
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

January 2017 

Presentation Effects On Matrix Reasoning Scores Presentation Effects On Matrix Reasoning Scores 

Katharine Elizabeth Lindberg 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Lindberg, Katharine Elizabeth, "Presentation Effects On Matrix Reasoning Scores" (2017). Theses and 
Dissertations. 2125. 
https://commons.und.edu/theses/2125 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator 
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/2125
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2125?utm_source=commons.und.edu%2Ftheses%2F2125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


 
 
 
 

PRESENTATION EFFECTS ON MATRIX REASONING SCORES	
 
 

by 
 
 
 

Katharine E. Lindberg 
Bachelor of Arts, Winthrop University, 2013	

 
 
 

A Thesis 
 

Submitted to the Graduate Faculty 
 

of the  
 

University of North Dakota 
 

in partial fulfillment of the requirements 
 
 
 

for the degree of  
 

Master of Arts 
 
 

Grand Forks, North Dakota 
 

May 
2017 

 
 
 
 
 

 
 
 
 





 iii 

 

 

PERMISSION 

 

Title    Presentation Effects on Matrix Reasoning Scores 

Department  Psychology 

Degree  Master of Arts 

 

In presenting this thesis in partial fulfillment of the requirements for a graduate 
degree from the University of North Dakota, I agree that the library of this University 
shall make it freely available for inspection. I further agree that permission for extensive 
copying for scholarly purposes may be granted by the professor who supervised my 
thesis work or, in his absence, by the Chairperson of the department or the dean of the 
School of Graduate Studies. It is understood that any copying or publication or other use 
of this thesis or part thereof for financial gain shall not be allowed without my written 
permission. It is also understood that due recognition shall be given to me and to the 
University of North Dakota in any scholarly use which may be made of any material in 
my thesis. 

 
 
 
 

Katharine E. Lindberg 
05/04/2017 

 
 
 
 
 
 
 
 
 
 

 



 iv 

 
 
 
 

TABLE OF CONTENTS 
 

LIST OF FIGURES ..........................................................................................................  vi 

LIST OF TABLES ...........................................................................................................  vii 

ACKNOWLEDGMENTS ..............................................................................................  viii 

ABSTRACT ......................................................................................................................  ix 

CHAPTER  

I.         INTRODUCTION ....................................................................................... 1 

Inductive reasoning ............................................................................ 4 

            Matrix tasks  ............................................................................6 

            Working memory/goal management ................................... 11 

Purpose of the present study ............................................................ 14 

II. METHOD ................................................................................................. 18 

Participants ....................................................................................... 18 

Materials .......................................................................................... 18 

Demographics ...................................................................... 18 

Symbol series task ................................................................ 19 

Experimental inductive matrix reasoning task ..................... 19 

III. RESULTS ................................................................................................. 23 

IV. DISCUSSION ........................................................................................... 29 

Visual salience and efficiency ......................................................... 30 



 v 

Limitations and future directions ..................................................... 33 

APPENDICES ...................................................................................................... 37 

REFERENCES ..................................................................................................... 58 

 

 

 

 

 

  



 vi 

 

 

LIST OF FIGURES 

Figure    Page 

1. Simple Matrix Completion Task ................................................................................... 8 

2. Matrices with Identical Rules Applied to Different Features ..................................... 16 

3. SAME by SAME Rule Matrices Applied to Different Features ................................. 24 

  



 vii 

 

 

LIST OF TABLES 

Table  Page 

1. Possible Combinations of Rules Applied to a Single Feature Across Row                

and Column of the EMIRT ......................................................................................... 20 

2. EMIRT Presentation Sets ............................................................................................ 21 

3. Presentation Group Differences on Self-Reported Psychological and Health 

Demographic Items ..................................................................................................... 25 

4. Post-hoc Pairwise Comparisons Between Presentation Groups ................................. 28 

  



 viii 

 

 

ACKNOWLEDGMENTS 

I wish to express my profound gratitude to my advisor and committee 

chairperson, Dr. Joseph Miller. The support and guidance you offered throughout not 

only this project, but also during my time in this graduate program has been generous and 

truly invaluable. I am thankful that I have had the opportunity to work with you on this 

and other projects, and look forward to our continued collaboration. I would like to offer 

my appreciation to all the members of my advisory committee, Dr. Thomas Petros and 

Dr. F. Richard Ferraro, whose support and suggestions have aided me in this endeavor. 

I would like to thank my cohort, with whom I have shared many ups and downs 

over the past years. Thanks to Stephanie Henley. Your support and knowledge with 

statistics and SPSS aided me tremendously in this project, as well as, the mental support 

you have always given me. Thanks to Danielle Beyer. We have had many late nights 

together studying and having fun, without our time together Grand Forks would have 

never become home. Thanks to Ali Thiel. Your positive energy and focus helped me to 

keep pushing forward. You lovely ladies helped to make this project and my time in this 

program successful. Thank you!  

 

 

 

 



 

 

 

 

 

 

 

 
 

To my mom,  
it is hard to celebrate this milestone without you, but 

the strength you instilled in me and your unwavering support  
enabled me to succeed. Thank you and love you. 

 
 

To my family and friends, 
I could not have been successful through the ups  

and downs that have come my way without you all there  
every step of the way.  

Love you all.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

 

 

ABSTRACT 

Matrix reasoning tasks are popular measures of fluid and inductive reasoning 

ability. The impact of rule type, number of rules, grouping, overlapping elements, and 

unfamiliar shapes on matrix reasoning performance has been shown to make matrix tasks 

more difficult to solve. Alternatively, the relationship of features (the physical and visual 

dimensions of individual elements within a matrix) to matrix reasoning performance in an 

adult population has not been established. The current study aimed to test the impact of 

features (i.e., height, shape, width) on matrix reasoning performance in an undergraduate 

sample (N = 196) by systematically varying rules and features using three experimental 

matrix task sets. Results indicated a significant effect of feature on matrix reasoning 

performance (F(2,193) = 4.871, p = .009, ηp
2 = .048) when controlling for differences in 

inductive reasoning ability between experimental groups. Post-hoc analysis revealed 

significantly (p = .007) worse performance in the width/height feature combination as 

compared to the shape/height. Concluding, features have a differential impact on matrix 

reasoning performance, as some features may be more efficiently solved than others. 

Future studies using more complex scoring methods, assessment of working memory, 

and direct measurement of cortical functioning are warranted to clarify the impact of 

features on matrix reasoning performance.
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CHAPTER I 

INTRODUCTION 

Intelligence is a complex construct, which, depending on one’s theoretical 

perspective, can be defined differently. Typically, though, models of intelligence concern 

themselves with descriptions of mental processes underlying adaptive behavior generally 

(e.g., Goleman, 1995; Greenspan & Driscoll, 1997) and complex problem-solving more 

specifically (e.g., Sternberg, 1997), and/or identification of stable traits or trait-like 

competencies predictive of performance on specified tasks, i.e., what Sternberg (1997) 

described as “intelligent behavior” (e.g., Gardner, 1983; Horn & Noll, 1998). From this 

broad literature, three general theoretical perspectives are identified by McGrew and 

Flanagon (1998): the psychometric or structural theories, information processing theories, 

and the cognitive modifiability theories. The information processing theory of 

intelligence compares human processing to computer processing, in order to understand 

how the human brain processes information (McGrew & Flanagan, 1998). The cognitive 

modifiability theory assesses the dynamic nature of human intelligence, i.e., assesses how 

intelligence changes or is modified with new information (McGrew & Flanagan, 1998, 

Lidz, 1997). These two theories are often used to explain performance on cognitive tasks, 

specifically by identifying ability areas represented by test performance.  

