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ABSTRACT 

 Improved techniques and methods in directional drilling and hydraulic fracturing have 

allowed once inaccessible resources to become profitably accessible in the Bakken Region of 

North Dakota (Fershee 2011).  This recent development has been rapid, and associated land-

cover change can be described as spatially extensive (Baker et al. 2012).  After an extensive 

literature review and to the best of my knowledge, little research has been conducted in the 

Bakken Region regarding land-cover change associated with oil development.  Using high-

spatial-resolution, four-band imagery from the National Agriculture Imagery Program (NAIP) in 

conjunction with Geographic Object-Based Image Analysis (GEOBIA) techniques, it is possible 

to identify narrow-linear and small-area features on the landscape associated with oil 

development.   

The overall accuracy for McKenzie County was 41.2 percent, significantly lower than 

overall accuracies seen in similar studies.  These results suggest this method is not entirely 

suitable for land-cover change analysis in the grassland biome without additional data analysis 

and/or editing.  Further analysis of a selected smaller portion of the county displaying land-cover 

characteristics amenable for accurate classification found oil extraction infrastructure contributed 

to an expected but minimal decrease in grassland and agricultural land-cover. 
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CHAPTER I 

INTRODUCTION 

 Oil extraction infrastructure, characterized by well pad sites, core holes, access roads, and 

pipelines, are primarily associated with the exploration and recovery of natural gas and oil 

(Baker et al. 2012, Salehi et al. 2014, Powers et al. 2015).  Hydraulic fracturing, commonly 

referred to as fracking, hydrofracturing, or hydrofracking, has been the primary driving force in 

recent oil infrastructure development in several oil and gas producing regions of the U.S. 

(Prud’homme 2014).  Improved techniques and methods in directional drilling and hydraulic 

fracturing have also allowed once inaccessible resources to be developed (Fershee 2011).  As a 

result, new oil extraction infrastructure dots the landscape in areas such as the Bakken Shale Play 

of North Dakota.  This recent development has been rapid, and associated land-cover change 

could be described as spatially extensive (Baker et al. 2012). 

 The Bakken Shale Formation lies within the larger Williston Basin, which covers an 

estimated area of 517,997 km2 (200,000 mi2) beneath parts of Montana, North Dakota and the 

Canadian provinces of Saskatchewan and Manitoba (Mason 2012, Prud’homme 2014).  The 

North Dakota portion of the Bakken covers an estimated 30,981 km2 (11,962 mi2) (Mason 2012).  

This region has experienced oil booms during the early 1950s (Campbell et al. 1958) and the 

1970s and 1980s.   



2 

 

Increased technology and demand for energy resources has allowed the Bakken to 

experience its largest boom over the last decade, starting in 2006 and continuing through the 

present day.  This recent oil boom has led to an exponential increase in well-site development.  

December of 2006 saw only 289 oil producing wells in the Bakken region; 1,332 wells were 

producing oil by December 2009, and by January 2016 10,438 wells were producing oil in the 

North Dakota Bakken (North Dakota Department of Mineral Resources 2016). 

 To date, little research has been conducted in the Bakken Region regarding land-cover 

change resulting from oil development using remote sensing and Geographic Object-Based 

Image Analysis (GEOBIA).  Related studies employing similar object-based image analysis 

methods using satellite or aerial imagery in other locations include Baker et al. (2012), Powers et 

al. (2014) and Salehi et al. (2014).  Those studies specifically examined industrial disturbances, 

well-site extraction techniques, and associated land-cover change in the Marcellus Shale region 

of Pennsylvania (Baker et al. 2012), and in the oil sands region of Alberta, Canada (Powers et al. 

2014, Salehi et al. 2014).  Using GEOBIA methods provides a more efficient and time sensitive 

way to classify features associated with oil development across a large area or region, whereas 

manual digitization of the same features at the same scale would be time consuming. 

 Oil extraction infrastructure development in the Bakken Region and McKenzie County, 

like that seen in other oil and gas producing regions, can have significant and lasting impacts on 

the landscape and wildlife.  With more than 404,600 ha (1 million ac) of public land containing 

unique ecosystems and landscapes such as the Badlands, found in western North Dakota, the 

state offers habitat for several important species of birds and mammals while providing 

numerous recreational opportunities such as hunting, hiking, biking, and bird watching (ND 

Stakeholder Assessment 2016).  In a report compiled by Dyke et al. (2011) oil extraction 
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infrastructure development was found to have varying levels of immediate or direct impacts on 

habitat loss among the species assessed.  Increased traffic and more roads were found to 

contribute to some direct loss of wildlife and habitat fragmentation, while the increase in related 

oil development such as noise and drilling activity may lead wildlife to avoid or abandon former 

habitat (Dyke et al. 2011). 

This research examined two central research questions: 1) is GEOBIA an effective tool 

for accurately mapping land-cover change associated with the development of oil extraction 

infrastructure in McKenzie County from 2009 to 2014?; and, if so 2) how much grassland and 

agricultural land-covers have been lost?  With the use of object-based image analysis software, 

oil extraction infrastructure can be distinguished from other land-cover types.  Grassland and 

agricultural land-cover can then be examined to determine any change in overall coverage as a 

result of oil development.  In future studies, baseline data developed here may provide insight 

into impacts upon local wildlife, assist in monitoring environmental problems such as gas flaring 

and spills, and inform studies on social impacts of the oil boom. 
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 CHAPTER II 

LITERATURE REVIEW 

2.1 Study Area 

 McKenzie County (Fig. 1) is located within the state of North Dakota above the Bakken 

Shale formation, which is a part of the larger Williston Basin.  In 2014, the estimated population 

of McKenzie County was 10,996 and the county seat, Watford City, had a population of 4,206 

(U.S. Census Bureau 2014).  McKenzie County covers 7,149 km2 (2,760 mi2) (U.S. Census 

Bureau 2014).  This makes it the largest county in North Dakota by area.  The Missouri River 

lies to the north and defines the border between McKenzie and Williams counties.  McKenzie 

County is also home to the North Unit of Theodore Roosevelt National Park (TRNP).  

 Topography is characterized by flat to rolling terrain interspersed with badlands and other 

rugged features, especially near TRNP and the Missouri and Little Missouri rivers.  Grassland 

and agriculture are the dominant land-covers in McKenzie County.  Native semi-arid grasslands 

constitute much of the land cover because of shallow shale and sandstone soils that are 

detrimental to crop production (Saylor 2011).  More than 202,000 ha (500,000 ac) of the Little 

Missouri National Grassland are located in McKenzie County.   
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Agriculture is still important in the county but is not as prevalent today as it once had 

been.  In 2007 McKenzie County had 492 farms that occupied 174,372 ha (430,884 ac) of land.  

Of these 492 farms, 419 harvested 133,606 ha (330,148 ac) of cropland (USDA 2012).  In 2012 

there were 466 farms that occupied 172,244 ha (425,625 ac) of land.  Of these 466 farms, 386 

harvested 137,877 ha (340,703 ac) of cropland (USDA 2012).  Although there was an observed 

drop in total farms and total land occupied, harvested cropland increased in the county.  The 

primary crops grown are spring wheat, durum wheat, and barley (USDA 2012). 

 Historically the Bakken region and McKenzie County have experienced oil boom cycles.  

Geologists and oilmen knew that this region was a potential source for oil since the 1920s, and in 

1951 Amerada Petroleum Corporation successfully drilled and extracted 300 barrels of oil in 17 

hours from a discovery well (Campbell et al. 1958).  The resulting boom shares many similarities 

to the most recent boom of western North Dakota.   

During the 1950s boom, the demand for housing to accommodate a large influx of people 

searching for oil and work was greater than the supply and demand for goods, which helped to 

spur economic and business growth in surrounding towns.  Community services such as schools, 

transportation and communication systems became congested or strained, and cost of public 

services drastically rose.  By 1955 conditions such as these could be described as stable or settled 

after the area had adjusted (Campbell et al. 1958). 

Table 1: Top 5 oil producing counties in North Dakota, July 2009 (data from NDDMR). 

