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ABSTRACT 
	

It is widely assumed that cloud particles are spatially distributed in a random and 

uncorrelated fashion (a Poissonian distribution); however, previous studies using airborne 

observations have shown this is not true for small cloud droplets. Previous work using rain 

gauges and disdrometer networks have also found this to be true for precipitation size 

particles; however, little research has been done using airborne observations to study such 

phenomena. Thus, a question to be addressed in this study is whether clustering of 

precipitation size particles can be examined using airborne observations.  

In situ microphysical data collected on the University of North Dakota Citation II 

research aircraft during the Olympic Mountains Experiment (OLYMPEX) using a Stratton 

Park Engineering Company (SPEC) High Volume Precipitation Spectrometer Version 3 

(HVPS-3) are analyzed. The HVPS-3 captures shadow images of precipitation size 

particles, which can be used to examine clustering signatures on meter to kilometer size 

scales. Flight data are also stratified by the synoptic classifications used in OLYMPEX to 

determine if clustering changes with synoptic forcing. Overall, preliminary results indicate 

that clustering can be examined using airborne observations and that differences do occur 

between synoptic regimes. Results from this study also emphasize that non-Poisson 

statistics should be incorporated into the current radar framework, as a considerable amount 

of research has indicated that particles are not uniformly distributed in space. 
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CHAPTER 1 
 

INTRODUCTION 
 

Motivation 

When viewed from space, the visual appearance of Earth is dominated by clouds 

and their patterns. Clouds exist because of the physical process of condensation, and 

condensation occurs mainly in response to dynamical processes that include widespread 

vertical air motions, convection, and mixing (Rogers and Yau 1989). Accordingly, the 

pattern and structure of clouds are influenced by dynamical factors such as stability, 

convergence, and the proximity of fronts and cyclones (Rogers and Yau 1989). In regards 

to precipitation, initiation can occur via collision-coalescence or as a result of the Wegener-

Bergeron-Findesisen process, which involves the growth of ice particles at the expense of 

liquid droplets in mixed-phase clouds (i.e. consisting of both liquid droplets and ice 

particles) (Storelvmo and Tan 2015). While particle formation and growth are of 

fundamental importance to cloud physics, an understanding of the spatial distribution, or 

“clustering”, of clouds and precipitation particles is also of equal importance. Previous 

studies on the clustering of cloud particles have emphasized that the drop size distribution 

can broaden rapidly due to enhanced collision and condensation rates. Additionally, these 

studies have provided insight on why remotely sensed cloud drop size is generally larger 

than that measured in situ (Marshak et al. 2005). However, those studies only examined 

clustering of cloud particles on small spatial scales (centimeter to meter), in order to avoid 
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assumptions that would become unavoidable when using larger spatial scales (i.e. clouds 

being uniform). 

Despite the more recent advances in instrumentation, the degree of clustering of 

precipitation size particles still remains unknown. The clustering of precipitation size 

particles can have implications for Rayleigh statistics, as it would violate the assumption 

that conditions are spatially homogeneous (Jameson and Kostinski 2008). Thus, knowledge 

concerning the spatial distribution of precipitation particles and clustering at larger spatial 

scales is needed. Additionally, using Monte Carlo experiments, Jameson and Kostinski 

2008 found that clustering of particles increases the standard deviation of the differential 

reflectivity (ZDR) beyond what is usually calculated assuming Rayleigh (randomly 

distributed particles) statistics. As a result, findings from this study could shed light on 

whether non-Rayleigh signal statics should be used in radar applications. 

While the measurement of precipitation at a given location using surface-based 

instruments is relatively straightforward, the large spatial and temporal variability of 

precipitation intensity, type, and occurrence make direct measurements difficult over large 

regions, especially over the oceans (Hou et al. 2014). For example, rain gauges suffer from 

representativeness issues when estimating precipitation over extended areas, and radars, 

where available, must contend with issues such as attenuation, unknown particle 

composition and size distributions, and beam blockage in mountainous regions (Hou et al. 

2014). To compensate for these issues, space-based remote sensing instrumentation is often 

used. The Global Precipitation Measurement (GPM) satellite was launched in February 

2014 by the U.S National Aeronautics and Space Administration (NASA) and the Japan 

Aerospace Exploration Agency (JAXA) to help accurately measure global rain and 
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snowfall amounts. With its onboard Dual-Frequency Precipitation Radar (DPR) and 13-

channel GPM Microwave Imager (GMI), the GPM satellite expands and extends into future 

decades the nearly global surveillance of precipitation previously provided by the Tropical 

Rainfall Measuring Mission (TRMM) satellite and broadens	coverage to higher latitudes 

(Houze et al. 2017). Importantly, the DPR and GMI measurements are used to estimate 

precipitation rates through the use of retrieval algorithms. These algorithms must be refined 

and validated through the use of coincident in situ observations of the microphysical 

properties of precipitation particles (Hou et al. 2014). 

Optical Array Probes 

Our present state of knowledge of the microstructure of clouds and precipitation 

can be traced primarily to the ability to obtain information about particles from samples 

collected from aircraft (Knollenberg 1970). Direct sampling techniques were used initially, 

but measurement accuracy was adversely affected by a number of problems including low 

sampling rate, discontinuous sampling, and disturbing the sample. Thus, indirect sampling 

techniques were developed. Because of advances in optics and photo-electrics, brought 

about primarily by the birth of the laser industry, an optical approach was developed 

(Knollenberg 1970). Currently a variety of optical array probes (OAPs) are used to measure 

the concentration and size distribution of cloud particles. OAPs measure the sizes of 

shadows produced by particles passing through a collimated, high intensity, 

monochromatic light beam that illuminates a linear array of diodes (Knollenberg 1970). 

When a particle passes through the light beam within the sampling area, the diode elements 

that have the light reduced by 50 % or less are set to 1, while diodes with greater than   
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50 % light are set to 0. Hence, the photodiode is considered to be occulted if the intensity 

of the background illumination is attenuated by more than 50 % (Korolev and Issac 2005). 

One advantage of OAPs, and imaging systems in general, is that the depth of field 

increases with the square of the particle size, thus, the sampling volume always increases 

with increasing particle size, partially compensating for the decrease in concentration 

(Knollenberg 1970). However, inherent in the design of the older imaging probes were 

counting and sizing errors due to the relatively slow response time, which prompted order-

of-magnitude errors in determining the particle size distribution (PSD) of particles less than 

100 microns (Lawson et al 2006). The latest generation of OAPs have significantly 

improved response times and higher resolutions. The current study uses measurements 

made with a High Volume Precipitation Spectrometer Version 3 optical array probe 

(HVPS-3 OAP). The HVPS-3(s) optics are configured for 150 µm resolution, which allows 

particles up to 1.92 cm in diameter to be completely imaged.  

