thermoelastic effects as 

well as by fracture compression around a hydraulic fracture.  

Chapter V discusses the failure criteria, especially the Mohr-Coulomb failure criterion used 

for the reactivation of natural fractures. It also describes the construction of the structural 

permeability diagram. In addition, the calculations of failure potentials and stimulated 

reservoir volume are presented. 

Chapter VI verifies the model with the examples from shale reservoirs, including the case 

study on Barnett Shale and one case on the Bakken Shale. 

Chapter VII presents the conclusions and discusses some of the future research directions 

in this field.  

In the end, the Appendices include the deduction of the 3-D induced stresses by fracture 

compression, the slip map of natural fractures in a given stress regime, the 2-D induced by 

poroelasticity, thermoelasticity and fracture compression, the fracture propagation 

dimensions, and case study on the stimulated reservoir volume and enhanced permeability 

by hydraulic fracturing.  
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CHAPTER II 

HYDARULIC FRACTURING OVERVIEW 

2.1. Hydraulic Fracturing History 

Since the first treatment in 1947, hydraulic fracturing has become a widely used and the 

most effective stimulation technique to stimulate the productivity of oil and gas wells 

(Gidley,1989). The process of a hydraulic fracturing operation is shown in Fig.2.1 (Veatch 

1983). It consists of blending special fluid/chemicals to make the appropriate fracturing 

fluid and then pumping the blended fluid into the pay zone at high enough rates and 

pressures to wedge and extend a fracture hydraulically (Gidley, 1989). 

 

Fig.2.1 Hydraulic Fracturing Process (Modified from Veatch 1983). 
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Currently, the horizontal drilling and multiple stages hydraulic fracturing make it happen 

the boom of the shale oil and gas in United States (Fig. 2.2). 

 

 

Fig.2.2 Fracture Orientation in Horizontal Wells (Francesco, 2009). 

Another application of hydraulic fracturing is to stimulate geothermal production. The 

production of geothermal energy from dry and low permeability reservoirs is achieved by 

water circulation in natural and/or man-made fractures, and is often referred to as enhanced 

or engineered geothermal systems (EGS) (Fig. 2.3, Ghassemi, 2012). 
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Fig. 2.3 An illustration of Engineered or Enhanced Geothermal System (Ghassemi, 2012). 

There are still some other applications of hydraulic fracturing, including the stress 

measurement, such as step rate tests, minifracing test, leakoff test, and extended leakoff 

test etc. (Soliman, et al., 1990; Kunze, et al., 1991; Detournay, et al, 1997). Fig. 2.4 shows 

a typical pressure profile during the minifracing tests.   
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Fig. 2.4 Minifrac Test Pressure Curve (Modified from Gidley, 1989). 

In hydraulic fracturing operations, the fracture fluid which is injected into the well can be 

oil-based, water-based, or acid-based (Veatch et al., 1983a, 1983b). However, water based 

hydraulic fracturing are the most common used and the least expensive. Slick-water 

fracturing combines water with a friction-reducing chemical additive which allows the 

water to be pumped at higher injection rates into the formation (Palisch, 2008). Nowadays, 

there are many researches on the different fracturing fluids and proppants. These 

technologies are not covered here and will not be discussed in details in this work.  
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2.2 Fracture Mechanics 

During the process of hydraulic fracturing process, rock mechanics plays an important role 

by controlling the geometry of propagating fractures (Gidley, 1989). It is important to 

understand the mechanisms of fluid-rock interaction in the hydraulic fracturing. In real 

field work, fractures are more complicated in geometry and can have complex fractures 

(Fig.1.3). In the complex fracture network, the long axis or “fairway” is referred as the 

hydraulic fracture fairway length while the short axis is referred to as fairway width (Fisher, 

et al. 2004). The volume of this fracture system or the stimulated volume can be estimated 

using the modeling and simulation methods for the hydraulic fractures. To do this, it is 

critical to know the pore pressure and stress distribution around the hydraulic fracture or 

stimulated fairway which varies with the geometry of hydraulic fractures, and is affected 

by mechanical, thermal, and chemical conditions of the surrounding host rock, especially 

the mechanical properties (Ge, 2009). 

Based on the previous studies (Gidley, 1989), the fracture propagation and geometry can 

be affected by some important factors, including: 

 In-situ stresses existing in the rock formation: the local stress fields and variations 

in stresses are often thought to be the most important factor to dominate fracture 

orientation and fracture growth. At the common condition, a hydraulic fracture will 

propagate in the direction of the maximum principal stress. 
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 Relative pay zone thickness of formation controls the growth of the fracture in its 

height. 

 Mechanical rock properties such as elastic modulus, Poisson’s ratio, and rock 

toughness will affect the fracture initiation and propagation. 

 Fluid treating pressure in the fracture. 

 The original reservoir pore pressure in the formation.        

2.3 Traditional 2-D Hydraulic Fracturing Models 

Over the past 60 years, many analytical and numerical models have been proposed to study 

fracture propagation. Those models include both two-dimensional (Perkins and Kern 1961; 

Geertsma and Klerk 1969; Nordgren 1972; Daneshy 1973) and three-dimensional models 

(Clifton in Gidley, 1989). In this work, the traditional 2-D models of hydraulic fracturing 

process are reviewed.  

2.3.1 PKN Model 

Perkins and Kern (1961) started the famous PKN model, in which equations were 

developed to compute fracture length and width for a fracture with fixed height. Later 

Nordgren (1972) improved this model by considering the leakoff effects to the solution. 

The PKN model assumes that the hydraulic fracture has a constant height and an elliptical 

cross section (Fig.2.5) both in the horizontal plane and in the vertical plane.  
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Based on solid mechanics, the fracture half height, Hf, is independent of the hydraulic 

fracture propagating distance away from the operating well. With the fixed height 

assumption, the hydraulic fracturing problem is reduced to 2-D by using the plane strain 

assumption. In the PKN model, the plane strain is assumed in the vertical direction, and 

the rock deformation in each vertical plane along the its propagation direction is assumed 

to be independent of other neighboring vertical planes. Plane strain condition implies that 

the elastic deformations to open or close, or shear the hydraulic fracture are fully 

concentrated in the vertical planes perpendicular to the direction of hydraulic fracture 

propagation.  

 
Fig.2.5 Geometry of PKN Model (Modified from Perkins and Kern, 1961). 
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The fluid flow problem in the PKN model is one-dimensional in an elliptical channel. The 

fluid fracturing pressure is assumed constant in any of the vertical cross sections 

perpendicular to the direction of fracture propagation.  

2.3.2 KGD Model 

The KGD model was first introduced by Khristianovic and Zheltov in 1955, and then 

improved by Geertsma and de Klerk in 1969. In this model, the fracture deformation and 

propagation are also assumed to be in a situation of plane strain. The model considers that 

the fluid flow in the fracture and the fracture propagation are one-dimension. The geometry 

of a traditional KGD hydraulic fracture propagation model is illustrated in Fig.2.6. 

 
Fig.2.6 Geometry of KGD Model (Modified from Geertsma and de Klerk 1969). 
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There are several main assumptions in the KGD model:  

 The fracture assumes elliptical cross sections in the horizontal plane;  

 Each horizontal plane deforms independently;  

 Fracturing fluid pressure in the propagation direction is controlled by the flow 

resistance; 

 The rectangular cross section in the vertical plane;  

 The fluid does not affect in the entire fracture length;  

 The cross section in the vertical plane is rectangular.  

2.3.3 Penny-Shape or Radial Model 

The radial model assumes that the fracture is propagating within a given plane and the 

geometry of the hydraulic fracture is symmetrical with respect to the central point of the 

well at which the fluid is injected. The study of this fracture model in a dry rock mass can 

be found in Abé et al. (1976). They assumed a uniform distribution of fluid treating pressure 

and constant fluid injection rate in the well. Sneddon (1946) solved the problem for uniform 

pressure on the crack surface. In addition, Green and Sneddon (1950) solved the widely 

used elliptical penny shaped crack in an infinite solid with uniform applied pressure at the 

crack surface. 

The main difference among the traditional 2-D hydraulic fracturing models, including PKN, 

KGD, and the Radial Model, are compared as shown in Table.2.1 (Ge, 2009).  



21 

 

 
Fig.2.7 Geometry of Penny-Shape or Radial Model (Modified from Abé et al., 1976). 

 

 

Table 2.1 Comparisons among 2-D Models 

Model Assumptions Shape Bottom Hole 
Pressure 

Application 

PKN Fixed Height 
Plain Strain  

Elliptical 
Cross Section

Increasing 
with Time 

Length»Height 

KGD Fixed Height 
Plain Strain 

Rectangle 
Cross Section

Decreasing 
with Time 

Length<=Height 

Radial Uniform 
Distribution of 
Fluid Pressure 

Circular  
Cross  
Section 

Decreasing 
with Time 

More Appropriate 
When It is Radial 
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2.4 Poroelasticity and Thermoelasticity 

In the proposed models of this study in next chapters, the effects of pressure and 

temperature changes on the pore pressure and stress redistributions around a hydraulic 

fracture will be discussed. For geothermal reservoirs with high formation temperatures, 

these effects from poroelasticity and thermoelasticity are both significant, while for oil and 

gas reservoirs, the temperature difference between the reservoir formation and the injected 

fluid is not too high and the effects of thermoelasticity are insignificant (with few 

exceptions on some deep reservoirs with high formation temperature). In the following of 

this section, the basic theories of poroelasticity and thermoelasticity are discussed. 

Fluid loss into the permeable formation can cause the pore pressure increase in the reservoir 

during the propagation of a hydraulic fracture. The increase of pore pressure will cause 

dilation of the formation rock around the hydraulic fracture, and then in turn reduce the 

width of the fracture. On the contrary, the rock deformation will also cause pore pressure 

increase. This process was firstly introduced by Biot in 1941 as the theory of poroelasticity. 

Rice and Cleary (1976) further improve the theory through using material parameters with 

physical interpretations.  

Vandemme et.al, 1989 summarized the poroelastic effect as: a volumetric expansion of the 

porous formation rock is induced by an increase of the reservoir pore pressure, and then if 

the fluid is prevented from escaping (undrained condition), an increase of the pore pressure 
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results from the application of a confining pressure. 

Timoshenko (1951) pointed out that if the geometry of a body structure is large compared 

to the scale at which inhomogeneities are apparent, the theory of poroelasticity can be a 

reasonable approximation. Therefore, it assumes the body to be large relative to a 

representative element of volume. It also assumes that the rock is composed of a porous, 

elastic, and solid skeleton that is saturated with fluids. Both the pore fluid and the solid 

grains in the skeleton can be assumed incompressible. Finally, Darcy’s law is assumed for 

the fluid flow through the skeleton, so that the fluid flow rate is proportional to the gradient 

of the reservoir pore pressure. 

Rice and Cleary (1976) stated that the pore pressure, p, can be defined as “the equilibrium 

pressure that must be exerted on a homogeneous reservoir of pore fluid brought into contact 

with a material element so as to prevent any exchange of fluid between it and the element”. 

They also proposed that the term undrained deformation applies to “stress alterations, Δσij, 

over a time scale that is too short to allow loss or gain of pore fluid in an element by 

diffusive transport to or from neighboring elements”. Conversely, the term drained 

deformation applies to stress alterations, Δσij, over a time scale that allow diffusive 

transport of pore fluid between elements to reach a steady state condition (Fig.2.8). 
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Fig.2.8 Mechanics of Poroelasicity (Modified from Rice and Cleary, 1976). 

There are several parameters that are commonly used when studying with poroelastic 

materials. The first parameter is poroelastic constant, α, which is independent of the fluid 

properties and is defined as (Rice and Cleary, 1976):  

                   
3( )
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u s
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                         (2.1) 

In the above equation, the parameter B is Skempton pore pressure coefficient, vu is defined 

by undrained Poisson ratio, v is drained Poisson ratio, K is bulk modulus of elasticity, and 

Ks bulk modulus of solid phase. The range of this poroelastic constant is 0 to 1, with most 



25 

 

rocks fall into the range of 0.5 to 1 (Rice and Cleary, 1976). 

The other important parameter is the poroelastic stress coefficient, usually expressed with 

symbol η (the symbols used in this thesis are listed in the nomenclature, otherwise will be 

described in the context), and defined as (Detournay and Cheng, 1993): 
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
                                (2.2) 

The range of η is 0 to 0.5, and it is also independent of the fluid properties.  

Similar with the poroelasticity, the theory of thermoelasticity describes the effect of 

temperature changes on the stresses variations and displacements in a reservoir rock (Jaeger, 

Cook and Zimmerman, 2007). The theory of thermoelasticity can be analogous to the 

theory of poroelasticity, with the temperature playing a role similar to that of the pore 

pressure (Ge, 2009).  

In oil and gas industry, hydraulic fracturing by fluid injection is often used in both tight 

and permeable reservoirs. In tight reservoirs, fractures are usually induced intentionally to 

increase the fluid injectivity. In a permeable reservoir, hydraulic fracturing may occur 

unintentionally when cold water is injected into a relatively hot reservoir. During 

waterflooding, the secondary or tertiary oil recovery processes, injected fluids are usually 

at temperatures cooler (70 - 80 ºF) than the original in-situ reservoir temperatures (200 ± 

ºF). A region of cooled rocks forms around an injection well, and the area of this region 
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grows as additional fluids are injected. The rock within the cooled region contracts and this 

could result in a decrease in stress concentration around the injection well until the injection 

pressure minus the hoop stress exceeds the tensile strength of the rock at a critical point on 

the well boundary and a fracture begins to propagate to orient itself in the direction of 

maximum in-situ stress. Although the increase in injectivity is favorable, the fracture may 

or may not have an adverse effect on the sweep efficiency of the water drive in the case of 

petroleum, or inefficient heat extraction in geothermal reservoirs, depending on the length, 

height and orientation of the fracture. These fracture parameters can also be of critical 

importance for a successful application of a tertiary recovery process, and development of 

geothermal reservoirs (Ge, 2009).  

A coupled model with thermo-poroelasticity was first introducd by Palciauskas and 

Domenico (1982), and later it was studied by Zhang (2004). Chun (2013) talked more 

details about the linear theories of poroelasticity and thermoelasticity. In a fluid-saturated 

porous rock formation, temperature change can significantly affect the surrounding stress 

field, as well as the pore pressure field. Thermal loading causes rock volumetric 

deformation by the thermal expansion/contraction of both the fluid and the rock solid. If 

the reservoir rock is heated, expansion of the reservoir and injected fluid can lead to a 

significant increase in pore pressure at the confined space. The tendency is reversed at the 

condition of cooling. Therefore, the time dependent poro-thermo-mechanical processes 

should be all considered in the transient temperature field. 
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2.5 Hydraulic Fracturing in Shale Reservoirs 

In recent decades, the production of gas and oil from shale plays in United States has 

rapidly increased. The success of the US shale boom relies mostly on the applications of 

horizontal drilling and hydraulic fracturing. Fig. 2.9 shows the locations of the lower 48 

states shale plays in US. Among those shale plays, Barnett shale gas and Bakken shale oil 

are typical fields for the applications of hydraulic fracturing techniques.  

 

 

Fig. 2.9 Lower 48 States Shale Plays (EIA, 2015). 

Gas shales, such as the Barnett, Marcellus, Fayettville, and Woodford, and oil shale play 
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Bakken, contain a relatively high total organic content (e.g., the Barnett has a total organic 

content of 4-5%) and are performing as the source rock as well as the reservoir. The gas 

and/or oil are stored in the limited pore space of these formation rocks. Matrix permeability 

of these shales are very difficult to measure because they are so low. Previous studies show 

that the permeability of shale is on the order of nanodarcies (Warpinskin, et al., 2008). 

Obviously, economic production cannot be achieved if the well stimulation operations are 

not operated in the field.  

Fortunately, there are existing natural fractures in the shale reservoirs. In most papers, the 

use of the terms, such as joints, faults, natural fractures, fissure, etc., are very confusing. In 

this study, we use natural fractures (the most commonly used structure) to represent the 

main geologic heterogeneities in the unconventional reservoirs for simplification.  

The development of a fracture “network” by horizontal drilling and hydraulic fracturing 

plays the key point for the economic production. As pointed by Cipolla et al. (2008), in 

many unconventional shale reservoirs fracture growth is complex. The interaction of the 

hydraulic fracture with natural fractures could be vital for the success of well stimulation. 

In their work, the fracture network could be ideally divided by different fracture complexity 

such as simple plannar fractures, complex plannar fractures, and network fracture behavior.  

As shown in Fig.2.10, the growth of hydraulic fracture can be divided into four main 

ideal categories: 
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 Planar-coupled growth 

 Planar-decoupled growth or fissure opening 

 Complex growth, including non-communicating and communicating sub-

categories 

 Network growth 

 

Fig.2.10 Fracture Growth and Complexity Scenarios (Cipolla et al., 2008). 

The fracture network growth in Fig.2.10 is an ideal condition. In fact, the interaction 

between the hydraulic fracture and the natural fracture are much more complicated (as 

shown in Fig.2.11, Warpinski et al, 2008). There are many factors that can affect the 

reactivations of the natural fractures before they can really make contributions to the 



30 

 

fracture network. In this work, we mainly focused on the pore pressure and stress 

redistribution around a hydraulic fracture and the interactions with natural fractures in the 

shale reservoirs. 

