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ABSTRACT 

Amphetamine (AMPH) is widely prescribed for the treatment of ADHD and a highly abused 

substance in society, yet little is known about the long-term effects of the drug. Here, we used 

Caenorhabditis elegans (C. elegans) to establish a model for the long-term and transgenerational 

effects of AMPH exposure on behavior. Furthermore, experiments were conducted to explore the 

molecular mechanisms of AMPH that were altered by embryonic AMPH exposure. 

 

C. elegans have a well characterized behavioral response to AMPH known as Swimming 

Induced Paralysis (SWIP). For the SWIP test, animals are placed in fluid, which normally 

induces a thrashing behavior. However, in the presence AMPH, the animals display a time- and 

dose-dependent paralysis. AMPH increases the levels of dopamine in the synapse by causing 

reverse transport through the protein known as the dopamine transporter (DAT), and the SWIP 

behavior has been shown to be dependent on dopaminergic transmission. We exposed embryos 

to either control solution alone (M9 solution) or 500µM AMPH dissolved in control solution for 

15 hours. 4 days later the SWIP test was performed on young adult animals, revealing that 

animals previously exposed to AMPH as embryos displayed a higher response to AMPH. The 

progeny of both groups were tested for SWIP as well. Interestingly, the progeny of the animals 

exposed to AMPH as embryos showed a higher SWIP response with respect to the progeny of 

control animals, demonstrating that AMPH had both a long-term and transgenerational effect on 

the animals. 



	
   xvi	
  

 

Because the SWIP behavior was previously shown to be dependent on dopaminergic 

transmission, we performed DA uptake assays using primary cell cultures made from F1 

generation animals to investigate alterations in DATs ability to uptake dopamine. Results from 

the uptake assays showed that primary cultures made from the progeny of animals exposed to 

AMPH as embryos had reduced ability to uptake DA with respect to control cultures. To further 

investigate the reduced uptake ability following AMPH exposure, a human neuroblastoma cell 

line (SH-SY5Y) was exposed to 15 hour of AMPH, and 5 days later, a DA uptake assay using a 

concentration response of DA was carried out. Results showed that the cells had a reduced Vmax 

with no change to Km, suggesting a reduced amount of DAT in the cells. 

 

We investigated changes in histone methylation as a mechanism for the long-term and 

transgenerational effect observed. Histones are proteins, which DNA wraps around to form the 

nucleosome, and methylation changes on histones can modify the binding of DNA to histones 

leading to a change in gene expression. Western blots of whole animal protein revealed a 

decreased level of histone 3 lysine 4 trimethylation (H3K4me3) in the F1 generation of AMPH 

exposed animals. Additionally, a reduction in the enzymes responsible for H3K4me2 

methylation and H3K4me3 demethylation was observed in F1 progeny of AMPH exposed 

animals. Suggesting that AMPH exposure during embryogenesis alters methylation of specific 

histone markers. 

 

Taken together, these experiments show that in C. elegans, AMPH exposure causes a long-term 

and transgenerational alteration in behavioral response to AMPH, which correlates to alterations 
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in DAT uptake ability.  
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INTRODUCTION 

The Neuron and Neurotransmission 

The primary cell types of the central nervous system are neurons, electrically excitable cells 

which communicate from one to another, and the supporting cells known as glia. There are 

several types of neurons, for instance, motor neurons responsible for communicating movement 

commands, sensory neurons responsible for signaling from sensory organs, and interneurons 

responsible for communicating between neurons. These cells typically consist of dendrites that 

are the primary area for receiving signals, a cell body also referred to as soma, and an axon, 

which sends electrical signals away from the soma for communication (Figure 1).  

 

 

Image courtesy, US National Cancer Institute's Surveillance, Epidemiology and End Results 

(SEER) Program 

Figure 1: Structure of the neuron  
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Neurons communicate with each other using electro-chemical signaling referred to as action 

potentials. In order for a neuron to send signals to another neuron they will form a synapse 

(Figure 2), a gap between the two cells that are very close but do not touch allowing for chemical 

transmission. These communications occur in a unidirectional manner through action potentials. 

Neurons at resting state are negatively charged typically around -70mV. This negative charge is 

established by the action of the sodium-potassium pump (also known as Na+/K+-ATPase). This 

protein is an antiporter, meaning it is a transporter, which moves 2 or more molecules in opposite 

directions. The sodium-potassium pump moves 3 sodium ions outside of the cells while moving 

2 potassium ions into the cell, each against their concentration gradient. When the culmination of 

incoming signal depolarizes the neuron at the beginning of the axon known as the axon hillock, 

to the threshold potential (normally around -55mV) an action potential is triggered. Once the 

threshold potential is reached depolarization begins by voltage gated sodium channels located on 

the axon opening and allowing sodium to move with its concentration gradient into the cell, thus 

rapidly raising the membrane potential. Following a short period the voltage-gated sodium 

channels will begin to close, and go through a refractory period in which they cannot re-open 

which keeps the action potential from moving backwards. Additionally repolarization begins by 

voltage gated potassium channels opening, at this point the membrane potential is positive which 

causes the potassium ions to move out of the cell following their voltage and concentration 

gradients. These positive charged potassium ions moving out of the cells leads to the membrane 

potential lowering back toward resting potential.  

 

As the action potential moves down the axon of the neurons it eventually reaches the end, known 

as the terminal button. When the depolarization reaches the button it triggers voltage dependent 
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calcium channels to open. This allows calcium to enter the cell. Within the button exist lipid 

vesicles known as synaptic vesicles. Synaptic vesicles have a protein known as vesicular 

monoamine transporter (VMAT), which transports neurotransmitters into the vesicle following 

the synthesis of the neurotransmitter. Neurotransmitters are chemicals responsible for 

transmitting the signal across the synapse. The entrance of calcium into the button begins the 

process of the synaptic vesicles fusing to the membrane, which releases their content into the 

synapse. The neurotransmitters released can then diffuse across the synapse to interact with 

receptors on the postsynaptic cell. 

 

 

Image courtesy, Thomas Splettstoesser 

Figure 2: The synapse 

 
Dopaminergic Transmission 
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Dopaminergic transmission is significant in a number of physiological mechanisms including, 

reinforcement of reward, mood, cognition, and fine-tuning of movement. Additionally, alteration 

of dopaminergic transmission by addictive drugs has been shown to be the major process in the 

cause of addiction. There are 4 major dopaminergic pathways in the brain, the mesolimbic, 

mesocortical, nigrostriatal, and tuberoinfundibular.  

 

The nigrostriatal pathway connects the substantia nigra to the caudate nucleus and putamen. This 

pathway has long been studied for its role in fine-tuning of movement, additionally Parkinson 

disease and other movement related disorders have been linked to disruption in this pathway	
  [1] 

The hypothalamus is connected to the pituitary gland via the tuberoinfundibular pathway. This 

pathway is important in regulating the release of prolactin [2]. The mesolimbic and mesocortical 

pathways have long been studied for their role in addiction. The mesolimbic pathway projects 

from the ventral tegmental area (VTA) to the nucleus accumbens, while the mesocortical 

pathway projects from the VTA to the prefrontal cortex [3]. 

 

Dopamine is synthesized from tyrosine through a two-step enzymatic process (Figure 3). First L-

tyrosine is taken up by neurons where it is converted to L-3,4-dihydroxyphenylalanine also 

known as L-DOPA. The conversion from tyrosine to L-DOPA is carried out by the enzyme 

tyrosine hydroxylase (TH) and this reaction is the rate-limiting step in process of synthesizing 

dopamine. Next the enzyme aromatic amino acid decarboxylase (AADC) catalyzes the process 

of turning L-DOPA into dopamine by removal of a carboxyl group from L-DOPA. Both TH and 

AADC carry out their reactions to synthesize dopamine within the cytosol, following the 



	
   5	
  

synthesis of dopamine it must then be transported into synaptic vesicles by the protein vesicular 

monoamine transporter (VMAT) [4]. 

 

 

Figure 3: Synthesis of dopamine. L-Tyrosine is converted to L-3,4-dihydroxyphenylalanine (L-

DOPA) by Tyrosine Hydroxylase (TH), followed by the conversion to dopamine by aromatic 

amino acid decarboxylase (AADC). 