Another inherent problem associated with OAPs, and airborne instruments in 

general, is particle shattering caused by collision with the probe or the aircraft. The 

probability of shattering depends upon the ice particle habit, size, probe housing, and 

airspeed and it can affect the calculations of the concentration, water content, and radar 

reflectivity derived from the probe measurements (Korolev and Issac 2005). To minimize 

the effects of particle shattering, modified tips and post-processing rejection of particles 

via interarrival time are used. However, the rejection of particles based on interarrival times 

is not entirely satisfactory, especially since the correction methodology is based upon the 

assumption that the particles are randomly distributed, which, although satisfactory as a 

first approximation, may not be entirely appropriate (Field et al. 2006). 
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Poisson Process 

The assumption of statistically uniform and independently distributed positions of 

droplets in homogeneous unmixed clouds underlies much of cloud physics (Roger and Yau 

1989). For example, the stochastic collection equation which describes the growth of 

droplets via collision and coalescence, assumes that the cloud particles are spatially 

distributed in a perfect random fashion, that is, according to the Poisson process (Kostinski 

and Shaw 2001). Visually, Poissonian distributions appear devoid of structure and 

resemble an ideal gas of molecules, whereas non-Poissonian distributions appear patchy or 

“clustered” (Shaw et al. 2002, Fig. 1). More precisely, the assumptions behind the Poisson 

process are: (i) the process is statistically homogeneous; (ii) the probability of detecting 

more than one particle in a given volume dV is vanishingly small for sufficiently small dV; 

(iii) particle counts in non-overlapping volumes are statistically independent random 

variables at any length scale (Kostinski and Shaw 2001). 

 

Figure 1: Example of a Poisson distribution (a), where particles are uniformly, 
identically, and independently distributed random variables versus an example of a non-
Poisson distribution (b), where particles appear in a patchy or “clustered” manner. Figure 
reproduced from Shaw et al. 2002. 
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Previous studies, however, have provided results that conflict with the current 

Poissonian assumption. In an analysis of Forward Scattering Spectrometer Probe (FSSP) 

measurements of cloud droplet distributions, Baker (1992) reported non-Poissonian 

deviations in convective cumulus clouds down to scales of several centimeters, an effect 

he attributed to small-scale turbulence. Similarly, using a pair-correlation function, which 

measures the departure from a Poisson process, Shaw et al. (2002) found a clear 

enhancement of droplet clustering. In regards to precipitation size particles, using a 

network of 19 optical disdrometers in Charleston, South Carolina. Jameson et al. (2015) 

found that both spatial and temporal clustering play a role in rain variability depending 

upon the drop size. Additionally, their work determined that differences in spatial and 

temporal clustering do occur in different types of precipitation (convective and stratiform). 

Along with the use of disdrometers, the clustering of rain can also be found up to at least 

the typical kilometer scales of most radar volumes. However, little work has has examined 

the clustering of precipitation size particles using airborne observations. 

Objectives 

The objective of this work is to study the clustering of precipitation size particles 

using in situ airborne observations. Information on the spatial distribution may provide 

insight on the evolution of precipitation and may also shed light on physical mechanisms 

acting on the precipitation process (Kostinski and Jameson 1997). Though previous studies 

cited above found evidence of cloud size particle clustering on centimeter to meter scales, 

the use of the HVPS-3 in this study allows clustering to be examined on meter to kilometer 

size scales. Data collected from the Olympic Mountains Experiment (OLYMPEX) are 

stratified by the synoptic classifications used in OLYMPEX (pre-frontal, warm sector, 
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frontal, and post-frontal) to determine if clustering changes with synoptic forcing. 

Additionally, analysis of the HVPS-3 data attempts to assess and provide any additional 

impacts in regards to the atmospheric science and remote sensing communities. 
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CHAPTER 2 
 

METHODOLOGY 
 

Project Overview 
 

This study is based on data gathered during the NASA Olympic Mountains 

Experiment (OLYMPEX), which was conducted as part of NASA’s GPM satellite Ground 

Validation Program. OLYMPEX was an international, multi-organization field campaign 

designed to collect detailed measurements by aircraft and ground sites to correspond with 

GPM satellite measurements (Houze et al. 2017). The project took place between 

November 2015 and February 2016 in Washington State, and aimed to validate 

assumptions used in precipitation measurement algorithms. The venue for OLYMPEX, as 

seen in Fig. 2, was chosen because it has precipitation from midlatitude baroclinic storm 

systems arriving frequently from the adjacent Pacific Ocean and abruptly transiting 

mountainous terrain (Houze et al. 2017). In addition, several airfields capable of serving 

large aircraft exist in the region, and the area of the Olympic Mountains is small enough 

that the OLYMPEX aircraft could fly in and over the incoming storms for long periods of 

time with minimal time spend traversing the distance to and from the observation area 

(Houze et al. 2017). 
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Figure 2: The Olympic Mountains Experiment (OLYMPEX) observation network, from 
Houze et al. 2017. 

Citation II Overview 

The platform used to obtain in-situ cloud measurements during OLYMPEX was 

the University of North Dakota Citation II research aircraft (UND Citation II). This aircraft 

was modified for atmospheric research and was capable of providing in-situ aerosol and 
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cloud microphysical measurements at altitudes from near the surface to 13 km (O’Brien 

2016). Structural modifications to the UND Citation II included pylons beneath the wing 

tips to allow for mounted instruments, hard points on the fuselage to hold instruments that 

exceeded the size and weight limits of other areas, and a nose boom which collected 

pressure and wind measurements ahead of the aircraft nose. While the UND Citation II 

featured a variety of different instruments, this study solely focuses on the HVPS-3. During 

OLYMPEX there were two HVPS-3 OAPs mounted underneath the left wing, as seen in 

Fig. 3. The HVPS-3 on the inboard pylon was always mounted vertically, whereas the 

orientation of HVPS-3 on the outboard pylon was modified depending on the day. 

However, the outboard HVPS-3 was generally mounted horizontally in order to obtain 

measurements in an orthogonal direction from the inboard HVPS-3. 

	

Figure 3: The configuration of the inboard vertically mounted High Volume Precipitation 
Spectrometer Version 3 (HVPS-3) (left) and outboard horizontally mounted HVPS-3 
(right). The orientation of the outboard HVPS-3 was modified depending on the day. 

.
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No matter the configuration, the UND Citation II data system always recorded basic 

parameters such as position, altitude, and speed. Additionally, the meteorological package 

included measurements of temperature, dew point temperature, pressure, and three-

dimensional winds. The Science Engineering Associates (SEA) Model M300 Data 

Acquisition System, also onboard the UND Citation II, is customized for each project in 

order to accommodate specific research demands. The M300 not only records and displays 

data in real time, but also calculates physical parameters such as the true airspeed (i.e. 

airspeed corrected for temperature and altitude). True airspeed (TAS) is a critical parameter 

for OAP measurements, since the sample volume is dictated by the TAS of the aircraft and 

affects particle images, sizing, and concentrations (O’Brien 2016). All instrument data 

acquired by the M-300 are saved in a binary formatted file (*.sea), and data from each of 

the SPEC instruments (2DS, HVPS3, Cloud Particle Imager) are recorded by a different 

Windows XP computer in a binary formatted file (O’Brien 2016). 