 
Fig.2.11 Microseismic Fracture Mapping Shows Complex Network Growth and The 

Potential Area Of Stimulated Reservoir Volume In Shale (Warpinski, et al, 2008). 
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CHAPTER III 

HYDARULIC FRACTURING MODEL SETUP 

3.1 Hydraulic Fracturing Propagation Model 

In the field operations of oil and gas reservoirs, injection is at a bottomhole pressure (BHP) 

that is controlled high enough to initiate and extend a hydraulic fracture. The injected fluid 

then leaks off radially through the large fracture face area. Due to the decreasing in 

horizontal in-situ rock stresses that result from mostly cold fluid injection, hydraulic 

fracturing pressures can be lower than would be expected for an ordinary low leak-off 

hydraulic fracturing treatment. At this condition, the flow system will evolve from an 

essentially circular geometry in the plan view to one characterized more nearly as elliptical 

as shown in Fig.3.1.  

 

Fig.3.1 Evolution of Flow System. 

Perkins and Gonzalez (1985) presented a semi-analytical model of a waterflood-induced 

fracture initiating from a single well in an infinite reservoir. Their model has two main 

features. First, the leak-off distribution near the fracture is two-dimensional with the 
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pressure transient moving elliptically outward into the reservoir with respect to the growing 

fracture. Second, the effect of temperature change on reservoir rock stress and therefore on 

the fracture propagation process was incorporated. It was demonstrated that cooling of the 

reservoir rock by injection of cold water might cause fractures to become very long and 

narrow compared to the hydraulic fractures without cooling. 

Koning (1985) presented an analytical model to simulate the waterflood-induced fracture 

growth under the combined influence of poroelastic and thermoelastic effects in reservoir 

stress. His model assumed the fracture geometry based on the traditional PKN fracture 

propagation model. The pore pressure and temperature effects were considered on the 

stresses changes around the hydraulic fracture and on fracture propagation. In addition, the 

analytical model also included an estimation of the 3-D poroelastic and thermoelastic stress 

change near the fracture surface. 

In this work, a hydraulic fracturing propagation model was setup based on the proposed 

model of Koning and the work by Perking and Gonzales. For the pore pressure distributions 

during hydraulic fracturing process, the workflow from the Koning’s work was employed. 

Considering any a 2-D point (x, y) around the hydraulic fracture, the relations between the 

elliptical coordinates and the Cartesian coordinates could be expressed as shown in the 

following equations: 

    x=Lf cosh cos                              (3.1) 

y=Lf sinh sin                              (3.2) 
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The pore pressure distribution at any place around the hydraulic fracture in the horizontal 

plane is a function of time and can be given by (Koning, 1985):  

P( , ,t)=Pi+ ( )p                           (3.3) 

In which:  
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In which, q is injection rate, k is the permeability, h is the fracture half height, and L is the 

fracture half length. The details of the parameters in the equations could be found in the 

Nomenclature. Among the above equations:  
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Where cf is the formation compressibility. And 
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The above equations are the pressure distributions in different elliptical zones surrounding 

the fracture. At a certain time, t, the pore pressure distribution can be estimated. Therefore, 

at every time step, we can get a plot of the distribution for the pore pressure around the 

fracture. A case example on the pressure distribution is illustrated in Fig.3.2. 

At the condition of continuing water injection after hydraulic fracturing, Warpinski and 

Teufel (1987) proposed the pressure transient profile for the pore pressure distribution at a 

certain injection time. This pressure profile in an infinite joint is approximately given by: 

( , ) ( )( / )f f r fp y t p p p y y                       (3.14) 

Where pf is the average treating pressure in hydraulic fracture over the entire treatment 

time and pr is the original reservoir in-situ pore pressure. yf is the location of the fluid front 

which is approximated given as (Modified from Koning, 1985): 

1.5f
t

kt
y

c
                             (3.15) 

The details of the estimation of the fracture length, as well as the dimensions of the cooled 

and flooded regions, are given in the Appendix D (Ge, 2009).  

An example was given with the parameters from Perkins and Gonzales (see Table3.1) to 
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estimate the 2-D dimensions of hydraulic fracture, as well as the cooled and flooded regions, 

and pressure distribution around a hydraulic fracture. As illustrated in the Fig. 3.2, the pore 

pressure distribution is near co-focal ellipses around the fracture, and its value reaches 

highest at the fracture surface and decays to the original reservoir pore pressure in the far 

field. Fig.3.2 shows the pore pressure distribution around the fracture at injection time 

t=100 days. The pattern of pore pressure distribution is elliptical as expected.  

Based on the method from Perkins and Gonzales (1985) as described in Appendix D, this 

model gives that the half-fracture length is about 137 feet (41 m) at t=100 days. The extents 

of the various invaded zones are a0=148 ft and b0=57 ft for the cooled region, a1=222 ft 

and b1=175 ft and for the waterflooded region (Fig.3.3). 

 
Fig.3.2 Hydraulic Fracturing Propagation at t=100 Days. 
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Table 3.1 Input Parameters for Simulations (Perkin and Gonzalez, 1985) 

Parameter Value Unit 

Depth (D): 1524 m 
Reservoir Thickness (h): 30.5 m 
Water injection rate (Iw): 477 m3/d 

Time (t): 5 year 
Initial Reservoir temperature (TR): 65.6 °C 
Bottomhole temp. of the injection water (Tw): 21.1 °C 
Undisturbed reservoir fluid pressure (Pr): 13.78 MPa 
Compressibility of mineral grains (cgr): 2.20E-05 1/Mpa 

Compressibility of fracture (cf): 4.08E-04 1/Mpa 
Young's modulus (E): 1.38E+04 MPa 
Relative perm. to water at residual oil saturation 
(krw) : 

0.29 

Residual oil saturation (Sor): 0.25 
Initial water saturation (Swi): 0.2 
Rock surface energy (U): 5.00E-02 kJ/m2 

Linear coefficient of thermal expansion (β): 5.60E-06 1/K 
Poisson’s ratio (ν): 0.15 
Density * Specific heat of mineral grains 
(ρgr*Cgr): 

2347 kJ/ (m3*K) 

Minimum horizontal stress (Sh): 24.1 MPa 
Porosity (Φ): 0.25 
SH/Sh: 1.35 
Reservoir permeability (k): 4.94E-14 m2 

Compressibility of oil (co): 1.50E-03 1/Mpa 
Compressibility of water (cw): 5.20E-04 1/Mpa 
Specific heat of oil (Co): 2.1 kJ/(kg*K) 
Specific heat of water (Cw): 4.2 kJ/(kg*K) 
Viscosity of oil at 65.6 °C (μo): 1.47E-09 MPa*s 
Viscos ity of water at 65.6 °C (μw): 4.30E-10 MPa*s 
Viscosity of water at 21.1°C (μw): 9.95E-10 MPa*s 
Density of oil (ρo): 881 kg/m3 

Density of water (ρw): 1000 kg/m3 

Fig.3.3 shows the fracture length and the major and minor axis of cooled and flooded zone 

as a function of time. The major axis of cooled region is almost the same as fracture length 
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with time. 

 
Fig. 3.3 Fracture Length and Major and Minor Axis of Cooled and Waterflooded Zones 

as a Function of Time. 

 

3.2 Waterflooded Hydraulic Fracturing Model 

To further investigate the pore pressure and stress distributions around a hydraulic fracture, 

a second model was constructed on the waterflooding process. As discussed previously, 

most hydraulic fractures are induced intentionally in low permeability reservoirs to 

increase the injectivity, especially in the low permeability reservoirs. As fluids at 

temperatures cooler than the reservoir temperatures are injected into a well, a region of 

cooled rock forms around an injection well and grows as additional fluid is injected. The 

rock within the cooled region contracts and this leads to a decrease in stress concentration 

around the injection well until the injection pressure minus the hoop stress exceeds the 

tensile strength of the rock at a critical point on the well boundary and a fracture begins to 
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propagate to orient itself in the direction of maximum in-situ stress.  

The hydraulic fracture model in this study is modified and updated from previous studies 

by Ge and Ghassemi (2007, 2008, 2011, 2012, 2014). When cold water is injected into a 

line crack (representing a section of a two-wing, vertical hydraulic fracture), the flooding 

front will progress outward, and its outer boundary at any time can be described 

approximately as an ellipsoid that is confocal with the line crack on the horizontal plane 

(Muskat, 1946; Koning, 1985; Perkins and Gonzalez, 1985). Due to temperature difference 

between the injected fluid and the formation, a cooled region will progress outward from 

the injection well but lag behind the flood front. In the plan view of the fracture, if an ideal 

homogeneous condition is assumed, the outer boundary of the waterflooded and cooled 

region will be elliptical and confocal with the line crack (Fig. 3.4 and 3.5 with exaggeration 

on dimensions).  

A vertical hydraulic fracture is assumed to form against the minimum horizontal stress 

direction. As shown in Fig.3.4 and 3.5, a 3-D penny shaped vertical hydraulic fracture is 

assumed with the waterflooded region, temperature affected (cooled) region, and the 

pressure affected region. At any injection time, the fracture dimensions (including fracture 

length, height, and aperture) and the zone boundaries are also estimated in this model with 

the same method as in previously published literatures (Ge and Ghassemi 2007, 2008, 2011, 

2012, 2014; Perkins and Gonzalez, 1985). 

With this waterflooded hydraulic fracturing model, the pore pressure and stress 

redistributions could be estimated around the hydraulic fracture, and further the 

reactivations of natural fractures could be predicted. 
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Fig.3.4 Plan View of Two-winged Hydraulic Fracture from a Vertical Well (Ge, 2014).  

 

Fig.3.5 Plan View of Two-winged Hydraulic Fracture from a Horizontal Well.  
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3.3 3-D Pore Pressure Distribution Model 

With the fracture propagation, the pore pressure is increasing in the reservoir formation 

around the fracture. The pore pressure variation due to the water flooding is one of the most 

important factors that can affect the stress variations and the reactivations of natural 

fractures. The fracture is assumed to be a 3-D flat elliptic crack at any specific time. 

Therefore, at a moment after hydraulic fracturing, pore pressure distribution due to the fluid 

leakoff from the main hydraulic fracture follows the linear flow approximation and can be 

estimated by assuming an ellipsoidal shape in 3-D. The simplified expression for the pore 

pressure distribution in a liquid saturated reservoir is approximately given by (Warpinski, 

et al., 2004):  

  ܲሺߣ, ሻߝ ൌ ୭ܲ ൅ ൫ ௙ܲ െ ୭ܲ൯eି஖ఒ൫ଵା
√ఌା௕మ൯                           (3.16) 

Where λ and ε are the ellipsoidal coordinates, pf is the average pressure in hydraulic fracture 

over the entire treatment time and po is the original reservoir pore pressure. Here in this 

equation, the involving of coordinate ε is to consider the pressure decay near the fracture 

tip region. The value of the leakoff factor ζ can be expressed as: 

ߞ ൌ ቀ
ߨ݃
2
ቁ
ଶ
 (3.17)

݃ ൌ ට
ܿߤ߮
ݐ݇

 (3.18)

In which, φ is the porosity, μ is the viscosity, c is the compressibility, k is the relative 

permeability, and t is waterflooding time. The coordinates are converted from ellipsoidal 

coordinates system to Cartesian coordinates system in the model program to keep in 
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consistence with the calculations of stresses. For most tight gas and shale reservoirs, the 

permeability of rock matrix is too small, so the effects from natural fractures could be very 

large. In this study, we updated the pore pressure calculation in our previous model by 

considering the both the fracture permeability and matrix permeability. This update makes 

the model more accurate and applicable in the low permeable and naturally fractured shale 

reservoirs.  

Warpinski et al, 2008 pointed out that the induced pressure change by hydraulic fracturing 

is a complex 3-D problem and time dependent. They considered two separate types of 

reservoirs (liquid saturated and gas reservoirs) and two formation conditions (matrix and 

natural fracture leakoff). They used the above equations for liquid reservoir by assuming 

the natural fracture has small effects on the pressure distribution (Warpinski, et al., 2004). 

However, they also pointed out that the naturally fractured reservoir could also be 

accommodated by considering the fracture permeability. For the gas reservoirs, by 

assuming the natural fractures as the main contribution on the fluid leakoff, the same 

equations can be used for the pore pressure distribution. Details about the equations on 

pore pressure in gas reservoirs can be found in Warpinski’s work (Warpinski, et al., 2004).  

In this study, we employed the equations 3.16-3.18 for estimating the 3-D pore pressure 

distribution, but with effective permeability. The estimations of poroelastic stresses are also 

based on this 3-D pore pressure distribution, as shown in Chapter 4. An example of the 

pore pressure distribution around a hydraulic fracture in 3-D is shown in Fig. 3.6. 
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Fig. 3.6 3-D Pore Pressure Distribution around a Hydraulic Fracture (1/8 part of the 
whole region). 
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CHAPTER IV 

STRESS REDISTRIBUTION AROUND THE HYDRAULIC FRACTURE 

In previous chapter, the pore pressure distributions around a hydraulic fracture are 

discussed. In this chapter, the stresses distributions around a hydraulic fracture will be 

examined at any point near the fracture surface. 

Fracturing of water injection wells can occur either in tight or in permeable reservoirs. In 

tight reservoirs fractures are usually induced intentionally to increase the injectivity. In 

permeable reservoirs, fracturing may occur unintentionally if cold water is injected into a 

relatively hot reservoir. During water-flooding or other secondary or tertiary recovery 

processes, fluids at temperatures cooler than the in-situ reservoir temperatures are injected 

into a well. A region of cooled rock forms around an injection well, and grows as additional 

fluid is injected. The rock within the cooled region contracts and this leads to a decrease in 

stress concentration around the injection well until the injection pressure minus the hoop 

stress exceeds the tensile strength of the rock at a critical point on the well boundary and a 

fracture begins to propagate to orient itself in the direction of maximum in-situ stress. 

Although the increase in injectivity is favorable, the fracture may have an adverse effect 

on the sweep efficiency of the water drive in the case of waterflooding.  

Perkins and Gonzalez (1985) presented a semi-analytical model of a water-flood-induced 

fracture emanating from a single well in an infinite reservoir. Their model has two 

important features. First, the leak-off distribution is two-dimensional with the pressure 

transient moving elliptically outward into the reservoir with respect to the growing fracture. 

Second, the effect of thermoelastic changes on reservoir rock stress and therefore on 
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fracture propagation pressure was incorporated. It was shown that cooling of the reservoir 

rock following injection of cold water may cause fractures to become very long. 

Koning (1985) presented an analytical model for waterflood-induced fracture growth under 

the influence of poro- and thermoelastic changes in reservoir stress. He assumed the 

fracture geometry from the traditional PKN fracture propagation model. By considering 

the pore pressure and temperature effects on the stress changes around a hydraulic 

fracturing and on fracture propagation, an analytical model was also given for the 3-D 

poroelastic and thermoelastic stress change at the fracture surface. 

In my previous studies (Ge, 2009), a waterflooding pressure and stress distribution 

(WFPSD) model and natural fracture stimulation (FracJStim) model were developed 

separately to calculate the fracture propagation dimensions (Appendix D) and two 

dimensional distributions of stresses around a propagation hydraulic fracture and a 

stabilized fracture (Appendix C).  

In this study, the 3-D stress redistributions around a hydraulic fracture mainly rely on the 

induced stresses by thermoelasicity, poroelasticity and fracture compression. The stress 

redistribution around a hydraulic fracture is very important for the multiple fracturing 

design, for the estimation of stimulated reservoir volume, for the permeability enhancement 

prediction, and for the potentials of the refracturing operations. The local stress field near 

to the opened hydraulic fracture can be affected greatly by the compression from the 

fracture surface, the intrusion of waterflooding, and the temperature change. This work is 

based on the previous work by Ge (2009), and improved with the 3-D redistributions of 

pore pressure and stresses.  
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4.1 Expressions for Stresses 

The stresses at any point around the fracture are mainly affected by the following factors: 

pore pressure change, temperature change, and the presence of the fracture. In this study, 

the original three principal stresses are assumed to be σv, σH, and σh and they are in the y, 

x and z coordinates respectively. The stresses at any point (x, y, z) surrounding the fracture 

are given by: 

               xx H P x T x F x                                  (4.1) 

                yy v P y T y F y                                  (4.2) 

௭௭ߪ                 ൌ ௛ߪ ൅ ௣௭ߪ∆ ൅ ௭்ߪ∆ ൅  ி௭                       (4.3)ߪ∆

                   xy Pxy T xy F xy                              (4.4) 

௫௭ߪ                  ൌ ௣௫௭ߪ∆ ൅ ௫௭்ߪ∆ ൅  ி௫௭                         (4.5)ߪ∆

௬௭ߪ                  ൌ ௣௬௭ߪ∆ ൅ ௬௭்ߪ∆ ൅  ி௬௭                         (4.6)ߪ∆

Where H   is the in-situ maximum horizontal stress, h   is the minimum in-situ 

horizontal stress; v   is the vertical stress; P   is the change of stress due to pore 

pressure change; T , the change of stress due to temperature change; and F  is  the 

change of stress due to the presence of the fracture (Subscript Index: H - maximum 

horizontal; h - minimum horizontal; p – by pore pressure change; T – by temperature 

change; F – by fracture compression). With the induced stresses and in-situ stresses, the 
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total principal stresses around the crack can be calculated by stresses transformation 

equations, which can be found in some reference (Warpinski et al., 2004; Jaeger and Cook, 

1979) and the common stress transformation process is not discussed in this study.  

4.2 Poroelastic and Thermoelastic Induced Stresses 

The estimation of poroelastic and thermoelastic induced stresses were given by Koning 

(1985) and by Perkins and Gonzales (1985). The two-dimensional induced stresses by the 

compression from fracture opening were given by fracture mechanics (Jaeger and Cook, 

1979; Atkinson, 1989). Ge (2009) also deduced the governing equations and programmed 

the 2-D induced stresses by poroelasticity, thermoelasticity, and fracture compression, and 

more details could be found in the Appendix C. The 3-D stress variations around a fracture 

were also studied by Ge and Ghassemi (2014).  