The psychometric or structural approach seeks to identify stable population-level 

traits or competencies based on individual differences in cognitive test performance 
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(McGrew & Flanagan, 1998). Correlational methods (e.g., factor analysis) are used to 

identify latent ability domains within and across psychological tests. Thus, dimensions of 

individual differences can be discerned, and test-takers placed at different points along 

one or more such dimensions on the basis of their test performance relative to that of the 

population. While psychometric approaches fail generally to explain cognitive processes, 

emphasizing, instead, the structure of latent abilities and description/classification of 

individual test-takers, models of intelligence based on this approach have the longest 

history of empirical support, and have also produced the most popular measures of 

intelligence in practice settings (McGrew & Flanagan, 1998). The first major 

psychometric theory was Spearman’s Theory of Two Factors (Spearman, 1904). 

Spearman (1904) suggested that there was a general intelligence (g) which accounts, 

generally, for individual differences in cognitive performance, and a second factor 

relating to a specific ability (s) in some domain of intelligence, i.e., distinct from general 

intelligence. In this theory, performance on all cognitive tasks should correlate, to a 

greater or lesser degree, with g. The test score variance that is unaccounted for by this 

relationship comprises s (assuming no measurement error). Spearman’s model was 

essentially a single-factor model (Herrnstein & Murray, 1994; Fraser, 1995), suggesting 

that intelligence is a unitary ability with variation across individuals due primarily to 

genetic differences (Fraser, 1995; Guthrie, 1998; Jensen & Inouye, 1980).  

Cattell subsequently developed a dichotomous model of intelligence, Gf-Gc (Horn 

& Noll, 1998; McGrew & Flanagan, 1998). This model defined two different types of 

intellectual abilities, fluid intelligence (Gf) and crystallized intelligence (Gc). Gf 
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consisted of inductive and deductive reasoning abilities, while Gc consisted of a person’s 

knowledge (McGrew & Flanagan, 1998). Horn further developed the Gf-Gc model, 

resulting in the Horn-Cattell Gf-Gc model, by adding cognitive abilities to Cattell’s 

original dichotomous model. With multiple additions, Horn’s Gf-Gc model ultimately 

contained 10 intellectual ability factors (Horn & Noll, 1998; McGrew & Flanagan, 1998). 

Further factor analytic research proposed additional factors above and beyond the Horn-

Cattel Gf-Gc model. Carroll (1993) set out to structure and develop a model for which 

these findings could be incorporated. Carroll proposed a hierarchical model of 

intelligence with three levels: stratum III (g), stratum II (broad abilities), and stratum I 

(narrow abilities). In Carroll’s model, g is the overarching cognitive ability, stratum II 

abilities represent different intellectual domains within g, and stratum I abilities represent 

specialized intellectual abilities within each broad domain (Carroll, 1993). Stratum II 

contained the set of intelligences familiar to most professional psychologists today, e.g., 

“Gv”, representing visual-spatial ability, “Gs” representing speed and efficiency of 

simple information processing, etc. Stratum I contains more specific cognitive processes 

deemed relevant to their superordinate Stratum II abilities. For example, inductive and 

deductive reasoning skills were deemed essential, among other specific skills, to solving 

complex novel problems, which is the domain of Fluid Reasoning (Gf). Using factor 

analytic methods, Carroll demonstrated strong correlated intellectual abilities across 

strata. Subsequently, McGrew (1997) and McGrew and Flanagan (1998) integrated the 

Horn-Cattell and Carroll’s Gf-Gc models for the specific purpose of “cross-battery 

assessment.” Within this model, g was eliminated and broad domains were condensed 
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based on practical and factor analytic research (McGrew & Flanagan, 1998). Their work 

produced a model which was empirically driven, yet also simplified for a specific 

purpose and thus not incorporating all aspects that were theoretically and/or empirically 

supported.  

Inductive Reasoning 

Numerous factor analytic studies have found Gf (fluid reasoning) to have the 

strongest loading on g, making it a critical top measurement of general intelligence. Thus, 

narrow intellectual abilities falling within Gf have become an important area within 

assessment research. One such area is reasoning, which has historically been held central 

to the concept of intelligence (e.g., Spearman). The definition of reasoning may 

encompass different tasks and abilities, such as induction, deduction, planning, or 

judgment. While factor analytic research has found reasoning ability to load on Gf and 

Gc, it most closely and consistently loads on Gf (Carroll, 1993). Within the Gf-Gc model, 

the stratum I ability of induction (I) is of specific importance to the present study. 

Inductive reasoning typically involves tasks in which the participant is to induce a rule or 

common characteristic after assessing a set of one or more stimuli (Carroll, 1993). 

Inductive reasoning tasks/stimuli involve at least one deductive step, in eliciting a 

conclusion or response (Carroll, 1993). There are many different types/presentations of 

inductive reasoning tasks, i.e., number or letter sequence tasks, where the solver induces 

the rule governing changes from one element in a sequence to the next, matrix 

completion tasks, which require the solver to induce the changes across rows and 

columns in order to identify a missing element, etc.  
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 Inductive reasoning may manifest in a number of different solution 

strategies. Liang, Jia, Taatgen, Zhong, and Li (2014) found that depending on the 

inductive reasoning task, different strategies were used to solve a given problem. For 

example, in the number series tasks, a retrieval strategy was used, meaning there was a 

direct retrieval of knowledge to induce the relationship between stimuli (Liang et al., 

2014). Alternatively, in the letter series tasks, a procedural strategy was used, meaning 

there were multiple relationships induced to arrive at the relationship between stimuli 

(Liang et al., 2014). Thus, depending on the strategy used to solve an inductive reasoning 

task, there may be more steps and an increased workload on the participant.  

Similarly, Carpenter, Just, and Shell (1990) found that participants utilized a 

multistep approach while solving matrix stimuli (i.e., an inductive reasoning task). The 

researchers looked at processes that differentiated high and low scorers on the Ravens 

Progressive Matrices (RPM) test (Carpenter et al., 1990). They found that both high and 

low scorers utilized an incremental reiterative strategy for encoding and inducing the 

regularities in each problem; however, high scores showed an increased ability to induce 

abstract relationships (Carpenter et al., 1990). This difference between high and low 

scorers reflects a goal management process, in which people with better inductive 

reasoning ability were able to solve the subgoals, even if they were less obvious, of 

matrix reasoning tasks to achieve the larger goal of solving the whole problem. This 

means that to solve all matrices, participants broke down the problem into smaller parts 

and solved the smaller parts one at a time; participants then used these solutions to solve 

the larger matrix stimuli. Additionally, induction of rules consisted of a comparison 
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between elements that were next to one another (Carpenter et al., 1990). Based on these 

findings, solving matrix tasks involves a multi-step procedural strategy, as multiple 

relationships must be induced to solve the entire matrix stimuli. Implications of this 

complex process on working memory will be discussed later.  

