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ABSTRACT 

With advances in automation technology, it is becoming essential to understand how 

automation affects human operators. A concern for the implementation of automation 

technology is the interactive effects it has with operator cognitive fatigue. Desmond and 

Hancock (2001) proposed that two types of fatigue can arise depending on the nature of 

the task: active and passive. Active fatigue results when operators must make constant 

perceptual-motor adjustments during high task demands, while passive fatigue results 

from operators executing little or no perceptual-motor adjustments during low task 

demands, similar to when automation is employed. The purpose of this study was to use 

electroencephalographic (EEG) indices of workload, engagement, and a candidate marker 

of strain under fatigue in conjunction with performance and subjective measures to 

differentiate active and passive fatigue states. Participants (N = 84) performed a 

generalized flight simulator for 62 min either under active, passive, or control conditions. 

Passive fatigue was characterized by reduced EEG engagement and initially elevated and 

stable ratios of Fz theta to POz alpha power compared to active fatigue. Subjective 

measure results indicated that passive fatigue was characterized by reduced ratings of 

alertness and workload compared to active fatigue. No performance differences were 

observed between fatigue conditions; however, an overall speed-accuracy trade-off was 

observed from pre to post fatigue induction. This study demonstrated that different 

fatigue states produce different effects on EEG indices. These results have potential 
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applications for developing augmented cognition technologies that deliver appropriate 

fatigue countermeasures in automated operational environments.   
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CHAPTER I 

INTRODUCTION  

Over the past three decades, a significant amount of research in the applied sector 

has focused on measuring and classifying operator functional states (OFS) during 

working conditions. OFS refers to a psychophysiological condition of the operator that 

modulates performance outcomes. Both psychological and physiological processes work 

in tandem to allow the operator to meet task requirements (Gaillard & Kramer, 2000; 

RTO, 2004). In other words, the functional state of the operator affects the efficiency and 

accuracy of task performance. Constructs such as workload, engagement, and fatigue 

compose important focal points of OFS assessment.  

Perpetual technological advances in automated systems have increased the need to 

better understand how automated systems modulate human operator functional states and 

performance outcomes. The utility of this understanding lies in the application of system 

design and development. Indeed, it has been stressed that the design requirements of 

systems involving human operators should take into consideration the physical, 

perceptual, and cognitive capabilities of the human operator (Endsley, 2015). Moreover, 

the U.S. Department of Defense has adopted specific guidelines for designing systems 

involving human operators. In general, military systems design should prioritize 

personnel safety and work patterns, while operator constraints, such as workload and 

mental processing, are not surpassed (U.S. Department of Defense, 2012). Designing 
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systems that exceed human operator capabilities can result in potentially dangerous 

consequences for not only the operator, but innocent lives as well (Lorist & Faber, 2011; 

RTO, 2004). Thus, knowledge of OFS is crucial for initial system design to produce 

systems that are compatible with human operator objectives. 

Additionally, recent research has been geared toward using OFS data in 

conjunction with augmented cognition systems to improve operator performance 

(Parasuraman, 2015). More specifically, if an operator’s functional state can be reliably 

detected and incorporated into a computer system that monitors and takes appropriate 

action when a detrimental state is detected, operator safety and efficiency could be 

enhanced. An example of such a system is adaptive automation. Adaptive automation 

systems incorporate operator state information and redirect system parameters via 

automation of systems to match that of the operator’s current capabilities. Adaptive 

automation systems (and other adaptive aiding systems) driven by psychophysiological 

measures have had moderate amounts of success within laboratory settings (Freeman, 

Mikula, Scerbo, & Scott, 2004; Wilson & Russel, 2007), but have yet to be implemented 

in operational settings. Therefore, continued research regarding OFS is valuable for 

developing deployable augmented cognition systems.  

Cognitive Fatigue – Overview 

One of the more critical concerns for safety in all situations involving human 

operators is fatigue. With high paced work environments consuming 21st century daily 

life, fatigue is a recurrent concern in OFS assessment. Fatigue results in several job-

related performance decrements including increased error rates, reduced productivity, and 
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increased reaction times (Matthews & Desmond, 2002; Sievertsen, Gino, & Piovesan, 

2016; Wang, Trongnetrpunya, Samual, Ding, & Kluger, 2016). Daily, individuals may 

experience fatigue resulting from long work shifts and sleep loss. A reported 37.9% of 

workers in the U.S. experience fatigue in their jobs, resulting in approximately $136.4 

billion lost annually due to reduced productive work time (Ricci, Chee, Lorandeau, & 

Berger, 2007). More importantly, fatigue presents a serious threat to safety in several 

operational settings involving transportation. Between 2001 and 2012, 20% of major 

National Transportation Safety Board (NTSB) crash investigations implicated fatigue as a 

potential contributing or causal factor (NTSB, 2016). Congruently, per month, 

approximately 1.8 million drivers in the U.S. report driving in a drowsy cognitive state 

(Wheaton, Shults, Chapman, Ford, & Croft, 2014), contributing to approximately 7,500 

fatal crashes per year (Tefft, 2012).  

Fatigue is also pervasive in civil and military aviation domains. A search of the 

NTSB Aviation Accident Database revealed that in the past 10 years, fatigue has been 

implicated in 659 aviation incidents – both fatal and non-fatal. Empirical studies also 

support a high prevalence of fatigue in commercial aviation. In a study of 162 

commercial pilots from the United Kingdom, 75% of pilots were classified as having 

severe fatigue and 78% were concerned with the level of fatigue they experienced 

(Jackson & Earl, 2006). Moreover, in a sample of 456 Portuguese airline pilots, Reis, 

Mestre, and Canhãom (2013) found that 51.3% percent of pilots reported that they should 

not have been at the controls on a few occasions due to being tired. On the same measure, 

16.4% of pilots reported feeling this way frequently. Even more alarming, Reis and 
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colleagues also uncovered 91.4% of their sample reported making mistakes in the cockpit 

as a result of fatigue.  

Furthermore, fatigue in military aviation presents a serious threat to mission 

success and combat precision (Caldwell, 2005). Military aviators often have higher duty 

demands placed on them due to night mission readiness requirements. Advances in night 

vision optics and precision navigation instruments make missions during many 

environmental conditions possible. Thus, even in darkness or low visibility, military 

aviators are often called upon to meet mission requirements. Reversed shifts (i.e., 

working at night and sleeping during the day) are common among military aviators and 

can produce disruptions in adequate sleep/wake cycles contributing to increased fatigue 

(Caldwell & Gilreath, 2001). Overall, research regarding fatigue continues to be of 

importance in daily work, transportation, and military safety domains. Finding effective 

ways to identify and counteract the effects of fatigue is essential to transportation safety 

and work productivity.  

Defining Fatigue 

Although studied empirically for over 100 years (Ackerman, 2011), fatigue 

continues to be a critical concern in several applied areas in which humans are an integral 

part of system operation (e.g., aircraft cockpits, motor vehicles). Interestingly, for as self-

evident as the laymen’s understanding of fatigue is, there remains great difficulty within 

the fatigue research community to reach a consensus on the definition of fatigue 

(Ackerman, 2011; Soames & Dalziel, 2001). 
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 Fatigue to the general population is commonly associated with physical exertion, 

which leads individuals to typically quantify their level of fatigue by estimating how tired 

their body feels (Ackerman, 2011; National Aeronautics and Space Administration, 

1996). Generally, individuals will say they are fatigued if they are unable to mobilize 

effort to do a task, using the term synonymously with exhaustion (van der Linden, 2011). 

Fatigue resulting from physical activity and muscular tiredness is generally referred to as 

central fatigue and is often the main concern of athletes and other professions involving 

strenuous physical activity (Budgett, 1998). Cognitive fatigue, on the other hand, is a lack 

of energy not associated with physical activity (van der Linden, 2011). In general terms, 

cognitive fatigue can be defined as, “a mental state associated with tiredness and loss of 

motivation experienced during cognitively demanding tasks” (Matthews, 2011, p. 209). 

Cognitive fatigue can be characterized as either chronic or acute, with the former being a 

symptom of serval medical diseases with lasting effects over an extended period of time 

(Persson, Welsh, Jonides, & Reuter-Lorenz, 2007), and the latter being short-lived and 

associated with performing cognitive tasks (van der Linden, 2011). Acute cognitive 

fatigue can often be reversed with short rest breaks or switching tasks (e.g., Hartzler, 

2014). The focus of the current study was acute cognitive fatigue because of its relevance 

to operational settings and task performance (van der Linden, 2011).   

 The hallmark of cognitive fatigue is the associated decrements in task 

performance observed when individuals perform tasks for extended periods of time. 

Cognitively fatigued individuals generally demonstrate increased reaction times (e.g., 

Gander et al., 2014; Lim et al., 2010) and error rates (e.g., Barwick, Arnett, & Slobounov, 
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2012; Wascher et al., 2014). Moreover, these deficits in basic task performance translate 

to complex, operational task performance. For example, increased automobile breaking 

times and worse steering control are associated with cognitive fatigue (e.g., Lal & Craig, 

2001; Liu & Wu, 2009; Saxby, Matthews, Warm, Hitchcock, & Neubauer, 2013). 

Aviator flight performance also suffers from cognitive fatigue effects with potential 

decrements in heading, altitude, airspeed, vertical velocity, and bank angle flight 

performance parameters (Caldwell, Caldwell, Brown, & Smith, 2004).  

Cognitive Fatigue Risk Factors  

Several state variables (transient factors affecting the operator) have been 

identified that exacerbate the effects of cognitive fatigue (Ackerman, 2011). Sleep 

deprivation has been studied extensively as a strong catalyst of cognitive fatigue effects. 

Extended periods of wakefulness impair decision making skills, an effect that is more 

pronounced in emergency-type situations where time pressure is an added factor 

(Harrison & Horne, 2000). Decrements in overt piloting performance have also been 

observed in aviators experiencing sleep deprivation upwards of 24 hr (Caldwell et al., 

2004; Caldwell, Hall, & Erickson, 2002). Moreover, certain drugs have been shown to 

affect cognitive fatigue states. In a study of U.S. Army UH-60 Blackhawk pilots, 

Caldwell, Caldwell, Smythe, and Hall (2000) subjected aviators to two, 40 hr periods of 

continuous wakefulness. In one period, the aviators were given 200 mg of modafinil (a 

psychostimulant) and a placebo in the other. Aviators then performed flight maneuvers in 

a simulator after their experimental manipulations. Results indicated that when aviators 

received modafinil, flight performance was significantly better on a majority of 
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maneuvers compared to the placebo condition. Moreover, subjective symptoms and 

electrophysiological markers of fatigue were reduced. Other state variables such as meal 

composition (e.g., Kennedy et al., 2008) and time of day (e.g., Bougard, Moussay, Espié, 

& Davenne, 2016; Caldwell, 2005) have been shown to contribute to cognitive fatigue 

onset.  

Additionally, task-related factors also contribute to the experience of cognitive 

fatigue. Time on task (TOT) and task workload are often cited as leading factors when 

individuals report increased levels of cognitive fatigue during task performance 

(Ackerman, 2011; Hopstaken, van der Linden, Bakker, Kompier, & Leung, 2016). 

Specifically, highly demanding tasks performed over a longer period of time will 

contribute more to the development of cognitive fatigue than low demand tasks 

performed over a short period of time (Ackerman, 2011). However, as is the focus of this 

study, this view of cognitive fatigue is not entirely accurate as cognitive fatigue effects 

can occur in situations of underload as well (Desmond & Hancock, 2001). The amount of 

control a participant has over the task interacts with task workload to produce varying 

cognitive fatigue effects. Under conditions of high workload and low task controllability, 

cognitive fatigue effects on performance are stronger compared to high workload, high 

controllability tasks (Hockey & Earle, 2006). Tasks that are highly redundant or not 

interesting are also more likely to produce cognitive fatigue and performance decrements. 

For instance, the psychomotor vigilance test (PVT; Dinges & Powell, 1985) requires 

participants to simply press a button when a visual stimulus (usually a dot or increasing 

millisecond numerals) appears on a computer screen. The presentation of the stimulus is 
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varied to occur at 2 to 10 s inter-stimulus intervals. The PVT is not an inherently 

interesting task and thus displays performance decrements typically after 10-15 min of 

continuous performance (e.g., Basner & Dinges, 2011; Lim et al., 2010). Overall, an 

amalgam of different variables, both state and task-related, may influence cognitive 

fatigue etiology, making cognitive fatigue a multidimensional construct difficult to model 

with aspects of human performance.  

