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ABSTRACT 

The processing of data arising from connected smart grid technology is an 

important area of research for the next generation power system. The volume of 

data allows for increased awareness and efficiency of operation but poses 

challenges for analyzing the data and turning it into meaningful information. This 

thesis showcases the utility of clustering algorithms applied to three separate 

smart-grid data sets and analyzes their ability to improve awareness and 

operational efficiency.  

Hierarchical clustering for anomaly detection in phasor measurement unit 

(PMU) datasets is identified as an appropriate method for fault and anomaly 

detection. It showed an increase in anomaly detection efficiency according to Dunn 

Index (DI) and improved computational considerations compared to currently 

employed techniques such as Density Based Spatial Clustering of Applications 

with Noise (DBSCAN). 

  The efficacy of betweenness-centrality (BC) based clustering in a novel 

clustering scheme for the determination of microgrids from large scale bus systems 

is demonstrated and compared against a multitude of other graph clustering 

algorithms. The BC based clustering showed an overall decrease in economic 

dispatch cost when compared to other methods of graph clustering. Additionally, 

the utility of BC for identification of critical buses was showcased.  

Finally, this work demonstrates the utility of partitional dynamic time warping 

(DTW) and k-shape clustering methods for classifying power demand profiles of 

households with and without electric vehicles (EVs). The utility of DTW time-series 
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clustering was compared against other methods of time-series clustering and 

tested based upon demand forecasting using traditional and deep-learning 

techniques. Additionally, a novel process for selecting an optimal time-series 

clustering scheme based upon a scaled sum of cluster validity indices (CVIs) was 

developed. Forecasting schemes based on DTW and k-shape demand profiles 

showed an overall increase in forecast accuracy.  

In summary, the use of clustering methods for three distinct types of smart 

grid datasets is demonstrated. The use of clustering algorithms as a means of 

processing data can lead to overall methods that improve forecasting, economic 

dispatch, event detection, and overall system operation. Ultimately, the techniques 

demonstrated in this thesis give analytical insights and foster data-driven 

management and automation for smart grid power systems of the future. 
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Chapter 1. Introduction 

The following sections serves to outline the proposed focus of work to satisfy 

the requirements of an M.S. Electrical Engineering. Specifically, this thesis work 

demonstrates and analyzes the utility of clustering algorithms for 3 distinct 

applications of smart grid datasets. The methods proposed provide novel 

algorithms, analysis, and implementations of algorithms for smart grid control and 

software applications. The algorithms analyzed have application in software 

development for smart grid automation and real-time situational awareness. The 

motivation, outline, contributions, and resultant publications from this thesis work 

are described in this introduction. 

1.1 Motivation 

The power grid is a critical infrastructure and the industrial backbone to the 

operation of any society. The United States power grid has a well-established 

record of reliability. However, the reliability of the power grid has had the 

unintended consequence of causing power systems technology to be slower to 

adapt with new technologies that have been embraced by other industries. As 

consumer demand and government incentives for smart devices and renewable 

energy has increased, this trend has begun to change.  The power grid has begun 

to adapt and is becoming a "smart grid". One challenge posed by new smart grid 

technologies is coordinating and analyzing the mass amount of data that these 

devices generate. The specific challenge that this thesis examines, is turning the 

data provided by smart grid technologies into meaningful information to improve 

the operation of the power system. This thesis examines a small sector of smart 
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grid technologies and focuses on the algorithms that can aid in an automated or 

semi-automated decision-making process and increase the efficiency of grid 

operations. 

1.2 Background 

 The term, “smart grid” is a term used in connection with ways to update and 

automate the functioning of the conventional power grid. According to the U.S. 

Department of Energy in [1], smart grid generally refers to "a class of technologies 

that modernize utility electricity delivery systems and bring them in line with the 

21st century." More specifically, smart grid is the integration of remote control, 

automation, internet-of-things technologies, sensor networks, renewable energy 

sources, two-way digital communications, and data science methodologies into 

power systems. Though these technological advances show great promise, they 

also provide challenges. 

The U.S power system has a long-established track record of reliability, but 

the integration of smart grid technologies will usher a new era of optimal operation, 

increased reliability, environmental consciousness, and increased efficiency. 

These types of technologies have been utilized in numerous other industries but 

have been slow to integrate into the field of power systems, partially due to the 

established reliability of the current system. Some of the key hardware 

technologies for smart grid initiatives examined in this thesis include phasor 

measurement units (PMUs) and smart-meters. These technologies have been 

developed for the tasks of utility area system management in the form of Wide 

Area Management Systems (WAMSs).  
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WAMSs are a nexus of software and sensor networks that allow real-time 

interaction with power system components. WAMSs are a crucial component to a 

smart grid because they provide an interface to monitor and manage grid 

operations. WAMSs rely heavily on technologies with two-way communication 

capabilities. PMUs and smart meters play vital roles in WAMS as they provide 

time-tagged data of crucial grid parameters including electricity demand, voltage, 

current, phase angles, and more.  Without knowing the real-time status of the grid, 

a power system cannot be managed efficiently. PMUs and smart meters supply 

data which is interfaced in the software of a WAMS and allows for system operators 

to more efficiently manage the system.  

  The time-tagged measurements from these systems can be used for many 

power system applications such as state estimation, load forecasting, fault 

detection, microgrid operations, economic dispatch, and much more. The 

challenge posed by these new technologies is coordinating and utilizing the mass 

amount of data that they make available. Many of these metering technologies can 

provide data in volumes from 30 to 120 samples per second.  

 The data provided are meaningful, but the volume and scope presented by 

power systems applications makes the analysis and utilization of the data a 

challenging task. To make informed decisions based upon grid data or mitigate the 

risk of costly and dangerous grid failures, informative methods of power systems 

analysis need to be developed. This thesis work provides applications of data 

mining and applied mathematics techniques to investigate, analyze, and 

understand ambiguous data and connective topology of power systems 
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components. The methods investigated in this work efficiently utilize the data that 

can be gathered from smart grid technologies. Specifically, this work focuses on 

applications of data clustering that tangibly improves economic dispatch, grid 

anomaly detection, and load forecasting. 

These technologies will increase operational efficiencies, allow for more 

consumer interaction with power consumption, and increase real-time situational 

awareness capabilities of utilities. Additionally, they will help with the integration of 

renewable energy sources that are beginning to penetrate the grid. More generally, 

these technologies represent a dramatic shift in the power systems industry. Smart 

grid is a broad term and encompasses many next generation power systems 

technologies. The scope of this thesis focuses on smart grid technologies that 

provide challenges in the realm of data analytics, so a full and complete discussion 

of smart grid technologies is beyond the scope of this work. 

1.3 Thesis Outline 

This thesis is organized as follows. Chapter 2 contains methodological 

review and is divided into three main sections. The first section provides technical 

background on clustering algorithms applied to PMU datasets. The second section 

presents technical background on betweenness centrality, graph theory, and 

graph clustering in power systems context. The third section provides technical 

review for time-series clustering, forecasting, and energy demand forecasting. 

Chapter 3 outlines the methodology and examines the datasets for a case study 

that investigates the efficacy of clustering algorithms to detect anomalous data in 

streaming PMU datasets. Chapter 4 outlines the methodology and examines the 
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case study performed in performing graph clustering on IEEE test beds and 

observing the effect these algorithms have on economic dispatch. Chapter 5 

examines the datasets that were used in a time-series clustering paradigm and 

outlines the methodology for examining time-series clustering as a data processing 

step for smart-meter demand forecasting. Finally, Chapter 6 summarizes the 

results and provides conclusions as well as directions for future work. 

1.4 Thesis Contributions 

The following are the three objectives of this research work. 

Objective 1: Evaluate and propose a clustering algorithm to detect anomalies in 

streaming PMU data. 

To accomplish objective 1, the following tasks were performed 

Task 1: Conducted literature review on existing automated techniques to 

detect anomalous data from PMU data. 

Task 2: Investigated multiple automated algorithms for anomaly detection 

in PMU datasets. 

Task 3: Evaluated the efficacy of the algorithms based upon a cluster 

validity index (CVI), Dunn Index (DI). 

Objective 2: Develop a multi-criteria clustering method that efficiently 

decomposes a larger grid into potential microgrids 

To accomplish this objective, following tasks were carried out: 

Task 4: Conducted literature review on clustering methods for network 

graphs and the application with microgrids. 
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Task 5: Investigated multiple graph theory-based clustering algorithms and 

compared their efficiency using a Multi-Area Economic Dispatch (MAED) 

formulation in a case study with IEEE 118 and 300 bus systems to discover 

which algorithm resulted in the lowest dispatch cost for each bus system. 

Objective 3: Investigate the effect of clustering time-series as a processing step 

to improve conventional time-series forecast methods for smart meter load 

forecasting.  

To accomplish this objective, following tasks were carried out: 

Task 6: Conducted literature review for clustering algorithms and 

forecasting techniques nuanced for time-series data 

Task 7: Evaluated clustering techniques according to CVIs and devised a 

method of technique selection while comparing the accuracy of clustering-

based forecasts with traditional forecasting techniques that do not use 

clustering 
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Chapter 2. Methodology 

2.1 Data Mining and Smart Grid 

As the complexity of the grid grows for a two-way communication between 

generation and consumers, a large focus is placed on integrating devices with highly 

capable sensors to more effectively interact and observe the status of the grid in real-

time. These types of devices allow operators and even users to gain actionable 

intelligence pertaining to the operation of the grid and appliances that are connected to it. 

These devices can collect massive amounts of data. To turn this mass amount of data 

into meaningful information, data mining methods are necessary. 

A concise definition for the umbrella term “data mining” is: “the process of 

discovering and extracting useful patterns in large data sources [2].” Data mining methods 

exist at an intersection and aggregation of many different fields including mathematics, 

statistics, computer science, and computational science. The practice of data mining is 

usually falls under the umbrella of data science. Data mining techniques consist of useful 

analytical tools including statistical analysis, clustering algorithms [3], predictive modeling 

algorithms [4], supervised and unsupervised learning, and many more [4]. Data mining is 

related to and is often a foundation for artificial intelligence and machine learning. The 

number of possible applications for data mining techniques is innumerable. Some notable 

applications of data mining that have benn influential in modern society include image 

recognition techniques used by popular social media applications such as Facebook [5] 

and Snapchat [6], pattern recognition algorithms used by online retailers to suggest items 

to shoppers [7], and of course, as I am proposing, use in the modern power grid [8]. 

Because the practice of data mining is comprised of a large conglomeration of techniques 
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and has vast application, an accepted definition of data mining can vary slightly 

depending upon the source.  

There are a large volume of existing literatures pertaining to methods of processing 

data, data mining, and data analysis for smart grid applications [8], [9]. The problem of 

big data and the promise of turning large volumes of data into operable intelligence is 

well-known in the field of smart grid. There is a volume of preliminary works and a few 

small private corporations building business models centered on data science methods 

and consulting for utility companies. Additionally, some of the larger energy companies 

have divisions within their Information Technology (IT) departments that specialize in big 

data management and analysis. This section will review some of the key literatures 

regarding big data and smart grid power systems. 

A key literature that provides thorough foundation for this research topic is [10]. It 

is a book published in 2016 by the “National Academy of Engineers.” The work outlines 

in detail many avenues of analytical research foundations for the next generation smart 

grid. The work was published jointly with the Department of Energy (DoE) and National 

Academic Press. The work serves as a reference to preliminary works but especially is 

helpful in outlining the challenges associated with smart grid and the specific areas of 

mathematics, computational science, and data mining that may lead to breakthrough in 

these challenges. Some of the priorities listed include data-driven models of the electric 

grid, data-driven approaches for improving planning, operations, maintenance, and 

decision-making protocols, machine-learning models for hazard modeling, and 

visualization methods for complex data and systems [10]. This document also provides a 

thorough background on many data mining or mathematical methods that are proposed 
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to meet these challenges. This work was compiled by leading experts in industry and 

academia and lays a foundation for focus areas of research topics, including this thesis.  

In [11] a software framework is proposed that makes use of data clustering 

methods to provide system operators with enhanced situational awareness. The work 

outlined by [12] and  proposes the use of spanning trees to classify data from smart grid 

devices. Additionally in [13], [14] general overviews of applications and assessments of 

clustering methods for power systems data is analyzed. Clustering has also been 

investigated in determining grid topology.  

Research works [15]–[17] investigate different methods of organizing grid topology 

based on  graph clustering methods.  Data mining and analytical techniques have been 

useful is in detection of critical components in power systems as proposed in [18]–[22]. 

Many of the methods for detecting critical nodes combine the use of data mining and 

graph theory. Thus, by combining these methods with power systems data can aid 

identifying which sections of the power grid are most central and vulnerable to cascading 

failures. There is very limited work carried in this research area. A number of publications 

focus on the development of novel energy management systems that make use of data 

mining and computational techniques [11], [23], [24]. There is abundant literature 

showcasing data mining and machine learning methods in demand, price, and electricity 

forecasting [25]–[30]. The utilization of data mining methods shows great promise in 

power systems and there is a plethora of applications for smart grid datasets.  
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2.1.1 Data Clustering 

 Cluster analysis is the task of grouping a set of objects or data points in such a 

way that objects in a group are more like each other than to objects contained in other 

groups. The purpose of clustering is to get an improved understanding of the associations 

that exists in a dataset [31]. Clustering algorithms have been applied to provide 

classification of and intelligent insights from otherwise ambiguous data. In general, the 

purpose of clustering is to obtain an improved understanding of the input group or dataset.  

 A simple example of an application of clustering would be classifying species of 

flower based upon sepal widths and sepal lengths of flowers observed in a garden. If 

there are 3 known species a clustering algorithm with an output of 3 clusters can be 

applied and the accuracy of the scheme can be tested. An example plot of the flower 

pedal data with and without clustering is shown below in Figures. 1 and 2 respectively. 

The accuracy of the clustering scheme is observed by table 1. By comparing the plots 

FIGURE 1. RAW PLOT OF SEPAL LENGTH VS SEPAL WIDTH OF 

FLOWERS OBSERVED 
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from Figures 1 and 2,  it is observed that there are three distinct clusters of flow species 

based upon the sepal width and lengths. The centroids (average values) of the 3 clusters 

are plotted as bold points in Figures. 2. The specific data points are identified by the 

clustering scheme and the accuracy of the scheme is shown in table 1. Further discussion 

on clustering algorithms is discussed in the literature review section. 

Species\Cluster # 1 2 3 

Setosa 50 0 0 

Versicolor 0 2 48 

Virginica 0 36 14 

TABLE 1. THE RESULTS OF CLUSTERING SCHEME DISPLAYING HOW MANY OF EACH SPECIES 

BELONG TO EACH OF 3 SEPARATE CLUSTERS. 

Clustering can be supervised or unsupervised. Supervised clustering means that 

the output of a clustering algorithm can be trained or verified empirically. Unsupervised 

FIGURE 2.EXAMPLE CLUSTERING SCHEME ON FLOWER SEPAL DATA WITH 3 CLUSTERS. 



 

29 

clustering is a more ambiguous task where the output is not well understood and cannot 

be explicitly verified.  Clustering algorithms are applied to a wide variety of different tasks, 

issues, and fields of study. Time-series clustering is a variation of clustering with 

modifications due to specific considerations of time-series data. The most important 

aspect to any clustering scheme or algorithm is how the distance between the objects of 

clustering are defined. Clustering is traditionally applied to an ‘n’ dimensional data set. In 

traditional ‘n’ dimensional datasets, distances between clustering objects can be defined 

by traditional distance metrics such as Euclidean and Manhattan distance depending 

upon the application. To cluster time-series data different metrics such as shape-based 

distance (SBD) and DTW are appropriated [32], [33]. 

To evaluate clustering algorithms, cluster validity indices (CVIs) are computed. 

CVIs are a quantitative method to evaluate the output of unsupervised clustering 

schemes. They can also be used for supervised schemes, however, the CVIs discussed 

in this work are typically used for unsupervised schemes due to the nature of 

unsupervised clustering. The basic premise of CVIs is to quantitatively evaluate how 

compact and well separated from one another the clusters resulting a clustering scheme 

are. They are especially helpful when comparing and evaluating multiple clustering 

schemes to analyze relative efficiencies. Common CVIs  include: Dunn’s Index (DI) [34], 

Silhouette (Sil) [35], Davies-Bouldin (DB) [36], modified Davies-Bouldin (DB*) [36], score 

function (SF) [37], Calinski-Harabasz (CH) [38], and context-independent optimality and 

partiality indices (COPI) [39]. Research shows that even the insight from cluster 

evaluation criteria are somewhat ambiguous and no single cluster validation index is 
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necessarily better than another [40]. This work uses a combination of DI, DB, DB*, SF, 

CH, and COPI analyzed to evaluate time-series clustering schemes of smart meter data.  

This work specifically uses DI for evaluation of clustering in PMU datasets. DI 

identifies sets of clusters that are compact with a small variance between members of the 

cluster yet distinctly separated from other clusters [34]. Ideally, average values of the 

separate clusters are distinctly separated from one another, but the internal cluster 

variances are small. A higher CVI indicates better clustering. This is important in 

evaluating the significance of the efficiency of the clustering algorithms [34], [41]. 

2.1.2 Time-series Clustering 

 With the increase in deployment of smart meters, the ability to analyze individual 

residential energy consumption is becoming possible. This data is stored and analyzed 

as time-series data. The challenge posed by residential usage  is that for any given utility, 

there are many households to serve. The challenge of forecasting for each household is 

tedious, yet important for optimal system management. One methodology that meets this 

challenge is time-series clustering. Time-series clustering has been shown to be an 

effective method to extract information from time-series databases for the purposes of 

pattern discovery. 