Counties Oil Produced in  Barrels 

Mountrail  2,742,397 

Bowman  1,128,374 

McKenzie  876,351 

Dunn  797,360 

Williams 480,084 
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Counties Oil Produced in Barrels 

McKenzie 11,478,438 

Mountrail 8,302,943 

Dunn 5,675,073 

Williams 4,879,970 

Divide 1,302,992 

 

The county experienced enormous growth in oil development between 2009 and 2014 

and is now the epicenter of oil development and production in western North Dakota (Figs. 2 and 

3).  In July of 2009 there were only 831 oil or gas producing wells in the county, and by July 

2014 McKenzie County had 2,656 wells actually producing oil or gas, more than 600 more 

producing wells than the next county (NDDMR 2016).  Oil production is much the same way.  In 

July of 2009 McKenzie County wells produced 876,351 barrels of oil (Table 1), by July of 2014 

wells produced 11,478,438 barrels of oil (Table 2), more than 3 million more barrels than the 

second leading county (NDDMR 2016). 

 

Table 2: Top 5 oil producing counties in North Dakota, July 2014 (data from NDDMR). 
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2.2 Oil Extraction Infrastructure 

 Oil extraction infrastructure (Fig. 4) is not limited to one outstanding feature but a host of 

small disturbances on the landscape that include well pads, roads, pipelines, seismic lines and 

core holes.  These features are spatially, geometrically and temporally unique.  He et al. (2009) 

grouped these disturbance features into two categories: narrow-linear disturbances and small-

area disturbances.  They characterize several narrow-linear and small-area disturbance features 

based upon spectral characteristics (surface, top), geometric characteristics (length, curvature, 

and width), and topological property. 

 

 

Narrow-linear disturbances include roads, trails, pipelines and seismic cut-lines.  

Previous studies by He et al. (2009, 2011) and Powers et al. (2015) examine the detection of 

narrow-linear forest disturbances in one Bear Management area (BMA) of the eastern foothills of 

the Rocky Mountains in Alberta, Canada, and the oil sands region of Alberta near Fort 

McMurray.  These studies establish a solid framework for detecting, as well as characterizing, 

these features using high-spatial resolution imagery.  Two linear features of increased interest in 

Figure 4: Narrow-linear and small-area disturbances associated with oil 

extraction infrastructure (He et al. 2009). 
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oil development areas are seismic cut-lines and roads because of their potential for widespread 

habitat fragmentation and ecosystem/environmental degradation. 

 Seismic cut-lines are the result of seismic surveys conducted to locate and evaluate oil 

and gas deposits (He et al. 2011, Powers et al. 2015).  The result of these surveys is a patchwork 

of long, narrow parallel lines of cleared vegetation across the landscape (He et al. 2011).  Typical 

of such a feature, seismic lines are long and very straight, but they tend to have a heterogeneous 

surface comprised of mixed gravel and grass or small shrub.  Seismic lines have a constant width 

of ~5-10 m (16.4-32.8 ft) with little to no topological property (He et al. 2009, 2011). 

 Roads share similar characteristics to seismic lines.  Similarities include having an 

exposed surface and their length can be described as long.  Roads have a series of defining 

characteristics, however, that set them apart from other narrow-linear features such as seismic 

lines.  Road surfaces are compact and uniform and are typically covered with gravel or dirt, their 

curvature is considered straight but conforms to the local curvature to account for any 

topographic barriers or impediments, and they are relatively wide with a constant width of ~20-

30 m (~65-98 ft) (He et al. 2009).  Roads experience constant use and maintenance so they 

become permanent features upon the landscape, whereas seismic lines may experience limited 

use as recreational paths or off-road vehicle trails after their initial use, leading to possible 

recovery over a much shorter time frame. 

 Small-area disturbances include features such as cut blocks and well-pad sites.  Of the 

two, well-pad sites are the focus of this research.  He et al. (2009) characterize well-pad sites as 

having a regular polygonal shape with a fixed size and uniform surface.  One challenge though is 

that not all well-pads have a single fixed size, but rather a range in sizes.  Baker et al. (2012) 

examined land-cover change associated with natural gas-well clearings in Pennsylvania, and 
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found that well-pad sites range from 0.2 to 9.2 ha (0.4-22 ac), and averaged 0.9 ha (2 ac).  In a 

similar study, Salehi et al. (2014) in the oil sands region of Alberta examined well pad locations 

and found that well pads had an approximate area of 1 ha (2.4 ac).  Like roads, well-pad sites 

experience constant use and upkeep, allowing them to become established features. 

 Cut blocks are typically seen in conjunction with larger-scale anthropogenic activities 

such as expansive surface mining or logging in heavily forested areas.  They have definable 

geometric characteristics but, unlike well pads, do not have a regular polygonal shape to them.  

Their surface is more similar to seismic lines, where it is heterogeneous and may include areas of 

exposed soil and experience possible vegetative re-growth over time (He et al. 2009).  Because 

of limited use or reclamation of the site, cut blocks do not necessarily become distinguishable, 

permanent features upon the landscape.  These are worth noting because of their impact in other 

regions where oil and gas exploration occur. 

 The cumulative impact of these narrow-linear and small-area disturbances upon the 

landscape is spatially extensive.  Land-cover is permanently altered or may experience differing 

rates of regeneration depending upon the disturbance type (Powers et al. 2015).  Depending on 

the resiliency of the affected ecosystem, native plants, wildlife, and other crucial ecosystem 

processes are at risk or irreversibly changed.  As habitat becomes more fragmented many species 

experience increased difficulty in migrating between suitable habitat sites, which may lead to 

smaller population sizes or possible local extinction (He et al. 2009).  Unique landscapes such as 

badlands and extensive grassland areas are found within McKenzie County.  Being able to 

classify oil extraction infrastructure in the county may provide insight into habitat fragmentation, 

impacts on grassland ecosystems, and other localized impacts upon wildlife. 
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2.3 Mining and Mine Reclamation Classification 

 Observed oil extraction infrastructure for this study focused primarily on roads and well-

pad sites because they are significant features on the landscape and are spatially expansive when 

observed at a county or regional scale.  Similar studies have been conducted using GEOBIA and 

high-resolution imagery to classify land-cover change, industrial features, and mine reclamation 

associated with mountaintop removal mining methods (Maxwell et al. 2014, Maxwell and 

Warner 2015).  Mountaintop removal is an extensive resource extraction method involving the 

mining of coal often seen in the Appalachian region of the U.S.  Maxwell et al. (2014) identify it 

as the leading cause of land-cover change in coalfields of the eastern U.S., while also noting it is 

a faster but more pervasive method than traditional extraction practices.   

 Two studies were part of a larger, on-going project to examine the classification of 

mining and mine reclamation using GEOBIA and related image variables.  First, Maxwell et al. 

(2014) used machine learning algorithms, light detection and ranging (LiDAR) data, and 

RapidEye imagery to perform a GEOBIA.  Machine-learning algorithms used were: support 

vector machines (SVM), random forests (RF), boosted classification and regression trees 

(boosted CART), and k-nearest neighbor (k-NN).  The use of ancillary data such as LiDAR 

generated an overall accuracy of the GEOBIA classification of 86.6 percent.  When incorporated 

with LiDAR data, all four algorithms provided accuracies that were statistically comparable. 

 Maxwell and Warner (2015) provide further results using Digital Elevation Model 

(DEM)-derived terrain data compared with National Agriculture Imagery Program (NAIP) data 

to further distinguish between mine reclaimed and non-mining grasslands.  The GEOBIA 

approach was combined with two machine-learning algorithms, RF and SVM, to help facilitate 

use of ancillary data used for classification.  Results indicate mine reclaimed grasslands can be 
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classified accurately with accuracies above 80 percent.  GEOBIA used with the machine learning 

algorithms proved useful in exploiting non-spectral data such as DEM data and terrain shape 

variables. 