 
The dopamine transporter (DAT) is a major protein in the regulation of dopamine levels within 

the synapse because of its ability to uptake dopamine back into the presynaptic neuron. Once the 

transporter reuptakes dopamine, the neurotransmitter can be recycled by being repackaged into 

synaptic vesicles or broken down. DAT has 12 transmembrane domains and is from the SLC6A 

family of transporters, which also includes the serotonin (SERT) and norepinephrine transporters 

(NET). DAT acts as a symporter and uses the movement of Na+ and Cl- with their gradient to 

translocate substrate [5, 6]. This is thought to happen through an alternating access mechanism 

[7] in which the protein switches between inward facing and outward facing conformations, 

binding substrate in one conformation and releasing that substrate after switching. In addition 

DAT has been shown to have channel activity as well [8], which may also influence excitability 

in DA neurons. 

Psychostimulant Drugs 
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Psychostimulant drugs such as AMPH, cocaine, or methylphenidate have a long history for their 

use as therapeutic agents but are also carry with them the ability to cause addiction making them 

an important subject of research. AMPH most common therapeutic use is to treat attention deficit 

hyperactivity disorder (ADHD), although it is also used in the treatment of narcolepsy and 

obesity. ADHD is characterized by a lack of concentration and shortened attention span, with 

hyperactive mood. ADHD is commonly diagnosed in children and teenagers with the average 

age of symptom onset being 7 [9], and typically treated with a single dose of AMPH every day. 

This method of treatment of ADHD leads to long-term exposure to AMPH, the effects of which 

have not been heavily studied.  

 

AMPH also has a high potential for abuse especially when used recreationally. Additionally 

there is no current pharmacological treatment for AMPH addiction [10], psychotherapy currently 

being the only treatment. 

 

 AMPH and cocaine cause dependence by altering dopaminergic transmission, specifically 

causing an increase in dopamine within the synaptic cleft. DAT blockers such as cocaine bind 

the transporter in its outward facing conformation and stop the transporter from alternating to the 

inward-facing conformation [11]. AMPH also can bind DAT and block DA reuptake, however 

AMPH increases dopamine concentration within the synapse by causing reverse transport 

through the dopamine transporter [12]. During this reverse transport, AMPH is translocated 

inside the cell, where it can also cause reverse transport of dopamine through VMAT, emptying 

the contents of the vesicles into the cytosol [13]. This cytosolic dopamine then continues to gets 

reverse transported into the synapse by DAT. The dopamine can then act on the post-synaptic 
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cell and concentrations stay elevated because dopamine is not being re-uptaken by DAT, and 

levels of dopamine are only limited by diffusion.   

 

Epigenetics Mechanisms of Amphetamine 

Epigenetics refers to regulatory mechanisms that alter gene expression without altering DNA 

sequence. The term means “above the gene” and includes a number of mechanisms, from 

changes in chromatin structure such as histone modification, to direct methylation of DNA, and 

interactions with non-coding RNA. Changes in environment, or in the context of these studies 

exposure to drugs of abuse, can alter many of these mechanisms. The sum total of these 

epigenetic changes in the cell is known as the epigenome, and more recently studies have begun 

looking at the effects of epigenomic alterations following drug exposure on short and long-term 

gene expression changes.  While the study of epigenetic modifications following drug exposure 

is a relatively new field, specific studies on AMPH have begun to show that both acute and 

chronic exposure leads to epigenetic changes, which affect gene expression (Figure 4)	
  [14]. 

 

Histone modifications are one of the most studied epigenetic mechanisms for changes caused by 

AMPH exposure. Histones are positively charged proteins that form a histone octamer core 

composed of two copies of H2A, H2B, H3 and H4 proteins, which 147 base pairs of DNA wraps 

around [15], the DNA and histone proteins together form what is called the nucleosome. 

Nucleosomes are condensed into a structure known as chromatin [15]. The N-terminal tails of 

histone proteins contain residues that can be modified in a number of ways such as methylation, 

acetylation, phosphorylation, and ubiquitination. These modifications alter the interaction of the 

histones with the DNA, which can lead to an open chromatin state known as euchromatin, that is 
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associated with up regulated genes, or a closed chromatin state known as heterochromatin, which 

is associated with down regulated genes.  

 

The most commonly studied histone modification with relation to AMPH exposure has been 

acetylation, the loss of which has been related to gene repression. One of the reasons for studies 

in acetylation being more prevalent than other histone modifications is because of compounds 

such as butyric acid (BA) and valproic acid (VPA). These drugs are histone deacetylase (HDAC) 

inhibitors that readily cross the blood brain barrier, thus being valuable in investigating how 

acetylation changes alter behavior. 

 

Although HDAC inhibitors have been useful in studying how acetylation changes on specific 

histones affects gene expression, there are discrepancies in the literature as to what effects 

histone acetylation has on behavior. One group has found that HDAC inhibitors potentiate the 

behavioral effects of AMPH [16, 17], while a number of studies have shown that HDAC 

inhibitors reduce or block behavioral changes induced by AMPH [18-22]. These discrepancies 

could be caused by a number of variables such as animal species, brain tissues investigated, or 

treatment paradigms.  

 

Alterations in histone methylation have been shown following exposure to drugs of abuse. While 

less work has been done in this epigenetic mechanism with respect to AMPH, a previous paper 

has shown that chronic AMPH treatment leads to changes in histone methylation, specifically 

histone 3 lysine 9 dimethylation (H3K9me2), at the c-fos gene promoter [23]. c-fos has been 
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studied highly with its relation to drugs of abuse; it is an immediate early gene that a number of 

drugs have been shown to increase, including AMPH [24]. 

 

c-fos itself has a very interesting interaction with drugs of abuse. c-fos is a member of the FOS 

family of transcription factors, which includes c-fos, FosB, and ΔFosB. Studies have shown that 

c-fos has a varied expression depending on if AMPH treatment is acute or chronic. Acute 

treatment of AMPH leads to an increase in c-fos expression [23, 25, 26], while chronic AMPH 

treatment leads to a decrease in c-fos expression [23, 25]. However, after chronic treatment with 

AMPH ΔFosB has been shown to increase [16, 23], and that increase persists even after 

withdrawal. This has led to speculation that ΔFosB may have a big role in the development of 

addiction to drugs [27-29]. The above-mentioned epigenetic mechanisms are believed to play a 

big factor in this molecular switching, as it has been shown that acute AMPH treatment increased 

H4 acetylation at the c-fos promoter, which fades after chronic AMPH treatments [23]. 

 

DNA methylation is also an epigenetic mechanism, which occurs when cytosine or adenine is 

directly methylated on DNA. This methylation is associated with a decrease in gene expression. 

Very little research has been done investigating DNA methylation changes after AMPH 

treatment, although one study did find global DNA methylation increases in nucleus accumbens, 

orbital frontal cortex, and medial prefrontal cortex following drug withdrawal after 14 days of 

chronic AMPH treatment [30]. 
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Figure 4: Epigenetic mechanisms altered by AMPH 

 
Caenorhabditis elegans as a Model Organism 

Caenorhabditis elegans (C. elegans) has long been used as a model organism to study a variety 

of topics as they provide a number of advantages over other model organisms. C. elegans is a 

hermaphroditic nematode normally found in soil, and feeding on bacteria. C. elegans have a 

relatively short life span, going from embryos to reproducing adults in a matter of 5 days. This 

makes them ideal in studying long-term and transgenerational effects as studies can be 

completed in a matter of a week or two, when similar studies in mammals would take months. 

Because C. elegans feed on bacteria and each animal can produce 200-300 embryos, these 

animals can be grown in large numbers easily on agar plates seeded with bacteria, leading to 

large sample sizes in studies. 
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The nervous system in C. elegans consists of 302 neurons, 8 of which are dopaminergic neurons. 

Additionally, the connectome, which maps neurons connected to each other, has been mapped in 

these animals, thus providing a great resource for studying their nervous system[31]. The 

endogenous function of dopamine within these animals is to control movement [32]. As the 

animal moves across a lawn of bacteria they get a release of dopamine, which has a downstream 

effect of slowing the animal, thus keeping them on the food source for longer. 