Cognitive Fatigue and Human Performance Theory 

Active and Passive Fatigue  

Currently, no fully formulated scientific theory of the relationship between 

cognitive fatigue and human performance resonates within the cognitive fatigue research 

community (Hockey, 2011). With advances in automation technology, the ways in which 

human operators interact with systems possessing automation capabilities is becoming a 

growing area of concern for several branches of applied research, including how 

automation affects cognitive fatigue (Mustapha, Deaton, & Hitt, 2001; Parasuraman, 

2015; Parasuraman & Manzey, 2010; Saxby et al., 2013; Sheridan, 2002; Wickens & 

Tsang, 2015). Automation has been incorporated into several systems involving human 

operators such as nuclear power plants (Itoh, Sakuma, & Monta, 1995), automobiles 

(Kashiwazaki et al., 2012; Murray, 2007), ships (Evdokimov & Sorokin, 2009; Jackson, 

1989), and manufacturing (Bond, 2016). Arguably, the most well-known area where 

automation has been applied is aviation. Automation in aviation has been adopted in 

order obtain several benefits including decreasing pilot workload and increasing flight 

efficiency (Mustapha et al., 2001).  
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Although automated systems have reduced operator workload, automation has 

fundamentally changed the ways in which task-induced cognitive fatigue manifests. A 

common misconception is to equate workload with fatigue. That is, cognitive fatigue only 

arises during high workload situations (Brown, 2001; May & Baldwin, 2009). However, 

research has shown that cognitive fatigue effects can be observed in low workload 

situations, analogous to when automation is employed (Desmond & Hoyes, 1996; 

Desmond & Matthews, 1997). Desmond and Hancock (2001) proposed a model in which 

two different types of cognitive fatigue can develop depending on task characteristics: 

active fatigue and passive fatigue. Active fatigue results from “continuous and prolonged, 

task-related perceptual-motor adjustments” (Desmond & Handcock, 2001, p. 455). In 

contrast, passive fatigue results from “system monitoring with either rare or even no overt 

perceptual-motor response requirements” (Desmond & Handcock, 2001, p.455). In other 

words, active fatigue is linked with sustained high cognitive workload situations 

requiring substantial operator input, whereas passive fatigue is linked with relatively low, 

sustained cognitive workload situations where the operator’s role is more supervisory. 

Thus, active and passive fatigue are potentially byproducts of maladaptive workload 

regulation associated with overload and underload task demands.  

 The distinction between active and passive fatigue can be visualized in an 

example involving aviators. If an aviator must fly a long stretch of a flight manually in 

high winds and severe turbulence, the constant control adjustments to remain on course 

results in persistent perceptual-motor adjustments and higher workload (Hart & 

Bortolussi, 1984). Presumably, this situation would culminate in the aviator experiencing 
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active fatigue. In contrast, if the aviator were to engage an autopilot system in smooth air, 

he/she would be placed in a supervisory role and simply monitors aircraft systems for 

changes. In this situation, workload is relatively low and the pilot may be prone to 

passive fatigue.  

Desmond and Hancock (2001) theorized that active and passive fatigue originate 

from adaptive processes where operators distribute attention toward the environment and 

the self. These processes are “contingent on the level of attention available” (p. 461). In 

active fatigue, the level of attention decreases due to constant high task-workload and the 

amount of attention distributed to the environment decreases, resulting in greater 

performance decrements. In passive fatigue, the constant under stimulation from a non-

changing display results in less attention distributed to the environment, resulting in 

increased probability of missed signals or reduced capacity to cope with emergency 

situations.  

 Support for active and passive fatigue. Support for Desmond and Hancock’s 

(2001) model of active and passive fatigue comes from studies reporting performance 

decrements in low compared to high task demand conditions. Desmond and Matthews 

(1997) demonstrated this effect within the context of automobile driving. Participants 

performed control and fatigue inducing drives on separate days. The control drive 

consisted of driving under normal conditions. The fatigue inducing condition required 

participants to dual-task while driving. Both control and fatigue drives consisted of 

straight and curved road sections. Results showed that while dual tasking, driver 

performance was better on curved road sections compared to straight road sections. 
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Desmond and Matthews interpreted these results as fatigued drivers being unable to 

mobilize effort appropriately on sections of road that were straight compared to curved, 

making low-demand situations more hazardous than high-demand situations. In other 

words, the participants demonstrated a maladaptive workload regulation strategy that 

compromised performance during lower workload sections of driving.  

A comparable effect was found in a simulated air traffic control study where 

controllers performed either a low, medium, or high workload air traffic control 

simulation (Desmond & Hoyes, 1996). Workload conditions consisted of two, four, and 

six aircraft, respectively, that were constantly present during the conditions. Participants 

in the low and medium workload conditions successfully landed proportionally fewer 

aircraft than participants in the high workload condition. Moreover, those in the low 

workload condition successfully allowed fewer aircraft to take off than those in the 

medium and high workload conditions. As with the previously mentioned driving study, 

the authors concluded that controllers were unable to mobilize appropriate effort when 

task demands were consistently low.  

Active and passive fatigue states have only recently been explicitly tested and 

manipulated. In a two-part simulated driving study, Saxby et al. (2013) manipulated 

simulated driving demands to induce either active or passive fatigue. In Study 1, 

participants were randomly assigned to one of three fatigue manipulations (active, 

passive, or control) and one of three drive durations (10, 30, or 50 min). Those assigned 

to the active fatigue condition drove in continuous wind gusts requiring constant steering 

and accelerator adjustments. In the passive fatigue condition, the driving controls were 
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automated and participants simply performed a low target density system monitoring task 

during the drive to maintain task engagement. Those in the control group manually 

performed the drive under normal driving load conditions. Participants were administered 

the Dunde State Stress Questionnaire (DSSQ; Matthews et al., 2002), to measure task 

engagement, distress, and worry. Additionally, the NASA-Task Load Index (NASA-

TLX; Hart & Staveland, 1988) was utilized to measure subjective workload. Results 

indicated that workload was the highest in the active fatigue condition compared to the 

control and passive fatigue conditions. Over the longer driving durations, participants 

reported the highest reduction in task engagement during the passive fatigue condition. 

Moreover, drivers assigned to the active fatigue condition experienced elevated levels of 

distress from pre to post-drive.  

In Study 2, Saxby and colleagues (2013) added an emergency event to the driving 

simulation to evaluate potential driver performance impairments. Driving conditions were 

similar to those of Study 1. At the end of each participant’s drive, a 5-min supplementary 

drive was initiated where participants responded to an unexpected parked van pulling out 

in front of them. Participants also completed the same subjective measures as Study 1. 

Subjective questionnaire results replicated the results found in Study 1. In response to the 

emergency event, participants in the passive fatigue condition had significantly slower 

steering reaction times compared to those in the active fatigue condition. Moreover, those 

in the passive fatigue condition also had slower breaking times and more collisions 

compared to the active and control groups. To summarize Saxby and colleagues’ two-part 

study, high workload, high task engagement, and elevated distress characterized active 
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fatigue. In contrast, low workload, low task engagement, and low challenge characterized 

passive fatigue. More importantly, participants that were exposed to a passive fatigue 

drive demonstrated worse performance in response to an emergency event than 

participants exposed to the active fatigue drive. Overall, Saxby and colleagues 

demonstrated that active and passive fatigue can be experimentally induced (by 

manipulating task demand) and that each type of fatigue has its own distinct pattern of 

subjective and performance results. Therefore, cognitive fatigue can be conceptualized as 

a bipolar continuum, where cognitive fatigue onset can occur at both high and low task 

demands. This conceptualization of active and passive fatigue has theoretical 

underpinnings from stress adaptation theories of human performance and effort 

regulation.   

Underlying theoretical mechanisms of active and passive fatigue. The 

emergence of Desmond and Hancock’s (2001) conceptualization of active and passive 

fatigue draws from broad theories regarding stress adaptation and effort regulation. 

Generally, the underlying theories of active and passive fatigue rely on an operator’s 

capacity to adapt to stress and how operators regulate effort in response to stress to 

maintain performance. Two theories, one proposed by Hancock and Warm (1989) and 

one proposed by Hockey (1997) will be described as they offer important theoretical 

understanding of active and passive fatigue and human performance in fatigued states.  

Adaptation theory of stress and performance. Hancock and Warm (1989) 

proposed an adaptation theory of stress and performance in which task induced cognitive 

fatigue results from an interaction between time on task (TOT) and workload and is 
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assumed to represent a type of stress resulting from environmental inputs (Desmond & 

Hancock, 2001; Desmond & Matthews, 1996). Handcock and Warm posited that 

operators strive to obtain stasis or comfort in response to stress. To accomplish this, 

operators must successfully adapt to inputs of stress in both psychological and 

physiological domains. The model acknowledges that changes in the psychological 

domain are closely linked with changes in the physiological domain, an assertion backed 

by research using physiological markers to infer operator states (e.g., Borghini, Astolfi, 

Vecchiato, Mattia, & Babiloni, 2014).  

There are three levels that stress can act upon in Handcock and Warm’s model: 

input, adaptation, and output. Stress inputs are the result of environmental factors acting 

upon the individual. These inputs can be either psychological (e.g., TOT, task demands) 

or physiological (e.g., temperature, noise, chemical agents). Specifically, the stress of 

cognitive fatigue results mainly from an interaction between TOT and task demands. 

Once stress is imposed upon the individual, adaptive mechanisms (both psychological 

and physiological) are employed to return the individual back to his/her comfort zone. As 

the stressor increases in intensity, the capacity of psychological and physiological 

adaptation mechanisms to cope with the input of stress begin to decline, placing stress on 

adaptive mechanisms. Psychological adaptivity is equated with the allocation of attention 

and physiological adaptivity is equated with homeostatic regulation (e.g., 

thermoregulation response). Hancock and Warm proposed an underload and overload 

continuum in which the stress can vary between the extremes and the operator’s comfort 

zone is located between the two extremes. An increase in stress to either of the extremes 
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can produce declines in adaptive capacity, resulting in changes in operator performance 

decrements and/or increased physiological indicators of stress (output stress).   

Human adaptation to temperature illustrates the basic components of this theory. 

Centrally controlled by the hypothalamus, the thermoregulatory response in humans 

relies on vasoconstriction and vasodilation to regulate blood flow to conserve or disperse 

heat throughout the body (Charkoudian, 2003). When an individual experiences slight 

environmental temperature deviations, the capacity of the thermoregulatory system is 

effectively able to cope with these minor deviations via minor vasoconstriction or 

vasodilation responses. However, when environmental temperature conditions are 

extreme (extreme hot or cold), the capacity of the thermoregulatory system to adapt and 

maintain adequate body temperature decreases. Eventually, the thermoregulatory system 

is unable to return the individual back to stasis and the individual experiences life-

threatening conditions (hypothermia or hyperthermia).  

It is important to highlight the roles task demands and associated operator 

workload play in this model when applying it to cognitive fatigue. TOT is a necessary 

component to produce task-related cognitive fatigue and can be conceptualized as a 

constant, unidirectional contributor to task-related cognitive fatigue. That is, as TOT 

increases, operators will generally experience a higher degree of cognitive fatigue and 

performance decrements (Ackerman, 2011). However, workload can vary along a bipolar 

continuum of underload and overload, where workload interacts with TOT to produce 

differing fatigue states. According to Hancock and Warm’s (1989) model, the stress of 

fatigue is predicted to produce negative outcomes during both high and low task 
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workloads. Task workload and TOT act as input forms of stress, which in turn propagate 

through the adaptive systems to reduce dynamic adaptability and negatively affect 

performance outcomes.   

With active and passive fatigue, each fatigue state results from task demands 

being too high or too low, respectively, for an extended TOT. Prolonged high task 

demands reduce the ability of operators to adapt, resulting in a state of active fatigue. 

Contrastingly, in a state of underload, operators still experience a reduced capacity to 

adapt to stress, but in this case, a different set of behavioral performance strategies are 

adopted than active fatigue due to constant system monotony and passive fatigue results 

(Kober, Cingel, Zimmermann, & Bengler, 2015; Saxby et al., 2013).  