Matrix Tasks 

 Matrix tasks are a popular format for measuring inductive reasoning 

ability, fluid reasoning, and general intellectual ability in basic and applied research and 

clinical and educational assessment. They are currently included in the most current 

versions of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV), Wechsler 

Intelligence Scale for Children-Fifth Edition (WISC-V), Raven’s Progressive Matrices 

(RPM) (e.g., Colour Progressive Matrices (CPM), Standard Progressive Matrices (SPM), 

and Advanced Progressive Matrices (APM), numerous independent intelligence 

measures, online training programs, etc. (Raven, Raven, & Court, 1998; Wechsler, 2008; 

Wechsler, 2014). In matrix tasks, stimuli are presented in matrices (i.e., square or 

triangular) (Carroll, 1993). The items within the matrix can be literal, numerical, 

semantic, or figural in nature (Carroll, 1993). Thus, an unlimited variety of stimulus 

elements may be used within the basic format to generate test items. As with other 

inductive reasoning tasks, the solver identifies the order/trends/systematic changes across 

both rows and columns within the matrix (Carroll, 1993). Rules defining how the stimuli 

change across rows and columns may vary in difficulty (Carpenter et al., 1990; Carroll, 

1993). The participant’s ability to induce these rules is assessed by their selection of a 
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stimulus that would fit into a missing/blank position within the matrix (Carroll, 1993), 

usually drawn from a set of distracters.  

 Raven’s Progressive Matrices (RPM) are considered to be an exemplary 

assessment of inductive reasoning ability, as the task can be used to assess intellectual 

efficiency and conceptual ability, while limiting the verbal and manipulative abilities 

required by the participant (Alderton & Larson, 1990; Lezak, 2004; Mills, Ablard, & 

Brody, 1993). Carpenter et al. (1990) identified five different types of rules within RPM 

which may be combined in different ways within the same matrix task. Test takers 

participate in what Carpenter et. al. (1990) described as “correspondence finding,” this is 

the process of determining which elements or features in a row are governed by the same 

rule. Sometimes these cues are ambiguous, as several features may be governed by 

multiple rules and may not follow a linear pattern. Carpenter et al. (1990) explained there 

are multiple ways in which matrices become more difficult to solve; i.e., the complexity 

of correspondence finding, type of rule, and the number of rules in play. The last two will 

be described more thoroughly in the following section.  

 Defining characteristics of matrix tasks. To simplify discussion of the 

salient functional components of a matrix task, these will be defined below as elements, 

features, and rules. To further simplify the discussion, we will refer exclusively to 3x3 

matrices (as illustrated in Figure 1, composed of nine elements arranged in three rows 

and three columns), as these types of matrices appear so commonly in research and 

applied contexts, and are represented in the nearly ubiquitous RPM.  
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 Elements. A matrix element is the shape, letter, number, etc., comprising 

one cell of a matrix. In Figure 1, nine elements are displayed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of a simple matrix completion task, with the missing element 
(typically lower left cell) filled in.  
 
 Features and identities. In matrix tasks, features are the physical/visual 

dimensions of individual elements within a matrix. As indicated previously, these can 

come in potentially endless forms with four major categories: literal, numerical, semantic, 

or figural (Carroll, 1993). Additionally, each feature will have at least two identities; an 

identity describes the possible physical/visual dimension for each feature. For example, if 

a feature was length, possible identities for this feature could be 2in., 4 in., or 6 in. In 

Figure 1, the features are shape and color, with two possible identities for shape (square 
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and circle) and two identities for color (black and grey). Features are informationally 

constrained by the range of possible identities. 

  Rules. In matrix tasks, rules are predetermined ways in which identities of 

features change across elements within a row or column. In each matrix, one rule may be 

applied to the rows and the same or a different rule may be applied to the columns. For 

example, in Figure 1, the feature of shape (identity = square or circle) varies by row, 

while the feature of color (identity = black or grey) varies by column. The rule governing 

color dictates that “grey” will be the identity of the center element of each row; the rule 

governing shape dictates that “circle” will be the identity of the center element of each 

column. Note also that in Figure 1, color does not vary across elements in columns, and 

shape does not vary across elements in rows; while this could be interpreted as a rule 

dictating that shape is the same across rows and another rule that color is the same across 

columns, such rules are, by definition, informationally redundant (Pomerantz & 

Lockhead, 1991) with the first two stated rules (i.e., the first two rules completely define 

the matrix in the absence of the two “same” rules), and, as such do not necessarily need 

to be stated.  

Using regression analysis, Carpenter et al. (1990) found that the total number of 

rules in a matrix accounted for 57% of the variance in mean error rates, and as the 

number of rules increases response times for correct responses were longer. These results 

indicate that the number of rules within a matrix stimuli affected performance, both 

inability to correctly answer the item and the amount of time to arrive at an answer. 

Vodegel, Matzen, van der Molen, and Dudink (1994) assessed how rule type, the number 
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of elements, and answer distractors impacted performance on a matrix task. They found 

that the number and type of rules accounted for 63% of the variance in item difficulty 

(Vodegel et al., 1994). Jia, Liang, Shi, Wang, and Li (2015) found increased activations 

in the right dorsal lateral prefrontal cortex and medial posterior parietal cortex of the 

brain when rule complexity (simple to complex induction) was increased in an inductive 

reasoning task (number series task). Thus, as rule complexity increases, so does activity 

in these two areas of the brain (i.e., more complex rules may require more mental 

activity). The findings from these studies indicate that as rule complexity and the number 

of rules increases, inductive reasoning tasks become more difficult for participants to 

solve and require more mental effort.  

Rules are applied to element features across rows and columns. Features can be 

combined in rows and/or columns, as well as, changing or held constant (same identity 

for all elements) within a matrix stimulus. In contrast to understanding how rules affect 

performance, relatively little research has elucidated the relationship between features 

and performance. Primi (2001) found that element’s “perceptual organization,” grouping 

of elements within a matrix cell, in relation to Gestalt principles, accounted for 53% of 

the variance in item difficulty. Specifically, Primi (2001) found “nonharmonic” 

(incongruent elements, i.e., conflicting combinations of visual and conceptual 

information/elements, both of which must be addressed to solve a matrix) to be more 

difficult to solve within a matrix. Meo, Roberts, and Marucci (2007) added to this line of 

research by finding that when elements contain overlapping and/or unfamiliar shapes, the 

matrix becomes harder to solve, element salience hypothesis. Within both of these 
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studies, the features do not change; rather the features are more or less obscured. The 

participant’s ability to identify the features that rules are applied to is influenced, rather 

than the differential impact of feature type. Thus, these findings may relate more to a 

participant’s visual-spatial (Gv) ability, than their fluid reasoning (Gf) ability. No 

research since the Meo et al. (2007) study has assessed the impact of feature on 

performance within matrix tasks.   