 Time-series clustering poses unique considerations compared to traditional data 

clustering.      Euclidean distance is the most widely used distance metric for general 

clustering schemes. The Euclidean distance between two time-series, X and Y, both of 

length m is calculated using equation 1. 

( 1 ) EUCLIDEAN DISTANCE 

𝐸𝐷 = √Σi=1
m (𝑥𝑖 − 𝑦𝑖)2          
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Though Euclidean distance is a common metric, it is limited by its simplicity. 

Specifically, the Euclidean distance between time-series is prone inaccuracies in 

comparing similar time-series that have shifts in the time domain. To address this 

weakness, a technique called dynamic time warping (DTW) was introduced. DTW 

accounts for the Euclidean weakness by allowing for non-linear and elastic alignments of 

time-series based on localized characteristics rather than rigid point to point distances. 

DTW detects non-linear alignments of time series by establishing an m-by-m matrix, M, 

with the Euclidean distance between any two points of X and Y. A warping path, W=

{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} where n≥m, is established that defines a mapping between X and Y. 

This path can be computed on matrix M with dynamic programming and the formula for 

DTW is a minimization described by equation 2. 

( 2 ) DYNAMIC TIME WARPING 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛√𝛴𝑖
𝑘𝑤𝑖         

 

FIGURE 3. COMPARISON OF DTW AND EUCLIDEAN DISTANCE METRICS FOR TIME-SERIES 
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A visual example of the difference between Euclidean and DTW distance metrics 

is illustrated by figure 3. In figure 3, the non-linear mappings of DTW from one time-series 

to another are demonstrated in comparison to the linear mappings of Euclidean distance. 

While many of the same types of clustering algorithms can be deployed for time-series 

data, an altering of the distance metric to DTW is appropriate given the unique 

considerations for time series. 

2.2 Clustering Algorithms 

2.2.1 k-means 

The k-means algorithm is a well-known and popular clustering algorithm which was first 

proposed by Lloyd [42]. The goal of this algorithm is to minimize the variability within 

clusters and maximize the variability between different clusters. The use of k-means 

requires determining the number of clusters that are desired. For applications where it is 

unclear on the number of desired clusters, the utility of this algorithm can be limited. k-

Means functions by initially assigning all data points into random clusters and computing 

the centroids of those clusters. After this task, each data point is assigned to the centroid 

that is closest (or most similar) to. The algorithm then repeats several iterations until no 

changes are made in the assignment of data points [31]. 

2.2.2 k-medians 

 The k-medians algorithm is a variation of k-means [43]. The effective difference 

between them is that k-means minimizes Euclidean distance of each point to a cluster 

centroid while k-medians minimizes inter-cluster Manhattan distance. The Manhattan 

distance is the sum of the differences of all the corresponding data points in a cluster [44]. 

k-Medians, like k- means, also requires the input for number of desired clusters. 
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2.2.3 Density Based Spatial Clustering for Applications with Noise (DBSCAN) 

 DBSCAN [45] is another clustering algorithm applied to openPDC data. DBSCAN 

finds core samples of high density and expands clusters from them. Theoretically, this 

algorithm is effective for data that contains clusters of similar density and that have some 

associated noise.  To apply DBSCAN, two parameters are needed. The first parameter 

is a positive number, eps. The second parameter is a natural number, minPoints. If the 

number of points within a distance, eps, from a starting point is greater than minPoints, 

then these points will be clustered together. The algorithm then recursively builds by 

checking all the new points to find out if there are several points greater than the 

minPoints value within a distance, eps. After all the points have been added to the cluster, 

a new arbitrary point is picked, and the process is repeated. If that arbitrary point has 

fewer than points than minPoints within the distance eps, it is considered a noise point. 

The goal in choosing proper values for eps and minPoints was to maximize the value of 

a CVI.  

2.2.4 Hierarchical Clustering (hclust) 

 Hierarchical clustering (hclust) [31], [44] is a set of algorithms that group data by 

creating a cluster tree called a dendogram.  An example dendogram is shown in figure 

4.  There are two different types of hierarchical clustering: agglomerative and divisive [44]. 

In this thesis, agglomerative clustering is used. Agglomerative hclust initializes each data 

point as an individual cluster and then proceeds step by step to merge the closest pairs 

of clusters until there exists only one cluster. One of the main advantages of hclust is that 

there is no need to specify the number of clusters. If a specific number of clusters is 

desired, an hclust tree can be cut at a desired level. The cutoff values can be selected 

such that one can theoretically analyze any step of the hclust algorithm. The y-axis of the 
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dendogram shown in figure 4 shows the potential cutoff values. In figure 4 a cutoff value 

of .019 was used. 3 clusters are observed at this cutoff. For this project, the cutoff values 

are selected according to the maximization of Dunn’s index.  

In general, a smaller number of clusters produces a larger Dunn’s index. By 

viewing an hclust dendogram one can infer the number of clusters that exist at each cutoff 

value. By process of viewing the dendogram, cutoff values were selected that associated 

with smaller numbers of clusters to observe maximum values of Dunn’s index. Typically, 

hclust is difficult to use on large datasets like openPDC due to the requirement of a 

distance matrix describing the dissimilarity between each point of data. For large 

datasets, this matrix can require a large amount of memory. This also causes the 

dendogram to be very convoluted as shown in Figure 4. Other visualization techniques 

have been adopted for this thesis to analyze hclust data. 

A difficult choice of hclust is to define the distances between clusters [31], [42]. 

Euclidean distance is the most common method to use as a measure of dissimilarity. 

However, there are several different methods to measure the Euclidean distance, or any 

distance metric could theoretically be used (Manahattan distance etc…). These methods 

are called clustering linkage criteria. Some cluster linkage criteria methods are single-link, 

complete link, average link, centroid link, and Ward’s method. Single-link distance 

between clusters is computed as the distance between the two closest elements of the 

clusters. The complete-link distance between clusters is computed by the distance 

between the most distant elements of the clusters. The average-link distance between 

clusters is computed by the distance between the average of all pairwise distances 

between clusters. The centroid-link distance between clusters is computed by the 
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distance between the centroids of the two clusters. Ward’s Method to define the distance 

between clusters is computed by the difference between the variance of the two clusters. 

2.2.5 k-Shape Algorithm 

k-Shape [32] is a relatively new time-series clustering algorithm proposed in 2015. 

K-Shape is a time-series clustering paradigm for time series classification, shape 

extraction, and analysis. k-Shape is similar to k-means clustering as it is a partitional 

clustering algorithm and requires a user-defined input to determine the ‘k’ number of 

clusters to be defined. It is also similar algorithmically in that it contains an iterative 

procedure and a refinement phase. The centroids of each cluster in k-shape are found 

using cross correlation measures. In the assignment phase of the algorithm, shift 

invariance is enabled through a distance metric called shape-based distance (SBD) as 

opposed to a Euclidean distance metric that is used in k-means. SBD is a distance metric 

based on coefficient normalized cross-correlation of time-series and is an appropriate 

FIGURE 4. AN EXAMPLE OF A HCLUST DENDOGRAM FROM PMU DATA WITH CUTOFF 

POINTS ON THE Y-AXIS 
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metric to extract the shape of a time series when analyzing its ‘distance’ or similarity to 

another time-series [32]. SBD works by z-normalizing time series and determining 

distance based on cross-correlation. SBD is used to update cluster memberships by 

calculating the time-series centroids and by defining the clustering of each time-series 

data into the cluster with the nearest centroid. SBD is a defining characteristic of the k-

shape algorithm, and is a central contribution to the work in [32]. 

2.2.6 Partitional DTW 

 Partitional DTW is an algorithm without a proper name. Partitional DTW is simply 

a clustering algorithm that uses a partitional process and DTW as its distance metric. 

Partitional clustering algorithms are also called “center-based” clustering algorithms. 

Partitional clustering algorithms define cluster centers which are called centroids.  Then, 

a partitional algorithms will assign data objects to the centroid that each data object is 

closes to according to the defined distance metric [46]. As an example, k-means is a 

partitional algorithm but traditionally uses Euclidean distance as the defining metric to 

determine the distance between clustering objects. Partitional DTW is essentially the k-

means algorithm but instead of Euclidean distance, DTW is used as the distance metric. 

This method was employed as a time-series clustering method due to the ability of DTW 

to perform clustering on time-series data [31]. 

2.3. Forecasting for Power Systems and Smart Grid Applications 

Forecasting is the process of using mathematical modeling to predict a future event 

[4]. Forecasting is a necessary and important function virtually in any industry. In the case 

of electric utilities, the importance is magnified. While other industries can store their 

products as a buffer against inaccurate forecasting, the magnitude of electrical energy 



 

37 

provided by power companies cannot yet be effectively stored in mass quantities. 

Because of this, power must be delivered as soon as it is generated. As a result, utility 

companies are increasingly required to develop formal load forecasting models to support 

their decisions about operation, planning, and maintenance.  

Just as in other industries, electricity price depends on the equilibrium between the 

supply and demand. Balancing the supply and demand of power is a delicate task and 

predicting it ahead of time is even more challenging. Because forecasting is such a 

challenging task, high importance is placed on models that can provide accurate results. 

For this reason, utility companies have directed their attention toward forecasting and 

invest considerable resources to the task. Further discussion of forecasting 

methodologies, applications, and algorithms is found in the literature review and 

methodology sections of this thesis. This work proposes time-series clustering as a 

processing step to a forecasting scheme and observes its effect on forecast accuracy. 

There is no single forecasting that can satisfy all the needs of a utility. A common 

practice is to use the different techniques for different purposes. With so many 

applications, it is unrealistic to establish a single forecasting technique to apply to every 

problem. The classification of different forecasts not only depends upon the business 

needs, but also on the other factors that drive the electricity consumption.  

In architecture and engineering it is often stated that “Form follows function.” This 

means that the design of an object or product arises from how that object will be used. 

This is also true in the realm of forecasting. A single type of forecasting doesn’t satisfy 

the needs of all forecasting problems. Different types of forecasting are needed because 

of drastically different situations in which forecasting might be used. In the case of electric 
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load forecasting, different methods of forecasting can be divided into the following 

categories: 

 Very short-term load forecast: ranges from few minutes to few hours. 

 Short term load forecast: ranges from one day to two weeks. 

 Medium term load forecast: ranges from two weeks to three years. 

 Long term load forecast: ranges from three to five years. 

 Fine-grain interval forecasts: Forecasts that predict values for data in fine-grained 

intervals (seconds, minutes) 

 High granularity forecasts: Forecasts that predict values for high granularity (days, 

weeks, months) 

 Time series forecasts: Forecasts of time-series data 

 Single variable forecasting: Forecasts that use only a single variable. 

 Multivariate forecasting: Forecasts that use variables effecting the target 

forecasting variable. 

 Application specific forecasts: market, price, and demand are all examples of 

different applications of forecasting for power companies. 

There are many different types of forecasting for many different types of applications. 

However, one thing that all forecasting schemes have in common is the desire to provide 

high accuracy. To measure a forecast accuracy, forecast accuracy metrics must be 

defined. There are many forecast accuracy metrics, however a few well-known and 

utilized metrics are Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation 
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(MAD), and Mean Squared Deviation (MSD). MAPE, MAD, and MSD were all utilized in 

tandem this work to define forecast accuracy. Each metric has its own strengths that 

through analysis of all three metrics, a clear understanding of a forecast accuracy can be 

obtained. These metrics are defined as follows: 

( 3 ) MAPE 

MAPE = 
𝛴|𝐴𝑐𝑡𝑢𝑎𝑙−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙
∗100%

𝑛
 

( 4 ) SUM OF SQUARED DEVIATION 

𝑆𝑆𝐷 = 𝛴|𝐴𝑐𝑢𝑡𝑎𝑙 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡|2 = 𝛴|𝐸𝑟𝑟𝑜𝑟|2 

( 5 ) MEAN SQUARED DEVIATION 

𝑀𝑆𝐷 =
𝛴(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)²

𝑛
=

𝑆𝑆𝐷

𝑛
 

Where n is the number of observations. In all cases a lower metric indicates more 

accurate forecasting. All three metrics compare a forecasted value, with an actual 

observed value to determine accuracy. MAPE is a good metric to quantify how good a 

prediction is on average and displays as a percentage, which is easy to interpret. SSD 

and MSD are more sensitive to high errors of individual observations due to the squared 

term in the formula. Because of this sensitivity, SSD is a good metric to analyze how 

consistent the accuracy of a forecast is. Over a period of point forecasts, if one point in 

the forecast is very inaccurate compared to the corresponding observed value, the 

squared term will cause the MSD or SSD to have a high value. For this reason, SSD and 

MSD are good metrics to determine forecast consistency. Forecasts that contain low 

MAPE, SSD, and MSD are accurate, highly desirable, and difficult to obtain. A framework 

that simultaneously analyzes both MAPE, MSD, and SSD is appropriate in this work. 
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2.3.1. Forecasting Algorithms 

A variety of models are used for different types of forecasting purposes. As such, 

a myriad of mathematical models have been implemented for load forecasting. Some 

types of models that have been utilized include methods such as Autoregressive 

Integrated Moving Average (ARIMA), exponential smoothing, Loess, support vector 

machines, Neural Networks, and hybrid combinations of multiple algorithms. Forecasting 

algorithms are designed with mathematical formulations that require them to be applied 

appropriately. For example, neural networks are most effectively applied to situations with 

high volumes of data [47]. Partial least squares regression, is most effectively applied to 

situations where there are many regressor variables that may have collinearity [4], [48], 

[49]. ARIMA is a flexible algorithm and is appropriately applied to time-series data, 

particularly time-series that display, trend, seasonality, and cyclical natures. The work in 

[29] investigates ARIMA for day-ahead spot price forecasting. Additionally, [50] provides 

a great resource overviewing ARIMA, exponential smoothing (ES), and other statistical 

forecasting algorithms. The authors in [25] and [51] use a hybrid model and neural 

networks for electricity demand forecasting.  This work specifically focuses on the 

implementation of a loess filter followed by ARIMA forecasting. This method has been 

demonstrated as an effective method for day-ahead load forecasting. A brief description 

of these algorithms follows.  

2.3.2. ARIMA 

ARIMA is a time-series forecasting algorithm that is based on three components of 

the time series on which it is applied to. The three components are the “autoregressive” 

component (AR), the “integrated” component (I), and the “moving average” component 

(MA). A non-seasonal ARIMA model is classified as an “ARIMA (p,d,q)” model, where 
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 p is the number of autoregressive terms 

 d is the number of non-seasonal differences needed for stationarity, and  

 q is the number of lagged forecast errors in the prediction equation 

Consider the ARIMA (p,d,q) is expressed as: 

( 6 ) ARIMA POLYNOMIALS 

ø(B)(1-B)dXt=θ(B)Zt   

Where ø, θ are the pth and qth degree polynomials; dth is a non-negative differencing 

operation. It is often a case that stochastic processes may not have a constant level so 

they inhere homogeneous behaviors over time. If d is a non-negative integer, Xt is said to 

be an ARIMA (p,d,q) processes id (1-B)dXt is an ARMA (q,p) processes [52]. 

2.3.3. Seasonal time-series decomposition 

 Time series decomposition is a technique to observe seasonality and trend patters 

from within a time series. There are many ways to decompose a time series into its 

seasonal and trend components. The simplest way to do this is using simple moving 

averages of varying window sizes. This work utilizes the loess [53] algorithm to 

accomplish the decomposition as a pre-processing stage to an ARIMA forecasting 

scheme [54]. 

2.4 Smart Grid Modeling Using Graph Theory 

A graph is a mathematical structure that represent pairwise relationships or 

connections between objects [55]. A graph is a set of vertices (nodes) that are connected 

edges (lines).  Graph theory is a branch of mathematics that studies connections and 

relationships between objects using graphs [55]. Graphs can also be called networks. In 
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this thesis, graph and network are used interchangeably. Due to the inter-connectedness 

between various objects (e.g., circuit breakers, feeders, transmission lines, sources, and 

loads) in a power grid, these grids can be intuitively represented as a graph. Formally, a 

graph’s notation is given as a pair of sets, 𝐺 = (𝑉, 𝐸), where 𝐺 is the graph, 𝑉 is the set 

of vertices, and E is the set of edges that are formed by the vertice pairs. A vertex set is 

a concatenated list of the name for each vertex in a graph and is denoted by V(G).  

An edge list is a concatenated list of connected vertices in a graph and is denoted 

by 𝐸(𝐺). As an example, Figure 5 shows a graph with 𝑉(𝐺) = {1,2,3,4,5} and 𝐸(𝐺) =

{1 − 2,2 − 4,2 − 5,3 − 4,3 − 5,4 − 5}. Figure 5 displays a simple un-directed graph. An un-

directed graph is one where the graph’s edges are bidirectional [55]. For the purposes of 

this work, bus-system graphs are un-directed graphs. The following subsections describe 

criteria related to graph theory that can be used to determine grid-decomposition 

structures. 

 The raw graph topology of a given graph does not provide any functional 

information about the actual system that the graph represents. In terms of a power-grid 

FIGURE 5. SIMPLE GRAPH WHERE V(G)={1,2,3,4,5} AND E(G)={1-2,2-4,2-5,3-4,3-5,4-5}. 
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system, there is information about the buses and transmission lines within the grid that 

must be considered in order to adequately model the system. This modeling can be 

accomplished via the use of vertex and edge weights. Weights are simply a numeric value 

that is assigned to graph objects to convey some functional information about the graph 

or a specific graph object. A common example of an edge weight is assigning a numerical 

value to an edge that corresponds to the length of that edge. In this work, the notation for 

an edge weight is 𝑊𝑚,𝑛, where m and n are vertices in 𝑉(𝐺) such that 𝑊𝑚,𝑛 is the weighted 

value for the edge that connects bus m to bus n.  