 These studies provide helpful insight as to working with complex machine-learning 

algorithms and working with ancillary data such as DEM or LiDAR data.  Overall GEOBIA 

classification accuracy of reclaimed grassland areas can be significantly increased when 

incorporating ancillary data derived from DEM and LiDAR.  Data sets like LiDAR and DEM 

could be applied to an area such as McKenzie County to observe grassland impacted by oil 

extraction infrastructure.  Maxwell et al. (2014) note, however, object-oriented variables like 

object geometry and texture may in fact decrease or not improve overall accuracy when used in 

conjunction with ancillary terrain or elevation data.   

2.4 Aerial image classification and GEOBIA 

 Remotely sensed satellite and aerial imagery is commonly used for the extraction of 

thematic information for the classification of land-cover.  The objective of image classification is 

to cluster pixels within an image into groups that correspond to specific classes or categories.  

Traditional image classification methods classify aerial photography and satellite imagery on a 

pixel-by-pixel basis (Baker et al. 2012).  As high-resolution aerial and satellite imagery has 

become increasingly available, the mapping of small-area and narrow-linear disturbance features 

has increased and allows for greater classification accuracy of these features.  Traditional pixel-

based classification methods cannot incorporate or capture the variation of high spatial resolution 

imagery as can newer object-based classification methods.  GEOBIA exploits GIS functionality 

and incorporates spatial context and object shape in the classification (Blaschke 2010, Baker et 

al. 2012). 
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GEOBIA originates from remote sensing and related geospatial sciences.  Hay and 

Castilla (2008) define GEOBIA as, 

A sub-discipline of Geographic Information Science (GIScience) devoted to 

developing automated methods to partition remote sensing imagery into 

meaningful image-objects, and assessing their characteristics through spatial, 

spectral and temporal scales, so as to generate new geographic information in 

GIS-ready format. 

In short, it is a process that segments an image into individual objects based upon 

spectrally homogenous clusters of pixels.  Supervised classification can be used to then classify 

these image objects (Maxwell et al. 2014).  There are two significant advantages to object-based 

classification: 1) within-class spectral variation is reduced because of image pixels being 

converted to image objects, helping to remove any salt-and-pepper effect often seen with pixel-

based classification; and 2) an object’s spatial, textural, and contextual properties can be derived 

as complementing data related to spectral observations to improve classification accuracy (Liu 

and Xia 2010, Blaschke 2012).  The user can further define object properties based upon object 

geometry and texture, mean, standard deviation, and median values for individual bands, and 

their association with neighboring objects (Blaschke 2012, Maxwell and Warner 2015, Maxwell 

et al. 2014, Salehi et al. 2014). 

High-spatial resolution imagery allows for narrow-linear and small-area disturbances to 

be mapped with a high degree of accuracy.  Geometric correction of high resolution imagery is 

often not needed to further distinguish linear or small-area disturbances on the landscape using 

object-based classification methods.  Well pads and roads have bare surfaces and distinct 

geometric characteristics that allow for the use of object brightness, area, and shape index 

features during object classification (Salehi et al. 2014).  Accuracies for classifying mining and 

oil extraction infrastructure using GEOBIA with moderate to high resolution imagery have had 
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overall accuracies ranging from 70 to 98 percent.  Supplementary data such as LiDAR and 

DEMs can be used to increase classification accuracy (Blaschke 2010, Maxwell et al. 2014, 

Maxwell and Warner 2015). 

Multiple studies have justified the effectiveness of using high-spatial resolution aerial and 

satellite imagery combined with GEOBIA to classify small-scale industrial, narrow-linear and 

small-area disturbances related to oil development (e.g., He et al. 2009, 2010, Baker et al. 2012, 

Salehi et al. 2014, Powers et al. 2015).  Using high-spatial-resolution imagery reduces or 

eliminates the need for image enhancement, mixed pixels are reduced and oil extraction 

infrastructure features are distinguishable on the landscape.  Whereas with Landsat-5 TM 

imagery, well pad sites are described as occupying four to ten mixed pixels with only two pure 

pixels in the center, this results in decreased spectral contrast between wellsite pixels and 

surrounding pixels and well-pads may not even be detectable by visual interpretation (Salehi et 

al. 2014).  This type of moderate resolution imagery would require geometric enhancement to 

effectively distinguish well pads.   

Studies using GEOBIA for oil extraction infrastructure or related mining development 

have used the software eCognition Developer (Trimble Navigation, Sunnyvale, CA) for object 

segmentation and classification purposes (Baker et al. 2012, Maxwell et al. 2014, Maxwell and 

Warner 2015).  Baker et al. (2013) tested the assumption GEOBIA is more accurate than pixel-

based methods for classifying high-spatial-resolution imagery.  They used 1-m imagery 

containing near-infrared bands from the USDA’s National Agriculture Imagery Program (NAIP) 

to classify forest clearings associated with natural gas drilling.  Using eCognition Developer 8.0, 

a multi-resolution segmentation algorithm was run to segment the imagery into objects.  Then, 

using image object features such as mean brightness, mean values of individual bands, and a 



17 

 

normalized difference vegetation index (NDVI), they identified two classes: forest and non-

forest.  Their overall accuracy for object-based classification using 1-m NAIP was 87 percent.  

Their GEOBIA provides a good framework for identifying oil extraction infrastructure using 

high resolution NAIP data that could be applied to similar areas experiencing intense or 

significant oil development. 

Once an image is classified an accuracy assessment is required.  This involves the 

comparison between a classification map derived from aerial or satellite imagery and ground 

reference test information (Jensen 2005).  An error matrix is then used to summarize the 

relationship between the two sets of information.  It is necessary to report three measures of 

accuracy: overall accuracy, error of omission, and error of commission (Jensen 2005).  Overall 

accuracy is determined by dividing the total amount of correctly classified pixels by the total 

number of pixels in the matrix.  Error of omission is calculated by dividing the total number of 

correctly classified pixels by the total number of pixels in a given class from the reference data.  

Finally, error of commission is calculated by dividing the total number of correctly classified 

pixels by the total number of pixels in that class (Jensen 2005). 
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CHAPTER III 

DATA AND METHODS 

3.1 Acquisition and Preparation of 2009 and 2014 Imagery 

 I obtained free NAIP aerial imagery of McKenzie County for the years 2009 and 2014 

from the USDA.  Over this five-year period 1,825 new oil producing wells were completed in the 

county.  The 4-band NAIP imagery has the standard visible (blue, green, and red) bands as well 

as a near-infrared band.  Images for both 2009 and 2014 are high-spatial resolution, with a 1-by-

1 m pixel size.  The high spatial resolution assists in achieving a higher-level land-cover 

classification and allows for more accurate object identification. 

 I acquired aerial imagery from the State of North Dakota GIS server (ndgishub.nd.gov) 

through ArcGIS Desktop 10.4 (Environmental Systems Research Institute, Redlands, CA).  I 

used an ArcGIS Model Builder model to extract McKenzie County from a statewide image.  I 

then applied a 1.61-km (1-mi) buffer to a McKenzie County border to achieve a desired image 

extent when clipping the imagery to ensure all features in the county were included.  I then 

“diced” the 2009 and 2014 images into 20 smaller sections using the ArcGIS 10.3 fishnet tool 

and Model Builder.  I applied a 1.61-km (1-mi) overlap to all sides of each section in the fishnet 

to reduce any edge effect during the GEOBIA.  This image dicing was done to allow for more 
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efficient processing of the imagery and to avoid software crashes or computational hardware 

errors, resulting in faster processing times. 

3.2 Geographic Object-based Image Analysis of McKenzie County 

 I performed the GEOBIA on the “diced” sections of the 4-band aerial imagery of 

McKenzie County for the years 2009 and 2014.  These two time periods show land-cover and oil 

extraction infrastructure in the early stages and at the greatest height of the boom.  This was 

based on methods from two prior studies examining oil extraction infrastructure.  Using 

frameworks similar to Baker et al. (2012) and Salehi et al. (2014), I ran the GEOBIA to identify 

oil extraction infrastructure in the county.  Baker et al. (2012) relied primarily upon spectral 

characteristics of image-objects for their study.  But because oil extraction infrastructure possess 

specific geometric traits, I used the framework proposed by Salehi et al. (2014) which employed 

object features such as object area and shape index in developing the ruleset.  