Compensatory control model. The compensatory control model (CCM; Hockey, 

1993, 1997, 2005, 2011) can be used in conjunction with the stress adaptation model 

proposed by Hancock and Warm (1989). This model proposes that individuals adapt via a 

goal-effort balance. Accounting for sustained performance under stress, the CCM 

assumes that operator behavior is orientated toward maintaining set task performance 

goals and is modified through a mental effort self-regulatory process. The self-regulation 

of effort is upheld by two negative feedback loops in which operators assess how well 

their current performance coincides with set goals and make necessary adjustments in 

behavior to resolve discrepancies. Two feedback loops make behavioral adjustments via 

effort implementation. A lower loop adjusts behavior in response to discrepancies that are 

relatively minor and require little effort to adapt to. This lower loop is said to be under 

automatic control. In contrast, an executively controlled upper loop is activated when an 
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effort monitor detects large discrepancies between goals and performance (e.g., large 

altitude deviations). When the effort monitor detects severe inconsistencies between 

goals and task performance, individuals choose one of two options, via executive control, 

to protect from threats to a performance/goal balance. First, operators may choose to 

maintain task performance goals and mobilize more effort. Although task performance is 

preserved, a higher effort cost is experienced. Generally, this is referred to as a “strain” 

coping mode. Second, operators may choose to conserve effort at the cost of lowered 

performance standards. This option is referred to as a “disengagement” coping mode. 

Effort is conserved but performance will likely decline resulting from operator 

disengagement from the task.  

Active and passive fatigue have recently been conceptualized as being the 

byproducts of Hockey’s (1997) strain and disengagement modes of workload adaptation, 

respectively (Saxby et al., 2013). More specifically, continuous high workload task 

demands require operators to maintain/increase effort to stabilize task performance, but at 

a higher energetic cost (effort with distress). Strain mode operators may be able to 

maintain performance but will likely demonstrate elevated subjective fatigue symptoms 

(e.g., tiredness) and physiological markers of fatigue (van der Linden, 2011). Operators 

in disengagement mode would correspond to passive fatigue states and experience a 

decrease in goal directed effort and may exhibit withdrawal from the task, resulting in 

reduced performance due to maladaptive workload regulation (distress without effort; 

Hockey, 2011). Passive fatigue would then result in decreased subjective and 

physiological indicators of task engagement. 
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Support for stress adaptation and effort regulatory theories. Stress adaptation 

and effort regulatory theories of fatigue and human performance have gained support 

from combinations of physiological and behavioral studies. For instance, disruptions of 

dopaminergic pathways have shown patterns of behavior consistent with the performance 

outcomes of decreased effort regulation. Correa, Carlson, Wisniecki, and Salamone 

(2002) investigated changes in the amount of effort rats were willing to expend to receive 

a reinforcer after receiving antagonistic dopamine injections to the nucleus accumbens. 

Groups of rats were trained to receive a food pellet via low effort or higher effort interval 

reinforcement schedule. Rats in the low effort group were trained to receive food pellets 

after pressing a lever for 30 s. The high effort condition required rats to make five 

additional lever presses after the 30 s response interval to receive the food reward. After 

receiving dopamine depleting injections, rats in the high effort interval reward schedule 

obtained fewer food pellets than rats in the low effort condition. That is, rats in the high 

effort condition were no longer able to expend higher levels of effort to achieve the food 

reward. Van der Linden (2011) points out that the rats were still interested in food (as 

evidenced by their continued seeking of food in the low effort condition) but were unable 

to allocate effort to achieve the reward when extra effort was required. This animal model 

of fatigue demonstrates that although the propensity for carrying out food seeking 

behavior remains, disruptions in physiological systems tied to the employment of effort 

ultimately lead to overt behavioral deficits linked with task performance.  

Manipulations of motivation have also been shown to alter effort and 

performance. Hopstaken et al. (2016) demonstrated that manipulations of task motivation 
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can reverse markers of fatigue in the subjective, behavioral, and physiological domains. 

Participants performed an n-back task for 1.75 hr under normal motivational conditions. 

Then, for a final 15 min block, participants were told they could leave the experiment 

early if they could maintain high performance for the remaining block. Before the 

motivation manipulation, subjective fatigue ratings increased over time along with 

decreases in task performance, pupil diameter, P300 event related potential (ERP) 

amplitude, and subjective reports of engagement. After the motivation manipulation, 

however, ratings of subjective fatigue decreased and ratings of engagement increased. 

Moreover, task performance, pupil diameter, and P300 amplitude increased. Thus, the 

results from this study support an effort regulatory hypothesis of fatigue-performance 

interaction rather than a strictly resource-based explanation. If participants were 

experiencing fatigue-related decrements as a result of depleted attentional resources, 

manipulations of motivation should not have allowed for participants to re-engage in the 

task and increase their performance. Moreover, the behavioral changes in task 

performance were accompanied by changes in physiology as well, indicating a system-

wide interaction between goal states and effort regulation postulated by stress adaptation 

and effort regulatory theory (Hancock & Warm, 1989; Hockey, 1997).  

The conceptualization of active and passive fatigue also provides support for 

these general models. As shown by Saxby et al. (2013), active and passive fatigue can be 

induced experimentally by manipulating task demands. Additionally, Saxby and 

colleagues observed driving performance decrements during passive fatigue conditions, 

lending support to effort regulatory models of cognitive fatigue and human performance 
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as opposed to a strictly resource theory account. Briefly, resource theories of cognitive 

fatigue and human performance conceptualize energetic cognitive resources as 

mechanistic “fuel” or “electric charge” utilized during task performance. As TOT 

increases, resources are depleted, performance decrements become evident, and 

subjective feelings of fatigue arise (Ackerman, 2011; Griffith, Kerr, Mayo, & Topal, 

1950; Grandjean, 1968; Ryan, 1947). Only through rest and time-off-task are resources 

replenished and task performance returns to normal levels (Hartzler, 2014). Ackerman 

(2011) modeled fatigue as an electrical circuit consisting of two batteries representing an 

individual’s effort (resources) available for task performance. One larger battery 

represents an individual’s main source of resources and a smaller battery represents an 

individual’s reserve resources, which can be utilized once the main battery has been 

depleted. In this model, the main battery of resources is discharged as a function of TOT 

performance and off-task distractions. Individuals may choose to mobilize reserve effort 

once main resources are depleted. Although resource theory intuitively makes sense, it 

cannot adequately explain the findings relating to decreased task performance during 

underload conditions (Desmond & Hoyes, 1996; Desmond & Matthews, 1997; Saxby et 

al., 2013) or motivation manipulations that reverse subjective, physiological, and 

performance indicators of cognitive fatigue (Hopstaken et al., 2016). 

In summary, active and passive fatigue have been shown to be experimentally 

induced by varying task workload. Moreover, previous studies have found active and 

passive fatigue to present with different performance outcomes as well as subjective 

operator states relating to task engagement and affect (Saxby et al., 2013). Active and 
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passive fatigue can both be said to be fatiguing but differ in their etiology and 

progression of operator coping mechanisms. Adaptive theories of stress and effort 

regulation predict differences in the manifestation of both active and passive fatigue 

states via maladaptive, executively controlled workload regulation processes resulting in 

the adoption of task performance strategies ill-equipped for maintaining task 

performance. Although active and passive fatigue have been shown to differ in terms of 

subjective states and driving related performance, the use of psychophysiological 

measures to differentiate these states has yet to be explored.  

Cognitive Fatigue Assessment and Electroencephalographic Correlates 

The assessment of an operator’s functional state utilizes a multidimensional 

approach (RTO, 2004; Wickens & Tsang, 2015). Although the goal of operator 

functional state (OFS) assessment is to monitor the operator for performance 

breakdowns, using task performance in isolation is not a reliable means to measure the 

state of the operator due to compensatory effort effects (Hockey, 1997). Therefore, OFS 

should be assessed with measures from multiple domains. These domains include 

performance-based measures (e.g., primary and secondary tasks), subjective metrics 

(self-report questionnaires), and psychophysiological measurements (e.g., 

electroencephalography; RTO, 2008; Wickens & Tsang, 2015). Performance-based and 

subjective metrics are lucrative if researcher experience and funds are not adequate. 

Moreover, performance-based metrics allow researchers to determine how primary task 

and secondary task performance is affected by OFS manipulations. However, these 

metrics also have drawbacks. For instance, individuals may report high levels of 
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cognitive workload or fatigue, but their performance may remain within acceptable 

limits, demonstrating a metric disassociation (Wickens & Tsang, 2015). Subjective 

measures also do not allow for continuous, real-time measurement and can be subject to 

situational demand biases. Furthermore, subjective measures cannot be monitored by 

operational augmented cognition systems for real-time system adaptation.  

Assessing cognitive fatigue via psychophysiological measures creates 

opportunities for operational environments. Compared to subjective and performance 

measures, psychophysiological measures operate in real-time and thus can serve as a 

source of input for augmented cognition systems (e.g., adaptive automation; adaptive 

aiding). Moreover, psychophysiological measures allow for fatigue states to be detected 

without the intrusion of a secondary task or disruptions in normal operational flow 

(Kramer, 1991; Parasuraman, 2015).  

Several physiological responses have been associated with cognitive fatigue; 

however, electrophysiological activity of the outer cortex measured via 

electroencephalography (EEG) is regarded as the most reliable physiological measure of 

cognitive fatigue (Lal & Craig, 2001; Simon et al., 2011). Using EEG to assess cognitive 

fatigue has been implemented in a variety of applied settings including aviation (e.g., 

Caldwell et al., 2002) and driving (e.g., Zhao, Zhao, Liu, & Zheng, 2012). Changes in 

EEG bandwidth frequency (i.e., delta, theta, alpha, beta) power spectral densities (PSD) 

are associated with task performance outcomes during sustained task performance 

(Besserve et al., 2008), making EEG a useful means for evaluating OFS and inferring 

cognitive states associated with task performance (Berka et al., 2007). Reviews of the 
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cognitive fatigue literature have shown characteristic PSD changes in EEG bandwidths 

associated with increased TOT and cognitive fatigue effects. For instance, Borghini et al. 

(2014) reviewed the literature pertaining to physiological measures of cognitive fatigue in 

pilots and drivers. In their review, Borghini and colleagues concluded that cognitive 

fatigue is associated with increased slow-wave EEG oscillations. More specifically, 

increases in frontal midline theta and alpha power are associated with cognitive fatigue. 

Increases in alpha and decreases in beta power in posterior brain regions (i.e., parietal, 

occipital) were also reported in several driving studies. An earlier review conducted by 

Lal and Craig (2001) reported similar findings relating to increased slow-wave 

oscillations, specifically, increased overall delta, theta, and alpha activity with the onset 

of cognitive fatigue.   

Sleep deprivation studies in aviators have demonstrated similar trends. Caldwell 

et al. (2002) investigated changes in EEG power spectra in U.S. Army UH-60 Blackhawk 

helicopter pilots during actual flight maneuvers during 26 hr of continuous wakefulness. 

Pilots woke at 0700 and stayed awake through 0900 the next day. Over the course of 

sleep deprivation, pilots flew three, 1.5 hr flights at 2300, 0400, and 0900. Across the 

three flights, reliable linear increases in central and frontal midline theta power were 

observed. Moreover, linear increases in alpha power were observed in parietal, frontal, 

and central midline sites. These changes in EEG were accompanied by increases in 

subjective fatigue and negative affect. Continuing this line of research, Caldwell and 

colleagues (2004) investigated the effects of 37 hr of continuous wakefulness on EEG 

variables, simulated flight performance, and mood in Air Force F-117A Nighthawk 
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pilots. Participants flew five simulated flights over the course of sleep deprivation. As 

sleep deprivation progressed, pilots exhibited increases in delta and theta activity at 

central and parietal midline sites. Progressive flight performance decrements and 

negative affect accompanied these changes.  

Laboratory-based experiments have generally corroborated applied studies. A 

study examining cognitive fatigue over the course of extended of neuropsychological 

testing showed similar trends in the EEG power spectrum (Barwick et al., 2012). From 

pre to post testing, theta power in frontal regions and alpha power in parietal regions 

increased, while beta power decreased in parietal regions. These EEG changes were 

accompanied by increased subjective cognitive fatigue. Wascher et al. (2014) tracked 

changes in EEG PSD while participants performed a stimulus-response correspondence 

task for a duration of 4 hr. Results indicated that frontal theta power slowly increased 

with TOT and alpha power in the occipital region increased rapidly as time progressed.  

