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ABSTRACT 

The cloud and radiative properties simulated in an assortment of global climate 

models (GCMs) and reanalyses are examined to identify and assess systematic biases based 

upon comparisons with multiple satellites observations and retrievals. The global mean 

total column cloud fraction (CF) simulated by the 33-member multimodel mean is 7% and 

17% lower than the results from passive (Moderate Resolution Infrared Spectroradiometer, 

MODIS) and active (CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation, CALIPSO) satellite remote sensing platforms. The simulated cloud water 

path (CWP), which is used as a proxy for optical depth, on global average, has a negative 

bias of ~17 g m–2. Despite these errors in simulated cloud properties, the simulated top-of-

atmosphere (TOA) radiation budgets match relatively well with Clouds and the Earth 

Radiant Energy System (CERES) measurements. The biases in multimodel mean global 

TOA reflected shortwave (SW) and outgoing longwave (LW) fluxes and cloud radiative 

effects (CREs) are less than 2.5 W m–2. Nevertheless, when assessing models individually, 

some physically inconsistent results are evident. For example, in the ACCESS1.0 model, 

the simulated TOA SW and LW fluxes are within 2 W m–2 of the observed global means, 

however, the global mean CF and CWP are underpredicted by ~10% and ~25 g m–2, 

respectively. These unphysical model biases suggest tuning of the modeled radiation 

budgets. 

Two dynamically-driven regimes, based on the atmospheric vertical motion at 500 

hPa (ω500), are identified to provide a more quantitative measure of error in the radiation 
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fields determined separately by biases in CF and CWP. These error types include the 

regime-averaged biases, biases in the sensitivity of TOA CREs to CF/CWP, and their co-

variations. Overall, the biases in simulated CF and CWP are larger in the descent regime 

(ω500 > 25 hPa day–1) than in the ascent regime (ω500 < –25 hPa day–1), but are better 

correlated with observations. According to CERES observations, the sensitivity of LW 

CRE to CF is stronger in the ascent regime than in the decent regime (0.82 vs. 0.23 W m–

2 %–1) and the multimodel mean overestimates this value by ~40%. The difference in 

sensitivity of SW CRE to CF between the two regimes is less drastic (–1.34 vs. –1.12 W 

m–2 %–1). TOA CREs rely independently on CWP in regions of large scale ascent and 

decent, as their sensitivities are similar between these two regimes (e.g., SW CRE/CWP = 

–0.28 W g–1 for both regimes). In general, the total TOA CRE errors are heavily weighted 

by their biases in simulated sensitivity and biases in the simulated CF.  

A new observationally-constrained, data product is generated that can be used as a 

process-oriented diagnostic tool to further identify errors in simulated cloud and radiation 

fields. Based on the CloudSat and CALIPSO Ice Cloud Property Product (2C-ICE), and 

through one-dimensional radiative transfer modeling, a global database of radiative heating 

rate profiles is produced for non-precipitating single-layered ice clouds. Non-precipitating 

single-layered ice clouds have a global occurrence frequency of ~18% with considerable 

frequency in the tropical upper troposphere (13–16 km). A variety of ice cloud types exist 

in the sample of single-layered ice clouds developed here, which is determined by the 

distribution on cloud-top temperatures (CTT). For example, a peak in the distribution near 
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190 K (260 K) suggests the existence of cirrus (glaciated ice) clouds. The ice cloud 

microphysical properties responsible for having the largest impact on radiation (e.g., ice 

water content [IWC] and effective radius [Re]) are largest in the tropics and mid-latitudes 

according to 2C-ICE. Accordingly, this is where the strongest TOA SW absorption, and 

subsequently, the strongest upper tropospheric net radiative heating (> 1.5 K day–1) occurs. 

This newly generated product will provide the data for which new ice cloud 

parameterizations can be developed in global models.



1 
 

CHAPTER I 
 

INTRODUCTION 

The radiation budget is a point of interest when assessing changes in the Earth 

climate system (i.e., Wielicki et al. 1996; Loeb et al. 2007; L’Ecuyer et al. 2015; Kato et 

al. 2015). Clouds are one of the primary modulators of the Earth radiation budget, as they 

can act to warm or cool the atmosphere/surface based upon their horizontal and vertical 

extent, microphysical and optical properties, surface properties, and prevalence during the 

day and night (Stephens and Webster 1981; Fu and Liou 1993; Campbell et al. 2016). For 

example, Fig. 1 depicts the basic interaction of radiation with two types of clouds. High-

level cirrus clouds are rather transparent (i.e., optically thin) to shortwave (SW, wavelength 

λ < 5 µm) radiation and thus have little-to-no impact on the amount of SW radiation that is 

transmitted to the Earth’s surface. At the same time, since high-level cirrus have relatively 

cold cloud-top temperatures (CTT < ~220 K; Dong et al. 2008b), their longwave (LW λ = 

5–100 µm) emission is small. As a result, high-level cirrus-type clouds are commonly 

regarded as atmospheric warmers (relative to when clouds are not present). In contrast, 

low-level clouds, such as those found in the marine boundary layer (MBL), have a strong 

albedo effect, meaning they are efficient at reflecting SW radiation, thereby reducing the 

amount of SW radiation that reaches the surface. Low-level clouds also have warmer 

cloud-tops (~280 K, Dong et al. 2014; Xi et al. 2014), similar to that of the underlying 

surface. As such, low-level clouds are notorious for having a strong cooling effect. 
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Figure 1: A simple diagram depicting the interaction of shortwave (SW, yellow arrows) 

and longwave (LW, red arrows) radiation with clouds in the atmosphere and at the surface.  

With clouds being a primary modulator of the Earth radiation budget (Ramanathan 

et al. 1989; Hartmann et al. 1992; Randall et al. 2007), properly observing and modeling 

their properties on the global scale has become an extensive undertaking over the last 

several decades. Historically (late 1970s to early 2000s), global cloud datasets developed 

from satellite measurements were based primarily on passive sensors and imagers 

including the Geostationary Operational Environmental Satellite (GOES), the Advanced 

Very High Resolution Radiometer (AVHRR), the Moderate Resolution Infrared 

Spectroradiometer (MODIS), and the International Satellite Cloud Climatology Project 

(ISCCP; Rossow and Schiffer 1999). Passive sensors detect and provide retrieved cloud 

microphysical properties (effective Radius [Re] and optical depth [τ]) based on measured 

radiances near the cloud-top, meaning the vertical distribution of clouds is not fully 

resolved (Painemal and Zuidema 2011). Furthermore, passive sensors are only sensitive to 
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clouds with an optical depth of greater than ~0.4 and have routinely exhibited error in 

detecting clouds during polar night (Ackerman et al. 2008). 

Satellite estimates of the Earth radiation budget began in the mid-1980s with the 

launch of the Earth Radiation Budget Experiment (ERBE; Barkstrom et al. 1989) 

instrument on the National Oceanic and Atmospheric Administration (NOAA) 9 satellite. 

The derived measurements of top-of-atmosphere (TOA) broadband fluxes from three 

channels are commonly used for a variety of studies related to the exchange of energy 

between the Sun, Earth, and space. As a successor to ERBE, the Clouds and Earth Radiant 

Energy System (CERES; Wielicki et al. 1996) instrument was launched on the Tropical 

Rainfall Measurement Mission (TRMM) satellite in 1997 and was designed to extend the 

record of global estimates of TOA and surface radiation budgets. CERES channels cover 

the wavelengths from 0–5 µm (SW), 5–100 µm (LW), and 8–12 µm (window). Currently, 

there are four CERES instruments in space on the Terra, Aqua, Suomi National Polar-

orbiting Partnership (NPP), and Joint Polar Satellite System (JPSS-1) satellites. Together 

with measured cloud properties from MODIS, the CERES datasets are one of the most 

reliable sources for estimating global TOA and surface radiation budgets, especially in a 

climate frame of reference (Wielicki et al. 1996). 

As active remote sensing platforms, such as CloudSat and the Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observation (CALIPSO) began measuring the vertical 

structure of clouds from space in 2006, radiative transfer modeling of their radiative flux 

profiles became more prolific on the global scale (e.g., L’Ecuyer et al. 2008; Su et al. 2009). 
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The inclusion of Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on board 

CALIPSO allowed for improved detection of optically-thin ice clouds (𝜏 < 0.3; Sassen and 

Cho 1992) which have a measurable impact on the radiation budget (Chiriaco et al. 2007; 

Minnis et al. 2008; Kox et al. 2014). In fact, cirrus clouds are now estimated to be the most 

common type of cloud found on Earth, with an estimated instantaneous global occurrence 

frequency of 40% (Steubenrauch et al. 2013), which has been upgraded from 20% based 

on passive estimates (Rossow and Schiffer 1999). CloudSat and CALISPO are members of 

the A-Train satellite constellation (L’Ecuyer and Jiang 2010) orbiting the Earth ~15 times 

a day on a sun-synchronous orbit at ~700 km above the surface. Kato et al. (2011) described 

the impacts that the CloudSat cloud profiling radar (CPR) and CALIOP data have on 

irradiance computations. For one year of instantaneous TOA fluxes, the computed fluxes 

based on CloudSat and CALIPSO cloud properties match better with CERES-measured 

fluxes, to within 0.5 and 2.6 W m−2 for SW and LW, respectively, compared with the fluxes 

estimated from MODIS-only cloud properties. Similarly, at the surface, their calculated 

global mean instantaneous downward SW and LW fluxes change by –8.6 and +3.4 W m−2, 

respectively, due to larger cloud fractions and lower cloud-base heights compared with 

MODIS.  

While the redistribution of radiation (i.e., energy) in the atmosphere, modified by 

the presence clouds, has important implications on large-scale circulation patterns, the 

hydrological cycle (Larson and Hartmann 2003; Wild et al. 2004), and their feedbacks 

(Zelinka et al. 2016; Zhou et al. 2017), understanding the role of clouds in this context, and 
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how it changes over time, is crucial for climate change analytics. Modeling studies indicate 

that in a changing climate, forced by any number of scenarios (e.g., double CO2), the 

distribution of clouds will be modified. To what extent is still a topic for debate, as clouds 

are one of the primary sources of uncertainty in assessing future climate change (IPCC 

AR5 2013). This uncertainty is related to the vertical and horizontal distribution of clouds, 

cloud phase, and cloud optical properties - all of which can be tied back to their radiative 

effects. Ceppi et al. (2017) divulged a potential impact that a warming climate could have 

on the cloud-radiative feedbacks on Earth. In a warming climate, the amount of low clouds 

would decrease, generating a net radiative feedback of approximately +0.3 W m–2 K–1. 

Since clouds, especially low clouds, generate a strong SW cooling effect (–91 W m–2; Dong 

et al. 2006), this cooling effect would be reduced, thereby supporting the increase in global 

temperature (i.e., positive feedback).   

But how reliable are climate models and the subsequent conclusions drawn from 

their results, given the fact that future climate cannot be verified, as in weather forecasting? 

The only opportunity for GCM evaluation arises for models that predict recent-past and 

current climate states, and satellites offer an invaluable data source for assessing the biases 

in these global models. Lauer and Hamilton (2012) have revealed that the model simulated 

cloud radiative effects (CREs) tend to outperform simulated cloud results, suggesting that 

models are not accurately depicting fundamental cloud processes. Rather, the models are 

being tuned to provide simulations that converge to observations.  
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The cloud vertical distribution and overlap are some of the major uncertainties in 

determining the heating/cooling profile by radiative and precipitable/evaporative processes 

(e.g., Stephens and Webster 1984; Morcrette and Jakob 2000; Stephens et al. 2002). The 

spread of climate warming predictions by a multimodel ensemble is, arguably, a result of 

an over simplification of cloud vertical distributions and their overlap assumptions 

(Stephens et al. 2002). Simulated cloud vertical distributions under the random overlap 

assumption shows better agreement with observations than those under other assumptions 

(e.g., maximum, minimum, and maximum-random). Yet still, the maximum-random 

overlap assumption is used by most GCMs (e.g., Hogan and Illingworth 2000; Collins et 

al. 2001).  

Here, an independent evaluation of globally simulated clouds and their impact on 

the Earth radiation budget is performed using instruments on satellites flying in the A-Train 

(Chapter 3). More importantly, a systematic error analysis of CREs is conducted over 

atmospheric ascent and descent regions (as in Wang and Su 2013) over the tropical and 

extra-tropical oceans (±45 °N/S) that quantifies errors in simulated CREs based on biases 

in the simulated CF and CWP properties. This error analysis is valuable because it offers a 

unique approach for assessing the skill of parameterized convective- and stratiform-type 

clouds. 

Since ice clouds are recognized to have a significant impact on climate, especially 

when normalized by their relatively large occurrence frequency (Berry and Mace 2014), 

another study is performed on the radiative heating rates of ice clouds that commonly form 
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in regions of atmospheric ascent (Chapter 4). Since CloudSat and CALIPSO can, together, 

resolve the vertical structure of optically thin and thick ice clouds, we can more confidently 

estimate their vertical distribution of radiative heating in the atmosphere. By presenting the 

radiative heating rate profiles as a function of cloud and environmental parameters, such 

as the ice water path (IWP) and water vapor, we effectively demonstrate how radiative 

heating rates can be used to evaluate global models and diagnose how imposed changes to 

cloud parameterizations (e.g., entrainment rates) can impact the simulation of clouds and 

their impacts on the radiation budget.  
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CHAPTER II 

DATA AND TOOLS 

Models 

Global climate, or general circulation, models (GCMs) are useful for assessing 

changes in the Earth climate system over periods ranging from decades to centuries. In 

fact, the IPCC routinely diagnoses future climate change using an ensemble of GCMs. This 

section introduces the global models that are subject to evaluation in Chapter 3.  

Coupled Model Intercomparison Project – Phase 5 (CMIP5) 

CMIP5 brings together climate simulations developed by modeling centers from across 

the globe, with an ultimate goal of reducing the discrepancies and uncertainties in 

contemporary GCMs (Taylor et al. 2012). The main objectives proposed for CMIP5 

include: 

1) “assessing the mechanisms responsible for model differences in poorly understood 

feedbacks associated with the carbon cycle and with clouds; 

2) examining climate “predictability” and exploring the predictive capabilities of 

forecast systems on decadal time scales; and, more generally, 

3) determining why similarly forced models produce a range of responses.” 

 

CMIP5 experiments range from long-term (century time scale), decadal, to short-term time 

scales. Herein, Atmospheric Model Intercomparison Project (AMIP) type simulations are 

evaluated, which fall within the category of decadal time-scale predictions (1979–2008). 

The AMIP models are atmosphere-only models, meaning there is no coupling with ocean 

or sea-ice models. Sea surface temperature (SST) and sea-ice variations in the models are 



 

9 
 

climatologically prescribed. A more comprehensive summary about the CMIP5 project and 

the framework for other prediction experiments can be found in Taylor et al. (2012).   

 The simulated cloud and TOA radiation budgets from 28 models submitted to the 

AMIP in CMIP5, which are available from the Earth System Grid Federation (ESGF) 

through the Program for Climate Model Diagnosis and Intercomparison (PCMDI), are 

evaluated in Chapter 3. A list of these models, their associated modeling center (or group) 

name, horizontal and vertical grid spacing, and number of ensemble members is provided 

in Table 1. In the study by Li et al. (2012), the simulated ice cloud properties in an 

assortment of GCMs are also evaluated. As such, they provide a detailed description (their 

Table 1b) of the CMIP5 model microphysical parameterizations and the reader should refer 

to that paper for more detail. The next installment of model intercomparison projects, 

CMIP6, is scheduled to be released to the public soon (as of June 2018).  

 

Table 1: A list of the 28 CMIP5 AMIP GCMs and five reanalyses evaluated in this study. 

The horizontal grid spacings and number of vertical levels are provided along with the 

number of ensemble members for each GCM generated by the modeling centers. 

Modeling Center (or Group) Model Name 
Grid Spacing (lon × lat)           

Vertical Levels 

Ensemble 

Members 

Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) and Bureau of Meteorology 

(BOM), Australia 

ACCESS1.0 1.875° × 1.25°, L38 1 

Beijing Climate Center, China 

Meteorological Administration 

BCC-CSM1.1                  

BCC-CSM1.1(m) 

1.25° × 1.25°, L26 

2.8125° × 2.815°, L26 

3                                     

3 
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LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences CESS, Tsinghua University 

FGOALS-g2       

FGOALS-s2 

2.8125° × 1.666°, L26      

2.8125° × 3.0°, L26 

1                                

3 

National Oceanic and Atmospheric 

Administration (NOAA) - 

Geophysical Fluid Dynamics 

Laboratory, USA 

GFDL-CM3             

GFDL-HIRAM-C180 

GFDL-HIRAM-C360 

2.5° × 2.0°, L48               

0.625° × 0.5°, L32         

0.3125° × 0.25°, L32 

5                                

3                                

2 

National Auronautics and Space 

Administration (NASA) - Goddard 

Institute for Space Studies 

GISS-E2-R 2.5° × 2.0°, L29 10 

Met Office Hadley Centre, United 

Kingdom 
HadGEM2-A 1.875° × 1.25°, L38 6 

Institute for Numerical Mathematics, 

Russia 
INM-CM4 2.0° × 1.5°, L21 1 

Modeling Center (or Group) Model Name 
Grid Spacing (lon × lat) 

Vertical Levels 

Ensemble 

Members 

College of Global Change and Earth 

System Science, Beijing Normal 

University, China 

BNU-ESM 2.8125° × 2.8125°, L26 1 

Canada Centre for Climate Modeling 

and Analysis 
CanAM4 2.8125° × 2.8125°, L35 4 

National Center for Atmospheric 

Research (NCAR), USA 
CCSM4 1.25° × 0.9375°, L26 6 

Community Earth System Model 

Contributors (NSF-DOE-NCAR), 

USA 

CESM1(CAM5) 1.25° × 0.9375°, L30 2 

Centro-Euro-Mediterraneo per I 

Cambiamenti Climatici, Italy 
CMCC-CM 0.75° × 0.75°, L31 3 

Centre National de Recherches 

Meteorologiques/Centre Europeen de 

Recherche et Formation Avancees en 

Calcul Scientifique, France 

CNRM-CM5 1.4° × 1.4°, L31 1 

Commonwealth Scientific and 

Industrial Research Organization in 

collaboration with Queensland 

Climate Change Centre of 

Excellence, Australia 

CSIRO-Mk3.6.0 1.875° × 1.875°, L18 10 
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Modeling Center (or Group) Model Name 
Grid Spacing (lon × lat)                     

Vertical Levels 

Ensemble 

Members 

Inststut Pierre-Simon Laplace, 

France 

IPSL-CM5A-LR        

IPSL-CM5A-MR       

IPSL-CM5B-LR 

3.75° × 1.875°, L39             

2.5° × 1.25°, L39               

3.75° × 1.875°, L39 

6                                

3                                

1 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

MIROC5 1.4° × 1.4°, L40 2 

Max Planck Institute for 

Meteorology, Germany 

MPI-ESM-LR             

MPI-ESM-MR 

1.875° × 1.875°, L47      

1.875° × 1.875°, L95 

3                                     

3  

Meteorological Research Institute, 

Japan 

MRI-AGCM3.2H       

MRI-AGCM3.2S        

MRI-CGCM3 

0.5625° × 0.5625°    

0.1875° × 0.1875°      

1.125° × 1.125°, L35 

3                                

1                                

3 

Norwegian Climate Centre NorESM1-M 2.5° × 1.875°, L26 3 

NOAA Cooperative Institute for 

Research and Environmental Science 

(CIRES) 

20CR v2 1.9° × 1.875°, L28 --- 

National Center for Environmental 

Prediction (NCEP) 
CFSR 0.31° × 0.31°, L64 --- 

European Centre for Medium-Range 

Weather Forecasts (ECMWF) 
Era-Interim 0.75° × 0.75°, L60 --- 

Japan Meteorological Agency and 

the Central Research Institute for 

Electric Power Industry 

JRA-25 1.13° × 1.13°, L40 --- 

NASA Global Modeling and 

Assimilation Office (GMAO) 
MERRA 0.5° × 0.67°, L72 --- 

 

For cloud simulations, the AMIP models are comparable with their coupled 

counterparts, which are linked to fully dynamic ocean models, although both versions have 

their own biases (Lauer and Hamilton 2012). Therefore, the biases in simulated cloud and 

radiation do not originate from discrepancies in the representation of SST fields, but rather 
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from the cloud simulations themselves, such as in convective and boundary layer cloud 

parameterizations. 

 

Reanalyses 

 Five contemporary reanalyses are chosen to further populate the multimodel mean 

statistics generated for this evaluation study. Reanalyses can be used for a variety of 

applications, such as providing forcing data for single-column and cloud resolving models 

(Xie et al. 2004; Kennedy et al. 2011), investigating extreme/severe weather (King and 

Kennedy 2018) and climate (Dong et al. 2014), and examining forecast skill. Reanalyses 

also provide the data necessary for performing studies in data-sparse regions where ground-

based observations are often difficult to obtain (Dong et al. 2014, Zib et al. 2012). While 

reanalyses offer a resource for investigating climate processes and predictability, and 

extreme events, the errors in the reanalyzed variables should be addressed (Rienecker et al. 

2011). Twelve years of reanalysis data from 03/2000 – 02/2012 are collected and compared 

with GCMs, satellite, and ground-based observations. Here, a quick overview of the global 

reanalysis products is provided. The reanalyses highlighted here are also listed in Table 1. 

 Twentieth Century Reanalysis (20CRv2). The National Oceanic and 

Atmospheric Administration (NOAA) Cooperative Institute for Research in Environmental 

Sciences (CIRES) Twentieth century reanalysis (20CR) data set implements the ensemble 

Kalman filtering (Whitaker and Hamill 2002) technique with a background field supplied 

by an ensemble of forecasts from a global numerical weather prediction (NWP) model 
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(Compo et al. 2011). Only synoptic scale surface pressure, and prescribed monthly mean 

sea surface temperatures and sea ice distributions are ingested into the assimilation cycle. 

Compo et al. (2011) and Zib et al. (2012) provided a summary of updates to this 

experimental version of the coupled atmosphere-land model from the NCEP Global 

Forecast System (GFS). Updates include changes to the prognostic cloud condensate 

scheme (Moorthi et al. 2001), revisions to the solar radiative transfer model (Hou et al. 

2002), and a Rapid Radiative Transfer Model (RRTM) for LW radiative transfer (Mlawer 

et al. 1997). Cloud liquid water is a prognostic quantity from which CF is diagnosed. 

Clouds are also assumed to be maximum–random overlapped. Atmospheric state 

conditions are computed every six hours for more than 140 years (1871 through 2012), 

providing the longest reanalysis data set on record. This product is an invaluable one, 

provided its own uncertainties, essential for understanding the long-term climate variability 

and useful for validation studies and model evaluation. 

 Climate Forecast System Reanalysis (CFSR). The National Center for 

Environmental Prediction (NCEP) has developed a fully coupled ocean–land–atmosphere 

model using NWP techniques to assimilate (i.e., 3D-VAR) and predict atmospheric states. 

Although the ocean–atmosphere coupling is only valid at latitudes between 64°N and 74°S, 

it is still an improvement from previous versions of the model where only the tropical 

Pacific Ocean was coupled. Also, the ocean model has been upgraded (Modular Ocean 

Model version 4, MOM4) and the new atmosphere model (GFS) has allowed for increased 

vertical resolution from 28 to 64 sigma levels (Saha et al. 2006). Radiation calculations are 
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diagnostically determined from the prognostic cloud condensate microphysics 

parameterization (Zhao and Carr 1997; Sundqvist et al. 1989; Moorthi et al. 2001), while 

cloud macrophysics assumes a maximum-random cloud overlap (Saha et al. 2006). 

 Era-Interim. Developed at the European Centre for Medium-Range Weather 

Forecasts (ECMWF), Era-Interim has been created in response to several data assimilation 

problems encountered in its preceding version, Era-40. Some of these problems are within 

the hydrological cycle, stratospheric circulation, and time consistency in the reanalyzed 

geophysical fields (Dee et al. 2011). Many changes have been implemented to convective 

and boundary layer cloud schemes. One of the main impacts of the modified convective 

cloud scheme is that it can be triggered at night, which increases the atmospheric stability 

and produces less precipitation (Dee et al. 2011). The new moist boundary layer scheme 

has resulted in producing more stratocumulus clouds in areas where they had previously 

been underpredicted (e.g., west coast of North America, South America, and Africa) 

because of updates in the inversion strength and height (Köhler et al. 2011). The fully 

prognostic cloud scheme links cloud generation to physical processes such as convection, 

vertical motion, radiative heating and turbulence (Jakob 1998). Radiation is computed 

based on the RRTM (Mlawer et al. 1997). 

 Japanese 25-year Reanalysis (JRA-25). The Japan Meteorological Agency 

(JMA) and the Central Research Institute for Electric Power Industry (CRIEPI) have 

produced the JRA-25 for seasonal prediction and climate research studies. Assimilations 
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are produced every six hours during the analysis period. JRA-25 utilizes assimilation data 

that are unused (by other reanalyses) in their analysis, especially those in Eastern Asian 

and in the tropics (Onogi et al. 2007). The Arakawa-Schubert prognostic mass-flux scheme 

(Arakawa and Schubert 1974) is applied for cumulus parameterizations (Onogi et al. 

2007), where the vertical profile of upward mass flux is assumed to be linear with height 

(Moorthi and Suarez 1992) and the mass flux at the cloud base is calculated using a 

prognostic equation (Randall and Pan 1993). However, for stratocumulus clouds, CF is 

determined by a function of inversion strength (Kawai and Inoue 2006), and thus improves 

the simulated marine stratocumulus clouds on the west coast of continents. The radiation 

fields are also improved where LW emissions are calculated based on Sugi et al. (1990) 

while the SW scattering and absorption are simulated based upon Joseph et al. (1976) and 

Coakely et al. (1983). 

 Modern Era Retrospective Analysis for Research and Applications (MERRA 

and MERRA version 2). MERRA is a product of the NASA Goddard Earth Observing 

System version 5 (GEOS-5) and data assimilation system (DAS). The atmospheric general 

circulation model (AGCM) includes a prognostic cloud parameterization scheme 

(Bacmeister et al. 2006) to which a maximum-random overlap is assumed, a SW radiation 

scheme from Chou and Suarez (1999), and a LW radiation scheme from Chou et al. (2001). 

To constrain the atmospheric model with observations, GEOS-5 uses an Incremental 

Analysis Update (IAU) (Bloom et al. 1996) to slowly adjust the model states toward the 

observed state, which is unique to the MERRA assimilation process. To resolve boundary 
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layer clouds, two turbulent mixing schemes are implemented for (1) no boundary layer 

clouds in stable conditions (Louis et al. 1982) and for (2) unstable or cloud-toped boundary 

layers (Lock et al. 2000). The first version of MERRA is used in Chapter 3. However, a 

newer version, MERRA-2, was released and used in Chapter 4.  