Working Memory/Goal Management 

 As previously described, matrix tasks implicitly require aspects of 

inductive and deductive reasoning when eliciting an answer from a participant. 

Additionally, working memory is used when solving a matrix task because the participant 

must remember rules and how they interact to solve the task. Kyllonen and Christal 

(1990) found a correlation (r from .80 to .90) between working memory capacity and 

different reasoning ability factors through confirmatory factor analysis. Carpenter et al. 

(1990) used the Tower of Hanoi, an executive functioning task that also requires working 

memory, to assess working memory in solving Raven’s matrix problems. They found a 

significant correlation (r(43) = .77, p < .01) between participant’s errors on the Raven test 

and the total number of errors on the six Tower of Hanoi puzzles. Carpenter et al. (1990) 

concluded that because errors on the Tower of Hanoi puzzle reflect working memory 

abilities, the significant correlation they found with errors on the Raven’s test suggests 

that this task also requires working memory. These findings suggest that individual 

differences on the Raven’s test may be linked to one’s ability to generate and manage 

goals in working memory; therefore, “goal-management” impacts performance on the 
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Raven’s Matrices (Carpenter et al., 1990). Liang et al. (2014) augmented Carpenter et 

al.’s (1990) work by finding increased working memory demands, through MRI data, 

depending on the strategy used to induce rules in an inductive reasoning task. For 

inductive reasoning tasks that require procedural strategies, like matrix tasks, there may 

be increased working memory demands on the participant, as shown through increased 

activation of cortical regions associated with memory retrieval and mental representation 

(Liang et al., 2014). Additionally, inductive reasoning tasks that required retrieval 

strategies—direct retrieval of knowledge—use the same cortical areas of the brain as 

those that require procedural strategies; however, cortical activation in these areas is 

lower, indicating lower working memory demands (Liang et al., 2014). Essentially, these 

researchers found that some types of inductive reasoning tasks (letter series) may require 

increased working memory demands to manage and manipulate rules that cannot be 

solved through direct retrieval processes.  

Carpenter et al. (1990) suggested that the addition of more rules to a matrix task 

does not necessarily affect a participant’s ability to induce the rule, but rather requires 

greater goal-management ability. This means that the more rules in play; the more 

working memory is required to “construct, execute, and maintain” these goals to find the 

solution to the matrix task; referred to as the “number-of-rules account” (Carpenter et al., 

1990; Harrison, Shipstead, & Engle, 2015). Therefore, goal-management is expressing 

one’s ability to generate and maintain goals in working memory. Using Raven’s 

Matrices, Smolen and Chuderski (2015) found a quadratic relationship between 

performance on this task and working memory as assessed by mean scores on the 
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operation, reading, and symmetry span tasks. Thus, for Raven’s items with little to 

moderate difficulty (between floor and ceiling), there is a positive relationship between 

working memory and performance. However, on high difficulty Raven’s items (ceiling) 

this relationship will decrease, trending toward non-significance. Additionally, there has 

been some debate if working memory is more highly correlated when rules are repeated 

or when novel rules are presented in consecutive matrix tasks, rather than based on 

number of rules in play as Carpenter et al. (1990) proposed (Harrison et al., 2015; Wiley, 

Jarosz, Cushen, & Colflesh, 2011). Harrison et al. (2015) concluded that working 

memory is more highly associated with repeated rule presentation, than novel rule 

presentation. These findings support a “learning efficiency account” (Harrison et al., 

2015) of the relationship between working memory capacity and Raven’s performance, 

rather than an “interference/distraction account” (Wiley et al., 2011) or “number-of-rules 

account” (Carpenter et al., 1990) proposed by previous research. Essentially, rather than 

working memory inhibiting previously-used rule combinations that would have otherwise 

interfered with performance on the current matrix problem (“interference/distraction 

account”; Wiley et al., 2011). Harrison et al. (2015) suggested that working memory aids 

participants in retrieving previous matrix solutions to solve the current ones (“learning 

efficiency account”). While most research supports a relationship between matrix task 

performance and working memory, there is currently no consensus as to the nature of this 

relationship. For the purposes of the current study, goal management/working memory 

will not be assessed.  
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Purpose of the Present Study 

To date, no study has identified the impact of rules on matrix task performance 

independent of the features to which they are applied. Primi (2001) has demonstrated that 

by altering the physical appearance of individual elements, performance on matrices with 

identical rules can be changed, suggesting that by making features less visually salient, 

the relationship between rule complexity/number and performance may be moderated. 

However, Primi’s (2001) matrices were designed specifically to ambiguate features, and 

rules that applied to these features were not altered systematically. It remains an open 

question whether features typically employed in matrix tasks, absent manufactured visual 

ambiguity, influence task performance apart from the rules that affect them. If not so, i.e., 

if only rule complexity and number influence performance irrespective of features, then it 

should be possible to design, a priori, alternate forms of existing matrices, so long as the 

rules may be sensibly applied to more than one feature, where the two forms of the test 

retain identical informational demands, but “look” entirely different. Miller et al., (2009) 

demonstrated that practice effects may be reduced in a block design task by presenting 

visually non-identical designs with identical informational demands, versus presentation 

of the same designs, as in a typical test-retest paradigm. It may be possible to reduce the 

practice effects in such widely-used measures of fluid ability as matrix completion tasks 

by using the same method, assuming that rule-identical matrices with different features 

produce an identical performance.   

 The purpose of this study is to see if varying the features to which rules 

are applied in an inductive matrix reasoning task has an effect on performance if the rules 
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themselves are held constant, i.e., to see if performance differences can be elicited by 

applying the same sets of rules, systematically, to different features. If features influence 

performance irrespective of rules, then we would expect to see overall performance 

differences between the Presentation groups of the Experimental Inductive Matrix 

Reasoning Task (EIMRT). It is predicted that no significant performance differences on 

the EIMRT will be found. For the purpose of this study, a feature will be defined as the 

visual dimensions to which rules can be applied. Three features will be manipulated: 

shape, width, and height. Within each matrix, each element can take on one of two 

identities for each feature (i.e., for shape, the element may be either round or square; for 

height, it may be either tall or short; for width, it may be either wide or narrow). Thus, 

each matrix element may have one of eight possible appearances (e.g., short, wide, & 

square; tall, narrow, & round, etc.).  

Three different rules will be used in the study’s matrices: same, symmetrical, and 

2/3, and, depending on the matrix, a rule may be applied to any feature, dictating that 

feature’s change across elements in either a row or a column. For example, the same rule 

(SAME) applied to “shape” (a feature) in a row would mean that all elements in any 

given row would be either round or square. If the rule were “symmetrical” (SYM), 

applied to the same feature in rows, then the identities would be distributed 

symmetrically with a row – either the middle element would be square and the outside 

elements round, or vice-versa. If the rule were “two out of three” (2/3), then the identities 

would be distributed across the row asymmetrically, e.g., the left element in the row 
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would be square, the middle element in the row would be square, and the right-hand 

element in the row would be round.  