Airborne Data Processing and Analysis Software Package 

The development of software to effectively process and analyze measurements is a 

crucial aspect of any research project. To quality control and assure data collected with the 

UND Citation II, the Airborne Data Processing and Analysis (ADPAA) package was 

developed. The ADPAA package is intended to fully automate data processing while 

incorporating the concept of missing value codes and levels of data processing (Delene 

2011). ADPAA processing is split into four different processing levels. The first level splits 

the saved binary data from the M-300 into files for each instrument system. The second 

level converts parameters from engineering units (e.g. volts) to physical units (e.g. Celsius) 

(Delene 2011). The third level combines parameters from multiple instruments to derive 
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other parameters, such as liquid water content and ambient temperature. Lastly, the fourth 

level combines derived parameters from Level 3 data files to create combined files, such 

as combining spectra from the Cloud Droplet Probe (CDP), 2D-S, and HVPS-3. The final 

step in the data processing is to create a summary file that contains all parameters of 

scientific interest (Delene 2011). As a result, the summary file can contain parameters from 

any level. Additionally, each flight is then analyzed to quality assure the data, which entails 

removing any invalid data and applying a parameter specific missing value code for that 

time frame. 

The data obtained during OLYMPEX using the UND Citation II were processed 

using the ADPAA software on 26 April 2016. Of particular interest is the temperature, 

pressure altitude, and GPS position, since these measurements define the sampling 

environment of the HVPS3 probe. Additionally, the TAS is important since it is used to 

convert from a time series to a spatial series. However, a quality-assured TAS is needed 

for the post-processing of OAP data because the TAS sent to the SPEC probes during flight 

is not recorded by OAPs. 

Software for OAP Data Analysis Version 2 

The data collected with the HVPS-3(s) during OLYMPEX were processed with 

Software for OAP Data Analysis Version 2 (SODA2), which was developed by Aaron 

Bansemer at the National Center for Atmospheric Research (NCAR). The SPEC data 

acquisition software stores photodiode array data within binary files. While there were two 

HVPS-3(s) flown in OLYMPEX, only data collected from the outboard mounted HVPS-3 

are analyzed. In order to size each particle image within a data buffer, SODA2 uses the 
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‘circle fit method’, which encloses each image with the smallest possible circle. The 

diameter of the particle is defined as the diameter of the bounding circle. Additionally, 

SODA2 allows for the creation of particle by particle (pbp) files, which stores information 

about each individual particle, including particle diameter and inter-particle time (IPT, i.e. 

time between the current particle and the previous particle). For analysis purposes, the pbp 

data are converted from an Interface Definition Language (IDL) save file format into an 

American Standard Code for Information Interchange (ASCII) file, in the standard 

NASA/UND format (Delene 2009). Lastly, the quality assured TAS located in the .basic 

file is merged into the converted pbp file.  

Case Selection 

OLYMPEX benefited from cooperative weather that provided large amounts of 

precipitation from a series of synoptically well-defined storms (Houze et al. 2017). The 

Pacific frontal systems passing over the Olympic Peninsula typically have four sectors, 

each with different environmental characteristics, cloud patterns, and precipitation 

characteristics (Houze et al. 2015). Fig. 4 shows an idealized storm structure consisting of 

the four sectors (i.e. prefrontal, frontal, postfrontal, and warm), which was used to guide 

daily forecast and planning of OLYMPEX operations. 
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Figure 4: Idealization of the sectors of a typical extratropical cyclone passing over the 
Olympic Mountains Experiment (OLYMPEX) region, from Houze et al. 2017. 

 
The prefrontal sector is generally located to the east and north of an occluded front 

and north of a warm front (if present), and is generally characterized by warm advection 

and broad stratiform clouds with steady rainfall (Houze et al. 2015). However, rain rates 

can vary depending on the moisture content and degree of synoptic and mesoscale forcing. 

An example surface analysis and composite radar reflectivity image observed during an 

OLYMPEX prefrontal flight (3 Dec 2015) can be seen in Fig. 5. Though the surface 

analysis does not completely agree with what was previously described, it is important to 

note that Fig. 4 is an idealization.  
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Figure 5: 1500 UTC surface analysis (left image) for the 3 Dec 2015 (prefrontal) flight, 
obtained from the Weather Prediction Center (WPC). 15:25 UTC composite radar 
reflectivity (right image) for the 3 Dec 2015 (prefrontal) flight, obtained from the 
University Corporation for Atmospheric Research (UCAR) Image Archive using data 
from the College of DuPage’s NeXt Generation Weather Lab (NEXLAB). 

	
The frontal sector is a broad quasi-linear cloud shield within a cold (or occluded) 

front and its associated frontal circulations contribute to the production of precipitation 

(Houze et al. 2015). The frontal sector is often associated with a wide cold-frontal rain 

band, which additionally has a narrow cold-frontal rain band embedded within it that 

produces high rainfall rates. An example surface analysis and composite radar reflectivity 

image observed during an OLYMPEX frontal flight (23 Nov 2015) can be seen in Fig. 6. 

Though rainbands in these sectors can produce substantial rainfall amounts, only a few 

millimeters of rain fell during this stratiform event. 
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Figure 6: 2100 UTC surface analysis (left image) for the 23 Nov 2015 (frontal) flight, 
obtained from the Weather Prediction Center (WPC). 21:25 UTC composite radar 
reflectivity (right image) for the 23 Nov 2015 (frontal) flight, obtained from the 
University Corporation for Atmospheric Research (UCAR) Image Archive using data 
from the College of DuPage’s NeXt Generation Weather Lab (NEXLAB). 

	
The postfrontal sector is situated behind (west) of the cold (or occluded) front and 

is characterized by cold advection, conditional instability and a field of small-scale 

convective clouds separated by clean air (Houze et al. 2015). As a result, precipitation in 

the postfrontal sector can significantly contribute to the total rain or snowfall produced by 

the entire storm system. An example surface analysis and composite radar reflectivity 

image observed during an OLYMPEX postfrontal flight (13 Dec 2015) can be seen in Fig. 

7. The surface analysis is nearly identical to the idealization provided in Fig. 4, and 

convection is present along the coast of Washington as indicated by the high reflectivity 

values (~ 50 dBZ). Lastly, warm sector rainbands, which resemble squall lines, are oriented 

parallel to the approaching cold front (Matejka et al. 1979). 
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Figure 7: 1800 UTC surface analysis (left image) for the 13 Dec 2015 (postfrontal) flight, 
obtained from the Weather Prediction Center (WPC). 17:25 UTC composite radar 
reflectivity (right image) for the 13 Dec 2015 (postfrontal) flight, obtained from the 
University Corporation for Atmospheric Research (UCAR) Image Archive using data 
from the College of DuPage’s NeXt Generation Weather Lab (NEXLAB). 