In this thesis, four metrics are considered for edge weights in a smart-grid power-

transmission system. These metrics are i) topological weight, ii) admittance, iii) 

impedance, and iv) line-length weights. The topological weight assumes that 𝑊𝑚,𝑛  = 1 

∀ 𝑚, 𝑛 ∈  𝐸(𝐺) . The topological weighting metric captures the trivial topological 

connections of the graph and displays no bias toward certain network objects. The 

admittance-based edge weights are determined based upon calculating the transmission-

line admittance. For this metric, admittance weight is given by 𝑊𝑚,𝑛 =
1

|𝑅𝑚,𝑛+𝑗𝑋𝑚,𝑛|
 , where 

𝑅𝑚,𝑛 is the resistance of the transmission line that connects bus 𝑚 to bus 𝑛 and 𝑋𝑚,𝑛 is 

the line’s reactance. Impedance weight is the inverse of the admittance weight. Length-

based weighting assigns  𝑊𝑚,𝑛 equal to the transmission line’s length. For this work, IEEE 

57, IEEE 118, and 300-bus test systems were used. Approximations of the transmission-

line length were calculated according to the method outlined in [56]. This method first 

converts the per-unit reactance value to the actual value using an assumed  𝑆𝑏𝑎𝑠𝑒 =

100𝑀𝑉𝐴  and 𝑉𝑏𝑎𝑠𝑒 = 135𝑘𝑉 . The length of the line is then calculated, assuming a 

conversion factor of .7Ω per mile. 
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  These weights are static weights in that they are constant for a given power 

system. Other works have considered similar static metrics as well as dynamic metrics 

that include power flow [15]. The static edge weights can be interpreted such that strongly 

connected vertices are more likely to be clustered together. Topological weights represent 

a network’s true connectivity. Admittance/impedance weights reveal the internal electrical 

structure based on the network’s electrical distance [15], [17]. 

2.4.1 Degree and Eccentricity 

 Degree and Eccentricity are two attributes that are defined for every vertex in a 

graph. Degree is defined as the number of vertexes that are incident to a specific vertex 

in a graph [57]. In other words, degree is simply the number of nodes that are connected 

to a given node. Eccentricity of a graph vertex is the maximum graph distance between 

the defined vertex and any other connected vertex in the graph [55]. Degree and 

eccentricity are well known attributes of graph objects, and their importance relating to 

power systems topology was studied in this thesis. 

2.4.2 Betweenness Centrality 

  Betweenness centrality (BC) [58] is an index that quantifies a vertex or 

edge’s centrality in a network. In order to understand BC, the graph-theory concept of 

shortest paths needs to be understood. The shortest-path problem [59] is a common 

concept in the study of graph theory. The problem is defined by finding the path between 

two given vertices in a graph such that the sum of the edge weights of the path’s 

constituent edges is minimized. A path in an un-directed graph is denoted by 𝑃 =

{𝑣𝑚, 𝑣1, 𝑣2 … 𝑣𝑛}, where P is the path and 𝑣𝑚: 𝑣𝑛 are vertices in graph 𝐺 that are contained 

in the path from 𝑣𝑚 to 𝑣𝑛. 
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  A more formal definition of BC is the number of shortest paths from all vertices in 

a graph to all other vertices in the graph that pass through a particular object [58], [60], 

[61]. Betweenness centrality can be calculated for vertices or edges. Either of these 

calculations indicates how central, connectively important, or “highly traveled” a particular 

edge or vertex is within a graph. This metric is of importance for a smart-grid transmission 

system due to the ability to quantify vertices or edges that are of high connective 

importance to the network. Buses and/or transmission lines with relatively high BC may 

be more likely to cause cascading problems in the event of a failure that bus or line. 

2.5 Graph Clustering 

“Graph clustering” is a term with several aliases, depending upon the application. 

In general, graph clustering, network-community detection, graph partitioning, and graph 

decomposition are different aliases by which similar processes are occurring. These 

aliases all mean to discover community relationships between nodes within a graph. 

These “communities” are characterized by relatively dense interconnections with 

relatively sparse connections between groups. Graph-clustering algorithms are designed 

to identify and to quantify where these community structures exist within a graph.  

Graph clustering algorithms perform similar functions to data clustering algorithms, 

the only difference is the type of data or objects that the algorithms are applied to. In the 

case of graphs, clustering algorithms detect dense connections of nodes within a large 

graph or network [62]. This thesis examines clustering algorithms applied to power-

transmission systems to form power-zone community structures that, for intents of 

analysis, are designated as microgrids. 
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 Several algorithms perform graph clustering based on BC. Betweenness centrality 

graph clustering (BCGC) makes use of BC to identify key objects in a graph and define 

community structures around those objects. Another way of thinking about BCGC is a 

quantification of the likelihood that an edge is between community structures in a graph. 

BCGC algorithms make use of this betweenness metric functional by using it to 

distinguish community structures in a graph. A notable algorithm for betweenness 

centrality clustering is the Girvan-Newman (GN) algorithm [60], [63] and is discussed in 

more depth in the literature review chapter. 

2.5.1 Graph Cluster Modularity Index 

A method for quantifying the strength of a graph-clustering is necessary to 

quantitatively understand how well a graph decomposition is clustered. Consequently, 

there is need for graph modularity [64], and [65]. The modularity index measures the 

strength of dividing a graph into clusters. The cluster decompositions with high modularity 

scores have dense connections between the vertices within clusters but sparse 

connections between the vertices in other clusters. Modularity is a CVI for graph 

clustering schemes. The calculation of graph-cluster modularity allows for quantitative 

optimization of a graph-clustering scheme. The calculation of modularity first involves 

constructing matrix 𝑒 with dimensions 𝑘𝑘; element 𝑒𝑖𝑗 is the fraction of all graph edges 

that link vertices in cluster i to vertices in cluster j. Conversely, the trace of this matrix, 

𝑇𝑟𝑎𝑐𝑒(𝑒) = 𝛴𝑖𝑒𝑖𝑖, is the fraction of edges in the graph that connect vertices in the same 

cluster. The trace has a maximum of 𝑇𝑟𝑎𝑐𝑒(𝑒) = 1 .  In an efficient graph-clustering 

scheme, the trace is, ideally, near to 1. While this number is important, it fails to signify 
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any information about connections to a clustering scheme’s intercluster structure [31], 

[61], [64]. 

The modularity index goes another step by including inter-cluster connections. 

Here, modularity defines a row sum, 𝑎𝑖 = 𝛴𝑗𝑒𝑖𝑗, that represents the fraction of edges that 

connect to the vertices in cluster i. Regarding these values, modularity is calculated by: 

( 7 ) MODULARITY INDEX 

𝑄 = 𝛴𝑖(𝑒𝑖𝑖 − 𝑎𝑖
2) = 𝑇𝑟𝑎𝑐𝑒(𝒆)−∥ 𝒆2 ∥   

where ∥ 𝑥 ∥ indicates the sum of the elements for matrix x. This value measures the 

fraction of the graph’s edges that connect vertices of the same cluster minus the expected 

value of the same quantity in a network with the same community divisions but random 

connections between the vertices. This metric essentially compares the connections of 

one scheme to the same scheme with the same number of random connections. If the 

number of within-cluster edges is no better than random, then 𝑄 = 0. The maximum value 

of Q is 1. Numbers near 1 indicate a stronger cluster structure. In practice, values for 

networks typically fall between 0.3 and 0.7. Higher values are considered to be rare [31], 

[61], [64] [65]. 

2.5.2 Girvan-Newman (GN) Algorithm 

The GN algorithm detects communities or clusters within a graph by iteratively 

removing edges from the original network graph. After the removal of edges, the 

remaining connected components of the network graph are the communities. The GN 

algorithm removes edges based upon the betweenness index of each edge. Removing 

edges with high betweenness is a method of separating community structures within a 

graph from one another. The steps of the GN are as follows: 
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1. The betweenness of all edges within a graph are calculated. 

2. The edge with the highest betweenness is removed. 

3. The betweenness of all edges affected by the removal of this edge are then 

recalculated 

4. Repeat starting from step 2 until a desired cutoff has been obtained [60], [63]. 

The stopping point or cutoff of the algorithm can be determined in terms of iterations, a 

desired betweenness, an optimality of graph modularity [64], when a desired number of 

clusters has been formed, or when there are no more edges to be removed. The algorithm 

is somewhat similar to agglomerative hierarchical clustering algorithms in that in a step 

by step manner, the algorithm decomposes the original graph. This step by step 

decomposition can be viewed as a dendogram like hclust. 

2.5.3 Nearest Generator (NG) Clustering 

 Nearest-generator clustering is a simple graph clustering method utilized in this 

thesis specifically due to the power systems’ requirements. The nearest-generator 

method is appropriately named because the algorithm functions by assigning each bus in 

the system to a cluster defined by the generator to which it is nearest according to a 

desired edge-weight metric, such as transmission line length or impedance. This method 

was developed for a few reasons. The first reason is the trivial logic of assigning a demand 

bus to the generator to which it is nearest. The second reason this method was developed 

was that it is an efficient way to ensure that the cluster decompositions follow the 

microgrid rule of containing at least one generator. The authors know of no graph-

clustering algorithm that, by default, would cluster the bus system in a way where each 

cluster would contain at least one generator. 
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2.5.4 Two-Stage Graph Clustering Method 

 To adjust for the scalability of bus systems as they get larger, a two-stage method 

of graph clustering was applied. Generally, as the bus system’s size increases, the 

number of clusters formed by a graph-clustering algorithm will also increase. As an 

example, when betweenness-centrality clustering is applied to the IEEE 300-bus system, 

14 clusters result as the scheme with optimal modularity using this algorithm. To decrease 

the number of clusters while still respecting the optimal modularity and improving the 

certainty that each cluster contains generation and load, a two-stage clustering method 

was adopted. The general process of a two-stage method is as follows: A graph-clustering 

algorithm is applied to a desired network graph with the algorithm’s stoppage criterion 

being set to optimal modularity. Once the algorithm has computed a community structure, 

the structure’s topology converges. A converged community structure essentially treats 

the output memberships of a graph-clustering algorithm as new graph vertices. As a 

simple example, Figure 3 contains nine vertices. A graph-clustering algorithm is applied, 

resulting in three microgrids as shown by the three clusters in the first-stage method. 

     A converged graph of this community structure assumes that each community of 

vertices’ output from a graph-clustering algorithm is a single vertex in a new 

representative graph. Additionally, the edges between communities are the only edges 

considered in a converged graph. Figure 3 contains a flow chart that describes the two-

stage process. The application of the first clustering algorithm results in a 3-microgrid 

system by clustering the 9-bus system. From this converged graph, an additional graph-

clustering algorithm is applied, thus becoming a two-stage method. A second-stage 

algorithm is applied to the converged clusters from the first-stage method, resulting in a 
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final cluster formation that only contains two clusters that represent and fully contain the 

original nine vertices. 

 Deploying a two-stage method allows for important and desired results to be 

achieved. One consequence of a two-stage method is that the overall number of clusters 

can be reduced when the system is large. Another important characteristic of two-stage 

clustering is that desirable attributes of multiple clustering algorithms can be considered 

in a single clustering scheme. As an example, in this thesis, an important combination of 

nearest-generator clustering and betweenness-centrality clustering are used in a two-

stage method. 

FIGURE 6. TWO STAGE GRAPH CLUSTERING PROCESS VISUALIZATION 
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2.6 R Software and Programming Language 

R is an open source software programming language. The R environment is an 

integrated suite for calculation, graphical display, and data manipulation [66]. R was 

initially written by Robert Gentleman and Ross Ihaka of the statistics department at the 

University of Auckland. Today, R is a result of contributions from users all over the world. 

There are thousands of user-developed packages available with countless functions and 

capabilities available on the Comprehensive R Archive Network (CRAN). R was used 

extensively in this thesis work. Packages for forecasting, clustering, statistical analysis, 

and graph theory were utilized to conduct analysis and simulations for the work of this 

thesis. R code for each part is provided in the appendices. 

2.7 Electric vehicle (EV) considerations for power grid 

 As popularity of EVs grows considerations must be made for accommodating the 

charging of these vehicles. Electric vehicles rely on the power grid to charge their 

batteries. Plug in hybrid electric vehicles are vehicles that have a combination of a 

combustion engine and a battery to provide power, thus the name “hybrid.” These 

vehicles are less reliant on the grid as they tend to have smaller powered batteries as 

compared to full EVs. EV’s can be a relatively large load in the electricity grid. If the 

charging is unmanaged it can be affect the electric grid negatively [67]. Some EV batteries 

can exceed 100kWh in size and are a considerable load to the grid when plugged in for 

charging. Uncoordinated charging of many of these vehicles could cause negative effects 

including transformer overload, harmonic distortion, and increased voltage deviation of 

the power system. Therefore, it is essential to better understand the impact of electric 
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vehicles on the grid [67]. Table X shows all the EVs and PHEVs available for purchase in 

the USA in 2018 and their associated battery specifications. 

TABLE 2. BATTERY SPECIFICATIONS FOR EVS AND PHEVS AVAILABLE IN 2018 

Brand Model Battery kWh Peak power kW Peak Power hp 

Audi A3 Sportback 8.8 75 150 

BMW 330e  7.6 65 180 

BMW 530e  9.4 70 184 

BMW 530e  9.4 70 184 

BMW 740e  9.2 80 255 

BMW i3 21.6 125 
 

BMW i3 33.2 125 
 

BMW i3 Rex 33.2 125 34 

BMW i8 7.1 96 231 

BMW X5 9 80 240 

Cadillac CT6 18.4 149 335 

Chevrolet Bolt EV 60 150 
 

Chevrolet Volt 18.4 111 101 

Chrysler Pacifica 16 
 

248 

Fiat 500e 24 83 
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Ford C-Max Energi 7.6 88 141 

Ford Focus Electric 33.5 107 
 

Ford Fusion Energi 7.6 88 141 

Honda Clarity 25.5 120 
 

Honda Clarity PI 17 135 
 

Hyundai IONIQ  28 88 
 

Hyundai Sonata 9.8 50 154 

Karma Revero 21.4 301 260 

Kia Optima 9.8 50 154 

Kia Soul EV-e 27 81.4 
 

Kia Soul EV 34 81.4 
 

Mercedes B-Class 36 132 
 

Mercedes C350e 6.2 60 241 

Mercedes GLE550e 8.8 85 329 

Mercedes S550e 8.7 80 329 

MINI Cooper SE 7.6 65 136 

Nissan Leaf 30 80 
 

Nissan Leaf40 40 110 
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Porsche Cayenne 10.8 70 333 

Porsche Panamera 14.1 100 330 

Porsche Panamera Turbo 14.14 100 550 

Smart fortwo  17.6 60 
 

Tesla Model 3 
   

Tesla Model 3 LR 
   

Tesla Model S 75 75 235 
 

Tesla Model S 75D 75 
  

Tesla Model S 100D 100 
  

Tesla Model S P100DL 100 
  

Tesla Model X 75 75 
  

Tesla Model X 100D 100 
  

Tesla Model X P100DL 100 
  

Toyota Prius Prime 8.8 68 
 

Volkswagen e-Golf 35.8 100 
 

Volkswagen e-Golf SE 24.2 85 
 

Volvo XC60  10.4 
  

Volvo XC90  9.2 64 
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Environmental concerns, security and supply of oil, and the increased use of 

intermittent renewable electric power sources in power grids are all factors that are 

increasing the focus on plugin hybrid electric-vehicles (PHEV) and Electrical vehicles 

(EV). Both PHEV’s and EV’s can assist in shifting the personal transportation sector away 

from fossil fuels and in providing balancing services to the electricity grid. EV’s and 

PHEV’s have potential to reduce greenhouse gas emission and thereby contribute 

towards improvement of global warming and hence many researchers are working on 

integration of this technology into the grid.  

     Global sales of electric vehicles for the year 2017 through August were over 649,000 

units, 46% higher than the same period of 2016 [68]. In the Unites States of America, the 

2017 3rd quarter finished with a sales increase of 30% compared to the same period of 

2016. Over 142,000 plug-in vehicles have been delivered so far, and 62% of them are 

pure electric vehicles. The plugin share of the total light vehicles market is now, 1.1% 

compared to 0.9% in 2016 [68]. The charging of PHEV’s and EV’s can be a relatively 

large load in the electricity grid. If the charging is unmanaged it can be affect the electric 

FIGURE 7. GLOBAL POPULARITY GROWTH OF ELECTRIC VEHICLES 
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grid negatively. These impacts include transformer overload, harmonic distortion and 

increased voltage deviation. Therefore, it is essential to study the impact of electric 

vehicles on the grid [67]. Bar graph of global plug-in vehicles sales& shares for years 

2010-17 is shown in figure 7. In the presence of new technologies such as smart meters, 

renewable energy sources, distributed generation, and integration of electric vehicles, 

new paradigms and methods for load forecasting need to be developed. This work 

proposes a paradigm using time-series clustering given available smart meter data for 

households with EVs. 
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Chapter 3. Clustering Analytics for Streaming PMU Datasets 

3.1. Summary 

This chapter aligns directly on the topic of grid situational awareness, anomaly 

detection, and algorithm development for WAMS software. This chapter analyzes the 

efficacy of clustering algorithms applied to streaming PMU phasor data (voltage, current, 

and frequency). The ability to accurately and efficiently cluster streaming phasor data 

allows for real-time detection and classification of grid anomalies. Existing clustering 

algorithms (k-means, k-medians, DBSCAN, and h-clust) were compared, and the efficacy 

of each algorithm in clustering anomalous data was analyzed.  The clustering algorithms 

were implemented using R. The utility and effectiveness of hierarchical clustering (hclust) 

for anomaly detection in phasor measurement unit (PMU) datasets was demonstrated by 

comparing it against other well-known clustering algorithms. Hclust showed an increase 

in anomaly detection efficiency according to Dunn Index (DI) and improved upon run-

times of well-known techniques such as Density Based Spatial Clustering of Applications 

with Noise (DBSCAN). 