 

 

 

 

 

Matrix A  Matrix B  Matrix C 
     

 Rule in:   Rule in   Rule in 

Feature Row Column  Feature Row Column  Feature Row Column 

Shape SAME SAME  Height SAME SAME  Width SAME SAME 
Height SAME SYM  Shape SAME SYM  Height SAME SYM 
Width 2/3 SAME  Width 2/3 SAME  Shape 2/3 SAME 

 
Figure 2. Example of three matrices with identical rules applied to different features. 
Rules are SAME (identity does not change in that row or column), SYM (identity is 
different in the middle element of that row or column, and 2/3 (one of the identities in 
that row or column is different, though the distribution in that row or column is not 
typically symmetrical).  
 

Figure 2 illustrates an example of three matrices with identical rule combinations 

applied across row and column, applied to different features. In all three cases, the same 

rules are applied. In rows, two features follow the SAME rule, and a third feature follows 

the 2/3 rule; in columns, two features follow the SAME rule, while a third feature follows 

the SYM rule. In all three cases, one feature follows the SAME rule in both row and 

column, another feature follows SAME in rows but SYM in columns, and the third 

feature follows 2/3 in row and SAME in columns. If the number and complexity of rules 
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are the sole determinants of task performance, then negligible performance differences 

should be observed between these three matrices. If different features elicit performance 

differences, then matched sets of items, like those in Figure 2, should evidence 

measurable differences in task performance.  
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CHAPTER II 

METHOD	

Participants 

Participants were 196 undergraduate students (126 females and 70 males) 

recruited through the SONA system in conjunction with the undergraduate psychology 

class research requirement. Of study participants, 96.9% were not Hispanic or Latino, 

1.5% were Hispanic or Latino, and 1% were unknown. Regarding participants' race, 

92.3% identified as White, 1.5% Asian, 1.5% Black or African American, 1% American 

Indian, 1% Black or African American and White, .5% Asian and White, .5% Native 

Hawaiian or other Pacific Islander and White, and 1% other. The mean participant age 

was 19.487 (range = 18 - 29, SD = 1.84). Regarding participants' highest achieved 

education, 56.6% achieved a high school diploma, 31.1% less than a 2 or 4-year college 

degree, 5.6% an Associates (2-year) degree, 4.6% a Bachelors (4-year) degree, 1.5% a 

GED or high school diploma equivalent, and .5% less than a Master's degree. 

Participants' reported overall mean GPA was 3.45 (range: 1.9 - 4.152, SD = 0.47).  

Materials 

Demographics 

There were two sets of demographic questionnaires. The first consisted of 

background questions regarding age, gender, race, GPA, and highest grade completed. In 

the second demographic questionnaire, the participants were asked if they have had any 
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previous psychological testing, and, if so, if the psychological testing occurred in the past 

6 months. There were additional questions in this second questionnaire to assess for 

visual or motor impairments and for any history of a neurological disorder that might 

impact visual processing or motor performance (e.g., Parkinson’s disease, attention-

deficit/hyperactivity disorder, learning disorder, head injury, Multiple Sclerosis, etc.).  

Symbol Series Task 

In this task, Symbol Series Task, participants induced the rule applied to a linear 

set of symbols (Levy & Levy, 1989). They then selected the next symbol in the series 

from five answer options. For each item, there is only one rule and one feature present. 

Participants' responses for each item were scored as 1 or 0, with a score of 1 used to 

indicate a correct response or 0 used to indicate an incorrect response or no response for 

an item. A sum of the 27 item scores was calculated for the participant's total score on the 

Symbol Series Task. This task is identical to series completion tasks described by Carroll 

(1993) as representing a test of inductive reasoning. Participants’ score on this measure 

was used as an independent measure of inductive reasoning ability, to ensure inductive 

reasoning abilities across the three participant groups at the time one performance are not 

significantly different.  

Experimental Inductive Matrix Reasoning Task 

 Matrix reasoning tasks are used to measure inductive reasoning (Carroll, 

1993). The participant was required to analyze a set of incomplete matrices, and select 

the missing element from a set of eight options. In each matrix, one of three rules 

(SAME, SYM, 2/3) was applied to each feature (height, width, shape) in both columns 
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and rows. Table 1 displays the possible combinations of rules applied to columns and 

rows for a single feature. Because the number of designs resulting from all possible 

combinations of the nine rule by row/column sets (see Table 1) and the three features 

would be prohibitively large (93 = 729), we determined to constrain the possible 

combinations by, in each of three sets, holding one feature to SAME in both column and 

row. The result was three sets of 81 designs each (see Table 2). In one set, all possible 

rule combinations are applied to height and width, to width and shape in the second, and, 

to the third set, shape and height. Thus, in any of the three sets of matrices, one matrix is 

identical to a matrix from each of the other two sets with respect to the combination of 

rules applied to row and column. Participants' responses for each item were scored as 1 or 

0, with a score of 1 indicating the participant selected a correct response and a score of 0 

indicating the participant either selected the incorrect response or provided no response 

for an item. A sum of the 81 item scores was calculated for the participant's total score on 

the EIMRT.  

Table 1 
Possible Combinations of Rules Applied to a Single Feature Across Row and Column of 
the EMIRT. 
  Row  

Column Same Symmetrical 2/3 
 
Same 

 
Same by Same 

 
Same by Symmetrical 

 
Same by 2/3 

 
Symmetrical 
 

Symmetrical by 
Same 

Symmetrical by 
Symmetrical 

Symmetrical by 2/3 

2/3 
 

2/3 by Same 2/3 by Symmetrical 2/3 by 2/3 
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Table 2 

EMIRT Presentation Sets. 

Set Description Example 

1 Shape by Height 
(Width held constant) 

 

 
 

2 Shape by Width 
(Height held constant) 

 

 
 

3 Height by Width 
(Shape held constant) 

 

 
   
 

Procedure 

Participants completed all components of the study on Qualtrics. Informed 

consent was procured online via Qualtrics. Participants completed both sets of 

demographic questions and the symbol series task. Then participants were randomly 

assigned to one of three experimental groups, corresponding to the three presentation 

groups of the EIMRT (see Table 2). Participants completed the 81 items of their assigned 

experimental matrix set. Presentation order within each set was randomized for each 

participant. Once the participants completed these items their participation in the study 
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was complete. University of North Dakota (UND) participants, who were enrolled in 

100- or 200-level undergraduate psychology courses, received one credit (i.e., one credit 

for every hour they participated in the current study) towards their research participation 

requirement, as the study was estimated to take approximately 1 hour (i.e., 

demographics=10 minutes, Symbol Series Task=5 minutes, EIMRT = 40.5 minutes). All 

participants were entered into a raffle, which was drawn once data collection was 

completed. The participant who correctly completed the most matrices received a prize 

independent of the raffle drawing.  
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CHAPTER III 

RESULTS 

Prior to data analysis, participants were eliminated from the data set for a variety 

of reasons. Thirty-nine participants' responses were removed for ending the survey before 

viewing every item. Five participants were removed because their age was 30 or more. 