	
Throughout the course of OLYMPEX, the UND Citation II sampled eight 

prefrontal, eight warm, two frontal and six postfrontal sectors. In order to determine if 

clustering changes with synoptic forcing, flights from each sector are analyzed. Since the 

warm sector was usually sampled during prefrontal flights, this study chose to solely focus 

on prefrontal, frontal and postfrontal sectors. Cases are determined through extensive 

search of science notes taken by instrument operators during each flight, as they provide 

additional information on the sampled atmospheric environment. Additionally, since it is 

desirable to use data at a constant altitude, pressure altitude data for each flight are 

inspected. Lastly, since the outboard HVPS-3 was mounted horizontally for every flight 

except two, no cases in this analysis occur on days when the HVPS-3 was mounted 
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vertically, in an effort to provide uniformity. 

Analysis 

While viewing shadow images produced by the HVPS3 can be used for qualitative 

purposes, a quantitative approach is needed to determine whether clustering exists. Since 

the HVPS-3 records particle data in terms of time, the data are first converted into a spatial 

series and then summed to create a cumulative particle distance series (CPD), as seen in 

Equation 1, which ultimately represents how far the plane has traveled. 

 
!"#$ = &"'( ∗ '*+(

$

(,-

, (1) 

Using data from the pbp file and the derived cumulative spatial series, a counts series is 

computed by determining how many particle counts exist within each ten meters. To 

qualify as a count, the IPT must be greater than 0.0001 seconds, which prevents any 

shattered particles from being accepted. Additionally, in an effort to reduce noise, the first 

three channels of the HVPS-3 were excluded. Thus, each particle is comprised of at least 

three pixels (450 µm). Additionally, to keep things uniform among each flight and sector, 

only those spatial series that are 30 kilometers in length and at a constant pressure altitude 

are used. 

To quantify clustering, the pair correlation function is used and is calculated by 

 / 0 =
1
23 2 04 2 04 + 0 − 1, (2) 

where N is the number of droplets in volume V, and r is an independent variable (length-

scale, i.e. lag). The pair correlation quantifies clustering by comparing measured spatial 

distributions with a standard of perfect randomness and it does so in a scale-localized 
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manner (Shaw et al. 2002). The pair correlation function is zero if a Poisson process is 

observed. However, when the pair correlation is greater than zero it implies that if a particle 

is encountered at a given position in a cloud, there is an enhanced probability of finding 

another particle distance r away (Shaw et al. 2002). For this analysis, the maximum r (i.e. 

lag) is one tenth of the total flight leg distance (i.e. a 30 km flight leg would result in a 

maximum r of 3 km).  

To determine if any correlations between particle size and clustering exist, the mean 

diameter, which is defined as the average particle diameter within the particle size 

spectrum, is calculated by 

 789:	#<9=8>80 =
#-?
2-?

 (3) 

where #-? is the sum of the total particle diameters per 10 meters and 2-? is the total 

number of particle counts per 10 meters. Additionally, the mean volume diameter, which 

is defined as the mean diameter of the volume distribution, is calculated by 

 789:	@ABC=8	#<9=8>80 =
6
E @-? -/G (4) 

where @-? is the average volume per 10 meters, which is computed by dividing the total 

volume in each 10 meters by the total number of counts in each 10 meters. The mean 

volume diameter is useful as it provides a size-weighted average that can be related to radar 

reflectivity, and can help determine whether clustering is observed more frequently for 

larger size particles.  

 This study also examines the spectral density of each flight leg’s spatial series to 

determine how the spectral density is distributed across multiple frequencies. Lower 

frequencies represent larger distances (i.e. a frequency of 0.010, 0.100, and 1.000 



	 20	

represents a length scale of 10 km, 1 km, and 100 m respectively), assuming a TAS of 100 

m s-1. These minima and/or maxima of spectral density are then compared to the pair 

correlation to determine if any patterns exist. For example, enhanced variance at small 

scales may be related to a peak in the pair correlation function observed at similar scales 

(Shaw et al. 2002). The spectral density is plotted using Cplot, a software program 

developed by David Delene, and calculated by 

 
" H = 	

1
2E J 0 8,$KLM0

N

,N
, (5) 

which takes the auto-covariance of the individual spatial series created earlier.  Lastly, the 

pair correlation for each flight leg is compared to the average number of counts, pressure 

altitude, temperature, and turbulence of each flight leg to determine if any additional 

correlations exist.  

To test the computational methods, the pair correlation function and spectral 

density were calculated for a randomly generated series of counts (Fig. 8). As expected, 

the pair correlation at each lag is zero and the spectral density is flat, indicating that a 

Poissonian distribution is observed.
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Figure 8: Randomly generated counts series (top image). Data represents the number of 
counts observed per 10 meters. Pair correlation (middle image) derived using the counts 
series above. Maximum lag is one-tenth of the total distance. Spectral density (bottom 
image) of the randomly generated counts series. 
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CHAPTER III 

DATA 

Data Overview 

This chapter presents select cases from each sector and the total number of cases 

that are used within the analysis. Case study days for each frontal sector are selected 

through review of daily science summaries from OLYMPEX along with inspection of the 

UND Citation II pressure altitude data. The Citation data are then broken down into shorter 

flight segments or legs. In this analysis, each flight leg consists of a constant pressure 

altitude, is 30 km in length, and has an average time of four to five minutes. For each case, 

a NASA dual-polarization S-band radar (NPOL) base reflectivity image and an 

atmospheric sounding are shown to provide background on the sampled environment. 

Additionally, the flight leg track is superimposed on the NPOL base reflectivity image to 

provide a visual reference of the location of the Citation in relation to the overall 

precipitation field and geographical references.  

Prefrontal 

A total of thirteen prefrontal flight legs are used in this analysis (Table 1). From 

those thirteen flight legs, four representative cases are selected, as highlighted in Table 1. 
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Table 1: Prefrontal cases. Highlighted times indicate flight legs chosen for thorough 
analysis. 

Date Start  
Time 

End  
Time 

Average Pressure 
Altitude 

13 Nov 2015 

15:15:50 UTC 15:19:33 UTC 3100 m 

16:11:40 UTC 16:50:55 UTC 3099 m 

16:28:30 UTC 16:33:34 UTC 1572 m 

16:56:40 UTC 17:01:55 UTC 1570 m 

17:25:30 UTC 17:31:10 UTC 655 m 

17:35:30 UTC 17:40:47 UTC 1556 m 

18:10:00 UTC 18:14:44 UTC 1265 m 

3 Dec 2015 

14:38:20 UTC 14:41:52 UTC 5676 m 

15:03:20 UTC 15:07:18 UTC 4300 m 

15:36:40 UTC 15:40:51 UTC 3224 m 

16:17:10 UTC 16:21:22 UTC 4446 m 

16:28:30 UTC 16:32:22 UTC 5813 m 

16:40:00 UTC 16:44:01 UTC 4144 m 
 

The first and second cases occurred on 13 November 2015. Fig. 9 (Fig. 10) shows 

the closest NPOL base reflectivity scan in relation to the first case (second case). Though 

the first case occurred more than 51 minutes after the closest base reflectivity scan, the 

overall structure of precipitation remained the same during the flight leg. Thus, the first 

case occurred in regions of reflectivity primarily between 15-25 dBZ. Similarly, the second 

case occurred in regions of reflectivity primarily between 25-30 dBZ. The sounding 

launched from the NPOL site during the first case and prior to the second case shows 

saturated conditions from the surface to nearly 650 hPa, followed by a dry layer near the 

cloud top, which then transitions to a relatively moist layer near the top of the troposphere 
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(Fig. 11). The sounding also shows weak southwesterly winds near the surface with 

stronger westerly winds aloft.  