 

Previous studies in C. elegans have proven them as a valuable resource in studying 

psychostimulant drugs that act on dopamine release [33-35]. Numerous studies have investigated 

a now well-characterized behavioral test known as Swimming Induced Paralysis (SWIP)	
  [34]	
  

[33, 36-40]. For this behavioral test, the animals are submerged in fluid, where normally they 

display a thrashing or swimming behavior, but in the presence of a substance that causes 

dopamine release they paralyze. This paralysis happens in a dose and time dependent manner, 

and has been attributed to an increase in dopamine within the synaptic cleft [33, 34]. 

 

C. elegans are also an excellent model for studying epigenetic mechanisms. The histone proteins 

of C. elegans are highly homologous to histones of mammals [41-43] with a histone 3 and 

histone 4 being 97% and 98% identical respectively in amino acid sequence to mammalian 

histones. Due to the close conservation of these histone proteins they are likely to be modified in 

the same manner [44, 45]. However, C. elegans do not methylate DNA similar to mammals. In 

mammalian cells, the DNA is methylated on the fifth position of cytosine (5mC), which has not 

been seen in C. elegans. One recent study however, has shown evidence of adenine N6 

methylation (6mA), which was shown to have transgenerational effects in animal phenotype 
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[46]. The finding of DNA methylation in C. elegans is still very recent and its role needs further 

research.  

 

EXPERIMENTAL METHODS 

Maintenance of C. elegans 

The C. elegans strain N2 was used in all studies. Animals were kept at 20°C and were plated on 

agar plates seeded with E. coli (NA22 strain).  

 

Amphetamine treatment of C. elegans 

C. elegans embryos were treated overnight for 15 hours in AMPH. Plates full with adult animals 

containing embryos were washed with water and collected in 15mL tubes. Tubes were spun 

down at 12,000 rpm and washed several times to clear bacteria. Following the last wash, animals 

were lysed by adding 2mL of bleach and 0.5mL of 10 N NaOH to the animals, and tubes were 

filled to 10mL with water. Animals were rocked in this solution for 3 minutes. After the 3 

minutes, the tube was filled with egg buffer to stop the reaction, and then washed 3 times with 

egg buffer. Embryos were separated from debris using a sucrose solution. To do this egg buffer 

was pulled off from the pellet and 5mL of 60% sucrose was added then filled with water up to 

10mL in the tube. The pellet was disrupted and was shaken to mix well and then spun at 12,000 

rpm for 6 minutes. Following centrifugation, eggs floated at the solution meniscus and a sterile 

pipette was used to transfer eggs to a new tube and washed 3 times with water. The pellet was 

then resuspended in 10mL of M9 solution. 4.975mL of this solution was separated into two new 

tubes. One tube was used for the M9 control; the other tube had 25µL of 500mM AMPH added 

for a final concentration of 500µM AMPH. Tubes were then rocked overnight for 15 hours at 
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room temperature. Following the overnight incubation animals were washed 4 times with water, 

and then plated on agar plates seeded with E. coli and allowed to grow until behavioral tests were 

performed. 

 

SWIP behavioral test 

For this test 10-15 animals are collected with a platinum wire and placed into 40µl of 200mOsml 

sucrose solution with or without 500µM AMPH for 10 minutes with the number (%) of 

paralyzed animals recorded at minute intervals. 

 

Primary cell culture of C. elegans embryos 

Embryos were treated for 15 hours in either M9 solution or AMPH solution using the same 

method as for SWIP testing. The embryos were washed and plated following the 15 hours and 

allowed to grow to adults containing embryos of the F1 generation. The F1 generation embryos 

were gathered using the same bleach/NaOH procedure as in AMPH treating process. Embryos 

were separated from debris and washed with water. After last wash, water was removed and 

embryos were moved to 2 mL tube with 1 mL chitinase solution (1 U per ml). Embryos were 

incubated in chitinase solution at room temperature on a tube rotator. Incubation was carried out 

for approximately 1 hour or until 80% of embryos have their eggshell digested. Tubes were 

centrifuged at 3800 rpm for 3 min. Solution was then aspirated off and 1 mL of L-15 media 

(Leibovitz’s L-15 media with 10% fetal bovine serum, 10 U ml-1 penicillin and 50 µg ml-1 

streptomycin adjusted to 340 ± 5 mOsm) was used to resuspend the pellet. Repetitive pipetting 

was used to dissociate the cells by pipetting against the side of the tube 60 times then 

centrifuged. Solution was again aspirated off and 1 mL of L-15 was added then pipetting was 
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repeated approximately 30 more times while periodically checking the progress of dissociation. 

Progress of dissociation was check by eye and when the majority of embryos were dissociated 

the tubes were again centrifuged, solution aspirated, and 1 mL of L-15 was added. Next the 

solution was filtered to remove hatched larvas, clumped cells, or undissociated embryos. 1 mL of 

L-15 media was put through 5 µm filters into 15 mL tube, followed by .5 mL of cell suspension 

and 2 mL of L-15. Solution was pushed through filter and filter was washed twice with 2 mL of 

L-15. Process was repeated with a new filter to filter the rest of the cell suspension. 15 mL tubes 

with cell suspension were then centrifuged at 3800 rpm for 3 minutes. Following centrifugation 

solution was aspirated until 5 mL of solution remained and pellet was resuspended. Cell counting 

was done by taking an aliquot of cell suspension and making a 10x dilution. 10 µL of this 

dilution was then added to 10 µL of trypan blue and loaded into cell counting slide for Countess 

Automated Cell Counter (Invitrogen). Following cell counting, cells were plated onto peanut 

lectin treated coverslips at 2 million cells per plate. The next morning after cells settled an 

additional 1 mL of L-15 media was added to cells. Peanut lectin treated coverslips were created 

the day before the procedure. First coverslips were sterilizing by placing in ethanol and flaming. 

Then 400 µL of peanut lectin (.5 mg ml-1) was spread on the coverslip and allowed to incubate 

for 30 minutes. Peanut lectin was then aspirated off and plates were left under UV light 

overnight. 

 

DA uptake assays in primary cell culture of C. elegans embryos 

Uptake assays were carried out 4 days after primary cell preparation. For the uptake assay cells 

were washed with 1 mL bath solution (145 mM NaCl, 5mM KCl, 1 mM CaCl2, 5 mM MgCl2, 

10 mM HEPES, 20 mM D-Glucose, pH 7.2, 350 mOsm) 3 times, followed by incubation with 
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5nM [3H] DA in bath TAP (bath solution with 100µM of each ascorbic acid, tropolone, and 

pargyline) for 5 minutes with or without 10µM Imipramine present. Cells were then washed 4 

times with 1 mL ice cold bath TAP solution. Lastly 500 µL 1% Triton-X was added and allowed 

to incubate for 10 minutes to lyse cells. Supernatant was collected and 8 mL scintillation cocktail 

(Research Products International Corp., Econo-Safe Biodegradable Counting Cocktail) was 

added before counting in scintillation counter (Beckman Coulter LS 6500 multipurpose 

scintillation counter). 

 

Efflux assays in primary cell culture of C. elegans embryos 

Efflux assays were carried out 4 days following primary cell preparation, using the same 

preparation method as for uptake assays. Medium was removed from the cells and washed 3 

times using bath solution. 1mL of 5nM [3H]DA diluted in bath TAP solution was then added to 

cells and allowed to incubate at 30 minutes at room temperatures. To test [3H]DA loading, some 

dishes were then washed 3 times with bath TAP and lysed with 500µL 1% Triton-X for 10 

minutes. The solution was then collected in scintillation vials and 8mL scintillation cocktail was 

added. All other dishes were washed 3 times with bath TAP solution. Then 1mL of 10µM 

AMPH diluted in bath TAP solution was added to the dish and allowed to incubate for varying 

times (1, 5, or 10 minutes). Solution was then collected in scintillation vials, following collection 

of solution dishes were washed with 1mL of bath TAP and 500µL of 1% Triton-X was added for 

10 minutes. After 10 minutes lysed solution was collected in scintillation vials to measure the 

amount of DA still in cells. 8mL of scintillation cocktail was then added to all vials and counted 

in scintillation counter. 
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SH-SY5Y cell culture 

SH-SY5Y cells are a human neuroblastoma cell line originally derived from bone marrow [47]. 