Participants with inadequate effort on the EIMRT were eliminated from the dataset. 

Inadequate effort was assessed through the participants’ percent correct on same by same 

rules matrix items (9 items for each participant), as this rule combination should be 

trivially easy for the participants to identify and solve (see Figure 3 for an example of a 

same by same rule matrix across Presentation sets), and total completion time of survey 

falling below 15% of the estimated study completion time (i.e., 9 minutes' total 

completion time). The proposed completion time effort measure did not eliminate any 

participants from the current study. The nine same by same rules matrix items were 

randomly presented throughout the total 81 matrices participants completed, ensuring 

assessment of effort throughout the EIMRT. Thirty-eight participants were excluded from 

data analysis for inadequate effort, percent correct lower than 100% (9 out of 9 correct) 

on the same by same rule matrices on the EIMRT. This effort criterion was increased 

from the proposed 67% (6 out of 9 correct) on the same by same rule matrices on the 

EIMRT, as these items were considered to be trivially easy, thus poor performance on 

any of these items likely indicated inadequate effort throughout the EIMRT.  
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Shape/Width  Width/Height  Height/Shape 
     

 Rule in:   Rule in   Rule in 

Feature Row Column  Feature Row Column  Feature Row Column 

Height SAME SAME  Shape SAME SAME  Width SAME SAME 
Shape 2/3 SAME  Width 2/3 SAME  Height 2/3 SAME 
Width SAME SAME  Height SAME SAME  Shape SAME SAME 
           
Figure 3. Example of three matrices with identical same by same rule combinations 
applied to different features, which was used as an effort measure. Rules are SAME 
(identity does not change in that row or column), SYM (identity is different in the middle 
element of that row or column, and 2/3 (one of the identities in that row or column is 
different, though the distribution in that row or column is not typically symmetrical).  
 

Group-wise differences on demographic data were assessed. No differences were 

observed with respect to age, F(2, 182) = 1.237 , p = .293, ηp
2 = .013; ethnicity, χ2 (6, N 

= 196) = 5.012, p = .542; race, χ2 (16, N = 196) = .13.510, p = .635; gender, χ2 (2, N = 

196) = .382, p = .826; highest level of education earned, χ2 (10, N = 196) = 14.265, p = 

.161; estimated family income level, χ2 (32, N = 196) = 27.893, p = .675. One group-wise 

difference was observed with respect to reported GPA, F(2, 180) = 3.313 , p = .039, ηp
2 = 

.036. Subsequent pairwise comparisons revealed that participants' reported GPA in the 

width/height Presentation group was significantly (p = .033) higher than that of the 

shape/width Presentation group, with no other significant differences observed between 
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Presentation groups. See Table 3 for group-wise differences on psychological and/or 

health related demographic variables, which may impact cognitive performance. One 

group-wise difference was observed between Presentation groups on multiple sclerosis.  

Table 3 

Presentation Group Differences on Self-Reported Psychological and Health 
Demographic Items 
 

 Presentation Group  

Demographic Item Shape/Width Width/Height Height/Shape χ2 (df = 2) 

Attention Deficit 
Hyperactivity 
Disorder 

4.5% 3.0% 1.6% .975 

Learning Disorder 0% 1.5% 1.6% 1.027 

Mood Disorder 13.6% 7.6% 12.5% 1.372 

Anxiety Disorder 15.2% 9.1% 12.5% 1.134 

Obsessive 
Compulsive 
Disorder 

1.5% 1.5% 1.6% .001 

Panic Attacks 4.5% 1.5% 3.1% 1.022 

Asperger’s 3.0% 1.5% 0% 1.980 

Autism Spectrum 
Disorder 0% 1.5% 0% 1.980 

Pervasive 
Developmental 
Disorder 

0% 0% 0%  

Oppositional 
Defiant Disorder 0% 0% 0%  

Conduct Disorder 0% 0% 0%  

Diabetes 3.0% 1.5% 0% 1.980 
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Table 3 Cont.     

 Presentation Group  

Demographic Item Shape/Width Width/Height Height/Shape χ2 (df = 2) 

Lupus 1.5% 0% 0% 1.980 

Seizure Disorder 1.5% 0% 1.6% 1.027 

Neuropathy 0% 0% 0%  

Multiple Sclerosis 4.5% 0% 0% 6.001* 

Brain Tumor 0% 0% 0%  

Stroke/CVA 0% 0% 0%  

Trauma Brain 
Injury/Concussion 4.5% 1.5% 4.7% 1.224 

Note. Within-group percentages of occurrences are reported for demographic 
items. No Chi-squared analysis was performed for demographic items with 
zero instances reported by participants across groups.  
*p < .05. **p < .01. ***p < .001. 

 
The relationship between performance on the Symbol Series Task and the EIMRT 

was examined using Pearson's correlations, in order, to establish its utility as a covariate 

in further analysis. Mertler and Vannatta (2010) suggest the dependent variable and the 

prospective covariate should theoretically or statistically (significantly) correlate. 

Establishing the correlation in this analysis aids in justification of removing the variance 

associated with the covariate (performance on the Symbol Series Task, i.e., individual 

inductive reasoning ability) from the dependent variable (performance on the 

Experimental Matrix Reasoning Task). Participants' performance on the Symbol Series 

Task was positively correlated with EIMRT performance, r(196) = .439, p < .001, 
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indicating that in this sample 19.3% of the variance in EIMRT performance may be 

explained by participants' performance on the Symbol Series Task. Both tasks appear 

consistent with Carroll’s (1993) description of an inductive reasoning task and Symbol 

Series Task performance will be used as a covariate in later analyses for EIMRT 

performance.  

A one-way fixed factor analysis of variance (ANOVA) was performed on the 

Presentation groups. The design of this analysis included one between-subject factor of 

Presentation group with 3 levels (a) height/shape (b) shape/width (c) height/width. The 

dependent measure was participants' inductive reasoning task score on the Symbol Series 

Task. No group-wise differences in inductive reasoning ability between the three groups 

was found, F(2, 193) = .264 , p = .768, ηp
2 = .003.  

 For the primary analysis, a one-way fixed factor analysis of covariance 

(ANCOVA) was performed on the Presentation groups' EIMRT performance. The design 

of this analysis included one between-subject factor of Presentation group with 3 levels 

and one covariate (individual performance on Symbol Series Task). The dependent 

measure was the EIMRT score. There was a significant effect of Presentation group on 

EIMRT score, F(2, 193) = 4.871 , p = .009, ηp
2 = .048. Subsequent pairwise 

comparisons, using estimated marginal means to account for the inclusion of the 

covariate within the prior analysis, revealed that participants' performance in the 

width/height Presentation group was significantly (p = .007) lower than that of the 

height/shape Presentation group, with no other significant differences observed between 
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Presentation groups. See Table 4 for all post-hoc comparisons between Presentation 

groups.  