 

Figure 9: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 13 
Nov 2015 at 15:37:27 UTC (leg start time -51:03). The black line indicates the position 
of the UND Citation II during 16:28:30 UTC – 16:33:34 UTC.  
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Figure 10: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 13 
Nov 2015 at 17:18:55 UTC (leg start time –6:35). The black line indicates the position of 
the UND Citation II during 17:25:30 UTC – 17:31:10 UTC.  
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Figure 11: Sounding launched from the NASA dual-polarization S-band radar (NPOL) 
site on 13 Nov 2015 observed during 16:33 UTC. 

	
The third and fourth cases occurred on 3 December 2015. Fig. 12 (Fig. 13) shows 

the closest NPOL base reflectivity scan in relation to the third case (fourth case). While the 

third case occurred in a region of zero base-tilt reflectivity due to beam blockage from the 

mountains, the fourth case occurred in regions of reflectivity primarily between 15-25 dBZ. 

The sounding launched from the NPOL site prior to both cases shows saturated conditions 

through the depth of the troposphere and strong south-southwesterly winds at most levels 

(Fig. 14). 
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Figure 12: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 3 
Dec 2015 at 15:37:29 UTC (leg start time +0:49). The black line indicates the position of 
the UND Citation II during (a) 15:36:40 UTC – 15:40:51 UTC. 
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Figure 13: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 3 
Dec 2015 at 16:37:27 UTC (leg end time +5:05). The black line indicates the position of 
the UND Citation II during 16:28:30 UTC – 16:32:22 UTC. 
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Figure 14: Sounding launched from the NASA dual-polarization S-band radar (NPOL) 
site on 3 Dec 2015 observed during 15:17 UTC. 
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Frontal 

A total of eight frontal flight legs are used in this analysis (Table 2). From those 

eight flight legs, two representative cases are selected, as highlighted in Table 2. Fig. 15 

(Fig. 16) shows the closest NPOL base reflectivity scan in relation to the first case (second 

case), both of which occurred on 23 November 2015, in broad regions of stratiform rain 

ranging in reflectivity values of 20-25 dBZ. The sounding launched from the NPOL site 

prior to both cases shows moist conditions throughout the depth of the troposphere with 

pockets of drier air from ~930 mb to ~680 mb, along with weak southwesterly winds near 

the surface and stronger southwesterly winds aloft (Fig. 17). 

 

Table 2: Frontal cases. Highlighted times indicate flight legs chosen for thorough 
analysis. 

Date Start  
Time 

End  
Time 

Average Pressure 
Altitude 

23 Nov 2015 

21:06:40 UTC 21:10:54 UTC 4618 m 

21:26:40 UTC 21:31:14 UTC 4002 m 

21:35:00 UTC 21:39:49 UTC 3379 m 

21:52:30 UTC 21:57:42 UTC 2173 m 

22:00:20 UTC 22:05:50 UTC 1562 m 

22:25:50 UTC 22:31:04 UTC 2160 m 

22:41:40 UTC 22:46:20 UTC 3372 m 

22:50:00 UTC 22:54:17 UTC 3982 m 
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Figure 15:	NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 23 
Nov 2015 at 21:37:30 UTC (leg end time +6:16). The black line indicates the position of 
the UND Citation II during (a) 21:26:40 UTC – 21:31:14 UTC. 
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Figure 16:	NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 23 
Nov 2015 at 21:57:21 UTC (leg start time -2:59). The black line indicates the position of 
the UND Citation II during 22:00:20 UTC – 22:05:50 UTC. 
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Figure 17: Sounding launched from the NASA dual-polarization S-band radar (NPOL) 
site on 23 Nov 2015 observed during 20:14 UTC. 

	



	 34	

Postfrontal 

A total of twelve postfrontal flight legs are used in this analysis (Table 3). From 

those eleven flight legs, three representative cases are selected, as highlighted in Table 3. 

The first case occurred on 4 December 2015. Fig. 18 shows the closest NPOL base 

reflectivity scan in relation to the flight leg position, which occurred in regions of 

reflectivity primarily between 25-35 dBZ. The sounding launched from the NPOL site after 

the flight leg shows instability below 600 mb, with rather dry conditions aloft, and weak 

westerly winds at most levels (Fig. 19). 

 

Table 3: Postfrontal cases. Highlighted times indicate flight legs chosen for thorough 
analysis. 

Date Start  
Time 

End  
Time 

Average Pressure 
Altitude 

4 Dec 2015 

13:32:08 UTC 13:36:22 UTC 3087 m 

14:37:34 UTC 14:41:48 UTC 3695 m 

14:54:34 UTC 14:58:21 UTC 4613 m 

15:08:54 UTC 15:12:35 UTC 5226 m 

13 Dec 2015 

16:10:00 UTC 16:14:30 UTC 3183 m 

16:55:00 UTC 16:59:58 UTC 1656 m 

17:04:10 UTC 17:08:45 UTC 2568 m 

17:13:20 UTC 17:17:31 UTC 3481 m 

17:26:40 UTC 17:30:39 UTC 4001 m 

18:18:20 UTC 18:23:00 UTC 2564 m 

18:28:20 UTC 18:32:18 UTC 3477 m 
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Figure 18: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 4 
Dec 2015 at 14:57:19 UTC (leg start time +2:47). The black line indicates the position of 
the UND Citation II during 14:54:34 UTC – 14:58:21 UTC. NPOL sounding from 4 Dec 
2015 observed during 15:18 UTC. 
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Figure 19: Sounding launched from the NASA dual-polarization S-band radar (NPOL) 
site on 4 Dec 2015 observed during 15:18 UTC. 

	
The second and third cases occurred on 13 December 2015. Fig. 20 (Fig. 21) shows 

the closest NPOL base reflectivity scan in relation to both flight legs. Each occurred in 

regions of reflectivity primarily between 15-35 dBZ. The sounding launched from the 

NPOL site prior to both cases shows moist conditions throughout the depth of the 

troposphere and westerly winds at most levels (Fig. 22). 
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Figure 20: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 13 
Dec 2015 at (a) 17:18:48 UTC (leg end time +1:17) and (b) 18:18:49 UTC (leg start time 
+0:29). The black line indicates the position of the UND Citation II during (a) 17:13:20 
UTC – 17:17:31 UTC and (b) 18:18:20 UTC – 18:23:00 UTC. 
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Figure 21: NASA dual-polarization S-band radar (NPOL) base reflectivity scan from 13 
Dec 2015 at 18:18:49 UTC (leg start time +0:29). The black line indicates the position of 
the UND Citation II during 18:18:20 UTC – 18:23:00 UTC. 
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Figure 22: Sounding launched from the NASA dual-polarization S-band radar (NPOL) 
site on 13 Dec 2015 observed during 15:17 UTC. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Overview 

The cases presented within in the previous chapter represent the flight legs from 

each sector that are used in this analysis. Of those cases, a select few from each sector are 

chosen to provide a representative view of clustering for that specific sector. A counts 

series, pair correlation, and spectral density plot are shown for each selected case. 