MERRA-2 is horizontally discretized on a cubed sphere grid, which is superior to 

the latitude-longitude methods used in earlier versions (Bosilovich et al. 2015). For 

MERRA-2 the number of assimilated observations per 6-hour increment has increased 

from three million in 2010 to five million in 2015; however, capabilities of assimilating 

future satellite observations are also developed. This is in contrast to the one and a half 

million observations assimilated in MERRA from 2002 to the present. MERRA-2 is 

available on a 0.5° × 0.625° grid with 72 hybrid-eta levels from the surface to 0.01 hPa as 

instantaneous and time-averaged products at synoptic (0, 6, 12, and 18 UTC) and mid-

synoptic times (3, 9, 15, and 21 UTC). 

One of the major improvements in MERRA-2 includes the minimization of abrupt 

variations in global inter-annual states (e.g., temperature) due to changes in observing 

system. This is accomplished by constraining the global dry mass balance, which permits 

the global changes in water by the analysis increment to be near zero (Takacs et al. 2016). 

Also, land-surface hydrology is improved by forcing precipitation through an observation-

corrected field rather than a model-corrected field (Reichle and Liu 2014). In terms of the 

zonal temperature, MERRA-2 is within 1 K of its previous version. In the middle to upper 

troposphere, differences of up to 0.6 K are seen in the tropics with MERRA-2 being slightly 
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warmer (Bosilovich et al. 2015). Differences in the tropical tropospheric temperature are 

consistent with the additional radiative heating related to excess tropical cloud cover. An 

increase in tropospheric humidity is achieved in MERRA-2, likely a result of increased re-

evaporation rates of frozen precipitation (Molod et al. 2015). 

Satellite and Ground-based Observations 

This section details the numerous satellite and ground-based data products used to 

complete the studies outlined in this dissertation. The satellite products are almost 

exclusively developed using instruments in the A-Train, a constellation of seven satellites 

flying in a sun-synchronous orbit at ~705 km above the Earth. The A-Train has a cross-

equatorial orbit at ~1:30 pm local time with ~15 overpasses a day. A list of the satellite-

based observation products examined here for the evaluation of clouds, precipitation, and 

radiation budgets is provided in Table 2 along with their data availability range and 

estimated uncertainties.  

Clouds and the Earth Radiant Energy System (CERES) and Moderate Resolution 

Imaging Spectroradiometer (MODIS)  

SYN1deg Edition 3A. Chapter 3 Section 1 applies eight years (02/2000–02/2008) 

of monthly mean combined Terra/Aqua MODIS retrievals (supplemented by geostationary 

satellite cloud properties) for the evaluation of total column CF and CWP (liquid and ice 

water). The data used for this study are from the Level-3 SYN1deg product, Edition 3A 

which is offered on a 1.0 ° × 1.0 ° (latitude × longitude) grid.  For the remainder of this 
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document, this product will be referred to as CERES-MODIS, which is different from the 

MODIS-only cloud product. MODIS has 36 spectral channels ranging from visible to 

thermal infrared (IR) wavelengths (0.4–14.4 μm). The swath width is 2330 km across track 

with a 10 km along track at nadir. MODIS pixels are spatially resolved at 250, 500, and 

1000 m for certain spectral bands. Cloud properties are generally derived from channels in 

the near- to thermal-IR bands (~3.6–14.4 μm).   

 Due to the large uncertainties in the nighttime CWP retrievals (> 50 gm−2), daytime-

only estimates of CF and CWP are used (as in Stanfield et al. 2014 and Dolinar et al. 2015) 

for the evaluation in Chapter 3. The CERES-MODIS cloud properties have been 

extensively validated with other space-borne satellites (Minnis et al. 1999, 2002, 2011) and 

ground-based measurements (Dong et al. 2008a; Xi et al. 2010, 2014). For example, Dong 

et al. (2008a) compared the CERES-MODIS retrieved cloud liquid water path (LWP) with 

the Department of Energy (DOE) Atmospheric Measurement (ARM) program ground-

based microwave radiometer retrieved LWPs at the Southern Great Plains (SGP) Central 

Facility site. Based on their analysis, the mean LWP differed by 0.6±49.9 gm−2. Minnis et 

al. (2011) found that the CERES-MODIS derived LWP over the ocean was, on average, 

0.2±53.6 gm−2 less than the LWP from matched overcast Advanced Microwave Scanning 

Radiometer – Earth Observing System (AMSR-E) footprints. The CERES-MODIS ice 

water path (IWP) retrievals show an average negative bias of 3.3±16.2 gm−2 when 

compared with ground-based radar measurements (Mace et al. 2005). A more detailed 

survey of the CERES-MODIS cloud microphysical property retrievals and uncertainties 
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can be found in Minnis et al. (2011). A summary of the satellite data products used in 

Chapter 3 for evaluating GCMs and reanalyses is available in Table 2.  

Table 2: A list of the level-3 monthly gridded satellite data products relevant to the 

evaluation of simulated cloud, precipitation, and radiation properties (Chapter 3) along 

with their uncertainties. 

    

Product Grid 

Spacing 
 Product 

Availability 
 Error/ 

Uncertainty 
 

CERES MODIS  1.0° × 1.0°  03/2000 - 02/2017     

CF      7%  

CWP      15%  

ISCCP  2.5° × 2.5°  07/1983 - 12/2009    

CF      10%  

CloudSat/CALIPSO    07/2006 - 12/2010    

CF      5%  

CERES EBAF  1.0° × 1.0°  03/2000 - 02/2017    

TOA SW [all]      4.0 W m−2  

TOA SW [clear]      2.6 W m−2  

TOA LW [all]      2.0 W m−2  

TOA LW [clear]           3.6 W m−2  

SFC SW [all]      5.0 W m–2  

SFC LW [all]      7.0 W m–2  

TRMM  0.25° × 0.25°  01/1998 - 04/2015    

PR      20–120%  

  

CERES Aqua Single Scan Footprint (SSF) Edition 4A. Satellite top-of- 

atmosphere (TOA) radiative fluxes are estimated from the CERES Aqua Single Scan 

Footprint (SSF) edition 4A product since the launch of Aqua in 2002 (Geier et al. 2001; 

Loeb et al. 2003). Satellite-measured radiances are from a SW channel (0.3–5 μm), a 

window channel (8–12 μm), and a total channel (0.3–100 μm) (Wielicki et al. 1996). TOA 

SW radiances are then converted to fluxes using angular distribution models (ADMs; Su et 
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al. 2015a), which consider the solar zenith, viewing zenith, and relative azimuth angles. 

The MODIS imager supplements CERES to provide better detail regarding the distribution 

of clouds and aerosols. The collocation of clouds, aerosols, and radiation is a major benefit 

to the SSF product. Included in the SSF product are estimates of clear-sky fraction, which 

is used for cloud screening purposes, as described in Chapter 4 Section 1. TOA SW and 

LW flux root-mean-square errors (RMSE) are estimated to be less than 6% for a variety of 

scene types (Loeb et al. 2006; Su et al. 2015b). Instantaneous footprints of TOA radiances 

are used as a constraint to the calculated fluxes presented in Chapter 4 Section 1. 

CERES Energy Balanced and Filled (EBAF) – TOA and Surface Edition 2.8. 

CERES energy balanced and filled (EBAF) radiative fluxes at the TOA are a standard 

source for evaluating simulations of global TOA radiation budgets. As an extension of the 

CERES SYN1deg product, CERES EBAF is also a monthly mean 1.0° × 1.0° gridded 

dataset supplemented by TOA fluxes derived from five geostationary satellites (Doelling 

et al. 2013). Edition 2.8 is consistent with previous EBAF versions, in that the CERES SW 

and LW fluxes are adjusted so that the global net TOA flux and the earth-atmosphere heat 

storage are consistent with each other, as determined by the ocean heat content anomaly 

data (Loeb et al. 2009). Edition 2.8 fluxes are nearly identical to Edition 2.7; however, the 

incoming solar irradiances are from the solar radiation and climate experiment (SORCE) 

total irradiance monitor (TIM) total solar irradiance (TSI) V-15 for March 2000 through 

June 2013, and from the Royal Meteorological Institute of Belgium (RMIB) from July to 

the present. The CERES EBAF-TOA RMSEs for the all-sky reflected SW radiation, clear-
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sky reflected SW radiation, all-sky outgoing LW radiation, and clear-sky outgoing LW 

radiation are 4.0, 2.6, 2.0, and 3.6 W m–2, respectively (CERES EBAF_Ed2.8 Data Quality 

Summary 2014; Loeb et al. 2012). 

The CERES EBAF-Surface product is derived using the CERES SYN1deg-lite 

product, adjusted within its uncertainty to be consistent with the net planetary imbalance 

derived from ocean heating rates from Argo in situ ocean temperature measurements (Loeb 

et al. 2012), as well as input from CERES EBAF–TOA. CERES radiances are observed 

using CERES FM1-4 instruments onboard Terra and Aqua satellites. The global surface 

radiation budget is determined through radiative transfer model (RTM) calculations, which 

are constrained by satellite-based cloud and aerosol retrievals and meteorological and 

aerosol assimilation data from reanalysis to characterize the atmospheric state. To 

minimize the error in surface fluxes due to uncertainties in the input data sources, the 

EBAF-Surface data product introduces several additional constraints based upon 

information from other independent data sources, such as CERES TOA fluxes, AIRS-

derived temperature/humidity profiles, and CALIPSO/CloudSat-derived vertical profiles 

of clouds. On global average, the errors/uncertainties of EBAF-Surface fluxes are 7.0 and 

3.0 W m–2 for downward and upward LW fluxes, respectively. The downward and upward 

SW flux uncertainties are 5.0 and 3.0 W m–2, respectively (Kato et al. 2013). 

International Satellite Cloud Climatology Project (ISCCP) - D2 
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The ISCCP estimated CF is also briefly referenced in Chapter 3. ISCCP combines 

cloud information routinely derived from operational weather satellites. While no 

comprehensive analysis is performed with these data, they provide a consistency check for 

the CERES-MODIS CF (global average within 0.1 %, Pearson correlation coefficient 

squared, R2 = 0.84) and a global satellite data record for assessing clouds dating back to 

the early 1980’s.  

CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) 

When CloudSat and CALIPSO were launched into orbit in 2006, the ability to 

detect optically thin (τ < 0.3) and multi-layered cloud systems across the entire globe was 

achieved. Furthermore, when the active sensors on these satellites are integrated with 

sensors on other satellites within the A-Train (e.g., Aqua), a more complete picture of 

complex cloud systems (e.g., deep convection and mixed-phase clouds), especially during 

nighttime, can be painted. With the combination of the CloudSat 94 GHz cloud profiling 

radar (CPR; Stephens et al. 2002) and the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP; 532 and 1064 nm; Winker et al. 2009) coincident measurements of 

vertically-resolved aerosols, subvisible and thin cirrus, and optically-thick clouds are 

attainable on the global scale (Deng et al. 2010 and 2015). The CPR measures 

backscattered power every 240 m vertically on a footprint of 1.4 km × 1.8 km (across × 

along track) with a sensitivity of –30 dBZe (Deng et al. 2010). CALIOP, on the other hand, 
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measures the attenuated backscatter every 30 – 70 m vertically on a footprint of 0.075 km 

× 0.3 – 1.0 km (across × along track) (Deng et al. 2010). 

CloudSat/CALIPSO/CERES/MODIS (CCCM) RelB1v2. The integrated 

CloudSat, CALIPSO, CERES, and MODIS (CCCM) merged lidar/radar product provides 

instantaneous retrieved cloud property vertical profiles in the CloudSat/CALIPSO ground 

track (Kato et al. 2010). In Chapter 3, the estimated CF from CloudSat/CALIPSO is 

compared with the other satellite observations and model simulations since no statistical 

difference is determined from the MODIS-in-CloudSat/CALIPSO swath and Single 

Scanner Footprint (SSF) products (Xi et al. 2014). 

In Chapter 4 Section 2, we introduce the instantaneous TOA irradiances derived by 

CERES from the single scanner footprint (SSF) Edition3-Beta2 product reported in 

CCCM. TOA fluxes are obtained by applying empirical ADMs to CERES-observed SW 

and LW radiances (Loeb et al. 2005). CCCM also offers calculated irradiance profiles from 

the surface to the TOA (138 levels) with MODIS-derived cloud properties from an 

enhanced CERES algorithm, integrated with measured cloud information from and along 

the CloudSat and CALIPSO ground track (Kato et al. 2011). The CCCM-calculated 

irradiances from this dataset will be referred to as CCCM_CC.  Kato et al. (2010 and 2011) 

provided more extensive assessments of how CloudSat, CALIPSO, and MODIS cloud 

scenes are integrated to produce a coherent cloud signal and how the irradiance profiles are 

calculated in CCCM_CC. 
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CloudSat and CALIPSO Ice Cloud Property Product (2C-ICE, P1_R04). In 

Chapter 4 Section 2, the retrieved ice cloud properties (i.e., IWC and Re) come from the 

merged CloudSat and CALIPSO Ice cloud property product (2C-ICE P1_R04; Deng et al. 

2010 and 2015).  Ice cloud boundaries are defined from the 2B-GEOPROF-LIDAR (Mace 

et al. 2009) and 2B-CLDCLASS-LIDAR products (Sassen et al. 2008). The 2C-ICE 

algorithm defines three separate regions within a profile: the lidar-only, radar-only, and the 

lidar-radar overlap regions. These zones are defined based upon sensor 

sensitivity/attenuation, which allows for respective data processing methodologies in each 

region (e.g., parameterizations or measurement error assignment; Deng et al. 2010).  

The largest sources of uncertainty in 2C-ICE result from the retrieval algorithm 

assumptions related to ice particle size distributions (PSD; a modified gamma distribution 

in this algorithm; Deng et al. 2010) and particle habit oversimplification, multiple 

scattering assumptions related to the lidar signal, and the radar reflectivity 

parameterizations in the lidar-only region (Deng et al. 2015).  Errors in the assumptions 

based on multiple scattering can lead to an uncertainty of ~15% in optical depth and ~30% 

in IWC. The cloud ice particle effective radii (Re), available in the 2C-ICE product, were 

computed from the best estimate of PSD. Since there are no global direct measurements of 

Re to date (Jiang et al. 2017), large uncertainty may exist in the Re used for the radiative 

transfer modeling.      

ECMWF-AUX (P_R05). Meteorological profiles (i.e., temperature, water vapor, 

and ozone) are available from the European Centre for Medium-range Weather Forecasting 
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(ECMWF) auxiliary product, which are interpolated to the CloudSat radar bins from the 

surface to ~25 hPa. These data are commonly used for the development of other CloudSat-

based products (e.g., 2B-GEOPROF-LIDAR, 2B-FLXHR-LIDAR, 2B-TAU) when 

atmospheric state variables are required.  

2C-PRECIP-COLUMN (P_R05). The 2C-PRECIP-COLUMN product provides 

estimates of detectable precipitation based on CloudSat CPR observations (Haynes et al. 

2009). For the purposes of the studies completed here in Chapter 4 Section 2, precipitation 

detection is sufficient. However, the rate of precipitation and probability of precipitation 

types (e.g., possible, probable, and certain, rain, snow, or mix) is given.  

2B-FLXHR-LIDAR (P2_R04). The 2B-FLXHR-LIDAR (L’Ecuyer et al. 2008; 

Henderson et al. 2013) product provides estimates of broadband radiative flux profiles 

from the surface to the lower stratosphere at the observed CloudSat CPR range gates (125 

levels). Liquid and ice cloud properties and precipitation are derived from observed CPR, 

CALIOP, and MODIS properties. Henderson et al. (2013) provided a detailed description 

of how liquid and ice clouds are represented in 2B-FLXHR-LIDAR, including sensor 

limitations and how these limitations are minimized. These data are used in Chapter 4 

Section 2 for comparisons of TOA radiative fluxes and heating rate profiles. 

Microwave Limb Sounder (MLS) version 4 Level 2 

 Launched in 2004, the Aura satellite became the second member of the A-Train 

(L’Ecuyer and Jiang 2010). Aura is equipped with the Microwave Limb Sounder (MLS) 
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instrument (Waters et al. 2006), which was designed to obtain high-quality measurements 

of upper atmospheric temperature, water vapor, ozone, and an assortment of other climate 

sensitive atmospheric constituents. The acceptable range of the retrieved temperature is 

261–0.001 hPa with an estimated uncertainty of ~1 K when compared with other 

observations (Schwartz et al. 2008). Stratospheric ozone from MLS is retrieved at a 

frequency of 240 GHz, which offers the best precision for a wide vertical range 

(Froidevaux et al. 2008). Intercomparison studies suggest that the ozone values from MLS 

match well with multi-instrument means and Stratospheric Aerosol and Gas Experiment II 

values (Tegtmeier et al. 2013). The recommended range of the MLS ozone product is from 

261 to 0.02 hPa with an estimated uncertainty of ~5–10%. MLS water vapor is retrieved at 

a frequency of 190 GHz with acceptable range of 316–0.002 hPa. The estimated 

uncertainty of MLS water vapor in the stratosphere is ~10% (Read et al. 2007). In the upper 

troposphere, the estimated MLS water vapor uncertainty is 20% in the tropics and 

midlatitudes and ~50% at high latitudes (>60 °N/S) (Read et al. 2007; Jiang et al. 2012). 

Atmospheric Infrared Sounder (AIRS) 

 The Aqua satellite also houses the AIRS sensor, which is a cross-track scanning 

hyper-spectral (2378 bands) spectrometer covering the infrared wavelengths from 3.7–15.4 

μm. In the following studies, the level-3, version 6 daily 1.0° × 1.0° gridded product is used 

for tropospheric ozone estimates at standard pressure levels (Tian et al. 2014). Biases in 

the AIRS-retrieved ozone are estimated to be less than 5% when compared with collocated 
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ozonesonde profiles and World Ozone and Ultraviolet Radiation Data Center data sets 

(Divakarla et al. 2008). 

Tropical Rainfall Measurement Mission (TRMM) 3B43 Version 7 

 Precipitation is another commonly investigated component of the Earth-climate 

system due to its potential agricultural, societal, and economic impacts. Herein, we only 

perform a brief investigation of the simulated precipitation rates in five reanalysis data sets 

using TRMM as a reference in Chapter 3 Section 1. The NASA Goddard Earth Sciences 

Data and Information Services Center (GES DISC) has released the seventh version of the 

TRMM monthly gridded (0.25° × 0.25°) rainfall product of near-global (50 °N/S) 

precipitation estimates beginning in 1998. This data product is derived based upon 

retrievals from an active 13.8 GHz microwave precipitation radar and is supplemented by 

several other sensors in the TRMM multi-satellite precipitation analysis (TMPA) (Huffman 

et al. 2007). The 3-hour precipitation rate uncertainty is estimated to be 90–120% for light 

rain (< 0.25 mm day–1) and 20–40% for heavy rain (Habib and Krajewski 2002; 

AghaKouchak et al. 2009). However, many of these errors are random and will be reduced 

when spatially and temporally averaged. Huffman et al. (2007) reported that the monthly 

mean precipitation rates agree well with the Global Precipitation Climatology Project 

(GPCP; Adler et al. 2003), however, larger errors are common at smaller time scales over 

the oceans where low precipitation rates frequently occur. Estimated errors in the gridded 

product are sampling-induced uncertainties (i.e., the true precipitation field and of the 
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measurement-algorithm) of each field and a linear combination of the field errors, weighted 

by the inverse of its error variance (Huffman 1997). 

Atmospheric Radiation Measurement (ARM) Program 

 The Department of Energy (DOE) has spearheaded an effort to study the interaction 

of clouds, radiation, aerosols, and precipitation at several climatologically unique locations 

across the globe. Figure 2 shows the locations of five different ground-based sites with 

instruments that have been operational since the mid-to-late 1990’s. These instruments 

include millimeter wavelength cloud radar (MMCR), micropulse lidar (MPL), radiometers, 

wind profilers, rain gauges, laser disdrometers, ceilometers, sun photometers, and surface 

meteorology sensors. Aircraft measurements associated with carefully designed field 

campaigns are also available close in proximity to several of these sites. 

Data from the five sites highlighted in Fig. 2 have been collected and processed in 

Chapter 3 Section 2 and Chapter 4 Sections 1 and 2.  The Active Remote Sensing of Clouds 

(ARSCL) value-added product (VAP) (Clothiaux et al. 2000) contains derived cloud 

properties from a combination of MMCR, MPL, and laser ceilometer. The MMCR is a 

vertically pointing radar that operates at 8.6 mm and provides a continuous time series of 

cloud hydrometeors passing through the radar FOV, making it relatively easy to identify 

clear and cloudy scenes (Moran et al. 1998). Furthermore, the MMCRs can detect all 

cloud-types up to 16 km with a radar reflectivity ranging from –50 to +20 dBZ. Since a 
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combination of lidar and ceilometer measurements can offer the best estimate of cloud base 

height, they are also included in the algorithm (Clothiaux et al. 2000). 

 

Figure 2: A global map showing the select ARM sites where data were collected and 

processed for the studies described in this document. Southern Great Plains (SGP; 36° 

36’18” N, 97° 29’6” W), North Slope of Alaska (NSA; 71° 19’22.8” N, 156° 36’32.4” W), 

Azores (39° 5’ 29.68” N, 28° 1’ 32.34” W), Tropical Western Pacific (TWP) Nauru (C2; 

0° 31’15.6” S, 166° 54’57.6” E), and Darwin (C3; 12° 25’ 28.56” S, 130° 53’ 29.75” E). 

 

High-resolution vertical profiles of temperature and water vapor are available from 

the ARM-merged sounding VAP. The merged soundings are a combination of observations 

from radiosondes, microwave radiometers, surface-based meteorological instruments, and 

ECMWF model output (Troyan 2012). Using a sophisticated 

scaling/interpolation/smoothing algorithm, thermodynamic variables are available at 1-min 

intervals with a total of 266 levels from the surface to ~50 hPa. 

Upward and downward looking standard Eppley precision spectral pyranometers 

(PSPs) and precision infrared pyrgeometers provide measurements of the surface 
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downward/upward SW (0.3–3 μm) and LW (4 –50 μm) radiative fluxes, as well as albedo, 

at 1-min intervals (Long and Shi 2008). Uncertainty estimates in the downward SW and 

LW radiative fluxes are 10 and 4 W m–2, respectively (Long and Shi 2008). The observed 

surface downward SW and LW fluxes are used to constrain the calculated fluxes in Chapter 

4 Section 1 and are simply compared with calculated fluxes in Chapter 3 Section 2 and 

Chapter 4 Section 2. Measurements of the surface skin temperature at the ARM SGP and 

NSA sites are also needed for Chapter 4 Section 2; skin temperature is not available at the 

ARM TWP-C3 for the study period. Therefore, we used the lowest level in the merged 

sounding as an approximation. The equivalent blackbody temperature is measured by a 

downward looking infrared thermometer (9.6–11.5 μm) and is accurate to within ±0.5 K 

(Morris 2006). 

Radiative Transfer Model (RTM) 

In Chapter 4, Sections 1 and 2, radiative fluxes are calculated using a one-

dimensional radiative transfer model (RTM) with inputs from satellite and ground-based 

observations. In Chapter 4 Section 1, broadband clear-sky SW and LW radiative fluxes are 

calculated using the NASA Langley modified Fu-Liou RTM (Fu and Liou 1993; Fu et al. 

1997; Kato et al. 1999) (https://www-cave.larc.nasa.gov/cgi-bin/lflcode/accesslfl.cgi). The 

FLux model for CERES with k-distribution and correlated-k for Radiation (FLCKKR) 

RTM is used in Chapter 4 Section 2, which is an altered version of the NASA Langley 

modified Fu-Liou RTM, to calculate the TOA, surface, vertical profiles of radiative fluxes. 
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FLCKKR is used because it can read in profiles of IWC and Re instead of the layer mean 

cloud Re. We are interested in the vertical profiles of fluxes and their corresponding heating 

rates; therefore, it is desirable to resolve the cloud vertical structure in the RTM.  

Infrared and solar radiative fluxes are calculated with several options: a δ-four- or 

δ-two/four-stream solver and a δ-two, δ-four, or gamma-weighted δ-two-stream solver, 

respectively (Kato et al. 2005). We use the two-stream solver for SW calculations, while 

the two/four-stream solver is used for the LW. For the SW and LW fluxes, a total of 18 and 

14 bands are computed, respectively, and are sensitive to specific gaseous species. A total 

of 25 different aerosol types are featured in this model and are characterized by their own 

spectral normalized extinction, scattering, and absorption properties. Single-scattering ice 

particle properties (e.g., phase function, single-scattering albedo, and extinction 

coefficient) are parameterized through exploitation of in-situ aircraft data and based on the 

following assumptions: ice crystals are randomly oriented, ice crystal absorption is small, 

and ice crystals are non-spherical (assumed to be hexagonal here) (Fu and Liou 1993). The 

errors related to parameterized single-scattering properties of ice clouds are less than 1%. 
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CHAPTER III 

AN EVALUATION OF SIMULATED CLOUDS, PRECIPITATION, AND TOA 

RADIATION BUDGETS IN GCMS AND REANALYSES USING NASA 

SATELLITE AND ARM GROUND-BASED OBSERVATIONS (Dolinar et al. 2015 

and 2016a) 

 

Globally observed and simulated clouds, precipitation, and TOA radiation 

budgets from 28 CMIP5 GCMs and five reanalyses 

To assess the biases in the simulated cloud and radiation fields, the global mean 

properties are compared with consistent satellite observations for multiple years of data. 

Global means are calculated from grid-box averaged values and are weighted by cosine of 

latitude to compensate for the longitudinal convergence near the poles. All models, 

reanalysis, and satellite observations are linearly interpolated to a common grid (2.5° × 

2.0°; longitude × latitude) to facilitate the comparison. 

Cloud fraction (CF), cloud water path (CWP), and precipitation rate (PR) 

 Figure 3 provides the global means of total column cloud fraction (CF) and cloud 

water path (CWP) for each model or reanalysis (vertical bars, when available) and satellite 

product (horizontal dashed colored lines). On average, the multimodel mean CF (blue line) 

is underpredicted by ~7% and ~16% when compared with passive (i.e., CERES-MODIS 

or ISCCP; red and green lines) and active (i.e., CloudSat/CALISPO; black line) satellite 

retrieved CFs, respectively. The CloudSat/CALISPO global mean CF is larger than 

CERES-MODIS due to its higher sensitivity to optically thin clouds (τ < 0.3; Sassen and 

Cho 1992). Only five models (CSIRO-Mk3.6.0, GFDL-HIRAM-C180, -C360, -CM3, and 
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20CR) fall within the range of observed CFs. The global mean CWP is also underpredicted 

by the multimodel mean by ~17 g m–2 when compared with the CERES-MODIS result. It 

is also worth noting the large degree of inter-model spread in the simulated global mean 

results. Based on the range of global means from the ensemble of models considered here, 

the standard deviations (σ) are ~10% and ~37% for CF and CWP, respectively.  