In this study, the thermoelastic induced stresses are still estimated with the method 

originally from Perkins and Gonzales (1985): 
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                         (4.8) 

In which, v is Poisson’s ratio, E is Young’s Modulus, △T is temperature change, h is the 

half fracture height, a0 and b0 are the semi axis of the cooled region, and β is the coefficient 
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of thermal expansion.  

The poroelastic induced stresses were estimated similarly with equations 4.7 and 4.8 with 

△P instead of △T, a1 and b1 the dimensions of the waterflooded region instead of a0 and 

b0 the dimensions of cooled region, and poroelastic coefficient instead of coefficient of 

thermal expansion. The detailed calculation of the dimensions of the cooled and waterflood 

regions are based on the methods given in the previous studies (Ge and Ghassemi, 2007; 

Perkins and Gonzalez, 1985). In petroleum field, especially in shale reservoirs, due to the 

temperature difference between injection fluids and reservoir fluids is small, the 

thermoelastic effects on stress changes is less important than poroelastic stresses. Therefore, 

it was originally assumed that the temperature distribution around the fracture is uniform 

and elliptically distributed as an example shown in Fig. 4.1 (Ge, 2009). 

 

Fig.4.1 Temperature Distribution Surrounded the Fracture.  
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Fig.4.2 Poro-Induced Stresses Distribution Y Axis Direction (t=100 Days). 

 

Fig.4.3 Thermo-Induced Stresses Distribution X Axis Direction (t=100 Days). 
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The examples of poroelastic and thermoelastic induced stresses could also be found in my 

previous studies (Ge, 2009). Here Fig. 4.2 and 4.3 give an example on the poroelastic and 

thermoelastic stress respectively. 

In this study, these calculations are updated with the 3-D dimensions around the fracture, 

which is based on the penny shaped fracture propagation dimensions. The temperature 

distribution was also updated based on the Carslaw & Jaeger‘s (1959) Solution for 

Temperature Distribution around a Crack. 

4.3 Induced Stresses by Fracture Compression 

The more accurate 3-D stress changes due to fracture compression are employed according 

to the analysis for a constant pressurized flat crack in a homogeneous material from a 

potential function (Green and Sneddon, 1950; Kassir and Sih, 1966; Sid and Liebowitz, 

1968; Jaeger and Cook, 1979):  

ߔ ൌ
ୟୠమሺ௣೑ିఙ೘೔೙ሻ

ଷଶୋ	୉ሺ୩ሻ
׬ ቀ

௫మ

௔మା௦
൅

௬మ

௕మା௦
൅

௓మ	

௦
െ 1ቁ

ஶ
ఒ

ୢ௦

ඥୱሺ௔మା௦ሻሺ௕మା௦ሻ
           (4.9) 

In which, the potential function Φ is give in an ellipsoidal coordinate system, which is 

defined by (λ, μ, ε). The definite integral is given by the function of the variable s in the 

interval [λ, ꝏ]. G is the shear modulus, pf is the internal pressure, a is the half-length, and 

b is the half height of the crack. Coordinates are x (fracture length direction), y (fracture 

height direction, which is vertical for vertical fracture) and Z (horizontally perpendicular 

to the fracture surface). E(k) is the complete elliptic integral of the second kind, k is the 

modulus defined by: 
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 ݇ ൌ ඥܽଶ െ ܾଶ/ܽ (4.10) 

Thus, the induced stresses by fracture were solved and expressed in terms of coordinates, 

elliptic functions, and elliptical integrals as shown in equation 4.11-4.16 (Ge and Ghassemi, 

2014).  
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In which G is the shear modulus, pf is the average internal pressure in the hydraulic fracture, 

a is the fracture half length, b is the fracture half height, corresponding to the Lf and Hf in 

the Fig.3.5. The functions snu (elliptic sine sn u), cnu (elliptic cosine cn u) and dnu (delta 

amplitude dn u) are Jacobian elliptic functions as inverses of the incomplete elliptic integral 

of the first kind, A is given by: 

ܣ ൌ
ୟୠమ൫௣೑ିఙ೘೔೙൯

ଵ଺ୋ	୉ሺ୩ሻ
                               (4.17) 

And u(λ) is defined as: no vertical lines above and below 

λ ൌ
௔మ௖௡మ௨

௦௡మ௨
                                    (4.18) 

The ellipsoidal coordinates are defined by: 
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ܽଶሺܽଶ െ ܾଶሻݔଶ ൌ ሺܽଶ ൅ ሻሺܽଶߣ ൅ ሻሺܽଶߤ ൅  ሻ                 (4.19)ߝ

ܾଶሺܾଶ െ ܽଶሻݕଶ ൌ ሺܾଶ ൅ ሻሺܾଶߣ ൅ ሻሺܾଶߤ ൅  ሻ                 (4.20)ߝ

ܽଶܾଶݖଶ ൌ  (4.21)                                    ߝߤߣ

The above equations are expressed in terms of coordinates, elliptic functions, and elliptical 

integrals. The detailed process for deduction of these expressions will not be involved here 

due to the limitation of the thesis length, but will be seen in the Appendix A. A specific 

case study is performed with the equations and programmed in FORTRAN language. The 

parameters used in this case are reasonable values for a liquid saturated sandstone reservoir 

at a depth of approximately 5000 ft. Fig.4.4 to Fig.4.6 are examples on the stress 

redistributions around the hydraulic fracture 

 

Fig. 4.4 Example of the Maximum Horizontal Stress Redistribution around the Hydraulic 
Fracture in 3-D (1/8 of the Stress Field Regime).  
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Fig. 4.5 Example of the Minimum Horizontal Stress Redistribution around the Hydraulic 
Fracture in 3-D (1/8 of the Stress Field Regime).  

 

Fig. 4.6 Example of the Vertical Stress Redistribution around the Hydraulic Fracture in 3-
D (1/8 of the Stress Field Regime).  
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CHAPTER V 

HYDRAULIC FRACTURE INTERACTION WITH NATURAL FRACTURES 

In previous chapter, we have investigated the distributions of pore pressure and stresses 

around a hydraulically induced fracture. In the following, shear slip or failure along planes 

of weakness of natural fractures caused by pore pressure and stresses redistribution during 

injection of fluid is investigated. Knowledge of in-situ stress, and strength for the planes 

of weakness, is needed to predict potential failure area around the hydraulic fracture. 

If the problem is simplified for certain sets of natural fractures, the additional pore pressure 

could be found with simple calculations. And for the formation with a certain set of natural 

fractures around a hydraulic fracture, the pore pressure changes are calculated, as well as 

the induced stress changes by the poroelasticity, thermoelasticiy, and fracture compression. 

The failure potential area for the existing set of natural fractures could be plotted near the 

fracture surface.  

The failure of rock mass around the fracture is also studied to roughly predict the failure 

distance from the central fracture surface. It may have significant impact on permeability 

around a hydraulic fracture, and therefore on production. This in conjunction with the 

microseismic cloud is used to estimate the stimulated volume and the resulting rock mass 

permeability (Palmer et al., 2005; Palmer et al., 2007). The injected permeability is greater 

than the virgin permeability, and this is interpreted as enhanced permeability due to shear 
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or tensile failure away from the central fracture plane. In our model, the initial permeability 

and the fracturing geometry are given to simulate the in-situ stress variations and predict 

the failure zone.  

It is generally accepted that the microseismicity during hydraulic fracturing operations are 

from the reactivation of natural fracture in the reservoir. The reactivation of natural 

fractures due to the potential risk of failure is analyzed by considering the fractures’ 

orientations, the strength for the fracture planes, and the in-situ stress conditions. Different 

natural fractures can be theoretically expected for different slip regimes. This has been 

discussed a lot in previous studies (Ge, 2009, Ge and Ghassemi, 2011, 2012, 2014). 

5.1 Mohr-Coulomb Failure Criterion 

In this study, to investigate failure of natural fractures around a hydraulic fracture, the 

Mohr-Coulomb failure criterion is used (Warpinski et al., 2004):  

' tan 's n                                   (5.1)  

Where τ is the shear stress, τs is the shear strength or cohesive strength, σn’ is the effective 

normal stress and φ’ is the joint friction angle.   

In equation 5.1, the effective normal stress and shear stress on the planes of weakness are 

given by Jaeger and Cook (1979) as the following: 
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In which, l, m, and n are direction cosines for a given plane to the direction of the three 

principal stresses, which can be expressed by [7, 23]: 
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                             (5.3) 

In which, dH, dh, and dv are direction cosines for the given plane to the direction of the three 

stresses H , h  and v . δ is the dip angle and φ is the dip direction angle. If we simplify 

the model by assuming the original three in-situ stresses H , h  and v are corresponding 

to the three principal stresses, their direction cosines dH, dh, and dv will also be 

corresponding to the three direction cosines for a given plane to the direction of the three 

principal stresses.  

5.2 Structural Permeability Diagram 

With the failure criterion and the orientations of natural fractures, a slip map can be 

constructed to decide the required additional pore pressure for the reactivation of natural 

fractures in any point around the hydraulic fracture in the reservoirs due to the shear effects 

from the pore pressure increase.  

An example plot is shown in Fig.5.1 for the slip map of joints in a shale reservoir (Ge and 
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Ghassemi, 2011). The circles in the plot represent the dip angle of joints (0°-90°), and the 

radial dashed lines represent the dip direction angles (0°-360°). The additional pressure 

required to reactivate the existing faults or natural fractures depends on not only the pore 

pressure and stress regime, but also the orientations of the fractures.  

 

Fig.5.1. Example Plot Showing the Required Additional Pore Pressure for Shear Failure. 

In previous study (Ge, 2009), a program in the FracJStim model for plotting the structural 

permeability diagram was constructed. The more detailed construction process of the 

structural permeability diagram is in Appendix B. In this section, we will compare some of 

our results with previous works and will apply the structural permeability diagram to some 

shale reservoirs in next chapter. 
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We simulated the data of Otway Basin on the southern Australian passive margin given by 

Mildren et al., 2005 (Table 5.1). The structural permeability maps are shown in Fig.5.2 and 

Fig.5.3. Minor difference on maximum required treating pressure can be attributed to 

uncertainty in the input data used. From the Fig.5.2 and Fig.5.3, there are perfect agreement 

in plot shapes and values, which verified our program for the structural permeability 

diagram. 

Table 5.1 Otway Basin Data from Mildren et al. (2005) 

Parameter Value Unit 

Depth (D): 2.845 km 

Minimum horizontal stress (Sh) gradient: 16.1 MPa/km 

Maximum horizontal stress (SH) gradient: 37.1 MPa/km 

Vertical Stress (Sv) gradient: 22.4 MPa/km 

Initial reservoir pressure (Po) gradient: 9.8 MPa/km 

 

 

Fig.5.2 Structural Permeability Diagram for Otway Basin (Mildren et al. 2005). 
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Fig.5.3 Structural Permeability Diagram for Otway Basin (Ge, 2009). 

5.3 Stimulated Reservoir Volume 

From previous description, we know that the elliptically distributed pore pressure is 

decreasing from the fracture surface to the far field. The position where the pore pressure 

and stress changes are too small to reactivate the joints marks the boundary of the failure 

zone the treating pressure can create.  

If we assume the failed distance is uniform along the fracture height, therefore, we can 

estimate the failed reservoir volume as shown Fig.5.4 and Fig.5.5 (Ge and Ghassemi, 2012): 

d dFRV y x h                            (5.4) 

Where yd is the failed distance, and xd is the failed distance in X direction, and h is assumed 

equal to the fracture height Hf. 
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Fig.5.4 Failed Reservoir Volume from Vertical Well (Ge and Ghassemi, 2012). 

 

Fig.5.5 Failed Reservoir Volume from Horizontal Well (Ge and Ghassemi, 2012). 
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5.4 Enhanced Permeability 

According to previous work by Palmer et al. (2005), the permeability enhancement during 

a fracture treatment is mainly due to the coupled process between the pressure transient 

and permeability increase. The pressure is transmitted along the natural fractures from the 

central fracture surface, and this increased pore pressure will cause the shear failure of the 

natural fractures and thus stimulates the permeability enhancement. Then, with higher 

permeability in the reservoir, the pressure will be transmitted faster and further away from 

the hydraulic fracture surface. Therefore, with the pore pressure distribution, and the 

required additional pore pressure for joint reactivation, the failed distance could be 

estimated. And using the assumed geometry for failed region, the failed reservoir volume 

is calculated.  

 

Fig.5.6 Flow Chart for the Estimation of Permeability Enhancement 
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A trial-and-error procedure is employed to predict the permeability enhancement in the 

failed region around the hydraulic fracture as shown in the flow chart in Fig.5.6 (Palmer, 

2007; Ge, 2009; Ge and Ghassemi, 2012). 

This procedure can be described as (Ge, 2009):  

 Guess an injection/enhanced permeability.  

 For a selected net fracture pressure, find the pore pressure distribution and stress 

variations, construct the slip map to find the required additional pore pressure for 

the joint reactivation. 

 Estimate the failed distance and failed reservoir volume.  

 By matching the failed reservoir volume with the stimulated reservoir volume (from 

microseismic clouds), the enhanced permeability is estimated. 
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CHAPTER VI 

CASE STUDIES 

To verify the constructed model in this study, several examples are given as case studies to 

investigate the pore pressure and stress redistribution around a hydraulic fracture, as well 

as the stimulated reservoir volume and the enhanced permeability, depending on the 

available data. The fracture and waterflooding dimensions are based on the fracture 

propagation model as described in previous chapters, and the examples for the model could 

be found in the thesis by Ge (2009).   

In this chapter, the case studies will focus on the waterflooding hydraulic fracturing model 

to demonstrate the stress variations by the poroelasticity, thermoelasticity, and fracture 

compression. Moreover, with the natural fractures information of the reservoir, the treating 

pressure required to reactivate these pre-existing weakness planes will be estimated. If the 

microseismic data are available, the stimulated reservoir volume and enhanced 

permeability by the hydraulic fracturing operation could also be investigated. 

6.1 Well Stimulation in Barnett Shale 

A case study on Barnett Shale gas reservoir with our model is in the following. To compare 

with the previous work, we use the data from Palmer et al. (2007) for Barnett shale, as 

shown in Table 6.1. 
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In addition, according to previous study (Ge and Ghassemi, 2012), two sets of natural 

fractures are employed here, including a north-south–trending set and a dominant, younger, 

west-northwest–east-southeast– trending set. And the in-situ stress is assumed with SHmax 

treading northeast-southwest (Ge and Ghassemi, 2012). 

Table 6.1 Input Parameters from Barnett Shale Case  

Parameter Value Unit 

Depth (D): 8200 ft 
Minimum horizontal stress (Sh): 5658 psi  

Maximum horizontal stress (SH):  6286 psi  

Vertical Stress (Sv):   8200 psi  

Initial reservoir pressure (Po):  4100 psi  

Friction angle (ϕ’): 31 degree 
Cohesion (c): 100 psi  
Modulus (E): 3.00E+06 psi  
Porosity: 0.1   
Poisson’s ratio:  0.25   
Bulk compressibility (ct): 3.69E-06 1/psi 

Water viscosity at res. temp.  0.3 cp 
Fracture half height (Hf ): 200 ft  

Fracture half length (Xf ): 1000 ft  

Pumping time (T):  5 hour 
Fracturing net pressure (Pf):  100-900  psi  

Fracturing rate (Q0): 70 bpm 

Fracture fluid volume (V): 800,000-1,000,000  gal 

Using the parameters for Barnett Shale in Table 6.1, we plot the pore pressure distribution 

for this case study. Fig.6.1 shows us the pore pressure distribution around the fracture 

center plane in Barnett Shale at water flooding time t=9 hours. The maximum pore pressure 

lies around the fracture surface, with a value of 6558 psi. The pore pressure is elliptically 
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distributed around the fracture surface and is decreasing from the central fracture to the 

reservoir formation (Ge, 2009; Ge and Ghassemi, 2011, 2012).  

 

Fig.6.1 Pore Pressure Distribution around Fracture (t=9 hours for Barnett Shale). 

The required effective treating pressure to reactivate fabrics of different orientations of 

joints in the reservoir of Barnett Shale is shown in Fig.6.2 (Parameters are from Table 6.1). 

In Fig.6.2, if we assume there are enough joints in the formation around the hydraulic 

fracture, the required effective treating pore pressure to stimulate the joints shouldn’t be 

less than 0.06 psi/ft. 
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Fig.6.2 Slip Map Showing the Required Additional Pore Pressure for the Natural 
Fractures Reactivation in Barnett Shale. 

With the pore pressure distribution and the slip map for Barnett Shale, the failed distance 

and the failed reservoir volume are calculated. The failed reservoir volume is then matched 

with the stimulated reservoir volume that estimated from the microseismic cloud to adjust 

the enhanced permeability and failed distance.  

The stimulated reservoir volume in this case study is calibrated from the trendlines for the 

stimulated reservoir volume vs. net fracture pressure (Palmer, et al., 2007). 
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Fig.6.3 Trendlines for Stimulated Reservoir Volume (FRV=SRV) vs Net Fracture 
Pressure (Palmer, et al., 2007). 

 

Fig.6.4 Estimated Failed Distance Normal to the Fracture Surface. 
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Fig.6.5 Matched Enhanced Permeability for Barnett Shale. 

After matching the calculated reservoir volume with the stimulated reservoir volume at any 

selected net fracture pressure (from 0 to 900 psi for this study), the failed distance normal 

to the fracture surface is plotted in Fig.6.4. And the matched enhanced permeability is also 

plotted as a function of net fracture pressure in Fig.6.5. 