These cells have many characteristics of dopaminergic cells as they have been reported to 

express the dopamine transporter [48-50], tyrosine hydroxylase[50], and dopamine-beta-

hydroxylase[49]. The cells were grown in T75 flasks at 37°C and 5% CO2 in Dulbecco’s 

Modified Eagle’s Medium (DMEM), which was prepared by adding 50% Fetal bovine serum 

(FBS) and 1% Penicillin and Streptomycin solution in 500mL DMEM. Cells were passaged at 

90% confluence. To passage cells they were first washed twice with sterile phosphate buffer 

saline (PBS). After PBS was aspirated following second wash 2mL of 1X trypsin was added to 

flask and incubated at 37°C for 5 minutes. Following incubated PBS was used to resuspend the 

cells and move them into 15mL tubes. Cells were then pelleted by centrifugation at 1500rpm for 

5 minutes at 4°C. Two more washes using PBS were done using the same pelleting procedure. 

After the final wash cells were resuspended in DMEM and passaged into new T75 flasks 

containing 15mL of DMEM. 

 

DA uptake using SH-SY5Y cell line 

For uptake assays using SH-SY5Y cells, cells were detached using the same procedure as for 

passage and counted using Countess Automated Cell Counter. 150,000 cells were plated per well 

in 6 well plates with 2mL DMEM. 24 hours later AMPH was added to half the well at 50µM 

final concentration and given 15 hours to incubate. After AMPH exposure cells were washed 

twice with 2mL of PBS and then fresh DMEM was added. 5 days later uptake experiments were 

performed after insuring the cells had crossed a generation. 
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Uptake assay was carried out similar to the procedure in primary cell culture. Cells were washed 

with 1mL room temperature Krebs-Ringer HEPES (KRH) buffer 3 times. Then cells were 

incubated with [3H]DA in KRH TAP (KRH + tropolone, ascorbic acid, and pargyline). The DA 

was in a 1 part hot ([3H]DA) to 9 parts cold DA mixture, To obtain a final concentration of 1, 10, 

50, 100, and 500nM; each concentration done in triplicate. Additionally in duplicates the 

experiment was performed in wells in which the KRH TAP solution DA was incubated in 

contain the inhibitor GBR 12935 at 10µM for control of non-specific binding and uptake. 

Following the 5-minute incubation with DA, wells were washed with 1mL ice-cold KRH TAP 

buffer 3 times, then lysed with 500µL of 1% Triton-X for 5 minutes. The solution was then 

collected into scintillation vials and 8mL of scintillation cocktail was added before taking to 

count in scintillation counter. 

 

Quantitative reverse transcription PCR (RT –qPCR) 

Embryos were treated with either M9 (control) or 500µM AMPH in M9 using the same 

procedure that was used for behavioral analysis. RNA extraction was done on L1 and L4 stage 

animals. First, animals were collected from plates and washed until no bacteria was present, 

followed by two washes in nuclease free water. After final wash, animals were pelleted and 

supernatant was removed, then 1mL of Trizol reagent was added and tube was shook for 90 

seconds to lyse animals. Following 90 seconds on shaker tubes were vortexed and allowed to sit 

at room temperature for 10 minutes, then moved to 4°C for 10 more minutes. Next 200µL of 

chloroform was added and tubes were shook for 45 seconds followed by 3 minutes at room 

temperature. Tubes were then centrifuged for 12,000rpm for 15 minutes at 4°C. After 

centrifugation the aqueous phase was transferred to new 1.5mL tubes and 500µL of isopropanol 
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was added and mixed by inverting the tubes. Then tubes were incubated 10 minutes at room 

temperature and centrifuged at 12,000rpm for 10 minutes at 4°C. Solution was then discarded 

and pellet was allowed to dry. 1mL of 75% ethanol was added to resuspend the pellet and 

solution was moved to RNeasy column where manufacturer instructions were followed. Column 

was spun at 12,000rpm for 30 seconds at 18°C, and flow through was discarded. 700µL of RW1 

buffer was used to wash column, followed by two washes with 500µL of RPE buffer. Column 

was then moved to a new collection tube and spun for 2 minutes to dry. Lastly the column was 

moved to its final collecting tube and 30µL of nuclease free water was added to center and 

allowed to incubate for 1 minute before final 90 second spin to elute RNA. RNA was run on 

1.5% agarose gel after every collection to insure good quality. SYBR Safe DNA Gel Stain was 

used to image RNA, and NanoDrop 2000c was used to quantify RNA. 

 

Reverse transcriptase reactions were carried out using iScript Reverse Transcription Supermix. 

Reactions were done by manufacturer’s specifications, specifically 100ng of RNA was mixed 

with 4µL of iScript RT Supermix and nuclease free water was used to reach a final volume of 

20µL. Reaction consisted of 3 cycles, priming for 5 minutes at 25°C, reverse transcription for 20 

minutes at 46°C, and lastly RT inactivation for 1 minute at 95°C.  

 

Following reverse transcription reaction a preamplification reaction was carried out. This 

reaction was necessary because without it some genes (specifically DAT) were expressing too 

low to be reliably quantified during quantitative real-time PCR. SsoAdvanced PreAmp Supermix 

was used to carry out the preamplification reaction. Manufacturer instruction were followed the 

reaction, 12.5µL of SsoAdvanced PreAmp Supermix was combined with 6.25µL of a primer 
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pool made from the same primers used later in the quantitative real-time PCR reaction. Lastly 

1.25µL of nuclease free water and 5µL of cDNA product were added. The reaction was carried 

out as follows, 3 minutes at 95°C for polymerase activation, 15 seconds at 95°C for denaturation, 

4 minutes at 58°C for annealing/extension. The denaturation and annealing/extension were 

repeated for 12 cycles. A 10X dilution of the cDNA was done after the reaction. 

 

The next day the real-time quantitative PCR was performed. A master mix was made with 5µL 

of SsoAdvanced Universal SYBR Green Supermix, 1µL of respective primer, and 2µL of 

nuclease free water, per well. 8µL of master mix was added to each well, followed by 2µL of 

10X diluted cDNA product from PreAmp reaction. Reaction procedure was as follows. 95°C for 

3 minutes, followed by 41 cycles of 95°C for 10 seconds and 60°C for 30 seconds. Lastly 98°C 

for 10 seconds and 65°C for 31 seconds followed by a melt curve from 65°C to 95°C. Data was 

analyzed using the 2-ΔΔCt method. For this method the average Ct value of actin (control) for each 

sample was calculated. Then each Ct value for gene of interest was subtracted by the actin Ct 

value average. The product of that subtraction was then subtracted by the average of the 

“calibrator” (F0 generation M9 sample). Lastly that value named target-calibrator was taken as 2-

x where X represents the target-calibrator value. The final value represents fold change with 

respect to the “calibrator” in my experiments being the F0 generation M9 sample. 

 

Western blots 

Proteins were prepared from L4 stage animals following the same control vs. AMPH treatment 

protocol used in behavioral testing. Once animals were L4 stage they were collected into 15mL 

tubes and washed until cleaned of bacteria. Animals were then transferred to 1.5mL tubes and 
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washed twice with TNET buffer. Following washes with TNET animals were pelleted and put in 

TNET buffer with protease inhibitors, and then tubes were placed at -80°C for 10 minutes. Tubes 

were removed from -80°C and put on ice. Sonication of the samples was then carried out using a 

sonication wand in 10-second intervals 3 times. The wand was washed between each use and 

tubes were placed back on ice to prevent heating. After sonication was complete the tubes were 

centrifuged at 12,000rpm for 15 minutes at 4°C. Supernatant was collected after centrifugation 

into fresh 1.5mL tubes and placed at -80°C for storage. 

 

Protein concentrations were determined by Bradford assay using NanoDrop 2000c with cuvettes. 

BSA in TNET was used to create a standard curve; each sample was then run to determine 

concentrations. 