 I performed the GEOBIA using the software eCognition Developer 9.1.  I performed a 

multi-resolution segmentation algorithm to group image pixels into spectrally similar objects.  I 

set the segmentation parameters to a scale of 25, a shape of 0.1, and a compactness of 0.5.  These 

values were based on those used by Baker et al (2012).  I then included a second segmentation, 

the spectral difference segmentation, and applied a maximum spectral difference of 5.  In both 

segmentation algorithms Blue, Green, and NIR were given image layer weights of 1, and Red 

was given a weight of 2 (Appendix A).  I further manipulated image objects by developing a 

ruleset using spectral features such as mean brightness, mean values of single bands (red, blue, 

green and NIR), NDVI, and geometry features such as asymmetry, area (pixel), density, 

length/width and shape index.  Once ideal values for these features were achieved, I classified 

objects into a narrow-linear features class and small-area features class by executing the ruleset.  
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The developed ruleset was used to classify oil extraction infrastructure for both years.  Because 

of possible differences in image spectral characteristics or other variables between the 2009 and 

2014 images, ruleset feature values were adjusted accordingly to account for any difference.   

 These feature parameters represent different characteristics present in each object.  Mean 

brightness and mean values of single bands differ little from each other; both of these features 

represent the mean intensity of all pixels forming an image-object, but are just used in different 

ways of identifying an image-object.  The NDVI parameter needed to be calculated in 

eCognition Developer in order for it to be used for object identification.  Asymmetry and 

length/width use similar characteristics of an object, the primary of which is length.  Asymmetry 

describes the relative length of an image-object compared to a regular polygon, whereas 

length/width observes the length-to-width ratio of an object.  Area (pixel) is the area of an 

image-object by the number of pixels one may contain; density labels the distribution in space of 

the pixels of an image-object, with the most “dense” shape being a square; and shape index 

describes the smoothness of an image-object border, with a smoother border resulting in a lower 

shape index (Trimble Documentation 2015). 

Exceeding data limits for exporting shapefiles from eCognition Developer 9.1 required an 

alternate method to be taken for acquiring the final GEOBIA results.  With the assistance of Prof. 

Jarlath O’Neil-Dunne of the University of Vermont, the imagery for 2009 and 2014 were 

processed on an eCognition server at the University of Vermont.  Instead of processing each 

diced section individually, the original mosaicked image for both years were processed.  To do 

this, additional algorithms were included into the original rule sets.  The “create scene tiles” 

algorithm was added, which created tiled copies of the original images.  Each tile becomes its 

own project yet still represents the complete scene before applying the algorithm (Trimble 
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Documentation 2015).  Tile size parameters were applied within the algorithm, with parameters 

being a tile height of 5,000 pixels and a tile width of 5,000 pixels.  The “submit scenes for 

analysis” algorithm was then added, and can only be executed if connected to an eCognition 

server.  This algorithm allows any subroutines to be connected back to the main rule set (Trimble 

Documentation 2015), allowing the ruleset to then process imagery, in this case the image tiles 

that were created. 

Each year was processed separately, with 2014 having a processing time of 1 hour, 22 

minutes, and 2009 having a processing time of 3 hours, 14 minutes.  Image processing was 

distributed to 20 cores on a hyper-threaded dual 8-core workstation with 3.12 GHz processors 

and 512 gigabytes (GB) of random-access memory (RAM). 

3.3 Accuracy Assessment 

An error matrix is the most appropriate method of analysis for remote sensing and aerial 

imagery land-cover classification but, I was interested in only two specific features upon the 

landscape, which left much of the imagery unclassified resulting in an error matrix being 

unsuitable for conducting the analysis.  Instead, I used Microsoft Office Excel spreadsheets for 

conducting the accuracy assessment.  On each I kept the total number of points, the assumed 

correct classification of each point, and the actual classification of the points for each class in 

2009 and 2014.  Minimal manual editing was done before carrying out the accuracy assessment, 

which consisted of removing all object-features that had been classified within the boundaries of 

the North Unit of TRNP.  This was done since no oil development or resource extraction occurs 

within the park, and the objects removed consisted of bare earth features or roads. 
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I used ArcGIS Desktop 10.4 for conducting the accuracy assessment.  To make the 

accuracy assessment more efficient the resulting output vector layers representing narrow-linear 

features and small area features for 2009 and 2014 were merged.  This was done using the merge 

tool in ArcGIS Desktop 10.4 and resulted in four separate shapefiles; two for 2009 and 2014.   

To avoid potential bias during the assessment, I placed 200 random points within the narrow-

linear features class for 2009 and 2014, and within the small-area features class for 2009 and 

2014, so there was a total of 400 points for each year and each class.  I used the Sampling Design 

Tool, which was downloaded into ArcGIS Desktop 10.4, to carry out the random point 

placement.  I then visually interpreted each point in the classes for both years to determine if the 

point fell on a correctly classified narrow-linear feature or small-area feature, or to see if it fell 

on an incorrectly classified feature.  Points falling on a correctly classified feature were labeled 

as a narrow-linear feature or small-area feature accordingly.  If the point was found to fall on an 

incorrectly classified feature it was labeled according to what land-cover it fell on.  

I compared further assessment of the narrow-linear features produced by the GEOBIA for 

both years by comparing them to existing land-cover datasets.  I downloaded a National 

Agricultural Statistics Service (NASS) Cropscape Cropland Data Layer (CDL) of McKenzie 

County for 2009 and 2014.  I downloaded these data layers as raster data files and loaded them 

into ArcGIS Desktop 10.4.  I was interested in only four of the land-cover classifications 

comprising the cropland data layer; all considered developed to varying degrees of intensity that 

when combined included all roads in the county.  To extract the desired classes I converted the 

raster datasets to polygons then dissolved this output to reduce the amount of polygons to those 

with only particular attributes.  I then selected the developed land-covers and exported them to 

create a separate shapefile.  Once this was completed I laid 200 random points on the developed 
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data layers representing roads, and then compared where these points fell to the narrow-linear 

feature class I developed in the GEOBIA.  As with the prior analysis I visually interpreted each 

point and whether it fell on the narrow-linear feature class or not, and recorded the assumed 

point classification and the correct point classification in an Excel spreadsheet.  This was done 

for 2009 and 2014. 

As with the narrow linear-features classification further assessment of my small-area 

features class was conducted; this was decided upon after the initial accuracy results proved to be 

lower than anticipated.  To conduct this analysis I produced a slope classification of the county.  

I used five separate DEM’s obtained from the U.S. Geological Survey’s (USGS) National 

Elevation Dataset (NED) to make sure I covered all of McKenzie County.  I mosaicked the five 

DEM’s into a new raster using ArcGIS 10.4 and then used the extract by mask tool to match the 

DEM to the county boundary.  I then converted the DEM to a slope raster to represent slope in 

degrees.  A slope cut-off threshold for eliminating unwanted small-area features was found by 

overlaying the location of all existing wells in McKenzie County onto the slope layer and then 

extracting the slope value of each raster cell within which each well point fell.            

These extracted slopes were then used to find an appropriate slope cut-off by using a box 

and whisker plot and observing the interquartile range.  Of 7,796 well points, the median slope is 

2.81 degrees.  A lower quartile of 1.52 degrees and upper quartile of 4.79 degrees were 

determined to help identify any outliers in the data.  By determining the lower inner fence to be -

3.78 degrees, no low mild or extreme outliers are present.  The upper inner fence, the boundary 

for mild outliers, of the plot was a value of 10.09 degrees, and the upper outer fence for the 

boundary of extreme outliers was 15.39 degrees.  It was determined there were 335 upper-end 

mild outliers (values above 10.09) and 74 extreme outliers (values above 15.39).  Using this 
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information, a cut-off was set at 10.09 degrees, so all small-area features that overlapped a slope 

of 10.09 degrees were eliminated.  I conducted the accuracy assessment like I had for the original 

classifications by randomly placing 200 points within the classification and visually interpreting 

each point. 