To validate our results and model, we compare the enhanced permeability in our model 

with the results from previous study (Palmer, et al., 2007). By comparing, the enhanced 

permeability in this study is close to the results from previous work. The permeabilities are 

found to be increased 1-2000 times (as shown in Fig.6.6) of the original permeability of 

the Barnett Shale.  
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Fig.6.6 Permeability Enhancement Ratio (k/ki) during Injection to Barnett Shale Fracture 
Treatments. 

 

6.2 Hydraulic Fracturing in Bakken Shale 

For most unconventional reservoirs, the reservoir permeability is very small. For example, 

the permeability of Bakken is mostly less than 0.1 md (Kurtoglu, 2013). Even with the 

consideration of fracture permeability, it is still very low. Of course, after the stimulation 

by hydraulic fracturing, the permeability could be enhanced as previously studied (Ge and 

Ghassemi, 2011). So, this case study was performed representing a typical hydraulic 

fracturing in the horizontal well of a shale reservoir. The used parameters are shown in 

Table 6.2.   

 



 

70 

 

Table 6.2. Input Parameters for Bakken Shale 

Parameter Value Unit 

Minimum horizontal stress (Sh): 7000 psi  
Maximum horizontal stress (SH):  7500 psi  
Vertical stress (Sv):   10000 psi  
Initial reservoir pressure (Po):  4400 psi  
Fracturing net pressure (Pf): 800 psi  
Coefficient of friction: 0.6 

 

Cohesion (c): 100 psi  
Shear Strength:  1 psi  
Modulus (E): 5.00E+06 psi  
Poisson’s ratio:  0.3 
Porosity: 0.15 
Effective Permeability: 4 md 
Biot's modulus: 1 
Fluid compressibility (ct): 3.30E-06 1/psi 
Fluid viscosity: 0.3 cp  
Fracture half height (Hf ): 50 ft 
Fracture half length (Xf ): 1000 ft 
Elapsed leakoff time (t):  10 hour 
Coefficient of thermal expansion (β): 3.10E-06 1/⁰F 
Temperature difference (ΔT): 150 ⁰F 

The pore pressure and stresses redistribution of this case are shown in Fig.6.7-6.10. The 

figures of the stresses redistribution around the hydraulic fracture have shown the new 

stress regime after a certain time of fracturing operation. In this case, the required treating 

pressure for the reactivation of existing faults or natural fractures in the reservoir is plotted 

in the slip map. In this case, from the Fig.6.11, the minimum required treating pressure to 

reactivate the fault is 1180 psi, which is larger than the assumed treating pressure. That 

means, there is less likely that natural fractures will be reactivated during this treatment, 

unless higher treating pressure is operated in the field.  
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Fig.6.7 3-D Pore Pressure Distribution around a Hydraulic Fracture (1/8 part of the whole 
region) for Bakken Case. 

 

Fig.6.8 Maximum Horizontal Stress Redistributions around the Hydraulic Fracture in 3-D 
(1/8 of the Stress Field Regime) for Bakken Case. 
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Fig. 6.9 Minimum Horizontal Stress Redistributions around the Hydraulic Fracture in 3-
D (1/8 of the Stress Field Regime) for Bakken Case. 

 

Fig. 6.10 Vertical Stress Redistributions around the Hydraulic Fracture in 3-D (1/8 of the 
Stress Field Regime) for Bakken Case. 
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Fig. 6.11 Required Treating Pressure for the Reactivation of Natural Fractures for Bakken 
Case. 

If there is one set of natural fractures in the NNE-SSW directions with a dip angle 50º to 

70º, the required treating pressure for reactivation of these natural fractures would be 

around 1200 psi. This analysis would be helpful to instruct the field hydraulic fracturing 

operations for the optimal drilling process. 

6.3 Case Study on Enhanced Geothermal System  

In the following, we have performed another case study with our proposed model. The 

parameters used for a case representing an Enhanced Geothermal Reservoir are shown in 

Table 6.3.  
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Similarly, the pore pressure distribution of this case is shown in Fig.6.12. From this plot, 

the pore pressure is decreasing outward elliptically from the fracture surface to the reservoir 

pressure in the far field. 

Table 6.3 Input Parameters for Enhanced Geothermal Reservoir 

Parameter Value Unit 

Minimum horizontal stress (Sh): 4000 psi  
Maximum horizontal stress (SH):  4800 psi  
Vertical stress (Sv):   5500 psi  
Initial reservoir pressure (Po):  2500 psi  
Fracturing net pressure (Pf): 800 psi  
Coefficient of friction: 0.6 
Cohesion (c): 100 psi  
Shear Strength:  5 psi  
Modulus (E): 4.00E+06 psi  
Poisson’s ratio:  0.2 
Porosity: 0.15 
Effective Permeability: 100 md 
Biot's modulus: 0.99 
Fluid compressibility (ct): 3.30E-06 1/psi 
Fluid viscosity: 1 cp  
Fracture half height (Hf ): 200 ft 
Fracture half length (Xf ): 400 ft 
Elapsed leakoff time (t):  1 hour 
Coefficient of thermal expansion (β): 3.10E-06 1/⁰F 
Temperature difference (ΔT): 210 ⁰F 

Fig. 6.13-6.15 show the 3-D stress redistributions around the hydraulic fracture. For the 

convenience of visualization, only 1/8 region around the hydraulic fracture is plotted in 

each stress regime. Hydraulic fracturing is propagating in the x direction (maximum 

horizontal stress direction) and opens against to the z direction (the minimum horizontal 

stress direction, as shown in Fig. A-1). The y-axis is in the vertical direction in this case 
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study. 

 

Fig.6.12 3-D Pore Pressure Distribution around a Hydraulic Fracture (1/8 part of the 
whole region) for EGS Case. 

 

Fig.6.13 Maximum Horizontal Stress Redistributions around the Hydraulic Fracture in 3-
D (1/8 of the Stress Field Regime) for EGS Case. 
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Fig.6.14 Minimum Horizontal Stress Redistributions around the Hydraulic Fracture in 3-
D (1/8 of the Stress Field Regime) for EGS Case. 

 

Fig.6.15 Vertical Stress Redistributions around the Hydraulic Fracture in 3-D (1/8 of the 
Stress Field Regime) for EGS Case. 
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With the failure criterion and the orientations of natural fractures, a slip map is constructed 

to decide the required additional pore pressure for the reactivation of existing weakness 

planes (including faults, natural fractures and joints). Fig.6.16 shows the required treating 

pressure for the geothermal reservoir. From this figure, if we assume there are enough 

joints in the formation around the hydraulic fracture, the effective treating pressures 

required for reactivating the rock joints are from 792 psi to 3000 psi, depending on the 

locations and orientations of the natural fractures. The proposed treating pressure as shown 

in table 6.3 can only reactivate certain natural fractures with orientations in the NNW-SSE 

direction and high dip angle around 50º-80º (as shown in Fig.6.16). 

 

Fig. 6.16 Required Additional Pore Pressure for the Reactivation of Natural Fractures for 
EGS Case. 
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CHAPTER VII 

SUMMARY, CONCLUSIONS AND DISCUSSIONS 

The success of the hydraulic fracturing operations in unconventional reservoirs relies on 

the accurate understanding of the reservoir and rock mechanical properties.  The pore 

pressure and stress variations in the reservoir during the hydraulic fracturing process are 

among the most important factors that affect the accuracy of a hydraulic fracturing model. 

As a necessary verification of more complex numerical modeling and simulations, and a 

quick support in the field operations, the more straightforward semi-analytical model is 

necessary. 

In this study, we summarized and improved the fracture model by Ge and Ghassemi (2011, 

2012, 2014) for hydraulically induced fracture in an infinite unconventional reservoir by 

using more accurate 3-D pore pressure and stresses analysis. And this study also 

investigated the potential reactivations of the existing faults or natural fractures in the 

reservoir, which can be used to estimate the stimulated reservoir volume from the response 

of the reservoir rock in the vicinity of the main fracture with reference to rock failure and 

permeability variation. The response of the rock mass to the variations of pore pressure and 

stresses is calculated by considering the joint orientations and frictional properties, as well 

as a rock mass failure criterion. And several case studies were performed to verify this 

model.  
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From the simulation results of the case studies, we can have the idea on how the pore 

pressure and stresses are redistributed after the hydraulic fracturing operation. The shape 

of the hydraulic fracture, the permeability of the reservoir, the rock mechanical properties, 

and the original stress anisotropy, all can affect the redistributions of the stress regime.  

Both cases show that stresses, including the horizontal stresses and the vertical stress, have 

decreased at the fracture tip and increased on the fracture surface. The induced stresses in 

the minimum horizontal stress direction are larger than the induced stresses in the 

maximum horizontal stress direction; however, the new minimum horizontal stresses are 

still less than the maximum horizontal stresses. This indicates that a stress reversal does 

not happen in these cases. Further studies could be performed to find out the conditions for 

stress reversal near the fracture surface area by assuming that the original stress anisotropy 

is small enough.  

This work is of interest in interpretation of the induced micro-seismicity in the hydraulic 

fracturing operations and in assessing permeability enhancement by the stimulation. With 

further modifications, this model can also be used to optimize the drilling and injection 

activities for stimulation in unconventional shale oil and gas reservoirs. By considering the 

stress redistribution and natural fractures distribution in the reservoir, this work will benefit 

the design of the re-fracturing operations in unconventional reservoirs.   
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7.1 Summary  

In this research, the traditional two dimensional hydraulic fracturing propagation models 

are reviewed, the fracture propagation model was constructed to estimate the dimensions 

of the hydraulic fracture, the cooled region, and the waterflooded region. The 3-D pore 

pressure and stress redistributions around a hydraulically induced fracture are investigated, 

considering the effects from poroelasticity, thermoelasticity, and fracture compression. 

The distributions of pore pressure and stresses around a fracture is of interest in 

conventional hydraulic fracturing, fracturing during water-flooding of petroleum reservoirs, 

and injection/extraction operation in a geothermal reservoir. The stress and pore pressure 

fields are affected by: poroelastic, thermoelastic phenomena as well as by fracture opening 

under the combined action of applied pressure and in-situ stress.  

The methodology of Perkins and Gonzalez (1985) is used for calculating the fracture 

lengths, bottomhole pressures (BHP’s), and elliptical shapes of the flood front as the 

injection process proceeds. The 3-D pore pressure distribution was estimated based on the 

linear flow approximation around 3-D flat elliptic crack (Warpinski, et al., 2004). The 

temperature distribution was originally considered uniform in the cooled region, and later 

updated in the 3-D flat crack.  

A semi-analytical model has been set up to estimate both the 2-D and 3-D pore pressure 

and stress distribution around a hydraulic fracture. For the first time in this work, the 
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combination of the poroelastic, thermoelastic, and the fracture compression effects was 

studied. The model calculates the stress and pore pressure distribution around a fracture of 

a given length under the action of applied internal pressure and in-situ stresses as well as 

their variation due to cooling and pore pressure changes. It also calculates the failure 

potentials and slip map of natural fractures around the fracture based on the t Mohr-

Coulomb failure criterion to estimate the additional pore pressure needed to reactivate the 

pre-existing natural fractures. Case studies were performed on natural fractured shale 

reservoirs. This is of interest in interpretation of micro-seismicity in hydraulic fracturing 

and in assessing permeability variation around a stimulation zone. 

7.2 Conclusions 

The following conclusions are drawn from this study. 

1. Poroelasticity and thermoelasticity can cause some significant changes in the pore 

pressure and stress redistributions around a hydraulic fracture. 

2. A hydraulic fracturing propagation model was developed for calculating the length 

of a water-flood induced fracture from a single well in an infinite reservoir.  

3. A 3-D semi-analytical model was proposed to calculate the pore pressure and the 

stress changes at any point around the fracture caused by thermoelasticity, 

poroelasticity and fracture compression. The effect of the fracture opening on the 

stress redistribution could be analytically calculated by some assumptions. 
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4. By using the Mohr-Coulomb failure criterion, we can estimate the failure potentials 

of natural fractures and the required additional treating pressure to reactivate the 

natural fractures in shale reservoirs.  

5. If we know the stimulated reservoir volume from the microseismic cloud, we can 

estimate the enhanced permeability by the stimulation of hydraulic fracturing 

operations.  

6. The low permeability shale reservoirs with lots of natural fractures could be 

affected by the stress redistribution due to the interactions between the hydraulic 

fracture and the natural fractures. 

7. This study can be applied to investigate the effects of hydraulic fracturing 

operations on the induced stress regime, pore pressure and permeability variations 

in natural fractured reservoirs. 

8. It can be used to estimate the potential stress reversal during the hydraulic 

fracturing process due to the fracture opening and temperature change and assist 

the candidate well selection for refracturing operations. 

9. It can also be used to simulate the stimulated reservoir volume and help in the 

interpretation of micro-seismicity induced by hydraulic fracturing. 

10. The models may be used for assessing the more complexed numerical models and 

software package. 
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7.3 Recommendations 

In this study, we only focused on the pore pressure and stress redistribution around one 

hydraulic fracture. Further work could be done to investigate the multiple hydraulic 

fractures based on this work.   

The unconventional shale reservoirs have specific characterizations, such as the 

heterogeneity and vertical traverse isotropy, which could also be very interesting topics to 

study in the future.  

It is worth collecting more data from shale reservoirs, specially from Bakken, and combine 

the model with the shale reservoir data to design hydraulic fracturing operations. 

It will also be interesting to investigate the special conditions under which the magnitude 

of the two horizontal stresses could be reversed.  

The equations and calculations in this study could also be incorporated into a more complex 

numerical model, if enough data and computational capability are available. 
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APPENDICES 
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APPENDIX A 

DEDUCTIONS OF THE INDUCED 3-D STRESSES BY FRACTURE COMPRESSION 

In this work, the 3-D fracture induced stresses are based on the work by Green and 

Sneddon’s solution (1950) for a flat elliptic crack in a homogeneous, linear elastic material.  

Kassir and Sih (1966) extended their work to the three-dimensional stress distribution 

around an elliptical crack under arbitrary loadings. Warpinski et al. (2004) applied the 

fracture induced stress in their model for prediction of microseismicity. However, in all the 

previous work, the detailed deduction process and final expressions for induced stresses 

was not given clearly. So based on their work, we give detailed analysis and the deduction 

process in this work.  

 

Fig.A.1 Geometric for Flat Elliptic Crack. 
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Given Conditions: 

Green and Sneddon (1950) gave the solution for a constant pressure crack in a 

homogeneous material and the potential function is: 
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In which:  

G is the shear modulus, pf is the internal pressure, a is the fracture half length, b is the 

fracture half height. E(k) is the complete elliptic integral of the second kind, k is the 

modulus defined by: 

 ݇ ൌ ඥܽଶ െ ܾଶ/ܽ 
(A. 1) 

The ellipsoidal coordinates are defined by: 

 

ܽଶሺܽଶ െ ܾଶሻݔଶ ൌ ሺܽଶ ൅ ሻሺܽଶߣ ൅ ሻሺܽଶߤ ൅  ሻߝ

ܾଶሺܾଶ െ ܽଶሻݕଶ ൌ ሺܾଶ ൅ ሻሺܾଶߣ ൅ ሻሺܾଶߤ ൅  ሻߝ

ܽଶܾଶܼଶ ൌ  ߝߤߣ

(A. 2) 

Where: 
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 ∞ ൐ ߣ ൒ 0 ൒ ߤ ൒ െܾଶ ൒ ߝ ൒ െܽଶ 
(A. 3) 

The coordinates x and y are within the crack plane, a complex variable z is defined as x+iy 

and the axis normal to the crack surface is defined by the Z coordinate. Note not to confuse 

the Z coordinate and the complex variable z. zത is the complex conjugate of z. 