 

The SDS-PAGE procedure was run on gels with a resolving gel of 12% polyacrylamide and a 

5% polyacrylamide stacking gel. 20µg of protein was run for each sample, and samples were 

mixed with standard loading buffer consisting of 5% 2-mercaptoethanol and boiled at 95°C for 5 

minutes. Gels were run in 1X SDS page running gels at 140 volts for approximately 2 hours. The 

gels were then transferred to PVDF membranes, in 1X transfer buffer. Transfer was performed at 

300mA for 1 hour.  

 

Following transfer membranes were blocked using a 3% BSA in TBST solution for 1 hour. After 

blocking the membrane primary antibody was applied in a 1:1000 ratio and membrane was 

allowed to rock overnight at 4°C. The next morning primary antibody was removed and the 

membrane was moved into secondary antibody at 1:5000 ratio in TBST + 5% skim milk for 1 
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hour. 6 washes were then performed for 10 minutes each using TBST. Following the last wash 

membranes were treated with 1.5mL of Immun-Star AP Chemiluminescent Protein Detection 

Systems for 2 minutes. Membranes were then imaged on Omega Lum G Imaging System, and 

Photoshop was used for quantifying. 

 

Materials used 

Reagents 

1X Transfer buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, 20% methanol). SDS-PAGE 10X 

gel running buffer (248 mM Tris, 1.92 M glycine, 1% SDS); Phosphate Buffer Saline (1.37 M 

Sodium chloride, 2.7 mM Potassium chloride, 100mM disodium phosphate, 18mM potassium di-

hydrogen phosphate, pH 7.4). Krebs-Ringer HEPES buffer (116 mM Sodium chloride, 4mM 

Potassium chloride, 1mM Magnesium chloride, 1.8 mM Calcium chloride, 25 mM Glucose, 

10mM Hepes, pH 7.4).  

 

Glucose and AMPH were from Sigma Aldrich (St. Louis, MO); Sucrose, Dimethyl Sulfoxide 

(DMSO), HEPES, EDTA, Protease Inhibitor Tablets, Tween-20, Triton X- 100, BSA, Sodium 

Phosphate, Potassium Chloride, Sodium Chloride, Disodium Phosphate, Calcium Chloride, 

Potassium Dihydrogen Phosphate, SDS, Methanol, Glycine, β-Mercaptoethanol, Tris-HCl, and 

PVDF membranes were from Fisher Scientific (Waltham, MA); Trypsin was from Corning 

Cellgro (Manassas, VA); FBS was from Atlanta Biologicals (Atlanta, GA); DMEM and 

Penicillin/Streptomycin were from Thermo Fisher Scientific (Waltham, MA);  Alkaline 

phosphatase substrate (ImmunStar) was from Bio-Rad (Hercules, CA).  
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Equipment 

Disintegration per minute (DPM) and counts per minute (CPM) of [3H] dopamine were 

determined using LS 6500 multi-purpose scintillation counter from Beckman. Weight measuring 

of chemical reagents was done on analytical balance from Ohaus. SH-SY5Y cells were 

maintained in a Nuair 2700-30 water-jacketed CO2 incubator and splitting, plating and treatment 

of cells was carried out in Nuair class II type A/B3 class II biological safety cabinet laminar flow 

hood. Centrifugation was done using an Eppendorf micro centrifuge 5424R and Eppendorf 

5810R centrifuge. SDS-PAGE and protein transfer to PVDF membranes during western blots 

was completed using Mini-Protean tetra electrophoresis apparatus and Mini trans-blot 

electrophoretic transfer cell from Bio-Rad. Power supply for SDS-PAGE and protein transfer 

was Bio-Rad powerpac 300. Power supply for RNA gels was Bio-RAD powerpac 3000. Omega 

LumTM G Imaging system was used for imaging PVDF membranes. Blots were quantified using 

Adobe Photoshop software. Graphpad Prism software was used for all statistical analyses.  

 

RESULTS 

Embryonic exposure to AMPH in C. elegans leads to increased behavioral response to AMPH in 

adult animals and their progeny 

Whereas AMPH is a highly prescribed and abused drug, very little research has been done to 

investigate the long-term effects of the drug as well as any trans-generational effects. C. elegans 

have been previously used to investigate the molecular effects of AMPH on the dopaminergic 

system due to their unique behavioral response but no studies have investigated the long-term 

effect of the drug on the animals. 
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Here C. elegans were used to generate a model of both the long-term and trans-generational 

effects of embryonic AMPH exposure (Figure- 5). C. elegans embryos were gathered and were 

exposed to the M9 solution alone (control) or M9 + 500µM AMPH for 15 hours while rocking at 

room temperature. Following drug exposure all animals were washed and plated on agar plates 

seeded with E. coli, this generation was labeled F0. Three days later, when animals reached 

young adult stage the behavioral test known as swimming induced paralysis (SWIP) was 

conducted to investigate their response to AMPH. We found that the animals exposed to AMPH 

during embryogenesis had a greater response when challenged with 500µM of AMPH later as 

young adults (Figure- 6A). 

 

Some plates of F0 animals were not used for behavioral testing and were allowed to grow to full 

adulthood when they contained embryos. The embryos of these animals were collected to create 

the F1 generation using the same procedure as when collecting for AMPH exposure, with the 

exception that no animals were treated in the F1 generation. All embryos were immediately 

plated and allowed to grow to the L4 stage. Remarkably even though animals in the F1 

generation had no previous contact with AMPH, when challenged with AMPH at the L4 stage 

the progeny of animals exposed to AMPH as embryos showed higher response to the drug during 

the SWIP test (Figure- 6B). To our knowledge this is the first demonstration of a trans-

generational effect of AMPH. 
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Figure 5: Experimental paradigm for AMPH exposure and SWIP behavioral test 
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Figure 6: AMPH exposure during embryogenesis leads to increased AMPH induced SWIP both 

in the generation of exposure as well as their progeny. Animals exposed to AMPH as embryos 

(red squares) displayed higher SWIP response to AMPH with respect to animals treated with 

control solution (blue circles) (A). Additionally in the F1 generation (B) the progeny of animals 

exposed to AMPH (red squares) displayed higher SWIP response to AMPH, with respect to the 

progeny of animals treated with control solution (blue circles). No difference in SWIP was 

observed between M9 and AMPH exposed animals that were not challenged with AMPH (light 

grey triangles and dark grey inverted triangles, respectively). Statistical analysis was two-way 

ANOVA with Bonferroni’s Multiple Comparison test, P<0.05, using Graphpad Prism software 

version 5.04. 
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Embryonic AMPH exposure in F0 generation leads to reduced DA uptake in primary cell culture 

of F1 generation 

Previous studies have characterized the mechanisms causing the SWIP behavior in C. elegans. 

These studies have found that an increase in DA within the synaptic cleft leads to paralysis [34], 

and a mutation that alters the dopamine transporter, D2-like dopamine receptors, or synthesis and 

packaging of DA, will alter AMPH induced paralysis in the animals [33]. 

 

Because previous studies have identified the dopamine transporter as a key player in the SWIP 

behavior [33, 34, 36], and reverse transporter through the dopamine transporter is how AMPH 

causes its effects, alterations in the ability of the dopamine transporter to uptake dopamine was 

explored as a potential mechanism for the altered behavioral response to AMPH. To accomplish 

this F0 animals were treated with either control (M9) or AMPH using the same procedure as in 

behavioral testing, except all animals were allowed to grow to adults containing embryos (F1 

generation). Embryos were collected to generate a primary cell culture containing all the cells 

that would have continued on to create the F1 generation animals, including the dopaminergic 

neurons. After 4 days, when the DA neurons exhibit axon and dendrite processes, DA uptake 

assays were done using radiolabeled [3H]DA. [3H]DA was applied to the cell cultures for 5 

minutes, after which cells were washed and lysed to measure [3H]DA content that was 

transported into the cells. This assay allows for the investigation of any variation in the F1 

animals ability to uptake DA through the dopamine transporter, either through changes in 

transporter function or total number of transporter. Interestingly, the cell culture that was made 

from the progeny of F0 generation animals exposed to AMPH as embryos showed a decreased 

DA uptake of 45.7% with respect to control cultures (Figure 7). This assay indicates that the 
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previous AMPH exposure in the F0 lead to the F1 generation having a reduced ability to uptake 

DA. However, the assay does not indicate whether there are fewer transporters at the surface to 

uptake DA, or if the transporter that is present has a reduced ability to uptake DA. This does 

however give a potential mechanism by which the progeny of animals treated with AMPH as 

embryos show an increased SWIP response. 
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Figure 7: Embryonic AMPH exposure leads to reduced DA uptake in primary cell cultures of F1. 