Additionally, derived measurements of particle size outlined in Chapter II and other 

parameters observed in-situ (pressure altitude, temperature, and turbulence) are presented 

to quantitatively determine whether any trends in clustering exist within each sector. This 

chapter also discusses similarities and differences found between the synoptic regimes in 

regards to the correlations found between the max pair correlation and parameters 

described previously. Lastly, trends in spectral density between each sector are noted. 

Prefrontal 

While two prefrontal flights are used in this analysis, the 13 November 2015 flight 

experienced warmer temperatures with five flight legs in above freezing conditions (i.e. 

rain). To minimize biases in statistics, prefrontal flight legs that occurred in rain are 

separated from those that occurred in ice. This provides an opportunity to compare the 

distributions of rain and ice to determine whether any similarities or differences exist.  
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Prefrontal Rain 

The counts series for the first 13 November 2015 case (Fig. 23) shows the number 

of counts is less than 30 for most of the flight leg, with higher counts near 2, 4, and 29 km. 

The average count is 9.0 for the entire 30 km flight leg. The corresponding pair correlation 

(Fig. 23) has a maximum value of 1.46 and decreases as the lag increases until it reaches 1 

km, where a slight increase in pair correlation is observed before decreasing again. This 

flight leg is chosen because its max pair correlation value is the largest observed for rain 

cases and provides an example of how low counts affect the max pair correlation. The 

spectral density (Fig.23) shows values near 10-3 m2 s for lower frequencies (i.e. larger 

distances, as previously discussed in Chapter II), decreasing to 10-4 m2 s before the signal 

resembles noise at higher frequencies. There are no substantial minima or maxima 

observed during this flight leg. 

In comparison, the counts series for the second 13 November 2015 case (Fig. 24) 

shows the number of counts generally decreases throughout the duration of the leg. The 

average count is 58.0, which is substantially higher than for the previous leg. The 

corresponding pair correlation (Fig. 24) has a max value of 0.34 and is nearly constant for 

most lags. This flight leg is chosen because it provides a representative view of clustering 

for flight legs with low counts. The spectral density (Fig. 24) shows values near 10-3 m2 s 

for lower frequencies, decreasing to 10-6 m2 s before the signal resembles noise at higher 

frequencies. There are no substantial minima or maxima observed during this flight leg. 
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Figure 23: Counts series (top image) for the 13 Nov 2015 flight during 16:28:30 UTC-
16:33:34 UTC. Data represent the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 16:28:30 UTC-16:33:34 UTC. 
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Figure 24: Counts series (top image) for the 13 Nov 2015 flight during 17:25:30 UTC-
17:31:10 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 17:25:30 UTC-17:31:10 UTC. 
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All prefrontal rain flight leg averages for derived parameters and parameters 

observed in-situ are found in Table 4. Scatter plots of these parameters compared to the 

max pair correlation are seen in Fig. 25, which also includes a linear best fit equation and 

correlation coefficient, r. 
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Figure 25: Prefrontal flight leg parameter averages compared to the max pair correlation. 
All flight legs occurred in above freezing conditions (i.e. rain). Each plot includes a linear 
best fit equation and correlation coefficient, r. 
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Prefrontal Ice 

The counts series for the first 3 December 2015 case (Fig. 26) shows the number 

of counts is relatively high for the duration of the flight and has an average count of 198.5. 

The corresponding pair correlation (Fig. 26) has a max value of 0.05 and is nearly constant 

for most lags before it trends towards zero around 3 km. This flight leg is chosen because 

it provides a representative view of clustering for flight legs with high counts. The spectral 

density (Fig. 26) shows values near 10-5 m2 s for lower frequencies, decreasing to 10-8        

m2 s before the signal resembles noise at higher frequencies. A noticeable minimum occurs 

near 0.020 s-1 (~ 9 km). 

In comparison, the counts series for the second 3 December 2015 case (Fig. 27) 

shows the number of counts is less than 10 for most of the leg, with a small region of higher 

counts (up to 30) between 14-17 km. The corresponding pair correlation (Fig. 27) has a 

max value of 1.05 and decreases toward zero at long lags. This flight leg is chosen because 

it provides a representative view of clustering for flight legs with low counts. The spectral 

density (Fig. 27) shows values near 100 m2 s for lower frequencies, decreasing to 10-4 m2 s 

before the signal resembles noise at higher frequencies. There are no substantial minima or 

maxima observed during this flight leg. 

All prefrontal ice flight leg averages for derived parameters and parameters 

observed in-situ are found in Table 5. Corresponding scatter plots of these parameters 

compared to the max pair correlation are seen in Fig. 28, which also includes a linear best 

fit equation and correlation coefficient, r. 
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Figure 26: Counts series (top image) for the 3 Dec 2015 flight during 15:36:40 UTC-
15:40:51 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 15:36:40 UTC-15:40:51 UTC. 
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Figure 27: Counts series (top image) for the 3 Dec 2015 flight during 16:28:30 UTC-
16:32:22 UTC (Top). Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 16:28:30 UTC-16:32:22 UTC. 
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Figure 28: Prefrontal flight leg parameter averages compared to the max pair correlation. 
All flight legs occurred in below freezing conditions (i.e. ice). Each plot includes a linear 
best fit equation and correlation coefficient, r. 
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Frontal 

Legs for the frontal sector are chosen from the 23 November 2018 flight. Since the 

counts are fairly uniform, legs are chosen based on temperature. The counts series for the 

first case (Fig. 29) shows the number of counts are fairly consistent and has an average 

count of 67.5. However, peaks in counts did occur near 7, 18, and 27 km. The 

corresponding pair correlation (Fig. 29) has a max value of 0.06 and is nearly constant for 

most lags. This flight leg is chosen because it provides a representative view of clustering 

for legs sampled at colder temperatures (higher in the cloud) on this flight. The spectral 

density (Fig. 29) shows values near 10-4 m2 s for lower frequencies, decreasing to 10-7        

m2 s before the signal resembles noise at higher frequencies. There are no substantial 

minima or maxima observed during this flight leg. 

The counts series for the second case (Fig. 30) shows the number of counts 

generally decreases throughout the flight and has an average count of 49.1. The 

corresponding pair correlation (Fig. 30) has a max value of 0.05 and is nearly constant for 

most lags. This flight leg is chosen because it provides a representative view of clustering 

for legs sampled at warmer temperatures (lower in cloud) on this flight. Much like the 

colder leg, the spectral density (Fig. 30) shows values near 10-4 m2 s for lower frequencies, 

decreasing to 10-7 m2 s before the signal resembles noise at higher frequencies. There are 

no substantial minima or maxima observed during this flight leg. 