While conducting previous assessments the accuracy of my small-area features 

classification have proven to be significantly influenced by misclassified features in areas where 

the topography is uneven and contains areas of bare earth.  For this reason, an accuracy 

assessment was conducted on a selected north-eastern portion of the county (Fig. 5), occupying 

339 km2 (131 mi2), where topography was level and bare earth at a minimum, and where land-

cover consisted primarily of agriculture and areas of grassland.  I digitized a new polygon to 

mark the boundary of this area and the small-area feature classifications for 2009 and 2014 were 

clipped to the extent of this boundary.  I then generated 50 randomly placed points within each 

classification and visually interpreted each point to determine the accuracy within this area.  

With a suitable accuracy produced for 2014, I used the small-area feature classification within 

the selected area to determine how land-cover has been impacted by oil development.  The 2014 

small-area feature classification was overlaid on the 2009 CDL and used to eliminate 

corresponding land-covers, which were calculated to determine the total area and type of land-

cover lost to oil development from 2009 to 2014.  
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CHAPTER IV 

RESULTS 

4.1 Land-cover Analysis and Change, 2009 to 2014 

 The classifications produced from the GEOBIA (Appendix B) indicate oil extraction 

infrastructure in McKenzie County experienced significant growth between 2009 and 2014 

(Table 3).  Small-area features nearly doubled in area from 2009 to 2014, where-as narrow-linear 

features experienced moderate but not significant growth over the same time period.  Despite this 

growth seen between 2009 and 2014, further assessment proved these classifications were not 

accurate enough to confidently determine the impacts of oil development on grassland and 

agricultural land-covers.  The classifications, however, do allude to the trends seen in the rapid 

development of oil extraction infrastructure in the county and region and its potential impact on 

land-cover. 

 

  2009 2014 

Small-Area Features 58 km² (22.3 mi²) 104 km² (40 mi²) 

Narrow Linear Features 93 km² (36 mi²) 120 km² (46.5 mi²) 

 

 

 

Table 3:  Growth of Oil extraction Infrastructure in McKenzie County. 
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4.2 GEOBIA accuracy assessment 

The overall accuracy of the GEOBIA for McKenzie County was 41.2 percent.  A total of 

330 out of 800 points were correctly classified as either a narrow linear feature or small area 

feature.  This accuracy is significantly lower than the 73.5 to 93 percent overall accuracies 

reported in similar studies (e.g., Baker et al. 2012, Salehi et al. 2014, Powers et al. 2015).  The 

GEOBIA also produced low to moderate accuracies for the individual years and classifications 

(Table 4).  When observing the overall accuracies for the small-area and narrow-linear features 

classifications, assessment of the narrow-linear features resulted in a noticeably higher 

classification accuracy.  The accuracy for each individual class within each year can explain the 

difference between overall classification accuracies, with the narrow-linear features producing a 

much higher accuracy than those of the small-area features.  It is clear the GEOBIA produced 

more accurate feature classifications for 2014, resulting in a higher overall accuracy for that year 

over 2009. 

 

  Small-Area Features Narrow-Linear Features Overall 

2009 18.50% 52.00% 35.50% 

2014 41.00% 53.50% 47.25% 

Combined 29.75% 52.70% NA 

 

While conducting the accuracy assessment of the GEOBIA for 2009 and 2014, points that 

randomly fell on correctly classified features were recorded (Figs. 6 and 7), as well as those 

which fell on incorrectly classified land-cover features (Figs. 8 and 9) to see where error in the 

GEOBIA occurred.  Unrelated bare-earth and agricultural land-covers were widely misclassified 

in the GEOBIA for both years in both the narrow-linear feature and small-area feature 

Table 4: Overall and individual class and year accuracies. 
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classifications (Table 5).  Overall, unrelated bare-earth and agriculture accounted for nearly half 

of all features classified, with each accounting for about one-quarter of the nearly half of all 

features.  The percentage of agricultural features classified remained consistent for the 

classifications within both years whereas unrelated bare-earth features varied amongst the 

individual classifications, with small-area features experiencing a higher percentage of unrelated 

bare-earth being classified compared to the narrow-linear feature classifications.  The 2014 

classifications also experienced lower percentages of misclassified features than 2009, with the 

exception of agriculture for the narrow-linear feature class. 

 

  Unrelated Bare-earth Agriculture 

Overall Classification (both years, both classes) 22% 25% 

Narrow-linear Feature (2009) 16.5% 25% 

Small-area Feature (2009) 35% 24.5% 

Narrow-linear Feature (2014) 10.5% 27% 

Small-area Feature (2014) 26.5% 23.5% 

 

The assessment of the narrow-linear feature classification compared to the CDL 

developed classes resulted in a higher rate of accuracy for the GEOBIA classification.  The 2009 

narrow-linear feature class compared to the selected 2009 CDL developed classification 

produced an accuracy of 59 percent, while the 2014 narrow linear feature class compared to the 

2014 CDL developed classification produced an accuracy of 63.5 percent.  The overall accuracy 

for both years combined was 61.3 percent, with 245 out of 400 randomly placed points falling on 

the CDL and then corresponding correctly to narrow-linear feature class. 

Assessment of the small-area feature classification after incorporating slope to eliminate 

Table 5: Percentage of the most prevalent misclassified land-covers.  They are recorded 

by the percent each made up of the overall classification and individual yearly feature 

classifications. 
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unwanted features resulted in a minimal to no increase in accuracy for the GEOBIA 

classification.  The 2009 small-area feature class produced an accuracy of 22 percent after 

eliminating unwanted features, while the 2014 small-area feature class produced an accuracy of 

40 percent.  The overall accuracy for both years combined was 31 percent, with 124 out of 400 

randomly placed points falling on features correctly classified as small-area features. 

The assessment of the smaller selected portion of McKenzie County produced 

significantly higher accuracies for the small-area feature classifications than the original or the 

slope incorporated assessments.  The 2009 small-area feature class had an accuracy of 50 

percent, and the 2014 small-area feature class had an accuracy of 70 percent.  A 70 percent 

accuracy was deemed suitable to conduct further analysis in determining the amount of 

agricultural and grassland land-cover lost to oil extraction infrastructure development between 

2009 and 2014.  Using the 2009 CDL, observed land-cover considered grassland covered 

noticeably more area than agriculture in the observed portion of the county (Table 6).  Using the 

2014 small-area feature class to eliminate underlying land-cover, the total area of agriculture and 

grassland were then determined for 2014.  After calculating the difference, oil extraction 

infrastructure led to a minimal but expected drop in agricultural and grassland land-cover from 

2009 to 2014, with agriculture losing more land-cover. 

 

 

 

Land-cover Type 2009 2014 Area lost 

Agriculture 13,780.5 ha (34,052 ac) 13,534 ha (33,443 ac) 246.5 ha (609 ac) 

Grassland 17,384 ha (42,957 ac) 17,188 ha (42,472 ac) 196 ha (485 ac) 

 

 

Table 6:  Agriculture and grassland land-cover lost as a result of oil extraction infrastructure 

development. 
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CHAPTER V 

DISCUSSION & CONCLUSION 

5.1 Discussion 

Oil extraction infrastructure can be identified in McKenzie County using GEOBIA 

methods, although its effectiveness is in question because several accuracy assessments showed 

that the results of this study are not as accurate as similar published studies (e.g., Baker et al. 

2012, Salehi et al. 2014, Powers et al. 2015).  The accuracy of my results was significantly lower 

than anticipated.  Because of these inaccuracies, impacts of oil development on agricultural and 

grassland land-cover could not be determined with confidence for the entire county.  Rather, a 

small portion of the county with land-cover characteristics amenable to accurate classification 

was selected and assumed to be representative how the rest of the county has been impacted by 

oil development. 