DA uptake in primary cell cultures made from embryos of the F1 generation reveal a reduced 

DA uptake (45.7%) in the cultures made from the progeny of animals exposed to AMPH as 

embryos (AMPH) with respect to the progeny of animals exposed to control solution (M9). 

10µM imipramine was used to calculate only specific uptake through DAT. Statistical analysis 

was students t-test, p<0.05, using Graphpad prism software version 5.04. 
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DA Efflux is not altered in primary culture following embryonic AMPH exposure 

AMPH causes the increase in DA within the synaptic cleft by reverse transport of the dopamine 

transporter. Because of the reduced uptake ability of F1 cultures following AMPH exposure of 

the F0 generation, DA efflux from AMPH treatment was investigated. Here primary cultures 

were made using the same procedure as with the uptake assay, and efflux assays were carried out 

by incubating the cells with 5nM radiolabeled [3H]DA 30 minutes. To insure there was no 

difference in [3H] preloading between groups separate dishes were washed and lysed 

immediately after loading. All other samples were washed out to remove extracellular [3H]DA 

and 10µM AMPH was applied for 1, 5, or 10 minutes. Following AMPH incubation, 

extracellular solution was collected and measured for [3H]DA content. Cell dishes were then 

washed and lysed to check the amount of [3H]DA still within the cells. 

 

The results of the efflux assay demonstrated that there was no difference in efflux caused by 

AMPH after 1, 5, or 10 minutes of AMPH treatment (Figures- 8A, 8B, 8C, respectively). 

Additionally after 30 minutes of preincubation with [3H]DA there was no difference in the 

amount of [3H]DA present in the cell before AMPH treatment (Figure- 8D). This was indicated 

both by having no difference in loading checked after the 30 minute preincubation (Figure- 8D). 
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Figure 8: Embryonic AMPH exposure does not alter AMPH induced DA efflux. Efflux assays 

using primary cell cultures made from the F1 generation progeny of animals either exposed to 

AMPH (AMPH) as embryos, or control solution (M9) as embryos show there is no difference in 

efflux after (A) 1, (B) 5, or (C) 10 minutes of AMPH treatment. Additionally at none of the 

measured time points was there any change in lysate DA concentration, suggesting no difference 

in total DA loaded before AMPH treatment. To further test DA loaded, DA was also measured 

following the 30-minute pre-loading period (D). No difference was found between groups. 
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AMPH exposure reduces uptake in SH-SY5Y cells  

Results of the uptake assay in primary cell culture showed that there was a reduced ability of F1 

animals to uptake DA. This could be attributed to either a reduced function of the dopamine 

transporter or a reduced amount of the protein, or both. To further investigate these two 

possibilities, uptake assays were carried out using a concentration response curve. Unfortunately 

because C. elegans primary cell cultures required a large number of cells to produce a strong 

signal in [3H]DA uptake assays it has the restriction of providing a limited number of cell dishes 

to work with, which does not allow for a concentration response assay to be carried out. To 

circumvent this problem SH-SY5Y cells were used for the uptake. These cells are a human 

neuroblastoma cell line which has numerous characteristics found in dopaminergic cells. They 

have been reported to express tyrosine hydroxylase [50], dopamine-beta-hydroxylase [49], and 

most importantly the dopamine transporter [48-50]. 

 

150,000 SH-SY5Y cells were plated in 6 well plates and were exposed to 50µM AMPH for 15 

hours, similar to that done in experiments with C. elegans. After AMPH exposure cells were 

washed and allowed to grow for 5 days. Uptake assays were then carried out using a 

concentration response curve of [3H]DA. Additionally, in some wells the assay was performed in 

the presence of 10µM of GBR 12935, a compound that blocks DA uptake through DAT. These 

wells were used to determine non-specific uptake, and was subtracted from total DA uptake.  

 

The results from the concentration response curve showed that previous exposure to AMPH 

leads to a decreased ability to uptake DA (Figure 9) and is similar to the effect seen in primary 

cell culture (Figure 7). Michaelis-Menten kinetics were calculated from the concentration 
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response curve and indicated that previous exposure to AMPH leads to a decrease in Vmax 

(0.446 pM/min/1000cells ± 0.0328 for control, and 0.2596 pM/min/1000cells ± 0.0280 for 

AMPH), with no change to Km (10.23nM ± 4.261 for control, and 14.37nM ± 7.933 for AMPH). 

The Michaelis constant (Km) is the concentration at which the reaction is at half Vmax, and a 

change in this value would indicate an altered apparent affinity of the transporter, however no 

change was observed indicating that there was no alteration in transporter function. Vmax 

represents the maximum rate at which the transporter can move substrate, which was decreased 

by AMPH exposure. These results suggest that in the SH-SY5Y cells, like in C. elegans 

embryonic cells, the previous AMPH exposure lead to a decreased number of DAT 5 days after 

AMPH treatment was terminated. 

 

The reported Km values for dopamine transport by DAT range from 460nM [51] to 2540nM 

[52]. The Km values in our experiment for dopamine uptake in SH-SY5Y cells (10.23nM for 

control, 14.37nM) for AMPH is lower than what has been previously reported. However, the SH-

SY5Y is a neuronally derived cell line and, therefore, is likely to express the appropriate DAT-

interacting proteins and more closely mirror the regulatory events that occur in dopaminergic 

neurons. These components may be absent in other cell lines. SH-SY5Y cells have also been 

shown to have characteristics of noradrenergic cells [53], such as norepinephrine uptake [54], 

and our lab has previously shown SH-SY5Y cells transport dopamine through the norepinephrine 

transporter (NET) [55]. Importantly, the concentration of inhibitor used to determine specific 

uptake (GBR 12935 at 10µM) was sufficient to inhibit both the dopamine (Ki = 21.5 nM) and 

norepinephrine transporters (Ki = 225 nM) [56]. Therefore, the concentration of GBR 12935 

used in our SH-SY5Y experiments do not allow for distinction between transport of dopamine by 
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DAT or NET, thus, our observed Km value likely represents mixed contributions of dopamine 

uptake by both the DAT and NET transporters. 
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Figure 9: Previous AMPH exposure leads to a reduction in Vmax in SH-SY5Y cells line. Uptake 

assay with concentration response curve of DA in SH-SY5Y cell line revealed that previous 

AMPH exposure leads to decreased DA uptake. Michaelis-Menten kinetics shows a reduced 

Vmax (0.446 pM/min/1000cells ± 0.0328 for control, and 0.2596 pM/min/1000cells ± 0.0280 for 

AMPH) following AMPH exposure, and no change in Km (10.23nM ± 4.261 for control, and 

14.37nM ± 7.933 for AMPH). 10µM of GBR 12935 was used to calculate specific DA uptake 

through DAT. Michaelis-Menten kinetics were calculated using Graphpad Prism software 

version 5.04.  
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Embryonic AMPH exposure leads to decrease DAT RNA in F1 generation 

Results from the uptake assays pointed to the hypothesis that chronic AMPH exposure was 

leading to a decreased expression of DAT. There are no commercial antibodies currently 

available that target C. elegans DAT, thus measuring the protein itself would be very difficult. 

However measuring the RNA amount of DAT is very practical using quantitative real-time PCR, 

and could give us a greater insight into alterations in dat expression, with the caveat that RNA 

expression changes do not directly correlate to changes in protein levels. C. elegans embryos 

were exposed to AMPH from F0 and F1 generations using the same protocol for the SWIP 

behavioral test. However, when animals reached L4 stage, RNA was collected via Trizol reagent 

and processed using RNeasy Mini Kit. iScript reverse transcriptase was used to convert RNA to 

cDNA. After several attempts of RT-qPCR it was discovered that the DAT gene was expressing 

at too low of a level to be considered reliable when measuring. We hypothesized that the low 

DAT readings were due to the fact that total RNA from whole animal was collected and DAT is 

expressed only in 8-dopaminergic neurons out of 1031 total cells. To overcome this problem we 

performed a PCR reaction after the reverse transcriptase reaction using SsoAdvanced PreAmp 

Supermix. With this reaction the same primers were used as in the quantitative PCR, thus the 

genes of interest were specifically amplified to allow a greater signal during the quantitative 

PCR, allowing for more reliable Ct values. Quantitative PCR was carried out after the 

preamplification reaction and results were calculated using the 2-ΔΔCt method, with the F0 M9 

sample being used as the control sample. 