3.2 Methods 

3.2.1. Background 

Situational awareness of modern power systems is becoming increasingly 

important as the complexity of grid systems grow [69]. Wide Area Management Systems 

(WAMS) are being developed by upgrading the existing power grids to enhance the 

abilities of the grids. Synchrophasors are units that can measure various parameters such 

as voltage, current, and frequency of the lines at a sampling rate of 30 to 120 samples 

per second [70]. These synchrophasors play a vital role in managing the WAMS because 

the system can be managed only if the operators know the status of the grid. The time- 
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tagged measurements from the synchrophasors can be used for many power system 

applications such as State Estimation (SE) [71]–[73], Load Forecasting (LF) [74], fault 

detection, micro- grid operations [75]–[77], etc. Using synchrophasor data, a voltage 

stability assessment technique has been proposed in [78]. An algorithm has been 

developed to detect and locate the faults on the transmission lines using the phasor data 

in [79].  

A remote terminal unit (RTU) or supervisory control and data acquisition (SCADA) 

system can provide around 30 samples for 5 minutes, while the same number of samples 

is provided by the synchrophasor in one second at its slowest sampling rate. The 

difference in data frequency between traditional SCADA technologies is critically 

important to situational awareness. With a higher volume of data, more informative 

analysis of grid operation can be made. Even though synchrophasors provide power 

system information at a large sampling rate, they can be useful only if the operators can 

utilize the data to make decisions or manage the system. 

In [11] a software framework is proposed that makes use of data clustering 

methods to provide system operators with enhanced situational awareness. This work is 

a foundational work related to the work proposed by this chapter. The authors in [11] 

identify DBSCAN as an effective algorithm to detect anomalies in PMU datasets. This 

chapter expands on this work by comparing DBSCAN with other known clustering 

algorithms to clearly identify which algorithm is most appropriate for PMU data. 

3.2.2 Streaming Phasor Datasets 

 The datasets used for clustering analysis contain 10 minutes of streaming voltage, 

current, and frequency data from a PMU operated by the Tennessee Valley Authority 
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obtained through open phasor data concentrator (openPDC). The openPDC 

synchrophasor collects data at a rate of 30 samples per second. This corresponds to 

roughly 18,00 data points for observation in just 10 minutes of operation.  

Figure 1 shows a stream of 30 minutes of phasor frequency data with randomly 

inserted faults as a plot of 1 minute moving averages. Although 30 minutes of data are 

shown in figure 8, datasets were trimmed to 10 minutes for clustering analysis due to 

computation time and CPU storage constraints.  In each case 100 anomalous data points 

were inserted using the same random insertion protocol previously described. The 

timestamps containing anomalous data points are observable as they deviate significantly 

relative to a constant stream of frequency during the time interval shown in figure 8.   

Similarly, figure 9 shows anomaly inserted voltage magnitude data, and figure 10 shows 

anomaly inserted current magnitude data. These data are manipulated data from an 

actual PMU. Voltage and current magnitudes are more variable than frequency in a 

FIGURE 8. STREAMING FREQUENCY DATA WITH ANOMALIES 

RANDOMLY INSERTED 
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transmission, so the anomalies inserted in frequency data are more noticeable by 

inspection than in the voltage and current data. 

FIGURE 10. ANOMALIES RANDOMLY INSERTED INTO PMU CURRENT 

MAGNITUDE DATA. 

FIGURE 9. ANOMALIES INSERTED INTO STREAMING VOLTAGE MAGNITUDE DATA 

FROM PMU 



 

61 

3.2.3. Methodology 

To observe the ability of clustering algorithms to cluster and detect problematic 

data, fault data were randomly inserted into the datasets. An insertion of 100 anomalous 

data points was placed in 1 to 4 randomly selected segments of each of the streaming 

datasets. The 100 points are roughly equivalent to 3 seconds of data. To each type 

(voltage magnitude, current magnitude, and frequency) of streaming phasor data, each 

of the clustering algorithms (k-means, k-medians, DBSCAN, and hclust) were applied. 

For algorithms where number of clusters to output was user-defined, a maximization of 

DI was used to determine optimal number of clusters. In the case of hclust, cutoff values 

were also chosen based upon a built-in optimization of DI. For DBSCAN, a trial and error 

approach was used to observe the values of eps and minPoints that maximized Dunn’s 

index. 

Then, for each algorithm on each data type, the DI was computed to quantitatively 

measure the efficiency of the clustering scheme on that data relative to the other 

algorithms. Additionally, the run times of each algorithm on each data type were analyzed. 

All parameters of each algorithm on each type of data were compared to evaluate which 

algorithm performed clustering of PMU data most efficiently. 

3.3 Results 

Results for the chapter entitled “Clustering Analytics in Streaming PMU Datasets” 

are discussed in this subchapter. Clustering schemes were applied to frequency, current, 

and voltage and compared by analyzing DI and run-times of each scheme. 
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3.3.1. Streaming frequency data 

 

((a)) k-means                                                                                           ((b)) DBSCAN                                                                                           

((c)) k-median                                                                                           ((d)) comparison of DI for all methods                                                                                          

FIGURE 11. K-MEANS, DBSCAN, AND K-MEDIAN ALGORITHMS APPLIED TO 10 MINUTES 

STREAMING FREQUENCY DATA 
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FIGURE 13. HCLUST CENTROID LINKAGE DENSITY, VIOLIN, AND BOX PLOTS 

FIGURE 12. RUN-TIME COMPARISON FOR CLUSTERING ALGORITHMS ON FREQUENCY DATA 
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Figure 11 displays visualizations of the clustering schemes of streaming frequency 

data as well as a bar chart comparing the DI of each method. Figure 13 shows hclust 

centroid method density, violin, and box plots to better understand the distribution of data 

points in each cluster. This specific cluster was analyzed because it showed the highest 

value of DI. Figure 12 displays a bar chart of the run time required for each algorithm. 

3.3.2. Streaming Voltage Data 

 

 

((a)) k-means                                                                                           ((b)) DBSCAN                                                                                           

((c)) k-median                                                                                          ((d)) DI comparison                                                                     

FIGURE 14. K-MEANS, DBSCAN, AND K-MEDIANS AND DI COMPARISON FOR VOLTAGE DATA 
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FIGURE 16. HCLUST CENTROID LINKAGE METHOD: DENSITY PLOT, VIOLIN PLOT, BOXPLOT 

FIGURE 15. RUN TIME COMPARISON FOR THE ALGORITHMS APPLIED TO STREAMING 

VOLTAGE DATA 
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Figure 14 displays visualizations of the clustering schemes of streaming voltage data as 

well as a bar chart comparing the DI of each method. Figure 16 shows hclust centroid 

method density, violin, and box plots to better understand the distribution of data points 

in each cluster. This specific cluster was analyzed because it showed the highest value 

of DI. Figure 15 displays a bar chart of the run time required for each algorithm. 

3.3.3 Streaming Current Data 

 

FIGURE 17 A) K-MEANS, B) DBSCAN, C) K-MEDIANS AND D) DI COMPARISON 
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FIGURE 18. HCLUST CENTROID METHOD: DENSITY PLOT, VIOLIN PLOT, BOX PLOT 

FIGURE 19. RUN TIME COMPARISON FOR CURRENT MAGNITUDE DATA 
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Figure 17 displays visualizations of the clustering schemes of streaming current 

data as well as a bar chart comparing the DI of each method. Figure 18 shows hclust 

centroid method density, violin, and box plots to better understand the distribution of data 

points in each cluster. This specific cluster was analyzed because it showed the highest 

value of DI. Figure 19 displays a bar chart of the run time required for each algorithm. 

3.4 Interpretation and Discussion 

 For frequency data, hclust centroid method performed efficiently. This algorithm 

yielded the highest Dunn’s index of 1.413. Hclust Ward’s method yielded an index of 

0.6418 while single, complete, and average methods each yielded indices of 1.206 but 

the box, violin, and density plots of these methods are not shown to avoid redundancy. 

Hclust, regardless of linkage method generally performed more efficiently than k-means 

and k-median algorithms. 

 Hclust single linkage performed clustering of voltage data very efficiently. This 

algorithm yielded the highest Dunn’s index of 626.6. Centroid method yielded an index of 

587.1 while single, complete, and average methods each yielded indices between 218.6 

and 399.8. Density plot shows peaks of anomalous voltages at 299kV and 300.25kV. For 

voltage data, hclust generally performed more efficiently than k-means and k-medians. 

 Hclust single centroid again performed clustering of data efficiently. For current 

data, this algorithm yielded the highest Dunn’s index of 34.44. DBSCAN also yielded an 

index of 34.44, while hclust single, complete, and average methods each yielded indices 

between 20.48 and 25.59. Hclust again performed more efficiently than k-means and k-

medians regardless of linkage method. Density plot shows peaks of anomalous current 

around 480A. Violin plot shows an approximately normal distribution for current data 
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representing currents under normal operating conditions. A cluster with another 

approximately normal distribution segmented current values with low current magnitudes 

representing abnormal operation or low current conditions. 

 Computation run time of each algorithm were compared to examine their feasibility 

for real-time use. The computation time can play a role for feasible use for larger datasets. 

They also play a role when real-time decisions need to be made by system operators. 

Ideally, computation run time should be small enough that immediate responses can be 

coordinated to grid anomalies. If run-times are excessive there will be a delay in any 

decision-making response. 

 The computation run times for the three types of data were nearly identical. The 

deviation in computation time for a given algorithm often differs less than ±10% between 

the three parameters. DBSCAN consistently shows a larger computation run time. Hclust 

computation run times were consistently about one third of the DBSCAN computation 

times at approximately 10 seconds. The k-means and k-medians algorithms consistently 

performed in 5 seconds or less. For computation run times, k-means clustering 

consistently performs very quickly relative to the other algorithms. It often performed 

clustering in ≤3 seconds. Hierarchical clustering, although it is slower in computation time 

than k-means, was consistently efficient. The time to perform hclust was not of concern 

for openPDC datasets of 10 minutes as the algorithm usually performed within 10 to 20 

seconds. There is no concern for hierarchical clustering computation or RAM storage 

capabilities for openPDC datasets containing ≤10 minutes. Run time computations were 

conducted on a desktop computer with an Intel i5-4670k processor, 16GB RAM, and a 

z87-g41 MSI pc-mate motherboard. Capabilities of this system were exceeded when 
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attempting clustering on datasets containing 30 minutes of data. The system used for 

these computations is a capable system. It is significant to note that just 30 minutes of 

data from one PMU causes computational issues with this system. In order to implement 

these computational techniques, considerable processing systems are desirable. 

3.5 Conclusions 

 This chapter introduced the application of clustering complex phasor data for 

openPDC datasets. k-Means, k-medians, DBSCAN, and hierarchical clustering 

algorithms were implemented using R statistical software. Distance metrics of hierarchical 

clustering were observed and consistently performed clustering more efficiently w.r.t 

Dunn’s index than k-means, k-medians, and DBSCAN clustering algorithms. In particular, 

it was observed that centroid hclust performed efficiently for frequency and current 

magnitude data. The single-link metric of hclust performed most efficiently for voltage 

data. At the expense of optimizing Dunn’s Index, it is possible that some compromises 

are made in terms of the representation of the data. For certain data, a smaller number 

of clusters results in a higher Dunn’s Index. While this may be clustered efficiently, there 

may be some information to be gleaned from a larger number of clusters as certain types 

of data activity may be captured and highlighted more distinctly. In addition, the current 

method of selecting hclust cutoff values using trial and error can be taxing, inefficient, and 

possibly inaccurate. 

 Experimental results on parameters such as frequency, voltage, and current 

demonstrate the novelty and effectiveness of the application of hierarchical clustering.  

The  results indicate  that  the  hierarchical  clustering with single linkage  distance  metric  
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is a good choice for  sudden surge  or  sag  values.  On the other hand, the average 

distance metric is less sensitive to outliers and can detect small deviations in parameters.  

Overall, hierarchical clustering is an efficient and effective set of algorithms for 

analyzing streaming phasor data. Dunn’s indices consistently show efficient clustering 

performance and computation run times are feasible for practical use. A scheme that 

incorporates the use of hclust algorithms is recommended for application to real-time 

smart grid situational awareness to aid in anomaly detection and decision-making 

protocols. This will aid system operators in both detecting and troubleshooting potential 

issues in the grid.  
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Chapter 4. Betweenness Centrality-based Identification of Critical Buses 
and Decomposition of Microgrids in IEEE Test-Bus Systems 

4.1. Summary 

The ability to identify critical structures, groups of buses, or critical hardware 

components is a key topic for power systems management. Applications of identification 

of critical components aids decision making with reference to maintenance, operations, 

and planning. This chapter proposes BC-based methods for critical component analysis 

in power systems. Specifically, BC is identified as a critical metric to identify individual 

buses that are important to transmission through a grid. This identification is extended a 

modified Girvan-Newman (GN) based BCGC algorithm to identify microgrid cluster 

formations from within smart grid networks. Methods proposed in this work use concepts 

from graph theory and network theory to model clusters of microgrids. Modules of smart 

grid are modeled using graphs with vertices and edges representing buses and 

transmission lines respectively. Specifically, load, batteries, generator, and relay buses 

were represented by graph vertices and transmissions between them considered as 

graph edges. Metrics of determining critical buses were analyzed based upon multiple 

criteria. BC was demonstrated to be effective in determining critical buses as well as 

defining community structures for microgrid determination within a larger scale power 

system. 

4.2 Methods 

4.2.1. Background 

A power grid can be decomposed into regions or areas using partitioning, splitting, 

and clustering methods informed from analysis provided by graph theory. Determination 

of regional community structures within a smart grid is an important task for optimal 
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management of the resources. The decomposition of power system is not a novel 

concept, but there is very limited research on how to decompose a grid or how to evaluate 

the effect of decomposition of micro grids for economic dispatch. Similar concepts date 

back to the 1950s [80]. The earliest work involving grid decomposition focused on the 

development methods for breaking large systems into smaller subsystems in order to 

make complex analysis or computations simpler [80].  

More recent works have focused on identifying power-network zones within a grid 

[17], spectral clustering of power grids [15], and assessing grid reliability based on 

topological metrics [81]. In [15], hierarchical spectral-clustering methods were used for 

power-grid decomposition, and [17]  used electrical distance quantification as a parameter 

for dividing a bus system into microgrid-like zones. To our knowledge, there is no paper 

that has considered an approach similar to the one proposed by this chapter.  The metrics 

of betweenness centrality (BC) and two-stage clustering brings novelty to grid 

decomposition approaches. An efficient grid decomposition and microgrid utilization has 

become important in the 21st century, as smart grid technologies evolves. Optimal grid 

decomposition will play an important role in uncertainty quantification, contingency 

planning, resource allocation, optimal power flow, cascading failure protection, integration 

of renewable power sources to the next-generation smart grid [10]. 

4.2.2 Identification of Critical Nodes 

This work follows an analytical procedure similar to the method proposed in a 

highly regarded computational science work found in [82], but applies to concept to 

analysis of a power system. First, the test bus system was modeled using graph theory 

concepts. Next, a variety of indices were formulated. These indices were coined as critical 
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bus indices (CBI) that attempted to quantify the importance of buses in the test system. 

CBIs were formulated using indices that arise from topological analysis combined with 

functional information of power systems. The CBIs were formulated and examined to see 

which indices best provided meaningful information about the criticality of individual buses 

in a system relative to the other buses. Each of the indices were formulated such that the 

larger the index, the more critical the bus is according to that index.  The indices are 

explained in table X. 

11 indices were formulated. One index was simply assigning the degree (D) of the 

bus as an index. Another index that was formulated (B) was the normalized impedance 

weighted BC. Another index was normalized BC multiplied by the demand (NBd) of each 

bus. A fourth index was a normalized BC multiplied by degree multiplied by demand of 

each bus (NDBd). Finally, the last index was random, where buses were randomly 

assigned for removal. 

4.2.3 Node Removal Methodology and Normalized Expected Impedance Distance 

To evaluate how effective these indices are in determining the importance of the 

buses, bus removal in descending order of each index was performed. Indices can be 

created with many metrics, but it is important that an index quantifies something 

meaningful. Bus removal analysis simulates the topological disruption that is caused to a 

graph by removing buses from the system and examining the effect that the removal has 

on the connectivity of the system. By comparing the removal of buses in descending order 

of each index to random removal of buses, the quantification of importance of each index 

can be analyzed. Node removal analysis is a method to determine which types of indices 

provide topological meaning to a connected system. 
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To quantify the disruptivity of removing a bus, analysis of normalized expected 

geodesic distance (NEGD) and normalized expected impedance distance (NEID) was 

conducted. In both cases the disruptivity of the 5 removal indices was compared against 

a removal of random buses in random order. NEGD is defined in [82] and NEID is directly 

related to it. NEGD is a metric that quantifies the connective distances of nodes in a graph. 

It is the average geodesic distance that would be expected to be traveled through when 

traveling from node i to node j in a graph. NEGD is given by (8). NEID is similar to NEGD, 

except distance between nodes (buses) is defined by the impedance of the edges 

(transmission lines) between the buses instead of defining distance geodesically. The 

equation for NEID is given by (9). To compare indices, normalization was conducted. The 

equation for normalization is given by (10). 