In Table 4 it is evident narrow linear features and the year 2014 had greater accuracies 

than small-area features and 2009.  The narrow-linear feature classifications accuracies remained 

moderately low but consistent between both years, suggesting less impact from misclassified 

features identified by the GEOBIA.  A noticeable difference is seen between the small-area 

features classifications between 2009 and 2014.  For 2009 the accuracy fell below 20 percent, 
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whereas 2014 had an accuracy of 41 percent.  This noticeable increase in accuracy could be a 

result of the significant development that occurred from 2009 to 2014, with 2014 providing a 

larger number of correctly classified small-area features for randomly placed points to fall on 

during assessment. 

The GEOBIA was successful in identifying oil extraction infrastructure in the county but 

also produced significant inaccuracies.  Despite these significant inaccuracies I limited manually 

editing my classifications to prove if GEOBIA methods were effective or not.  The natural 

landscape of the county contributed to many of these inaccuracies.  The most significant 

inaccuracies resulted because bare-earth and other spectrally similar features are classified as 

small-area or narrow-linear features.  These misclassified bare-earth features included agriculture 

and exposed hillsides associated with the badlands landscape seen along the banks of the 

Missouri and Little Missouri rivers and in much of the southern portion of the county in and 

around the North Unit of TRNP.  The accuracy assessment produced an overall accuracy (across 

both classes and both years) of 41.2 percent, which is much lower than results reported in other 

studies.  Bare-earth features made up 22 percent of all features observed during assessment of the 

classifications, while agriculture accounted for 25 percent of all features. 

Similar studies also report classification errors and inaccuracies as a result of unrelated 

land-cover features, which share similar characteristics as the features being examined, 

influencing the classifications of their GEOBIA (Baker et al. 2012, Salehi et al. 2014, Powers et 

al. 2015).  Baker et al. (2012) report inaccuracies of agricultural fields being classified as forest 

due to similar spectral reflectance of these features, and report a low producers accuracy for their 

“Forest to non-forest” GEOBIA classification of 29 percent when using 30 meter resolution 

imagery.  Salehi et al. (2014) observe higher rates of misclassification in areas where land-covers 
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share spectral similarities to those of oil development, such as areas of minimal vegetation and 

bare-earth, varied topography, and road and river boundaries; while Powers et al. (2015) record 

similar errors, where areas of extensive shrub cover and natural disturbances such as riverbank 

erosion and minor landslides may be misclassified as industrial features due to spectral 

similarities.   

I limited manual editing only to the removal of classified image-object features within the 

borders of TRNP.  I did this because oil development does not occur within the park.  This 

excluded a small area of the county not experiencing land-cover change because of oil 

development, and including classified features within the park could have had the potential to 

slightly affect accuracies of the classifications.  Other misclassified areas (primarily bare-earth) 

were removed with the use of DEMs to try to improve on initial accuracy results of the small-

area feature classifications.  The DEMs were used to create a slope layer for the county, which I 

then used to eliminate misclassified features falling at or above the calculated slope of 10.09 

degrees.  Using slope derived from the DEMs proved successful in eliminating misclassified 

features but only improved the accuracy of the small-area feature classifications slightly or not at 

all.  These results suggest numerous misclassified features remained after applying the threshold 

of 10.09 degrees, with bare-earth and agriculture still being the most prevalent misclassified 

features.  The date of the DEMs used also needs to be brought into consideration.  The DEMs 

used were published in 2013, and this could have impacted the threshold calculated where well-

pads built after 2013 are not present but slope values are still extracted when using points that 

represent well-pads in 2014, so some misclassified features may or may not have been 

eliminated due to this and some correctly classified features eliminated. 

Determining impacts upon local land-covers using GEOBIA methods do not work well at 
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the scale of a large county or region where there are significant areas of bare-earth as well as oil 

development.  When focusing on a smaller area of McKenzie County covered predominantly by 

agriculture and grassland and few bare-earth features, accuracies for my small-area feature 

classifications significantly rose and impacts on agriculture and grassland could be more 

accurately determined.  Focusing on areas that exhibit greater spectral contrast between land-

cover types will likely produce more accurate results.  Observing this smaller area also 

concluded that agricultural and grassland land-covers have been impacted by oil development, 

decreasing slightly within the observed area, and could be assumed the rest of the county has 

experienced similar land-cover loss.  Table 6 shows agriculture experienced slightly more land-

cover loss than grassland within this area.  This could be due to federal and state agencies that 

manage public lands (i.e., Little Missouri National Grassland) have stricter regulations and 

reclamation standards to minimize impacts from oil development on them, while private 

landowners may not be aware to such standards or their rights to guarantee safe development and 

reclamation (ND Stakeholder Assessment 2016).   

While developing the rulesets I used for the GEOBIA, I found spectral features like mean 

value for the red band and mean brightness to be of greatest importance when extracting small-

area objects.  Small-area features such as well-pads tended to have higher mean red and 

brightness values than the immediate surrounding landscape because of being devoid of 

vegetation.  Powers et al. (2015) also found the mean value of the red band to be one of the most 

relevant descriptive attributes when performing their GEOBIA.  However, other bare-earth 

features resulting from erosion and agricultural production were also extracted because they have 

similar spectral characteristics.  For that reason, I incorporated geometric conditions such as area 

(pixels) and shape index into the rulesets since well-pads have distinct geometric characteristics.  
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Although area and shape indices were helpful in reducing the number of non-well-pad features, 

they did not eliminate all misclassifications.  I encountered a threshold for both area and shape 

indices beyond which object-features representing well-pads were excluded from the 

classification.  This limited the number of misclassified features that could be eliminated.  The 

condition “asymmetry” was included in the ruleset and this also was useful in eliminating some, 

but not all, unwanted features because of their irregular shape. 

Narrow-linear features relied primarily upon geometric conditions for classification, such 

as length/width, density and asymmetry and less upon spectral properties like small-area 

features.  Length/width proved to be the most useful in identifying features like roads, and was 

able to extract a large majority of linear features in the county.  Identifying narrow-linear 

features relied upon fewer conditions to classify them and resulted in higher accuracies than the 

small-area feature classifications.  As with the small-area feature classifications, unwanted 

feature objects were extracted during the GEOBIA but did not result in as severe an impact upon 

final results for narrow-linear features.  The inaccuracies most associated with classifying 

narrow-linear features were agricultural.  Agricultural fields that contained row crops or linear 

patterns from previous harvest or plowing were extracted along with features like roads.   

Manually digitizing small-area and narrow-linear features would have been time 

consuming given the size of McKenzie County and the detail that would have been needed to 

digitize each feature, so the GEOBIA proved effective in reducing the time identifying these 

features.  Despite that advantage of the GEOBIA, manually digitizing these features would have 

resulted in a high accuracy and land-cover change between 2009 and 2014 could be confidently 

determined.  I think manually digitizing small-area and narrow-linear features within the small 

portion of the county I examined would have been beneficial to the analysis.  Although a small 
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portion of the county, there would be a high degree of accuracy and determining land-cover 

change would have been much more exact.  

I believe future studies can use the methods presented in this study to observe land-cover 

change in other western North Dakota counties that have experienced rapid oil development, and 

to observe continued development in McKenzie County.  The GEOBIA can be further refined to 

be unique to grassland biomes and conducting future studies in regions that share similar land-

cover characteristics as western North Dakota.  A similar framework can be used to examine 

small-area or narrow-linear features associated with other types of industrial development, such 

as: urban sprawl, wind energy development, deforestation and logging activities, and mining 

development.   

The methods presented in this study can also incorporate new types of data or techniques 

to further take advantage of certain characteristics displayed by oil development features.  As 

seen in previous studies, elevation data can be used in conjunction with GEOBIA methods to 

identify land-cover change associated with large scale mining (Maxwell et al. 2014, Maxwell 

and Warner 2015).  If given access to unlimited resources high-resolution LiDAR data could be 

attained, which could then be used to distinguish areas where land-cover changed between two 

time periods by identifying where elevation of the landscape has changed due to oil 

development, possibly making object identification easier.  Different types of imagery could also 

be considered for future studies as well due to the spectral limitations of NAIP.  Hyperspectral 

imagery would be ideal for observing features associated with oil development in McKenzie 

County due to distinct soils present.  This imagery covers a wider range of the electromagnetic 

spectrum and divides it into many more bands, which can allow for numerous types of band 

ratios to be examined in order to extract features with particular spectral properties.  An image 
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processing technique that could be used in future studies is resolution merging, where the 

spectral and spatial resolutions of two different images are merged to take advantage of both 

images.  This could be done with a high-resolution image such as NAIP and a high-spectral 

image like Landsat, and these advantages combined could result in more accurate identification 

of particular features associated with oil extraction infrastructure development. 