Efforts have also been focused on deriving reliable indices of operator states, 

including cognitive fatigue, from EEG PSD markers. One such indicator is the task load 

index (TLI; Gevins & Smith, 2003; Smith, Gevins, Brown, Karnik, & Du, 2001). The 

TLI is computed by taking the ratio of frontal midline theta power to parietal alpha power 

(Fz theta/Pz alpha). The TLI is based on research demonstrating frontal midline theta 

activity is associated with executive control processing (Gevins et al., 1998; Itthipuripat, 

Wessel, & Aron, 2013; Kawasaki, Kitajo, & Yamaguchi, 2010) and decreased parietal 

alpha activity being associated with increased task load (Borghini et al., 2014; Fournier, 

Wilson, & Swain, 1999; Gevines et al., 1998). Cyclic changes in task demands have been 
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shown to alter TLI ratios such that increased task difficulty resulted in increased TLI 

scores and unloading resulted in decreased TLI scores (Hockey, Nickel, Roberts, & 

Roberts, 2009). More importantly, Hockey et al. (2009) proposed the TLI could be used 

as a marker of cognitive fatigue because of the relationship between frontal theta activity 

and effort regulation responses to fatigue. Hockey and colleagues stated, “Given the basis 

of executive activity in frontal brain processes, the prediction is made most strongly 

supported for the TLI measure, where reduced use of executive control under fatigue may 

produce lower levels of theta activity” (p. 1012). Reduced executive control associated 

with cognitive fatigue would result in decreased theta activity in frontal regions 

responsible for executive control. Corresponding increases in parietal alpha are also 

expected as predicted from sleep deprivation studies (e.g., Caldwell et al., 2002). Thus, 

cognitive fatigue would result in a decreased TLI ratio due to disengagement from the 

task and maladaptive executive control effort responses. However, if participants are 

expending substantial effort to preserve task performance, increases in frontal midline 

theta may result in increased TLI ratios. Indeed, previous researchers have reported 

increases in frontal midline theta power after prolonged task performance, potentially as a 

result of increased task-directed effort (e.g., Wascher et al., 2014). The TLI ratio may, 

therefore, reflect either a unique effort construct or reflect executively controlled 

workload regulation. More research is needed to clarify the relationship between TLI 

ratios and fatigue states. 

Overall, EEG studies generally support changes in the theta, alpha, and beta bands 

with cognitive fatigue. Changes in these bands are viewed as being indicative of 
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sleepiness and on the verge of entering Stage 1 sleep (Lal & Craig, 2001; Purves et al., 

2012). Thus, EEG measures provide a reliable means to evaluate the progression of 

cognitive fatigue over the course of advanced simulation performance. Because EEG can 

continually monitor an operator, EEG can potentially differentiate between active and 

passive fatigue states during task performance. Currently, no studies have investigated 

whether EEG variables demonstrated differing patterns during active or passive fatigue 

onset. 

The Current Study 

The current study had two main purposes. First, it expanded the understanding of 

active and passive fatigue by incorporating continuous EEG measurements throughout 

the fatigue induction process to monitor and differentiate between the onset of active and 

passive fatigue states. Previous research on active and passive fatigue has only 

incorporated subjective measures of task engagement and workload administered post-

task (e.g., Saxby et al., 2013). Psychophysiological measures allow for engagement and 

workload to be tracked throughout fatigue induction and can provide potentially valuable 

insight into underlying executively controlled effort regulatory processes that have been 

theorized to be indicative of the differences between active and passive fatigue. 

Distinctive EEG profiles should differentiate passive and active fatigue because of 

physiological costs associated with strain due to continuous high workload (active 

fatigue) or effort under regulation due to underload, resulting in task disengagement 

(passive fatigue; van der Linden, 2011). In conjunction with EEG, this study incorporated 
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subjective and performance metrics to ascertain a holistic picture of active and passive 

fatigue as recommended in OFS assessment (Wickens and Tsang, 2015).  

Second, this study tested if manipulations of active and passive fatigue (Desmond 

& Hancock, 2001) exhibit similar effects on individuals outside of the driving simulator 

environment. Previous research has only manipulated active and passive fatigue within 

the context of simulated driving. If active and passive fatigue are general fatigue 

constructs, they should be evident across different experimental tasks and manipulations. 

To accomplish this goal, this study utilized the Multi-Attribute Task Battery-II (MATB; 

Santiago-Espada, Myer, Latorella, & Comstock, 2011), a low-cost, computer-based 

multitasking simulator readily available to researchers. 

This study tested five hypotheses relating active and passive fatigue to overt task 

performance, EEG variables, and subjective ratings of workload, task engagement, and 

alertness: 

Hypothesis 1: Active fatigue should exhibit higher ratings of subjective workload 

and task engagement compared to passive fatigue. This hypothesis aims to 

replicate the findings of Saxby et al. (2013).  

Hypothesis 2: Subjective ratings of alertness should decrease in both active and 

passive fatigue manipulations from pre to post fatigue induction, demonstrating 

that each manipulation produces subjective accounts of fatigue. In other words, 

both conditions could be said to be fatiguing.  

Hypothesis 3: Over the course of fatigue induction, active fatigue should exhibit 

higher EEG metrics of task engagement and workload. On the other hand, passive 
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fatigue should demonstrate consistently low EEG engagement and workload 

during fatigue onset. TLI ratios will also differ between fatigue conditions, with 

passive fatigue potentially exhibiting lower TLI ratios due to reductions in 

executive control workload regulation strategies.  

Hypothesis 4: Overt performance decrements will be more pronounced in 

participants exposed to passive fatigue compared to active fatigue due to 

maladaptive workload regulatory strategies adopted during fatigue induction, 

resulting in less effort employed during task performance evaluations. During 

performance evaluations, passive fatigue participants may demonstrate increased 

workload, but consistently low EEG indices of engagement. 

Hypothesis 5: In accordance with Hypothesis 4, during performance evaluations, 

those exposed to prolonged passive fatigue conditions will demonstrate lowered 

EEG indices of engagement due to maladaptive workload regulation strategies 

compared to those exposed to active fatigue conditions.  

The implications of this study lie in the utility for designing appropriate cognitive 

fatigue countermeasures within transportation vehicles. One countermeasure may be 

appropriate for passive fatigue conditions, but not for active fatigue conditions. Indeed, 

May and Baldwin (2009) stressed that differentiating between active and passive fatigue 

states is vital for employing the proper fatigue countermeasure. Applying automation 

may be useful in curtailing high workload that may lead to active fatigue but may be 

inadequate for counteracting passive fatigue. Countermeasures that increase engagement 

may be necessary for passive fatigue environments. Therefore, using EEG to identify 
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cognitive fatigue states with augmented cognitions systems can be instrumental in 

deploying correct cognitive fatigue countermeasures (May & Baldwin, 2009).   
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CHAPTER II 

METHOD 

Participants 

 Ninety-five undergraduate students from the University of North Dakota were 

recruited to participate in this study. After excluding participants for not completing the 

study (n = 6) and not possessing 20/20 or corrected to 20/20 vision (n = 5; evaluated via 

self-report), a final usable sample size of 84 (25 males and 59 women) was retained. 

Participant ages ranged from 18-30 years (M = 19.13, SD = 1.92). No participants 

reported any form of traumatic brain injury within the past year. Approximately half of 

the participants (n = 44) completed the study during the morning (0800-1200) and the 

remaining participants (n = 40) completed the study during the afternoon (1200-1700).   

Materials 

Simulation  

The Multi-Attribute Task Battery-II (MATB; Santiago-Espada, Myer, Latorella, 

& Comstock, 2011) was used to induce cognitive fatigue and to assess changes in 

performance. The MATB is a computerized multitasking workload simulator that mimics 

the cognitive tasks pilots frequently encounter during flight; however, the MATB was 

designed to be used by participants with and without aviation experience (Santiago et al., 

2011). A screenshot of the MATB interface is displayed in Figure 1. The MATB is a 

flexible workload simulation platform that allows researchers to manipulate task demands 
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and has been widely used in human factors research including studies investigating 

cognitive fatigue and workload (e.g., Caldwell et al., 2000; Caldwell et al., 2004; 

Caldwell & Ramspott, 1998; Fournier et al., 1999; Wilson, Caldwell, & Russell, 2007). 

There are four subtasks included within the MATB. These subtasks include system 

monitoring, communications, tracking, and resource management. The following 

describes each subtask.   

 

Figure 1. A screenshot of the Multi-Attribute Task Battery-II display (Santiago-

Espada et al., 2011) with system monitoring (upper left), tracking (upper center), 

communications (lower left), and resource management (lower center) subtasks.  

 

System monitoring. The system monitoring subtask (see Figure 1 top left) 

required participants to monitor lights and moving scales for changes. Responses were 

made via a standard keyboard. Two lights were located above four scales (see Figure 1 

top left). The left light was to remain green and the right light was to remain colorless. If 
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the green light turned grey, participants pressed the F5 key on the keyboard to bring the 

green light back. In a similar fashion, if the right light turned red, the participant pressed 

the F6 key on the keyboard to return the light back to grey. The four oscillating scales 

below the lights correspond to the keys F1, F2, F3, and F4 on the keyboard. When a scale 

deviated substantially from the center (i.e., the sliding bar touches either the top or the 

bottom of the scale), participants pressed the corresponding F key to bring the scale back 

to a normal status. A normal system state consisted of a green left light, grey right light, 

and center-oscillating scales. Any deviation from this normal state required participants 

to press the appropriate key to return the system back to stasis. No performance measures 

for this task were analyzed in this study.  

Tracking. For the tracking subtask (see Figure 1 top center), participants 

attempted to keep a circular reticle inside of a box centered at the intersection of two 

crosshairs with the use of a joystick. The MATB program randomly pulled the circular 

reticle outside of the box and participants continuously compensated with the joystick to 

keep the reticle centered. The tracking task can be programmed to be either in automatic 

response mode (requiring no participant input) or manual response mode. Performance 

was measured in root-mean-square deviation from the center point in pixels.  

Communications. The communications task required participants to respond to 

auditorily presented, simulated air traffic control (ATC) radio frequency change 

commands. Participants only responded to commands pertaining to their call sign 

(NASA504) and ignored all others. For example, a command may have stated, “NASA 

five zero four, NASA five zero four, tune your nav two radio to frequency one one two 
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point five zero zero.” The participant would use the mouse to select the nav two radio, 

dial in the correct frequency, and click enter when finished. Performance measures 

included frequency change reaction time and proportion of transmissions correctly 

responded to.    

Resource management. The resource management task was not utilized in this 

study.  

Simulation sequence, parameters, and conditions. Three, 62 min MATB 

simulations were developed during a pilot study (N = 35) to eliminate potential ceiling 

effects in performance. One was programmed to produce active fatigue, one to produce 

passive fatigue, and one as a control condition. Each simulation consisted of two, 6 min 

performance evaluations – one prior to fatigue induction and one post fatigue induction. 

These performance evaluations were consistent across conditions. Separating the two 

performance evaluations was a 50 min fatigue induction period. The fatigue induction 

periods differentiated the three fatigue conditions. Auditory cues directed participants 

when to perform the subtasks corresponding to either the performance evaluation or 

fatigue induction periods. The following describes the parameters for each simulation. 

Performance evaluations. Performance evaluations required participants to 

perform the tracking and communications tasks simultaneously. This combination of 

tasks was chosen because it mimics emergency situations where pilots must respond to 

air traffic control commands as well as manually control the aircraft. Moreover, the 

communications task requires participants to use higher-order cognitive processes, 
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including response inhibition and working memory, which have been shown to be 

negatively affected by cognitive fatigue (van der Linden, 2011). 

Before the onset of the communications task, participants manually controlled the 

tracking task for 30 s in isolation. After this 30 s, 22 randomized simulated air traffic 

control radio calls (11 calling the participant’s call sign) occurred at 10 s intervals. 

Participants were required to respond with correct radio frequencies for their call signs 

within 5 s after the conclusion of the call to avoid a timeout error. The tracking task was 

set at the highest difficulty.  

Active fatigue induction condition. To induce active fatigue, participants 

performed the system monitoring and tracking subtasks together during the 50 min 

fatigue induction period. The system monitoring task consisted of approximately 8 to 10 

events per min. Participants had 10 s to respond to these events to avoid a timeout error. 

The tracking task was set to the highest difficulty, requiring participants to make 

significant psychomotor adjustments throughout the MATB simulation. The aim of this 

condition was to elicit high workload and continuous perceptual-motor adjustments, the 

two defining characteristics of active fatigue (Desmond & Hancock, 2001; Saxby et al., 

2013).  

Passive fatigue induction condition. In the passive fatigue induction condition, 

the tracking task was automated and participants responded to only the system 

monitoring task. Critical system monitoring events were infrequent, occurring once 

approximately every 4 to 7 min. Critical signals were only the red light. This condition 
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reflects the primarily system monitoring role of the operator that characterizes passive 

fatigue as proposed by Desmond and Hancock (2001).   