( 8 ) NORMALIZED EXPECTED GEODESIC DISTANCE 

𝑁𝐸𝐺𝐷 =
⅀𝑖=1

𝑛−1⅀𝑗=𝑖+1
𝑛 𝑑𝑣𝑖,𝑣𝑗

𝑛(𝑛 − 1) ∗ 𝐸
2

 

( 9 ) NORMALIZED EXPECTED IMPEDANCE DISTANCE 

𝑁𝐸𝐼𝐷 =
⅀𝑖=1

𝑛−1⅀𝑗=𝑖+1
𝑛 𝑍𝑣𝑖,𝑣𝑗

𝑛(𝑛 − 1) ∗ 𝐸
2

 

( 10 ) NORMALIZATION OF CBI 

𝑁𝐶𝐵𝐼𝑖 =
𝐶𝐵𝐼𝑖 − min(𝐶𝐵𝐼)

max(𝐶𝐵𝐼) − min(𝐶𝐵𝐼)
 

In equations 8-10, n is the number of buses in the system, 𝑑𝑣𝑖,𝑣𝑗
 is the geodesic 

distance between nodes i and j, E is the eccentricity [83] (largest geodesic distance in the 

graph), 𝑍𝑣𝑖,𝑣𝑗
 is the impedance in the transmission line between nodes i and j. CBI is the 
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critical bus index being normalized (B, Bd, D, etc..), and 𝑁𝐶𝐵𝐼𝑖 is the normalized CBI of 

bus i following a standard normalization formula. 

After node removal analysis for all indices was conducted, the most effective 

indices for quantifying criticality of buses were determined. After the most effective index 

was determined, strategies that employ this index were developed to decompose the test 

systems into microgrids. For the decomposition of a large system into smaller scale 

network communities or microgrids to be effective, the buses with highest importance 

should be given special consideration in decomposition. Based on the node removal CBI 

analysis, graph clustering algorithms based upon strong indices were deployed for 

system decomposition. Ultimately betweenness centrality was a demonstratively effective 

index. 

4.2.4 Power System Decomposition and Microgrid Specifications 

 This chapter aligns on the topic of using graph clustering algorithms to determine 

microgrid like structures within a power system. Large scale grid decomposition is not 

always necessary in determining microgrids because microgrids are often built 

independently of a large-scale grid system. However, should the situation arise, where 

the desire to logically decompose a large power grid into microgrids is necessary, this 

work demonstrates the utility of graph clustering algorithms for the specific purpose of 

defining these microgrids, which can more loosely be called power zones. Graph 

clustering algorithms can be applied to any network graph. However, because the 

network graphs represent power system bus systems, specific considerations must be 

made. When applying graph clustering techniques to IEEE bus systems special attention 

was paid to whether the results of the clustering algorithms formed logical clusters per 
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power systems micro grid definitions. The definition of a micro grid varies somewhat 

depending upon the utility. For this work, a formal definition of a micro grid followed from 

the definition provided in [84]. 

This definition defined the “microgrid rules” (MGR’s) of a microgrid system  

by specifying the types of buses necessary to be contained in a micro grid as well as 

general power flow constraints. A table outlining the micro grid rules is found in table 2. I 

define the units of micro grid contains components listed in Table 3, where, Pi(t) = active 

power, injected from the bus into the grid (positive for generators, negative for loads); 

Qi(t) = the reactive power, injected into the grid; Vi(t) = the voltage magnitude of the bus; 

 δi(t) = the phase angle of the voltage Vi. Buses are denoted with the running index, i. As 

outlined in table 3, a micro grid rule (MGR) was defined as a unit system containing at 

least one source of power generation, a non-zero load bus, and a bus containing power 

storage capability. When graph clustering algorithms were applied to the bus systems, 

special attention was paid to whether the grid decomposition formations of the clustering 

scheme followed the MGR’s. The specification on generator type is important in the utility 

of a micro grid. 
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TABLE 3. DEFINITION OF MGRS 

 

4.2.5 Economic Dispatch Formulation 

     To see the impact of decomposition structures on its cost, an economic-load dispatch 

model (ED) is applied to these IEEE test systems. ED is a method to schedule the 

generator outputs with respect to its load demands to operate the power system most 

Unit Symbol Constraints 

power line  
 

 

Constraints: 

𝐼𝑖,𝑗,𝑥(𝑡) < 𝐼𝑖,𝑗,𝑚𝑎𝑥 

load  

 

Constraints: 

𝑃𝑖,𝑥(𝑡) = −𝑃𝐿,𝑖𝑥(𝑡) (fixed) 

𝑄𝑖,𝑥(𝑡) = −𝑄𝐿,𝑖𝑥(𝑡) (fixed)  

 𝑉𝑖𝑥,𝑚𝑖𝑛 ≤ 𝑉𝑖𝑥(𝑡) ≤ 𝑉𝑖𝑥,𝑚𝑎𝑥 

Free variable: 𝑉𝑖𝑥(𝑡), 𝛿𝑖𝑥(𝑡) 

Generators (renewable 

or conventional)  

 

 

Constraints: 

𝑃𝑖𝑥(𝑡) = +𝑃𝑔,𝑖𝑥(𝑡) (fixed),  

𝑄𝑖,𝑥(𝑡) = ∓(𝑡) (fixed), 

 𝑉𝑖𝑥,𝑚𝑖𝑛 ≤ 𝑉𝑖(𝑡) ≤ 𝑉𝑖𝑥,𝑚𝑎𝑥 

Free variable: 𝑉𝑖𝑥(𝑡), 𝛿𝑖𝑥(𝑡) 

Storage device / relay   

 

 

 

𝐸𝑖𝑥(t) = stored energy or state of charge(SOC) 

Typical constraints: 

𝑉𝑖𝑥(𝑡) = 𝑉𝑠,𝑖(fixed) 

0 ≤ 𝐸𝑖(𝑡) ≤ 𝐸𝑖,𝑚𝑎𝑥 

−𝑃𝑖,𝑟𝑎𝑡𝑒𝑑 ≤ 𝑃𝑖(𝑡) ≤ +𝑃𝑖,𝑟𝑎𝑡𝑒𝑑 

State equation (one phase) 

𝑑(𝐸𝑖)

𝑑𝑥
= 𝑓𝑖(𝑃𝑖,𝐸𝑖) 

Free variable:    𝑃𝑖(𝑡), 𝐸𝑖(𝑡), 𝛿𝑖(𝑡), 𝑄𝑖,(𝑡) 

Point of common 

coupling 

 

 

 

The point of coupling is indexed as bus1,i=1 

Constraints: 

𝛿𝑖𝑥(𝑡) = 0 

𝑉𝑙,𝑥(𝑡) = −𝑉𝑖𝑛 ,𝑥(𝑡) (fixed) 

𝑃𝑙𝑥,𝑚𝑖𝑛 ≤ 𝑃𝑙,𝑥(𝑡) ≤ 𝑃𝑙𝑥,𝑚𝑎𝑥 

𝑄𝑙𝑥,𝑚𝑖𝑛 ≤ 𝑄𝑙,𝑥(𝑡) ≤ 𝑄𝑙𝑥,𝑚𝑎𝑥 

Free variable,  𝑃𝑙(𝑡), 𝑄𝑙(𝑡) 
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economically. In other words, the main objective is to allocate the optimal power 

generation of different units at the lowest possible cost while meeting all system 

constraints [19]. The economic-load dispatch is performed in a multi-generator system in 

order to schedule the generators to satisfy the loads in the system that are subjected to 

generator and transmission-line limits. In a power system, minimizing the operation cost 

is very important and therefore, ED was used as an effective way to evaluate the different 

clustering techniques. 

 

     The clustering techniques divide the bus system into different zones, or areas and 

applying economic dispatch to such a system is known as Multi-Area Economic Dispatch 

(MAED). The aim of MAED problems is to minimize the power-generation cost while 

satisfying the system’s load demand subject to the generation and line-flow constraints.  

The fuel cost for generating unit i (in $ per hour) to supply a 𝑃𝐺𝑖 amount of real power can 

be represented by a quadratic equation [85] as shown in (11): 

( 11 ) REAL POWER GENERATION COST EQUATION 

2( )i Gi i Gi i Gi iF P a P b P c    

where ai, bi, and ci  are the cost coefficients of generating unit i and  𝑃𝐺𝑖 is the real-power 

generation of unit i. The objective is to minimize the total generation cost, which can be 

represented by the following equation: 

( 12 ) GENERATION COST EQUATION TO MINIMIZE 

1

( )
gn

i Gi

i

F F P
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where ng is the number of generators working in the bus system. The economic-dispatch 

problem is then solved subject to several formulated constraints [86]. They are listed in 

equations (13), (14), (15) and (16). 

( 13 ) POWER GENERATOR CONSTRAINTS 

min maxGi Gi GiP P P 
  for  

1.... gi n
     

( 14 ) GENERATION TO DEMAND CONSTRAINT 

1

gn

Gi

i

P D



      

Here, constraint equation (13) implies that the power production from each generator 

must be within its maximum and minimum values and constraint equation (14) shows the 

condition that the power production from all the generators should meet the system’s total 

demand. The power flow through the tie lines that connect the areas is an additional 

constraint in the MAED problem, as shown in equation (15). 

( 15 ) TIE-LINE POWER FLOW CONSTRAINT 

min maxmn mn mnT T T 
  

The power flow between two areas, m and n, is subjected to a minimum and a maximum 

value of  𝑇𝑚𝑛𝑚𝑖𝑛
  and 𝑇𝑚𝑛𝑚𝑎𝑥

,  respectively.   

( 16 ) AREA POWER FLOW CONSTRAINT 

1 1 1

g c c
m t t

Gi cj kc c

i j k

P T T D
  

    
 

     Equation (16) ensures that the loads in each zone are satisfied by the generation within 

the zone and from the neighboring zones. Here, mg indicates the number of generators 
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within the zone, tc is the number of tie lines connected to the zone, and Tcj and Tkc indicate 

the power flowing from and coming to the zone from connected zones because the power 

flow is bi-directional between the clusters. Variable Dc indicates the total active load for 

the microgrid under consideration. In this model, the cost of the power flow through the 

tie lines is also considered. A generation cost of $0.1 per MW and a 200-MW maximum 

tie-line flow limit were used in [87]. To compare the different zones obtained by using 

various clustering techniques, the generators’ cost functions are assumed to be the same 

for all generators in the grid system. The total cost function to be minimized is the sum of 

the generation cost and the cost of the tie-line power flow; the modified equation is given 

in (17).  

( 17 ) COST FUNCTION - OBJECTIVE FUNCTION OF LINEAR PROGRAMMING FORMULATION 

min 1 1

( )
gn t

i Gi j j

i j

F F P C T
 

  
  

     The variable Cj denotes the cost for the tie-line power flow, which is assumed to be 

constant for all the tie lines; t represents the number of tie lines in the model; and Tj is the 

amount of tie-line power flow [88]. The ED model is developed using the concept of linear 

programming with the mentioned load, generator, and tie-line flow constraints. The ED 

model is programmed using AMPL (Algebraic Mathematical Programming Language), a 

popular tool that is used to solve linear-programming problems. AMPL software needs 

two file types: model and data files. The .mod file contains the linear-programming code 

and the .dat file contains the system data. The .mod file will work on the data or 

information in the .dat file. Separate .dat and .mod files are created for the IEEE 118 and 
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IEEE 300-bus systems for every decomposition structure. The ED model only considers 

the system’s active loads and generators and doesn’t consider reactive power. 

4.2.6 Methodology 

 This chapter analyzes the utility of graph theory analytics and graph clustering for 

application in power systems. IEEE 118 and 300 bus systems were selected as case 

studies. CBI indices were formulated using information metrics from basic system 

analysis and graph theory indices. The effectiveness of the formulated indices in 

quantifying meaningful topological information about the bus systems was tested using a 

node removal methodology. The most informative CBIs were determined based on the 

results of the node removal. Betweenness centrality was identified as a key metric. For 

further analysis, BC based graph clustering approaches were applied to the systems to 

FIGURE 20. CBI AND MICROGRID DECOMPOSITION METHODOLOGY FLOW CHART 
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decompose the large systems into microgrids. Multiple combinations of graph clustering 

algorithms were tested based on their ability to improve ED for the entire system. A block 

diagram of the methodology is shown by figure 20.  

4.3 Results 

4.3.1 CBI evaluation 

The results of node removal and disruptivity analysis were tested on IEEE-118 and 

IEEE-300 bus test systems. The analysis NEGD and NEID node removal for the IEEE-

118 bus system are shown in Figure 21, Figure 22, and Figure 23. Node removal for the 

IEEE-300 bus system are shown in Figure 24, Figure 25, and Figure 26. 

 

FIGURE 21. NEGD FOR ALL METRICS IN 118 BUS REMOVAL 
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FIGURE 22. NEID COMPARISON FOR ALL METRICS IN 118 BUS REMOVAL 
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FIGURE 23. NEID COMPARISON FOR TOP 5 METRICS IN 118 BUS REMOVAL 

 

 

 

FIGURE 24. NEGD COMPARISON FOR MOST INFLUENTIAL INDICES OF 300 BUS REMOVAL 
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FIGURE 25. NEGD COMPARISON FOR ALL METRICS OF 300 BUS REMOVAL 

 

 

 

 

FIGURE 26. NEID COMPARISON FOR MOST INFLUENTIAL INDICES OF 300 BUS REMOVAL 
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4.3.2 Discussion and interpretation of CBI and node removal 

Figures 21-26 display the node removal process for IEEE-118 and IEEE-300 bus 

systems. A node removal is a bus failure, since the nodes in these systems refer to buses. 

When a node is removed, the edges connected to that node cannot be traveled on. This 

simulates a failure of a bus in a smart grid. When a bus fail, transmission of power through 

that bus is interrupted. Figures 21-26 compare the indices that were developed in this 

work. These indices are compared by removing the nodes in descending order of each 

index. For example, the node with the highest Bd index in the 118 system is node 81 

(e.g.,bus 81) and the node with the highest B index is node 75 (e.g.,bus 75). The buses 

were removed in descending order. In the case of index Bd, the descending order starts 

with bus 81. In the case of index B, the descending order starts with bus 75. 

Figures 21-26 display the impact of node removal is through the changes in NEGD 

and NEID. Specifically, when NEGD or NEID is sharply decreased through the removal 

of a bus, system disruption is observed. When NEGD and NEID are not decreased 

through the removal of nodes, this indicates that the system is not well-disrupted by the 

failure of the nodes. This was observed in figures 21-26 by the removal of random nodes. 

The removal of random nodes did not have a very large effect on NEGD or NEID 

compared to the indices formulated in this work. 

 Analysis of Figures 21-26 indicates that indices that are more heavily biased 

by betweenness are more disruptive to a system according to NEGD and NEID. This is 

observed by fact that the NEGD and NEID show a sharper decrease by a smaller number 

of buses that are failed through node removal. More specifically, Bd was the most 

effective index in determining importance in the IEEE-118 bus system. In the IEEE-300 
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bus system Bd was most effective when NEGD was analyzed as the disruption criteria, 

but betweenness (B) was most effective in terms of NEID disruption. Because NEID is 

more relevant to power systems operation than NEGD, more merit is given to the results 

of NEID disruption.  

     In both test systems, a CBI denote by degree (D) was also somewhat effective 

in quantifying disruption according to the expected distance metrics. However, it was not 

as effective as Bd. In many cases NBDd returned the same results as Bd. This is due to 

the heavy biasing of betweenness when multiplied by demand in this index. The influence 

of degree was often not sufficient to change the order of the bus indices; thus the removal 

order was the same. All indices in this work showed to be more effective in quantifying 

importance compared to a random node removal. This means that all the indices in this 

work quantify some level of importance of the buses to the connectivity of the systems. 

The removal of random nodes served as a baseline in analyzing the effectiveness of the 

other indices. The results show that random node removal did not significantly affect the 

NEGD or NEID even when large numbers of buses were removed. 

4.3.3 Results of graph clustering, modularity, and economic dispatch 

Several different decomposition criteria were utilized in analyzing the different grid 

decompositions. The results section shows a sample of some effective techniques. 

Modularity scores for these criteria are recorded and shown in Table 4 and Table 5. 
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TABLE 4. IEEE 118 BUS SYSTEM WITH MODULARITY SCORES FOR EACH CLUSTERING 

ALGORITHM AS WELL AS MGRS. 

 

 

 

 

 

 

 

 

 

 

TABLE 5. MODULARITY AND MGRS FOR IEEE 300 BUS SYSTEM FOR GN ALGORITHMS 

 

 

 

 

 

 

 

IEEE 118 BUS TEST SYSTEM 

CLUSTER SCHEME MODULARITY FOLLOWS MGR 

Topology - GN 0.6908 Yes 

L-GN 0.6721 No  

A-GN 0.74537 Yes 

Topology-NG 0.5151 Yes 

Length-NG 0.2995 Yes 

Admittance-NG 0.1312 Yes 

NGGN 0.6644 Yes 

IEEE 300 BUS TEST SYSTEM 

CLUSTER SCHEME MODULARITY FOLLOWS MGR 

Topology-GN 0.8344 No 

L-GN 0.7824 No 

G-GN 0.8344 No 

NGGN 0.784 Yes 
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These tables show a modularity score, and whether the given decomposition 

follows rules for being considered a microgrid. Modularity index for microgrid 

decomposition is a useful metric in determining a grid structures ability to withstand 

microgrid or cascading failures. High modularity indicates dense microgrid intra-

connection while simultaneously maintaining sparse interconnection with other 

microgrids. The physical bus system decomposition structures for the 118 and 300-bus 

systems that accompany these tables can be seen by the visualizations contained in 

Figure 27 and Figure 28. Table 6 and Table 7 list all buses in their respective zones 

obtained using the three clustering techniques for the IEEE 118 and 300 bus systems. 
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FIGURE 27. 118-BUS SYSTEM CLUSTERED WITH ADMITTANCE-WEIGHTED GN ALGORITHM. 
B.) 118 BUS SYSTEM CLUSTERED WITH LENGTH-WEIGHTED GN. C.) 118 BUS SYSTEM 

CLUSTERED WITH TWO STAGE NG+GN. D.) 300 BUS SYSTEM CLUSTERED WITH 

ADMITTANCE-WEIGHTED GN 
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FIGURE 28. EXAMPLE DECOMPOSITIONS FOR 300 BUS SYSTEM. A.) 300 BUS SYSTEM 

CLUSTERED WITH LENGTH-WEIGHTED GN.  B.) 300 BUS SYSTEM CLUSTERED TWO STAGE 

NGGN. 
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TABLE 6. IEEE 118 BUS DECOMPOSITIONS BY ALGORITHM AND ZONE. 