Expressions for stresses by the potential function: (Green & Sneddon, 1950; Sih & 

Liebowitz, 1968; Warpinski, et al. 2004) 

௫௫ߪ  ൅ ௬௬ߪ ൌ െ8ܩ ቈሺ1 ൅ ሻݒ2
∂ଶ߶
∂ܼଶ

൅ Z
∂ଷ߶
∂ܼଷ

቉ 
(A. 4) 

௫௫ߪ  െ ௬௬ߪ ൅ 2 ݅ ௫௬ߪ ൌ ܩ32
∂
∂zതଶ

൤ሺ1 െ ߶ሻݒ2 ൅ Z
߲߶
∂Z
൨ 

(A. 5) 

௭௭ߪ  ൌ െ8ܩ ቈ
∂ଶ߶
∂ܼଶ

െ Z
∂ଷ߶
∂ܼଷ

቉ 
(A. 6) 

௫௭ߪ  ൅ ݅ ௬௭ߪ ൌ ܼܩ16
∂ଷ߶
∂zത ∂ܼଶ

 
(A. 7) 

Solving Expressions for each Stress Component by Potential Function (ϕ): 

  
௫௫ߪ2 ൅ 2 ݅ ௫௬ߪ ൌ െ8ܩ ቈሺ1 ൅ ሻݒ2

∂ଶ߶
∂ܼଶ

൅ Z
∂ଷ߶
∂ܼଷ

቉

൅ ܩ32
∂
∂zതଶ

൤ሺ1 െ ߶ሻݒ2 ൅ Z
߲߶
∂Z
൨ 

(A. 8) 

Now, we need to get the partial derivative to the conjugate of complex variable z: 



 

88 

 

 
߲߶
∂zത

ൌ
1
2
൬
߲߶
∂x

൅ ݅
߲߶
∂y
൰ 

(A. 9) 

 

߲ଶ߶
∂zതଶ

ൌ
1
2
൤
1
2
߲
∂x
൬
߲߶
∂x

൅ ݅
߲߶
∂y
൰ ൅ ݅

1
2
߲
∂y
൬
߲߶
∂x

൅ ݅
߲߶
∂y
൰൨

ൌ
1
4
ቈቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

ቇ ൅ 2݅ ቆ
߲ଶ߶
∂x ∂y

ቇ቉ 

(A. 10) 

 

௫௫ߪ2 ൅ 2 ݅ ௫௬ߪ ൌ ܩ8 ቊെ ቈሺ1 ൅ ሻݒ2
∂ଶ߶
∂ܼଶ

൅ Z
∂ଷ߶
∂ܼଷ

቉

൅ ቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

ቇ ൅ ሺ1 െ ሻ2݅ݒ2 ቆ
߲ଶ߶
∂x ∂y

ቇ

൅ Zቆ
߲ଷ߶
∂xଶ ∂Z

െ
߲ଷ߶
∂yଶ ∂Z

൅ 2݅
߲ଷ߶

∂x ∂y ∂Z
ቇ቉ቋ 

(A. 11)

Separate the real and imagine part of the equation, we can get: 

  

௫௫ߪ2 ൌ ܩ8 ቊെ ቈሺ1 ൅ ሻݒ2
∂ଶ߶
∂ܼଶ

൅ Z
∂ଷ߶
∂ܼଷ

቉

൅ ቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

ቇ

൅ Zቆ
߲ଷ߶
∂xଶ ∂Z

െ
߲ଷ߶
∂yଶ ∂Z

ቇ቉ቋ 

(A. 12) 

௫௬ߪ	݅	2  ൌ ܩ8 ቊቈሺ1 െ ሻ2݅ݒ2 ቆ
߲ଶ߶
∂x ∂y

ቇ ൅ Zቆ2݅
߲ଷ߶

∂x ∂y ∂Z
ቇ቉ቋ 

(A. 13) 

Rearrange the above equations to get: 
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௫௫ߪ ൌ ܩ4 ቊቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

ቇ െ ሺ1 ൅ ሻݒ2
∂ଶ߶
∂ܼଶ

቉

൅ Zቆ
߲ଷ߶
∂xଶ ∂Z

െ
߲ଷ߶
∂yଶ ∂Z

െ
∂ଷ߶
∂ܼଷ

ቇቋ 

(A. 14) 

௫௬ߪ	  ൌ ܩ8 ቊቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂x ∂y

ቇ ൅ Zቆ
߲ଷ߶

∂x ∂y ∂Z
ቇ቉ቋ 

(A. 15) 

Further rearrange the above equations to get: 

 

௫௫ߪ ൌ ܩ4 ቊቈቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

െ
∂ଶ߶
∂ܼଶ

ቇ െ ݒ2 ቆ
߲ଶ߶
∂xଶ

െ
߲ଶ߶
∂yଶ

൅
∂ଶ߶
∂ܼଶ

ቇ቉

൅ Zቆ
߲ଷ߶
∂xଶ ∂Z

െ
߲ଷ߶
∂yଶ ∂Z

െ
∂ଷ߶
∂ܼଷ

ቇቋ 

(A. 16) 

௫௬ߪ	  ൌ ܩ8 ቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂x ∂y

ቇ ൅ Zቆ
߲ଷ߶

∂x ∂y ∂Z
ቇ቉ 

(A. 17) 

For the harmonic function ϕ, we have: 

 
߲ଶ߶
∂xଶ

൅
߲ଶ߶
∂yଶ

൅
∂ଶ߶
∂ܼଶ

ൌ 0 
(A. 18) 

௫௫ߪ  ൌ ܩ8 ቆ
߲ଶ߶
∂xଶ

൅ ݒ2
߲ଶ߶
∂yଶ

൅ Z
߲ଷ߶
∂xଶ ∂Z

ቇ 
(A. 19) 

௫௬ߪ	  ൌ ܩ8 ቈሺ1 െ ሻݒ2 ቆ
߲ଶ߶
∂x ∂y

ቇ ൅ Zቆ
߲ଷ߶

∂x ∂y ∂Z
ቇ቉ 

(A. 20) 

Then, rearrange to get: 
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௬௬ߪ  ൌ ܩ8 ቆ
߲ଶ߶
∂yଶ

൅ ݒ2
߲ଶ߶
∂xଶ

൅ Z
߲ଷ߶
∂yଶ ∂Z

ቇ 
(A. 21) 

Similar process, we can get other components of stresses: 

௭௭ߪ  ൌ െ8ܩ ቆ
∂ଶ߶
∂ܼଶ

െ Z
∂ଷ߶
∂ܼଷ

ቇ 
(A. 22) 

௫௭ߪ  ൌ ܼܩ8
∂ଷ߶
∂x ∂ܼଶ

 
(A. 23) 

௬௭ߪ  ൌ ܼܩ8
∂ଷ߶
∂y ∂ܼଶ

 
(A. 24) 

In the following, we will deduce these stresses with expressions by basic parameters. 

Solving the Expressions for each Stress Component in Elliptic Functions and Ellipsoidal 

coordinates: 

From the above equations, we can see there are partial derivatives of potential function to 

the coordinates, so we will first deduce out those partial derivatives. 

Before deduction of the equations, let’s set a function and a constant for the convenience 

of expression: 

 ܳሺݏሻ ൌ ሺܽଶݏ ൅ ሻሺܾଶݏ ൅  ሻݏ
(A. 25) 

ܣ  ൌ
abଶሺ݌௙ െ ௠௜௡ሻߪ

16G Eሺkሻ
 

(A. 26) 
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Therefore, the potential function can be expressed as: 

 ߶ ൌ
A
2
න ቆ

ଶݔ

ܽଶ ൅ ݏ
൅

ଶݕ

ܾଶ ൅ ݏ
൅
ܼଶ

ݏ
െ 1ቇ

ஶ

ఒ

ds

ඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
 (A. 27) 

Now, we first deduce the partial derivative of ϕ to coordinate Z, so that we can compare 

with previous work. From Eqn.3.3, we get: 

 
߲߶
߲ܼ

ൌ
A
2
߲
߲ܼ

ቆන ቆ
ଶݔ

ܽଶ ൅ ݏ
൅

ଶݕ

ܾଶ ൅ ݏ
൅
ܼଶ

ݏ
െ 1ቇ

ஶ

ఒ

ds

ඥQሺsሻ
ቇ (A. 28) 

From the definition of ellipsoidal coordinates , we know that coordinate λ is also a 

function of coordinate Z; therefore, the Leibniz Integral Rule is used to solve the above 

equation. 

According to Leibniz Integral Rule, a more general result, applicable when the limits of 

integration a and b and the integrand ƒ(x, α) all are functions of the parameter α is: 

 

߲
߲ܼ

න ݂ሺx, Zሻdx
௕ሺ௓ሻ

௔ሺ௓ሻ

ൌ න
߲݂ሺx, Zሻ
߲ܼ

dx
௕ሺ௓ሻ

௔ሺ௓ሻ
൅ ݂ሺbሺZሻ, Zሻ

߲ܾ
߲ܼ

െ ݂ሺaሺZሻ, Zሻ
߲ܽ
߲ܼ

 

(A. 29) 

Where the partial derivative of f indicates that inside the integral only the variation of 

ƒ(x, α) with α is considered in taking. 
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Apply the Leibniz Integral Rule to the above equation to get: 

 

߲߶
߲ܼ

ൌ
A
2
൦
߲ሺ∞ሻ
߲ܼ

൬
ଶݔ

ܽଶ ൅ ∞ ൅
ଶݕ

ܾଶ ൅ ∞ ൅
ܼଶ
∞ െ 1൰

ඥQሺ∞ሻ

െ
߲ሺߣሻ
߲ܼ

൬
ଶݔ

ܽଶ ൅ ߣ ൅
ଶݕ

ܾଶ ൅ ߣ ൅
ܼଶ

ߣ െ 1൰

ඥQሺߣሻ

൅ න
߲
߲ܼ

൮

ଶݔ

ܽଶ ൅ ݏ ൅
ଶݕ

ܾଶ ൅ ݏ ൅
ܼଶ
ݏ െ 1

ඥQሺsሻ
൲

ஶ

ఒ
ds൪ 

(A. 30)

The first part in the bracket of the equation is zero when getting limitation to 

infinite. 

Since we know for the ellipsoidal coordinates, there is expression: 

 
ଶݔ

ܽଶ ൅ ߣ
൅

ଶݕ

ܾଶ ൅ ߣ
൅
ܼଶ

ߣ
െ 1 ൌ 0 

(A. 31) 

 

 
߲߶
߲ܼ

ൌ
A
2
൦න

߲
߲ܼ

൮

ଶݔ

ܽଶ ൅ ݏ ൅
ଶݕ

ܾଶ ൅ ݏ ൅
ܼଶ
ݏ െ 1

ඥQሺsሻ
൲

ஶ

ఒ
ds൪ 

(A. 32)

Further rearrange the above equation, we can get: 

 
߲߶
߲ܼ

ൌ Aܼන
ds

s ඥQሺsሻ

ஶ

ఒ
 (A. 33) 
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Now, the most difficult step in this deduction is the integral in the above equation. Now, I 

take it out of the equation and integrate it. 

 

න
ds

s	ඥQሺsሻ
ൌ

ஶ

ఒ
න

ሺܽଶ ൅ ሺܾଶ	ሻݏ ൅ ሻݏ

s	ሺܽଶ ൅ ሺܾଶ	ሻݏ ൅ ሻඥQሺsሻݏ

ஶ

ఒ
ds 

ൌ න
ଶݏ ൅ ሺܽଶ൅ܾଶሻݏ	 ൅ ܽଶܾଶ

ቀඥQሺsሻቁ
ଷ

ஶ

ఒ
ds 

ൌ න
ଶݏ3 ൅ 2ሺܽଶ൅ܾଶሻݏ	 ൅ ܽଶܾଶ

ቀඥQሺsሻቁ
ଷ

ஶ

ఒ
ds െ න

ଶݏ2 ൅ ሺܽଶ൅ܾଶሻݏ	

ቀඥQሺsሻቁ
ଷ

ஶ

ఒ
ds 

(A. 34)

Rearrange Eqn.A.34: 

 

න
ds

s	ඥQሺsሻ
ൌ

ஶ

ఒ
න

d൫Qሺsሻ൯

ቀඥQሺsሻቁ
ଷ

ஶ

ఒ

െ න
ଶݏ2 ൅ ሺܽଶ൅ܾଶሻݏ	

s	ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ

ஶ

ఒ
ds 

ൌ
െ2

ඥQሺsሻ
ቤ
∞
λ
െ න

ଶݏ2 ൅ ሺܽଶ൅ܾଶሻݏ	

s	ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ

ஶ

ఒ
ds 

ൌ
2

ඥQሺλሻ
െ න

ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ

ஶ

ఒ
ds 

(A. 35)

 
߲߶
߲ܼ

ൌ Aܼ ቊ
2

ඥQሺλሻ
െ න

ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ

ஶ

ఒ
dsቋ A. 36)

In the following deduction, we will first get rid of the integral to simplify Eqn.A.36. For 



 

94 

 

this integral, I get the help from software Mathematica and the integral result is shown in 

the following. The indefinite integral of it is given for simplification (because the definite 

integral could not be given by software).  

 

න
ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ
ds

ൌ ൝2s൭ቆට
s

ܾଶ ൅ ݏ
ቇ ሺܽଶ ൅ ܾଶ ൅ ሻݏ

൅ ݅	ܽଶට1 ൅
s
ܽଶ
EllipticE ቈ݅	ArcSinh ቈට

s
ܾଶ
቉ ,
ܾଶ

ܽଶ
቉

െ ݅	ܽଶට1 ൅
s
ܽଶ
EllipticF ቈ݅	ArcSinh ቈට

s
ܾଶ
቉ ,
ܾଶ

ܽଶ
቉൱ൡ

/ ቆܽଶܾଶට
s

ܾଶ ൅ ݏ
ඥsሺܽଶ ൅ ሻሺܾଶݏ ൅  ሻቇݏ

(A. 37)

In which:  

EllipticE[φ,m]=E[φ|m], gives the elliptical integral of the second kind.  

EllipticF[φ,m]=F[φ|m], gives the elliptical integral of the first kind.  

The above equation needs to be simplified for the definite integral; therefore, in the first step, 

I divided it into three parts to simplify: 
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න
ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ
ds ൌ ሺ1ሻ ൅ ሺ2ሻ െ ሺ3ሻ 

ሺ1ሻ ൌ
2s ൬ට

s
ܾଶ ൅ ൰ݏ

ሺܽଶ ൅ ܾଶ ൅ ሻݏ

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

 

ሺ2ሻ ൌ
2s	݅	ܽଶට1 ൅

s
ܽଶ EllipticE ቈ݅	ArcSinh ቈට

s
ܾଶ቉ ,

ܾଶ

ܽଶ቉

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

 

ሺ3ሻ ൌ
2s ቆ݅	ܽଶට1 ൅

s
ܽଶ EllipticF ቈ݅	ArcSinh ቈට

s
ܾଶ቉ ,

ܾଶ

ܽଶ቉ቇ

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

 

(A. 38)

For part (1) of Eqn.A.38, it is simplified as: 

 

	ሺ1ሻ ൌ
2s ൬ට

s
ܾଶ ൅ ൰ݏ

ሺܽଶ ൅ ܾଶ ൅ ሻݏ

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

 

ൌ
2sሺܽଶ ൅ ܾଶ ൅ ሻݏ

ܽଶܾଶඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
 

ൌ
2
ܾܽଶ

ቊ
sሺܽଶ ൅ ሻݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
൅

ܾଶݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
ቋ 

(A. 39)

Eqn.A.39 is kept here for future simplification of the integral. 

In the following are the deductions of part (2) and (3) of Eqn.A.38. 

Firstly simplify part (2) as: 
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ሺ2ሻ ൌ
2s	݅	ܽଶට1 ൅

s
ܽଶ EllipticE ቈ݅ ArcSinh ቈට

s
ܾଶ቉ ,

ܾଶ

ܽଶ቉

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

 

ൌ
2
ܾܽଶ

ە
ۖ
۔

ۖ
ܽට	݅	sۓ

ܽଶ ൅ s
ܽଶ EllipticE ቈ݅	ArcSinh ቈට

s
ܾଶ቉ ,

ܾଶ

ܽଶ቉

൬ට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

ۙ
ۖ
ۘ

ۖ
ۗ

ൌ
2
ܾܽଶ

ቊ݅ EllipticE ቈ݅ ArcSinh ቈට
s
ܾଶ
቉ ,
ܾଶ

ܽଶ
቉ቋ 

(A. 40)

In Eqn.A.40, what we need to deal with is the elliptical integral. Before simplifying this 

equation, the knowledge of elliptical integral is introduced here as addition equations: 

 

,ሺ߮ܧ ݇ሻ ൌ ሻ݉|ݑሺܧ ൌ ሻߙ\ሺ߮ܧ ൌ න ට൫1 െ sinଶሺαሻsinଶሺθሻ൯
ఝ

଴
dθ

ൌ න ට൫1 െ݉sinଶሺθሻ൯
ఝ

଴
dθ

ൌ න ට൫1 െ ݇ଶsinଶሺθሻ൯
ఝ

଴
dθ 

ൌ න dnଶݓ
௨

଴
dݓ 

(A. 41)

In which, the incomplete elliptical integral of the second kind can be expressed in 

different parameters. The relations between those variables are shown as: 

 
݉ ൌ sinଶሺαሻ ൌ ݇ଶ 

ሺ߮ሻ݊݅ݏ ൌ ݊ݏ  ݑ

(A. 42)
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cosሺ߮ሻ ൌ ܿ݊  ݑ

In which the sn, cn and dn are Jacobi elliptic functions, which have the following 

characteristics: 

From the equation, we have the expression for E[φ|m]. Because the existences of the 

imaginary number i, the equation from Aramowitz and Stegun (1970) is referred here: 

 
ሻߙ\߮	ሺ݅ܧ ൌ െ݅ ܧ ቀߠ\

ߨ
2
െ ቁߙ ൅ ݅ ܨ ቀߠ\

ߨ
2
െ  ቁߙ

൅݅ tan ߠ ൫1 െ ሻ൯ߠଶሺ݊݅ݏሻߙଶሺݏ݋ܿ
ଵ/ଶ

 

(A. 43)

In which, tan(θ)=sinh(φ).  