Control condition. A control condition consisted of only the system monitoring 

task modified to mimic a paced psychomotor vigilance test (PVT). In this condition, the 

red light illuminated every 10 s throughout fatigue induction. As with the passive fatigue 

condition, the tracking task was automated. The justification for including this control 

condition was to compare the manipulations of active and passive fatigue to a common 

vigilance paradigm that results in task-related fatigue effects.   

Subjective Measures 

Subjective measures of participant alertness, task engagement, and workload were 

collected to replicate prior research and to achieve a comprehensive OFS assessment 

paradigm.  

 Karolinska Sleepiness Scale. The Karolinska Sleepiness Scale (KSS; Akerstedt 

& Gillberg, 1990) was used to track subjective ratings of alertness indicative of cognitive 

fatigue from pre to post fatigue induction. The KSS is a single item scale that requires 

participants to rate their current level of alertness ranging from 1 (extremely alert) to 9 

(extremely sleepy/fighting sleep). The KSS was developed in accordance with EEG PSD 

markers of sleepiness and demonstrates good correlations with EEG markers of 

sleepiness (r = .40-.56; Akerstedt & Gillberg, 1990; Kaida et al., 2006) and PVT 

performance decrements (r = .57; Kaida et al., 2006). Moreover, the KSS correlates 

significantly with other subjective measures of sleepiness (e.g., visual analogue scale for 

sleepiness; r = .89; Kaida et al., 2006). A recent study examining fatigue in regional 
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airline pilots demonstrated that the KSS shows linear increases (less reported alertness) in 

subjective alertness in pilots over a 14 hr flight shift (Honn, Satterfield, McCauley, 

Caldwell, & Van Dongen, 2016). Overall, the KSS is a reliable and valid tool for 

evaluating subjective alertness (Kaida et al., 2006).  

 Short Stress State Questionnaire. The engagement scale of the Short Stress 

State Questionnaire (SSSQ; Helton, 2004) was used to track subjective engagement. The 

SSSQ is a shorted version of the Dunde State Stress Questionnaire (DSSQ; Matthews et 

al., 2002) and consists of 24-items that load on the three higher order factors of task 

engagement, worry, and distress. The 24-items are administered prior to completing a 

task and immediately after. SSSQ higher order factors have been shown to have good 

reliability (Cronbach’s α =.80-.89) and are sensitive to different types of tasks and task 

stressors (Helton & Näswall, 2015). Higher scores indicate more task engagement.  

 NASA-Task Load Index. Subjective workload was assessed with the NASA-

Task Load Index (NASA-TLX; Hart & Staveland, 1988). The NASA-TLX consists of six 

subscales that relate to task demands (physical, mental, temporal) and to the internal state 

of the rater (frustration, performance, effort). An average composite workload rating is 

computed from these subscales ranging from 0-100, with higher scores indicating higher 

levels of subjective workload. The NASA-TLX was embedded within the MATB 

platform allowing participants to rate each scale by moving sliders with the computer 

mouse. The NASA-TLX has strong convergent validity with other measures of workload 

(r = .98-.97) and good concurrent validity with measures of task performance (r = .65-

.75; Rubio, Diaz, Martin, & Puente, 2004). Internal reliability the NASA-TLX is high 
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(Cronbach’s α = .82; De la Torre, Ramallo, & Cervantes, 2016). Composite NASA-TLX 

scores were used as a measure of subjective workload.  

Covariates. Potentially confounding results was an individual’s pattern of daily 

sleepiness while performing certain activities. The Epworth Sleepiness Scale (ESS; 

Johns, 1991) was used as a self-report measure of daytime sleepiness. The ESS is an 8-

item questionnaire that asks participants to rate their chances of dozing when completing 

various activities (e.g., sitting and reading) during daily life on a scale from 0 (would 

never doze) to 3 (high chance of dozing). Higher total scores indicate higher levels of 

daytime sleepiness. The ESS has a high internal reliability (Cronbach’s α = .73-.88) and a 

high test-retest reliability (r = .82; Johns, 1992). In addition to daytime sleepiness, 

participant sleep quality and sleep duration from the previous night were recorded. 

Participants rated their previous night’s sleep quality on a scale from 1 (very poor) to 5 

(very good). Participant sleep duration was evaluated with self-report bed and wake 

times.  

 Furthermore, participants were evaluated for oculomotor symptoms characteristic 

of convergence insufficiency (CI). Individuals with CI often experience increased fatigue, 

eye-strain, and blurred vision during close tasks such as reading (Arnoldi & Reynolds, 

2007), which could potentially confound task performance and subjective accounts of 

fatigue and engagement. The Convergence Insufficiency Symptom Survey (CISS; 

Borsting, Rouse, & De Land, 1999) was used to measure oculomotor symptoms 

characteristic of CI. The CISS is a 15-item questionnaire that asks participants to rate 

how their eyes feel when reading or doing close work on a scale of never, infrequently, 
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sometimes, fairly often, and always. Higher scores indicate more CI symptom 

endorsement. The CISS has been shown to be both a valid and reliable tool for 

identifying CI (Borsting et al., 2003; Rouse et al., 2004), but is used in conjunction with 

other measures to formally evaluate CI. Thus, this tool only allowed for a general 

assessment of oculomotor symptoms characteristic of CI. 

 Prior night’s sleep duration and sleep quality sleep quality, total ESS scores, and 

total CISS scores were explored as continuous covariates in main analyses.  

Electroencephalography (EEG) Recordings 

Changes in cortical electrical activity were recorded using the Advanced Brain 

Monitoring (ABM) X-10 and X-24 wireless Bluetooth systems. Forty-six participants 

were tested with the X-10 and 36 were tested with the X-24. These EEG platforms are 

well suited for recording EEG in complex operational environments and have been 

implemented in human factors studies involving simulations (e.g., Matthews, Reinerman-

Jones, & Barber, 2015). The X-10 and X-24 are identical systems except the X-24 

supports more electrodes than the X-10. The X-10 incorporates a 9-channel electrode 

strip with electrode locations placed according to the international 10/20 system: F3, Fz, 

F4, C3, Cz, C4, P3, POz, and P4. The X-24 incorporates a 20-channel electrode strip with 

electrodes placed at Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 

POz, O1, and O2. Reference electrodes for both systems were placed at the mastoids. 

Despite the differences in the number of channels, these systems output the same 

variables from the shared electrode sites.  
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Data were sampled at 256 Hz and filtered with 50, 60, 100, and 120 Hz notch 

filters as well as a Low Pass FIR filter online during the data collection process. Power 

spectral density (PSD) was then calculated on a second-by-second epoch frequency by 

applying a 50% overlapping Kaiser window for data smoothing to three data point 

windows consisting of 256 decontaminated data points each. These data were then 

subject to Fast Fourier Transformation to acquire four standard bandwidths of delta (1-2 

Hz), theta (3-7 Hz), alpha (8-13 Hz) and beta (13-29 Hz) with PSD values produced on a 

second-by-second epoch basis. Prior to computing PSD values, raw signals were 

processed to eliminate known artifacts (e.g., electrooculographic signals) by the B-Alert 

live software (ABM, 2009).  

ABM algorithms using discriminant function analysis (Berka et al., 2007) then 

computed cognitive state metric probabilities of high engagement and workload, ranging 

from 0.00 to 1.00, based on subsets of absolute and relative PSD values from specific 

electrode sites. Higher values indicated a higher probability of being in an engaged or 

overload state, respectively. Additionally, the task load index (TLI; Gevins & Smith, 

2003; Smith, et al., 2001) was computed for each epoch by taking the ratio of frontal 

midline theta (Fz) PSD to parietal-occipital midline alpha PSD (POz). That is, the relative 

power of Fz theta divided by the relative power of POz alpha. This metric was proposed 

by Hockey et al. (2009) as a potential indicator of cognitive fatigue. It should be noted 

that the TLI was initially defined as the ratio of Fz theta to Pz alpha (Fz theta/Pz alpha) 

However, because the X-10 does not include a Pz electrode site, POz was used instead.   

Summary of Outcome Measures 
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 To summarize, performance measures, EEG metrics, and subjective ratings were 

used as outcome measures. Workload was measured with NASA-Task Load Index 

composite scores and Advanced Brain Monitoring’s EEG workload metric. Task 

engagement was measured with the SSSQ task engagement scale and Advanced Brain 

Monitoring’s EEG engagement metric. Additionally, the TLI (defined as the ratio of Fz 

theta power to POz alpha power) was used as a candidate marker of cognitive fatigue. 

Subjective alertness was evaluated with the KSS. Overt task performance measures 

included MATB communications subtask reaction times, proportion of communications 

task correct responses, and tracking subtask root-mean-square deviations. Potential 

covariates included trait daytime sleepiness (measured via the ESS), oculomotor 

symptoms characteristic of CI (measured via the CISS), previous night’s sleep duration, 

and previous night’s sleep quality (each measured via self-report).  

Procedure 

 After arriving at the laboratory, participants provided written consent and then 

completed a demographics questionnaire, which included questions regarding sleep 

quality and duration. After this questionnaire, participants completed the CISS, ESS, and 

pre-task versions of the SSSQ and KSS. A research assistant then applied the EEG 

system to the participant’s head and tested electrode impedances. Any electrodes 

exceeding the manufacture’s recommended impedance threshold of 80 KΩ (ABM, 2009) 

were adjusted. Then, participants performed three neurocognitive benchmark tests (3-

choice vigilance task, visual psychomotor vigilance task, auditory psychomotor vigilance 

task) provided by the B-Alert Live software to normalize ABM’s engagement metric. 
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Participants then watched an instructional video describing how to complete the MATB. 

After this video, participants completed a 12 min, research assistant facilitated, MATB 

practice session. During the practice session, participants completed each MATB subtask 

individually for 3 min each followed by a 3 min performance evaluation. Baseline EEG 

data were recorded throughout the MATB training and practice sessions to obtain a large 

sample of possible EEG responses for experimental data normalization (Fishel, Muth, & 

Hoover, 2007). This period included periods of both high activation and low activation to 

reduce bias in detecting changes in cognitive states. Once the practice session was 

complete, participants were randomly assigned to either the passive (n = 31), active (n = 

26), or control (n = 27) conditions and given an appropriate briefing for their condition. 

Then, the 62 min MATB simulation commenced, following a pre-fatigue induction 

performance evaluation (6 min), fatigue induction (50 min), post-fatigue induction 

performance evaluation (6 min) simulation sequence. During the simulation, participants 

completed the NASA-TLX 25 min into the fatigue induction period and at the end of the 

fatigue induction period. After the MATB testing session, participants completed post-

task versions of the KSS and SSSQ.  

Data Processing and Analytics 

 EEG data during the MATB scenario performance evaluations and fatigue 

induction were sectioned off using timed markers. Fatigue induction was separated into 

10 min intervals. For each 10 min fatigue induction interval and both performance 

evaluations, 5% trimmed means were computed for EEG indices to improve distribution 
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normality. EEG indices were then individually baseline adjusted for each participant 

using z-scores. 

Outcome measures were analyzed with multilevel linear models (Field, Miles, & 

Field, 2012) using the nlme package (Pinheiro, Bates, DebRoy, Sarker, & R Core Team, 

2017) for R (R Core Team, 2017). For these models, Time served as a within-subjects 

factor and Fatigue Condition served as a between-subjects factor. Running a mixed 

model designs as multilevel linear models instead of an ANOVA approach has several 

advantages. First, multilevel linear models handle missing data without the need for list-

wise deletion. Second, multilevel linear models do not require the assumptions of 

homogeneity of variance or sphericity. Third, continuous covariates are handled 

appropriately across within-subjects factors. Finally, the relative contribution of each 

predictor variable can be assessed with model fit comparison statistics (Field et al., 2012).  

 Models were specified iteratively adding one parameter at a time to successive 

models (West, Welch, & Alecki, 2015). Model parameters were computed using 

maximum likelihood estimation to allow for model comparison. Likelihood ratio tests 

using the Δ-2log likelihood between successive models were used to evaluate changes in 

model fit. Δ-2log likelihood is evaluated on a χ2 distribution with degrees of freedom 

equal to the change in degrees of freedom between models being compared. A significant 

χ2 statistic indicates that the added predictor has a significant effect on the dependent 

variable and improved model fit.  