 
Figure 3: Bar plots of the globally averaged (a) total column cloud fraction (CF, %) and 

(b) cloud water path (CWP, g m–2) from the 28 CMIP5 GCMs during 03/2000-02/2008 and 

five reanalyses during 03/2000-02/2012 overlaid with the multimodel mean (blue) and 

observed means from CERES-MODIS (red), ISCCP (green), and CloudSat/CALIPSO 

(black). Mean values are listed in parentheses along with the standard deviation for the 

multimodel mean. 

 

Jiang et al. (2012) developed a grading scale to rate each model based upon spatial 

mean, standard deviation, and correlation of combined clouds and water vapor fields. They 

highlighted that there exists large model spread and a high degree of discrepancy from 



 

34 
 

observations, particularly in the upper troposphere. In many instances, when evaluating a 

multimodel ensemble, absolute model error is rather small. However, when evaluating 

models independently, the spread of the model results can be large because most GCMs 

use different cloud parameterization and radiation schemes, offering more complexity to 

these types of validation studies.  

Figure 4 shows the zonal means of simulated and observed CF and CWP. The 

negative bias in simulated global mean CF occurs predominately in the extra-tropics and 

mid-latitudes when compared with CERES-MODIS, while the multimodel mean CF is 

overpredicted at the equator and poleward of 70° in both hemispheres. On average, the 

model simulated CF is underpredicted at all latitudes compared to CloudSat/CALIPSO. 

The model spread is considerably large in the high-latitudes (~50–60%, see shaded area) 

and tropics (~30%), indicating a significant amount of uncertainty regarding 

Arctic/Antarctic and ice clouds, respectively. The zonal mean CWP in Fig. 4b reveals a 

similar bias. On average, the CWP is overpredicted in the tropics and underpredicted 

poleward of ~25° in both hemispheres. The negative bias in the mid- to high-latitudes 

(~60–90 g m–2) is accompanied by a large range of simulated results in this area (200-300 

g m–2, grey shaded region). 
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Figure 4: Zonal means of the globally simulated and observed (a) total column CF (%) and 

(b) CWP (g m–2). The multimodel mean is in blue while the observed zonal means are in 

red, green, and black from CERES-MODIS, ISCCP, and CloudSat/CALIPSO, 

respectively. The grey shaded region is the ±2σ of the model results while the dotted lines 

are the maximum and minimum simulated values.  

 

Global maps of the observed and modeled CFs are provided in Fig. 5. According 

to observations (Figs. 5a and 5b), CFs of more than ~80% occur in the Southern Ocean and 

Northern Pacific and Atlantic Oceans. CloudSat/CALIPSO detects a much higher CF in 

the tropical warm pool, compared with CERES-MODIS, due to the relatively large 

frequency of optically thin clouds in this region. The multimodel mean simulated CF is too 

low everywhere across the globe when compared with CloudSat/CALIPSO (Fig. 5d). 

When compared with CERES-MODIS, the simulated CF is too low over the global oceans 
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outside of the tropics and over much of the continents. However, the CF is most notably 

overpredicted in the tropical Pacific, Indian Ocean, Antarctica, and the Arctic Ocean.  

 

 

Figure 5: Global maps of the mean total column CF (%) from (a) CloudSat/CALIPSO, (b) 

CERES-MODIS, and (c) the multimodel mean from 28 CMIP5 GCMs and five reanalyses. 

Differences (model minus observation) are also shown between the multimodel mean and 

(d) CloudSat/CALIPSO and (e) CERES-MODIS. 

 

Global maps of the CERES-MODIS observed and the multimodel mean simulated 

CWPs are depicted in Fig. 6. According to CERES-MODIS, the largest CWPs occur in the 

Southern Ocean and northern Pacific and Atlantic Oceans (CWP = 250–400 g m–2) the 
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multimodel mean largely underpredicts CWP (biases of –60 to –120 g m–2; see Fig. 6c). A 

small positive bias in the multimodel mean occurs in the tropical oceans while significantly 

large positive biases are determined over tropical land areas such as the Melanesian Islands, 

Northern South America, Central America, and Central African. 

Figure 6: Same as Fig. 5 but for the 

global maps of CWP (g m–2) from (a) 

CERES-MODIS, (b) the multimodel 

mean, and (c) their difference. 

 

While this analysis does not 

differentiate between ice and liquid 

clouds in the multimodel means and 

observations, Stanfield et al. (2014) 

elaborates on the distinction between 

ice and liquid water paths (I/LWP) 

simulated in the GISS-E2-R model, and 

how they compare with CloudSat 

observations. Their analysis suggests 

that IWP (LWP) is generally over 

(under) predicted in the tropics while the opposite holds true in the mid- and high-latitudes. 

Li et al. (2012) investigated the simulated ice cloud properties in 15 CMIP5 GCMs and 14 

from CMIP3. They concluded that the models can capture the global distribution of ice 

clouds but the magnitude is too high, especially in the tropics above 400 hPa.  
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The simulated precipitation rates (PR) from the five reanalyses are also 

investigated. We do not include the 28 GCMs for this analysis because precipitation is not 

a focus of this study. However, it is still important to understand how well global models 

predict precipitation, as it is commonly regarded as an important component of the Earth-

climate system (Stanfield et al. 2016). Figure 7 depicts the global maps of TRMM-observed 

and model simulated PRs. 

Figure 7: Near-global (±50°) maps of 

the precipitation rates (PR, mm day–1) 

from (a) TRMM, (b) multimodel mean 

(reanalyses only), and (c) their 

difference. 

 

As expected, the highest grid-average 

PRs (10–15 mm day–1) from TRMM 

occur in the tropics along the 

Intertropical Convergence Zone (ITCZ) 

with moderate PRs occurring along 

mid-latitude storm tracks. Weaker PRs 

(< 1.0 mm day–1) are found in areas of 

large-scale subsidence over the oceans 

(e.g., descending branch of the Hadley 

Cell) and over large desert regions (e.g., Sahara, Taklimakan, and Gobi, and Mojave 

Deserts). The near-global (50 °S – 50 °N) mean PR from TRMM is 2.91 mm day–1. The 

multi-reanalysis mean captures this distribution very well (Fig. 4b), however, the near-
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global mean is overpredicted by ~0.42 mm day–1 and the differences in Fig. 4c reveal biases 

of more than 2.0 mm day–1 in the western Pacific, along the Gulf Stream, and over tropical 

land masses. 

TOA fluxes and cloud radiative effects (CRE) 

 The effects of clouds on the TOA radiation budget will be presented below in terms 

of the cloud radiative effect (CRE; Ramanathan et al. 1989). However, it is necessary to 

understand both components of the TOA CREs: the all-sky and clear-sky radiations 

budgets.  

TOA clear-sky fluxes. The clear-sky radiation budgets are needed for calculating 

TOA CREs.  It is the clear-sky conditions that hold reference to the all-sky conditions when 

investigating how clouds affect the radiation budget (TOA or surface). When evaluating 

the TOA clear-sky radiative fluxes, we assume the results are an indication of how well the 

surface properties are represented in the model (with some influence from the emissive and 

absorptive properties of the atmosphere).  For example, the TOA clear-sky reflected SW 

flux depends greatly on the surface albedo while the outgoing LW flux depends heavily on 

the surface temperature. The observed global mean clear-sky TOA reflected SW and 

outgoing LW radiation fluxes from CERES EBAF are 52.6 and 266.0 Wm−2, respectively 

(see Fig. 8). The multimodel (from available models) mean clear-sky SW and LW fluxes 

are 52.9±3.8 and 264.2±3.2 Wm−2, respectively. 
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Figure 8: Same as Fig. 3 but for the clear-sky top-of-atmosphere (TOA) (a) reflected 

shortwave (SW) and (b) outgoing longwave (LW) fluxes (W m–2). The observed clear-sky 

TOA radiative fluxes (red) come from CERES EBAF.  

 

Figure 9 presents the zonal distributions of the clear-sky TOA fluxes. The SW flux 

does not vary much between 60 °N/S but increases significantly at the southern and 

northern poles. This increase is due to the continual snow and ice cover from year to year, 

increasing the surface albedo. The oceans maintain the surface albedo well, which explains 

the small variation between 60 °N/S. There is a slight increase in the clear-sky SW flux in 

the northern hemisphere due to the larger percentage of land area (and increase in surface 

albedo). The model simulations depict these conditions with accuracy; however, there is 

relatively large multimodel spread (~30 W m–2) in the Arctic.  
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Figure 9: Same as Fig. 4 but for the zonal means of clear-sky TOA (a) reflected SW and 

(b) outgoing LW flux (W m–2). The observed clear-sky TOA radiative fluxes (red) are from 

CERES EBAF. 

 

The observed and multimodel mean clear-sky LW fluxes follow the same zonal 

pattern and are primarily controlled by the surface emitted temperature. The TOA outgoing 

LW flux is largest in the tropics and smallest near the poles, with the southern pole flux 

being less than the northern pole by about 50 Wm−2.   

Global maps of the observed and multimodel mean simulated TOA clear-sky fluxes 

are presented in Fig. 10. The SW clear-sky flux (left panels) is governed by the land-sea 

contrast, with higher flux values over land due to the higher surface albedos. The overall 

distribution is simulated well by the multimodel mean over the ocean (bias ≤ 4.0 Wm−2), 
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yet still, there are a few regions where the GCMs and reanalyses tend to show difficulties 

in simulating the TOA clear-sky SW radiation flux, especially over land. The Sahara 

Desert, the Arabian Peninsula, the East Indies, and parts of Northern North America have 

a relatively large negative bias in the clear-sky SW flux at the TOA (bias up to −16 Wm−2). 

Conversely, areas such as the Tibetan Plateau and Australia are even more over predicted 

(bias ≥ 20 Wm−2).    

 
Figure 10: Global maps of the (a,d) CERES EBAF observed and (b,e) multimodel mean 

simulated clear-sky TOA (left) reflected SW and (right) outgoing LW fluxes (W m–2). (c,f) 

Global maps of their differences (model minus CERES EBAF) are also depicted. 

 

A stratification of the clear-sky LW flux is apparent from CERES EBAF (Fig. 10d) 

and in the multimodel mean, with larger fluxes in the tropics and decreases toward the 



 

43 
 

poles. Again, the TOA clear-sky LW is mainly a result of surface emitted temperatures 

(and water vapor), so we can expect this result. Oceanic regions are consistently under 

predicted, with an exception in the Southern Ocean around Antarctica where the LW flux 

is over estimated. There is a dipole in the bias over South America; the clear-sky LW flux 

is overpredicted in the north and underpredicted in the south, presumably due to different 

land surfaces and land-uses (i.e. rainforest in the North and primarily agriculture and 

farming in the South). The clear-sky LW flux is overpredicted in the East Indies and 

surrounding oceans while an underpredition is determined in the Tibetan Plateau area. 

These regions with large biases in clear-sky TOA fluxes could be a result of the 

climatologically prescribed SST and sea-ice observations used in the GCMs. However, 

large biases in the reanalyzed clear-sky fluxes should be of interest to model developers 

(e.g., LW flux in JRA-25) and effort should be made to better represent surface 

characteristics in their models.   

 TOA all-sky fluxes. Figures 11a and 11b show the model simulated and CERES 

EBAF observed global mean TOA all-sky SW and LW fluxes, with averaged differences 

of 1.6±3.0 and −0.9±2.9 Wm−2, respectively. Although the differences between the 

ensemble means and observations are small, a few model results are not physically 

consistent.  The TOA radiative fluxes, in particular the reflected SW flux, depend primarily 

on CF and CWP.  A good agreement in the TOA reflected SW flux should be consistent 

with good agreements in CF and CWP (e.g. CanAM4), or complementary between CF and 

CWP, such as lower (higher) CF and larger (smaller) CWP (e.g. BCC-CSM1.1(m), BNU-
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ESM, GISS-E2-R, or NorESM1-M), to achieve radiative balance. However, it does not 

make sense, physically, if the good agreement in reflected SW flux follows the same bias 

in both CF and CWP, as illustrated in the simulations of ACCESS1.0, GFDL-HIRAM-

CM3, IPSL-CM5A-MR, and MPI-ESM-MR.  The simulated all-sky reflected SW flux has 

a negative correlation with OLR, which is self-consistent.  

 
Figure 11: Same as Fig. 3 but for the all-sky top-of-atmosphere (TOA) (a) reflected 

shortwave (SW) and (b) outgoing longwave (LW) fluxes (W m–2). The observed all-sky 

TOA radiative fluxes (red) come from CERES EBAF.  

 

The zonal mean TOA all-sky radiation flux comparisons in Fig. 12 are much better 

than their CF and CWP counterparts (Figure 3).  Both the reflected SW and outgoing LW 

flux multimodel means converge to the CERES EBAF observations through most latitudes; 
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there is an exception for the SW flux simulations near the tropics (~ 25 °S – 25 °N) and the 

southern latitudes near 60 °S, where CWP is similarly biased.  The zonal variation of both 

modeled and observed all-sky reflected SW fluxes generally follow the same zonal pattern 

as CF and CWP with relatively large disparity over the southern mid- latitude ocean.  

Simulated reflected SW and outgoing LW fluxes and their corresponding ensemble means 

fluctuate around the observations.  

 
Figure 12: Same as Fig. 4 but for the zonal means of all-sky TOA (a) reflected SW and (b) 

outgoing LW flux (W m–2). The observed all-sky TOA radiative fluxes (red) are from 

CERES EBAF. 

 

As expected, the multimodel mean TOA outgoing LW flux agrees better with 

CERES EBAF than the SW fluxes, as the SW flux is strongly CF and CWP dependent. A 
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well replicated TOA outgoing LW flux suggests the multimodel mean is adequately 

simulating cloud-top heights/-temperatures. The peak in TOA reflected SW flux and the 

corresponding dip in outgoing LW radiation, as well as relatively large variations in the 

model simulations near 5–10 °N, are expected due to the frequent occurrence of deep 

convective clouds in that region. 

The observed and multimodel mean simulated global distributions of the TOA all-

sky SW and LW radiation fluxes are shown in Fig. 13. These global maps support the 

argument of consistent regional biases apparent in the model simulations. More distinct 

atmospheric features are evident in these results, when compared to the clear-sky results, 

such as the ITCZ and large-scale circulations (e.g. Hadley Cell). Consistent with the CWP 

results, the multimodel mean overpredicts the all-sky SW radiation in the East Indies, as 

well as, in the Indian Ocean by more than 16 Wm−2 (Figure 13c). Relatively large negative 

biases are less numerous but do appear, such as the South American Pacific Coast where 

MBL clouds persist and Southeastern China. The TOA SW flux in the Southern Ocean is 

also slightly under predicted, which is a common feature identified in global models. The 

all-sky outgoing LW flux (Figure 13d) is greatest in the tropics and in areas of persistent 

high-pressure (i.e. Northern Africa/Arabian Peninsula and the Eastern Pacific). In terms of 

the LW flux biases (Figure 13f), the largest biases occur in the tropics, notably in the 

Central Pacific and the Eastern Indian Ocean while large positive biases occur in the 

western Indian Ocean, Northern South America, and Central Africa.  
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Figure 13: Same as Fig. 10 but for the TOA all-sky fluxes. 

 

TOA Cloud Radiative Effects (CREs). The SW and LW CREs are defined by the 

difference in the upward and downward radiative fluxes (F) between cloudy and clear-sky 

conditions (Ramanathan et al. 1989): 

𝐶𝑅𝐸𝑆𝑊,𝐿𝑊 (𝑊𝑚−2) =  [𝐹𝑆𝑊,𝐿𝑊 ↓ −𝐹𝑆𝑊,𝐿𝑊 ↑]
𝑐𝑙𝑜𝑢𝑑𝑦

−  [𝐹𝑆𝑊,𝐿𝑊 ↓ −𝐹𝑆𝑊,𝐿𝑊 ↑]
𝑐𝑙𝑒𝑎𝑟

 (1) 

 𝐶𝑅𝐸𝑛𝑒𝑡 =  𝐶𝑅𝐸𝑆𝑊 + 𝐶𝑅𝐸𝐿𝑊 (2) 

Since the TOA 𝐹𝐿𝑊 ↓ is zero and 𝐹𝑆𝑊 ↓ is the same regardless of cloud cover, the TOA 

CREs can be simplified as  

 𝐶𝑅𝐸𝑆𝑊,𝐿𝑊 (𝑊𝑚−2) =  [𝐹𝑆𝑊,𝐿𝑊 ↑]
𝑐𝑙𝑒𝑎𝑟

−  [𝐹𝑆𝑊,𝐿𝑊 ↑]
𝑐𝑙𝑜𝑢𝑑𝑦

 (3) 
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As shown in Fig. 14, the globally averaged SW, LW, and net (SW + LW) CREs 

from CERES EBAF are –47.17, 26.21, and –20.96 W m–2, respectively, indicating a net 

cooling effect of clouds on the TOA radiation budget. The differences in SW and LW CREs 

between observations and multimodel means are only 0.73 and –2.01 W m–2, respectively, 

resulting in a larger net cooling effect of –2.44 Wm–2, which is consistent with Wang and 

Su (2013). Note that the SW and LW CRE differences include their clear-sky SW and LW 

(0.35 and –1.79 Wm–2, respectively) biases. However, the CRE biases in some models can 

amount to 10 Wm–2. Such biases are apparent in the simulated SW CREs in BCCCSM1.1 

and NorESM1-M, the LW CRF in FGOALS-S1, GISS-E2-R, Era-Interim, and JRA-25, 

and the net CREs in CSIRO-Mk3.6.0 and FGOALS-S2. Therefore, a further investigation 

of these individual models is warranted. 

The zonal variations of SW and LW CREs in Figs. 15a and 15b seemingly mimic 

their corresponding all-sky SW and LW flux variations in Figs. 12a and 12b. The strong 

SW cooling and LW warming effects between 5 °N and 10 °N are primarily contributed 

by deep convective clouds where the cloud albedo is nearly 0.7 and cloud-top height and 

temperature are ~10 km and ~220 K, respectively (Dong et al. 2008b). Over the southern 

mid-latitude ocean, MBL clouds are dominant (Stanfield et al. 2014), which can attribute 

to strong SW cooling and moderate LW warming effects. With the magnitude of SW 

cooling dominating over the LW warming, the zonal variation of the net CRE more closely 

resembles that of the SW CRE with an overall cooling effect, but to a lesser degree. The 

strong SW cooling and LW warming effects over these two regions motivated a further  
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Figure 14: Same as Fig. 8 but for the TOA (a) SW, (b) LW, and (c) net cloud radiative 

effects (CREs; W m–2). 

 

investigation into whether clouds and CREs associate well with atmospheric vertical 

motions.  Note than deep convective clouds are associated with upward motion, while MBL 

clouds are common in areas of strong sinking motion. 

The global horizontal distribution of TOA CREs can be found in Fig. 16. The 

largest SW (LW) cooling (warming) occurs in the Western Pacific near the East Indies and 
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Northern South America (Figure 16a and 16d). The net cloud radiative cooling is 

maximized in the Eastern and Northern Pacific and in the Southern Ocean (Figure 16g). 

 
Figure 15: Same as Fig. 9 but for the TOA (a) SW, (b) LW, and (c) net CREs (W m–2). 

 

The biases in the net CRE are interpreted in terms of the magnitude of cooling or 

warming; positive values indicate a weaker cooling effect while negative values represent 
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stronger cooling effect in the multimodel mean. Again, we identify areas of persistent 

model deficiencies in simulating the appropriate impact of clouds on the TOA radiation 

budget. The multimodel mean net CRE cooling is larger than the observations by more 

than 10 Wm−2 in the East Indies, Central Africa, and in Northern South America. On the 

other hand, the net CRE cooling is weaker in the multimodel mean in the Southern Ocean, 

Southeastern China, and the Western Coast of South America and Southern California 

where MBL clouds frequently occur.  

 
Figure 16: Same as Fig. 10 but for the TOA (a-c) SW, (d-f) LW, and (g-i) net CREs (W 

m–2). 

 

Table 3 offers a summary of the globally averaged observed and simulated cloud, 

precipitation, and TOA radiation results. Several regions have been identified to show 

persistent model deficiencies and should be paid close attention by modelers and special 

interest groups. The next step is to interrelate these biases and to develop a systematic 
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approach for correlating and quantifying the biases in CRE in specific regions tied to large-

scale atmospheric vertical motions. 

Table 3: A summary of the global means in CF (%), CWP (g m–2), TOA radiation budgets 

and CREs (W m–2), and PR (mm day–1, 50 °S – 50 °N) from the multimodel mean and 

satellite-derived products. Values in parentheses are the standard deviations of the 

multimodel mean.  

   

Multimodel   

CERES/

MODIS/ 

EBAF 

  ISCCP   
CloudSat/ 

CALIPSO 

 

TRMM 

 

CF  58.9 (5.8)  65.5  65.4  75.3  -----  

CWP  100.6 (36.7)  117.0  -----  -----  -----  

SW [all]  100.6 (3.4)  99.7  -----  -----  -----  

LW [all]  239.8 (4.1)  239.8  -----  -----  -----  

SW [clear]  52.9 (3.8)  52.6  -----  -----  -----  

LW [clear]  264.2 (3.2)  266.0  -----  -----  -----  

SW CRE  –47.9 (4.2)  –47.2  -----  -----  -----  

LW CRE  24.4 (3.7)  26.2  -----  -----  -----  

Net CRE   –23.4 (4.3)  –21.0  -----  -----  -----  

PR  3.34 (0.19)  -----  -----  -----  2.91  

 

Dynamically driven regime-based analysis of clouds, precipitation, and TOA 

radiation budgets 

Definition of atmospheric vertical motion regimes 

 Our analysis transitions to one developed on the premise that analyzing modeled 

cloud and radiation fields based on different regimes provides insight into how large-scale 

dynamics influences cloud-radiative properties, but also facilitates an evaluation tied to 

separating dynamical errors and parameterizations errors (McFarlane et al. 2016). Two 

dynamically-driven regimes are defined based on the monthly mean pressure velocity (i.e., 
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vertical motion, ω) at 500 hPa (ω500) from MERRA. Areas of moderate-to-strong ascent 

at 500 hPa (ω500 < –25 hPa day–1) over the global oceans, which are associated with the 

ascending branch of the Hadley Cell/Walker Circulation, are outlined in dashed lines in 

Fig. 17. Conversely, the areas of moderate-to-strong descending motion (ω500 > 25 hPa 

day–1) are highlighted in dark red and outlined in solid black lines. While the areas of ascent 

and descent have minor, geographic changes depending on which reanalysis data are used 

to define them, the statistics and underlying conclusions do not change significantly. 

 
Figure 17: The global distribution of vertical motion at 500 hPa (ω500, hPa day–1) over the 

oceans from MERRA reanalysis. Negative (positive) values represent upward (downward) 

motion. Solid and dashed lines highlight the areas with vertical motions greater than 25 

hPa day–1 and less than –25 hPa day–1, respectively. These outlined areas in the tropics and 

extra-tropics (|latitude| ≤ 45°) correspond to the ascent and descent regimes. 

 

Convective-type clouds (e.g., cumulus, deep convection, anvil/cirrus) typically 

form and reside within the ascent regime while marine boundary layer stratocumulus 

clouds dominate areas of large-scale subsidence/descent. Therefore, the triggering of cloud 

parameterization schemes used to predict clouds in these areas will be different, and any 
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differences in the cloud-radiative biases will reflect potential shortcomings of these 

parameterizations. First, the observed cloud, precipitation, and radiative properties in the 

ascent and descent regimes will be investigated to understand the dynamical impacts.  

Satellite-observed cloud, precipitation, and TOA radiation budget properties in the 

two regimes 

The observed CFs from CERES-MODIS over the two regimes are similar (68.9% 

vs. 65.6%) while the CWP and TRMM PRs are larger in the ascent regime by nearly 30 g 

m–2 and 7.0 mm day–1, respectively. This is not a surprising result given that deep 

convective clouds form in areas of moderate to strong ascent. It is also not surprising that 

the mean clear-sky TOA SW and LW fluxes in the two regimes are similar (SW = 39.4 vs. 

38.0 W m–2 and LW = 280.0 vs. 283.0 W m–2) as they are defined over the tropical and 

extra-tropical (45 °S – 45 °N) oceans where minor gradients in the surface albedo and SSTs 

occur; standard deviations of the regime-averaged clear-sky fluxes are less than ~5%. The 

all-sky TOA reflected SW flux and SW CRE are also larger (i.e., more cooling) in the 

ascent regime due to the relatively large CWP, while the all-sky TOA outgoing LW flux is 

smaller in the ascent regime (and hence stronger TOA LW warming) due to the colder 

cloud-top temperatures (CTT) associated with deep convection. The net TOA CRE is 

stronger in the descent regime, mainly due to the relatively weak LW warming that 

stratocumulus clouds exert. See Table 4 for a list of the observed regime-averaged cloud, 

precipitation, and TOA radiation properties.  
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Table 4: The observed regime-averaged (standard deviation, σ) cloud properties, TOA 

radiative fluxes and CREs, and precipitation rates. (Units: CF – %; CWP – g m–2; TOA 

fluxes and CREs – W m–2; PR – mm day–1). 

    Ascent   Descent  

CF  68.9 (6.4)  65.6 (8.0)  

CWP  112.7 (27.7)  83.0 (30.2)  

SW [all]  104.9 (10.0)  86.8 (11.6)  

LW [all]  232.6 (11.0)  267.4 (10.8)  

SW [clear]  39.4 (1.6)  38.0 (1.9)  

LW [clear]  280.0 (3.8)  283.8 (7.1)  

SW CRE  –65.5 (10.1)  –48.8 (11.9)  

LW CRE  47.4 (8.7)  16.4 (4.4)  

Net CRE  –18.1 (6.8)  –32.4 (11.6)  

PR  7.6 (1.9)  0.6 (0.5)  

 

Again, while no extensive analysis is performed on the modeled PR from GCMs 

and reanalyses, we are still curious as to how global models perform in areas where 

different cloud parameterizations schemes are often triggered. Figure 18 shows the PDFs 

of PR from the ascent and descent regimes. Based on the TRMM result (black lines), the 

grid-box averaged PRs range from 0–15 (0–4) mm day–1 in the ascent (descent) regime. 

The observed PR has a roughly normal distribution centered at ~8 mm day–1 in the ascent 

regime, while the PRs in the descent regime have either a lognormal or gamma distribution 

with a peak near 0.15 and 0.75 mm day–1. According to the mean from the five reanalyses 

(bars), the ascent regime PRs are also normally distributed, but the frequency of PRs at ~4–

6 (~7 and ~8.5) mm day–1 are too few (much). The mean simulated distribution of PR in 
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the descent regime does not compare well with TRMM, as the frequency of PR < 0.5 mm 

day–1 is too low and too high at PR > 1.0 mm day–1.  On average, the PRs in the ascent 

(descent) regime are overpredicted in the reanalyses by 0.3±1.2 (0.4±0.3) mm day–1.  