Table 4 

Post-hoc Pairwise Comparisons Between 
Presentation Groups 

Presentation Group Comparison Difference 
between Means 

Shape/Width versus 
Width/Height 1.717 

Shape/Width versus 
Height/Shape 1.257 

Width/Height versus 
Height/Shape 2.975** 

Note. Estimated Marginal Means were used in 
Bonferroni corrected post-hoc pairwise 
comparisons.  
*p < .05. **p < .01. ***p < .001. 
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CHAPTER IV 

DISCUSSION 

 Previous research by Primi (2001) and Meo et al. (2007) altered 

participant's ability to identify the features that rules were applied to by visually 

ambiguating features, as previously discussed. The present study aimed to assess the 

relationship between rules and features by systematically varying features between 

Presentation groups. To accomplish this, the present study included one element within 

each cell of matrix tasks, instead of multiple elements. Each element had one rule applied 

in row and another in column for each of two features. The visual ambiguity produced by 

grouping multiple elements, overlapping elements, and/or having unfamiliar shapes 

within each cell and/or matrix was eliminated from the present study to allow for a 

clearer understanding of the impact of differing features on matrix task performance. 

While previous research may have been impacted by a test taker's visual-spatial (Gv) 

ability and fluid reasoning (Gf) ability, the present study was designed to test the impact 

of feature on matrix reasoning task performance. It was assumed no significant results 

would be found, indicating the features to which rules are applied does not impact 

performance within matrix tasks.  

 The results of the present study suggest matrix reasoning performance 

may be differentially impacted by the features to which rules are applied. The design of 

the present study allowed us to assess the impact of features (i.e., shape, height, width) on 
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matrix reasoning task performance via Presentation groups (i.e., shape/width, 

width/height, height/shape), such that the rule combinations were identical across sets, 

and yet produced matrices that looked very different, owing to the differences in the 

features to which the rules were applied. The performance differences seen between 

Presentation groups indicate the height/shape had the highest scoring performance, with 

the shape/width scoring slightly lower, and the width/height scoring significantly lower 

and having the lowest mean score. These results suggest the Presentation groups of 

height/shape and width/height have a differential impact on matrix task performance. In 

both the lowest (width/height) and the highest (height/shape) performing groups, height 

varies by the same rule combinations, which may suggest either the features of width and 

shape have a differential impact on performance or the interaction of height with width 

and shape is differentially impacting performance. Features were assumed to be 

interchangeable; however, these findings suggest features differentially impact matrix 

task performance, even when the rule sets are identical.  

Visual Salience and Efficiency 

 One possible explanation for this finding is that features may be 

differentially salient. The importance of element salience may extend beyond the Meo et. 

al. (2007) study, element salience hypothesis. While Meo et al. (2007) identified 

familiarity with elements as impacting performance on matrix tasks, as indicated by 

European vs. Invented letters, the current study suggests some features may be easier to 

identify and solve for participants, even when all features are readily familiar to 

participants. Previous research by Stevenson et al. (2014) found, in children, what 
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features (i.e., object, color, quantity, and size) were more easily solved than where 

features (i.e., orientation and position). The researchers suggest what features are 

associated with ventral thought processes, while where features are associated with dorsal 

thought processes, the latter of which develops with age of the child (Stevenson et al., 

2014). Older children were more readily able to identify where features as compared to 

younger children and children with less efficient working memory (Stevenson et al., 

2014). Stevenson et al. (2014) suggest this may be representative of a shift in reasoning 

from "superficial perceptual features" to "relations between elements in the analogy." 

Within an adult population, these findings may translate into efficiency, meaning adults 

may initially attempt to identify and solve features and rules within matrix tasks using 

faster and easier thought processes and secondarily by more complex associations or 

thought processes. Yuan et al. (2012) found matrix task performance to be positively 

correlated with gray matter volume and regional homogeneity in brain areas, the dorsal 

anterior cingulate cortex and fronto-insular cortex, associated with the salience network. 

The salience network functions to detect salient stimuli from sensory input and initiate 

attentional signals to the central executive network, which mediate attentional control, 

like working memory and higher-order cognitive processes (Yuan et al., 2012). This 

attentional control allows for the relay of salient stimuli to the relevant cortical regions of 

the brain (Yuan et al., 2012). This network facilitates the stimulus to be salient beyond 

other sensory input. Yuan et al. (2012) findings suggest the salience network in the brain 

is an important factor facilitating fluid reasoning (Gf) ability. In adults, a more 

thoroughly developed salience network may make detection of familiar elements, then 
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subsequent switching between thought processes to identify correct solutions more 

efficient, resulting in more correct matrix task solutions and better overall performance. 

The combined implications of the Stevenson et al. (2014) and Yuan et al. (2012) findings 

may suggest differential thought processes (dorsal versus ventral) may persist into adult 

test-takers, as they may innately detect and attend to what features and then subsequently 

attend to where features in solving matrix reasoning tasks. By this hypothesis, some 

features may be more efficiently attended to than other features, and thus may be more 

readily identified and used to inform the inductive-deductive process by test-takers.  

 Within the present study, the width/height Presentation group may have 

caused participants to induce unintended rules or aspects of features. The visual 

representation of rules is theoretically consistent throughout the Presentation groups, as 

the same rule combinations are applied to the Presentation groups, though there may be 

differing visual implications of combining the width/height features as compared to the 

shape/width and shape/height features. Participants may have visually induced 

unintended aspects, such as rotation or orientation, of the width/height Presentation group 

as additional or more complex rules within the matrix tasks, thus differentially impacting 

performance. The present study’s finding may indicate that combining multiple what 

features may unknowingly cause participants to induce unintended where features within 

matrix items, representing more developmentally complex features as indicated by 

Stevenson et al. (2014). Within the present study, the width/height Presentation group 

may have caused participants to induce unintended rotational or orientation patterns. 

These results indicate that combining multiple what features may produce more complex 
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and possibly unintended visual relationships, impacting test-takers performance.  The 

implications of combining multiple features within an element are relatively unknown.  

Limitations and Future Directions 

 One limitation of the current study relates to participants' reported GPA. 