 

 

TABLE 7. BUS ASSIGNMENTS FOR EACH GN ALGORITHM FOR 300 BUS SYSTEM 

 L-GN A-GN LPGN 

Zone 1 1,2,3,4,5,6,7,8,9,10, 

11,12,13,14,16,17,117 

1,2,3,4,5,6,11,12,13, 117 1,2,3,4,5,6,7,8,9,10,11,12,13,14,1

6,117 

Zone 2 8,9,10,14,16,17,18,19,30,33  17,23,25,26,27,28,29,30,31,32, 

113,114,115 

15,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,32,33,113,114,115 

Zone 3 15,18,19,20,21,22,33,34,35,36,37  20,21,22,23,25,26,27,28,29,31,

32,113,114,115 

34,35,36,37,38,39,40,41,42,43,44,

45,46,47,48,49,50,51,52,53,54,55,

56,57,58 

Zone 4 24,47,68,69,70,71,72,73,74,75,76,7

7,78,79 ,81,116,118 

24,68,69,70,71,72,73,74,75,76,

81,116,118 

59,60,61,62,63,64,65,66,67,68,69,

70,71,72,73,74,75,76,81,116,118 

Zone 5 82,83,84,85,86,87,88,89,90,91 34,35,36,37,38,39,40,41 77,78,79,80,82,83,84,85,86,87,88,

89,90,91,92,93,94,95,96,97,98,99,

100,101,102,103 

Zone 6 38,61,63,64,65 43,44,45,46,47,48 

 

104,105,106,107,108,109,110,111

,112 

Zone 7 43,44,45,46,48 42,49,50,51,52,53,54,55,56,57,

58,66 

NA 

 

Zone 8 39,40,41,42,49,50,51,52,53,54,55,5

6,57,58,59,60, 62,66,67 

59,60,61,62,63,64,65,67 

Zone 9 80,92,93,94,95,96,97,98,99,100,101

,102 

77,78,79,80,82,94,95,96,97,98,

99 

Zone 10 103,104,105,106,107,108,109,110,1

11,112 

100,101,102,103,104,105,106,1

07,108,109,110,111,112 

Zone 11 
NA 

83,84,85,86,87,88,89,90,91,92,

93 

 

 

L-GN A-GN NGGN 

Zone 1 

1,2,3,4,5,6,7,8,9,10,11,

12,13,14,16,19,20,21,2

2,23,24,25,26,27,319,3

20,7001,7002,7003,701

1,7012,7023 

1,2,3,4,5,6,7,8,9,10,11,12,1

3,14,16,19,20,21,22,23,24,

25,26,27,319,320,7001,700

2,7003,7011,7012,7023 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,2

1,22,23,24,25,26,27,128,129,130,131,150,167,16

8,319,320,7001,7002,7003,7011,7012,7017,7023,

7024,7130  
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Zone 2 

15,17,47,85,86,87,89,9

0,91,92,94,97,98,99,10

0,102,103,104,105,107,

108,109,110,112,113,1

14,322,323,324,7017 

15,17,47,85,86,87,89,90,91

,92,94,97,98,99,100,102,10

3,104,105,107,108,109,110

,112,113,114,322,323,324,

7017 

33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,

49,51,52,53,54,55,69,70,71,72,73,74,76,77,78,79,

80,81,84,85,86,87,88,89,90,91,92,94,97,98,99,10

0,102,103,104,105,107,108,109,110,112,113,114,

189,193,195,196,197,198,199,200,201,202,203,2

04,205,206,207,208,209,210,211,212,322,323,32

4,528,531,552,562,609,2040,7039,7044,7049,705

5,7071 

Zone 3 

33,34,37,38,39,40,41,4

2,43,44,45,46,48,49,51,

52,53,54,55,7039,7044,

7049,7055 

33,34,37,38,39,40,41,42,43

,44,45,46,48,49,51,52,53,5

4,55,7039,7044,7049,7055 

57,58,59,60,61,62,63,64,526,7057,7061,7062 

Zone 4 
35,36,70,71,72,73,74,7

6,77,78,80,84,88,528,5

31,552,562,609,7071 

35,36,70,71,72,73,74,76,77

,78,80,84,88,528,531,552,5

62,609,7071 

115,116,117,118,119,120,121,122,123,124,125,1

26,127,132,133,134,135,136,137,138,151,152,15

3,154,155,156,157,158,159,160,161,162,163,164,

165,166,169,170,171,181,183,184,185,186,187,1

88,1190,1200,1201,7166 

Zone 5 57,58,59,60,61,62,63,6

4,526,7057,7061,7062 

57,58,59,60,61,62,63,64,52

6,7057,7061,7062 

139,140,141,142,143,144,145,146,147,148,149,1

72,173,174,175,176,177,178,179,180,182,7139 

Zone 6 

69,79,189,193,196,197,

198,199,200,201,202,2

03,204,205,206,207,20

8,209,210,211,248,249,

250,2040 

69,79,189,193,196,197,198

,199,200,201,202,203,204,

205,206,207,208,209,210,2

11,248,249,250,2040 

190,191,192,194,216,217,218,219,220,221,222,2

23,224,225,226,227,228,229,230,231,232,233,23

4,235,236,237,238,239,240,241,281,664 

Zone 7 

81,194,195,212,213,21

4,215,216,217,218,219,

242,243,244,245,246,2

47,664 

81,194,195,212,213,214,21

5,216,217,218,219,242,243

,244,245,246,247,664 

213,214,215,242,243,244,245,246,247,248,249,2

50 

Zone 8 

115,116,117,118,119,1

20,121,122,123,124,12

5,126,157,158,159,160,

1190,1200,1201 

115,116,117,118,119,120,1

21,122,123,124,125,126,15

7,158,159,160,1190,1200,1

201 

9001,9002,9003,9004,9005,9006,9007,9012,9021

,9022,9023,9024,9025,9026,9031,9032,9033,903

4,9035,9036,9037,9038,9041,9042,9043,9044,90

51,9052,9053,9054,9055,9071,9072,9121,9533 

Zone 9 

127,128,129,130,131,1

32,133,134,135,150,15

1,167,168,169,170,171,

184,185,7130 

127,128,129,130,131,132,1

33,134,135,150,151,167,16

8,169,170,171,184,185,713

0 

NA 

 

 

 

 

 

 

 

Zone 10 

136,137,138,152,153,1

54,155,156,161,162,16

3,164,165,166,181,183,

186,187,188,7166 

136,137,138,152,153,154,1

55,156,161,162,163,164,16

5,166,181,183,186,187,188

,7166 

Zone 11 

139,140,141,142,143,1

44,145,146,147,148,14

9,172,173,174,175,176,

177,178,179,180,182,7

139 

139,140,141,142,143,144,1

45,146,147,148,149,172,17

3,174,175,176,177,178,179

,180,182,7139 
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TABLE 8. ECONOMIC DISPATCH COST RESULTS FOR 118 BUS SYSTEM 

 L-GN A-GN NGGN 

Number of clusters 10 11 5 

Generation Cost ($) 
9074.86 9137.03 9148.06 

Tie-line flow cost ($) 
262.871 87.725 36.45 

Total Cost ($) 9337.73 9224.76 9184.51 

 

TABLE 9. ECONOMIC DISPATCH COST RESULTS FOR 300 BUS SYSTEM 

 L-GN A-GN NGGN 

Generation Cost ($) 141704 141704 123824 

Number of clusters 14 14 8 

Tie-line flow cost ($) 233.089 233.089 163.361 

Total Cost ($) 141937 141937 123988 

 

 

 

Zone 12 

190,191,192,220,221,2

22,223,224,225,226,22

7,228,229,230,231,232,

233,234,235,236,237,2

38,239,240,241,281 

190,191,192,220,221,222,2

23,224,225,226,227,228,22

9,230,231,232,233,234,235

,236,237,238,239,240,241,

281 

 

Zone 13 

9001,9002,9005,9012,9

021,9022,9023,9024,90

25,9026,9051,9052,905

3,9054,9055,9121,9533 

 

9001,9002,9005,9012,9021

,9022,9023,9024,9025,902

6,9051,9052,9053,9054,90

55,9121,9533 

 

Zone 14 

9003,9004,9006,9007,9

031,9032,9033,9034,90

35,9036,9037,9038,904

1,9042,9043,9044,9071

,9072 

9003,9004,9006,9007,9031

,9032,9033,9034,9035,903

6,9037,9038,9041,9042,90

43,9044,9071,9072 
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TABLE 10. GENERATOR RATING/LOAD RATIO OF IEEE 118 CLUSTERS 

Generation/Load 

ratio 

L-GN A-GN NGGN 

Maximum value 

(%) 

198.61 277.08 124.48 

Minimum value 

(%) 

49.62 47.22 50.63 

 

TABLE 11. GENERATOR RATING/LOAD RATIO OF IEEE 300 BUS CLUSTERS 

Generation/Load 

ratio 

L-GN A-GN NGGN 

Maximum value 

(%) 

616.61 616.61 411.86 

Minimum value 

(%) 

61.90 61.90 86.96 

 

4.4. Discussion and Interpretation 

Table 8 and Table 9 list the generation cost, the tie-line flow cost, and the total cost 

for the IEEE 118 and IEEE 300-bus systems for the Length-GN (L-GN), Admittance-GN 

(A-GN), and NGGN clustering technique, respectively. For the 118-bus system, there is 

a 66.6% reduction in tie-line flow cost for the A-GN clustered system when compared to 

the L-GN system and there is a significant reduction of 86.13% for the NGGN method 

compared to the L-GN method. For the total cost, the cost reductions are 1.21% and 

1.64%, respectively, for the A-GN and NGGN method.  For the 300-bus system case, the 

value for the tie-line flow-cost reduction is 0% for the A-GN method because the cluster 

was identical to the L-GN method and it’s 29.91% for the NGGN method. Similarly, the 

reduction for the total costs are 0% for the A-GN method and 12.64% for the NGGN 

method. From these results, there is a significant reduction in the tie-line flow cost for the 

NGGN clustering technique compared to the L-GN and A-GN techniques. The usage of 

NGGN method also results in the reduction of total cost for the system. 
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Another parameter used to compare grid clusters is the generation to load (G/L) 

ratio. A G/L value that is more than 100% indicates a self-sufficient grid cluster with 

excess generation that can be given to other micro grids. A G/L value less than 100% 

indicates that the generation within the cluster is not sufficient to satisfy its load, thus 

requiring resources from neighboring micro grids to meet the demand. Table 10 and Table 

11 list the maximum and minimum value of this G/L for the IEEE 118-bus and 300-bus 

systems, excluding the zones with no active power generation. It is evident that the NGGN 

clusters are more suited due to its self-sufficiency, when compared to the other two cases, 

because the values are closer to the ideal value of 100. 

Several decomposition criteria were utilized to analyze multiple-grid structures in 

conjunction with economic dispatch. The modularity scores for these criteria were 

recorded and shown in Table 4 and Table 5 respectively. These tables show that the 

impact of modularity score on a given decomposition. The modularity index for micro grid 

decomposition is a useful metric to determine a grid structure’s ability to withstand 

microgrid or cascading failures. A higher modularity score indicates a dense micro grid 

intra-connection while simultaneously maintaining a sparse interconnection with other 

microgrids. The physical bus system’s decomposition structures for the 118- and 300-bus 

systems that accompany these tables can be seen with the visualizations abstracted to 

graphs using R software. 

Preliminary results indicate that higher modularity scores for any bus system occur 

when using the GN algorithm with the edge weights weighted with the admittance of the 

transmission lines. This was evident in the 118-bus and 300-bus system. The nearest-
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generator (NG) algorithm works poorly when applied by itself in the 118- and 300-bus 

systems.  

     Betweenness centrality is a good metric to determine the microgrid structures within a 

given grid system, if the generators are well-distributed. This distribution is likely to be the 

case for smart-grid networks. Further work needs to be done to observe how these 

algorithms scale well for larger systems. The modularity index for the microgrid 

decomposition is also a useful metric to determine a grid structure’s ability to withstand 

cascading failures. High modularity indicates dense microgrid intra-connection while 

simultaneously maintaining sparse interconnection with other microgrids. However, a 

decomposition’s modularity score does not appear to have a significant relationship with 

the economic dispatch optimization. The combination of the nearest generator algorithm 

in a two-stage decomposition with betweenness clustering forms a clustering scheme that 

logically follows the demands of microgrids while making use of the connective topology 

of the system quantified by betweenness. 

4.5 Conclusions 

This chapter presents a preliminary work in quantifying the importance of individual 

buses to the operation of a power grid. This work examines the metrics of betweenness, 

degree, demand, generation, and interactions of these quantities that lead to effective 

quantification of bus importance. Five indices were created and tested through a process 

of node removal. This process is a well-known technique to the fields of social-network 

theory and computer science, and serve as a preliminary method to examine the 

effectiveness of the indices that were developed. As the node removal process was 
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tested, the effect of removing the nodes (e.g., failing buses) was quantified by examining 

the effect on NEGD and NEED.  

     The results indicate that indices based heavily on betweenness centrality show more 

disruption in a smaller number of failed nodes. Furthermore, betweenness centrality is an 

effective metric for quantifying the importance of a bus to the transmission of power 

through the system. This was quantified by large decreases in NEED, which is a relevant 

computational metric to understand power system disruption, in a small number of nodes 

removed. 

When examining the economic dispatch of different micro grid decompositions, 

results indicate that decompositions formed using the two-stage clustering method, 

NGGN show a reduced cost for economic dispatch. This cost reduction is mostly due to 

savings that occur in the tie-line flow. The savings due to generation cost are smaller and 

are not significant. This reduction is due to the evenly distributed tie-line flows that due to 

proposed two-stage clustering approach. Although the modularity for two-stage clustering 

was slightly lower than it was for the one-stage schemes, the economic dispatch is very 

cost-effective. The two-stage clustering method using the admittance and/or impedance 

weighted betweenness coupled with the nearest-generator method is a novel 

contribution. Adding, this method do show an overall reduction in the dispatch cost 

compared to the single-stage clustering methods.  
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Chapter 5. Investigation of Time-Series Clustering for Demand Profile 
Classification and Improved Load Forecasting 

5.1 Summary 

In this chapter, a forecasting framework for residential energy demand of homes 

with and without electric vehicles based on time-series clustering is demonstrated. Time-

series energy consumption data from 200 households as well as electric vehicle charging 

for 200 electric vehicles associated with the households was analyzed. This work 

proposes and compares a novel implementation of the k-shape and partitional DTW time-

series clustering algorithms to improve forecast accuracy and discover residential load 

profiles. As adoption of electric vehicles increases exponentially globally, there is a need 

for continuous relevant research on the impacts of charging infrastructure integration on 

the grid. The increased number of electric vehicles imposes enormous power 

requirements, and this leads to power imbalance which effects the stability of grid. This 

work uses novel analysis to provide insight into residential load forecasting in the 

presence of electric vehicles. With the increase in smart meter and smart grid 

technologies, forecasting at the residential level is becoming more prevalent. This work 

implements a framework to provide meaningful analysis and enhanced forecast accuracy 

for household energy demand data based on smart meter data. 

5.2 Methods 

5.2.1. Background 

Accurate models for electric power load forecasting are essential to the operation 

and planning of a utility company. Forecasting in power systems is an active area of 

research with many contributors. Because forecasting is closely related to economic 

success, many resources are allocated for accurate forecasting. As a result, many 
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algorithms and methodologies have been developed, tested, and evaluated with varying 

levels of accuracy. There are a multitude of forecasting works and surveys that outline 

the applications related to load forecasting [26], [27], [51], [74], [89]–[93]. The success of 

a forecasting algorithm depends on the proper application of appropriate algorithms and 

any regressive variables to consider [94]. 

Though there are a multitude of forecasting methodologies, there is limited 

literature regarding using time-series clustering as a processing step for a forecasting 

paradigm. With the advent of smart meters, where individual household demand patterns 

can be known, the capability for accurate forecasting based on this new multitude of data 

is intriguing. However, with more data comes more challenges. If more smart meters are 

deployed there is more data to handle. The ability to use clustering algorithms to classify 

time-series data is a natural application for smart meter data. Clustering algorithms can 

classify which households are most similar to one another based upon their electricity 

demand time-series. There have been a few works that have attempted to exploit this 

capability, but there are no existing works that deploy time-series clustering techniques 

in a forecasting scheme in a large-scale case study like the one proposed by this thesis.  

k-Shape has been utilized for analysis for other energy demand data [40], [95], but 

has not been utilized for power systems demand data on a scale proposed by this work. 