Figure 18: PDFs of the precipitation rates (PR, mm day–1) averaged from four reanalyses 

(bars) and TRMM observations (black line) in the (a) ascent and (b) descent regimes. PRs 

are based on grid-box averaged values. Ascent and descent bin sizes are 0.25 and 0.10 mm 

day–1, respectively.  

 

Modeled regime-averaged biases in clouds and TOA radiation budgets 

 

Global maps of the simulated multimodel mean biases in CF and CWP are once 

again depicted in Fig. 19 along with the ascent and descent regime-averaged biases. The 

multimodel mean CF and CWP are overpredicted (underpredicted) in the ascent (descent) 

regime by 1.1% and 14.1 g m–2 (17.4% and 26.2 g m–2), respectively, on average. The 

standard deviation of this bias is larger than the actual bias in the ascent regime due to the 

range of positive and negative biases in this region. A summary of regime-averaged biases 

is available in Table 5.  
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Figure 19: Global maps of the mean (model minus observation) simulated biases in (a) CF 

and (c) CWP compared with CERES-MODIS over the oceans. The ascent and descent 

regimes, defined in Fig. 17, are overlaid in dashed and solid lines, respectively. Tropical 

and extratropical (|latitude| < 45°) regime-averaged biases and standard deviations of (b) 

CF and (d) CWP are also presented in blue and red for the ascent and descent regimes, 

respectively. 

 

The good agreement in CF in the ascent regime is expected because parameterized 

convective clouds are strongly associated with upward vertical velocity. The relatively 

large negative bias in CF for the descent regime suggests that a more robust 

parameterization for clouds in these atmospheric conditions is warranted, although a simple 

statistic such as this is not a perfect measure of determining which scheme requires more 

improvement.  Kennedy et al. (2010) compared the NASA GISS single column model 

(SCM) simulated CF with ARM SGP radar-lidar observations from 1999–2001. They 

found that the SCM simulated most of the high clouds for cases with upward motion 

because of their strong vertical velocities and positive relative humidity (RH) bias. 
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However, the SCM missed some low clouds during periods of descent due to a negative 

RH bias associated with subsidence. 

Table 5: Same as Table 4 but showing the regime-averaged multimodel mean biases and 

standard deviations. 

    Ascent   Descent  

CF   +1.1 (6.8)  –17.4 (5.5)  

 CWP   +14.1 (23.3)  –26.2 (20.0)  

SW [all]   +2.0 (5.8)  –2.9 (6.4)  

LW [all]   +2.3 (4.8)  +0.9 (2.0)  

SW [clear]  +1.0 (1.9)  +2.3 (1.7)  

LW [clear]  +0.7 (1.9)  –1.4 (1.6)  

SW CRE   –1.6 (6.3)   +5.1 (6.1)  

LW CRE  –1.7 (3.8)  –2.4 (1.8)  

Net CRE    –3.7 (4.7)  2.8 (6.0)  

PR  +0.3 (1.2)  +0.4 (0.3)  

 

Taylor diagrams have been generated using the 1-σ spatial standard deviations and 

correlations to compare the 28 GCMs and five reanalyses model simulations with the 

CERES-MODIS/EBAF data products. Taylor diagrams are an excellent tool for displaying 

many simulated fields together to effectively demonstrate how well they compare to a 

reference value (in this case, CERES-MODIS and EBAF; Taylor 2001). Figure 20 shows 

the Taylor diagrams comparing the simulated and observed CF and CWP in the ascent and 

descent regimes. The simulated CF and CWP in the ascent regime (Fig. 20a and 20c) have 

relatively low correlations with CERES-MODIS observations (r < ~0.7) and their 

normalized standard deviations (model σ/ observed σ) range from 0.5–2.25, however this 
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range is smaller for CF (0.9–1.8). CF and CWP correlate slightly better to CERES-MODIS 

in the descent regime (Fig. 20b and 20d) and the range of normalized standard deviations 

are better (at least for CWP). Figure 20 offers a contrary conclusion to Fig. 19; based on 

correlation and standard deviations, the ascent regime clouds are predicted with less 

accuracy. 

 
Figure 20: Taylor diagrams of the simulated (a-b) CF (%) and (c-d) CWP (g m–2) within 

the (blue) ascent and (red) descent regimes. Each symbol represents a different model. The 

x- and y-axis correspond to the normalized standard deviation (model/observation) while 

the azimuth axis is the Pearson correlation coefficient (r) between model and CERES 

MODIS. 

 

Biases in the simulated CREs (Figure 21d – 21f) are representative of their relative 

magnitude of warming or cooling. For example, a negative bias in the SW/net CRE 
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corresponds to an over estimate of cooling due to clouds. Conversely, a positive bias in the 

LW CRE relates to an over estimate in warming due to clouds. The multimodel mean 

simulated TOA all- and clear-sky fluxes are biased by less than 3.0 W m–2 and CREs are 

within ~5 W m–2 in both regimes (see Table 5). Biases in the simulated TOA radiation 

fields are mostly consistent with their CF and CWP biases. The larger CF and CWP in the 

ascent regime is accompanied by more SW reflection and a stronger SW CRE (more 

cooling). Since this analysis does not offer an investigation of the vertical distribution of 

clouds, we assume that the overprediction of clouds in the ascent regime is for low-level, 

relatively warm-topped clouds, which explains the increase in TOA outgoing LW radiation 

and reduction of the LW CRE. The resulting biases in the descent regime are 

straightforward and consistent with their biases in cloud properties. The reduction of cloud 

amount and CWP in the descent regime effectively reduces the reflection of SW radiation 

at the TOA, the outgoing LW radiation increases, and the SW/LW CREs are weaker (i.e., 

less SW cooling and LW warming).  
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Figure 21: Same as Fig. 19 but for the simulated biases in TOA (a-b) SW, (c-d) LW, and 

(e-f) net CREs compared with CERES EBAF. 

 

The results from Fig. 21 translate well to the overall score of simulated CREs (Fig. 

22). In general, the correlations of modeled CREs to CERES EBAF are higher and the 

normalized standard deviations are better constrained than those for CF and CWP. Again, 

the correlations and standard deviations over the descent regime are better than those over 

the ascent regime. For example, most of the CRE correlations fall between 0.6 and 0.9, 

some even exceed 0.9, and standard deviations are near the reference point in the descent 
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regime. Due to the large variations in CF and CWP in the two regimes, we will investigate 

the sensitivities of the SW, LW, and net CREs to CF and CWP to further understand their 

relationships in models and observations.   

 
Figure 22: Same as Fig. 20 but displaying the results for the TOA (a-b) SW, (c-d) LW, 

and (e-f) net CREs (W m–2) in comparison with CERES EBAF. 
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 Note that the results in Fig. 20 and Fig. 22 offer contrasting conclusions as those 

from Fig. 19 and Fig. 21. The good agreement in the calculated mean values, but low 

correlation to observations in the ascent regime can be explained. MBL clouds are 

persistent in the descent regime, while for the ascent regime, there are a variety of cloud 

types, such as cumulus, anvil, cirrus, and mixed-phase clouds. To sufficiently resolve 

clouds in global models, different cloud-type parameterizations are implemented based 

upon ambient atmospheric conditions. When a diverse cloud field exists, cloud 

parameterizations will show difficulty in generating accurate simulations, especially if that 

cloud field is inhomogeneous. On the other hand, if a uniform cloud type is present (as in 

the descent regime), cloud parameterizations should replicate the atmospheric conditions 

more effectively and accurately. 

Comparison of clouds and radiation with ground-based measurements at two ARM 

sites 

While the ascent and descent regimes were defined with the purpose of isolating 

the impact of moderate-to-strong large-scale dynamical forcing on clouds and their 

radiative effects, and how they are parameterized in global models, the location of these 

regimes is quite convenient. The simulated cloud and surface radiation properties can be 

independently evaluated, along with the satellite-derived quantities, by ground-based 

sensors at two ARM sites located close in proximity to the areas defined in Fig. 17. The 

ARM TWP-C2 site, located on Nauru Island in the western Pacific, lies directly in the 

primary area of ascent, while the ARM site located in the Azores is situated in a region of 
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atmospheric descent. The modeled (reanalyses only) and satellite observed results are from 

the nearest grid point to these two sites. 

 Figure 23a shows the seasonal variations of CF observed from the ARM ground-

based radar-lidar, retrieved from CERES MODIS, and the mean from the five reanalyses 

at the ARM Azores site from June 2009 to December 2010. Both seasonal variations and 

annual averages of CF from ARM measurements and CERES-MODIS (closest grid point) 

near the Azores site are nearly identical with annual averages of 70.2 and 69.6%, 

respectively. CFs gradually decrease through the year from ~80% in January to ~50% in 

September, and then rebounds (~75–80%) during the winter months. The largest 

differences between the ARM and CERES MODIS CFs are ~7% in February and May. 

The multimodel mean CF follows this seasonal variation, however, the multimodel mean 

CF is consistently low-biased by ~10%. The annual means from observations and the 

multimodel mean are listed in Table 6. 

The monthly means of all-sky downward SW flux (SW_down) at the surface are 

primarily determined by the annual solar cycle and its associated changes in intensity and 

duration over the Azores, as well as cloud properties, whereas the solar transmission is 

mainly determined by cloud properties, such as CF and optical depth (not available for 

comparison in this study). For instance, the higher solar transmission should correspond to 

lower CF, and vice versa. Like the CF comparison, the monthly mean SW_down and SW 

transmission from ARM and CERES EBAF are almost the same, with annual differences 
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of 6.6 and 0.03 W m–2, which is within the uncertainties of both ARM and CERES EBAF 

observations. 

Figure 23: The seasonal 

variations of (a) CF, the (b) 

downward SW flux, (c) SW 

transmission, and (b) 

downward LW flux at the 

ARM Azores site from June 

2009 to December 2010. 

Observed variations from 

CERES-MODIS/EBAF and 

ARM are in red and pink, 

respectively, while the 

modeled mean from five 

reanalyses are in blue. The 

grey shaded area is the 1σ of 

the modeled results.   

 

The mean reanalyzed 

SW_down and SW 

transmission follow the 

seasonal variations from 

ARM and CERES EBAF 

observations and their annual 

mean biases are roughly 7–13 

W m–2 and 0.3–0.6, 

respectively. The most significant overpredictions of surface SW_down and SW 

transmission occur during April and May. Assessing the bias in CF and surface SW 
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transmission makes physical sense at Azores, on average; the reduction of cloud amount 

results in an increase in SW transmission in the five reanalyses investigated here. 

The downward LW (LW_down) flux at the surface depends on CF, cloud-base 

temperature, and atmospheric water vapor. Although the annual averages from ARM and 

CERES EBAF agree within 4.2 W m–2, larger differences in the monthly means are found 

during December, January and February. Furthermore, the mean LW_down fluxes from 

reanalyses generally follow this pattern but underpredict the annual mean (bias = 10–15 W 

m–2), especially during the winter months when the σ is also larger. This is an indication 

that there are some consistent difficulties in accurately estimating and predicting the 

LW_down flux from satellites and in models, respectively, during the wintertime. 

Table 6: A list of the observed and modeled (reanalysis only) mean CFs (%) and surface 

downward SW/LW fluxes (W m–2) and SW transmission (all-sky surface SW_dn/clear-sky 

surface SW_dn from CERES) at the ARM Azores and TWP – Nauru (C2) sites. Values in 

parentheses are the standard deviations of the reanalysis results. 

  
Reanalysis 

Mean 
  

CERES/MODIS

/EBAF 
  ARM 

  

Azores        

CF 60.7 (8.3)  69.6  70.2   

SW_dn 172.0 (17.8)  165.7  159.1   

SW trans 0.70 (0.08)  0.67  0.64  

LW_dn 345.2 (12.9)  356.4  360.6   

Nauru        

CF 66.8 (16.4)  57.1  55.2   

SW_dn 250.1 (15.3)  245.3  248.6   

SW trans 0.85 (0.08)  0.83  0.84  

LW_dn 417.0 (6.6)  417.6  421.7   
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 Figure 24 shows the monthly mean CF, SW_down, SW transmission, and 

LW_down observed from ARM and CERES-MODIS/EBAF, and reanalyzed from the five 

reanalyses at the ARM Nauru site during the period between 03/2000 and 02/2009. As 

illustrated in Fig. 24a and listed in Table 6, the annual averages of ARM and CERES-

MODIS CFs are 55.2 and 57.1%, respectively. Although the annual average difference is 

only 1.9%, the CF differences in some months, such as January and February, can be as 

large as 10%. The mean reanalyzed CF is larger than the ARM and CERES MODIS CFs 

(~10%), but due to the large standard deviation in the reanalysis results (16.4%), the 

observations fall within this range, except in January and February. Note that all observed 

and reanalyzed CFs are relatively constant throughout the year (annual σ = 4.0 and 6.6% 

in the ARM and CERES-MODIS CFs, respectively). 

The seasonal variation of the SW_down flux at the Nauru site (Fig. 24b) is not as 

strong as at the Azores site, owning to its proximity to the equator. The ARM and CERES 

EBAF SW_down annual variations are maximized (minimal) in March and October (June 

and January) and the annual mean difference is 3.3 W m–2. The reanalysis mean is within 

~5 W m–2 and follows this pattern. The nearly constant CFs in Fig. 24a are also reflected 

in the surface SW transmission and LW_down annual patterns as shown in Figs. 24c and 

24d, respectively. The surface SW transmission mirrors the CF variation, where the SW 

transmission is slightly larger during the summer and fall months when CF is relatively 

small. 
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Figure 24: Same as Fig. 23 

but at the ARM TWP – Nauru 

(C2) site for nine years of 

data.  

 

 A small variation in the 

LW_down flux at the Nauru 

site from both observations 

and reanalyses is attributed to 

small seasonal and diurnal 

variations in cloud-base 

temperature, SST, and water 

vapor at the Nauru site. All 

reanalyzed surface 

LW_down fluxes agree with 

observations within 5 W m–2. 

The observed and 

reanalyzed clouds and surface 

radiation budgets are analyzed at two ground-based sites located within distinguishable 

climatological regimes. The clouds that reside in these two regimes generally form by 

different processes and therefore have unique micro- and macro-physical cloud properties, 

as well as radiative effects at the surface. Compared to the properties at Nauru, the Azores 

annual mean CF is ~15 % higher (70.2 vs. 55.2%), less SW radiation (15–20%) is 
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transmitted the surface, and less LW radiation (~60 W m–2) is emitted back to the surface. 

In addition, the magnitudes of the seasonal variations in both CF and radiation are much 

smaller at Nauru than at Azores. 

Linear regression analysis of clouds versus TOA CREs in the two regimes 

To quantitatively estimate the impacts of CF and CWP on TOA radiation budgets, 

the observed and multimodel mean SW, LW, and net CREs versus CF and CWP over the 

atmospheric ascent (blue) and descent (red) regimes are presented in Fig. 25 and Fig. 26, 

respectively. A best-fit linear regression is employed and used to determine the sensitivity 

between two variables (e.g., CF and SW CRE) in terms of the slope. To add more certainty 

to this analysis, the 99.5% confidence of the slope has been determined. The margin of 

error (ME) in the slope is defined as 

 𝑀𝐸 =  𝐶𝑉 ×  𝑆𝐸, (4) 

where CV is the critical value, equal to 2.58 based on the assumption that the sample 

distribution is normal and large enough to be expressed by a z-score, and SE is the standard 

error: 

 𝑆𝐸 =  √
1

𝑛−2
∑ 𝜀2

∑(𝑥− �̅�)2 , (5) 

where ɛ is the linear regression residual (ɛ = y – mx – b) and n is the sample number. In all 

relationships but one, the ME is less than the slope itself, supporting the current method for 

determining the sensitivity between two variables, and adds value to the analysis. In the 
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case of the multimodel mean simulated net CRE sensitivity to CF, the ME (0.11 Wm−2 %−1) 

is greater than the characteristic slope (m = 0.06 Wm−2 %−1; see Fig. 25f).  

 As illustrated in Fig. 25a, the observed sensitivities of the SW CRE to CF are 

similar in both vertical velocity regimes. The magnitude of the SW CRE increases 

significantly with increasing CF. The similar sensitivities (−1.12 and −1.34 Wm−2 %−1) 

over these two regimes are understandable from the definition of SW CRE (SW↑clr – 

SW↑all), since the albedos of deep convective and MBL clouds are both much larger than 

the background ocean albedo (~6 %).   

Conversely, the LW CRE increases with increasing CF but is characterized by 

different sensitivities over the two regimes (Fig. 25b). The observed sensitivities are 0.82 

and 0.23 Wm−2 %−1 over the ascent and descent regimes, respectively. The different LW 

CRE sensitivities between these two regions are primarily the result of CTTs of deep 

convective (ascent) and MBL (descent) clouds. The CTTs of deep convective clouds are 

rather cold (~ 220 K, Dong et al. 2008b), while the MBL CTTs (~280 K, Dong et al. 2014; 

Xi et al. 2014) are similar to the underlying SST. Based on the definition of the TOA LW 

CRE (LW↑clr – LW↑all), it is straightforward to explain the higher sensitivity of the LW 

CRE to CF in the ascent regime. The weak sensitivity of the net CRE to CF in the ascent 

regime is due to the complementing effects of the SW and LW CREs.   
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Figure 25: Scatterplots of the (a – c) observed and (d – f) multimodel mean simulated CFs 

versus TOA (a,d) SW, (b,e) LW, and (c,f) net CREs in the ascent (blue) and descent (red) 

regimes. Data are sampled from tropical and extra-tropical (|latitude| < 45°) oceans. 

Characteristic linear regression lines are provided where values in parentheses are the slope 

uncertainties (99.5% confidence) determined using Eqn. 4. 

 

 The sensitivities of the multimodel mean simulated SW, LW, and net CREs to CF 

(right column, Fig. 25) seemingly mimic their observed counterparts, but not without some 

discrepancies. For example, the sensitivities of SW CRE to CF over the ascent and descent 

regimes (−1.11 and −1.07 Wm−2 %−1, respectively) are nearly the same as the observed 
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ones. The simulated descent regime LW CRE sensitivity to CF is also similar to the 

observed one. However, in the ascent regime, the simulated sensitivity is 0.35 Wm−2 %−1 

stronger due to the inclusion of excess water (liquid, ice, or both) within the cloud column. 

The nearly neutral slope of the simulated net CRE to CF in the ascent regime confirms that 

the model simulations effectively show a near cancelation of the SW cooling and LW 

warming. The conclusions in Fig. 25 (i.e. the magnitude of SW/LW CRE 

(cooling/warming) increases with increasing CF) affirm those within Dong et al. (2006) 

who investigated the DOE ARM SGP ground-based observations. The distinction between 

ascent and descent regimes suggests that large-scale dynamics greatly influences the cloud-

radiation interactions and their predictability. In a later section we will investigate the 

theoretical effect of the biases in these sensitivities on the simulation of CRE.   

The sensitivities of observed SW CREs to CWP in the ascent and descent regimes, 

shown in Fig. 26a, are identical with a slope of −0.28 Wm−2/gm−2. The magnitude of SW 

cooling increases with increasing CWP (and CF), and varies in sensitivity between these 

two variables. Changes in the SW albedo are strongly dependent on both CF and CWP. 

The multimodel mean simulated sensitivities of SW CRE to CWP are nearly the same over 

the two regions (–0.26 and –0.28 W m–2 g m–2), and are similar to the observed values.  

The simulated LW sensitivities (Figs. 26b and 26e) are not strongly regime dependent, as 

in the CF results, and are not significantly different from the observations. The slope of the 

multimodel mean LW CRE to CWP in the ascent regime (Fig. 26e) is only 0.07 Wm−2/gm−2 

larger than in the CERES observations (and is within their combined ME estimates).   
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Figure 26: Same as Fig. 25 but the CREs are plotted against CWP.  

 

Error analysis – Quantifying the sources of error 

Definition of error types 

The modeled CREs are assumed to be a function of CF and CWP based on the 

following cloud-radiative kernel: 
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 𝐶𝑅𝐸𝑌,𝑚 =  |(
𝜕𝐶𝑅𝐸𝑌

𝜕𝐶𝐹
)|

𝑚
𝐶𝐹𝑚 + |(

𝜕𝐶𝑅𝐸𝑌

𝜕𝐶𝑊𝑃
)|

𝑚
𝐶𝑊𝑃𝑚 (6) 

where Y is the SW, LW, or net CRE. While CREs are dependent on other model variables 

such as cloud droplet effective radius (Re), CTT, precipitation, and water vapor, CF and 

CWP contribute most to its value. Clouds are analyzed based on their radiative properties 

in the ascent and descent regimes defined in Fig. 17. The sensitivities of TOA CREs to CF 

and CWP for each regime, as determined by their linear regression, are used as a first order 

approximation in place of the cloud radiative kernels (Dolinar et al. 2015). Therefore, the 

total regime-averaged error in CRE can be decomposed into the errors associated with the 

sensitivity of CRE to CF or CWP (i.e., Figs. 25 and 26), the regime averaged bias in CF or 

CWP (i.e., Fig. 19), and their co-variations,  

 𝜀𝑡𝑜𝑡𝑎𝑙 =  𝜀𝑠𝑒𝑛𝑠,𝐶𝐹 + 𝜀𝑠𝑒𝑛𝑠,𝐶𝑊𝑃 + 𝜀𝐶𝐹 + 𝜀𝐶𝑊𝑃 + 𝜀𝑐𝑜𝑣,𝐶𝐹 + 𝜀𝑐𝑜𝑣,𝐶𝑊𝑃 (7) 

where 

 𝜀𝑠𝑒𝑛𝑠,𝑋 =  [|(
𝜕𝐶𝑅𝐸𝑌

𝜕𝑋
)|

𝑚
− |(

𝜕𝐶𝑅𝐸𝑌

𝜕𝑋
)|

𝑜
] 𝑋𝑜, (8) 

 𝜀𝑋 =  |(
𝜕𝐶𝑅𝐸𝑌

𝜕𝑋
)|

𝑜
[𝑋𝑚 − 𝑋𝑜], and (9) 

 𝜀𝑐𝑜𝑣,𝑋 = [|(
𝜕𝐶𝑅𝐸𝑌

𝜕𝑋
)|

𝑚
− |(

𝜕𝐶𝑅𝐸𝑌

𝜕𝑋
)|

𝑜
] [𝑋𝑚 − 𝑋𝑜] (10) 

where X = CF or CWP and the subscript o represents the observed value. 

Sources of error in model simulations 
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 The sources of error are computed based on Eqns. 8–10 for each model and are 

averaged in Fig. 27. Errors related to CF (CWP) are provided in the left (right) column. In 

the ascent regime, the bias in simulated LW CRE sensitivity to CF contributes largely to 

the total error in LW CRE in terms of the mean and model spread (20.4±19.4 Wm−2), as  

 
Figure 27: A summary of the (a,d) SW, (b,e) LW, and (c,f) net CRE sources of error 

(sensitivity, bias, co-variance, and the total; W m–2) in reference to (a-c) CF and (d-f) CWP. 

Blue (red) bars represent the errors from within the ascent (descent) regime. Error bars are 

the standard deviations of each error source contributed by the range of results from the 28 

CMIP5 GCMs and five reanalyses (when available).  

shown in Fig. 27b. The bias in SW CRE sensitivity to CF in the ascent regime (Fig. 27a) 

is also rather large (9.9±22.6 W m–2), however, these two errors effectively cancel each 

other out in the net CRE, yielding a mean total error in net CRE of –1.9±15.6 W m–2 in the 
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ascent regime. Individual errors associated with biases in the simulated CWP that 

contribute to errors in the CREs are all less than ~5 W m–2 in the ascent regime. 

In the descent regime the dominate source of the error in the simulated CREs are 

associated with the under prediction of CF. The regime-averaged SW CRE error from the 

CF bias amounts to −23.3±9.5 Wm−2. In addition, the errors associated with the multimodel 

mean SW CRE sensitivities to CF and CWP are −18.9±12.5 and 15.2±19.5 Wm−2, 

respectively. The bias in regime-averaged CWP also contributes about −7.4±3.9 Wm−2 to 

the SW CRE error on average. Again, the biases related to the simulated CWP are generally 

smaller than those related to CF in the descent regime. Only through detailed error analyses 

such as the decomposition conducted here, are we be able to better understand the physical 

processes accountable for model shortcomings.   

Summary of total errors 

Total errors contributed by biases in the simulated CF, including the errors 

associated with the CRE sensitivity to CF, CF biases, and the co-variations in both vertical 

velocity regimes are depicted for each model in Fig. 28.  For biases in the SW CRE within 

the descending branch of the large-scale circulation, the errors associated with CF are 

negative for every model, indicating a universal model disparity. This is mainly due to the 

under estimation of both CF and the sensitivity of SW CRE to CF. MRI-AGCM3-2S 

produces the largest SW CRF error by CF (−63.1 Wm−2) and CFSR has the smallest ( −11.6 

Wm−2). Conversely in the ascending branch, the SW CRE errors due to CF are positive for 
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a majority of the 33 models investigated here, with 10 having negative errors. GFDL-

HIRAM-CM3 produces the largest error in SW CRE in the ascent regime, −47.6 Wm−2, 

while MRI-AGCM2-2S has the smallest error of −0.9 Wm−2.   

 
Figure 28: A summary of the total errors (W m–2; using Eqn. 7) in (a) SW, (b) LW, and (c) 

net CRE for each model (when available) contributed by total column CF. Blue (red) bars 

represent the total errors within the ascent (descent) regime. The multimodel mean total 

errors (and standard deviation) are also listed for each regime.  

The errors associated with CF in the LW CRE are predominately negative (i.e., 

under estimation of LW cloud warming) in the descending branch of the large-scale 
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circulation for all models in the 32-model ensemble (no 20CR data), except GFDL-

HIRAM-C360. The largest error is from CCSM4 (−13.2 Wm−2) while GFDL-HIRAM-

C360 yields a LW CRE error of +0.44 W m–2 in the descent regime. The total ascent regime 

errors are mostly positive in association with CF, primarily from the over prediction of the 

LW CRE sensitivity to CF in the models. GFDL-HIRAM-CM3 poses the largest error (84.6 

Wm−2) in the estimate of LW CRE, while MPI-ESM-MR has the smallest error (−1.9 

Wm−2). On average, the total errors in the net CRE, caused by errors in the simulated CF, 

is ~16× larger in the descent regime than in the ascent counterpart.  

 Figure 28 is equivalent to Fig. 27; however, it summarizes the errors associated 

with CWP for each model. In general, the maximum and minimum errors due to CWP 

errors are less than those due to CF, and the inter-model spreads are within one order of 

magnitude of the mean.   

The errors discussed above are those quantified from biases in the simulated CF 

and CWP (sensitivity, co-variation, etc.). However, the simulated CREs are dependent 

upon other processes and properties of the atmosphere that have not been considered here. 