First, an intercept only null model was specified. Then, predictors were added one 

at a time to create successive models. For model specification, Time was added first 
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followed by Condition and then the Time x Condition interaction. Finally, potential 

covariates (sleep quality, sleep duration, ESS total scores, CISS total scores) were added 

to the models to determine if their inclusion improved model fit. Where appropriate, 

Tukey post-hoc tests were conducted for significant effects using the emmeans package 

(Lenth, 2018) for R. Effect sizes (η2) are reported for post hoc comparisons. Statistical 

significance was set at α = .05.  

Missing data were excluded pairwise for analyses where possible. Normality was 

assessed with boxplots and Shapiro-Wilk tests. Outliers were screened with a 

combination of z-scores (z = ± 3.29; Field et al., 2012) and boxplots. Moreover, Cook’s 

Distances were used to identify influential data points for constructed models. Potential 

outliers for an analysis were removed and the analysis was conducted again. No 

differences in any analyses were found with the removal of potential outliers (i.e., non-

significant results turning significant or vice versa). No Cook’s Distances for analyses 

exceeded 1.00, indicating no unduly influential data points in models (Field et al., 2012).   
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CHAPTER III 

RESULTS 

Preliminary Analyses 

Means and standard deviations for the ESS, CISS, sleep quality, and sleep 

duration by fatigue condition are displayed in Table 1. Between-subjects, one-way 

ANOVAs revealed no differences between the fatigue conditions on potential covariate 

measures.  

Significant negative correlations were found between sleep duration and NASA-

TLX scores, indicating the longer participants slept the previous night, the lower they 

rated scenario workload at 25 min, r(82) = -.32, p  = .003, and 50 min, r(82) = -.35, p = 

.001. A similar negative correlation between sleep quality and NASA-TLX rating was 

found, but only for ratings at 50 min, r(82) = -.25,  p = .020. Furthermore, the CISS 

correlated positively with ESS scores, r(82) = .38, p < .001, and negatively with pre, 

r(81) = -.29, p = .007, and post, r(78) = -.24, p = .031, SSSQ engagement scores. The 

endorsement of more symptoms characteristic of CI was generally accompanied by 

higher daytime sleepiness and reduced reports of task engagement both pre and post 

MATB. Pre-KSS scores negatively correlated with pre, r(82) = -.33, p = .002, and post, 

r(78) = -.30, p = .007, SSSQ engagement scores, indicating the less alert participants 

reported being initially, the less engaged in the task they were (note that higher KSS 

scores indicated  less alertness). Finally, a notable and consistent correlation was found
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between pre-KSS scores and TLI ratios for all time intervals of the fatigue induction 

period, average r = .29, ps < .05. This correlation indicates that the less alert participants 

felt before fatigue induction, the higher their TLI ratios throughout fatigue induction 

tended to be.  

Table 1 

Descriptive Statistics for the Epworth Sleepiness Scale (ESS), Convergence 

Insufficiency Symptom Survey (CISS), Sleep Duration, and Sleep Quality by Fatigue 

Condition 

 

Subjective Measures 

Workload (NASA-TLX) 

There was a significant main effect of Time, χ2(1) = 13.31, p < .001, and 

Condition, χ2(2) = 28.08, p < .001, on composite NASA-TLX scores. These main effects 

were qualified by a significant Time by Condition interaction, χ2(2) = 11.88, p = .003. 

The inclusion of ESS, CISS, sleep duration, and sleep quality as covariates did not 

improve model fit, ps > .05. Table 2 displays NASA-TLX descriptive statistics with post-

hoc tests. Tukey post-hoc comparisons at each level of fatigue condition revealed that 

mean composite NASA-TLX scores for those in the active condition did not change from 

25 min to 50 min. However, participants in the passive and control conditions rated 

 Active  Passive  Control 

Measure M SD  M SD  M SD 

ESS 7.50 3.50  7.32 3.65  6.74 3.72 

CISS 14.50 7.50  16.20 8.13  15.78 6.19 

Sleep Duration (hr) 6.77 1.26  7.39 0.87  7.35 1.27 

Sleep Quality 3.38 0.75  3.65 0.61  3.70 0.78 
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workload as significantly lower at 50 min compared 25 min (see Figure 2). It should be 

noted that the effect size for the passive condition was substantially larger than that of the 

control condition. Additionally, NASA-TLX scores for the passive and control conditions 

were significantly lower at both rating periods compared to the active condition.  

 

Figure 2. Mean composite NASA-TLX scores by fatigue condition and measurement 

time.  

Alertness (KSS) 

Initial analysis of KSS scores showed significant deviations from normality. To 

improve normality, KSS scores were log10 transformed. Transformed data were used in 

analyses, but untransformed means and standard deviations are reported. A significant 

main effect of Time was found, χ2(1) = 25.02, p < .001. This main effect was qualified by 

a significant Time by Condition interaction, χ2(2) = 6.12, p = .047. Tukey post-hoc tests 

at each level of condition (see Table 2) revealed that for the active condition, no 

significant changes were observed from pre to post MATB. Participants in the passive 

and control conditions reported significant increases in KSS scores, indicating a reduction 



47 

 

in alertness. Importantly, the effect size for the passive condition was larger than the 

control group. This interaction is plotted in Figure 3. The main effect of Condition, χ2(2) 

= 4.93, p = .085 was not significant. Additionally, the inclusion of ESS, CISS, sleep 

duration, and sleep quality did not improve model fit, ps > .05.  

Figure 3. Mean Karolinska Sleepiness Scale (KSS) scores by fatigue condition and 

measurement time. Higher scores indicate less alertness. 

 

Table 2 

Descriptive Statistics and Pairwise Comparisons for NASA-TLX and Karolinska 

Sleepiness Scale (KSS) Scores by Fatigue Condition and Time 

 

 

Note. Higher KSS scores indicate less alertness.   

 

 Pre  Post     

Measure M SD  M SD  t p η2 

NASA-TLX        

   Active 55.29 13.84  56.09 17.32  -0.30 .766 .00 

   Passive 39.38 15.61  27.54 17.59  4.76 <.001 .23 

   Control 37.37 19.67  31.78 20.78  2.14 .035 .05 

KSS          

   Active 3.96 1.40  4.76 2.05  -1.06 .292 .01 

   Passive 3.74 1.41  5.90 1.92  -4.79 < .001 .22 

   Control 4.22 1.48  6.11 1.95  -3.51 < .001 .13 
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Engagement (SSSQ) 

The main effect of Time was significant for SSSQ engagement scores, χ2(1) = 

25.62, p < .001. The main effect of Condition, χ2(2) = 3.32, p = .190, and the Time by 

Condition interaction, χ2(2) = 2.25, p = .325, were not significant. However, the inclusion 

of CISS total scores as a covariate significantly improved model fit, χ2(1) = 8.26, p = 

.004. Estimated marginal means showed that engagement pre-MATB (M = 3.65, SE = 

.07) was significantly higher than post-MATB (M = 3.27, SE = .07), t(78) = 5.32, p < 

.001, η2 = .27. Model parameters for the CISS covariate showed a negative relationship 

between engagement ratings and CISS total scores, b = -0.02, SE = .01. That is, the 

higher individuals scored on the CISS, generally the less engagement individuals 

reported, supporting preliminary analyses.    

MATB Performance 

Three participants were excluded from MATB performance analyses because of 

extremely poor performance. These participants responded correctly to less than 50% of 

the communications task radio calls. 

Communications Task 

Outcome measures for the communications task included reaction times and the 

proportion of correct responses. For reaction times, there was a significant main effect of 

Time, χ2(1) = 9.54, p = .010. Participant reaction times to correctly respond to radio calls 

significantly increased from pre-fatigue induction (M = 2.93, SD = 1.05) to post-fatigue 

induction (M = 3.06, SD = 1.05), t(80) = -2.63, p = .010, η2 = .08. Neither the main effect 

of Condition, χ2(2) = 5.25, p = .072, nor the Time by Condition interaction were 
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significant, χ2(2) = 0.16, p = .925. The inclusion of the ESS, CISS, sleep duration, and 

sleep quality did not improve model fit, ps > .05.  

 For the proportion of correct responses, there was a significant main effect of 

Time, χ2(1) = 14.99, p < .001. Overall, participants increased their accuracy from the first 

performance evaluation (M = 0.85, SD = 0.12) to the second performance evaluation (M 

= 0.89, SD = 0.11), t(80) = -4.03, p < .001, η2 = .17. No significant effects for Condition, 

χ2(2) = 3.42, p = .182, or the Time by Condition interaction, χ2(2) = 3.46, p = .184, were 

found. The inclusion of the ESS, CISS, sleep duration, and sleep quality did not improve 

model fit, ps > .05.  

In combination with the increased reaction times, these results suggest a speed-

accuracy trade-off resulting from prolonged task performance. In other words, 

participants increased their response times in favor of higher accuracy.    

Tracking Task 

A significant main effect of Time was found for tracking RMSD values, χ2(1) = 

14.28, p < .001. Tracking performance improved from the first performance evaluation 

(M = 41.63, SD = 9.26) to the second performance evaluation (M = 38.87, SD = 7.91), 

t(80) = 3.93, p < .001, η2 = .16. No significant effects for Condition, χ2(2) = 1.93, p = 

.380, nor the Condition by Time interaction, χ2(2) = 0.64, p = .727, were found. No 

significant effects for the covariates were found, ps > .05. These tracking results further 

support a speed-accuracy trade-off in performance. 
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EEG Measures 

Six participants were excluded from EEG analyses because of corrupt files. Three 

were excluded from the active condition, two were excluded from the control condition, 

and one from the passive condition.   

EEG Engagement Metric 

During the performance evaluations, no significant differences in the EEG 

engagement metric were found between the pre and post-fatigue induction performance 

evaluations, χ2(1) = 0.05, p = .823. Moreover, no significant differences were found 

between the fatigue conditions, χ2(2) = 1.23, p = .540. Finally, EEG engagement did not 

vary as a function of pre-post performance evaluation and Condition, χ2(2) = 1.40, p = 

.497. The inclusion of covariates did not increase model fit, ps > .05.  

During the 50 min fatigue induction period, a significant main effect of Time was 

found, χ2(1) = 37.21, p < .001. Post hoc comparisons (see Table 3) showed that the 20-30, 

30-40, and 40-50 min intervals had significantly lower EEG engagement than the 0-10 

min interval. Moreover, the 30-40 and 40-50 min intervals had lower engagement than 

10-20 min interval. In other words, EEG engagement tended to decrease throughout the 

fatigue induction period. A significant main effect for Condition was also found for EEG 

engagement, χ2(2) = 11.72, p = .003. Participants in the passive condition exhibited 

significantly less EEG engagement (M = -0.21, SD = 0.23) than participants in the active 

condition (M = 0.00, SD = 0.19), t(75) = 3.52, p = .002, η2 = .14. The control (M = -0.12, 

SD = 0.31) and passive conditions did not differ. Figure 4 displays these trends. Lastly, 
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the Time by Condition interaction was not significant, χ2(8) = 7.85, p = .448, and the 

inclusion of covariates did not increase model fit, ps > .05.  

Table 3 

EEG Engagement Probability Pairwise Comparisons and Descriptive Statistics by 

Fatigue Induction Time Interval 

Time 0-10 (min) 10-20 (min) 20-30 (min) 30-40 (min) 40-50 (min) 

   0-10  -0.05 (0.23)     

  10-20 2.15 -0.09 (0.25)    

  20-30 3.79**(.04) 1.64 -0.13 (0.24)   

  30-40 5.23***(.08) 3.08*(.03) 1.44 -0.16 (0.29)  

  40-50 5.13***(.08) 2.98*(.03) 1.34 -0.10 -.16 (0.28) 

Note. Means (standard deviations) are on the diagonals and t-statistics with effect sizes 

for significant comparisons (η2) are on the off diagonals. EEG engagement probabilities 

are z-score baseline corrected.  

*p < .05. **p < .01. ***p < .001  

 

Figure 4. Mean EEG engagement probability by fatigue condition and fatigue induction 

time interval. 
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EEG Workload Metric 

During the performance evaluations, a significant effect for Time was found for 

the EEG workload metric, χ2(1) = 11.25, p < .001. EEG workload was significantly 

higher during the first performance evaluation, (M = 0.07, SD = 0.19) than second 

performance evaluation (M = -0.03, SD = 0.24), t(77) = 3.46, p < .001, η2 = .13. No 

significant effect for Condition, χ2(2) = 1.73, p = .420, or the Condition by Time 

interaction, χ2(2) = 0.84, p = .657, were found. The inclusion of covariates did not 

improve model fit, ps > .05.  