5.2 Conclusion 

 The primary focus of this study was to determine if GEOBIA methods are effective at 

accurately mapping land-cover change associated with oil development in the county, followed 

by determining land-cover impacts to agriculture and grassland.  Initial accuracy assessments 

and results of this study suggest that is not true, and GEOBIA methods are rather ineffective at 

identifying oil extraction infrastructure, which did not allow for accurate land-cover change 

analysis of agriculture and grassland for the whole county.  Further analysis though proved 

features associated with oil extraction infrastructure development in McKenzie County can be 

identified using GEOBIA methods, and accuracies can be improved but only when limiting or 

observing areas with particular landscape characteristics present in the imagery.  Limiting the 

amount of features that share similar spectral characteristics to small-area and narrow-linear 

features may result in higher accuracies of GEOBIA classifications, as evident from observing 

the small selected portion of McKenzie County, and could allow for accurate analysis of land-

cover change.  These methods could be applied to other counties in western North Dakota or 

similar regions with a grassland biome, but results will be dependent upon landscape 

characteristics present in that region.     

Despite the recent decline in oil development and production in western North Dakota, 
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McKenzie County in July of 2015 had 3,287 wells and July of 2016 had 3,504 wells actually 

producing oil and gas (NDDMR 2017), which are marked increases in active wells from the 

same time in 2014.  This may be from a combination of wells previously drilled with the 

capability of producing being hydraulically fractured and new wells continually being drilled.  

Continuing to observe oil extraction infrastructure development in McKenzie County for recent 

years not examined in this study can also be a focal point for future studies.  By observing the 

rate of growth in oil development over a span of several years and identifying where wells are 

drilled, trends in land-cover change can be analyzed and predictions of where expected growth 

may occur can be made. 
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Appendix A 

Geographic object-based image analysis rulesets 

2009 Rule Set  

 

1.  Create Scene Subset  

 1.1 Create Scene Tiles 

  1.1.1 Tile Size Parameters 

        1.1.1.1 Tile Height: 5000 

        1.1.1.2 Tile Width: 5000 

 1.2 Submit Scenes for Analysis  

      1.2.1 Type of Scene Tiles: tiles 

  1.2.2 Process Name: On Tiles 

  1.2.3 Percent of Tiles to Submit: 100 

2.  Segmentation 

 2.1 Multiresolution Segmentation 

  2.1.1 Image Layer Weights: Blue 1, Green 1, Red 2, NIR 1 

  2.1.2 Scale Parameter: 25 

  2.1.3 Shape: 0.1 

  2.1.4 Compactness: 0.5 

  2.1.5 Number of cycles: 1 

 2.2 Spectral Difference Segmentation 

  2.2.1 Maximum Spectral Difference: 5 

  2.2.2 Image Layer Weights: Blue 1, Green 1, Red 2, NIR 1 

  2.2.3 Number of cycles: 1 

3. Classification 

 3.1 Narrow Linear Features 

  3.1.1 Assign Class 

       3.1.1.1 Class filter: Unclassified 

       3.1.1.2 Use Class: Narrow Linear Features 

       3.1.1.3 Number of cycles: 1 

       3.1.1.4 Conditions: 

   3.1.1.4.1 Length/Width > = 25 

  3.1.2 Assign Class 

       3.1.2.1 Class filter: Unclassified 

       3.1.2.2 Use Class: Narrow Linear Features 

       3.1.2.3 Number of cycles: 1 

       3.1.2.4 Conditions: 

   3.1.2.4.1 Asymmetry > = 0.95 

  3.1.3 Assign Class 

       3.1.3.1 Class filter: Unclassified 

       3.1.3.2 Use Class: Narrow Linear Features 

       3.1.3.3 Number of cycles: 1 

       3.1.3.4 Conditions 

   3.1.3.4.1 Density < = 0.8 

  3.1.4 Assign Class 
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       3.1.4.1 Class filter: Narrow Linear Features 

       3.1.4.2 Use Class: Undefined 

       3.1.4.3 Number of cycles: 1 

       3.1.4.4 Conditions: 

   3.1.4.4.1 Mean Red < = 145 

  3.1.5Assign Class 

       3.1.5.1 Class filter: Narrow Linear Features 

       3.1.5.2 Use Class: Undefined 

       3.1.5.3 Number of cycles: 1 

       3.1.5.4 Conditions: 

   3.1.5.4.1 Mean Red > = 230 

  3.1.6 Assign Class 

       3.1.6.1 Class filter: Narrow Linear Features 

       3.1.6.2 Use Class: Undefined 

       3.1.6.3 Number of cycles: 1 

       3.1.6.4 Conditions: 

   3.1.6.4.1 Mean Green < 151 

  3.1.7 Merge Region 

       3.1.7.1 Class filter: Narrow Linear Features 

       3.1.7.2 Number of cycles: 1 

 3.2 Small Area Features 

  3.2.1 Assign Class 

       3.2.1.1 Class filter: Unclassified 

       3.2.1.2 Use Class: Small Area Features 

       3.2.1.3 Number of cycles: 1 

       3.2.1.4 Conditions: 

   3.2.1.4.1 Brightness > = 140 

   3.2.1.4.2 Mean Red > = 180 

  3.2.2 Assign Class 

       3.2.2.1 Class filter: Small Area Features 

       3.2.2.2 Use Class: Undefined 

       3.2.2.3 Number of cycles: 1 

       3.2.2.4 Conditions: 

   3.2.2.4.1 Area (pixels) < = 500 

   3.2.2.4.2 Shape Index < = 2.5  

  3.2.3 Assign Class 

       3.2.3.1 Class filter: Small Area Features 

       3.2.3.2 Use Class: Undefined 

       3.2.3.3 Number of cycles: 1 

       3.2.3.4 Conditions: 

   3.2.3.4.1 NDVI < = -0.12 

  3.2.4 Assign Class 

       3.2.4.1 Class filter: Undefined 

       3.2.4.2 Use Class: Small Area Features 

       3.2.4.3 Number of cycles: 1 

       3.2.4.4 Conditions: 
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   3.2.4.4.1 Shape Index < = 7 

   3.2.4.4.2 Shape Index > = 2.6 

  3.2.5 Merge Region 

       3.2.5.1 Class filter: Small Area Features 

       3.2.5.2 Number of cycles: 1 

  3.2.6 Merge Region 

       3.2.6.1 Class filter: Undefined 

       3.2.6.2 Number of cycles: 1 

  3.2.7 Assign Class 

       3.2.7.1 Class filter: Unclassified 

       3.2.7.2 Use Class: Small Area Features 

       3.2.7.3 Number of cycles: 1 

       3.2.7.4 Conditions: 

   3.2.7.4.1 Mean Red > = 170 

   3.2.7.4.2 Mean Red < = 200 

  3.2.8 Assign Class 

       3.2.8.1 Class filter: Small Area Features 

       3.2.8.2 Use Class: Undefined 

       3.2.8.3 Number of cycles: 1 

       3.2.8.4 Conditions: 

   3.2.8.4.1 Shape Index > = 16 

  3.2.9 Assign Class 

       3.2.9.1 Class filter: Small Area Features 

       3.2.9.2 Use Class: Undefined 

       3.2.9.3 Number of cycles: 1 

       3.2.9.4 Conditions: 

   3.2.9.4.1 Area (pixels) < = 2500 

  3.2.10 Assign Class 

       3.2.10.1 Class filter: Small Area Features 

       3.2.10.2 Use Class: Undefined 

       3.2.10.3 Number of Cycles: 1 

       3.2.10.4 Conditions: 

   3.2.10.4.1 Area (pixels) > = 50000 

  3.2.11 Assign Class 

       3.2.11.1 Class filter: Undefined 

       3.2.11.2 Use Class: Unclassified 

       3.2.11.3 Number of cycles: 1 

  3.2.12 Merge Region 

       3.2.12.1 Class filter: Small Area Features 

       3.2.13.2 Number of cycles: 1 

  3.2.13 Assign Class 

       3.2.13.1 Class filter: Small Area Features 

       3.2.13.2 Use Class: Unclassified 

       3.2.13.3 Number of cycles: 1 

       3.2.13.4 Conditions: 

   3.2.13.4.1 Asymmetry > = 0.75 
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4.  Export to Polygon 

 4.1 Export vector layer 

  4.1.1 Class filter: Narrow Linear Features 

 4.2 Export vector layer 

  4.2.1 Class filter: Small Area Features 
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2014 Rule Set  

 