Although they have not been evaluated in this study, they will surely make for a better 

explanation for why biases in the simulated CRE occur. Other variables, which are 

simulated by the GCMs and observed by satellites, that when considered and can lead to a 

better understanding of CRE errors include, but are not limited to, relative/specific 
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humidity, water vapor path, precipitation, cloud-top pressure, cloud-base 

height/temperature, and effective radius. 

 
Figure 29: Same as Fig. 28 but for the total errors contributed by CWP.  
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Summary of Chapter III 

The globally simulated CF, CWP, TOA radiation budgets and CREs from 28 

CMIP5 models and five contemporary reanalyses are evaluated and compared with satellite 

observations (CERES/MODIS/ISCCP/CloudSat/CALIPSO) for multiple years of data. 

The model biases are identified and quantified to encourage model improvement in the 

future. Based on this analysis, we can make the following conclusions. 

1) The modeled CFs are, on average, underestimated by 7% when compared to 

CERES-MODIS and ISCCP results (passive sensors) with an even larger negative 

bias (16%) compared to CloudSat and CALIPSO (active sensors). The multimodel 

mean CF agrees well with the CERES MODIS and ISCCP CFs in the tropics (5 °S 

– 15 °N), but then diverge poleward, with a large discrepancy in the Southern 

Ocean. The CWP comparison is similar to the results in CF with a negative bias of 

17 gm–2 compared to CERES MODIS. The model simulated and CERES EBAF 

observed TOA reflected SW and outgoing LW fluxes, on average, differ by 0.9 and 

0.02 Wm–2, respectively. The simulated clear-sky fluxes match well with CERES 

EBAF too (biases are < 2.0 W m–2). 

2) The nearly global averaged SW, LW, and net CREs from CERES EBAF are –47.2, 

26.2, and –21.0 Wm–2, respectively, indicating a net cooling effect of clouds at the 

TOA. The differences in SW and LW CREs between CERES EBAF and the 

multimodel mean are –0.7 and –1.8 Wm–2, respectively, resulting in a larger net 
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cooling effect of ~2.3 Wm–2 in the model simulations. The strong SW cooling and 

maximum LW warming effects from 5–10 °N are primarily contributed by deep 

convective clouds while the moderate LW warming in the 40–60 °S latitude band 

is due to persistent MBL clouds. 

Further analyses are performed on the simulated biases in two dynamically-driven regimes 

determined by the vertical motion at 500 hPa (ω500) from MERRA. A regime analysis is 

instigated to provide analytics for parameterizations of convective- and stratiform-type 

clouds. Areas of moderate-to-strong upward (downward) motion (ω500 < –25 [> 25] hPa 

day–1) are assumed to be dominated by convective (stratiform) clouds. Based on the 

dynamically-driven regime analysis, the follow conclusions can be made 

3) While the observed CF in the ascent and descent regimes are similar (69 vs 66%), 

the CWPs are much larger in the ascent regime (113 vs 83 g m–2) due to the 

existence of deep convective clouds. As a result, the SW/LW CREs are stronger in 

the ascent regime, while the net CRE is stronger in the descent regime due to the 

relatively weak LW warming effect. The multimodel mean over (under) predicts 

CF and CWP in the ascent (descent) regime. The multimodel mean simulated TOA 

all- and clear-sky fluxes are biased by less than 3.0 W m–2 and CREs are within ~5 

W m–2 in both regimes. Biases in the simulated TOA radiation fields are mostly 

consistent with their CF and CWP biases. 

4) Surface fluxes are also analyzed from five reanalyses, CERES-MODIS/EBAF, and 

ARM observations at two sites located close in proximity to the ascent and descent 
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regimes. In general, the reanalyses can capture the seasonal cycle of CF and surface 

downward SW and LW fluxes, and the SW transmission, at the ARM Azores and 

TWP-C2 sites. The CF is underpredicted by ~10% at the Azores site, which 

translates to too much SW radiation being transmitted to the surface, especially 

during the winter and spring months. At TWP-C2, CF is over predicted by ~10% 

but the surface SW transmission is within 0.02 of the observations. 

5) Sensitivity studies have shown that the magnitude of SW CRE (cooling) increases 

significantly with increasing CF with nearly the same sensitivity over both the 

ascent and descent regimes (–1.12 and –1.34 W m–2 %–1, respectively). The model 

simulations provide similar relationships. The 33-model ensemble underestimates 

the sensitivity between SW CRE and CF by 0.01 and 0.27 Wm–2 %–1 in the strong 

ascent and subsidence regions, respectively. Conversely, the observed LW CRE 

increases with increasing CF but with different sensitivities in the two regimes (a 

strong warming of 0.82 Wm–2 %–1 and a moderate warming of 0.23 W m–2 %–1 over 

the ascent and descent regime, respectively). The difference in sensitivity is due to 

the distinct cloud-top temperature characteristics of deep convective clouds 

(ascent) and stratiform marine boundary layer clouds (descent). The multimodel 

ensemble does a fair job in simulating the observed LW sensitivity in the descent 

regime (bias of 0.05 W m–2 %–1), however it provides an overly sensitive LW CRE 

(0.35 W m–2 %–1 bias) in tropical and mid-latitude ascent regions. 
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6) The dominant sources of error related to the simulations of CRE are identified. The 

error sources that contribute largely to the regime-averaged CRE errors are: the 

modeled errors in the LW CRE sensitivity to CF in the ascent regime, the errors in 

the simulated CF and CWP amounts, and the sensitivities of SW CRE to CF and 

CWP in the descent regime. Overall, the biases in simulated CF (amount and 

sensitivity) contribute more to the error in simulated CREs.  
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CHAPTER IV 

RADIATIVE FLUX PROFILES DETERMINED THROUGH ONE-

DIMENSIONAL RADIATIVE TRANSFER MODELING USING SATELLITE-

DERIVED CLOUD AND ENVIRONMENTAL PROPERTIES 

 

A Clear-sky Radiation Closure Study (Dolinar et al. 2016b) 

As mentioned in Chapter 3, to understand the true effect of clouds on the radiation 

budget, the clear-sky radiative properties must be quantified. We revealed that the 

simulated TOA SW/LW clear-sky fluxes from an assortment of GCMs and reanalyses can 

be biased by up to ~7 W m–2 on global average, with biases of > 40 W m–2 in some regions. 

We claim that surface characteristics have a big impact on the estimation of clear-sky fluxes 

at the TOA. Clear-sky fluxes are also dependent on the profiles of temperature, ozone, and 

water vapor. Section 1 of Chapter 4 introduces this concept and demonstrates how the 

calculated clear-sky fluxes at the TOA and surface can vary based upon the selection of 

meteorological input profiles in radiative transfer calculations. This section also details a 

method for achieving radiation closure at the surface and TOA for clear-sky scenes.  

Background 

Achieving a better understanding of clear-sky radiative transfer is an ongoing effort 

(i.e., Chen et al. 2018). The primary goal of satellite projects such as CERES (Wielicki et 

al. 1996), ISCCP (Zhang et al. 2004), and the Global Energy and Water Cycle Experiment 

(GEWEX) Surface Radiation Budget (SRB) (Stackhouse et al. 2011) is to provide a global 

estimate of the interactions between clouds and radiation. These data sets are frequently 

used as evaluation tools for climate model simulations of clouds and radiation budgets 
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(Wild et al. 2006; Pincus et al. 2009; Dolinar et al. 2015; Stanfield et al. 2015; Wild et al. 

2015; Ruzmaikin et al. 2015; Dolinar et al. 2016). For CERES, surface radiation budgets 

are computed from coincident spectral imagers on sun-synchronous (e.g., MODIS) and 

geostationary platforms using a simplified one-dimensional RTM. While inputs to the 

RTM, and the subsequent computed fluxes, rely on simple parameterizations, they can be 

tuned and constrained by the CERES-measured TOA fluxes. 

In ISCCP and GEWEX SRB, surface radiative fluxes are computed using either a 

RTM or radiation parameterization. In each project, the derived surface radiative fluxes 

depend on the input of atmospheric temperature and water vapor profiles. In CERES, 

pressure, temperature, and water vapor profiles are specified from Goddard Earth 

Observing System (GEOS) version 5.4.1 (Bloom et al. 2005), a gridded reanalysis data 

product from the Goddard Modeling and Assimilation Office (GMAO). In ISCCP and 

SRB, temperature and water vapor are retrieved directly from microwave sounders (Zhang 

et al. 2004). In a study by Moy et al. (2010) rapid RTM (RRTM)-computed clear-sky 

outgoing LW fluxes at the ARM SGP site were compared with observed fluxes from 

CERES. The RRTM LW fluxes are accurate to 0.2 and 0.8% of CERES when coincident 

radiosonde and AIRS-retrieved profiles are used, respectively. Additionally, Susskind et 

al. (2012) found that CERES and AIRS clear-sky outgoing LW estimates correlate well, 

despite differences in retrieval algorithms, RTMs, and input data. Charlock and Alberta 

(1996) compared observed surface all-sky and clear-sky SW and LW fluxes to RTM-
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calculated fluxes at the ARM SGP site. Two types of input profiles are used to calculate 

the surface fluxes. Each produces a different result but is biased in the same direction. 

Understanding the sensitivity of the calculated surface radiative fluxes to 

atmospheric input profiles is a necessary prerequisite for developing global radiation data 

products. The characterization of clouds (e.g., cloud amount, cloud overlap, and 

microphysical properties) proves to be one of the largest sources of uncertainty in deriving 

surface fluxes. However, the ambiguity of calculating clear-sky fluxes is also worthwhile 

to investigate because it offers a foundation for scientists to understand the RTMs 

calculations without the inherent issues associated with clouds (perhaps related to ice cloud 

optical property parameterizations). The calculated surface clear-sky LW radiative flux is 

primarily determined by the atmospheric temperature and water vapor profiles and surface 

temperature, while the SW flux is mainly a function of the scattering and absorption of 

atmospheric molecules and aerosols and the surface albedo. In this study, the temperature 

and water vapor profiles from a newly developed satellite-surface hybrid product and 

MERRA-2 are used as input to a one-dimensional RTM to calculate clear-sky surface and 

TOA radiative fluxes. 

Methodology 

A-Train satellite overpasses within a grid box of 120 × 120 km2 centered at each 

ARM site are first determined during the period of August 2004 to December 2013. Once 

the overpass days are selected, a two-step cloud screening process is performed. First, the 

ARM ARSCL cloud product is used to screen for clouds within a 3-hour period centered 
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on the satellite overpass time. A clear-sky case is identified using a combination of the 

ARM ground-based MMCR, ceilometer, and lidar observations during the 3-hour period. 

Once clear-sky cases are identified by the ARM ground-based observations, a secondary 

clear-sky screening is performed through the inspection of the CERES SSF-derived, clear-

sky fraction. If the CERES-derived clear-sky fraction in the 120 × 120 km2 area centered 

on the ARM site is greater than ~95%, these clear-sky cases can be used in this study.  

From August 2004 to December 2013, a total of 51 cases are identified at the ARM 

SGP site and 13 cases at the ARM TWP-C3 site. Polar-orbiting satellites, such as those in 

the A-Train, scan the high latitudes more frequently than at lower latitudes. However, the 

cloud frequency of occurrence at the ARM NSA is rather large (76%; Dong et al. 2010), 

limiting the total number of available clear-sky cases to 17. A list of the clear-sky cases at 

the three ARM sites is provided in Appendix A.  

Once the clear-sky cases are identified, vertical profiles of temperature, water vapor 

mixing ratio, and ozone mixing ratio are generated from the ARM-merged soundings and 

satellite (MLS and AIRS) retrievals over three ARM sites, and are used to evaluate the 

MERRA-2 profiles. Tropospheric profiles of temperature and water vapor are from the 

ARM-merged soundings (surface to 100 hPa), while ozone is from AIRS (surface to 260 

hPa). All upper atmosphere profiles are from MLS. These generated profiles will 

henceforth be referred to as the hybrid profiles. The hybrid profiles are also used as input 

to the RTM to calculate clear-sky surface and TOA radiative fluxes for the radiation closure 

study.  
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Evaluation of MERRA-2 clear-sky temperature, ozone, and water vapor profiles at 

three ARM sites 

The hybrid profiles are used to evaluate the suitability of using MERRA-2 (or more 

broadly, GEOS-5) vertical profiles of temperature, ozone mixing ratio, and water vapor 

mixing ratio for computing surface, TOA, and in-atmosphere radiative fluxes with the Fu-

Liou RTM. The fluxes are independently calculated using the hybrid, MERRA-2, and 

climatological mean profiles, with consistent surface properties to assess uncertainty in flux 

estimates related to the meteorological profiles themselves. The climatological mean 

profiles are from the World Meteorological Organization (WMO) and are made available 

with the RTM source code. While the climatological mean profiles are for all-sky 

conditions (cloudy and clear), they offer an additional measure for assessing the sensitivity 

of RTM-calculated fluxes to atmospheric profiles. 

Figure 30 presents the clear-sky vertical profiles of temperature, ozone mixing ratio, 

and water vapor mixing ratio for the 51 selected cases at the ARM SGP site. Despite the 

inherent unrepresentativeness between the MERRA-2 grid box (0.500° × 0.625°) and the 

point of the hybrid profile, the temperature profiles match very well (within 2%) through 

the atmospheric column and their differences are nearly indistinguishable (Fig. 30a). The 

mid-latitude climatological mean temperature, however, is slightly colder than the hybrid 

and MERRA-2 temperatures below ~300 hPa and is too warm from ~200 to 15 hPa and 

above 4 hPa. 
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Figure 30: Vertical profiles of (a) temperature (K), (b) ozone mixing ratio (× 10–6 g/g), and 

(c) water vapor mixing ratio (× 10–2 g/g) at the ARM SGP site. These profiles represent the 

clear-sky cases during the August 2004 to December 2013 period (see Appendix #). The 

blackline represents the hybrid profiles from the ARM-merged soundings (below 100 hPa) 

and the Microwave Limb Sounder (MLS) for atmospheric temperature and water vapor. 

The ozone profile (below 260 hPa) is from the Atmospheric Infrared Sounder (AIRS) and 

MLS. The blue line is from the closest MERRA-2 grid point, and the red line is the mid-

latitude climatological mean. 

 

Since stratospheric ozone is directly assimilated into MERRA-2, it is not surprising 

that the hybrid and MERRA-2 ozone profiles in Fig. 30b match very well. On the other 

hand, MERRA-2 does not assimilate tropospheric ozone, which causes differences of 200–

400% for some cases (not shown). The mid-latitude climate mean ozone mixing ratio is 

less than the hybrid and MERRA-2 profiles in the middle to upper stratosphere but is 

slightly larger in the upper troposphere and lower stratosphere. 

Lastly, the clear-sky water vapor mixing ratios at the ARM SGP site are shown in 

Fig. 30c. Since the water vapor mixing ratios are relatively small above the troposphere, 
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the profiles are presented at ~1000–200 hPa for enhanced clarity. The hybrid and MERRA-

2 water vapor mixing ratios match very well above ~850 hPa. However, below 850 hPa, 

the MERRA-2 water vapor profile diverges from the hybrid profile to the drier side by < 

0.25 × 10–2 g/g. On the global scale, a moist bias in MERRA-2 of 75–150% has been 

reported in the upper troposphere when compared with AIRS and MLS (Jiang et al. 2015). 

The mid-latitude climate mean water vapor mixing ratio is less than both the hybrid and 

MERRA-2 profiles in the lower troposphere (below 700 hPa).  

Similarly, the vertical profiles of temperature, ozone, and water vapor mixing ratio 

over the ARM NSA site are illustrated in Fig. 31. Note that the solid lines represent the 

average profile from the five snow-free cases and the dashed lines are for the 12 snow cases 

identified at this site. The distinction between the snow and snow-free cases is made 

because of their contrasting atmospheric and surface conditions. The primary source of 

moisture for this region is restricted when sea ice and snow cover persist in the Arctic 

Ocean. This will affect not only cloud formation (although not a process we are concerned 

with in this study) but also heat and atmospheric energy transport (Hwang et al. 2011; Qui 

et al. 2018). 

The MERRA-2 temperature profiles (Fig. 31a) for both the snow and snow-free 

cases at the ARM NSA site show an excellent agreement with the hybrid profiles through 

most of the troposphere and stratosphere. For the snow-free cases, the MERRA-2 

temperature is slightly colder just below the stratopause (~ 1–2 hPa) and warmer above 0.3 

hPa by ~20 K. Nevertheless, MERRA-2 resolves the low-level temperature inversion for  
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Figure 31: Same as Fig. 30 but showing the vertical profiles of (a) temperature (K), (b) 

ozone mixing ratio (×10–6 g/g), and (c) water vapor mixing ratio (×10–2 g/g) at the ARM 

NSA site. The solid lines are for snow-free cases (surface albedo, α < 0.3), whereas the 

dashed lines are for snow cases (α ≥ 0.3). The red line represents the Arctic climatological 

mean. 

 

both snow and snow-free cases. The Arctic climate mean temperature is warmer in the 

troposphere and colder in the stratosphere for the snow-free cases and does not capture the 

low-level inversion. A typical decrease in temperature is observed through the shallow 

troposphere at the NSA site for a snow-covered surface, whereas in the stratosphere, a 

slightly isothermal temperature structure is seen in both the hybrid and MERRA-2 profiles. 

The temperature change through the stratosphere is only ~20 K when the surface albedo is 

greater than 0.3 (snow cases), as opposed to the 60+ K change in the snow-free cases. 
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Climatologically, the temperature matches well with the hybrid profile in the troposphere 

for snow cases but diverges greatly in the upper atmosphere.  

Ozone in the Arctic is depleted more efficiently during the northern hemisphere 

summer months. Therefore, the stratospheric ozone mixing ratios for the snow cases are 

larger than those of the snow-free cases as shown in Fig. 31b. Similar to the ozone 

comparison at the SGP site, the MERRA-2 and hybrid profiles match very well through 

the whole column. As previously stated, water vapor in the Arctic has a strong seasonal 

dependence due to the variation of sea ice coverage. As expected, the water vapor mixing 

ratios from the snow-free cases are larger than those from the snow cases. For the snow 

cases, the water vapor mixing ratios are almost constant (~0.15×10–2 g/g) through the entire 

troposphere, which is well replicated in MERRA-2. Once the sea ice has begun to retreat 

(i.e., the snow-free cases), the atmospheric water vapor mixing ratios increase in all three 

profiles. The climate-mean water vapor mixing ratio is too moist and almost twice as large 

as the hybrid and MERRA-2 values through the troposphere. However, this result is 

expected as the climatological mean profiles are for all-sky conditions. 

Figure 32 illustrates the temperature, ozone, and water vapor mixing ratio profiles 

at the TWP-C3 ARM site. Darwin is located directly on the northern coast of Australia; 

therefore, coastal processes (e.g., land/sea breezes) modify the atmospheric conditions at 

this site. Temperature (Fig. 32a) is well reproduced inMERRA-2 at the TWP-C3 site 

through the troposphere; however, a slight discrepancy is seen just above the tropopause 

and below the stratopause, which could be an artifact of the coarser vertical resolution of 
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MERRA-2. The tropical climate mean temperature agrees well with the hybrid and 

MERRA-2 profiles in the troposphere but is slightly warmer in the stratosphere and 

mesosphere. 

 
Figure 32: Same as Fig. 30 but showing vertical profiles of (a) temperature (K), (b) ozone 

mixing ratio (×10–6 g/g), and (c) water vapor mixing ratio (×10–2 g/g) at the ARM TWP-

C3 site. The red line represents the tropical climatological mean. 

 

The TWP-C3 ozone comparison is similar to the results at the ARM SGP and NSA 

sites, where the ozone profiles from MERRA-2 and the hybrid data set are very close. Yet 

still, a noticeable discrepancy between the two datasets can be seen from ~10 to 20 hPa, 

where MERRA-2 is slightly smaller. Tropospheric water vapor at the ARM TWP-C3 site 

is modified by the adjacent oceanic environment via transport by mesoscale features (e.g., 

land/sea breezes) and general circulation patterns. For the 13 selected cases at this site, all 

three water vapor mixing ratios are much higher than those at the ARM SGP and NSA 
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sites. Both the hybrid and MERRA-2 water vapor mixing ratios are much drier than the 

tropical climatological mean through the troposphere by < 0.6 × 10–2 g/g, again likely due, 

in part, to the fact that the climate mean profile is for all sky conditions. It is expected that 

the unrepresentativeness between the MERRA-2 grid box and the ARM point location may 

lead to their relatively large difference (1000–3500% for several cases; not shown), 

especially since the TWP-C3 site is located directly on the coast. 

Based on the comparisons made in three different climatic regimes, we can make 

the following conclusions. The MERRA-2 atmospheric temperature profiles are nearly 

identical to the hybrid ones, and the climate mean temperature profiles agree with the 

hybrid ones within several Kelvin. Since MLS ozone data are directly assimilated into 

MERRA-2, it is not surprising that the MERRA-2 and hybrid ozone profiles match 

extremely well at all three ARM sites. Most of the MERRA-2 water vapor mixing ratios 

agree well with the hybrid ones over three sites except for in the boundary layer at the 

ARM TWP-C3. 

Radiative Closure of the Calculated Clear-sky TOA and Surface Fluxes 

The clear-sky surface and TOA radiative fluxes are calculated using the NASA 

Langley-modified RTM with inputs from three different profile data sets at three ARM 

sites. For the clear-sky cases selected in this study, only the vertical profiles of temperature, 

ozone mixing ratio, and water vapor mixing ratio are required as input, along with the solar 

zenith angle, surface albedo, AOD (including aerosol type), skin temperature, and a sun-

Earth distance correction coefficient. In this study, the surface and TOA radiative fluxes 
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are calculated for each clear-sky case at each site with the same surface characteristics but 

with different vertical profiles of temperature, ozone, and water vapor from the hybrid, 

MERRA-2, and climate mean. 

Due to the inherent surface inhomogeneity of coastlines, we do not expect the 

ARM-observed surface characteristics to necessarily represent the large CERES field-of-

view (FOV). The is especially true at the NSA site when sea-ice and snow can exist within 

the satellite FOV while the snow has completely melted at the ground station. Dong et al. 

(2016) demonstrated that for Arctic stratus clouds at the ARM NSA site, radiative closure 

can be achieved at the surface and TOA (over a 30 × 30 km2 domain) by adjusting the 

ARM-measured surface albedos (63.6% and 80% of the ARM surface albedos for snow-

free and snow cases, respectively) to account for the land/sea contrast within the domain. 

Table 7 lists the average ARM-measured surface albedos and Aerosol Robotic 

Network (AERONET) AODs for the identified clear-sky cases at three ARM sites selected 

for this study. At the ARM SGP and NSA sites, we assume a continental aerosol, while at 

the TWP-C3 site an urban aerosol is assumed in the RTM calculations (consider these 

aerosols as type 1). The average ARM-observed surface albedos are 0.209, 0.225 (0.796), 

and 0.163 at the SGP, NSA for snow-free (snow), and TWP-C3 sites, respectively. The 

AOD (at 500 nm) values are 0.122, 0.076 (0.067), and 0.137, respectively. Case-specific 

AOD’s come from AERONET observations when they are available; otherwise the 

climatological mean is used. Both the surface albedo and AOD have a significant impact 

on the TOA reflected SW flux (SW_up) and SW_down at the surface. The predominant 
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aerosol types observed at the three locations include nitrates, sulfates, sea salt, smoke, and 

dust (Quinn et al. 2002; Alexandrov et al. 2005; Qin and Mitchell 2009). 

Table 7: The average surface albedos and AODs from the selected clear-sky cases at the 

three ARM sitesa. 

    

SGP 

  NSA   

TWP-C3 
  

    Snow              

(α ≥ 0.3) 
 Snow-free      

(α < 0.3) 
 

  

Surface albedo  0.209  0.796  0.225  0.163   

AOD   0.122   0.076   0.067   0.137   
a For cases without an AOD observation, the AERONET 500 nm mean value was used 

(0.14, 0.08, and 0.14 for SGP, NSA, and TWP-C3, respectively). 

 

Table 8 provides the mean observed and RTM-calculated SW and LW fluxes at the 

TOA and surface, respectively, with inputs from the atmospheric profiles over three ARM 

sites. The calculated fluxes prior to being tuned are relatively close (within ~11 W m–2) to 

the observations at the ARM SGP site while the largest average flux differences (> 50 W 

m–2) occur at the TWP-C3. This is not surprising, given that the surface area around the 

ARM SGP is rather homogenous in comparison to the other two sites; the ARM PSP-

measured surface albedos are relatively close to the mean albedo over a 120 × 120 km2 

domain. In contrast, the ARM TWP-C3 and NSA sites are located directly on the coast. 

The ARM PSP-measured surface albedos at the NSA and TWP-C3 sites cannot effectively 

represent the domain average albedos as discussed by Dong et al. (2016). Therefore, we 

must adjust the ARM-measured surface albedos to account for the land/sea contrast within 

the domain to reach radiative closure at both the surface and TOA. 
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Table 8: The average TOA and surface radiative fluxes (W m–2) from CERES or ARM 

observations and un-tuned/tuned RTM calculations with inputs from the three profile types. 

    
TOA         

SW up 
  

TOA        

LW up 
  

Surface    

SW down 
  

Surface    

LW down 
  

SGP           

Hybrid  176.67/166.31  273.54/273.49  682.68/674.66  299.76/299.86   

MERRA-2  177.37/166.84  273.05/273.00  689.97/681.95  292.86/292.96   

Climate  173.49/163.43  259.59/259.54  667.88/660.09  275.17/275.26   

Observations  165.31  273.16  672.44  302.55   

NSA (snow α > 0.3)               

Hybrid  170.96/143.46  194.12/194.03  168.55/164.80  155.88/156.53   

MERRA-2  170.98/143.44  193.20/193.11  168.73/164.93  155.00/155.67   

Climate  162.90/136.92  190.42/190.39  160.48/157.01  183.73/184.34   

Observations   145.67   195.61   160.48   159.58   

NSA (snow-free α < 0.3)         

Hybrid  103.30/116.30  251.59/251.26  351.49/351.26  248.78/249.27   

MERRA-2  103.47/116.53  246.85/246.70  352.53/352.27  245.71/246.22   

Climate  100.02/112.40  247.92/247.80  337.83/337.69  299.36/299.75   

Observations  118.93  247.02  352.38  248.24   

TWP-C3                   

Hybrid  168.06/121.30  311.37/308.26  789.10/769.13  355.38/358.95   

MERRA-2  169.77/122.20  311.75/308.59  797.82/777.70  353.68/358.04   

Climate  164.13/118.93  286.67/284.41  765.65/746.44  398.21/400.34   

Observations   116.83   312.99   758.04   376.35   

 

Dong et al. (2016) provided a method to calculate the domain average albedo based 

on the ARM NSA PSP-measured surface albedos and the adjacent ocean albedo (~0.06), 

based on the percentage of water and land within the domain. For snow-free cases, they 

found that the domain average albedo accounts for 63.6% of the ARM measurements, 

which was used in their study to reach radiative closure for both the surface and TOA 

radiation budgets. For snow cases, they discussed three possible conditions, including an 
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open ocean, an ocean with sea ice containing open leads, and an ocean that is completely 

covered by sea ice or snow, with albedos similar to the ARM PSP measurements (~0.8). 