 During the fatigue induction period, no significant effects for Time, χ2(4) = 6.34, 

p = .175, Condition, χ2(2) = 5.35, p = .069, or the Time by Condition interaction, χ2(8) = 

13.22, p = .105, were found. Additionally, the inclusion of covariates did not improve 

model fit, ps > .05.  

TLI Ratios 

Analysis of TLI ratios at during the performance evaluations revealed a 

significant main effect for Time, χ2(1) = 7.47, p = .006. TLI ratios were significantly 

higher during the second performance evaluation (M = -0.06, SD = 0.33) compared to the 

first performance evaluation (M = -0.14, SD = 0.19), t(77), p  = .007, η2 = .09. No 

significant effects for Condition, χ2(2) = 1.19, p = .0551, nor the Time by Condition 

interaction, χ2(2) = 4.39, p = .111, were found. The inclusion of covariates did not 

significantly improve model fit, ps > .05.  

 Figure 5 displays mean TLI ratios across the five 10 min time intervals during 

fatigue induction. A significant main effect for Time was found on TLI ratios during the 
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fatigue induction period, χ2(4) = 49.85, p < .001. However, this main effect was qualified 

by a significant Time by Condition interaction, χ2(8) = 20, p = .008. Post hoc 

comparisons at each level of Condition (see Table 4) revealed TLI ratios for the active 

condition were significantly higher during the 20-30, 30-40, and 40-50 min intervals than 

the 0-10 min interval. Additionally, the 30-40 and 40-50 min intervals were significantly 

higher than the 10-20 min interval. For the passive condition, time intervals 10-20, 20-30, 

30-40, and 40-50 were significantly higher than the 0-10 min interval. No significant 

differences were found across the time intervals for the control condition. In other words, 

TLI ratios for the active condition steadily increased throughout fatigue induction until 

stabilizing, while TLI ratios for the passive and control conditions stabilized early during 

fatigue induction. The inclusion of covariates did not improve model fit, ps > .05.  

 

 

Figure 5. Mean TLI ratios by fatigue condition and fatigue induction time interval. 
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Table 4 

TLI Ratio Pairwise Comparisons and Descriptive Statistics by Condition and Fatigue 

Induction Time Interval 

Condition 0-10 (min) 10-20 (min) 20-30 (min) 30-40 (min) 40-50 (min) 

  Active      

     0-10  0.12 (0.23)     

    10-20 -2.10 0.24 (0.35)    

    20-30 -3.82**(.05) -1.72 0.34 (0.34)   

    30-40 -5.44***(.06) -3.35*(.04) -1.63 0.43 (0.34)  

    40-50 -5.52***(.08) -3.43**(.04) -1.71 -0.08 0.44 (0.31) 

  Passive      

     0-10  0.26 (0.37)     

    10-20 -3.72**(.04) 0.45 (0.39)    

    20-30 -3.07*(.03) 0.65 0.41 (0.35)   

    30-40 -5.10***(.08) -1.37 -2.02 0.51 (0.50)  

    40-50 -2.84*(.03) 0.88 0.24 2.26 0.40 (0.42) 

  Control      

     0-10  0.37 (0.26)     

    10-20 -1.51 0.45 (0.30)    

    20-30 -0.65 0.86 0.41 (0.30)   

    30-40 -1.71 -0.21 -1.07 0.46 (0.33)  

    40-50 -1.38 0.13 -0.73 0.34 0.45 (0.34) 

Note. Means (standard deviations) are on the diagonals and t-statistics with effect sizes 

for significant comparisons (η2) are on the off diagonals. TLI ratios are z-score baseline 

corrected.  

*p < .05. **p < .01. ***p < .001   
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CHAPTER IV 

DISCUSSION 

 Automated systems positively and negatively affect human operators. While 

automation reduces operator workload, the overreliance on automation can also lead to 

detrimental operator behaviors like automation bias and complacency (Parasuraman & 

Manzey, 2010). Additionally, researchers have proposed that increasingly automated 

operational environments can lead to a special case of cognitive fatigue, which may be 

more detrimental than cognitive fatigue that develops with continuous time on task 

without automation (Desmond & Hancock, 2001). These two fatigue states have been 

dubbed passive and active fatigue, respectively. Prior research has shown that passive and 

active fatigue demonstrate different patterns of subjective engagement, subjective 

workload, and task performance; however, no studies have used psychophysiological 

measures to differentiate these fatigue states.  

The purpose of this study was to utilize EEG measures of cognitive workload, 

engagement, a candidate marker of strain under fatigue as part of a comprehensive 

operator functional state (OFS) framework, which includes psychophysiological, 

subjective, and task performance measures, to differentiate theorized active and passive 

fatigue states. Participants performed a 62 min flight simulator task in conditions 

conducive to either active or passive fatigue (or a control condition) as defined by 

Desmond and Hancock (2001). Results of this study generally support and extend the 
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findings of Saxby and colleagues (2013) and the theoretical distinction between 

active and passive fatigue postulated by Desmond and Hancock. Specifically, subjective 

and physiological measures exhibited different patterns of change over the course of 

fatigue induction as a function of active and passive fatigue simulation conditions. The 

results of each type of measure (subjective, performance, EEG) are discussed in turn 

followed by a general synthesis discussion.  

Subjective Measures 

Subjective measures of participant cognitive states generally supported 

Hypotheses 1 and 2. Subjective measures of workload and alertness differentiated active 

and passive fatigue. From 25 min to 50 min into fatigue induction, NASA-TLX ratings 

for the active condition did not change. However, aside from being consistently lower 

than the active condition, both the passive and control conditions showed reduced 

workload ratings from 25 min to 50 min during fatigue induction. Notably, the effect size 

for the passive condition was substantially larger than that of the control condition. These 

results support those reported by Saxby et al. (2013) – operational conditions conducive 

to passive fatigue result in lower perceived workload. In terms of dynamic operator 

stability, prolonged underload conditions may result in maladaptive workload regulation 

strategies that result in a loss of task engagement or performance standards (Desmond & 

Hancock, 2001; Saxby et al., 2013).  

 Moreover, participants in the passive and control conditions, but not the active 

condition, reported reductions in alertness ratings from pre to post MATB. With 

prolonged task performance in underload conditions, according to Desmond and Hancock 
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(2001), conditions conducive to passive fatigue result in sustained attention shifting from 

external stimuli to internal states. Therefore, it would be expected that reduced alertness 

to outward stimuli would be present in severe underload conditions. As with NASA-TLX 

ratings, the effect size for the passive condition was much larger than that of the control 

condition.  

 Although measures of workload and alertness support the claims made by Saxby 

et al. (2013) and Desmond and Hancock (2001), SSSQ engagement scores did not vary as 

a function of fatigue condition and time on task (i.e., pre to post MATB); thus, failing to 

replicate the findings by Saxby and colleagues showing passive fatigue to result in 

reduced subjective engagement across task durations. All three conditions in this study 

reported similar reductions in subjective engagement from pre to post MATB. This 

finding may have resulted from the task environment used. This study employed a 

generalized flight simulator with a relatively low fidelity (i.e., no video depicting an 

actual flight or joystick feedback), while Saxby and colleagues used a high-fidelity 

driving simulator (i.e., with steering wheel feedback and moving driving scenery). This 

higher fidelity simulation used by Saxby and colleagues may have buffered against 

reduced engagement in their active fatigue manipulation. Additionally, Saxby and 

colleagues used the full Dunde Stress State Questionnaire (DSSQ) to measure task 

engagement, while this study used the shortened version of this questionnaire (SSSQ). 

The more comprehensive DSSQ may have been more sensitive to differentiating active 

and passive fatigue engagement changes than the shorter SSSQ.  
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 Two important findings were the relationships found between the CISS and ESS 

as well as the CISS and SSSQ task engagement scores. The CISS positively correlated 

with the ESS and negatively correlated with pre and post SSSQ engagement scores. It 

should be noted that the correlation between the CISS and ESS was also found in the 

pilot study of 35 participants conducted before this main study. These correlations 

indicate that individuals with more severe oculomotor symptoms characteristic of 

convergence insufficiency generally experience more daytime sleepiness and reduced 

task engagement. Previous experimental studies have shown that the induction of 

accommodative-vergence stress in healthy individuals can produce reductions in 

sustained attention performance similar to those observed with attention-deficit 

hyperactivity disorder (Poltavski, Biberdorf, & Petros, 2012). Moreover, those diagnosed 

with convergence insufficiency experience greater fatigue, blurred vision while 

completing close tasks, and eye strain (Arnoldi & Reynolds, 2007). Thus, participants 

endorsing more symptoms characteristic of convergence insufficiency may have more 

difficulties maintaining engagement on sustained attention tasks.  

 In summary, subjective measures of workload and alertness differentiated active 

fatigue from both the control and passive fatigue conditions. Moreover, although the 

passive and control conditions demonstrated similar patterns of workload and alertness, 

reductions in these measures over time were stronger for the passive condition than the 

control condition. Therefore, one hallmark of passive fatigue that should be stressed is 

low critical signal density. Although the control and passive conditions only used the 

systems monitoring task, the low critical signal density of the passive condition likely 
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resulted in larger decreases in alertness and workload ratings compared to the control 

condition. Subjective engagement decreased from pre to post MATB simulation similarly 

for all conditions. Finally, more symptoms characteristic of convergence insufficiency 

(e.g., double vision when reading or doing close work, eye fatigue when reading or doing 

close work) were positively associated with daytime sleepiness and negatively associated 

with subjective task engagement.   

Performance Measures 

Performance data did not support Hypothesis 4. In contrast to the results obtained 

by Saxby et al. (2013), performance results did not reveal any significant differences 

between the fatigue conditions. In their study, Saxby and colleagues found passive 

fatigue to increase both steering and breaking reaction times to an unexpected driving 

hazard compared to active fatigue. In the current study, reaction times to respond to own 

ship radio calls significantly increased from the first performance evaluation to the 

second performance evaluation after fatigue induction, regardless of condition. However, 

communications and tracking task accuracy improved from pre to post fatigue induction. 

Thus, it appears that participants incurred a speed-accuracy trade-off during the post-

fatigue induction performance evaluation. Indeed, Hopstaken et al. (2016) also reported a 

speed-accuracy trade-off in participants completing an n-back task over the course of 

1.75 hr. From a broader perspective, van der Linden (2011) proposed that fatigue effects 

on performance are more substantial for tasks involving executive functioning. Therefore, 

it is likely that the fatigue effects participants experienced in this study compromised 
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executive functioning, requiring participants to sacrifice communication task response 

times for improved accuracy.  

 It should be noted that the effect sizes obtained by Saxby et al. (2013) for 

performance differences between fatigue conditions in the driving simulator were small 

(partial η2 = .05) and medium (partial η2 = .08), making it likely that the current study 

lacked statistical power for detecting between-subjects performance effects. Additionally, 

the performance metrics utilized by Saxby and colleagues were single instance reaction 

times for steering and breaking. In contrast, participants in this study made multiple 

responses to simulated radio calls under high workload. These metrics were subsequently 

averaged over trials. Therefore, it may be the case that passive fatigue may only be 

detrimental to initial events directly following prolonged fatigue induction. Additionally, 

researchers (Ackerman, 2011; Hockey, 2011; van der Linden, 2011) suggest that fatigue 

effects may not manifest in performance at the aggregate level (i.e., average group 

performance) because of individual differences (e.g., compensatory effort, adopting 

different task strategies) in combatting fatigue effects. These individual differences also 

likely reduced statistical power in the current study to find between-groups effects despite 

the inclusion of several covariates.  

 Overall, performance results indicated a speed-accuracy trade-off after fatigue 

induction that did not vary by fatigue condition. These results failed to replicate the 

performance differences observed between active and passive fatigue obtained by Saxby 

et al. (2013).  
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EEG Measures 

EEG measures of cognitive workload and engagement disassociated from 

subjective measures. While NASA-TLX scores revealed significant differences between 

fatigue conditions as a function of time on task, no significant effects for EEG workload 

(measured by ABM’s average workload metric) were found during fatigue induction. 

However, decreases in EEG workload were observed for all conditions during the second 

performance evaluation. This likely reflects a slight learning effect or the reduced 

workload that may have accompanied participants reducing goals directed toward task 

speed to retain accuracy. 