All frontal flight leg averages for derived parameters and parameters observed in-

situ are found in Table 6. Corresponding scatter plots of these parameters compared to the 

max pair correlation are seen in Fig. 31, which also includes a linear best fit equation and 

correlation coefficient, r.  
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Figure 29: Counts series (top image) for the 23 Nov 2015 flight during 21:26:40 UTC-
21:31:14 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 21:26:40 UTC-21:31:14 UTC. 
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Figure 30: Counts series (top image) for the 23 Nov 2015 flight during 22:00:20 UTC-
22:05:50 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 22:00:20 UTC-22:05:50 UTC. 
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Figure 31: Frontal flight leg parameter averages compared to the max pair correlation. 
Each plot includes a linear best fit equation and correlation coefficient, r. 
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Postfrontal 

The counts series for the 4 December 2015 case (Fig. 32) shows the number of 

counts fluctuates during the first half of the flight before becoming more consistent for the 

remainder. The average count is 74.6 for the entire flight leg. The corresponding pair 

correlation (Fig. 32) has a max value of 0.38 and decreases toward zero as the lag increases, 

with a slight increase near 1 km. This flight leg is chosen because it provides a 

representative view of clustering for flight legs with moderate counts. The spectral density 

(Fig. 32) shows values near 10-5 m2 s for lower frequencies, decreasing to 10-7 m2 s before 

the signal resembles noise at higher frequencies. A noticeable minimum occurs near 0.020 

s-1 (~ 9 km). 
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Figure 32: Counts series (top image) for the 4 Dec 2015 flight during 14:54:34 UTC-
14:58:21 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 14:54:34 UTC-14:58:21 UTC. 
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The counts series for the first 13 December 2015 case (Fig. 33) shows the number 

of counts fluctuates for most of the flight before becoming more consistent near 18 km and 

has an average count of 178.8. The corresponding pair correlation (Fig. 33) has a max value 

of 0.11 and nearly constant for most lags. This flight leg is chosen because it provides a 

representative view of clustering for flight legs with high counts. The spectral density (Fig. 

33) shows values near 10-5 m2 s for lower frequencies, decreasing to 10-8 m2 s before the 

signal resembles noise at higher frequencies. Two noticeable minima occur near 0.020 s-1 

(~ 9 km) and 0.090 s-1 (~ 2 km). 

In comparison, the counts series for the second 13 December 2015 case (Fig. 34) 

shows the number of counts is relatively low and consistent during the beginning of the 

flight before it begins to increase and fluctuate for the remainder of the flight. The average 

count is 82.9 for the entire leg. The corresponding pair correlation (Fig. 34) has a max 

value of 0.35 and nearly constant for most lags. This flight leg is chosen because its average 

count and max pair correlation are similar to the 4 December 2015 case. The spectral 

density (Fig. 34) shows values near 10-3 m2 s for lower frequencies, decreasing to 10-6        

m2 s before the signal resembles noise at higher frequencies. A noticeable minimum occurs 

near 0.100 s-1 (~ 1 km). 

All postfrontal flight leg averages for derived parameters and parameters observed 

in-situ are found in Table 7. Corresponding scatter plots of these parameters compared to 

the max pair correlation are seen in Fig. 35, which also includes a linear best fit equation 

and correlation coefficient, r.  

 



	

	 60	

	

Figure 33: Counts series (top image) for the 13 Dec 2015 flight during 17:13:20 UTC-
17:17:31 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 17:13:20 UTC-17:17:31 UTC. 
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Figure 34: Counts series (top image) for the 13 Dec 2015 flight during 18:18:20 UTC-
18:23:00 UTC. Data represents the number of counts observed per 10 meters. Pair 
correlation (middle image) derived using the counts series above. Maximum lag is one-
tenth of the total flight leg distance. Spectral density (bottom image) of the derived 
spatial series during 18:18:20 UTC-18:23:00 UTC. 
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Figure 35: Postfrontal flight leg parameter averages compared to the max pair correlation. 
Each plot includes a linear best fit equation and correlation coefficient, r. 
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Discussion 

Synoptic Regimes 

Table 8 shows the correlation coefficient values, r, observed from each sector in 

regards to the relationship between the max pair correlation and derived parameters/ 

parameters observed in-situ. White cells indicate weak correlations (i.e. r < 0.4), whereas 

light red (light blue) cells indicate moderate positive (negative) correlations ( i.e. 0.4 ≤ r ≤ 

0.6 (-0.4 ≥ r ≥ -0.6)). Conversely, dark red (dark blue) cells indicate strong positive 

(negative) correlations (i.e. 0.6 ≤ r < 1.0 (-0.6 ≥ r > -1.0)). 

 

Table 8: Correlation coefficient, r, from each sector in regards to the relationship between 
the max pair correlation and the pressure altitude, temperature (temp), counts, turbulence 
(turb), mean volume diameter, and mean diameter. Dark (light) red corresponds to a 
strong (moderate) positive correlation, and dark (light) blue corresponds to a strong 
(moderate) negative correlation.  

 
 Pressure  

Altitude Temp. Counts Turb. 
Mean  

Volume  
Diameter 

Mean  
Diameter 

Prefrontal 
(rain) r 0.43 -0.57 -0.93 -0.36 -0.14 0.72 

Prefrontal 
(ice) r 0.14 -0.02 -0.76 -0.69 -0.90 -0.52 

Frontal r -0.17 0.18 -0.47 0.15 0.10 0.30 

Postfrontal r 0.07 -0.02 -0.65 0.40 -0.05 0.81 
 

		

	



	

	 65	

One relationship that is consistent among all sectors is a negative correlation 

between the precipitation particle counts and max pair correlation. In other words, the max 

pair correlation increases as the number of counts decreases. This negative correlation is 

stronger for prefrontal rain and prefrontal ice flight legs than for frontal and postfrontal 

flight legs. With respect to the mean diameter, statistics from prefrontal rain and postfrontal 

flight legs indicate that positive correlations exist when compared to the max pair 

correlation, whereas statistics from prefrontal ice flight legs indicate that a moderate 

negative correlation exist. However, the correlations are weaker for the prefrontal rain and 

postfrontal flight legs if the outlier data point in each sector is excluded. Therefore, it is 

important to err on the side of caution when interpreting the correlation values since the 

sample size for each sector is small. In regards to the pressure altitude and temperature, 

statistics from prefrontal rain flight legs indicate that a moderate positive and negative 

correlation exist respectively when compared to the max pair correlation. However, only 

weak correlations between these parameters are found in the remaining sectors. Lastly, 

with respect to turbulence and the mean volume diameter, statistics from prefrontal ice 

flight legs indicate that a moderate and strong negative correlation exist respectively when 

compared to the max pair correlation. In comparison, a moderate positive correlation exists 

between the max pair correlation and turbulence in the postfrontal sector.  