This work proposes an agglomerative forecasting scheme similar to the scheme proposed 

in [96], [97] but applies it on a larger scale to 200 smart meter datasets for an aggregate 

forecast. Works similar to this have been done on small scales, however, the scale of this 

work and the specific forecast combination is a novel contribution to literature. 
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5.2.2 Understanding the smart meter data 

To properly understand the data, basic analysis is needed and adds value. An 

intriguing feature of this data is the existence of EV charging. There is vast amount of 

existing information regarding household energy demand profiles. However, EVs are 

relatively new to the industry and information regarding EV charging is still being 

discovered. This chapter analyzes hourly interval EV charging data in addition to the 

residential demand of the homes that they are associated with. Basic analysis of the 

charging was gathered to understand the difference between households that contain 

EVs and households that do not. Specifically, the number of charging hours per year and 

power consumed by each vehicle were analyzed and are shown in figures 29 and 30. 

 

FIGURE 29. YEARLY CHARGING HOURS OF THE 200 EVS IN THE SMART METER DATA 

The graph in figure 29 demonstrates the number of hours charged per vehicle per 

year. It is clear by looking at this data there appear to be two distinct amount of vehicle 

charging demands in terms of number of hours of charging per year. Based on this plot, 

there are about 150 vehicles that require about 1000 hours of charging per year and there 
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are 50 vehicles that require charging in the neighborhood of 2000 hours per year. More 

analysis needs to be done to uncover why there appear to be two distinct categories of 

charging hours per year. It is a peculiar trend to exist within the data.  

 

FIGURE 30. POWER CONSUMPTION FOR CHARGING OF EACH EV IN ONE YEAR. 

      In addition to analysis of the charging hours per year, the amount of power 

consumed by EV charging is crucial from a utility perspective. Figure 30 shows the 

amount of power consumed by each vehicle in the dataset throughout the one year of 

observation. Even though figure 39 indicates that two distinct patters of charging hours 

exists, the amount of power consumed by charging is more random and does not appear 

to exhibit any clear distinguishable trends. 

5.2.3 Methodology 

Time series clustering methods are applied (k-shape, k-means DTW, and k-means 

Euclidean). Because each of these schemes require input to decide the ‘k” number of 

clusters, a cluster evaluation scheme is implemented to decide how many clusters is 
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appropriate for each scheme. After the appropriate scheme has been identified, 

forecasting of each cluster of households is performed and compared to a traditional 

forecasting method that does not involve clustering. The traditional aggregate forecast 

and the forecasting of the clustered residences both invoke the two-stage loess-ARIMA 

method and the accuracy of the schemes is analyzed according to SSD, MSD, and 

MAPE. Residential load and electric vehicle charging data used in this work can be found 

at [98]. 

5.3 Results 

5.3.1 Time-series clustering results 

 

 

 

TABLE 12.CVIS FOR K-SHAPE CLUSTERING OF HOUSEHOLDS W/ EVS 

TABLE 13. CVIS FOR DTW CLUSTERING FOR HOUSEHOLDS W/ EVS 
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The compactness and separation of the clustering schemes were quantified by 

seven CVIs. Tables 12 and 15 show the CVI analysis of the k-shape clustering schemes. 

The CVIs were used to evaluate the effect number of clusters that are appropriate for this 

data. For example, table 12 displays the CVIs for the k-shape clustering of households 

TABLE 15. CVIS FOR K-SHAPE CLUSTERING OF HOUSEHOLDS W/OUT EVS 

TABLE 14. SCALED CVIS TO COMPARE ACROSS INDICES FOR DTW CLUSTERING OF 

HOUSEHOLDS W/ EVS 

FIGURE 31. CENTROID DAILY DEMAND PROFILES FROM 4-SHAPE CLUSTERING FOR 

HOUSEHOLDS W/ EVS 
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with EVs. The most appropriate k-shape clustering method was selected by analyzing 

which number of clusters, k, is consistently resulting in the highest CVIs according to the 

seven CVIs that were analyzed. 

 

FIGURE 32. CENTROIDS OF DAILY HOUSEHOLD DEMAND FOUND BY 3-SHAPE CLUSTERING 

FOR HOUSEHOLDS W/OUT EVS 
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5.3.2 Forecasting Results 

 

FIGURE 33. TRADITIONAL FORECASTING SCHEME FOR HOUSEHOLDS W/ EVS 
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FIGURE 35. PROPOSED FORECASTING METHOD THAT USES TIME-SERIES CLUSTERING 

APPLIED TO HOUSEHOLDS W/ EVS 

FIGURE 34. TRADITIONAL FORECASTING METHOD APPLIED TO HOUSEHOLDS 

W/OUT EVS 
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     Figures 33 and 34 show the baseline forecasting methods. These forecasting methods 

show the traditional STL-ARIMA forecasting results for a day-ahead forecasting using 30 

days previous as training data. These methods do not consider any time-series clustering 

in the forecasting scheme. These forecasts were used to compare with the results from 

forecasting that used time-series clustering. The MAPE for forecasting of households that 

contained EVs was MAPE=10.6%. For non-EV households the MAPE was over 24% 

using this baseline method. 

5.4 Discussion and Interpretation 

5.4.1 Clustering Evaluation 

Based on the CVI in table 12, k-shape clustering with 4 clusters was consistently giving 

higher values of CVI across the 7 indices so it was selected as the method to use for 

forecasting. Similarly, in table 13, k-shape with 3 clusters consistently performed well 

according to the CVIs. Therefore, this scheme was used for forecasting for the non-EV 

dataset. It is also noted that in both cases, k=2 clusters performed well according to the 

CVIs. 

Figures 12 and 13 display the centroids of the selected k-shape clustering 

schemes. For the residential data that contained EVs, the k-shape scheme with 4 clusters 

was selected. For the non-EV data, k-shape with 3 clusters was selected. The centroids 

represent decomposed time series from within the data. These centroids represent 

common daily load profiles from within the data and they are the centroids of the clusters 

found by the k-shape algorithm. The centroids represent a characteristic time series upon 

which each time-series are quantified in relation to these clusters using the distance 

metrics of the k-shape algorithm. Examining figure 12 for example,  the results are 
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interpreted as the 3 types of daily demand profiles that exist from within the dataset. The 

k-shape clustering scheme can generally be stated as separating the different types of 

demand profiles that exist from within the dataset. 

5.4.2 Forecasting evaluation 

     The method of forecasting used for the plot in figure 35 was a newly proposed hybrid 

method. This forecasting scheme uses the time-series clustering framework to forecast 

for peak hours, but uses traditional forecasting schemes to forecast for off peak hours. 

The accuracy of this method is shown to be an increase over both the baseline method 

and the time-series clustering methods alone. When combined, the strengths of both 

forecasts can be leveraged. The time-series cluster was shown to be accurate for 

forecasting during peak times, but inaccurate during off-peak hours. Conversely, the 

baseline method was more accurate during off-peak hours and inaccurate during peak 

consumption periods. The MAPE of the proposed hybrid scheme is MAPE=7.6%. This is 

a 3% reduction as compared to the next best forecasting scheme for this data. 

5.5 Conclusions 

A hybrid forecasting framework utilizing time-series clustering is a promising 

approach to achieving accurate forecast values for high volume datasets that will be 

encountered by the increased use of smart meters. Traditional forecasting methods are 

accurate during non-peak periods. These methods are accurate because off-peak periods 

are more regular and thus easier to forecast using traditional methods. The traditional 

method used in this work was less accurate during peak periods. The use of time-series 

clustering to classify the data into different categories helped in increasing forecast 

accuracy during peak periods. The increase in accuracy of the clustering methods occurs 
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because most of the variation in time series occurs during peak periods. Thus, when a 

clustering algorithm is applied to the time-series data in this work, most of the differences 

between individual time-series occur during peak hours. These differences are captured 

by the clustering algorithms, and the peak periods that are most like one another are 

clustered together. This clustering of like time-series allows for more precise forecasting 

of different types of demand profiles that exist from within a utility’s jurisdiction. 
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Chapter 6. Results and Future Directions 

6.1 Summary 

This thesis demonstrates the effectiveness of clustering algorithms for 3 scenarios 

of smart grid data analysis, while comparing and analyzing specific methods of clustering 

that are most appropriate for each application. The utility of hclust for anomaly detection 

in phasor measurement unit (PMU) datasets was demonstrated. Hclust was effective in 

identifying anomalies according to Dunn Index (DI) criteria. A method previously 

demonstrated in literature, Density Based Spatial Clustering of Applications with Noise 

(DBSCAN) performed less effectively according to DI and was computationally inefficient 

in comparison to hclust. 

  The efficacy of betweenness-centrality (BC) for topological analysis was shown in 

two phases. BC was compared against other indices and was the most efficient index 

according to node removal. To further analyze its utility, betweenness centrality-based 

graph clustering (BCGC) was used in a novel clustering scheme for the determination of 

microgrids from large scale bus systems. BCGC was demonstrated and compared 

against other graph clustering techniques. The BC based clustering showed an overall 

decrease in economic dispatch cost when compared to other methods of graph clustering. 

Additionally, the utility of BC for identification of critical buses was showcased.  

Finally, this work demonstrates the utility of partitional dynamic time warping 

(DTW) and k-shape clustering methods for classifying power demand profiles of 

households with and without electric vehicles (EVs). The utility of DTW time-series 

clustering was compared against other methods of time-series clustering and tested 

based upon its ability to improve demand forecasting using traditional forecasting 
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techniques as a baseline. Additionally, a process for selecting an optimal time-series 

clustering scheme based upon a scaled sum of cluster validity indices (CVIs) was 

developed. Forecasting schemes based on DTW and k-shape demand profiles showed 

an overall increase in forecast accuracy. 

In summary, the use of clustering methods for three distinct types of smart grid 

datasets is demonstrated. The use of clustering algorithms as a means of processing 

data can lead to overall methods that improve forecasting, economic dispatch, event 

detection, and overall system operation. These three specific areas of application are 

critically important for optimal power systems operation as well as the economic success 

of utilities or software that may employ these techniques. The use of data clustering 

algorithms allows power systems operators to gain actionable insights from otherwise 

ambiguous power systems data. Ultimately, the techniques demonstrated in this thesis 

give analytical insights and foster data-driven management and automation for smart grid 

power systems of the future. 

6.2 Future directions 

 This thesis has demonstrated 3 situations where clustering algorithms can improve 

operational efficiency or situational awareness in power systems. Though the results of 

this work are conclusive, there are areas where further work would provide even greater 

meaning.  

 For the application of clustering algorithms to streaming PMU data, a future work 

could analyze the use of hclust in combination with machine learning for autonomous 

detection of fault and give further insight as to the type of fault. The current method of 

hclust shows a good method to detect faults, but further research involving the use of 
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machine learning techniques could diagnose specific fault types based upon data 

distributions and pattern the data presents in the fault. 

 In the application of time-series clustering for load forecasting, there are many 

variations of the proposed method of cluster-based forecasting that could be analyzed. 

One proposed method would be to use cluster identity as a regressive variable in the 

forecasting scheme. Additionally, the use of non-traditional forecasting schemes such as 

deep learning or neural networks may be an appropriate selection for smart meter data. 

Since the volume of data from smart meters is large, a forecasting scheme that uses time-

series clustering in combination with deep learning approaches could further reduce 

forecast error. 
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APPENDIX I – R CODE FOR CLUSTERING IN PMU DATASETS 

library(shiny) 

library(cluster) 

library(fpc) 

library(DMwR) 

library(clValid) 

start.time <- Sys.time() 

data$X<-NULL 

colnames(data) <- c("MeanFrequency", "Time") 

data <- na.omit(data) 

Logger <- data 

resultsK <-kmeans(Logger$MeanFrequency,3) 

cluster1<-data[resultsK$cluster==1,] 

cluster2<-data[resultsK$cluster==2,] 

cluster3<-data[resultsK$cluster==3,] 

#Cluster1 

max1<-max(cluster1$MeanFrequency) 

min1<-min(cluster1$MeanFrequency) 

d1<- max1-min1 

mean1<-mean(cluster1$MeanFrequency) 

#Cluster2 

max2<-max(cluster2$MeanFrequency) 
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min2<-min(cluster2$MeanFrequency) 

d2<- max2-min2 

mean2<-mean(cluster2$MeanFrequency) 

c21<-mean2-mean1 

#Cluster3 

max3<-max(cluster3$MeanFrequency) 

min3<-min(cluster3$MeanFrequency) 

d3<- max3-min3 

mean3<-mean(cluster3$MeanFrequency) 

c31<-mean3-mean1 

c32<-mean3-mean2 

#Combine 

ds <- c(d1,d2,d3) 

#View(ds) 

Dunnss<-c(1000) 

centersD<- c(c21,c31,c32) 

#View(centersD) 

for(i in 1:3){ 

  for (j in 1:3){ 

    c<- centersD[i]/ds[j] 

    Dunnss<- list(Dunnss,c) 

  } 
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} 

l<-unlist(Dunnss) 

Dunnss<-min(abs(l)) 

View(Dunnss) 

valuK <- resultsK$cluster 

#View(valuK) 

valu1K <- as.data.frame(valuK) 

#View(valu1K$valuK) 

#View(Logger) 

#View(Logger[valuK, 1]) 

dfK = data.frame(Logger$MeanFrequency, valu1K$valuK) 

colnames(dfK) <- c("Voltage", "Cluster") 

par(xpd=NA,oma=c(0,0,0,10)) 

plot(dfK$Cluster, dfK$Voltage, col = resultsK$cluster, main = "K-Means Clustering Current Magnitude", xlab = 

"Cluster", ylab = "Current Magnitude", cex.axis = 1.5) 

points(resultsK$centers, pch ="x") 

legend(par("usr")[2],par("usr")[4],title="Elements of Clusters",col=c("black","red","green"), 

c(toString(resultsK$size[1]),toString(resultsK$size[2]),toString(resultsK$size[3])),pch =1,lty=0,xjust=0, yjust=1.0) 

legend(par("usr")[2],par("usr")[4],title="Centroids of Clusters",col=c("black","red","green") 

,c(toString(signif(resultsK$centers[1],digits=5)),toString(signif(resultsK$centers[2],digits=5)),toString(signif(results

K$centers[3], digits=5))),pch =1,lty=0,xjust=0, yjust=2.0) 

legend(par("usr")[2],par("usr")[4],title="Max of Clusters",col=c("black","red","green") 

,c(toString(signif(max1,digits=5)),toString(signif(max2,digits=5)),toString(signif(max3, digits=5))),pch 

=1,lty=0,xjust=0, yjust=3.0) 
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legend(par("usr")[2],par("usr")[4],title="Min of Clusters",col=c("black","red","green") 

,c(toString(signif(min1,digits=5)),toString(signif(min2,digits=5)),toString(signif(min3, digits=5))),pch 

=1,lty=0,xjust=-1, yjust=3.0) 

legend(par("usr")[2],par("usr")[4],title="Dunns Index",c(toString(signif(Dunnss,digits=5))),lty=0,xjust=0, yjust=6.0) 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

View(time.taken) 

 

###dbscan 

library(shiny) 

library(cluster) 

library(fpc) 

library(DMwR) 

#library(clValid) 

start.time <- Sys.time() 

#Get Max,Min, and Distances 

index<-1 

while(index<numClus){ 

  cluster<-data[db$cluster==index,] 

  maxVal<-max(cluster$MeanFrequency) 

  minVal<-min(cluster$MeanFrequency) 

  meanVal<-mean(cluster$MeanFrequency) 

  disInner<-maxVal-minVal 
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  dis<-list(dis,disInner) 

  max<-list(max,maxVal) 

  min<-list(min,minVal) 

  mean<-list(mean, meanVal) 

  if(index>1){ 

    clustT<-cbind(clustT,cluster$MeanFrequency) 

  } 

  #View(index) 

  index<-index+1 

} 

clustT<-as.data.frame(clustT) 

#View(clustT) 

min<-as.data.frame(min) 

max<-as.data.frame(max) 

mean<-as.data.frame(mean) 

dis<-as.data.frame(dis) 

min[1]<-NULL 

max[1]<-NULL 

mean[1]<-NULL 

dis[1]<-NULL 

totmin<-t(min) 

totmax<-t(max) 
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totmea<-t(mean) 

#total<-as.data.frame(totmea,totmin,totmax) 

#View(total) 

rownames(totmin)<-NULL 

rownames(totmax)<-NULL 

rownames(totmea)<-NULL 

colnames(totmin) <- c("Min") 

colnames(totmax) <- c("Max") 

colnames(totmea) <- c("Mean") 

total<-cbind(totmea,totmax,totmin) 

#Get distances between all center means 

d<-dist(t(mean)) 

#Take out values 

cenD<-unique(d) 

cenD<-as.data.frame(cenD) 

#View(cenD) 

num<-(numClus-1) 

if(num > 3) { 

  cenD<-cenD[-c(1:num),] 

} 

Dunns<-min(cenD) 

par(xpd=NA,oma=c(0,0,0,10)) 
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plot(data$MeanFrequency, col=db$cluster+1L, main="DBSCAN Current eps=5, MinPts=50", ylab="Current 

Magnitude") 

legend(par("usr")[2],par("usr")[4],title="Dunns Index",c(toString(signif(Dunns,digits=4))),lty=0,xjust=0, yjust=1.0) 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

View(time.taken) 
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APPENDIX II – R CODE FOR CLUSTERING BASED MICROGRID 
DECOMPOSITION 

library(igraph) 

#ieee300common is bus dataset IEEE 300 bus 

ic3=ieee300common[-301,] 

i300=graph.data.frame(ieee300linecommon,directed=F,vertices=ieee300common) 

ic=graph.data.frame(ieee300linecommon,directed=F,vertices=ic3) 

plot(i300,vertex.size=7,vertex.label=NA) 

layout <- layout.reingold.tilford(i300, circular=F) 

plot(i300, vertex.size=7, vertex.label.cex=.5) 