EEG engagement (as measured by ABM’s high engagement metric) showed 

significant decreases from pre to post fatigue induction for all conditions. This result 

mirrors that of SSSQ task engagement scores. Additionally, the main effect of Condition 

indicated that those in the passive condition exhibited significantly less engagement than 

those in the active condition across the fatigue induction. Although the Time by 

Condition interaction was not significant for EEG engagement, visual examination of 

means across the 10 min intervals reveals an interaction trend, with the passive condition 

demonstrating a more negative trend compared to the shallow trend for the active 

condition and the intermediate negative trend for the control condition. These results 

support partially Hypothesis 3. Whereas SSSQ task engagement results do not support 

the results obtained by Saxby et al. (2013), the EEG engagement results obtained in this 

study do – passive fatigue was characterized by less engagement compared to active 
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fatigue. This finding further supports the role of using multiple measures of a construct 

when evaluating operator functional states.  

Although significant effects were observed during fatigue induction, no effects 

were found on EEG engagement during performance evaluations, failing to support 

Hypothesis 5. The increase in task demands during the post-fatigue induction 

performance evaluation likely re-engaged participants in the task and returned their 

engagement to baseline. Like performance measures, engagement may have only been 

initially lower during initial portions of the performance evaluation, but then increased 

due to repeated instances of radio calls. More finite analyses of these segments of data 

would be needed to determine if any differences between conditions are present at 

different performance evaluation time points.  

 The results of TLI ratios did not support Hypothesis 4. It was hypothesized that 

TLI ratios would be lower for those exposed to a passive environment compared to an 

active environment. TLI ratios were higher during the second performance evaluation 

compared to the first performance evaluation, but no differences between the conditions 

were found. Moreover, during fatigue induction, TLI ratios varied as a function of time 

and condition. Specifically, the active condition exhibited sustained increases in TLI 

ratios beginning at the 20-30 min interval, while the passive condition demonstrated 

increases during the 0-10 min interval. The control condition exhibited no differences 

across time. During the final 40-50 min interval, TLI ratios for all conditions converged. 

This differing pattern of TLI ratios during fatigue induction indicates that the ratio of Fz 

theta to POz alpha may be used to track the initial development of different fatigue states. 
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Hockey et al. (2009) suggested that the TLI can be used to index cognitive strain and 

fatigue when maintaining performance reaches the boundaries of compensatory control. 

In their study, Hockey and colleagues found systematic increases in TLI ratios with task 

load manipulations requiring sustained effort. Furthermore, Barwick et al. (2012) found 

increases in frontal theta activity with corresponding decreases in alertness ratings while 

participants performed an effortful Stroop task. The authors concluded that this increased 

theta activity may be a compensatory mechanism for reduced vigilance and engagement. 

In the current study, increased TLI ratios, coupled with reduced engagement, likely 

represented a mechanism for coping with prolonged time on task and increasing effort to 

maintain task-related goal standards.  

 In terms of differentiating fatigue conditions, participants in the passive condition 

showed a mean increase in TLI ratios about 10 min into fatigue induction, which 

subsequently stabilized at 20 min into fatigue induction. Participants in the active fatigue 

condition exhibited a significant mean increase in TLI ratios at 20 min, which continued 

to increase until stabilizing at 40 min into the simulation. Within the context of dynamic 

models of stress and sustained attention (Handcock & Warm, 1989), the onset of 

reductions in operator physiological and psychological adaptation may occur earlier for 

passive fatigue conditions compared to active fatigue. The extreme underload of the 

passive condition likely reduced the operator’s adaptability, which manifested in 

increased TLI ratios early in the scenario. Moreover, the delayed increase in mean TLI 

ratios for the active group likely resulted from participants initially employing proper 

workload adaptation regulation strategies but losing this adaptivity as time on task 
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became a significant stressor over prolonged task performance, thus requiring the 

employment of more effort under strain. If TLI ratios are an indication of strain due to 

fatigue, then the differences observed between conditions over time found here may 

imply that passive fatigue onset is faster than that of active fatigue.  

 Although TLI ratios showed different patterns between fatigue conditions, ABM’s 

workload metric did not. This dissociation may be due the TLI measuring a different 

construct compared to ABM’s workload metric. Specifically, the TLI ratio may be 

measuring facets of operator strain associated with operators employing more effort to 

maintain performance on a task, while ABM’s workload metric measures a general 

workload construct of executive function resource allocation. In other words, ABM’s 

metric is more sensitive to changes in task demands requiring increased executive 

functioning, while the TLI is sensitive to the implementation of effort under the strain of 

fatigue to maintain performance outcomes. 

 TLI results may also aid in explaining the speed-accuracy trade off observed 

during performance evaluations. While no formal statistical comparisons were made 

between performance evaluation TLI ratios and fatigue induction TLI ratios, examination 

of TLI ratio means revealed that mean ratios during the post-MATB performance 

evaluation were substantially lower than TLI ratios during fatigue induction. Using 

Hockey’s compensatory control model and assuming the TLI represents a coping 

mechanism for goal directed effort under strain, participants may have reduced task 

goals, resulting in the conservation of a reduced effort threshold. This reduction in task 

goals with the preservation of effort may have manifested as the speed-accuracy trade-off 
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observed in performance data. Therefore, the progressively increasing TLI ratios over the 

course of fatigue induction may have indicated a build-up of strain due to fatigue, where 

participants subsequently adopted a non-optimal performance strategy ultimately 

resulting in the preservation of effort at the cost of reduced performance outcomes. 

However, more research is needed to determine if indeed TLI ratios correspond to the 

employment of effort under strain.  

 Overall, EEG measures indicate that passive fatigue is characterized by less 

engagement than active fatigue. Trends in the EEG engagement metric also indicate that 

loss of engagement over prolonged task performance was more severe for the passive 

fatigue condition than the control and active conditions. Those in the active condition 

exhibited sustained TLI ratio increases compared to the passive condition and control 

conditions, providing preliminary support for the TLI ratio being an index of operator 

strain due to fatigue. Engagement and TLI results also indicate two potential EEG 

markers indicative of active-passive fatigue differentiation that correspond to dynamic 

models of stress adaptation.  

General Discussion 

 The results of the subjective measures generally support the findings and 

conclusions made by Saxby and colleagues (2013) – passive fatigue is characterized by a 

loss of engagement and alertness under conditions of prolonged underload, while active 

fatigue is characterized by little to no changes in alertness or engagement under sustained 

higher workloads. Researchers have argued that passive fatigue presents more of a threat 

to task performance than active fatigue conditions (e.g., Desmond & Hancock, 2001; 
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Saxby et al., 2013); however, performance measures in this study failed to find any 

differences between fatigue conditions. Importantly, this study extended previous 

research into fatigue types by incorporating continuous measures of central nervous 

system activity throughout fatigue induction and the performance of cognitively 

demanding performance evaluations. To date, no published studies have used any 

physiological measures to differentiate these fatigue states.  

 The combination of EEG and subjective results obtained in this study augment the 

understanding of operator state changes during sustained underload and high workload 

conditions. Saxby and colleagues (2013) suggested that responses to different fatigue 

states may be: 1) qualitatively distinctive modes, or 2) a gradated response mixing 

adaptive strategies. Results of this study likely support the latter. The inclusion of a 

control condition that was qualitatively similar to the passive condition supports this 

assertion. Both conditions involved only monitoring a system for changes; however, 

critical signals in the passive condition were far less frequent than critical signals in the 

control condition. The effect size for reduction in alertness ratings were larger for the 

passive condition than the control condition. Moreover, a visual examination of Figure 4 

showing mean EEG engagement measurements over the fatigue induction period shows a 

graded-like response between conditions (i.e., the control condition was between the 

passive and active conditions). Thus, it appears that operator responses to different 

prolonged workload-related stress vectors are continuous. Additionally, it appears that the 

structure of the task in terms of stimuli presentation rate may be the driving factor for 
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passive fatigue conditions that results in a smooth change in operator responses over task 

performance.  

 Although no performance differences were observed between the active and 

passive conditions, the strong loss of alertness and task engagement in the underload 

conditions characteristic of passive fatigue present safety concerns for operators. 

Specifically, operators becoming disengaged from a task prior to emergency situations 

where fast responses are required. As automation continues to be integrated in several 

operational environments, the probability of severe underload conditions will also 

increase.  

One application of the current research is to develop fatigue countermeasures that 

are tailored to active and passive operational conditions. Whereas increased automation 

may alleviate sustained overload conditions, this intervention would not be suitable for 

underload conditions. Indeed, May and Baldwin (2009) stressed that technologies 

developed for combating fatigue need to be evaluated for their appropriateness within the 

operational environment and take into consideration different fatigue states.    

Limitations and Future Research 

 One limitation to the current study was the low-fidelity simulation used to induce 

differing fatigue states. As previously mentioned, Saxby and colleagues (2013) utilized a 

high-fidelity driving simulation that may have maintained participant engagement more 

than the MATB. Participants could have disengaged from the MATB simply because it 

lacked realism. In true operational settings, stimuli such as scenery and noise make the 

environment more dynamic. Although one goal of this study was to “distill” the 
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differences between active and passive fatigue down to their essence in a controlled 

setting, it is difficult to generalize low-fidelity results to situations experienced by 

operators such as UAV pilots. Despite this, several of the results obtained in this study 

support, as well as extend, those found in previous research. Thus, differences between 

active and passive fatigue can manifest in cost-effective tasks readily available to 

researchers. Relatedly, the MATB fatigue induction duration used in this study was 

relatively short. Operational settings like long-haul drives, UAV missions, and baggage 

security screening agent shifts are much longer. Continued EEG monitoring for longer 

durations may have revealed further reductions or plateaus in EEG indices. However, the 

EEG results of the current study’s short duration generally support past research using 

subjective measures.    

 Another limitation to this study was how participants responded to own ship 

communications task radio calls. Participants were instructed to maintain contact with the 

joystick until the radio call ended and then subsequently move their hand to the mouse 

and adjust the proper radio frequency. Unfortunately, some participants adhered to this 

instruction more than others, potentially introducing unwanted variability in performance 

resulting in reduced statistical power.  

 Additionally, some authors (e.g., van den Linden, 2011) have suggested that the 

act of switching tasks can reverse fatigue effects. In this study, participants transitioned 

from a stable workload, to a more demanding, emergency-like workload that spanned 

several minutes. This workload transition may have alleviated some effects from the 

relatively short fatigue induction period.  
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 Future research on active and passive fatigue states should utilize several 

physiological measures simultaneously over the course of longer fatigue induction 

periods. For instance, one could combine time-locked ERP signals to critical system 

stimuli with continuous cerebral hemodynamic recordings. ERP recordings could reveal 

changes in electrophysical responses to discrete stimuli with different fatigue induction 

environments. P300 waveform amplitudes have been shown to attenuate with extended 

vigilance task performance (Hoptaken et al., 2016). However, no studies have examined 

P300 amplitude as a function of fatigue conditions. Moreover, the higher spatial 

resolution of many cerebral hemodynamic measures (e.g., functional near-infrared 

spectroscopy) could be used to determine if there are hemodynamic changes that occur at 

different regions as a function of fatigue conditions. Brain stimulation techniques (e.g., 

transcranial direct current stimulation) could then be explored as possible fatigue 

countermeasure strategies.  

 Future research should also examine the role of oculomotor functioning, 

specifically the accommodative-vergence response, on task engagement in operational 

settings. While this study revealed modest correlations between the CISS and SSSQ 

engagement scores, a more systematic and experimental approach could be used to 

explore how oculomotor functioning relates to operational conditions characteristic of 

active and passive fatigue. In conjunction, other measures of individual differences (e.g., 

automation trust, susceptibility to boredom) may also improve the understanding of 

different fatigue states.   
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 Finally, since the current study, along with Saxby and colleagues (2013), provided 

support for differentiated fatigue states, future studies should begin to examine effective 

fatigue countermeasure technologies. Some avenues may be cortical stimulation via 

transcranial direction current stimulation (tDCS) and dynamic augmented cognition 

systems.  

Conclusion 

 This study demonstrated that EEG can be used within a comprehensive OFS 

framework to differentiate active and passive fatigue states. Passive fatigue conditions 

resulted in reduced EEG engagement and elevated TLI ratios early in fatigue induction. 

Moreover, passive fatigue conditions resulted in reduced ratings of alertness and 

workload relative to active fatigue. The reduced engagement and alertness observed in 

passive fatigue conditions exemplifies the need for fatigue countermeasures to be tailored 

to specific operational environments and special safety considerations to be given to 

highly automated environments with human operators.  
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