Mean GPA was significantly higher in the width/height Presentation group than in the 

shape/width group. This finding may suggest differential intellectual abilities, motivation, 

discipline, etc. between experimental groups within the present study. Review of 

demographic data revealed that GPA may have been reported on different scales (i.e., 4.0 

scale and above 4.0 scale) and at different academic levels (i.e., high school, technical 

college, and university levels) depending on how participants interpreted the 

demographic questionnaire. If true, reported GPA may not be a valid indicator of 

differential intellectual ability between experimental groups. Additionally, the 

width/height Presentation group's mean reported GPA was significantly higher than the 

shape/width group's GPA, while no significant differences between Presentation groups 

on the Symbol Series Task score were found. This may indicate that reported GPA 

captures differential variance in participants' intellectual abilities not directly assessed by 

the present study. Previous research has indicated small to moderate effects of GPA on 

matrix reasoning performance (Downey et al., 2014; McLaurin & Farrar, 1973; Rushton 

et al., 2004). Future studies should clearly define levels of GPA to be reported and/or 

conceptualize more appropriate overall measures of academic achievement between 

experimental groups.  
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 With regards to multiple sclerosis (MS) self-report between Presentation 

groups, the shape/width group had significantly more participants with MS than the other 

two groups. Anagnostouli et al. (2015) found that MS patients performed significantly 

worse on measures of reasoning ability than healthy controls.  This research suggests the 

MS presentation in participants may lower performance on reasoning tasks, as compared 

to healthy individuals. The shape/width group may have performed better if the current 

study had controlled for MS within this sample and differences in performance between 

the shape/width and width/height group may have been present. The participants 

reporting MS were removed and previous analyses were repeated. Participants' 

performance on the Symbol Series Task was positively correlated with EIMRT 

performance, r(193) = .441, p < .001. No group-wise differences in inductive reasoning 

ability (Symbol Series Task score) between the three Presentation groups was found, F(2, 

190) = .256 , p = .774, ηp
2 = .003. For the primary analysis, a one-way fixed factor 

ANCOVA, there was a significant effect of Presentation group on EIMRT score, F(2, 

190) = 4.817 , p = .009, ηp
2 = .049. Subsequent pairwise comparisons revealed that 

participants' performance in the width/height Presentation group was significantly (p = 

.007) lower than that of the height/shape Presentation group, with no other significant 

differences observed between Presentation groups. These findings suggest that while MS 

may impact performance on matrix reasoning tasks, the inclusion of participants with MS 

in previous analyses did not significantly change the results of the current study.  

 In the present study, participants’ solutions were either correct or 

incorrect. A more complex scoring system may have more clearly highlighted the 



	

 35 

differential impact of features within the present study, as compared to the impact of 

Presentation groups. Future research should consider using a scoring system similar to 

that of Stevenson et al. (2014), which scored each feature independently for matrix items. 

This type of scoring system may more clearly indicate what features within a 

Presentation group participants had more difficulty identifying and solving. Additionally, 

future research should consider assessing the impact of individual features and their 

combinations to understand how the combination of features may create more difficult 

and possibly unintended aspects to matrix elements. The implications of combining 

features are relatively unknown. While previous studies have aided in identifying why 

individual features may be harder or easier to solve, they have not addressed the 

differential impact of feature combinations (Meo et al., 2007; Primi et al., 2001; 

Stevenson et al., 2014).  

 The present study did not directly assess working memory or cortical 

functioning. Previous research and the present study suggest implications of differential 

working memory ability and cortical functioning on one's ability to identify and solve 

features within a matrix reasoning task without direct assessment of these domains 

(Stevenson et al., 2014; Meo et al., 2007). Carpenter et al. (1990), Chuderski (2015), and 

Liang et al. (2014) found significant effects of working memory or cortical activation on 

matrix reasoning ability, though did not assess the impact of features on matrix reasoning 

performance. No study to date has directly assessed the impact of working memory 

ability and/or cortical function on feature identification and solution. Without direct 

assessment, the present study can only suggest implications of working memory ability 
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and cortical pathways on feature identification and solution. Future researchers should 

consider assessing brain activity to assess the conceptualization of features as either using 

ventral or dorsal mental networks. Assessing working memory ability in addition to 

cortical functioning would enable future researchers to understand the differential and 

combined affects of these domains on feature identification and solution. This type of 

research could help validate theorized cortical networks associated with different types of 

features, suggested in the Stevenson et al. (2014) study, and determine whether these 

networks continue to be used in adult populations for differing features as suggested by 

the present study.   

 In conclusion, the present study aimed to clarify the impact of features on 

matrix reasoning performance. In our sample, we found the participants who completed 

matrix tasks with the width/height feature combination performed significantly lower 

than those who completed the height/shape feature combination. These findings indicate 

some features and/or feature combinations may be more efficiently solved, even when all 

features present are familiar or salient. Considering the limitations related to demographic 

variables, scoring, and working memory and cortical functioning assessment, future 

studies are warranted to address the effect of feature on matrix reasoning ability.  
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Appendix A 
Consent Form 

 
Informed Consent for the Sona-Systems Sample 

INFORMED CONSENT 
TITLE: A Study of Presentation Effects on Matrix Reasoning Scores 
PRINCIPAL INVESTIGATOR: Katharine Lindberg (Master’s Student, University of 
North Dakota) 
SUPERVISOR: Joseph Miller, Ph.D. (Professor of Psychology, University of North 
Dakota) 
PHONE #: 701-777-4472 
DEPARTMENT: Psychology 
  
RESEARCH STATEMENT 
  
You have been invited to participate in a research study on factors that may affect matrix 
reasoning performance. If you remain interested, your participation will consist of 
answering a series of questions below about your life history and two sets of inductive 
reasoning tasks; requiring roughly 60 minutes. Your participation first requires your 
informed consent. This consent form that you are now reading provides information that 
describes this study and any risks involved in participation. Please take your time in 
making your decision as to whether or not to participate. If you choose to participate in 
this study, you are free to skip any questions that you would prefer not to answer. If you 
consent to participate after reading this form, enter your name in the text box and begin to 
respond to the questions that follow. 
  
WHAT IS THE PURPOSE OF THIS STUDY? 
  
You are invited to be a participant in this research study examining factors that may 
affect matrix reasoning performance. You have been given an opportunity to participate 
as a student at the University of North Dakota. 
  
HOW MANY PEOPLE WILL PARTICIPATE? 
  
Approximately 174 students will participate in this study. 
  
HOW LONG WILL I BE IN THIS STUDY? 
  
This is a single session study expected to require approximately 60 minutes. You are 
expected to complete this testing immediately after affirming the consent requested for 
your participation at the end of this form. 
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 Feature 1 Rules Feature 2 Rules Specific Presentation Set Items (Feature 1/Feature 2) 
Item 

# Rows Columns Rows Columns Shape/Width Width/Height Height/Shape 

70 SAME 2/3 SYM 2/3 

   

71 SYM 2/3 SYM 2/3 

   
        

72 2/3 2/3 SYM 2/3 

   
        

73 SAME 2/3 2/3 SAME 

   
        

74 SYM 2/3 2/3 SAME 

   
        

75 2/3 2/3 2/3 SAME 

   
        

76 SAME 2/3 2/3 SYM 
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 Feature 1 Rules Feature 2 Rules Specific Presentation Set Items (Feature 1/Feature 2) 
Item 

# Rows Columns Rows Columns Shape/Width Width/Height Height/Shape 

77 SYM 2/3 2/3 SYM 

   
        

78 2/3 2/3 2/3 SYM 

   

79 SAME 2/3 2/3 2/3 

   
        

80 SYM 2/3 2/3 2/3 

   
        

81 2/3 2/3 2/3 2/3 
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