In addition to statistical correlations, there are also a few general differences that 

exist among each sector. For example, this study found that higher pair correlations (i.e. 

greater than 1.0) occur in the prefrontal sector. This could be due to the general structure 

of prefrontal rainbands, which often contain pockets of little to no precipitation. As a result, 

certain flight legs can experience lower counts of precipitation size particles, which can 
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ultimately contribute to overall higher pair correlation values. The prefrontal sector also 

has the highest variability in the number of counts, which ranged from around 4 to nearly 

200. In comparison, the frontal sector has the lowest variability in number counts along 

with the lowest pair correlations, as more than half were below 0.10. It should be noted 

that all of the flight legs in this sector, excluding the first, are vertically stacked. The radar 

signature also remained fairly consistent during this time period, with reflectivity values 

ranging between 20-25 dBZ. Thus, consistency in number of counts and pair correlation 

values could be a result of nearly all flight legs being stacked along with each occurring in 

regions of steady stratiform precipitation on the same day. Lastly, the postfrontal sector 

generally experienced stronger turbulence compared to any other sector, which could be 

due to convection that is often embedded in postfrontal rainbands. 

Along with stratification by synoptic regime, flight legs were also stratified by land 

versus ocean and high cloud (pressure altitude) versus low cloud (pressure altitude) to 

determine if any additional correlations exist. However, no substantial relationships or 

correlations were found when using these stratifications. 

Spectral Density 

 In regards to the spectral density, this study found consistent results among each 

sector. Table 9 shows that the spectral density generally starts at higher values (i.e. greater 

than or equal to 10-2 m2 s) if the max pair correlation is high and lower values (i.e. less than 

or equal to 10-4 m2 s) if the max pair correlation is low. Additionally, the correlation 

coefficient (Fig. 36) indicates that a moderate positive correlation exists between the max 

pair correlation and max spectral density. In terms of noise in the spectrum, all sectors 

transition from signal to noise between 700-1000 m, which indicates that there are not 
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many contributions to the signal at shorter distances. Lastly, with respect to 

minima/maxima in spectral density, all sectors generally experience a minimum at 

frequencies between 0.020-0.030 s-1 (~ 8-9 km), which signifies a lower degree of 

clustering at that frequency. 

 
Table 9: Max pair correlation and max spectral density observed for selected flight legs. 

 Time Max Pair 
Correlation 

Max Spectral 
Density 

Sector UTC # m2s 

Prefrontal 
Rain 

16:28:30-16:33:34 0 10-3 

17:25:30-17:31:10 0.34 10-3 

Prefrontal 
Ice 

16:28:30-16:33:34 0.05 10-5 

17:25:30-17:31:10 1.05 100 

Frontal 
16:28:30-16:33:34 0.06 10-4 

17:25:30-17:31:10 0.10 10-4 

Postfrontal 

16:28:30-16:33:34 0.37 10-5 

17:25:30-17:31:10 0.11 10-5 

16:28:30-16:33:34 0.35 10-3 
 

	

Figure 36: Max pair correlation of selected legs compared to the max spectral density. 
Each plot includes an exponential best fit equation and correlation coefficient, r. 
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CHAPTER V 

CONCLUSIONS 

Importance of Study 

The assumption that particles follow Poissonian statistics provides the foundation 

for much of cloud physics. Though there is extensive knowledge concerning the clustering 

of cloud droplets, research concerning the clustering of precipitation size particles remains 

ongoing. Prior work studied the clustering of precipitation size particles using rain gauges 

and disdrometer networks; however, airborne observations have not been used to study 

such phenomena. Thus, this is the first known study to use airborne imaging probe data to 

examine clustering and it allows for longer spatial scales to be analyzed. This work also 

analyzes whether clustering changes with synoptic forcing, which has not been previously 

explored. 

Conclusions 

Using in situ observations collected during OLYMPEX, a clustering analysis is 

performed on multiple flight legs from each sector using the pair correlation function. 

Though this study has a small sample size and cannot be considered complete in any sense, 

results already reveal that airborne observations can be used to study the clustering of 

precipitation size particles and that similarities and differences do exist between synoptic 

regimes. The strongest finding of this study is that a negative correlation exist between the 

number of counts and max pair correlation. Aside from this, prefrontal rain (ice) and  
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postfrontal flight legs also found that a strong positive (weak negative) correlation exist 

between the mean diameter and max pair correlation. However, this study found no 

substantial correlations in terms of pressure altitude, temperature, and turbulence in relation 

to the max pair correlation. Therefore, the strongest finding of this study suggest that 

clustering is heavily tied to the structure of precipitation and the synoptic regime itself. For 

example, clustering is minimal in regions of steady stratiform precipitation (i.e. frontal 

bands), whereas, clustering is more dominant in regions of intermittent and convective 

precipitation (i.e. prefrontal and postfrontal bands), much like Jameson et. al (2015) found 

when studying clustering in stratiform and convective rain via a disdrometer network. 

Implications and Future Work 

One of the most important avenues of recent meteorological radar research is the 

application of polarization techniques to improve rainfall estimation (Jameson and 

Kostinski 2008). The use of differential reflectivity (ZDR) provides the foundation for many 

of these techniques, therefore, it is important to understand the statistical accuracy of ZDR. 

Previous work involving estimations of meteorological radar uncertainties have followed 

the notion that signals obey Rayleigh statistics, which assumes that all waves from each 

particle scatter independently and that conditions are spatially homogeneous (Jameson and 

Kostinski 2008). However, results from this study and previous work agree that 

meteorological conditions do not always satisfy the requirements for Rayleigh statistics. 

Using Monte Carlo simulations, Jameson and Kostinski (2008) found that the standard 

deviation of ZDR is significantly enhanced by clustering. Thus, incorporating non-Rayleigh 

signal statistics into the current framework used in radar applications could provide more 

accuracy in terms of ZDR, and other derived parameters, such as rainfall rate, which can be 
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heavily influenced by the presence of clustering. These improvements can also be applied 

to measurements from satellites such as GPM, which could help improve estimates of 

precipitation around mountainous regions. Nonetheless, a comprehensive view of 

clustering is still needed before these steps can occur. While this work has shown that 

clustering of precipitation size particles can be studied using airborne measurements, more 

clustering analyses can still be conducted on other OLYMPEX flights and on data from 

other field campaigns (where precipitation size airborne imaging probes are used), in order 

to produce a more robust data set and comprehensive view of clustering. Additionally, 

thresholds of clustering should be determined in order to signify what qualifies as a 

significant clustering signature. For example, most clustering signatures in the frontal 

sector were greater than zero but less than 0.1. Is this significant compared to those 

clustering signatures greater than 1.0 observed in the prefrontal sector? At the very least, it 

is time to begin to document the prevalence and magnitude of clustering and its subsequent 

generation of non-Rayleigh signal statistics in a wide variety of meteorological settings in 

order to improve quantitative applications of radar observations (Jameson and Kostinski 

2008).  
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