 

The quantitative PCR demonstrated a decrease in dat-1 expression (32.6%) in the progeny of 

animals that were exposed to AMPH during embryogenesis (F1 AMPH) with respect to the 
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progeny of control animals (F1 M9) (Figure- 10). Surprisingly no difference was seen in the 

expression of dat-1 in the F0 generation.  

  



	
   37	
  

M9 AMPH M9 AMPH
0.0

0.5

1.0

1.5

2.0

F0 F1

*

da
t-

1 
re

la
tiv

e 
ge

ne
 e

xp
re

ss
io

n
(fo

ld
 c

ha
ng

e 
of

 r
el

at
iv

e 
M

9 
L4

)

 

Figure 10: A reduction in dat-1 RNA is seen in the F1 generation following F0 AMPH exposure. 

dat-1 expression measured via quantitative reverse transcription PCR (RT –qPCR). F1 

generation had a significant reduction in dat-1 expression in AMPH group with respect to M9 

group. No difference was measured between M9 and AMPH groups within the F0 generation. 

One-way ANOVA was used for statistical analysis with Bonferroni’s Multiple Comparison as 

post-test, p<0.05, using Graphpad Prism software version 5.04. 
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Western blots reveal a reduced level of histone 3 lysine 4 trimethylation in the F1 generation 

The behavioral experiments along with uptake experiments demonstrate that AMPH exposure 

has a long-term and transgenerational effect. This means the animals are retaining a cellular 

memory of the previous exposure and this is in some way being transmitted to the next 

generation of animals. Epigenetic mechanisms are thought to be the way through which cells can 

hold a long-term cellular memory of previous exposure to drugs [23, 57, 58]. Moreover, it is 

believed that epigenetics is responsible for drug exposure having an effect across multiple 

generations [59, 60]. A number of epigenetic mechanisms could account for this. Histone 

modifications were chosen for investigating in these experiments, specifically histone 

methylation. Histone methylation was investigated because of previous implications in both 

transgenerational inheritance [61] and AMPH effects [23]. 

 

Animals were exposed to AMPH using the same procedure as for behavioral experiments. 

Following AMPH exposure animals were allowed to grow to the L4 stage, the same stage that 

behavioral testing was carried out, and that RNA samples were collected. At L4 stage whole 

animals were lysed and protein was collected. Initially, histone modification from whole animal 

protein lysates were analyzed by western blot for a number of histone markers, which were 

previously shown to be changed following treatment, and/or to be involved in transgenerational 

inheritance [61]. 

 

Western blot experiments revealed a significant decrease in histone 3 lysine 4 trimethylation 

(H3K4me3) (6.80%) (Figure- 11A) and histone 3 lysine 9 dimethylation (H3K9me2) (18.74%) 

(Figure 11B) in the AMPH group of F1 generation with respect to M9 control. No change was 
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seen in H3K4me3 or H3K9me2 in the F0 generation. Additionally the histone methylation 

markers H3K9me3 (Figure- 11C), H3K27me3 (Figure 11D), and H3K36me2 (Figure 11E) 

showed no difference in either F0 or F1 generation. 
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Figure 11: Western blots reveal a reduction in H3K4me3 and H3K9me2 in the F1 generation. 

Western blots of whole animal protein from L4 animals following AMPH exposure in the F0 

generation and their progeny (F1 generation). H3K4me3 was reduced in F1 AMPH with respect 

to F1 M9 (A), additionally H3K9me2 was reduced in F1 AMPH with respect to F1 M9 and 

increase in F1 M9 with respect to F0 M9 (B). No change was observed in H3K9me3 (C), 

H3K27me3 (D), or H3K36me2 (E). Statistical analysis used was one-way ANOVA and 

Bonferroni’s Multiple Comparison test, p<0.05, using Graphpad Prism software version 5.04. 
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AMPH exposure alters the levels of enzymes responsible for histone methylation 

There are a number of enzymes that are responsible for either methylating or demethylating 

histones. If the levels of these modifying enzymes are altered then the histone methylation status 

will be changed, thus leading to either increased or decreased gene expression. In addition 

changes in gene expression, which were correlated with alterations in histone methylation, have 

been observed even after withdrawal of drugs of abuse [57]. Because a change in H3K4me3 was 

observed (Figure- 11A) quantitative reverse transcription PCR (RT –qPCR) was used to 

investigate the levels of enzymes responsible for methylation (set-16) of H3K4me2 and 

demethylation (rbr-2) of H3K4me3. AMPH exposure was done in the same manner as all other 

experiments, and RNA was extracted at L4 stage, same as in behavioral experiments. RNA was 

then converted to cDNA using reverse transcriptase reaction, followed by quantitative PCR to 

measure expression levels of the two enzymes of interest. 

 

Quantitative PCR showed that both set-16 (Figure- 12A) and rbr-2 enzymes (Figure 12B) had 

reduced expression in the progeny of AMPH exposed animals (F1 AMPH) (54.1% and 56.9% 

respectively) with respect to the progeny of control animals (F1 M9). Neither set-16 nor rbr-2 

showed any expression changes in the F0 generation. 
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Figure 12: A reduction in RNA levels is observed in F1 of both the methyltransferase set-16 and 

demethylase rbr-2 enzymes. RNA concentrations of histone modifying enzymes following 

control or 500µM AMPH exposure in animals from F0 generation. In F1 generation set-16 was 

decreased in expression in F1 AMPH with respect to F1 M9 (A). Additionally rbr-2 expression 

was decreased in F1 AMPH with respect to F1 M9 (B). Statistical analysis was one-way 

ANOVA with Bonferroni’s Multiple Comparison test, p<0.05, using Graphpad Prism software 

version 5.04. 
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DISCUSSION 

While numerous studies have focused on the molecular mechanisms of AMPH, there is a large 

gap in our knowledge of the long-term effects of the drug. Moreover even less research has been 

done to investigate any transgenerational effects of AMPH exposure. This is alarming as AMPH 

is widely prescribed for the treatment of ADHD, narcolepsy, and obesity. Moreover, the 

treatment regimen of AMPH often requires patients to take the drug for prolonged periods of 

time. 

 

While AMPH can be successfully used to treat many diseases, it also carries with it the potential 

for abuse. This abuse can stem from either prolonged use to treat disease or from illicit 

recreational use. There are a number of reasons why people use AMPH recreationally. These 

include as an appetite suppressant to help in losing weight, for the stimulant properties of AMPH 

to combat fatigue, or as an aid in studying or tasks requiring an increase focus. The last of these 

reasons is a major contributor to teenagers or young adults abusing AMPH. 

 

The initial focus of these studies was to investigate if lasting effects of AMPH could be observed 

and modeled in C. elegans behavior. Further, we asked whether any behavioral alterations would 

be transmitted to future generations. We did in fact find that if animals were exposed to 500µM 

of AMPH for 15 hours during embryogenesis, then washed of drug and allowed to grow to the 

L4 stage, they displayed a increased sensitivity to AMPH at this later stage. Specifically, the 

increased sensitivity was in the SWIP test. This behavioral test, in which animals are placed in 

fluid and paralysis is measured, has been well characterized, and the paralysis displayed can be 

attributed to increased DA levels within the synapse. For these experiments animals were 
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challenged with 500µM of AMPH in the SWIP test. Animals with previous exposure to AMPH 

had increased paralysis, thus these animals were either 1) releasing DA at a much faster rate,  2) 

were unable to clear DA from the synapse as fast, or 3) had an alteration in D2-like receptors. 