Now the expression for E[φ|m]: ݅	EllipticE ൤݅	ArcSinh ൤ට
ୱ

௕మ
൨ ,

௕మ

௔మ
൨, we have the following 

relations: if we consider it as E[i φ|m]: 

 
߮ ൌ ArcSinh ቈට

s
ܾଶ
቉ 

݉ ൌ sinଶሺαሻ ൌ
ܾଶ

ܽଶ
 

(A. 44)

 
ߠ݊ܽݐ ൌ ට

s
ܾଶ

 

α ൌ ArcSin ൬
ܾ
ܽ
൰ 

(A. 45)

Therefore, it can be changed to: 
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ሺ2ሻ ൌ
2
ܾܽଶ

ቊ݅ EllipticE ቈ݅ ArcSinh ቈට
s
ܾଶ
቉ ,
ܾଶ

ܽଶ
቉ቋ

ൌ
2
ܾܽଶ

݅	 ቄെ݅	ܧ ቀߠ\
ߨ
2
െ ቁߙ ൅ ܨ	݅ ቀߠ\

ߨ
2
െ ቁߙ

൅ ݅ tan ߠ ൫1 െ ሻ൯ߠଶሺ݊݅ݏሻߙଶሺݏ݋ܿ
ଵ/ଶ
ቅ 

(A. 46)

Similarly, we have: 

ሺ݅ܨ  ሻߙ\߮ ൌ ݅ ܨ ቀߠ\
ߨ
2
െ  ቁߙ

(A. 47)

And like part 2, part 3 could be changed to: 

 

ሺ3ሻ ൌ
2s ቆ݅	ܽଶට1 ൅

s
ܽଶ EllipticF ቈ݅ ArcSinh ቈට

s
ܾଶ቉ ,

ܾଶ

ܽଶ቉ቇ

൬ܽଶܾଶට
s

ܾଶ ൅ ඥsሺܽݏ
ଶ ൅ ሻሺܾଶݏ ൅ ሻ൰ݏ

ൌ
2
ܾܽଶ

ቊ݅	EllipticF ቈ݅	ArcSinh ቈට
s
ܾଶ
቉ ,
ܾଶ

ܽଶ
቉ቋ

ൌ
2
ܾܽଶ

݅ ቄ݅ F ቀߠ\
ߨ
2
െ  ቁቅߙ

(A. 48)

Now, let’s put the above equations together: 
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න
ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ
ds ൌ ሺ1ሻ ൅ ሺ2ሻ െ ሺ3ሻ

ൌ
2
ܾܽଶ

ቊ
sሺܽଶ ൅ ሻݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ

൅
ܾଶݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
ቋ

൅
2
ܾܽଶ

݅	 ቄെ݅	ܧ ቀߠ\
ߨ
2
െ ቁߙ ൅ ܨ	݅ ቀߠ\

ߨ
2
െ ቁߙ

൅ ݅ tan ߠ ൫1 െ ሻ൯ߠଶሺ݊݅ݏሻߙଶሺݏ݋ܿ
ଵ/ଶ
ቅ

െ
2
ܾܽଶ

݅ ቄ݅ F ቀߠ\
ߨ
2
െ  ቁቅߙ

(A. 49)

Rearrange equation A.49, cancel the part for elliptical integral of the first kind, and cancel 

the imaginary number, we can get: 

  

න
ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ
ds

ൌ
2
ܾܽଶ

ቊ
sሺܽଶ ൅ ሻݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ

൅
ܾଶݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
ቋ

൅
2
ܾܽଶ

ቄ	ܧ ቀߠ\
ߨ
2
െ ቁߙ

െ tan ߠ ൫1 െ ሻ൯ߠଶሺ݊݅ݏሻߙଶሺݏ݋ܿ
ଵ/ଶ
ቅ 

(A. 50)

Obviously, Eqn.A.50 still needs to improve, so let’s consider the expressions for θ and α.  

ߠ݊ܽݐ  ൌ ට
s
ܾଶ
⇒ ሻߠଶሺ݊݅ݏ ൌ

s
ݏ ൅ ܾଶ

 
(A. 51)
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 α ൌ ArcSin ൬
ܾ
ܽ
൰ ⇒ ሻߙଶሺݏ݋ܿ ൌ

ܽଶ െ ܾଶ

ܽଶ
 

(A. 52)

Then,  

 

න
ݏ2 ൅ ሺܽଶ൅ܾଶሻ

ሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻඥQሺsሻݏ
ds

ൌ
2
ܾܽଶ

ቊ
sሺܽଶ ൅ ሻݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ

൅
ܾଶݏ

ܽඥsሺܽଶ ൅ ሻሺܾଶݏ ൅ ሻݏ
ቋ

൅
2
ܾܽଶ

൝	ܧ ൭݊ܽݐܿݎܣ ቆට
s
ܾଶ
ቇ \

ߨ
2
െ ArcSin ൬

ܾ
ܽ
൰൱

െ ට
s
ܾଶ
ቆ1 െ

ܽଶ െ ܾଶ

ܽଶ
s

ݏ ൅ ܾଶ
ቇ
ଵ/ଶ

ൡ 

(A. 53)

Rearrange the upper equation: 

Now, equation should be rearranged to simplify the expression. According to Aramowitz 

and Stegun (1970),   

 EሺK െ uሻ ൌ Eሺkሻ െ Eሺuሻ ൅ kଶ  ሺuሻܿ݀ሺuሻ݊ݏ
(A. 54)

In which, K is the quarter period of elliptic functions and expressed as: 

ܭ  ൌ න
1

ට൫1 െ ݉sinଶሺθሻ൯

గ
ଶ

଴
dθ ൌ න

1

ට൫1 െ ݇ଶsinଶሺθሻ൯

గ
ଶ

଴
dθ (A. 55)
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And u is related Jacobian Elliptic Functions and defined by: 

 
ݑ ൌ න

1

ට൫1 െ݉sinଶሺθሻ൯

ఝ

଴
dθ ൌ න

1

ට൫1 െ ݇ଶsinଶሺθሻ൯

ఝ

଴
dθ (A. 56)

Then, we can derive: 

 

ݑ݊ܿ
ݑ݊݀
݇ᇱ
ݑ݊ݏ
ݑ݊݀

ൌ

sin ൭݊ܽݐܿݎܣ ቆට
λ
ܾଶቇ൱

cos ൭݊ܽݐܿݎܣ ቆට
λ
ܾଶቇ൱

 
(A. 57)

Rearranging: 

 
ݑ݊ܿ
݇ᇱݑ݊ݏ

ൌ ඨ
λ
ܾଶ

 
(A. 58)

We have known that: 

 ݇ᇱ ൌ ඥ1 െ kଶ ൌ b/a 
(A. 59)

Put equation 3.48 into equation 3.47 and rearrange it to get: 

 λ ൌ
ܽଶܿ݊ଶݑ
ݑଶ݊ݏ

 
(A. 60)

Now, we know all the expressions for the different parameters in the elliptical integral.  

Now, let’s summarize all the deduction for integral and put them back to the original 

potential equation:  
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߲߶
߲ܼ

ൌ Aܼ ቊ
2

ඥQሺλሻ

൅
2
ܾܽଶ

ቈ
ܾଶߣ

ܽඥλሺܽଶ ൅ ሻሺܾଶߣ ൅ ሻߣ
െ Eሺuሻ

൅ kଶ
u݊ݏ ܿ݊u
ݑ݊݀

቉ቋ 

(A. 61)

Now, we will further simplify it by using Jacobian elliptic functions instead of the 

coordinate λ:  

 

2

ඥQሺλሻ
ൌ

2

ඥλሺܽଶ ൅ ሻሺܾଶߣ ൅ ሻߣ

ൌ
2

ටܽ
ଶܿ݊ଶݑ
ݑଶ݊ݏ ሺܽଶ ൅ ܽଶܿ݊ଶݑ

ݑଶ݊ݏ ሻሺܾଶ ൅ ܽଶܿ݊ଶݑ
ݑଶ݊ݏ ሻ

ൌ
2
ܾܽଶ

൤
u݊ݏ ݀݊u
ݑ݊ܿ

െ
u݊ݏ ܿ݊u
ݑ݊݀

൨ 

(A. 62)

 
ܾଶߣ

ܽඥλሺܽଶ ൅ ሻሺܾଶߣ ൅ ሻߣ
ൌ െkଶ

u݊ݏ ܿ݊u
ݑ݊݀

൅
ܿ݊u	u݊ݏ
ݑ݊݀

 (A. 63)

 

߲߶
߲ܼ

ൌ Aܼ
2
ܾܽଶ

൜
u݊ݏ ݀݊u
ݑ݊ܿ

െ
u݊ݏ ܿ݊u
ݑ݊݀

െ kଶ 	
u݊ݏ ܿ݊u
ݑ݊݀

൅
ܿ݊u	u݊ݏ
ݑ݊݀

െ Eሺuሻ ൅ kଶ
ܿ݊u	u݊ݏ
ݑ݊݀

ൠ ൌ
2Aܼ
ܾܽଶ

൜
݀݊u	u݊ݏ
ݑ݊ܿ

െ Eሺuሻൠ 

(A. 64)

The first important step for this whole deduction process is now finished. 

With similar process, we can also deduce the other partial derivatives used for the stresses 

by repeating all the previous deductions x, y and Z coordinates respectively. (Detailed 

deducing processes are lengthy and done manually, not listed in the following) 
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߲ଶ߶
߲ܼଶ

ൌ
2A
ܾܽଶ

൜
u݊ݏ ݀݊u
ݑ݊ܿ

െ Eሺuሻൠ ൅
2AZ
ܾܽଶ

ቊkᇱଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
dλ

∂λ
∂Z

 
(A. 65)

 

߲ଷ߶
߲ܼଷ

ൌ
4A
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
dλ

∂λ
∂Z

൅
2AZ
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ ቊ
dଶu
dλଶ

൬
∂λ
∂Z
൰
ଶ

൅
du
dλ

∂ଶλ
∂Zଶ

ቋ

൅
4AZ
ܾܽଶ

൜k′ଶ
u݊ݏ dnu
ܿ݊ଷݑ

ൠ ൬
du
dλ
൰
ଶ

൬
∂λ
∂Z
൰
ଶ

 

(A. 66)

 
߲߶
ݔ߲

ൌ
2Ax
ܽଷ݇ଶ

ሼݑ െ Eሺuሻሽ 
(A. 67)

 
߲߶
ݕ߲

ൌ
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
Eሺuሻ െ ݑ െ

ܽଶ െ ܾଶ

ܾଶ
u݊ݏ ܿ݊u
ݑ݊݀

ቋ 
(A. 68)

 
߲ଶ߶
ݕ߲ݔ߲

ൌ
2Ax
ܽଷ݇ଶ

൜
du
dλ
∂λ
∂y

െ ݀݊ଶݑ
du
dλ

∂λ
∂y
ൠ ൌ

2Ax
ܽଷ

൜݊ݏଶݑ
du
dλ

∂λ
∂y
ൠ 

(A. 69)

 
߲ଶ߶
ଶݔ߲

ൌ
2A
ܽଷ݇ଶ

ሼݑ െ Eሺuሻሽ ൅
2Ax
ܽଷ݇ଶ

൜݊ݏଶݑ
du
dλ
∂λ
∂x
ൠ 

(A. 70)

 

߲ଶ߶
ଶݕ߲

ൌ
2A
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
Eሺuሻ െ ݑ െ

ܽଶ െ ܾଶ

ܾଶ
u݊ݏ ܿ݊u
ݑ݊݀

ቋ

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu ቇቋ
du
dλ

∂λ
∂y

 

(A. 71)

 

߲ଷ߶
ଶ߲ܼݔ߲

ൌ
2A
ܽଷ

൜݊ݏଶݑ
du
dλ

∂λ
∂Z
ൠ

൅
2Ax
ܽଷ݇ଶ

ቊ2ݑ݊ݏ	ݑ݊ܿ	ݑ݊݀ ൬
du
dλ
൰
ଶ ∂λ
∂x
∂λ
∂Z

൅ ݑଶ݊ݏ ቆ
dଶu
dλଶ

∂λ
∂x
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂x ∂Z

ቇቋ 

(A. 72)
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߲ଷ߶
ଶ߲ܼݕ߲

ൌ
2A
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1 െ

ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu	ቇቋ
du
dλ

∂λ
∂Z

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
2ሺെ݇ଶሻ݀݊ݑ	ݑ݊ܿ	ݑ݊ݏ

൅ 2
ܽଶ െ ܾଶ

ܾଶ
ቆ
ሺ݇′ଶሻ݊ݏu	ܿ݊u

݀݊ଷݑ

൅ ቇቋ	dnu	ܿ݊u	u݊ݏ ൬
du
dλ
൰
ଶ ∂λ
∂y
∂λ
∂Z

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu ቇቋ ቊ
dଶu
dλଶ

∂λ
∂y
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂y ∂Z

ቋ 

(A. 73)

 

߲ଷ߶
߲ܼଶ߲ݔ

ൌ
2A
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
dλ
∂λ
∂x

൅
2AZ
ܾܽଶ

ቊቆ
ሺ݇′ଶሻ݊ݏu	݀݊u

ܿ݊ଷݑ
ቇ ൬
du
dλ
൰
ଶ ∂λ
∂x
∂λ
∂Z

൅ ቆk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቇቆ
dଶu
dλଶ

∂λ
∂x
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂x ∂Z

ቇቋ 

(A. 74)

 

߲ଷ߶
߲ܼଶ߲ݕ

ൌ
2A
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
dλ

∂λ
∂y

൅
2AZ
ܾܽଶ

ቊቆ
ሺ݇′ଶሻ݊ݏu	݀݊u

ܿ݊ଷݑ
ቇ ൬
du
dλ
൰
ଶ ∂λ
∂y
∂λ
∂Z

൅ ቆk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቇቆ
dଶu
dλଶ

∂λ
∂y
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂y ∂Z

ቇቋ 

(A. 75)
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߲ଷ߶
ܼ߲ݕ߲ݔ߲

ൌ
2Ax
ܽଷ

ቊ2ݑ݊ݏ ݑ݊ܿ ݑ݊݀ ൬
du
dλ
൰
ଶ ∂λ
∂Z

∂λ
∂y

൅ ݑଶ݊ݏ ቆ
dଶu
dλଶ

∂λ
∂y
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂y ∂Z

ቇቋ 

(A. 76)

 

௫௫ߪ ൌ ܩ8 ቆ
2A
ܽଷ݇ଶ

ሼݑ െ Eሺuሻሽ ൅
2Ax
ܽଷ݇ଶ

൜݊ݏଶݑ
du
dλ
∂λ
∂x
ൠ

൅ ݒ2
2A
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
Eሺuሻ െ ݑ െ

ܽଶ െ ܾଶ

ܾଶ
ܿ݊u	u݊ݏ
ݑ݊݀

ቋ

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu	ቇቋ
du
dλ

∂λ
∂y

൅ Z
2A
ܽଷ

൜݊ݏଶݑ
du
dλ

∂λ
∂Z
ൠ

൅
2Ax
ܽଷ݇ଶ

ቊ2ݑ݊ݏ	ݑ݊ܿ	ݑ݊݀ ൬
du
dλ
൰
ଶ ∂λ
∂x
∂λ
∂Z

൅ ݑଶ݊ݏ ቆ
dଶu
dλଶ

∂λ
∂x
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂x ∂Z

ቇቋቇ 

(A. 77)

 

௫௬ߪ	 ൌ ܩ8 ቈሺ1 െ ሻݒ2 ൬
2Ax
ܽଷ

൜݊ݏଶݑ
du
dλ

∂λ
∂y
ൠ൰

൅ Zቆ
2Ax
ܽଷ

ቊ2ݑ݊ݏ	ݑ݊ܿ	ݑ݊݀ ൬
du
dλ
൰
ଶ ∂λ
∂Z

∂λ
∂y

൅ ݑଶ݊ݏ ቆ
dଶu
dλଶ

∂λ
∂y
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂y ∂Z

ቇቋቇ቉ 

(A. 78)
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௬௬ߪ ൌ ܩ8 ቆ
2A
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
Eሺuሻ െ ݑ െ

ܽଶ െ ܾଶ

ܾଶ
ܿ݊u	u݊ݏ
ݑ݊݀

ቋ

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu	ቇቋ
du
dλ

∂λ
∂y

൅ ݒ2
2A
ܽଷ݇ଶ

ሼݑ െ Eሺuሻሽ ൅
2Ax
ܽଷ݇ଶ

൜݊ݏଶݑ
du
dλ
∂λ
∂x
ൠ

൅ Z
2A
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu	ቇቋ
du
dλ

∂λ
∂Z

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
2ሺെ݇ଶሻ݀݊ݑ	ݑ݊ܿ	ݑ݊ݏ

൅ 2
ܽଶ െ ܾଶ

ܾଶ
ቆ
ሺ݇′ଶሻ݊ݏu	ܿ݊u

݀݊ଷݑ

൅ ቇቋ	dnu	ܿ݊u	u݊ݏ ൬
du
dλ
൰
ଶ ∂λ
∂y
∂λ
∂Z

൅
2Ay
ܽଷ݇ଶ

ቊቀ
ܽ
ܾ
ቁ
ଶ
݀݊ଶݑ െ 1

െ
ܽଶ െ ܾଶ

ܾଶ
ቆ
ܿ݊ଶu
݀݊ଶݑ

െ݊ݏଶu	ቇቋ ቊ
dଶu
dλଶ

∂λ
∂y
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂y ∂Z

ቋቇ 

(A. 79)

 

  
(A. 80)
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௫௭ߪ ൌ ܼܩ8
2A
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
dλ
∂λ
∂x

൅
2AZ
ܾܽଶ

ቊቆ
ሺ݇′ଶሻ݊ݏu	݀݊u

ܿ݊ଷݑ
ቇ ൬
du
dλ
൰
ଶ ∂λ
∂x
∂λ
∂Z

൅ ቆk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቇቆ
dଶu
dλଶ

∂λ
∂x
∂λ
∂Z

൅
du
dλ

∂ଶλ
∂x ∂Z

ቇቋ 

(A. 81)

 

௬௭ߪ ൌ ܼܩ8
2A
ܾܽଶ

ቊk′ଶ
ଶu݊ݏ
ܿ݊ଶݑ

ቋ
du
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In which: sn, du, and cn are Jacobian elliptic functions; A is given by: 
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Similarly, the other partial derivates and parameters can also be expressed by: 
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All these equations are to be examined and proved through a FORTRAN program. 
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APPENDIX B 

SLIP MAP AND STRUCTURAL PERMEABILITY DIAGRAM 

The slip maps of natural fractures in a given stress field are investigated by Jaeger and 

Rosengren (1969). In their work, the following assumptions were made: 

 The directions and magnitudes of the principal stresses are given, expressed by the 

parameters 1 , 2 , 3 , and their directions. 

 The orientations of natural fracture planes relative to the principal stresses 

(expressed by the angles between the normal of the joint and the directions of ,

: θ1, θ3), and the friction and cohesion of natural fractures (c and ). 