While the domain-average albedos are different for these three conditions, the ARM PSP-

measured surface albedos for snow cases were adjusted by 80% in the work of Dong et al. 

(2016). In this study, we follow a similar method as in Dong et al. (2016) to tune the ARM 

PSP-measured surface albedos to account for the water and land components of the 

domain; this is done to reach radiative closure for clear-skies at the surface and TOA over 

the ARM NSA and TWP-C3 sites. 

Table 9: The applied changes to the observed surface albedo and AOD (by introducing a 

secondary aerosol) used to match the RTM-calculated fluxes to the observations. 

    

SGP 

  NSA   

TWP-C3 
  

    Snow              

(α > 0.3) 
 Snow-free      

(α < 0.3) 
 

  

ΔSFC α (%)  –10   –20  +20  –50   

AOD2/AOD1   0.40  0.20  0.20  0.99   

 

Table 9 offers the adjustments made to match the RTM-calculated radiative fluxes 

to within ~5 W m–2 of the observations when using the hybrid profiles as input. Admittedly, 

some of these values have been arbitrarily chosen to achieve the closest match between the 

calculated and observed fluxes (namely, AOD2/AOD1). To be clear, the aerosol ratio 

(AOD2/AOD1) is the ratio of the AOD for aerosol type 2 to that of the aerosol type 1. The 

aerosol type 2 at the ARM SGP is urban, while at the NSA and TWP-C3 sites it is maritime. 

With the inclusion of a secondary aerosol type, we adjusted the surface and TOA fluxes 

almost independently. At the SGP site, the ARM PSP-measured surface albedo is reduced 
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by 10%, which will account for the slight surface inhomogeneity in the CERES FOV 

centered at the ARM site. A majority of the surface inhomogeneity is attributed to crop 

type (e.g., wheat, grass, soybean, and alfalfa (Li et al. 2002). The aerosol ratio is set to 40% 

at the ARM SGP site. The surface albedo is also reduced (by 20%) at the ARM NSA site 

for the snow cases, following the conclusion in Dong et al. (2016), which may account for 

the different albedos from old and fresh snow surfaces and the nearby open water and leads 

(Brandt et al. 2005). An increase in albedo of 20% is applied for the snow-free cases at the 

NSA site, which is contrary to the conclusion in Dong et al. (2016). This change accounts 

for the sea ice observed by the large satellite FOV while the ARM PSP-measured surface 

albedos are below 0.3. The changes in surface albedo applied in this study are smaller than 

those used in Dong et al. (2016). 

Although the maximum albedo threshold for snow-free cases is 0.3, this number 

represents the ARM site only. Again, the CERES FOV over the ARM NSA site is much 

larger than the point observation and may include snow surfaces and sea-ice within a grid 

box of 120 × 120 km2, which will increase the albedo of the footprint. By visually 

investigating MODIS images for the five snow-free cases, we can confirm that sea ice and 

snow surfaces are partially present within the 120 × 120 km2 domain centered on the ARM 

NSA site. The aerosol ratio is set to 20% for both snow-free and snow cases in this study. 

To match the calculated SW fluxes to the observed values at TWP-C3, the albedo 

is reduced (by 50%) to account for the small ocean albedo within the domain. Since the 

ARM TWP-C3 site is located directly on the coast, there exists a strong albedo contrast 
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between the land surface (~0.16) and ocean (0.06), which is comparable to the NSA snow-

free cases, but the actual percentage is dependent on the land and water coverage within 

the domain. At the TWP-C3 site, the aerosol ratio is set to 99%. 

While adjusting the surface albedo and AODs described above, better agreements 

between the mean calculated fluxes and the observed values at each site are achieved and 

illustrated in Figure 33b (compared to the untuned results in Fig. 33a). Note that each point 

in Fig. 33 depicts the average flux difference (in %, [RTM-calculated minus 

observed]/observed × 100) from all cases at each site using inputs from the hybrid, 

MERRA-2, and climate mean profiles. Many of the symbols fall outside of the dashed lines 

(a bias of > 5 %) in Fig. 33a. However, some of these larger biases disappear after 

adjustments are made to the surface albedo and AODs (Fig. 33b); most of the calculated 

radiative fluxes using the hybrid and MERRA-2 input profiles are within 5% of the mean 

observed values. 

For clarifying the results in Fig. 33, Table 8 lists the averaged surface and TOA 

radiative fluxes from the ARM/CERES observations and untuned/tuned RTM calculations 

with input from the three profiles at the three ARM sites. For example, the untuned surface 

and TOA SW and LW fluxes at the SGP site based on the hybrid profiles (red filled and 

open squares in Fig. 33a) agree with the observed fluxes to within 11 W m–2; however, the 

difference is reduced to ~3 W m–2 after tuning. In general, our tuning parameters (surface 

albedo and AOD) can reduce the biases in the calculated SW fluxes but not for LW fluxes. 
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Figure 33: The average flux differences (%, [model – observation]/observation) between 

the ARM/CERES observations and Fu-Liou radiative transfer model (RTM) calculated (x-

axis) surface and (y-axis) TOA fluxes using the hybrid (square), MERRA-2 (circle), and 

climate mean profiles (triangle). The symbols are color-coded for each site (red: SGP, light 

blue: NSA snow cases, blue: NSA snow-free cases, and green: TWP-C3). Biases in the 

(filled symbol) SW and (open symbol) LW fluxes are shown separately (a) prior to tuning 

and (b) after tuning. 

The LW fluxes are mainly determined by atmospheric temperature and water vapor 

profiles and skin temperature, not by surface albedo and AOD. For example, at SGP, the 

large negative bias in the climate mean calculated surface LW_dn flux can be attributed to 

its relatively cold tropospheric temperature and relatively dry tropospheric water vapor 

mixing ratio as shown in Fig. 30. Nevertheless, the average error in the tuned surface 

LW_dn flux from the hybrid profiles is less than 3 W m–2, which is consistent with Long 

and Turner (2008). However, the TOA LW_up flux is also negatively biased despite the 

warmer stratosphere/mesosphere in the climate mean profile. Therefore, we can state with 

confidence that other parameters (e.g., skin temperature) affect the TOA LW_up flux, and 

an additional study is warranted to determine the sensitivity. 



 

102 
 

For the 12 snow (surface albedo ≥ 0.3) cases at the ARM NSA site, the positive 

bias in surface LW_dn flux using climate mean profiles can be up to ~25 W m–2. This result 

is likely due to the relatively large tropospheric water vapor and warmer temperature in the 

climatological Arctic winter profiles. The average calculated fluxes using the climate mean 

profile inputs continue to show some problems at the NSA site for the five snow-free cases. 

For instance, the calculated surface SW_dn and LW_dn fluxes are biased by approximately 

–15 and +50 W m–2, respectively. Greater absorption of both SW and LW radiation is 

achieved by the relatively large tropospheric water vapor mixing ratio, a result that could 

be attributed to the fact that the climate mean profile is for all sky scenes. The large surface 

LW_dn bias could also be affected by the temperature profile, which is too large in the 

troposphere and does not resolve the low-level temperature inversion. 

The green symbols in Fig. 33 represent the averaged biases at the ARM TWP-C3 

site. A bias of greater than –20 W m–2 is determined for the surface LW_dn flux using the 

hybrid and MERRA-2 profiles, a result that is inconsistent with Long and Turner (2008) 

and is likely due to the skin temperature used in the RTM. In contrast to this large negative 

bias, the surface LW_dn flux calculated using the tropical climate mean profiles is 

positively biased by about the same amount. Because the tropospheric temperatures from 

three data sets at the ARM TWP-C3 site are consistent with each other, the large positive 

bias in the calculated surface LW_dn flux is most likely due to the moister climate mean 

tropospheric water vapor as shown in Fig. 32c. This result is consistent with the findings 

in Dong et al. (2006), where the atmospheric water vapor plays an important role to the 
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downward LW flux at the surface, but is insignificant to the downward SW flux at the 

surface.  

The opposing biases from the three input profiles suggest that the actual 

atmospheric water vapor should fall between them. The large negative bias (~ –26 W m–2) 

in the TOA LW_up flux can also be attributed to the larger climate mean tropospheric 

water vapor, as the moister atmosphere absorbs more LW radiation emitted by the surface. 

Also, as previously stated, the skin temperature used in the calculation at TWP-C3 is from 

the lowest level of the ARM-merged sounding because IR thermometer data are not 

available at TWP-C3 during the study period. Assuming a typical lapse rate, the skin 

temperature would be larger than the ones used in this study. As such, if the actual skin 

temperatures were to be used, we expect a smaller absolute bias in the TOA LW_up flux 

at TWP-C3. Moreover, Moy et al. (2010) have found that daytime variability in the 

calculated TOA LW_up flux can be reduced if satellite footprint estimates of skin 

temperature were used in lieu of point measurements. This finding may help to justify the 

large error in surface LW_dn flux in this study.  

Figure 33 and Table 8 provide an overall summary of the comparisons between the 

average RTM-calculated and ARM-observed radiative fluxes, which may obscure some 

detailed information, such as large compensating errors from several cases. Therefore, we 

generate Fig. 34 to detail the individual clear-sky cases for each parameter at each site. It 

is apparent that not all the calculated fluxes are biased equally or in the same direction. For  
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Figure 34: Scatterplots of the ARM/CERES-observed fluxes versus the tuned 

RTM-calculated fluxes from the three input profiles (black: hybrid; blue: MERRA-2; red: 

climate mean). Each symbol corresponds to a specific clear-sky case. Results are shown 

for all three sites (a–d) SGP, (e–h) NSA-snow cases, (i–l) NSA-snow-free cases, and (m–

p) TWP-C3. From left to right, the columns represent the TOA SW_up, TOA LW_up, 

surface SW_dn, and surface LW_dn flux comparisons. 

example, in Fig. 34a the calculated clear-sky TOA SW_up fluxes at the ARM SGP site are 

both positively and negatively biased against the CERES instantaneous fluxes by nearly 30 

W m–2 for some cases. However, the average bias is only 1–2 W m–2. A similar statement 

can be made about the calculated TOA SW_up fluxes at NSA (snow-free cases; Fig. 34i) 
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and TWP-C3 (Fig. 34m) and the surface LW_dn fluxes at SGP (Fig. 34d) and TWP-C3 

(Fig. 34p). On the other hand, the fluxes calculated with the climate mean profiles have a 

tendency of being biased either too high or too low (e.g., Figs. 34b, h, l, and n). 

Table 10 summarizes the 90% confidence intervals for the calculated surface and 

TOA, SW, and LW radiative fluxes. These values are calculated based upon the Student’s 

t distribution as 

 − 𝑡 <  
�̅�−𝜇∗

𝜎
√𝑛⁄

< 𝑡 (11) 

where �̅� is the mean-calculated flux, σ is the standard deviation of the calculated flux for 

all cases, n is the number of cases, and μ* provides the upper and lower limits of the 

confidence interval (based on the value of ±t). The relatively small range of this statistic 

for the LW fluxes suggests high confidence in our calculated radiative fluxes, which is 

maintained by the small σ of the individual case fluxes. However, the calculated surface 

SW_dn and TOA SW_up fluxes at the NSA site have a relatively large σ value, which can 

also be seen clearly seen in Fig. 34k, and small sample number; the combination of these 

two results in a 90% confidence interval range of more than 130% and 80%, respectively. 

Depending on the site and flux type (TOA SW/LW_up and surface SW/LW_dn), the 90% 

confidence intervals contain anywhere between ~10 and 75% of the individual case values. 

The large standard deviations, which can be caused by a skewed distribution of solar zenith 

angles (or Julian day), are believed to limit the number of samples within some intervals. 
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The Student’s t distribution is only appropriate for normally distributed data, which is not 

necessarily valid for all sites/cases here. Based on the flux comparisons in Figs. 33 and 34, 

as well as in Tables 8 and 10, we can conclude that the input of accurate atmospheric 

profiles in the RTM plays an important role in calculating the surface and TOA SW and 

LW fluxes and that some surface characteristics must be adjusted to achieve radiative 

closure. 

Table 10: The 90% confidence intervals for the average tuned RTM-calculated fluxes (W 

m–2) [μ*lower, μ*upper]
a. 

  TOA SW_up TOA LW_up Surface SW_dn Surface LW_dn 

  Interval % Interval % Interval % Interval % 

SGP              

Hybrid [157.2,175.4] 11.0 [267.0,280.0] 4.8 [608.2,714.1] 19.7 [282.3,317.4] 5.2 

MERRA-2 [157.8,175.9] 10.9 [266.6,279.4] 4.7 [615.2,748.7] 19.6 [276.4,309.5] 4.9 

Climate [153.9,173.0] 11.7 [253.3,265.8] 4.8 [594.0,726.2] 20.0 [260.3,290.2] 4.5 

NSA  

(snow α ≥ 0.3)             

Hybrid [84.5,202.4] 82.1 [184.7,203.4] 9.6 [69.2,260.4] 133.3 [142.8,170.3] 16.7 

MERRA-2 [84.5,202.4] 82.2 [184.1,202.1] 9.3 [69.0,260.9] 133.8 [140.7,170.7] 18.2 

Climate [79.7,194.2] 83.6 [181.7,199.1] 9.1 [64.2,249.9] 135.6 [165.6,203.1] 23.9 

NSA  

(snow-free α < 0.3)                     

Hybrid [68.0,164.6] 83.1 [243.4,259.2] 6.3 [78.2,624.4] 155.5 [236.3,262.2] 7.4 

MERRA-2 [68.0,165.0] 83.2 [239.7,253.4] 5.5 [78.6,262.0] 155.4 [232.9,259.6] 7.6 

Climate [65.7,159.1] 83.1 [245.1,250.5] 2.2 [73.0,602.4] 156.8 [299.6,299.9] 0.1 

TWP-C3              

Hybrid [115.6,127.0] 9.4 [303.7,231.8] 3.0 [726.1,812.2] 11.2 [347.4,370.5] 3.0 

MERRA-2 [116.2,128.2] 9.8 [304.1,313.1] 2.9 [733.5,821.9] 11.4 [348.0,368.1] 2.6 

Climate [112.9,124.9] 10.1 [282.2,286.6] 1.5 [701.9,791.0] 11.9 [399.9,400.7] 0.1 
a The percent is defined as [(μ*upper – μ*lower)/] × 100%. The bolded values contain ≥ 50% 

of the individual cases. 
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A Global Record of Single-layered Ice Cloud Properties and Associated Radiative 

Heating Rate Profiles From an A-Train Perspective 

  

In Chapter 3, we revealed that the CF and CWP are overpredicted by GCMs and 

reanalyses in areas of atmospheric ascent where upper-tropospheric ice clouds typically 

form through convective processes. Moreover, we show that clouds and their TOA CREs 

are not well correlated with observations (r < 0.6) in these areas. Stanfield et al. (2014) and 

Li et al. (2012) also confirm that too much cloud ice is predicted in the tropics by CMIP5 

GCMs.  

Major differences in the vertical distribution of ice and liquid clouds simulated by 

global models are the product of poorly constrained observations (Jiang et al. 2012; Li et 

al. 2012; Eliasson et al. 2011). Jiang et al. (2012) reported on some improvements of 

simulated ice clouds in CMIP5 compared with their earlier versions in CMIP3. Although 

the mean bias and spread of ice water content (IWC) were reduced in the refined model 

versions, some notable discrepancies in the simulated ice clouds still exist. Considerable 

spread and bias remain in the simulated upper tropospheric (~215 and 100 hPa) IWC and 

water vapor in the tropics (30°N − 30°S) when compared with MLS and CloudSat retrievals 

(Jiang et al. 2010 and 2012; Li et al. 2012). Additionally, the simulated diurnal variation 

of partial ice water path (pIWP) over the tropical upper troposphere shows bias in the mean 

state, amplitude, and phase lag compared to the Superconducting Submillimeter Limb 

Emission Sounder (SMILES) on board the International Space Station (ISS); the oceanic 



 

108 
 

component has a larger discrepancy than over land, suggesting a poorer understanding of 

their development (Jiang et al. 2015). 

These results are not to be taken lightly as the radiative heating rate profiles are a 

function of cloud height, cloud particle distributions, and fractional coverage. Su et al. 

(2009) have shown how the vertical profile of radiative heating is improved by including 

MLS observations of IWC. MLS is more sensitive to optically thin cirrus clouds (0.01 < τ 

< 0.2) that oftentimes go undetected by CloudSat and most certainly by MODIS. Surface 

and TOA CREs vary in response to different radiative heating rate profiles, which are 

shown to be variable based upon the amount of cirrus clouds detected in the upper 

troposphere by satellites (Su et al. 2009).  

Therefore, there is promise for reducing the uncertainty in simulated vertical 

profiles of ice clouds and their heating rate profiles. The problem must be addressed using 

methods that are consistent with Su et al. 2009; the global radiative impacts of thick and 

thin ice clouds must be fully resolved. This section accomplishes that by optimizing the 

synergy of CloudSat and CALISPO measurements of ice clouds. 

Background 

 

Since ice clouds can exist in a variety of conditions and form by several different 

forcing/formation mechanisms (Sassen et al. 2008; Cziczo et al. 2013), and given that 

cirrus clouds themselves are the most common cloud type in the atmosphere (Mace et al. 

2009; Stubenrauch et al. 2013), resolving their range of radiative impacts is extremely 

important. Correctly resolving the radiative impacts of single-layered ice clouds from 
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globally observed cloud microphysical properties will provide useful data for climate 

model evaluation. The evolution of deep convective and large-scale cloud systems in global 

models partially relies on the detrainment of cloud ice (Del Genio et al. 2012; Elsaesser et 

al. 2017), which as an extension can be regarded as a driver of the radiative heating of the 

clouds (or vice versa). Furthermore, profiles of cloud radiative heating can act to modify 

the stability of the environment and affect vertical motion (Del Genio et al. 2012). Vertical 

radiative heating rates can therefore be used to diagnose errors in simulated cloud fields in 

global models and perhaps improve detrainment as well as the occurrence and development 

of ice clouds. 

Single-layered ice clouds are sampled for this study due to the relative simplicity 

in isolating their effects on the Earth’s radiation budget. The interaction of radiation with 

multi-layered clouds and precipitation is a more complex problem. Cloud overlap 

assumptions used in current modeling frameworks are oftentimes oversimplified or 

incorrectly represented and can lead to large biases in simulated radiation fields, especially 

for highly complex cloud systems such as those found in deep convection (Liang and Wang 

1997; Barker et al. 1999; Hogan and Illingworth 2000; Zhang et al. 2013). Moreover, 

singling out the radiative impact of ice clouds when they are close in proximity to falling 

hydrometeors further complicates the matter. While there is certainly a need for better 

resolving the radiative effects of multi-layer clouds, determining the radiative effects of 

single-layered ice clouds is also justified; resolving the radiative effects of the ice clouds 

themselves can help diagnose their modeled errors in climate simulations. 
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This study reports on the consistency of modeled TOA and surface SW/LW 

radiative fluxes and the range of radiative heating rate (Qr) profiles of single-layered ice 

clouds from an assortment of independently developed datasets. We could have easily 

sampled only the ice cloud radiative properties derived and reported in 2B-FLXHR-LIDAR 

(Henderson et al. 2013) or CCCM (Kato et al. 2011) for this study. However, in calculating 

these radiative properties in-house, we are adding a degree of uncertainty to the estimates 

of the radiative effects of single-layer ice clouds. L’Ecuyer et al. (2015) remarked on the 

advantages of addressing the differences in radiative flux datasets. By analyzing an 

assortment of datasets developed based on a variety of spatial resolutions, we can offer a 

reasonable approximation of the “aggregate effects of structural errors” in each product 

using inputs from specific sensors and unique radiative transfer models (L’Ecuyer et al. 

2015). Bearing this in mind, these new calculations also infer the impact that cloud 

retrievals have on estimating cloud radiative properties. This is particularly crucial since 

the observed vertical structure of radiative heating by ice clouds is not fully constrained 

(Cesana et al. 2017).  

Therefore, the purpose of this work is to provide a broad perspective of the impact 

that single-layered ice clouds have on the Earth’s radiation budget through consideration 

of their heating rate profiles. Our goal is to generate a global record of single-layered ice 

cloud physical and radiative properties. In addition, we will composite their heating rate 

profiles based on cloud and environmental properties typically simulated by GCMs. By 

relating the computed heating rate profiles to radiatively-dependent components of the 



 

111 
 

cloud or background environment, we facilitate a treatment of bulk ice cloud properties 

which can be used in future model development and evaluation efforts in a process-oriented 

framework.  

Global Occurrence Frequency and Ice Cloud Micro-/macro-physical Properties 

Single-layered ice cloud pixels are first subset based on the 2C-ICE IWC and 2B-

CWC-RVOD (Austin and Stephens 2001; Austin et al. 2009) liquid water content (LWC) 

profiles. The IWC/Re profiles are retained assuming they are vertically continuous with no 

liquid clouds (i.e., LWC) existing in the column. Additionally, profiles with detectable 

precipitation, as per the 2C-PRECIP-COLUMN product, are also removed. Figure 35 

displays an example of the single-layered ice cloud detection using this definition. Notice 

that 2C-ICE provides an IWC retrieval for the mixed-phase portion of the cloud (i.e., Figs. 

35a and 35b at 58−64 °S and 1−5 km; IWC > ~0.3 g m−3), but it is effectively removed 

from the subset based on consideration of the 2B-CWC-RVOD LWC (Fig. 35c) profile 

(grey shaded region from ~64 – 66.5 °S in Fig. 35a highlights the single-layered ice cloud 

based on this definition). The precipitation detection by 2C-PRECIP-COLUMN also 

indicates that snow or mixed precipitation (flagged as 4–7, the red horizontal lines in Fig. 

35a) is present within the cloud.  



 

112 
 

 
Figure 35: An example of the detection algorithm for single-layered ice clouds on 15 July 

2009 over the Southern Ocean. (a) Orange areas correspond to layers of the cloud 

containing a mix of liquid (from 2B-CWC-RVOD) and ice (from 2C-ICE) while the blue 

area is ice only. The horizontal red lines correspond to profiles when precipitation is 

detected by the Cloud Profiling Radar (CPR; 2C-PRECIP-COLUMN). Values indicate 

what type of precipitation is detected and the certainty of detection [Rain: 1 – possible, 2 – 

probable, 3 – certain; Snow: 4 – possible, 5 – certain; Mixed: 6 – possible, 7 - certain]. For 

this cloud system both snow and mixed precipitation were detected (refer to the y-axis). 

The grey section represents where the algorithm defines single-layered ice clouds used in 

this study. (b) The 2C-ICE IWC and (c) 2B-CWC-RVOD LWC (g m–3) for the cloud of 

interest is contoured to showcase that 2C-ICE retrieves not only ice clouds but also the ice 

of mixed phase clouds. 

 

Based on these simple criteria, the global occurrence frequency of single-layered 

ice clouds is shown in Fig. 36. Single-layered ice clouds occur most frequently (25– 40%) 

in the tropical warm pool of the western Pacific, Micronesia, central Africa, and northern 
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South America, which lines up nicely with the ascent regime defined in Chapter 3. These 

clouds are relatively infrequent in the Southern Ocean and the oceanic western continental 

coasts due to the larger frequency of marine (i.e., descent regime). Figure 36b indicates 

that single-layered ice clouds occur more than ~10% of the time in the tropics at an altitude 

of 12−16 km. Antarctica also experiences these clouds with considerable frequency near 5 

km; polar stratospheric clouds (PSCs) contribute ~15% to the total sample over Antarctica 

(not shown). The global absolute occurrence frequency is roughly 18% in these data. The 

occurrence is slightly larger during the nighttime, most notably over Antarctica between 

5–10 km and in the tropics above ~15 km (not shown). 

The vertical distributions of IWC and Re effectively determine how solar and 

infrared radiation interacts with a cloud via scattering and absorption. Before analyzing the 

radiative properties of single-layered ice clouds, their global micro- and macrophysical 

properties should first be examined and understood. Since this study bears no restriction 

on the optical thickness or height of single-layer ice clouds, these properties characterize a 

variety of ice cloud types (e.g., cirrus, cirrostratus, thick anvil, etc.).  

Figures 37a-c depict the global mean averages of 2C-ICE IWP, and vertical profiles 

of mean IWC and Re as a function of latitude, respectively. The largest grid box (5° × 5°) 

average IWPs (65–110 g m−2) occur along mid-latitude storm tracks in the northern and 

southern Pacific and Atlantic Oceans. The smallest IWPs (< 15 g m−2) are found in regions 
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Figure 36: The four-year (2007-2010) global (a) horizontal and (b) vertical occurrence 

frequency (%) distributions of single-layered ice clouds identified by 2C-ICE. Frequencies 

are on a 5° × 5° horizontal and 250 m vertical grid. Occurrence Frequency (%) = 

(Nice_cld/Ntotal) × 100. 

 

where the occurrence frequency is small, such as the western coasts of Africa, South 

America, and Australia. The IWP is also quite small in Antarctica despite the relatively 

large occurrence frequency there (i.e., Fig. 36). The single-layered ice clouds observed in 

Antarctica are optically thin, enhanced by the contribution of PSCs. The highest IWCs (> 

~45 mg m−3) in the mid-latitudes and tropics occur at ~4–8 km. Re follows a similar pattern 

to IWC. The largest particles (50–60 µm) occur on average in the tropics and mid-latitudes 

from ~3–8 km. 



 

115 
 

 
Figure 37: (a) The annual mean global distribution of ice water path (IWP, g m–2) and (b) 

the latitude-height cross-sections of (b) ice water content (IWC, mg m–3) and (c) effective 

radius (Re, µm) for single-layered ice clouds. Vertical cross-sections contain only the 

cloudy portions of the profile (i.e., IWC > 0.0 g m–3 and Re > 0.0 µm) and when the 

occurrence frequency is greater than 0.1% (see Fig. 36). The right column shows the 

frequency and CDFs of pixel-level (d) IWP, (e) IWC, and (f) Re values. IWC and Re values 

are retained only when the Re > 4.5 µm, which is the lower limit for calculating radiative 

fluxes for ice clouds in this study. 

 

The IWP/C probability distribution function (PDF) and cumulative distribution 

function (CDF) are illustrated in Figs. 37d and 37e, based on all available pixel-level ice 

cloud property retrievals from 2C-ICE. Figure 37d shows that most retrieved IWP fall 

within a range of 0.1 to 400 gm–2 with a mode of 5 g m–2. Approximately 70% of the 

retrieved IWPs (IWCs) are below 10 g m−2 (10−2 g m−3) and only ~10% (5%) are above 
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100 g m−2 (10−1 g m−3). Therefore, a significant portion of the single-layered ice clouds in 

this study contains relatively small amounts of ice. The mode of the retrieved ice cloud 

effective radius is ~18 µm. However, ~10% of the samples are > 50 µm. While the IWC 

and Re vertical profiles in Figs. 37b and 37c depict the cloud layer-average values, the 

PDFs in Figs. 37e and 37f adequately reveal the true ranges of IWC and Re values.    