1.  Create Scene Subset  

 1.1 Create Scene Tiles 

  1.1.1 Tile Size Parameters 

        1.1.1.1 Tile Height: 5000 

        1.1.1.2 Tile Width: 5000 

 1.2 Submit Scenes for Analysis  

      1.2.1 Type of Scene Tiles: tiles 

  1.2.2 Process Name: On Tiles 

  1.2.3 Percent of Tiles to Submit: 100 

2.  Segmentation 

 2.1 Multiresolution Segmentation 

  2.1.1 Image Layer Weights: Blue 1, Green 1, Red 2, NIR 1 

  2.1.2 Scale Parameter: 25 

  2.1.3 Shape: 0.1 

  2.1.4 Compactness: 0.5 

  2.1.5 Number of cycles: 1 

 2.2 Spectral Difference Segmentation 

  2.2.1 Maximum Spectral Difference: 5 

  2.2.2 Image Layer Weights: Blue 1, Green 1, Red 2, NIR 1 

  2.2.3 Number of cycles: 1 

3. Classification 

 3.1 Narrow Linear Features 

  3.1.1 Assign Class 

       3.1.1.1 Class filter: Unclassified 

       3.1.1.2 Use Class: Narrow Linear Features 

       3.1.1.3 Number of cycles: 1 

       3.1.1.4 Conditions: 

   3.1.1.4.1 Length/Width > = 30 

  3.1.2 Assign Class 

       3.1.2.1 Class filter: Unclassified 

       3.1.2.2 Use Class: Narrow Linear Features 

       3.1.2.3 Number of cycles: 1 

       3.1.2.4 Conditions: 

   3.1.2.4.1 Asymmetry > = 0.95 

  3.1.3 Assign Class 

       3.1.3.1 Class filter: Unclassified 

       3.1.3.2 Use Class: Narrow Linear Features 

       3.1.3.3 Number of cycles: 1 

       3.1.3.4 Conditions 

   3.1.3.4.1 Density < = 0.7 

  3.1.4 Assign Class 

       3.1.4.1 Class filter: Narrow Linear Features 

       3.1.4.2 Use Class: Undefined 

       3.1.4.3 Number of cycles: 1 
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       3.1.4.4 Conditions: 

   3.1.4.4.1 Mean Red < = 155 

  3.1.5Assign Class 

       3.1.5.1 Class filter: Narrow Linear Features 

       3.1.5.2 Use Class: Undefined 

       3.1.5.3 Number of cycles: 1 

       3.1.5.4 Conditions: 

   3.1.5.4.1 Mean Red > = 254 

  3.1.6 Assign Class 

       3.1.6.1 Class filter: Narrow Linear Features 

       3.1.6.2 Use Class: Undefined 

       3.1.6.3 Number of cycles: 1 

       3.1.6.4 Conditions: 

   3.1.6.4.1 Mean Green < 170 

  3.1.7 Merge Region 

       3.1.7.1 Class filter: Narrow Linear Features 

       3.1.7.2 Number of cycles: 1 

 3.2 Small Area Features 

  3.2.1 Assign Class 

       3.2.1.1 Class filter: Unclassified 

       3.2.1.2 Use Class: Small Area Features 

       3.2.1.3 Number of cycles: 1 

       3.2.1.4 Conditions: 

   3.2.1.4.1 Brightness > = 150 

   3.2.1.4.2 Mean Red > = 190 

  3.2.2 Assign Class 

       3.2.2.1 Class filter: Small Area Features 

       3.2.2.2 Use Class: Undefined 

       3.2.2.3 Number of cycles: 1 

       3.2.2.4 Conditions: 

   3.2.2.4.1 Area (pixels) < = 500 

   3.2.2.4.2 Shape Index < = 2.5  

  3.2.3 Assign Class 

       3.2.3.1 Class filter: Small Area Features 

       3.2.3.2 Use Class: Undefined 

       3.2.3.3 Number of cycles: 1 

       3.2.3.4 Conditions: 

   3.2.3.4.1 NDVI < = -0.12 

  3.2.4 Assign Class 

       3.2.4.1 Class filter: Undefined 

       3.2.4.2 Use Class: Small Area Features 

       3.2.4.3 Number of cycles: 1 

       3.2.4.4 Conditions: 

   3.2.4.4.1 Shape Index < = 7 

   3.2.4.4.2 Shape Index > = 2.6 

  3.2.5 Merge Region 
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       3.2.5.1 Class filter: Small Area Features 

       3.2.5.2 Number of cycles: 1 

  3.2.6 Merge Region 

       3.2.6.1 Class filter: Undefined 

       3.2.6.2 Number of cycles: 1 

  3.2.7 Assign Class 

       3.2.7.1 Class filter: Unclassified 

       3.2.7.2 Use Class: Small Area Features 

       3.2.7.3 Number of cycles: 1 

       3.2.7.4 Conditions: 

   3.2.7.4.1 Mean Red > = 200 

   3.2.7.4.2 Mean Red < = 205 

  3.2.8 Assign Class 

       3.2.8.1 Class filter: Small Area Features 

       3.2.8.2 Use Class: Undefined 

       3.2.8.3 Number of cycles: 1 

       3.2.8.4 Conditions: 

   3.2.8.4.1 Shape Index > = 16 

  3.2.9 Assign Class 

       3.2.9.1 Class filter: Small Area Features 

       3.2.9.2 Use Class: Undefined 

       3.2.9.3 Number of cycles: 1 

       3.2.9.4 Conditions: 

   3.2.9.4.1 Area (pixels) < = 3000 

  3.2.10 Assign Class 

       3.2.10.1 Class filter: Small Area Features 

       3.2.10.2 Use Class: Undefined 

       3.2.10.3 Number of Cycles: 1 

       3.2.10.4 Conditions: 

   3.2.10.4.1 Area (pixels) > = 80000 

  3.2.11 Assign Class 

       3.2.11.1 Class filter: Undefined 

       3.2.11.2 Use Class: Unclassified 

       3.2.11.3 Number of cycles: 1 

  3.2.12 Merge Region 

       3.2.12.1 Class filter: Small Area Features 

       3.2.13.2 Number of cycles: 1 

  3.2.13 Assign Class 

       3.2.13.1 Class filter: Small Area Features 

       3.2.13.2 Use Class: Unclassified 

       3.2.13.3 Number of cycles: 1 

       3.2.13.4 Conditions: 

   3.2.13.4.1 Asymmetry > = 0.85 

4.  Export to Polygon 

 4.1 Export vector layer 

  4.1.1 Class filter: Narrow Linear Features 
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 4.2 Export vector layer 

  4.2.1 Class filter: Small Area Features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

Appendix B 

Classification Results 

2009 GEOBIA Classifications 

 

 

 

 

 



52 

 

 



53 

 

 



54 

 

 



55 

 

 



56 

 

 



57 

 

 



58 

 

 



59 

 

 



60 

 

 



61 

 

 



62 

 

 



63 

 

 



64 

 

 



65 

 

 



66 

 

 



67 

 

 



68 

 

 



69 

 

 



70 

 

 



71 

 

 



72 

 

2014 GEOBIA Classifications 
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