## admittance 

E(i300)$Admittance=1/(((ieee300linecommon$BranchResistance)^2+(ieee300common$BranchReactanceX)^2)^(1/

2)) 

E(i300)$Length=abs(ieee300linecommon$BranchReactanceX)*260.36 

#E(ic)$Admittance=1/(((ic3$BranchResistance)^2+(ic3$BranchReactanceX)^2)^(1/2)) 

 

 

gens300=which(ieee300common$GenerationMW!=0) 

V(i300)$shape="circle" 

V(i300)$shape[gens300]="sphere" 

## clustering 

lengthclust300=cluster_edge_betweenness(i300,weights=E(i300)$Length) 

plot_dendrogram(lengthclust300) 
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modularity(lengthclust300) 

V(i300)$color=membership(lengthclust300) 

plot(i300, vertex.size=7, vertex.label.cex=.5,main="Length Betweenness") 

clust300=cluster_edge_betweenness(i300) 

plot_dendrogram(clust300) 

modularity(clust300) 

#betweenness admit 

admitclust300=cluster_edge_betweenness(i300,weights=E(i300)$Admittance) 

plot_dendrogram(admitclust300) 

modularity(admitclust300) 

######## 300 BUS SYSTEM CRITICAL NODE ANALYSIS 

Critical300$BDd=Critical300$NormalizedImpedBet*Critical300$Degree*Critical300$LoadMW 

Critical300$BDg=Critical300$NormalizedImpedBet*Critical300$Degree*abs(Critical300$GenerationMW) 

View(Critical300) 

Critical300a=Critical300[-301,] 

### 300 bus indices are columns 24,28,29 

ind=c(24,28,29) 

thing=data.frame(NB=double(),NDBd=double(),NDBdg=double()) 

thing[1:300,1:3]=0 

num=1 

for (i in ind){ 

  thing[,num]=(Critical300a[,i] - min(Critical300a[,i], na.rm=TRUE)) /  
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    (max(Critical300a[,i],na.rm=TRUE) - min(Critical300a[,i], na.rm=TRUE)) 

  num=num+1 

} 

### 

#### #    #    #    #    300 bus system 

## 

Critical300=ieee300common 

bus300=graph.data.frame(ieee300linecommon,directed=F,vertices=ieee300common) 

E(bus300)$Admittance=1/(((ieee300linecommon$BranchResistance)^2+(ieee300linecommon$BranchReactanceX)^

2)^(1/2)) 

E(bus300)$Length=abs(ieee300linecommon$BranchReactanceX)*260.36 

E(bus300)$AdmitInv=1/E(bus300)$Admittance 

Critical300$Degree=degree(bus300) 

NormalizedAdmitBet=betweenness(bus300,normalized=TRUE,weights=E(bus300)$Admittance) 

NormalizedImpedBet=betweenness(bus300,normalized=TRUE,weights=E(bus300)$AdmitInv) 

Critical300$NormalizedAdmitBet=NormalizedAdmitBet 

Critical300$NormalizedImpedBet=NormalizedImpedBet 

### DISTANCE TO NEAREST GENERATOR 

distMatrix <- shortest.paths(bus300, v=V(bus300), to=V(bus300),weights=E(bus300)$AdmitInv) 

gens3=which(ieee300common$GenerationMW>0) 

gens300=ieee300common$BusNumber[which(ieee300common$GenerationMW>0)] 

shortgen=rep(0,301) 

genID=rep(0,301) 
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for (i in 1:300) { 

  shortgen[i]=min(distMatrix[i,gens3]) 

  shortgen[i] 

  ID=which(distMatrix[i,gens3]==shortgen[i]) 

  genID[i]=gens300[ID] 

  genID[i] 

} 

Critical300$NearestGenImpedDistance=shortgen 

Critical300$NearestGen=genID 

#View(Critical300) 

#### plotting attributes and plotting 

V(bus300)$color=Critical300$NearestGen 

V(bus300)$shape="circle" 

V(bus300)[gens3]$shape="sphere" 

V(bus300)[store300]$shape="sphere" 

V(bus300)[relay300]$shape="square" 

plot(bus300,vertex.size=10, vertex.label.cex=.6) 

#View(Critical300) 

#### converge and do second stage clustering 

##admitclust$membership=Critical300$NearestGen 

##membership(admitclust) 

g=unique(Critical300$NearestGen) 
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o=order(g) 

for (i in 1:nrow(Critical300)) { 

  thing=which(g==Critical300$NearestGen[i]) 

  Critical300$NGID[i]=thing 

  Critical300$NGID[i] 

} 

#View(Critical300) 

converged300=contract.vertices(bus300,Critical300$NGID) 

converged300= simplify(converged300, remove.loops=FALSE) 

plot(converged300, vertex.label.cex=.65, main="Nearest Generator Converged") 

twostage300=cluster_edge_betweenness(converged300) 

convergedtwostage=contract.vertices(converged300,membership(twostage300)) 

plot(convergedtwostage, vertex.label.cex=.65, main="Two-Stage NearestGen + GN") 

plot(convergedtwostage, vertex.label=NA, main="Two-Stage NearestGen + GN") 

#V(bus300)$color=twostage300$membership 

#plot(bus300, vertex.size=10, vertex.label.cex=.6, main="Two-Stage Nearest+GN") 

####################### final assignment tracking 

finalassign=rep(0,301) 

for (i in 1:301){ 

  lp=Critical300$NGID[i] 

  lp 

  finalassign[i]=twostage300$membership[lp] 
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  finalassign[i] 

} 

finalassignlist=list() 

for (i in 1:max(finalassign)){ 

  finalassignlist[[i]]=ieee300common$BusNumber[which(finalassign==i)] 

} 

V(bus300)$color=finalassign 

finalassign300=finalassign 

plot(bus300, vertex.size=10, vertex.label.cex=.6, main="Two-Stage Nearest+GN") 
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APPENDIX III – R CODE FOR CLUSTERING SMART METER DATA AND LOAD 
FORECASTING 

library(dtwclust) 

library(TSclust) 

library(ggplot2) 

library(stats) 

library(forecast) 

library(caret) 

library(zoo) 

library(dtw) 

library(cluster) 

library(reshape) 

library(reshape2) 

library(tidyr) 

library(kml) 

June1h=summerh[which(summerh$Time<"2010-06-02" & summerh$Time>="2010-06-01"),] 

June1NEh=summerNEh[which(summerNEh$Time<"2010-06-02" & summerNEh$Time>="2010-06-01"),] 

fdate=which(summerh$Time=="2010-06-01") 

past7h=c((fdate-(7*24)):fdate) 

sumpast7h=summerh[past7h,] 

fdateNE=which(summerNEh$Time=="2010-06-01") 

past7NEh=c((fdateNE-(7*24)):fdateNE) 

sumpast7NEh=summerNEh[past7NEh,] 
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#days7h=Mayh[which(Mayh$Time="2010-06-02"),] 

#days7NEh=MayNEh[which(MayNEh$Time<"2010-06-02" & MayNEh$Time>="2010-06-01"),] 

sample=sumpast7NEh[,3:202] 

sample=t(sample) 

#hclust5=tsclust(series=sample,type="hierarchical",k=5, distance="dtw") 

 

d72NE=tsclust(series=sample,type="partitional",k=2,distance="dtw") 

d73NE=tsclust(series=sample,type="partitional",k=3,distance="dtw") 

d74NE=tsclust(series=sample,type="partitional",k=4,distance="dtw") 

d75NE=tsclust(series=sample,type="partitional",k=5,distance="dtw") 

d76NE=tsclust(series=sample,type="partitional",k=6,distance="dtw") 

k72NE=tsclust(series=sample,type="partitional",preproc=zscore,distance="sbd",centroid="shape") ## this is the k-

shape algorithm 

k73NE=tsclust(series=sample,type='partitional',k=3,preproc=zscore,distance='sbd',centroid='shape') 

k74NE=tsclust(series=sample,type="partitional",k=4,preproc=zscore,distance="sbd",centroid="shape") ## this is the 

k-shape algorithm 

k75NE=tsclust(series=sample,type="partitional",k=5,preproc=zscore,distance="sbd",centroid="shape") ## this is the 

k-shape algorithm 

k76NE=tsclust(series=sample,type="partitional",k=6,preproc=zscore,distance="sbd",centroid="shape") ## this is the 

k-shape algorithm 

################################ with electric vehicles 

sample=sumpast7h[,3:202] 

sample=t(sample) 
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#hclust5=tsclust(series=sample,type="hierarchical",k=5, distance="dtw") 

d72h=tsclust(series=sample,type="partitional",k=2,distance="dtw") 

d73h=tsclust(series=sample,type="partitional",k=3,distance="dtw") 

d74h=tsclust(series=sample,type="partitional",k=4,distance="dtw") 

d75h=tsclust(series=sample,type="partitional",k=5,distance="dtw") 

d76h=tsclust(series=sample,type="partitional",k=6,distance="dtw") 

 

 

k72h=tsclust(series=sample,type="partitional",preproc=zscore,distance="sbd",centroid="shape") ## this is the k-

shape algorithm 

k73h=tsclust(series=sample,type='partitional',k=3,preproc=zscore,distance='sbd',centroid='shape') 

k74h=tsclust(series=sample,type="partitional",k=4,preproc=zscore,distance="sbd",centroid="shape") ## this is the k-

shape algorithm 

k75h=tsclust(series=sample,type="partitional",k=5,preproc=zscore,distance="sbd",centroid="shape") 

k76h=tsclust(series=sample,type="partitional",k=6,preproc=zscore,distance="sbd",centroid="shape") ## this is the k-

shape algorithm 

###############  clustering analysis and plotting ################################### 

D7hCVI=rbind(cvi(d72h),cvi(d73h),cvi(d74h),cvi(d75h),cvi(d76h)) 

rownames(D7hCVI)=c('d7h2','d7h3','d7h4','d7h5','d7h6') 

D7NECVI=rbind(cvi(d72NE),cvi(d73NE),cvi(d74NE),cvi(d75NE),cvi(d76NE)) 

rownames(D7NECVI)=c('d7NE2','d7NE3','d7NE4','d7NE5','d7NE6') 

K7NECVI=rbind(cvi(k72NE),cvi(k73NE),cvi(k74NE),cvi(k75NE),cvi(k76NE)) 

rownames(K7NECVI)=c('K7NE2','K7NE3','K7NE4','K7NE5','K7NE6') 
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K7HCVI=rbind(cvi(k72h),cvi(k73h),cvi(k74h),cvi(k75h),cvi(k76h)) 

rownames(K7HCVI)=c('k7h2','k7h3','k7h4','k7h5','k7h6') 

############## sumdev 

sD7hCVI=as.data.frame(scale(D7hCVI)) 

sD7hCVI[is.na(sD7hCVI)]=0 

sD7hCVI$Sumdev=rowSums(sD7hCVI) 

 

sD7NECVI=as.data.frame(scale(D7NECVI)) 

sD7NECVI[is.na(sD7NECVI)]=0 

sD7NECVI$Sumdev=rowSums(sD7NECVI) 

sK7NECVI=as.data.frame(scale(K7NECVI)) 

sK7NECVI[is.na(sK7NECVI)]=0 

sK7NECVI$Sumdev=rowSums(sK7NECVI) 

sK7hCVI=as.data.frame(scale(K7HCVI)) 

sK7hCVI[is.na(sK7hCVI)]=0 

sK7hCVI$Sumdev=rowSums(sK7hCVI) 

##############################3 based on cluster validity sum of scaled indices 

D2hmem=as.numeric(unlist(d72h@cluster)) 

D3hmem=as.numeric(unlist(d73h@cluster)) 

DNE2mem=as.numeric(unlist(d72NE@cluster)) 

DNE5mem=as.numeric(unlist(d75NE@cluster)) 

d21=which(D2hmem==1) 
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d22=which(D2hmem==2) 

d31=which(D3hmem==1) 

d32=which(D3hmem==2) 

d33=which(D3hmem==3) 

 

 

dne21=which(DNE4mem==1) 

dne22=which(DNE4mem==2) 

dne51=which(DNE5mem==1) 

dne52=which(DNE5mem==2) 

dne53=which(DNE5mem==3) 

dne54=which(DNE5mem==4) 

dne55=which(DNE5mem==5)  

#### can add the columns to put in the weekday and other things here too later 

dh21=Mayh[,2+d21] 

dh22=Mayh[,2+d22] 

dh31=Mayh[,2+d31] 

dh32=Mayh[,2+d32] 

dh33=Mayh[,2+d33] 

dNE21=MayNEh[,2+dne21] 

dNE22=MayNEh[,2+dne22] 

dNE51=MayNEh[,2+dne51] 
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dNE52=MayNEh[,2+dne52] 

dNE53=MayNEh[,2+dne53] 

dNE54=MayNEh[,2+dne54] 

dNE55=MayNEh[,2+dne55] 

 

 

holder1=list() 

data=list(dh21,dh22,dNE21,dNE22,dNE51,dNE52,dNE53,dNE54,dNE55,dh31,dh32,dh33) 

x=1 

for (j in data) { 

  for (i in 1:length(j[,1])) { 

    j$cumulative[i]=sum(j[i,]) 

  } ### end sum and weekday loop 

  holder1[[x]]=j 

  x=x+1 

} ### end data for loop 

May7hd21=as.data.frame(holder1[[1]]) 

May7hd22=as.data.frame(holder1[[2]]) 

May7NEd21=as.data.frame(holder1[[3]]) 

May7NEd22=as.data.frame(holder1[[4]]) 

May7NEd51=as.data.frame(holder1[[5]]) 

May7NEd52=as.data.frame(holder1[[6]]) 
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May7NEd53=as.data.frame(holder1[[7]]) 

May7NEd54=as.data.frame(holder1[[8]]) 

May7NEd55=as.data.frame(holder1[[9]]) 

May7hd31=as.data.frame(holder1[[10]]) 

May7hd32=as.data.frame(holder1[[11]]) 

May7hd33=as.data.frame(holder1[[12]]) 

 

################### forecasting  

library(forecast) 

tsholder=list() 

stlholder=list() 

fholder=list() 

data=list(May7hd21,May7hd22,May7NEd21,May7NEd22,May7NEd51,May7NEd52,May7NEd53,May7NEd54,Ma

y7NEd55,May7hd31,May7hd32,May7hd33) 

x=1 

for (j in data) { 

  for (i in 1:length(j[,1])) { 

    ts=ts(j$cumulative,frequency=24) 

    stl=stl(ts,s.window='periodic',t.window=480) 

    f=forecast(stl,h=24,method='arima') 

  } ### end sum and weekday loop 

  tsholder[[x]]=ts 

  stlholder[[x]]=stl 
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  fholder[[x]]=f 

  x=x+1 

}## end second for 

fh21=as.numeric(fholder[[1]]$mean) 

fh22=as.numeric(fholder[[2]]$mean) 

 

fh2=fh21+fh22 

 

fne21=as.numeric(fholder[[3]]$mean) 

fne22=as.numeric(fholder[[4]]$mean) 

 

fne2=fne21+fne22 

 

fn51=as.numeric(fholder[[5]]$mean) 

fn52=as.numeric(fholder[[6]]$mean) 

fn53=as.numeric(fholder[[7]]$mean) 

fn54=as.numeric(fholder[[8]]$mean) 

fn55=as.numeric(fholder[[9]]$mean) 

fn5=fn51+fn52+fn53+fn54+fn55 

fh31=as.numeric(fholder[[10]]$mean) 

fh32=as.numeric(fholder[[11]]$mean) 

fh33=as.numeric(fholder[[12]]$mean) 
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fh3=fh31+fh32+fh33 

hfh=c(jf[1:14],fh[15:20],jf[21:24]) 

plot(June1h$sum200,type='l',col="blue",lwd=3,xlab='hour',ylab='Load (W)',main='Household w/ EV Demand   

     Forecast vs Actual  

     Hybrid TSclust Method', xlim(min(c(fh21,fh22,June1h$sum200))), ylim(max(c(fh21,fh22,June1h$sum200)))) 

lines(fh22,col='red',lwd=3) 

lines(fh21,col='green',lwd=3) 

legend(locator(1),c("Actual","Forecast22","Forecast21"),pch=c(21,21),pt.bg=c("blue","red","green")) 

### MAPE 

APE=100*abs(hfh-June1h$sum200)/June1h$sum200 

MAPE=mean(APE) 

MAPE 

plot(density(APE),main="Distribution of APE TSclust hybrid Method 

     Households w/ EV",col='green',lwd=3) 

hist(APE) 

### SSD 

res=abs(jf-J1h$sum200) 

S=res^2 

SSD=sum(S) 

###MSD 

MSD=mean(S) 

TSHh4metrics=cbind(MAPE,SSD,MSD) 
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rownames(TSHh4metrics)=c("EVhouseholdsk4") 

##### plotting centroids and other stuff 

################################################# 

plot(k74h@centroids[[4]],type="l",col='orange',main="Centroids of 4-shape Clustering 

     Households w/ Electric Vehicles", 

     ylab='Centroid Z', xlab="Hourly sample, 1 week") 

lines(k74h@centroids[[1]],col='green') 

lines(k74h@centroids[[3]],col='blue') 

lines(k74h@centroids[[2]],col='red') 

 

plot(d74h@centroids[[3]],type="l",col='orange',main="Centroids of DTW4 Clustering 

     Households with Electric Vehicles", 

     ylab='Centroid Z', xlab="Hourly sample, 1 week") 

lines(d74h@centroids[[1]],col='green') 

lines(d74h@centroids[[4]],col='blue') 

lines(d74h@centroids[[2]],col='red') 
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