Figure 38 features the monthly zonal means of cloud-top and cloud-base heights (a 

– b) and temperatures (d – e) for single-layered ice clouds derived from the 2C-ICE cloud 

properties and ECMWF-AUX. The highest and coldest cloud-top heights (> 14 km) and 

temperatures (< 205 K) occur in the tropics during northern hemisphere winter months 

(DJF) (Figs. 38a and 38d). The ice cloud-top-temperatures (CTTs) over the tropics are just 

as cold in the Antarctic during local winter, which is consistent with Campbell et al. (2008) 

and the influence of PSCs. Our results do capture a corresponding increase in ice cloud-

top height (~2.75 km) from local summer to winter months in Antarctica. Gridded monthly 

zonal mean ice cloud-base heights and temperatures can reach as low as ~3.25 km and as 

high as 253 K. 

The ice cloud-top and -base heights over the mid-latitudes appear to have a stronger 

seasonal dependence compared with the cloud temperatures. For example, the ice cloud-

top and -base heights are higher in the northern hemisphere summer months and extend 

further into the higher latitudes (Figs. 38a and 38b). However, this evolution is not apparent 

in the cloud temperatures (Figs. 38d and 38e). On average, the tropopause height decreases 
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Figure 38: Contoured are the gridded (5° × 5°) monthly zonal means of cloud-top (left) and 

cloud-base (middle) heights (km, top) and temperature (K, bottom) for single-layered ice 

clouds.  The right column (c,f) shows the frequency (black) and cumulative frequencies 

(red) of cloud-top (solid) and cloud-base (dashed) heights and temperatures. Height bins 

are 1 km wide from 1–20 km and the temperature bins are 1 K wide from 175–299 K. 

 

with latitude toward the poles but shifts north/southward with season (i.e., the tropopause 

height is higher/colder during local summer over the northern mid-latitudes compared to 

the winter), so it is easy to understand why we do not see a similar change in temperatures 

(Nazaryan et al. 2008).  

PDFs of the cloud-top and -base heights and temperatures reveal a multi-modal 

distribution (Figs. 38c and 38f) for pixel-level ice cloud retrievals. The primary mode of 

cloud-top height (temperature) at ~11 km likely represents mid-latitude cirrus clouds (~215 

K) while the secondary mode at 15 km corresponds to tropical convective outflow or 

tropical tropopause layer (TTL) ice clouds (~190 K; Virts and Wallace 2010). Campbell et 

al. (2016) reports on the PDFs of daytime single-layered cirrus cloud-top heights observed 

by the MPL at the Goddard Space Flight Center in Greenbelt, Maryland for one year of 
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data. Based on their analysis, cloud-top heights range from 6–16 km (for CTT ≤ –37 °C 

and cloud thickness between 0–5 km) with a peak in the distribution at 11 km. Cloud-tops 

warmer than 273 K, the approximate upper thermal bound where homogeneous freezing 

of liquid water dominates and proxy CTT threshold minimum distinguishing cirrus clouds 

from glaciated clouds in the absence of ancillary evidence aside from lidar measurements 

(see Campbell et al. 2015), represent the impact of glaciated clouds within the bulk cloud 

sample.  

Computed TOA and Surface Radiative Fluxes Compared with Observed Results 

Four years (2007-2010) of radiative flux profiles are calculated from the surface to 

the TOA for every CCCM pixel (with collocated 2C-ICE data) using the input data 

introduced in Table 11. The radiative flux/heating rate product developed for this study is 

referred to as D18 (Dolinar et al. 2018). The fluxes from two other products, 2B-FLXHR-

LIDAR and CCCM_CC, and CERES SSF instantaneous observations are also 

sampled/collocated for the single-layered ice clouds in this study. Table 11 lists the various 

input parameters and their source products for the three calculated flux datasets examined 

in this study.  

D18 provides a more robust estimation of the radiative properties of ice clouds 

when compared to the other two products investigated here. Below is a list of the perceived 

benefits of the new product. 1) The atmospheric profiles of temperature, ozone, and water 

vapor, which are required to run the RTM, are extended to higher altitudes (~0.01 hPa as 

opposed to ~50 hPa), 2) the methods used to develop this product are optimized for ice 
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clouds, 3) sampling errors are reduced by calculating fluxes and heating rates at finer 

spatial resolutions, as opposed to the CERES footprint in CCCM_CC, and 4) the 

parameterized ice cloud properties (Re and IWC) in 2C-ICE are superior. 

Table 11: A summary of the computed radiative flux products assessed in this study. The 

new fluxes produced for this study are deemed “D18”. a – Henderson et al. 2013; b – 

Kato et al. 2010 and 2011. 

    D18  2B-FLXHR-LIDARa  CCCM_CCb     

RTM  FLCKKR  BugsRad  FLCKKR 

IWC/Re  2C-ICE  

2B-CWC-RO,  

2B-TAU, 

CAL_LID_L2_05km

CLay 

 

CloudSat CPR 

(Revision 4), 

CALIPSO (V3), 

MODIS 

Meteorology 

(T, H2O, O3) 
 ECMWF-AUX 

and MLS 
 ECMWF-AUX  GEOS-5 

Surface 

Albedo 
 CERES/MODIS  IGBP  MODIS 

AOD  CALIPSO or 

MERRA-2 
 CALIPSO Level 2 

vertical feature mask 
 

CALIPSO, 

MOD04, 

MATCH 

Aerosol 

Type 
 MATCH  CALIPSO Level 2 

vertical feature mask 
 MATCH 

Skin 

Temperature 
  ECMWF-AUX   ECMWF-AUX   GEOS-4/-5 

 

Before assessing the differences in heating rate profiles from the three calculated-

flux products listed above, we first evaluate the consistency of these calculated fluxes at 

the TOA and surface with the observed fluxes from CERES and ARM, respectively. Only 

daytime pixels (solar zenith angle, SZA, less than 90°) are sampled for this analysis. 
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Four years of instantaneous TOA-reflected SW and outgoing LW radiative fluxes 

for ice cloudy pixels are shown in Figs. 39 and 41, respectively. The CERES-derived and 

CCCM_CC calculated SW fluxes at the TOA are very similar in terms of their global 

means (241.52 and 242.20 Wm–2, respectively, with a RMSD of 12.18 Wm–2; see Table 

12) and geographic distribution. Compared with CERES, the calculated TOA reflected SW 

fluxes from 2B-FXHR-LIDAR and D18 are, on average, too small by 47.07 (19%) and 

31.33 W m–2 (13%), respectively, with even larger RMSDs and relatively small coefficients 

of determination (R2). According to Fig. 39h, the largest discrepancy between the CERES 

observed and calculated TOA SW fluxes occur in the mid-latitudes (25–35%). By 

inspection of their globally distributed differences (Figs. 39e and 39f), the large mid-

latitude differences seem to be limited to the oceans and Southeast Asia but also over South 

America, Central Africa, Greenland, and Antarctica in 2B-FLXHR-LIDAR.  

Due to the relatively large footprint of CERES (20 km at nadir) and a nearly nadir 

view (~ 1.4 km) of CloudSat and CALIPSO, it is inappropriate to assume that, based on 

the methods used here, single-layered ice clouds are the only type found within the CERES 

footprint. It is well known that low-level marine boundary layer stratocumulus clouds 

frequently reside in the Southern Ocean and along the western continental coasts. 

Contamination of highly reflective clouds far removed from the CloudSat and CALIPSO 

swaths but still within the CERES footprint (and detected by MODIS) are plausibly causing 

some of the discrepancy in the TOA reflected SW fluxes as shown in Fig. 39e and 39f. In 
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Figure 39: Global maps of the mean TOA reflected SW flux (W m–2) for single-layered ice 

clouds from (a) 2B-FLXHR-LIDAR, (b) D18), (c) CCCM_CC, and (d) CERES. 

Corresponding maps of their differences are depicted in (e-g). The zonal means are shown 

in (h) where the black dashed, black solid, red, and blue lines represent the variations from 

CERES, CCCM_CC, 2B-FLXHR-LIDAR, and D18, respectively.  

 

fact, the cloud optical depth is larger for the CCCM_CC pixels, especially in the mid-

latitudes where the zonal mean is larger by about 2, due to the utilization of MODIS 

radiances in their algorithm, when compared with the collocated 2C-ICE optical depths 

(not shown). The distributions of optical depths from 2C-ICE and CCCM show a disparity 

at the more optically tenuous cloud frequency, where 2C-ICE has ~18% more cloud 
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samples with an optical depth of < 0.1. Furthermore, based on its algorithm design, 2C-

ICE is missing some high-level, reflective thin cirrus clouds (see Berry and Mace 2014).  

Sensitivity studies, such as the one depicted in Fig. 40, reveal the dependence of 

TOA reflected SW flux to the mean cloud Re and SZA. The TOA reflected SW flux relies 

almost independently of Re at large SZAs. For example, the flux is within 10 W m–2 at  

 

Figure 40: Contours represent the sensitivity of TOA reflected SW flux to solar zenith 

angle (SZA, x-axis) and the mean ice cloud effective radius (Re, y-axis). The cloud top- 

and -base pressures are 250 and 350 hPa, respectively, and the optical depth is 3.0. A 

marine aerosol is assumed with an aerosol optical depth (AOD) of 0.1 and the surface 

albedo is 0.08. A typical mid-latitude summer sounding is used in the calculations.  

SZA = 80° for Re ranging from 10–90 µm. The largest gradient in TOA reflected SW flux 

is when the SZA = 45–55°. Therefore, the most uncertain estimate of TOA reflected SW 

radiation, caused by the errors or uncertainty in retrieved Re is when the sun is located 
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almost directly in the middle of the sky (i.e., between directly overhead and the horizon). 

For sun-synchronous satellite orbits, instantaneous SZAs in this range occur in the mid-

latitudes. 

Table 12: Four year (2007 – 2010) weighted global means of the globally gridded (5° × 5°) 

instantaneous daytime TOA fluxes for single-layer ice clouds calculated by D18, 2B-

FLXHR-LIDAR, and CCCM_CC, as well as, the observed fluxes from CERES. Root mean 

squared differences (RMSD) in W m−2, R2, and slopes of the linear regression between the 

calculated fluxes and CERES (all-sky; CCCM_CC for clear-sky). 

    TOA SW_up   TOA LW_up   

   All-sky  Clear-sky  All-sky  Clear-sky   

D18           

Mean  210.19  135.04  222.27  265.00   

RMSD  44.64  21.49  7.58  2.09   

R2  0.59  0.94  0.96  1.00   

Slope  0.85  1.02  0.88  0.99   

2B-FLXHR-LIDAR               

Mean  194.45  115.92  224.98  263.95   

RMSD  56.12  26.87  5.64  2.41   

R2  0.64  0.78  0.97  1.00   

Slope   0.83   0.82   0.98   0.98   

CCCM_CC         

Mean  242.20  118.86  214.57  265.20   

RMSD  12.18  -----  14.13  -----   

R2    -----  0.95  -----   

Slope  0.92  -----  0.86  -----   

CERES                   

Mean   241.52   -----   228.73   -----   

 

 

Global and zonal mean comparisons of the TOA outgoing LW flux are more closely 

constrained than their SW counterparts. The calculated global mean TOA LW fluxes from 

2B-FLXHR-LIDAR and D18 (Figures 41a & 41e and 41b & 41f, respectively) are within 
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2% of the mean from CERES (Figure 41d) with RMSDs less than 8.0 Wm–2 and R2 = 0.96. 

While CCCM_CC has an even larger, albeit still relatively small, bias (RMSD = 14.13 W 

m–2), it can be easily explained. Due to an enhanced cloud masking algorithm in 

CCCM_CC, cloud-top heights (and consequently their infrared emission temperature) are 

better retrieved and ultimately used in their computations (Kato et al. 2011). Therefore, 

CERES and CCCM_CC provide the upper and lower bounds of the observed TOA 

outgoing LW flux. 

 
Figure 41: Same as Fig. 39 but for the TOA outgoing LW flux (W m–2). 

 



 

125 
 

Passive sensors (i.e., MODIS) operate at an inherent disadvantage in detecting 

optically thin, relatively cold-topped clouds (Ackerman et al. 2008; Holz et al. 2016; 

Marquis et al. 2017). As a result, any algorithm using only passive cloud retrievals to study 

the effects of ice clouds on the TOA radiation may not be adequately represented, 

especially at the resolution of CloudSat and CALIPSO. In the study by Kato et al. (2011), 

the TOA LW irradiances for one month of data are examined for CCCM_CC and an 

algorithm using only MODIS-retrieved cloud properties. They conclude that the TOA 

outgoing LW flux from CCCM_CC is closer to CERES than the MODIS only product due 

to the detection limitations of MODIS. Furthermore, the impacts of multi-layered cloud 

systems on the computed TOA fluxes are also investigated. In a scenario where an optically 

thin ice cloud overlays a liquid cloud, the difference in OLR can amount to more than 100 

W m–2 depending on the phase, height, and optical properties of the overlapping cloud 

system (Kato et al. 2011; Yi et al. 2017a). This result also supports the point we made in 

the previous section about how the large CERES footprint may not well represent the 

CloudSat/CALIPSO swath. In this case, the proximity of lower-level liquid clouds (or the 

clear-sky) would increase the TOA OLR for individual pixels, and most certainly for a grid 

box at 5°. 

The globally averaged theoretical clear-sky fluxes computed in each product are 

also provided in Table 12. The clear-sky fluxes are considered theoretical because they are 

the fluxes computed by the RTM assuming no clouds are present for the sample assembled 
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in this Section (non-precipitating single-layered ice clouds). Which is also why there are 

no CERES observed clear-sky fluxes. Any differences in the clear-sky fluxes are assumed 

to be a result of the different surface and aerosol properties and meteorology profiles used 

in each product (Table 11), as described in Chapter 4 Section 1. The global means in the 

clear-sky TOA outgoing LW flux are within 1.25 W m–2 between the three products, the 

RMSDs are less than 2.5 W m–2, and they are well correlated (R2 = 1.0). Based on the zonal 

mean TOA clear-sky outgoing LW fluxes in Fig. 42b, there is no discernable difference 

between the products and regional differences are less than ~15 W m–2 (not shown).  

 

Figure 42: The zonal mean RTM-calculated TOA clear-sky (a) reflected SW and (b) 

outgoing LW fluxes for four years of data from 2007–2010. Clear-sky fluxes are computed 

for the corresponding sample of single-layered ice clouds. CCCM_CC, 2B-FLXHR-

LIDAR, and D18 results are in black, red, and blue, respectively. 
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The RTM-calculated TOA clear-sky reflected SW fluxes are not as consistent in 

these three products. While the global means from CCCM_CC and 2B-FLXHR-LIDAR 

are within 3 W m–2 and the D18 global mean is larger than CCCM_CC by ~17 W m–2, the 

RSMD of the flux in D18 is actually smaller than 2B-FLXHR-LIDAR by ~5 W m–2 and 

the correlation to CCCM_CC is higher (R2 = 0.94 vs 0.78). Zonally, the TOA clear-sky 

SW flux from D18 is larger than CCCM_CC in the tropics (high-latitudes) by nearly 30% 

(10–15%). The TOA clear-sky SW flux from 2B-FLXHR-LIDAR is too small (10–30%) 

when compared with CCCM_CC pole-ward of ~30° in both hemispheres. Regional 

differences in the RTM-calculated TOA clear-sky fluxes can amount to more than 100 W 

m–2 (namely in desert regions and in the Himalayas; not shown).  

Computed surface downward SW and LW fluxes are evaluated based on the 

observed fluxes at three DOE ARM Climate research facilities. Comparing the calculated 

surface fluxes with the observed ones adds further robustness to the calculated radiative 

flux profiles investigated further below. If the TOA and surface fluxes agree well with 

observations, we will have higher confidence in the calculated fluxes within the atmosphere 

and, more importantly for the in-cloud heating rate profiles. Surface fluxes are based on 

the observed 10-minute averaged measurements from upward and downward facing 

Eppley precision spectral pyranometers and infrared pyrgeometers. The calculated 

instantaneous fluxes are selected for each ARM site assuming they are within a 20 × 20 

km2 box centered at the site.  
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Figure 43: Scatterplots of the calculated downward SW (left) and LW (right) fluxes at the 

ARM Southern Great Plains (SGP; top), Tropical Western Pacific, Nauru (TWP-C2, 

middle), and North Slope of Alaska (NSA, bottom) sites. Black, red, and blue symbols 

correspond to the instantaneous fluxes calculated by CCCM_CC, 2B-FLXHR-LIDAR, and 

D18, respectively. Open and filled symbols represent fluxes calculated and observed during 

the nighttime and daytime, respectively. Calculated fluxes are selected when pixels are 

within 20 km of the ARM site. Each point represents a pixel collocated to ARM. Grey 

dotted lines represent a ±20% bound to the ARM observed fluxes. 
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The SGP site has the fewest number of collocated cases with 19, all of which occur 

during the nighttime. As a result, only the LW fluxes are analyzed. Based on the scatterplot 

in Fig. 43b, all three data sets show skill in calculating the surface downward LW flux. In 

fact, their sample means are all within 1% of the ARM mean and with similar standard 

deviations (see Table 13). 

The TWP-C2 site located on Nauru Island yielded 32 cases, all of which occur 

during the day due to the A-Train overpass configuration (1:30 pm equator transect). 

Scatterplots of the downward SW flux (Fig. 43c) suggest some persistent errors in the 

calculated fluxes. On average, the calculated fluxes from D18, 2B-FLXHR-LIDAR, and 

CCCM_CC are 15%, 17%, and 9%, respectively, greater than the ARM observations 

(although with very large RMSDs), and their standard deviations are much too small. When 

the ARM-observed downward SW fluxes are less than ~500 W m–2, the corresponding 

calculated pixels are significantly too high (up to 700 W m–2 too large). The large standard 

deviation in the downward SW flux in the ARM data also suggests a wide range of cloud 

optical properties (2C-ICE IWP = 0.05–225 g m–2, although 75% of these IWPs are < 5.0 

g m–2). The calculated downward LW fluxes match better with the ARM observed fluxes 

at TWP-C2; fractional differences are less than 4%.  

Finally, a total of 30 pixels (20 daytime, 10 nighttime) were collocated with the 

NSA site in Barrow, Alaska. The scatterplot in Fig. 43e suggests that the calculated fluxes 

for optically-thicker single-layer ice clouds, and hence a small surface SW transmission, 
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are well matched to ARM observations. However, when the downward SW flux from ARM 

is larger, there is a larger discrepancy. On average, the calculated surface downward SW 

fluxes from D18 and 2B-FLXHR-LIDAR are more than 50 Wm–2 (~20%) greater than the 

ARM data. The cause of this discrepancy is plausibly due to an improper representation of 

cloud optical (i.e., too thin or particle size too large) or aerosol properties (i.e., Chapter 4 

Section 1). However, assumptions related to ice particle habit and ice particle size 

distribution in the respective RTMs could also contribute to the bias. The calculated surface 

downward LW fluxes are underestimated by ~30 (12%) and ~16 (5%) W m–2 by D18 and 

2B-FLXHR-LIDAR, respectively, with no discernable difference in modeled errors 

between day and night.  

Table 13: The average (σ) surface SW and LW downward fluxes observed at three ARM 

sites (Southern Great Plains, SGP; Tropical Western Pacific, TWP Nauru, -C2; North Slope 

Alaska, NSA) and calculated by D18, 2B-FLXHR-LIDAR, and CCCM_CC for non-

precipitating single-layered ice clouds from 2007 – 2010.  

    D18   
2B-FLXHR-

LIDAR 
  CCCM_CC   ARM 

Shortwave         

SGP  -----  -----  -----  ----- 

TWP-C2  830.5 (87.4)  848.0 (117.40)  785.56 (109.06)  734.29 (253.08) 

NSA  286.0 (213.4)   294.3 (221.96)   237.27 (216.18)   239.84 (208.27) 
         

Longwave         

SGP  340.60 (61.58)  349.13 (59.78)  342.54 (57.08)  343.39 (57.01) 

TWP-C2  407.24 (10.48)  429.39 (13.21)  413.97 (13.33)  423.51 (15.54) 

NSA   219.89 (49.71)   235.01 (56.09)   246.54 (62.14)   246.13 (62.34) 
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Single-layer Ice Cloud Radiative Heating Rate Profiles 

The radiative heating rate (Qr) is a concept of flux divergence with positive (negative) 

values representing heating (cooling) within a layer. Radiative heating rate profiles are 

determined from calculated flux profiles as: 

 𝑄𝑟 (𝐾 𝑑𝑎𝑦−1) =
𝜕𝑇

𝜕𝑡
=  −

1

𝜌𝑐𝑝

𝑑𝐹𝑛𝑒𝑡

𝑑𝑧
=  

𝑔

𝑐𝑝

𝑑𝐹𝑛𝑒𝑡

𝑑𝑝
, (12) 

where 

 ∆𝐹𝑛𝑒𝑡 =  𝐹𝑛𝑒𝑡(𝑧 +  ∆𝑧) − 𝐹𝑛𝑒𝑡(𝑧)  (12a) 

or 

 ∆𝐹𝑛𝑒𝑡 =  𝐹𝑛𝑒𝑡(𝑝 − ∆𝑝) −  𝐹𝑛𝑒𝑡(𝑝) (12b) 

and 

 𝐹𝑛𝑒𝑡(𝑧) =  𝐹↑(𝑧) −  𝐹↓(𝑧) (12c) 

cp is the specific heat at constant pressure (1004 J kg−1 K−1), ρ is the density of dry air (1.225 

kg m−3), and g is the gravitational constant (9.80665 m s−2). Since the RTM provides in-

cloud fluxes, the in-cloud radiative heating rates can therefore be calculated and resolved. 

For example, Fig. 44 shows the retrieved IWC and Re profiles from 2C-ICE for a 

single cloud. The IWC and Re profiles have maximum values of 0.06 g m–3 and 60 µm, 

respectively, near the cloud-base. The resulting LW radiative heating rate profile of this 

cloud suggests warming (up to ~3.5 K day–1) near the cloud-base and LW cooling near the 

cloud-top (up to ~ –7.5 K day–1). The dipole of cloud-base warming and cloud-top cooling 

is generated by the absorption of LW radiation near the cloud-base, enhanced by the surface 
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LW emission, and LW emission near the cloud-top caused by the warmer CTT than 

atmospheric temperature above. SW heating rates are positive (up to ~7.0 K day–1) within 

the cloud due to the absorption of SW radiation reflected from the surface and the direct 

SW flux from above. The uncertainty in the computed heating rates for individual pixels is 

estimated and provided in Dolinar et al. 2018. 

 
Figure 44: An example of vertical profiles of (a) ice water content (IWC), (b) effective 

radius (Re) and their associated (c) LW and (d) SW radiative heating rate (Qr, K day–1) 

profiles. Black lines in (c-d) are for the cloudy profile while the pink lines are for the clear-

sky. The shaded area in (c) and (d) represent the cloud.  This ice cloud profile is taken from 

2C-ICE on 4 December 2007 off the western coast of Chile (latitude = –44.3°; longitude = 

269.1°; SZA = 36.88°; IWP = 80.9 g m–2; τ = 2.8). 

 

Global Zonally Averaged Radiative Heating Rates 

 

 Single-layered ice cloud radiative heating rate profiles are calculated based on 

retrieved cloud properties (i.e., IWC and Re) from 2C-ICE at the pixel level over the entire 

globe and are presented as a function of latitude in Fig. 45. The heating rate profiles based 

on collocated 2B-FLXHR-LIDAR (Fig. 45 a-c) and CCCM_CC (Fig. 45 g-i) fluxes are 

also shown. Zonally averaged SW radiative heating rates are positive in all three products 

with the strongest heating (Qr > 2.5 K day–1) occurring in the tropics and mid-latitudes. 
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D18 and CCCM_CC also indicate that the strongest SW warming occurs within the cloud. 

Enhanced warming of up to 1.5 K day–1 is produced above 100 hPa, which is caused by 

ozone absorption. Figure 45a indicates that the largest inconsistencies in SW radiative 

heating, as determined by the standard deviation of the three products, lies within the 

tropical single-layered ice clouds (σ = 0.6–1.1 K day–1). 

Figure 45: The zonally averaged SW (left), LW (middle), and Net (right) daytime 

radiative heating rate (Qr, K day–1) profiles for the selected single-layered ice clouds 

from (top, a-c) 2B-FLXHR-LIDAR, (middle, d-f) D18, and (bottom, g-i) CCCM_CC. 

The 0 K day–1 heating is highlighted with the dashed line and the solid lines represent the 

zonally averaged cloud-top and -base pressures. 

 

The zonal mean LW heating rates are all negative (i.e., cooling) except for in the 

tropical upper troposphere. The tropical LW warming (Qr < 0.5 K day–1) signal is 

characteristic of cirrus cloud radiative properties (Ackerman et al. 1988; McFarquhar et 

al. 2000; Comstock et al. 2002; Mather et al. 2007). All three products have demonstrated 

that strong LW cooling of 1.5–2.0 K day–1 occurs in the tropical mid- to low-troposphere, 

as well as, in the mid- to high-latitudes near the cloud-top. Tropical boundary layer LW 
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heating rates are rather inconsistent among the three products, as the standard deviation 

amounts to more than ~ 1.0 K day–1 (Fig. 46b), which is likely due to differences in land 

surface temperatures or emissivities used in their respective RTMs. 

Figure 46: Standard deviations (K day–

1) of the zonal mean (a) SW, (b), LW, 

and (c) net radiative heating rate 

profiles from the three products (D18, 

2B-FLXHR-LIDAR, and CCCM_CC, 

as in Fig. 45). Black lines are the zonal 

mean cloud boundaries.  

 

The resulting net radiative 

heating rates are shown in Fig. 45 (c, f, 

and i). Tropical net heating rates are 

generally positive, and strongest within 

the cloud, due to the relatively strong 

SW heating that cannot be compensated 

by the LW cooling generated there. However, the tropical heating rates in 2B-FLXHR-

LIDAR are weaker than the other two products, and even suggests weak cooling (–0.5 < 

Qr < 0.0 K day–1). Nevertheless, a consensus of net radiative cooling is determined for the 

depth of the troposphere for latitudes poleward of 60°.  

Radiative Heating Rates as a Function of IWP 

Changes in the cloud radiative heating rate profiles as determined by their IWPs are 

presented in Fig. 47. On average, the single-layered ice cloud thicknesses range from ~10–

420 hPa from the smallest to largest IWPs (black lines in Figure 47). Cloud-top and -base 
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pressures increase over the range 0.1 < IWP < 5.0 g m–2, while the clouds deepen for IWP 

> ~50 g m–2. Typically, the magnitudes of the SW/LW/net radiative heating rates near 

cloud-top are primarily determined by cloud geometric and/or optical thickness (Ackerman 

et al. 1988), as the SW heating and LW cooling rates increase with increased cloud IWP 

and cloud thickness as demonstrated in Fig. 47.  