Using additional test cohorts that were not tested in the SWIP test we collected animals for the 

next generation (F1), and no exposure was conducted with these animals. They were simply 

plated and allowed to grow to the L4 stage. Once they reached L4 stage, the F1 generation was 

also challenged with 500µM of AMPH in the SWIP test. Surprisingly, the progeny of animals 

that were exposed to AMPH as embryos also displayed a higher SWIP response when challenged 

with AMPH, with respect to the progeny of control animals. This result suggests that the F1 

generation progeny of AMPH exposed animals were having a larger buildup of DA in the 

synapse with respect to control animals, or some alteration to the D2-like receptors. These 

experiments are the first to model an altered behavioral response in a transgenerational manner 

following AMPH exposure. 

 

Because of previous characterization of the SWIP response [33, 34], we can hypothesize that 

dopaminergic transmission is altered by the AMPH exposure in F0 animals. It is well known that 

AMPH exerts its actions through the DAT, thus to begin investigating potential mechanisms for 

the behavioral alteration we did uptake assays to explore if there was any change in the uptake 

ability of DAT. To examine this, F0 animals were exposed to 500µM of AMPH for 15 hours in 

exactly the same way as for the behavioral assay. The F1 generation animals however were 

isolated as embryos and used to create a primary cell culture. The assay revealed that cultures 

prepared from the progeny of animals exposed to AMPH had reduced [3H]DA uptake with 

respect to control cultures. This result provides a potential mechanism by which the increase in 



	
   45	
  

SWIP paralysis is observed. As mentioned above, AMPH exposure leads to increased levels of 

DA in the synapse, and if the neurons are not as capable of clearing the DA out of the synapse 

through DAT, then the animals will display increased paralysis. The uptake assay however does 

not reveal exactly why there is reduced uptake of DA, as this could be attributed to either a 

reduced amount of DAT total protein, or the number of DAT proteins present at the surface of 

neurons, or it could be caused by unaltered amount of DAT protein, but with reduced function. 

Further experiments were needed to reveal why the AMPH exposure lead to reduced uptake. 

 

AMPH is well known to cause release of DA into the synapse by utilizing reverse transport of 

DA through DAT. Because of this, we hypothesized that AMPH exposure could alter the efflux 

rate of DA into the synapse in the presence of AMPH, which would then change paralysis rates. 

The same F0 treatment paradigm and F1 primary cell culture protocol was followed as in the 

uptake assays. Therefore efflux assays were performed, but they revealed no difference in DA 

efflux between the 2 groups (control and AMPH exposed animals). Lysates of the cells following 

release assays were also collected and measured for [3H]DA content. No difference was seen in 

lysate [3H]DA concentration leading us to believe that there was no difference in the preloading 

of [3H]DA after 30 minutes. Any difference in preloading could have an effect on the efflux 

assay but our method suggested that this was not the case. This was surprising as after 5 minutes 

of the uptake assays, we see a reduced uptake, but after 30 minutes of preloading of [3H]DA we 

observe no difference. Our current hypothesis is that with the extended time cells have during 

preloading, an equilibrium is reached, and thus both groups end up with similar intracellular 

concentrations of [3H]DA. 
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The uptake assay in primary cell culture showed that AMPH exposure in embryos of F0 

generation was having an effect on DA uptake in F1 generation. However, as mentioned it does 

not indicate if this was due to reduced DAT expression or reduced DAT function. One way to 

further investigate the alterations in uptake is to perform concentration response experiments 

using different concentrations of DA. Thus, we used the SH-SY5Y human neuroblastoma cell 

line, which endogenously expresses DAT [48-50]. The cells were exposed to 50µM AMPH for 

15 hours and then washed. Cells were allowed to grow and cross a generation, and 5 days later, 

uptake assays were performed using concentrations of [3H]DA between 1 and 500 nM. The 

inhibitor GBR 12935 (10µM) was used in some wells to inhibit uptake through DAT, allowing 

for the subtraction of nonspecific background. Similar to the results shown in experiments with 

C. elegans, a decrease in uptake was observed following AMPH exposure. Additionally, when 

Michaelis-Menten kinetics were calculated from the concentration response curve, a decrease in 

Vmax was observed in cells previously exposed to AMPH, with no change to Km. The results of 

this would suggest a decrease in surface DAT but no change in the function of DAT. 

 

To further investigate if the level of DAT was changing following AMPH exposure, quantitative 

real-time PCR was carried out on animals at the same stage that behavior was tested (L4). The 

PCR revealed that RNA levels for DAT were decreased in the progeny of animals exposed to 

AMPH, with respect to control animals. Surprisingly no change was observed in samples from 

F0 generation. These results agree with results seen in uptake assays in both the C. elegans 

primary cell culture as well as the human SH-SY5Y line, and could explain a mechanism by 

which we see the increased sensitivity in behavioral testing in the F1 generation. That 

mechanism being that AMPH exposure decreases the dopaminergic neurons ability to reuptake 
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DA, thus when AMPH causes increased DA within the synapse the animals are not able to clear 

the DA as efficiently. This increased synaptic DA in turn explains the increased paralysis. The 

lack of change in RNA in the F0 generation was unexpected, as the increased behavioral 

sensitivity is seen in both F0 and F1. To further investigate this uptake ability of the F0 

generation would need to be explored. Additionally the RNA levels of DAT could remain 

unchanged and still have varied levels of DAT at the surface of neurons as the protein is 

trafficked between the surface and intracellular storage and AMPH has been previously shown to 

effect this cycle [62, 63]. 

 

These experiments have shown that embryonic exposure to AMPH is leading to a 

transgenerational inheritance in increased behavioral response to AMPH, which uptake assays 

and qPCR experiments suggest is due to reduced DAT expression in F1 generation. Our 

hypothesis was that epigenetic changes could be responsible for the inherited changes, and we 

therefore began by looking at histone methylation as a potential mechanism. Five histone 

methylation markers were investigated using western blots. The 5 chosen histone modifications, 

H3K4me3, H3K9me2 and me3, H3K27me3, and H3K36me2 were based on previous research in 

epigenetics of drug abuse and previous research in transgenerational inheritance [57, 61]. 

Western blots revealed a significant decrease in histone 3 lysine 4 trimethylation (H3K4me3) in 

the progeny of AMPH- exposed animals with respect to the progeny of control animals. A 

significant decrease was also observed in histone 3 lysine 9 dimethylation (H3K9me2) also in F1 

AMPH animals with respect to F1 M9 animals, and additionally a significant increase was seen 

in F1 M9 animals with respect to F0 M9 animals. These results show that even when looking at 
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whole animal protein lysates, the levels of epigenetic modifications were altered by AMPH 

exposure. 

 

Because changes in H3K4me3 levels were observed, quantitative real-time PCR was used to 

investigate if RNA levels of the enzymes responsible for methylating and demethylating 

H3K4me3 were varied. Our qPCR experiments revealed that both set-16, the enzyme responsible 

for trimethylation of H3K4, and rbr-2, the enzyme responsible for removing the trimethylation 

from H3K4, had reduced expression with in the progeny of AMPH exposed animals (F1 AMPH) 

with respect to the progeny of control animals (F1 M9). These results suggest that remodeling is 

occurring at the epigenetic level. However we cannot tell from these experiments in which cell 

types the remodeling is occurring. Additionally, to identify where in the genome histone 

methylation is altered chromatin immunoprecipitation experiments need to be performed.  

 

Conclusion 

AMPH is a psychostimulant that is both highly prescribed and highly abused, while the long-

term effect of this is not well understood. Additionally studies in other drugs of abuse are 

revealing that these substances may have effects that last across generations. Here we developed 

a model to study the long-term effects of AMPH and we found that chronic AMPH exposure 

during embryogenesis causes behavioral and functional change in adult animals and progeny. 

Experiments to reveal the mechanism by which AMPH was causing altered behavioral response 

to AMPH discovered that AMPH exposure during embryogenesis leads to reduced DA uptake 

ability within primary cell cultures created from the next generation. Further exploration 

revealed that reduced DAT expression was responsible for the reduced DA uptake, unveiling a 
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mechanism by which AMPH was having the transgenerational effect on behavior. Furthermore 

AMPH exposure was shown to alter histone methylation by acting through specific enzymes. 

These experiments highlight the importance of continued research on AMPH and its effects on 

dopaminergic transmission. Additionally consideration of these effects should be taken into 

account when prescribing AMPH, as this drug is currently the first line of treatment for ADHD. 
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