  Assuming the uniform conditions in the formations 

Mohr-Coulomb failure criterion is used (Warpinski et al., 2004):  

                   ' tan 's n                                 (B.1)  

Where τ is the shear stress, τs is the shear strength or cohesive strength, σn’ is the effective 

normal stress and φ’ is the joint friction angle.   

The conditions for sliding across any plane will be taken to be given by equation B.1. This 

relation is represented by the line ABC in Fig.B.1. The normal and shear stress across a 

plane whose normal makes anglesθ1, θ3, respectively, with the direction of the principal 

1

3 
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stresses  ,  , is found by the usual three dimensional Mohr construction and is 

represented by the point P on Fig.B.1 (Jaeger and Rosengren, 1969).  Here, the points D, 

E, F are representing principal stresses , , on the   axis; G and H are the centers 

of circles on FE and ED as diameters; the angels FGK and LHD are 2θ1, 2θ3, respectively; 

and P is the intersection of circle of center H passing through K with a circle of center G 

passing through L. If P lies below the line ABC sliding cannot take place on the plane. 

 

 

Fig.B.1 Determination of the Possibility of Sliding of Natural fractures Using the Mohr 
Diagram. 

 

In the work of Jaeger and Rosengren (1969), an equal area projection showing the method 

of plotting the normal P to a plane was used to show the failed range of orientations of 

1 3

1 2 3
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natural fractures. As shown in the Fig.2 (Jaeger and Rosengren, 1969), the angles θ and

(which are θ1, θ3 in our study), measured along great circles form , , respectively, 

determine the position of the normal P of natural fractures on the projection. In the special 

case, slip can occur on any plane only if its normal lies in one of the four lobes Q1R1S1, etc. 

For this given case, the parameters used are:  

3 1/  =0.1; 

2 1/  =0.3; 

And =2/3, assuming the pore pressure and cohesion are both zero. 

 

Fig.B.2 Equal Area Projection for Sliding Area of Natural fractures (Jaeger and 
Rosengren, 1969). 

1 3


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To program for this study, the following procedure is used.  

In Fig.B.2, the plot is shown by latitude and longitude. In this study, we use angle α, β to 

represent latitude and longitude in the figure. The first step is to get the relations between 

α, β and θ1, θ3 which can be deduced by the following procedure. 

 

Fig.B.3 the Projection for Normal P. 

As shown in Fig.B.3, OP is the normal of any a joint plane, and A is the vertical projection 

on the horizontal plane, point D is the Projection of P on the Wulff Net. Assuming the X-
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axis and Y-axis are the direction of , , respectively. The angle POB here is the latitude 

α (here assume X-axis direction is North Pole for the convenience of analysis), and the 

angle BPA is the longitude β. The angle POX and POY are θ1, θ3 respectively. The right 

angles in Fig.3 include angle: PAO, PAB, PBO, DEO, DFO, and PGO. The PH is the 

vertical line to the Y-axis form point P. 

From Fig.B.3, we can see that the angle POB and POX are the same angle, that is: 

1                                          (B.2) 

That’s way we can directly read the angle θ from Fig.B.2 with latitude. 

Now, assuming the radius of the ball in Fig.B.3 is r, and we can get: 

sin( )PB r                                    (B.3) 

cos( )OB r                                    (B.4) 

 sin( ) sin( ) sin( )BA PB r                       (B.5) 

cos( ) sin( ) cos( )PA PB r                       (B.6) 

In the rectangle OHAB, we get: 

sin( ) sin( )OH BA r                            (B.7) 

So the angle POY, also θ3 is the same angle with angle POH, therefore: 

1 3
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3

sin( ) sin( )
cos( ) sin( ) sin( )

OH r

OP r

    
             (B.8) 

Equations B.2 and B..8 give the relations between α, β and θ1, θ3. 

In the program, we need to know the X-Y coordinates of the projection of point P so that 

we can plot at that point. In the following is the deduction of the X-Y coordinates of 

projection point D. 

From Fig. B.3, we can see that the point D (x, y) can be given: 

x DF OE

y DE OF

 
 

                                     (B.9) 

Because line PA is vertical to the horizontal plane, it is parallel to Z-axis, and the line PG 

is vertical to OZ, the length of PA is equal to the length of OG. Therefore, we can get: 

cos( ) sin( ) cos( )OG PA PB r                    (B.10) 

In the right-angled triangle OBA, the length of OA: 

2 2

2 2

2 2

[ cos( )] [ sin( ) sin( )]

1 sin ( ) cos ( )

OA OB BA

r r

r

  

 

 

    

  

              (B.11) 

In the rectangle PGOA, we get: 

2 21 sin ( ) cos ( )GP OA r                            (B.12) 
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In the right-angled triangle PGC, the length of OD is parallel to GP, and there is a relation: 

1

1 sin( ) cos( )

OD OC r

GP CG r OG  
  

  
                 (B.13) 

So:  

2 21 sin ( ) cos ( )

1 sin( ) cos( )

rOC
OD GP

CG

 
 

 
 

 
                  (B.14) 

In the triangle OBA, we have the relations: 

DE OD

BA OA
OE OD

OB OA




                                          (B.15) 

So: 

2 2

2 2

1 sin ( ) cos ( ) sin( ) sin( )

1 sin( ) cos( ) 1 sin ( ) cos ( )

sin( ) sin( )

1 sin( ) cos( )

OD
DE BA

OA

r r

r

r

   
   

 
 



   


   

 


 

             (B.16) 

And: 
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2 2

2 2

1 sin ( ) cos ( ) cos( )

1 sin( ) cos( ) 1 sin ( ) cos ( )

cos( )

1 sin( ) cos( )

OD
OE OB

OA

r r

r

r

  
   


 



  


   




 

              (B.17) 

Combing equations B.16 and 17 into 9, the coordinates of projection point D can be given: 

 

cos( )

1 sin( ) cos( )

sin( ) sin( )

1 sin( ) cos( )

r
x DF OE

r
y DE OF


 
 
 


  

 
 

  
 

                             (B.18) 

In fact, from the Fig. B.2, we can see that the north is Y direction; therefore, in the program, 

we used exchanged expressions for the coordinates. 

The equations for calculation of normal and shear stresses on a plane were given by Jaeger 

and Cook (1979) as the following: 

2 2 2
1 2 3

2 2 2 2 2 2 2 2 2
1 2 3 2 3 1( ) ( ) ( )

n l m n

l m n m l n

   

      

  

     
                (B.19) 

In which, l, m, and n are direction cosines for a given plane to the direction of the three 

principal stresses. 

In order to compare with the work of Jaeger and Rosengren (1969), and verify the 

calculations and program in our work, the special cases are investigated.  
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Fig. B.4 Equal Area Projection for Sliding Area of Natural fractures. 

( =0.1, =0.3, and =2/3, Pp=0, c=0) 

The first example is for the case of =0.1, =0.3, and =2/3, by assuming 

the pore pressure and cohesion are both zero. The Fig. B.4 is the equal area projection for 

sliding area of natural fractures for this case, and it has exactly the same sliding area with 

what Jaeger did as shown in Fig.B.2. 

Furthermore, in this work, we get the sensitivity analysis on in-situ stresses and friction 

coefficient. The results are shown in Table. B.1 and Table B.2, and those figures can also 

3 1/  2 1/  

3 1/  2 1/  



 

119 

 

be compared with previous work (Jaeger and Rosengren, 1969). 

Table.B.1 Equal Area Projection Showing the Sliding Area for =2/3 

 =0.0 =0.1 =0.2 

=0.1 

  

 

=0.2 

   

=0.4 

   

=0.6 

   

=0.8 

 

Through the compare between our work and the previous work (Jaeger and Rosengren, 

1969), it gives a demonstration to our calculations and programs. After this verification, 

we applied our work on a special case to check its application. 



3 1/  3 1/  3 1/ 

2 1/ 

2 1/ 

2 1/ 

2 1/ 

2 1/ 
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Table.B.2 Equal Area Projection Showing the Sliding Area for =0.1 

 =0.33 =0.67 =1.0 

=0.1 

   

=0.2 

=0.4 

   

=0.6 

=0.8 

   

 

Some research works have been done on New Albany shale and according to the data from 

J Ray Clark well in Christian County, KY, we assume that the principal stresses are 

=2500 psi, =2200 psi, =2000 psi, and pore pressure Pp=1800 psi with =0.6, and 

cohesion zero. Then, the equal area projection for the sliding range is given in Fig.B.5.  

3 1/ 

  

2 1/ 

2 1/ 

2 1/ 

2 1/ 

2 1/ 

1

2 3 
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Fig.B.5 Equal Area Projection for Sliding Area of Natural fractures for New Albany 
Shale. 

From Fig.B.5, we can see that with the assumed parameters, if the normal of the weakness 

plane lies in one of the four black areas, the slip can occur. 

 

2. Pore Pressure Effects on Sliding of Natural fractures 

When injection into a well, the pore pressure effects on the sliding of natural fractures are 

more of interest. In jointed rocks, the effects of increasing pore pressure on rock failure are 
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well documented in the literature (Jaeger&Cook, 1979). A structural permeability diagram 

can be used to show the ΔP required to reactivate fabrics of different orientations (Mildren 

et al. 2002; Nelson et al. 2007).  

Here, in this study, we set up the program for this structural permeability diagram and 

verified it with the work of Mildren et al. 2002 and Nelson et al. 2007. Finally, we applied 

this program for the prediction of ΔP required to reactivate fabrics of different orientation 

in the well J Ray Clark in Christian County, KY. 

First, the procedure for setting up the structural permeability diagram is researched and 

programmed. As one case we can see from Fig.B.6 in the following (Nelson et al. 2007), 

the structure permeability diagram is set up based on the dip angle δ and the angle from 

north to the dip direction of the natural fractures φ (clockwise positive). Here, the dip angle 

refers to the angle between the joint plane and the horizontal plane; and the dip direction 

is really vertical to the strike of the joint.  

To get the structural permeability diagram, the direction cosines of the principal stresses 

should be found first using the known dip angle and dip direction angle. 

Goodman (1989) gave the expressions for finding the direction cosines for a given plane 

relative to the X, Y and Z coordinates. However, in his work, he used the rise angle and the 

counterclockwise angle from X-axis to the horizontal projection the normal of the joint, 

instead of dip angle δ and the dip direction angle φ. The relations between those angles are 
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easily found from Fig. B.3, and this gives the direction cosines with dip angle δ and the dip 

direction angle φ:  

 

Fig.B.6 Structural permeability diagram showing the orientations of geological 
weaknesses that may be reactivated during fracture stimulation treatments at high treating 

pressures in the Cooper Basin (Nelson et al. 2007). 

cos(90 ) cos(90 )

cos(90 ) sin(90 )

sin(90 )

x

y

z

d

d

d

 
 



   
   

 

                        (B.20) 

In which, dx, dy, and dz are direction cosines for a given plane to the direction of the three 

stresses x  , y  , z  on X, Y and Z coordinates (assuming they are principal stresses, but 

don’t know which is maximum and minimum). Note here they are not the direction cosines 
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to the principal stresses; therefore, before using Eqn. B.19, the corresponding values of 

, 2 ,  to x , , should be found and the also their direction cosines. This can be 

easily realized in the program. Sometimes, the X direction is not in the exact east. In our 

program, an angle ω between the direction of x and the East direction is added to adjust 

the excursion. 

After the confirmation of the three principal stresses and their direction cosines, the normal 

and shear stress on the joint plane can be found using Eqn. B.19.  

Finally, the required pore pressure to reactivate the joint plane is given by (Mildren et al. 

2005). 

( ) /nP c                                           (B.21) 

If the effective treating pressure is ΔP, we have: 

pP P P                                               (B.22) 

In which Pp is the original in-situ pore pressure. 

A FORTRAN program is used to calculate the required effective pore pressure and plot the 

structural permeability diagram. 

To verify the calculation and program, we first compared the special case given by Nelson 

et al. (2007) for Cooper Basin.  

1 3 y z
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Fig.B.7 Structural permeability diagram showing the orientations of geological 
weaknesses that may be reactivated during fracture stimulation treatments at high treating 

pressures in the Cooper Basin (FORTRAN Program). 

In Fig.B.7, the parameters we used are listed in Table. B.3. 

Table. B.3 In-Situ Conditions for Cooper Basin (Nelson et al. 2007) 

Parameter Value Unit 

Depth (D): 9800 ft 

Minimum horizontal stress (Sh) gradient: 0.84 psi/ft 

Maximum horizontal stress (SH) gradient: 1.85 psi/ft 

Vertical Stress (Sv) gradient: 0.95 psi/ft 

Initial reservoir pressure (Po) gradient: 0.433 psi/ft 
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By comparing Fig.B.7 with Fig.B.6, we found two main differences.  

One is the maximum effective treating pressure, there are about 0.2 psi/ft difference 

between them. This may be caused by different calculation process or some adjustments in 

their software or program. If we take a special point, say dip angle 90 degree and dip 

direction 90 degree, for example, the calculated required treating pressure from equation 

should be the maximum in-situ stresses, which is 1.85 psi/ft, and the effective treating 

pressure should be 1.42 psi/ft.  

The other difference is on the distribution of the minimum required treating pressure. In 

Fig.B.6, they are distributed in the lower dips around the center, while in Fig.B.7, they are 

distributed in the four parts like 30º N dip direction and 90 dip angles. Through calculations 

on special points, if using our equations, the distributions should be like Fig.B.7 not Fig.B.6.  

In order to further verify the program before application, we programmed in Mathematica 

in case for program mistakes. However, the result Fig. B.8 is exactly the same with Fig. 

B.7.  
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Fig.B.8 Structural permeability diagram (Compare with Fig.B.7 and B.6). 

From the equal pressure lines (dashed black lines), we can clearly see the distributions of 

minimum treating pressures. And this is coincidence with Fig. B.7. 
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APPENDIX C 

2-D STRESSES REDISTRIBUTION DEDUCTION 

For the convenience of analysis and programming, the stresses around a hydraulically 

induced fracture are expressed in the elliptical coordinates system as shown in Fig. C.1. 

Elliptic coordinates are a two-dimensional orthogonal coordinate system in which the 

coordinate lines are confocal ellipses and hyperbolae. The two foci are generally taken to 

be fixed at –Lf and Lf (fracture half length) respectively on x-axis of the Cartesian 

coordinate system.  

 

Fig.C.1 Stresses in Elliptical Coordinates System. 
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In the following analysis for the induced stresses from pore pressure, temperature 

variations and fracture compression are cited from relative references and all expressions 

are converted into the same Cartesian coordinate system for the convenience of 

calculations and programming.  

1. 2-D Poroelastic Stresses 

The stresses induced by the pore pressure variation around a hydraulic fracture were given 

by Koning (1985).  And the analytical fracture propagation model was constructed by him 

with the following assumptions. 

1) A vertical fracture confined to the pay zone with fixed height and the geometry 

of PKN model extends laterally from a single well to an infinite reservoir. 

2) The fracture has an infinite conductivity and the fluid pressure along the 

fracture length keeps constant. 

3) The total leak-off rate equals to the constant injection rate. 

4) The fracture propagates slow enough that the pressure distribution around the 

fracture behaves as quasi steady state. And the transient pressure distribution 

far away from the fracture moves radially outwards into the reservoir. 

5) The fluid flow system can be separated into different elliptic zones as shown 

in Fig.3.1. 

With the assumptions the stresses at any point (ξ, η) in the pressure affected region 0 ≤ ξ ≤ 



 

130 

 

ξ2 surrounding the fracture is solving the poroelastic stress-strain relations and are given by 

(Koning, 1985):  

2 2
( ) ( ) ( ) ( ) ( )

2 4 4

(1 ) 1 sinh2 sin2
( )

2 2
f fm m m m m

p

L Lv
p

EJ g g g   
  

                  (C.1)  

2 2
( ) ( ) ( ) ( ) ( )

2 4 4

(1 ) 1 sinh2 sin2
( )

2 2
f fm m m m m

p

L Lv
p

EJ g g g   
  

                 (C.2) 

2 2
( ) ( ) ( ) ( )

2 4 4

(1 ) 1 sin2 sinh2

2 2
f fm m m m

p

L Lv

EJ g g g   
 

                            (C.3) 

The linear coefficient of pore pressure expansion J is used as: 

(1 2 )

3
grcv

J
E


                                             (C.4) 

And where the superscript (m) is associated with the subregions: 

1 2

0 1

0

1;

2;  

=3; 0

m   
  

 

  
  

 

                                          (C.5) 

And: 

2
( ) ( ) 2 ( )

1 2( ) cosh 2 cos 2 (4 4 cosh 2 )
2

fm m mL
p A e A

                   (C.6) 

2
( ) ( ) 2 ( )

1 2cos 2 [ ( ) 4 4 cosh 2 ]
2

fm m mL
p A e A

                         (C.7) 
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2
( ) ( ) 2 ( )

1 2

[ ( )]
sin 2 [ 4 4 sinh 2 ]

4
fm m mL p

A e A


 


 
   


               (C.8) 

2
( ) ( ) 2 ( )

1 2sin 2 [ ( ) 2 2 cosh 2 ]
4

fm m mL
p A e A

                        (C.9) 

2 2
( )

0

( ) 2 ( )
1 2

[ ( )]
[ ( ) cosh 2 ] cos 2 [

2 8

2 2 sinh 2 ]

f fm

m m

L L p
p d

A e A







   




 
     



 

               (C.10)  

In which: 

0

1 1 [ ( )]
[ ( ) cosh 2 ] ( )sinh 2 [cosh 2 1]

2 4

[ ( )]

2
w

m

p
p d p

ip

h

      



  

 
    


 

 



         (C.11)  

The pore pressure variations are given: 

(1)
1 2

(2)
0 1

(3)
0

2

( ) ( );

( ); ?