 

Figure 47: Composites of the SW (left), LW (middle), and net (right) daytime radiative 

heating rate (Qr, K day–1) profiles for the selected single-layered ice clouds with respect to 

the 2C-ICE ice water path (IWP, g m–2) distribution for 2B-FLXHR-LIDAR (top, a-c), 

D18 (middle, d-f), and CCCM_CC (bottom, g-i). Black lines correspond to the average 

cloud-top and -base pressures. There are seven IWP bins from 0.001 to 10000 g m–2, each 

increasing by an order of magnitude. 
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The relatively strong SW heating rates near the cloud-top (due to more absorption 

of SW radiation) overwhelm the relatively strong LW cooling rates (due to the much colder 

atmospheric temperature above the cloud-top) effectively inducing net heating rates of 

more than +5.0 K day–1 for the thickest of single-layered ice clouds (IWP > 5000 g m–2), 

as determined by the 2C-ICE cloud properties, although IWPs greater 5000 g m–2 are 

infrequent < 0.001% (see Fig. 27d). For the thinnest clouds (IWP < 10 g m–2), which are 

most frequent, LW heating is more significant. 

On average, for IWPs > 100 g m–2, the strongest SW heating rates are located at the 

cloud-top where most of the SW absorption occurs (which is also where the largest 

discrepancy occurs between the three products, see Fig. 48, σ = 2.5–5.0 K day–1), and then 

decrease toward the cloud center.  Near the cloud-base, the SW heating rates are weak due 

to the reduction of solar photon penetration.  A region of relatively strong SW heating (up 

to 3.0 K day–1) is seen below ~500 hPa for IWPs < 1.0 g m–2 whereas the in-cloud SW 

warming is < 1.0 K day–1. The enhanced SW heating in the low-levels for small IWPs are 

likely caused by water vapor absorption. 

According to the D18 heating rate profiles in Fig. 47e, a dipole of cloud-top LW 

cooling and cloud-base LW warming occurs for ice clouds with IWPs > ~600 g m–2. 

Otherwise the cloud is primarily losing heat/energy through its depth. It is consistent to 

induce positive LW heating rates at the cloud-base since the cloud absorbs more surface 

LW emission than it emits. For the same large IWPs, the 2B-FLXHR-LIDAR and 

CCCM_CC LW heating rates show LW cooling at the cloud-base, but warming just above 
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and below the cloud-base. The difference between D18 and the other two datasets (σ up to 

~2.0 K day–1; Fig. 48b) suggests a variation in vertical cloud structure or differences in 

parameterized ice cloud properties used in their products. The positive tropical upper level 

LW heating rates seen in Fig. 45 are associated with IWPs less than 1.0 g m–2. The low-

level LW cooling seen in Figs. 45b and 45h are also somewhat depicted in Figs. 47b and 

47h (i.e., the enhanced LW cooling rates for 2B-FLXHR-LIDAR and CCCM_CC, 

respectively). By decomposing the heating rates based on cloud IWP, it becomes clear that 

these low-level LW cooling rates (up to –3.0 K day–1) are produced by clouds with an IWP 

of < 10 g m–2 according to 2C-ICE, which account for ~70% of the pixels (Fig. 37d).  

 

Figure 48: Same as Fig. 46 but showing the standard deviation of the heating rate profiles 

as a function of the 2C-ICE IWP (g m–2) distribution.  

Radiative Heating Rates as a Function of Total Column Water Vapor (TCWV) 

 Diagnosing cloud radiative heating rate profiles based on water vapor provides a 

more deterministic view into how ice clouds can be better simulated using convective cloud 

parameterizations in GCMs. The radiative heating rate profiles are presented as a function 
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of total column water vapor (TCWV) mixing ratio (g/g) in Fig. 49. The TCWV comes from 

summing the water vapor mixing ratio profile from the combined ECMWF-AUX/MLS 

profiles used for computing the D18 heating rate profiles. 

Cloud geometric thickness is rather invariant of TCWV, despite the vertical ascent 

of these clouds as water vapor increases. The coupling of ascending single-layered ice 

clouds with increasing water vapor increases the efficiency of in- and below-cloud SW 

absorption and LW emission. Based on these three products, the vertical structure and 

magnitude of these competing absorption and emission properties makes for unique net 

heating rate profiles, especially at larger TCWV.  

Figures 49c, 49f, and 49i show that the three products agree that there is net cooling 

through much of the atmosphere for TCWV < ~0.1 g/g and is maximized within or below 

the cloud. However, the vertical structure of net heating rates for TCWV > 0.1 g/g is 

significantly different between D18 and CCCM_CC. The heating rate profiles in D18 (Fig. 

49f) suggest net cooling within the cloud due to the strong LW cooling (up to 5.0 K day–1) 

and relatively weak SW warming. Furthermore, the net radiative heating rates in D18 above 

and below the cloud layer result from the relatively strong SW heating below the cloud 

layer and slight LW warming (due to tropical cirrus) above the cloud layer. While 

CCCM_CC does generate the positive above- and below-cloud net heating for TCWV > 

0.1 g/g, it depicts appreciable positive net heating (> 5.0 K day–1) within the cloud as well. 
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Figure 49: Same as Fig. 47 but the heating rate profiles are a function of the total column 

water vapor (TCWV) mixing ratio (g/g) from the ECMWF/MLS profiles used in 

calculating the D18 fluxes. The water vapor bins are irregular at [0.001,0.01,0.1,0.25, and 

0.5] g/g. 

While there are some inconsistencies between the three products in their estimation 

of in-cloud LW heating rates at large TCWV (σ < 0.25 K day–1, Fig. 50), the discrepancies 

in SW heating are more alarming. At this time, the exact cause of this discrepancy is 

unknown. However, we can speculate that the retrieved cloud properties used in 

CCCM_CC are vastly different than in 2C-ICE; the clouds at higher TCWV, as per 
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ECMWF/MLS, must be optically thicker in CCCM_CC to induce such a positive net 

warming. 

 

Figure 50: Same as Fig. 46 but showing the standard deviation of the heating rate profiles 

as a function of the ECMWF-AUX/MLS total column water vapor (TCWV, g/g) 

distribution. 

Radiative Heating Rates as a Function of Solar Zenith Angle (SZA) 

 To further assess the differences in heating rate profiles from the three data sets, we 

present the SW, LW, and net cloud heating rate profiles as a function of the instantaneous 

solar zenith angle (SZA) encountered with the sample throughout the experiment.  Figure 

51 highlights that the cloud geometric thickness is invariant of SZA and that single-layered 

ice clouds descend to higher pressure from small to large SZA, which corresponds with the 

transition from tropical to high latitude data points in the sample and consistent with Fig. 

45.   Figure 51 also shows that the strongest SW warming (> 5.0 K day–1) occurs when the 

sun is most directly overhead (SZA < 30°).    
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Figure 51: Same as Fig. 47 but the heating rate profiles are a function of solar zenith 

angle (SZA, degrees). SZA bins are five degrees wide from 15 – 90 degrees. 

 All three data sets have demonstrated that the magnitude of SW radiative heating 

rates decreases with increased SZA. Since the A-Train follows a sun synchronous orbit 

with an equator overpass at ~1:30 pm, the previously mentioned tropical upper-level LW 

warming feature is seen for low SZAs (< 30°). LW cooling is maximized below the cloud 

for SZAs < 40° and within the cloud for larger SZAs. The LW cooling rates in 2B-FLXHR-

LIDAR (Figure 51b) and CCCM_CC (Figure 51h) also suggest the contamination of low-

level clouds in their products. The net heating rates in Figs. 51c, 51f, and 51i show a 
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consensus that radiative warming is maximized within the cloud when the sun is most 

directly overhead and comparatively strong cooling occurs within and below the cloud for 

larger SZAs (> 50°). Based on their standard deviations, the heating rates as a function of 

SZA are within < 1.0 K day–1 (not shown) from the three products. 
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Summary of Chapter IV 

This Chapter focused on running the Fu-Liou RTM for clear-sky scenes at specific 

locations (ARM SGP, NSA, and TWP-C3 sites) and globally for single-layered ice clouds.  

In Section 1, MERRA-2 clear-sky vertical profiles of temperature, ozone mixing ratio, and 

water vapor mixing ratio are evaluated at three ARM sites from August 2004 to December 

2013. These meteorological profiles are used as input to the RTM to perform a clear-sky 

radiation closure study at the surface and TOA. Based on the results presented in Section 

1, the following conclusions can be made. 

1) Vertical profiles of temperature at the three sites are well replicated in MERRA-2 

when compared with the newly generated satellite/surface-based (hybrid) data set. 

Even the characteristic low-level temperature inversion of the Arctic is captured in 

the reanalysis. Since MLS ozone is directly assimilated, the MERRA-2 ozone 

mixing ratios are very close to the hybrid profiles at all three ARM sites. Finally, 

the MERRA-2 tropospheric water vapor mixing ratios are, on average, on the drier 

side of the hybrid data at the ARM SGP and NSA sites for snow-free conditions. 

However, the relatively small and constant tropospheric water vapor profile at the 

ARM NSA site for the snow cases is well replicated in MERRA-2. At TWP-C3, 

the MERRA-2 water vapor profile is drier than the ARM-merged sounding by ~10–

30%, on average, except between ~850 and 750 hPa. 

2) The clear-sky surface and TOA radiative fluxes are calculated using the NASA 

Langley-modified RTM (with the same surface characteristics) with inputs from 
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hybrid, MERRA-2, and climate mean profiles at the three ARM sites. In this 

radiative closure study, the calculated SW fluxes are tuned by adjusting the surface 

albedo, and by including a secondary aerosol, to reduce the differences between the 

averaged calculated and observed fluxes. As expected, the surface and TOA LW 

fluxes show little sensitivity to the change in surface albedo and aerosol 

characteristics; therefore, a different method of adjustment is necessary for 

achieving radiative closure for LW fluxes. We recommend tuning the surface skin 

temperature as a means for reducing the difference between the calculated and 

observed LW fluxes. The averaged flux differences (calculated minus observations) 

using the hybrid and MERRA-2 profiles at three ARM sites are generally < 5 W m–

2, while the calculated fluxes from climate mean profiles are typically larger biased. 

Although the averaged tuned calculated fluxes are relatively close to the observed 

means, large compensating errors are evident. Therefore, we can conclude that the 

input of accurate atmospheric profiles and surface characteristics in the RTM plays 

an important role in calculating the surface and TOA clear-sky SW and LW fluxes. 

3) Errors in the clear-sky surface and TOA fluxes can as large as 30–40 % if the correct 

surface characteristics are not used in the RTM. Therefore, errors in the calculated 

fluxes when clouds are present could be just as large (or larger) if improper surface 

properties are used and barring and errors in the retrieved cloud properties. 

The active sensors on CloudSat and CALIPSO provide global measures of the vertical 

structure of ice clouds and have proven to be invaluable for studying and subsequently 
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providing better constraints of their radiative effects. In Section 2, vertically-derived cloud 

properties are used to calculate the radiative heating rate profiles of single-layered ice 

clouds. Using the cloud properties derived from 2C-ICE, we generate an independent 

product of SW and LW heating rate profiles and compare them to the ones from the 2B-

FLXHR-LIDAR and CCCM_CC products. Based on this study, the following conclusions 

can be made: 

4) The global occurrence frequency of non-precipitating single-layered ice clouds 

(with no underlying liquid clouds present) is roughly 18% with considerable 

occurrence (> 25%) in the tropical western Pacific warm pool and central Africa 

above 12 km. The largest IWP/C and Re occur over the tropics and mid-latitudes 

along oceanic storm tracks. Single-layered ice clouds are relatively high in altitude 

and cold, as 50% of the cloud samples have cloud-top heights above 10 km and 

cloud-top temperatures below 215 K. Based on the PDFs of CTT, it is evident that 

different types of cloud ice exist the in subset and should be uniquely handled in 

the radiative transfer model (i.e., cirrus [CTT ~210 K] and glaciated ice [CTT ~260 

K]). 

5) Computed TOA and surface fluxes from three independent products are compared 

with satellite and ground-based equivalents to assess consistency and uncertainty. 

We generate our own radiative flux profiles (D18) using the retrieved single-

layered ice cloud microphysical properties from 2C-ICE, while 2B-FLXHR-

LIDAR and CCCM_CC use retrieved cloud information from a merged CloudSat, 
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CALIPSO, and MODIS product. According to their global means, the D18 and 2B-

FLXHR-LIDAR TOA reflected SW fluxes for daytime single-layered ice clouds 

are too small by 13–20% compared to CERES and an appreciable large negative 

bias (25–35%) is found in the mid- and high-latitude oceans. However, the 

calculated TOA outgoing LW fluxes are mostly consistent (global means are within 

8.0 W m–2) with CERES satellite observations. Instantaneous calculated surface 

fluxes are collocated with observed radiative fluxes at three ARM Program sites 

(SGP, NSA, and TWP–C2). Computed surface downward LW fluxes at the three 

ARM sites are generally well matched with the observed fluxes given the relatively 

small sample size (a total of 81 samples). The downward SW fluxes at the surface, 

on the other hand, show a considerable positive bias (e.g., > 100 [50] W m–2 for 

D18 at the TWP-C2 [NSA] site).   

6) Daytime cloud radiative heating rate profiles are calculated with the inputs of 2C-

ICE ice cloud microphysical properties.  Based on their zonal means, the strongest 

SW heating rates occur within the cloud in the tropics and mid-latitudes in all three 

data sets where IWC and Re are largest on average. However, considerable SW 

warming also extends to the surface in the tropics. Relatively strong LW cooling 

rates also occur in the tropics below the single-layered ice cloud and mid-latitudes 

just above the cloud. In general, the patterns of SW heating and LW cooling rate 

profiles from three datasets are similar to each other with slight differences in 

magnitude. High-latitude net radiative cooling is determined due to the high SZAs, 
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lower and warmer cloud-bases, and small IWPs. 2B-FLXHR-LIDAR is unique in 

that it produces much weaker net warming and/or net cooling rates in the tropics.  

7) Daytime cloud radiative heating rate profiles are composited based on the 2C-ICE 

IWP, ECMWF-AUX/MLS TCWV mixing ratio, and SZA. Decomposing the 

heating rate profiles in this way provides more detail about how heating rates vary 

with retrieved cloud and environmental properties, but can also serve as a process-

oriented diagnostic tool used for evaluating and improving convective 

parameterizations. Cloud-top SW (LW) warming (cooling) is coupled with cloud-

base LW warming for the largest IWPs (> 300 g m–2). In general, the magnitudes 

of SW/LW/net radiative heating rates near the cloud-top are primarily determined 

by cloud geometric and/or optical thickness (i.e., IWP), as the SW heating and LW 

cooling rates increase with increased cloud IWP and cloud thickness. Considerable 

cloud net warming is determined for the largest IWPs and TCWV, and smallest 

SZAs within the cloud. An upper level LW warming feature is consistently 

produced for tropical cirrus clouds where IWPs are smaller (< 1.0 g m–2), TCWV 

mixing ratios are large (> 0.1 g/g), and SZAs are small (< 30°). 
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

The simulated cloud properties (cloud fraction, CF and cloud water path, CWP) 

and radiation budgets from 28 global climate models (GCMs) and five contemporary 

reanalyses are evaluated against consistently observed properties from satellites and 

ground-based sensors for multiple years of data. Based on the comparison with passive 

satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), 

the simulated global CF is too small, on average, by 7%. The estimated bias in CF from 

the 33-member model mean is even larger (16%), when compared with the active sensors 

on CloudSat and the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation 

(CALIPSO). The bias is larger when compared to active sensors because they are more 

sensitive to optically thin clouds (τ < 0.3), which suggests a consistent model deficiency in 

simulating optically thin clouds. While some studies suggest a complementary bias in the 

optical thickness of clouds, where the lack of clouds in model simulations is compensated 

by generating clouds that are too optically thick (e.g., Kay et al. 2012), this evaluation study 

uncovers that the cloud water path (CWP), which is used as a proxy for optical depth, is 

also underpredicted by the multimodel mean by roughly 17 g m–2 when compared with 

MODIS observations. 

Based on the 33-member ensemble of GCMs and reanalyses analyzed here, the 

simulated TOA radiation budgets and CREs match well with satellite estimates from the 

Clouds and Earth Radiant Energy System (CERES) Energy Balanced and Filled (EBAF). 
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Biases in the global mean all-sky and clear-sky TOA shortwave (SW) and longwave (LW) 

fluxes are less than 2 W m–2, which is within the uncertainty of the satellite measurements 

and the standard deviation of the simulated results. The resulting simulated global mean 

TOA CREs are within 3 W m–2 when compared with CERES and suggests a stronger net 

cooling effect. Our analysis further confirms that radiation fields are tuned in global models 

to better match observations. 

 The cloud and radiation fields are then analyzed for two regimes, defined by the 

vertical velocity at 500 hPa (ω500). While the CFs in both regimes are similar (69 vs 66%), 

the CWP is larger in the ascent regime (ω500 < –25 hPa day–1) due to the existence of deep 

convection in these regions. The corresponding radiation fields are consistent with their 

regime-averaged cloud properties. For example, the net CRE is stronger in the descent 

regime (ω500 > 25 hPa day–1) due to the relatively weak LW warming effect induced by 

the marine boundary layer clouds that exists there. In general, the multimodel mean 

produces too many (few) clouds with too much (little) cloud water in the ascent (descent) 

regime, resulting in a stronger (weaker) net CRE. While the biases in the ascent regime are 

smaller than in the descent regime (e.g., CF bias = 1.1 vs. 18%), they are not as well 

correlated to the satellite observations (CF correlation, r = 0.35 vs. 0.50). 

While the CMIP5 GCM simulated cloud and radiation fields have been evaluated 

in other studies, Chapter 3 provides a more comprehensive assessment of the CMIP5 and 

reanalysis simulations using multiple satellite observations. More importantly, we have 
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investigated the impact of CF and CWP on the TOA radiation fluxes and CREs, 

quantitatively estimated the sensitivities of SW/LW CREs on CF and CWP in strong 

atmospheric ascent and descent regimes, and have performed a detailed error analysis. For 

example, the sensitivities (determined by linear regression) of the LW CRE to CF in the 

ascent and descent regimes are different. The ascent regime is more sensitive (0.82 vs 0.23 

W m–2 %–1) due to the wider range of cloud-top temperatures (CTT) of cumulus and deep 

convective clouds. Based on the analysis of error, we conclude that the amount clouds (i.e., 

CF), or the sensitivity of CREs to CF, has a larger impact on the errors in simulated CREs, 

in comparison to CWP. These results will provide a better means of representing the true 

physical interactions between clouds and TOA radiation budgets and will help modelers to 

better predict future climate scenarios. It is our hope that these comparisons and the 

statistical results from this study may aid in the advancement of the GCM simulations of 

clouds and TOA radiation budgets in future versions of CMIP. 

Since the CREs are defined as the impact of clouds on the Earth radiation budget 

in reference to the clear-sky, it is critical to correctly observe and simulate the clear-sky 

radiation budget. Studies have shown that computing clear-sky radiative fluxes are strongly 

dependent on atmospheric state variables, such as temperature and water vapor profiles, 

and surface properties (e.g., albedo). In Chapter 4 Section 1, we evaluate the Modern-Era 

Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalyzed 

clear-sky temperature and water vapor profiles with newly generated atmospheric profiles 

from Department of Energy Atmospheric Radiation Measurement (ARM)-merged 
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soundings and Aura Microwave Limb Sounder (MLS) retrievals at three ARM sites. The 

temperature profiles are well replicated in MERRA-2 at all three sites, whereas 

tropospheric water vapor is slightly dry below ~700 hPa.  

These profiles are then used to calculate clear-sky surface and TOA radiative fluxes 

from the Langley-modified Fu-Liou radiative transfer model (RTM). To achieve radiative 

closure at both the surface and TOA, the ARM-measured surface albedo and the aerosol 

optical depths (AODs) are adjusted to account for surface inhomogeneity (120 × 120 km2 

centered at the ARM sites). The surface and TOA LW fluxes show little-to-no influence 

on the surface albedo and aerosol characteristics; therefore, some other method of 

adjustment is necessary for achieving radiative closure for LW fluxes. We suggest tuning 

the surface skin temperature as a means for reducing the difference between the calculated 

and observed LW fluxes. In general, most of the averaged RTM-calculated surface 

downward and TOA upward SW and LW fluxes agree within ~5 W m–2 of the observations, 

which is within the uncertainties of the ARM and CERES measurements. Yet still, further 

efforts are required to reduce the bias in calculated fluxes in coastal regions. 

Chapter 4 Section 2 provides a global database of single-layered ice clouds (from 

CloudSat and CALIPSO) and useful metrics for diagnosing errors in simulated ice clouds 

in the form of radiative heating rate profiles as a function of different cloud and 

environmental states from three independently produced products. For example, the 

strongest net heating rates (Qr > 2 K day–1) occur for tropical upper-tropospheric single-

layered ice clouds where the ice water path (IWP) is largest (IWP > 100 g m–2). The range 
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of TOA and surface radiative fluxes and heating rate profiles of single-layered ice clouds 

are assumed to be the result of different RTMs used (and their subsequent parameterization 

assumptions regarding ice particle habit and particle size distribution, PSD), input data 

(which includes different methods for retrieving cloud microphysical properties, IWC and 

Re), and the difference in sampling area (L’Ecuyer et al. 2015). Furthermore, the 

uncertainties in computed radiative flux profiles resulting in different ice models used in 

parameterizing cloud optical properties and in the cloud retrievals themselves should be 

acknowledged. Since this study does not match the parameterized ice models used in cloud 

retrievals and in the RTM, some large differences in the computed radiative fluxes can 

occur (~16 W m–2 in the TOA SW ice CRE; Yi et al. 2017). 

Chapter 3 clearly demonstrates that systematic biases occur in global models when 

simulating clouds and their impact on the radiation budget. While there are a number of 

reasons for the discrepancy between simulations and observations, one of them lies within 

the observations themselves. Satellite observations have limitations. For example, passive 

sensors are unable to detect optically thin clouds (τ < 0.3) while active sensors can. If cloud 

parameterization schemes are developed using only passive data, they will show difficultly 

in simulating optically thin clouds, which is a daunting thought, as cirrus clouds (often 

optically thin) are estimated to cover ~40% of the Earth (Mace et al. 2009).  

Figures 4 and 5 show that the simulated CF is too high in the tropics (which is 

where single-layered ice clouds occur most frequently, Fig. 36) when compared with 

CERES MODIS but too low compared with CloudSat/CALIPSO. Furthermore, based on 
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the correlation and standard deviation statistics in Fig. 20, convective-type (including ice) 

clouds are more problematically simulated in global models in comparison to marine 

boundary-layer stratocumulus. Therefore, a better treatment of these types of clouds is 

needed in global models. Chapter 4 provides the optimal data, from a combination of 

CloudSat and CALIPSO retrievals, required to develop better parameterizations for clouds 

that typically form due to convection.  

There is at least one avenue of future work that one could pursue in reference to the 

studies completed here. Since GCMs produce simulations of cloud and environmental 

properties for large areas (grid size of > 3° in some models, see Table 1), the sub-grid scale 

variability is not resolved. This is a limiting feature of GCMs, as cloud and environmental 

properties are non-homogeneous, especially at large spatial and temporal scales. The 

radiative properties of clouds are computed based on inferred cloud-overlap assumptions, 

as well as, grid-mean microphysical properties. However, in Figs. 46 and 48, we 

demonstrate that ice cloud radiative heating rates vary based on distributions of IWP and 

TCWV, respectively. Therefore, GCMs are not appropriately resolving radiation for large 

grid-boxes, especially when the environment is not homogenous or normally distributed. 

We recommend that an experiment be developed to test the impact of using a distribution 

of cloud and environmental parameters for the calculation of radiation in GCMs. 

Lastly, as I transition to my post-Doc appointment at the U.S. Naval Research 

Laboratory (NRL), we will address the issues related to inconsistent ice models used in the 

parameterization of cirrus cloud microphysical and optical properties. I, along with other 
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NRL scientists, will be developing a consistent model for cirrus clouds based on MODIS 

and CALIPSO using parameterizations from Dr. Ping Yang. This new parameterization 

will be applied to global models, such as the Navy Global Environmental Model 

(NAVGEM), and for studies related to estimating the TOA CREs of cirrus clouds (i.e., 

Campbell et al. 2016). 
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APPENDIX A 

 

A list of the clear-sky cases in Chapter 4 Section 1 

 

  SGP 
  

NSA 
  

  Year  Julian Day  Time 

(UTC)  
Year  Julian Day  Time 

(UTC) 
  

  2004  269  08:37  2005  078  22:23   

  2004  249  08:36  2005  146  13:52   

  2005  015  08:35  2005  206  22:22   

  2005  022  19:45  2006  168  22:31   

  2005  102  19:44  2006  190  13:49   

  2005  134  19:44  2007  036  22:27   

  2005  159  08:35  2007  040  13:57   

  2005  175  08:34  2007  043  22:33   

  2005  191  08:34  2007  059  22:33   

  2005  287  08:35  2007  161  13:50   

  2005  335  08:35  2007  168  13:56   

  2005  342  19:45  2008  007  22:24   

  2006  057  19:45  2008  039  22:23   

  2006  178  08:37  2008  059  13:52   

  2006  201  19:48  2008  347  13:51   

  2006  242  08:39  2009  020  13:59   

  2006  290  08:39  2009  080  22:30   

  2006  338  08:38         

  2006  345  19:48  TWP-C3 
  

  2007  028  19:48    

  2007  220  19:48 
 

Year  Julian Day  Time 

(UTC)   

  2007  293  08:38  2006  244  16:55   

  2007  300  19:48  2006  245  05:10   

  2007  364  19:46  2007  200  05:09   

  2008  015  19:46  2007  248  05:09   

  2008  040  08:35  2007  264  05:09   

  2008  159  08:37  2007  280  05:09   
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  2008  207  08:38  2008  194  05:09   

  2008  303  08:40  2008  209  16:54   

  2009  001  08:40  2008  210  05:09   

  2009  008  19:50  2009  163  16:57   

  2009  033  08:41  2009  164  05:12   

  2009  040  19:51  2009  195  16:57   

  2009  049  08:42  2009  196  05:12   

  2010  212  08:38         

  2011  007  08:37         

  2011  199  08:37         

  2011  263  08:36         

  2011  327  08:37         

  2011  359  08:37         

  2012  017  19:46         

  2012  065  19:47         

  2012  074  08:37         

  2012  138  08:37         

  2012  170  08:37         

  2012  177  19:47         

  2012  186  08:37         

  2012  202  08:37         

  2012  289  19:46         

  2013  019  19:47         

  2013   028   08:37               
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