( ); 0

0;

p p

p

p

    

   

  
 

    

   

   

 

                                 (C.12) 

And: 

2
(3)

1
3

1
[ ]

32
w fi L

A
h 

                                           (C.13)  

2
(2) (3)

1 1 0
2 3

1 1
[ ]cos 2

32
w fi L

A A h
h


  

                              (C.14) 
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2
(1) (2)

1 1 1
1 2

1 1
[ ]cos 2

32
w fi L

A A h
h


  

                              (C.15) 

2

2
2(1)

2
1

1
[ ]

32
w fi L

A e
h



 
                                       (C.16) 

 1

2
2(2) (1)

2 2
1 2

1 1
[ ]

32
w fi L

A A e
h



  
                                 (C.17) 

0

2
2(3) (2)

2 2
2 3

1 1
[ ]

32
w fi L

A A e
h



  
                                 (C.18) 

While in the pressure unaffected region ξ≥ξ2, the stress changes: 

2 2
(0) (0) (0) (0)

2 4 4

(1 ) 1 sinh 2 sin 2

2 2
f f

p

L Lv

EJ g g g   
 

                  (C.19) 

2 2
(0) (0) (0) (0)

2 4 4

(1 ) 1 sinh 2 sin 2

2 2
f f

p

L Lv

EJ g g g   
 

                  (C.20) 

2 2
(0) (0) (0) (0)

2 4 4

(1 ) 1 sin 2 sinh 2

2 2
f f

p

L Lv

EJ g g g   
 

                  (C.21) 

Where the superscript (0) stands for the region with zero pressure change. 

And the constants are: 

(0) (0) 2 (0) (0) 2
3 34 cos 2 ; 4 cos 2A e A e 

                        (C.22) 

(0) (0) 2 (0) (0) 2
3 34 sin 2 ; 2 sin 2A e A e 

                         (C.23) 
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2
(0) (0) 2 (0) (0) (1)

3 4 3 1 2
1

2 cos 2 ; cosh 2
32

w fi L
A e A A A

h


  
 

              (C.24) 

2

2
(0)
4 0

[ ( )cosh2 ]
2

fL
A p d


                                      (C.25) 

The listed equations above are in elliptical coordinates system, and Koning (1985) gave 

transformation of the pore pressure induced stresses from elliptic coordinate system into 

the x-y coordinates system by the following equations (Koning, 1985). 

2

2

2

px p

py p

pxy p

g

g

g







 

 

 

  

  

  

                                            (C.26) 

In which the metric tensor g is given: 

2

(cosh 2 cos 2 )
2

fL
g                                   (C.27) 

In our work, we deduced the stresses transformation between these two coordinate 

systems and the detailed deducing process can be found in Ge, 2009. 

2

2

cos 2 sin 2 ( ) sin

sin 2 ( ) sin

yy    

   

       

     

   

   
             (C.28) 

2sin 2 ( )sinxx                                  (C.29)  

1
( ( ) sin 2 ) / cos 2

2xy yy xx                           (C.30) 
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In which θ is given by: 

sinh sin
tan

cosh cos

y c

x c

 
 

                                 (C.31) 

2. 2-D Thermoelastic Stresses 

In this study, the poroelastic and thermoelastic induced stresses are still estimated with 

the method from Perkins and Gonzales (1985): 

       
0 0

0 0 0 0

0.9 2 0.7740

0 0 0

(1 ) ( / ) 1

1 ( / ) 1 ( / )

11 / 1 1.45( ) 0.35( ) 1 ( )2 2 2
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bh h

b b a

 


   
      

                    

               (C.32) 

               
0 0

0 0 0 0

0.9 2 1.360

0 0 0

(1 ) ( / )1

1 ( / ) 1 ( / )

1 / 1 1.45( ) 0.35( ) 1 (1 )
2 2

Tx b a

E T b a b a

bh h

b b a

 


  
      

                     

                 (C.33) 

In which, v is Poisson’s ratio, E is Young’s Modulus, △T is temperature change, h is the 

half fracture height, a0 and b0 are the semi axis of the cooled region, and β is the 

coefficient of thermal expansion. 

3. 2-D Induced Stresses by Fracture Compression 

1) Expressions from Jaeger and Cook 
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Fig.C.2 Elliptical Coordinate System. 

As shown in Fig.C.2, considering the flat elliptic crack 0 0  , from J&C, for uniaxial 

stress P2 at infinity inclined at   to the plane of the crack: 

2 2cos 2 [(1 cos 2 )sinh 2 sin 2 sin 2 ]P P                  (C.34)   

           

2
2 2cos 2( )cosh 2 {(1 cos 2 )sinh 2 (cos 2 1)

cos 2 cosh 2 cos 2( ) cosh 2 sin 2 sin 2 }

P P          

      

     

   
   (C.35) 
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2

2
2

sin 2( )sinh 2
2

0.5 {sinh 2 sin 2 (cos 2 1)

sin 2 (1 cos 2 )(cosh 2 1)}

P

P


   

   
  

 

 
  

                          (C.36)  

In which  

1(cosh 2 cos 2 )                                      (C.37)  

In order to check the equations we used in program, I firstly simplified the stresses on the 

axes Ox and Oy for the case
2

  , and compared them with the plots in J&C: And the 

following plots shown are: 

 

Fig.C.3 Stresses on the X-Axis. 
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Fig.C.4 Stresses on the Y-Axis. 

In the plots are shown the stresses x  and y  respectively, how could we get these 

two values from   and  ? We should use scale factors for the transform from 

different coordinate systems. A transform factor we used in calculating the induced stress 

by poro-thermo-elasticity for this is:  

2

(cosh 2 cos 2 )
2

L
g                                  (C.38)  

And:  

2 *x g   ; 2
y g   ; 2 *xy g                     (C.39)  
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However, in this problem, this factor is not right.  

In fact, for the special directions: 0   and
2

  ; we get: 0    

So, stresses on the a-axis are: x    and y    

And, stresses on the b-axis are: x    and y    

And this conclusion is right through comparing with the plots compared with what J&C 

got in their book (Fig.10.11.2, P268, 1979).  

Then, the transformation factors in this problem are deduced in the following: 

From J&C, we got the following equations: 

22 ( 2 ) i
yy xx xyi i e 

                             (C.40)  

yy xx                                          (C.41) 

Where 

2 cos 2 sin 2ie i                                      (C.42)  

sinh sin
tan

cosh cos

y c

x c

 
 

                                 (C.43) 
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Subtract equation C.40 from C.41: 

22( ) ( 2 ) i
yy xx yy xx xyi i e 

                           (C.44) 

So: 

2 2 cos 2 cos 2

(2 )(cos 2 sin 2 )

( )( sin 2 )

yy xx yy xx

xy

yy xx

i

i i

i

        

  

  

    

 

 

               (C.45) 

2 2 cos 2 cos 2

2 sin 2 2 cos 2 ( )( sin 2 )

yy xx yy xx

xy xy yy xx

i

i i

        

      

    

   
               (C.46) 

Therefore: 

2 ( ) ( ) cos 2 2 sin 2yy xx yy xx xy                     (C.47) 

2 ( ) sin 2 2 cos 2

1
: ( ) sin 2 cos 2

2

yy xx xy

yy xx xy

i i i

or





     

     

    

  
                 (C.48)  

We can also add C.40 to C.41, and get: 

2 ( ) ( ) cos 2 2 sin 2yy xx yy xx xy                        (C.49) 

1
( )sin 2 cos 2

2 yy xx xy                              (C.50) 

Then, equation C.49 times cos 2  and plus equation C.50 times 2 sin 2 : 
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2 cos2 2 sin 2 ( )cos2yy xx                           (C.51)  

The same process, we can get: 

2

2

cos 2 sin 2 ( ) sin

sin 2 ( ) sin

yy    

   

       

     

   

   
             (C.52) 

2sin 2 ( )sinxx                                  (C.53)  

1
( ( ) sin 2 ) / cos 2

2xy yy xx                            (C.54) 

We can then get the expression for xy . 

 

2) Method from Pollard and Segall 

Pollard and Segall (1989) have reported the general expressions for the stress field about 

the crack. 
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Fig.C.5 Stresses Changes due to Fracture Compression (Modified from Pollard and 
Segall, 1989). 

In order to compare with the expressions in Warpinski, I used the same 2-D crack with 

the expressions from Pollard and Segall, and transformed them into x-y coordinates 

system: 

1 2 3
22

1 2 3

[ *cos( ) 1 ( / 2) sin sin 3 ]

[2 *sin( ) ( / 2) sin cos3 ]

xx I

II

Rr L Rr

Rr L Rr

    

  

 

 

      

   
   (C.55)  

1 2 3
11

2 3

[ *cos( ) 1 ( / 2) sin sin 3 ]

[( / 2) sin cos3 ]

yy I

II

Rr L Rr

L Rr

    

 

 



      
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   (C.56) 

1 2 3
12

2 3

[ *cos( ) 1 ( / 2) sin sin 3 ]

[( / 2) sin cos3 ]

xy II

I

Rr L Rr

L Rr

    

 

 



      

 
   (C.57) 

In which 11  is the remote stress normal to the crack, 22  is the remote parallel stress, 

and 12  is the remote shear stress. [ I , II ]=[( 11 - 11
c ),( 12 - 12

c )] in which 11
c  
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refers to the normal stress on the crack internal surface, and 12
c  refers to the shear stress 

on the crack internal. L is the crack length, and the geometric relations are given by the 

following equations: (as shown in the upper Fig. C.3)  

2 2R x y  , 1tan ( / )y x                              (C.58) 

2 2
1 ( )

2

L
R y x   , 1

1 tan [ /( / 2)]y x L                  (C.59) 

2 2
2 ( / 2)R y x L   , 1

2 tan [ /( / 2)]y x L                (C.60) 

1/ 2
1 2( )r R R  and 1 2( ) / 2                            (C.61) 

Negative values of θ, 1 , and 2  should be replaced by π+θ, π+ 1 , and π+ 2  

respectively, because these angles are in (0, π).  
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APPENDIX D 

FRACTURE PROPAGATION DIMENSIONS 

The dimensions of the assumed regions around the hydraulic fracture were calculated based 

on the previous work (Ge, 2009; Perkins and Gonzalez, 2985). 

The bottom hole pressure is given by: 

1 2 3iwf R fP P P P P P                                 (D.1) 

In which: 

2
t

1 22
t

0.5 (Ln(K t/( c (0.5 r ))+0.80907)
( )

1 0.5 (Ln(K t/( c (0.5 r ))+0.80907)
P P

 
 

     
  

             (D.2) 

And  

( , , )
( , , ) i

D DL
i wf

P P t
P t

P P

x h
x h

-
=

-
                            (D.3) 

And 2
D tP =0.5 (Ln(K t/( c (0.5 r ))+0.80907)        

In which Pi is the initial reservoir pressure, and Pwf is the pressure at the inner boundary, 

as shown in the plan view of Fig.3.1: the inner boundary is the hot/cold boundary, and the 

outer boundary is the water/oil boundary. 
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So, here 

1

1 2

( , , )
( , , ) i

D DL
i wf

P P t P
P t

P P P P

x h
x h

- D
= =

- D +D
                  (D.4)            

then, 

2
t

1 2 22
t

0.5 (Ln(K t/( c (0.5 r ))+0.80907)
/(1 ) ( )

1 0.5 (Ln(K t/( c (0.5 r ))+0.80907)D DP P P P P
f m
f m

´ ´ ´ ´ ´ ´
D =D ´ - = D

- ´ ´ ´ ´ ´ ´
        (D.5)        

In which Ct is the total compressibility. The most reasonable value of r appears to be a1. 

However, Kucuk and Brigham (1979.) did not mention a criterion for selection of r except 

that it should be large enough; On the other hand, they also provided a different expression 

for pressure that does not require r. namely: 

1
(ln 2.19537)

2wD DLP t= +                                (D.6) 

In which  

6

2

3.6 10 o
DL

t

k t
t

c Lfm

-*
=                                      (D.7) 

1 67.2*10 wD
o

q
P P

k h

m
p-D =                                 (D.8) 

As will be seen, the results from the previous Eqn. are closer to those of P&G.  This might 

be because ΔP1 in the latter equation is equal to the sum of ΔP1, ΔP2 and ΔP3, so that the 

accuracy is less than the separated calculation.   



 

145 

 

ΔP2 and ΔP3 are calculated from the following equations: 

1 1
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Calculating the semi-axes of the cool region and flooded zone: 

  iW Qt=                                         (D.12) 

  /( *(1 ))wt i or wiV W S Sf= - -                         (D.13) 
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Calculating Fracture Length: 

1 1 22(1 ) f

UE
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u
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-
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In which: 

1 iwf f=P -3 PP D                                               (D.22) 

1 min 1 1( )H T Ps s s s= +D +D                                   (D.23)  

In which 1TsD  and 1PsD  are calculated from the following equations: 
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The Bisection method for finding Lf is as the following: 

Over some interval the function is known to pass through zero because it changes sign. 

Evaluate the function at the interval’s midpoint and examine its sign. Use the midpoint to 

replace whichever limit that yields the same sign for F(x). After each iteration, the bounds 

containing the root decrease by a factor of two. If after n iterations the root is known to be 

within an interval of size ne , then after the next iteration it will be bracketed within an 

interval of size 

1ne + = / 2ne                                              (D.27) 

Repeat the process until ne   is less than a small number such as 1.0E-06. The 

corresponding value of x is the root of the function, i.e. the fracture length Lf. 

For the problem at hand the function is F(x) =LHS-RHS. To find the root, select Lf=X1 

which makes F(x1)<0 while Lf=X2 which makes F(x2)>0. A root will be bracketed in the 

interval (X1, X2). In this study, the assumed data are X1=0.6 and X2=1.0E04.  
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NOMENCLATURE 

a0 and b0 = major and and minor axis of water flood ellipse (L) 

a and b = fracture half length and half height (L) 

a1 and b1 = major and minor axis of water flood ellipse (L) 

aR and bR = major and minor axis of the elliptical zone extending to the far-field (L) 

A = drainage area (L2) / fracture stress constant (L3) 

c = cohesion (psi) 

Cf = formation compressibility 

Ct = system compressibility at initial reservoir conditions, 

D = formation depth, (L) 

dH, dh, and dv = direction cosines for a given plane to the direction of the three stresses

H , h  and v  

E = Young’s modulus 

E( ) = is the complete elliptic integral of the second kind 

G = shear modulus of rock formation 

Gf =fluid pressure gradient 

hf =fracture height, (L) 

H =pay zone thickness, (L) 

Hf =half fracture height, (L) 

i = time-step interval 
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ipf = the injection rate per zone 

J = linear coefficient of pore pressure expansion 

k = modulus 

krw = water relative permeability, (L2) 

kro = oil relative permeability, (L2) 

krg = gas relative permeability, (L2) 

K =formation permeability, (L2) 

k/μ =permeability/viscosity ratio 

K =cohesion modulus 

Kc =critical stress-intensity factor  

L =length, (L) 

l, m, and n = direction cosines for a given plane to the direction of the principal stresses 

Lf =optimal fracture half-length, (L) 

L(t)=fracture half-length at time t, (L) 

p = pressure 

p0 =pressure at the wellbore 

pave = reservoir average pressure 

pf =fracture pressure (psi) 

pf =fracture pressure 

pi= initial pressure 

p(0,t) =pressure at the wellbore at time t 
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p(X,t) =pressure at coordinate X at time t 

Δp =pressure drop  

Δp1= difference in pressure between water flood and far-field boundaries 

Δp2= difference in pressure between cool front and water flood front 

Δp3= difference in pressure between fracture surface and cool front  

Δpf= difference in pressure between fracture surface and cool front  

q =fracturing fluid flow rate 

q0 =injection rate 

q(0,t) =injection rate at the wellbore (x=0)  at time t  

re =reservoir drainage radius, (L) 

rw =wellbore radius, (L) 

Sw =water saturation 

Swi =initial water saturation 

t =time point during a fracture treatment 

Tf =fracture temperature, ºF 

Tpc =pseudocritical fracture temperature, ºF 

Tpr =reduced temperature, ºF 

T = temperature (ºF) 

ΔT = temperature difference (ºF) 

V =volume, ft3  

Vp =volume of proppant in pay, ft3  
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Vpf =volume of propped fracture, ft3  

Vr =reservoir drainage volume, ft3  

w =fracture width, ft 

W(x,t) =width in elliptical fracture at time t at location X, ft 

X =coordinate along direction of fracture propagation 

Δ =in-situ stress differential between the potential barrier and the payzone, psi 

 = viscosity, cp / ellipsoidal coordinate 

g = gas viscosity, cp 

o = oil viscosity, cp 

w = water viscosity, cp 

cold = water viscosity at low temperature, cp 

hot = water viscosity at high temperature, cp 

 =Poisson’s ratio 

ρ =density of the fracturing fluid 

h = in-situ horizontal rock stress perpendicular to fracture face (psi) 

H = in-situ horizontal rock stress parallel to fracture face (psi) 

V = in-situ vertical rock stress (psi) 

n = normal stress perpendicular to a face (psi) 

1, 2 , 3  = principal stresses (psi) 

τ = the shear stress (psi) 

τs = the shear strength or cohesive strength (psi) 
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Φ = potential function 

 = porosity, % 

φ’ = friction angle 

δ = the dip angle 

φ = the dip direction angle 

ξ, η = elliptical coordinates 

ξi (i from 0 to 2) = elliptical coordinate at different zones 

ζ = leakoff factor 

λ, μ, ε = ellipsoidal coordinates 

snu cnu and dnu = Jacobian elliptic functions as inverses of the incomplete elliptic integral 

of the first kind 
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