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ABSTRACT 

Remote sensing is an effective tool to inventory and monitor wetlands at large 

spatial scales. This study examined the effect of wetland restoration practices at Glacial 

Ridge National Wildlife Refuge (GRNWR) in northwest Minnesota on the distribution, 

location, size and temporal changes of wetlands. A Geographic Object-Based Image 

Analysis (GEOBIA) land cover classification method was applied that integrated spectral 

data, LiDAR elevation, and LiDAR derived ancillary data of slope, aspect, and TWI. 

Accuracy of remote wetland mapping was compared with onsite wetland delineation.  

The GEOBIA method produced land cover classifications with high overall 

accuracy (88 – 91 percent). Wetland area from a June 12, 2007 classified image was 

20.09 km2 out of a total area of 147.3 km2. Classification of a July 22, 2014 image, 

showed wetlands covering an area of 37.96 km2. The results illustrate how wetland areas 

have changed spatially and temporally within the study landscape. These changes in 

hydrologic conditions encourage additional wetland development and expansion as plant 

communities colonize rewetted areas, and soil conditions develop characteristics typical 

of hydric soils. 
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CHAPTER I 

INTRODUCTION 

In the Prairie Pothole Region (PPR) of the northern Great Plains, agriculture is the 

dominant economic and social driver of land use and land use change. Since European 

settlement of the region began, wetlands have been drained, often with the 

encouragement and aid of local, state, and federal government agencies (van der Valk 

1989). It is estimated that more than half of the original 8 million hectares of wetlands in 

the PPR have been lost, with rates exceeding 90 percent in the eastern portion of the 

region (Dahl 1990, 2006; Tiner 2003).  

Change to U.S. federal environmental policy under President G. H. W. Bush in the 

late 1980’s led to a national goal of “no net loss” of wetland area. Under this policy, 

unavoidable wetland losses must be offset by restoration or creation, thus, the science and 

practice of wetland restoration gained momentum (Mitsch and Gosselink 2007). Wetland 

creation and restoration are significant conservation practices in hydrologically altered 

and ecologically degraded landscapes. Although only a fragment of drained basins have 

been restored, wetland restoration in the PPR is an important component of the 

endangered tallgrass prairie ecosystem.  

In the eastern portion of the PPR more than 99 percent of tallgrass prairie has been 

converted to other land uses, mostly row crop agriculture (Samson, Knopf, and Ostlie 
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1998). Temperate grasslands are among the most altered and least protected of the 

world’s terrestrial biomes, making their protection a global conservation priority 

(Hoekstra et al. 2005). Recent reports continue to detect grassland and wetland 

conversion, and increasing habitat fragmentation as a result of changing trends in 

agriculture (Wright and Wimberly 2013; Roch and Jaeger 2014).  

Loss of biodiversity, reduced ecological function and declining ecosystem services 

necessitate continued conservation planning and strategic management of existing 

habitat. Scientists and land managers are responding to these needs by directing focus on 

entire ecosystem preservation, targeted restoration, and adaptive management (Rowe 

2010; Zedler, Dohery, and Miller 2012). These approaches are rooted in the biodiversity 

and ecosystem functioning hypothesis, that a large proportion of species diversity is 

necessary to maximize ecosystem productivity, stability, invasibility, and nutrient 

dynamics (Tilman, Isbell, and Cowles 2014), and that ecosystems should be preserved at 

the scale at which collective evolutionary processes that drive ecological diversity are 

sustained (Grumbine 1994;Hoekstra et al. 2005).  

The driving force of wetland ecosystem restoration is an understanding of hydrologic 

processes, the goal being to return a wetland to its original or previous condition (Mitsch 

and Gosselink 2007). Attributes of restored ecosystems develop at different temporal 

scales. While hydrology is returned quickly, vegetation may take several years to 

establish, and soils require decades (Zedler 2000). The success of restoration is often 

measured by the degree to which wetland function has been replaced (Mitsch and 

Gosselink 2007). Three broad requirements have been proposed for achieving successful 

restoration: understanding wetland function, designing structures that are ecologically 
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sustainable in the long-term, and giving the system time (Mitsch and Wilson 1996). 

Mitsch and Wilson (1996) also suggest ecosystem-level research after the system has had 

time to reach a steady-state or equilibrium as a more appropriate measure of success and 

guide for future restoration science than what is currently required to achieve regulatory 

satisfaction. Restorative programs typically require once or twice per year monitoring 

shortly after restoration completion.  

Following restoration, land managers have the task of land use planning and 

ecosystem management. Ecosystem monitoring is a long-term obligation in which land 

managers commit to a process of assessment and response. It is important to note that 

restoration sites are novel ecosystems that often contain decreased species richness and 

invasive or exotic species (Zedler, Dohery, and Miller 2012). To document ecological 

character or functional condition, a combination of attributes or indicators are established 

and monitored to characterize landscapes at any given point of time or detect changes 

over longer periods of time. Furthermore, to achieve optimum conservation management, 

ecological character and functional condition should be spatially projected at multiple 

scales across mixed land ownership (Jensen et al. 2000).  

The physical characteristics and spatial scale of wetlands can make quantitative 

analysis difficult. Remote sensing is an effective tool to inventory and monitor wetlands 

at large spatial scales (Mitsch and Gosselink 2007). Conservationists have traditionally 

used remote sensing to characterize and map habitat, however trends in remote sensing 

capabilities have expanded to incorporate ecosystem functioning variables such as energy 

balance, primary productivity, and hydrological characteristics (Cabello et al. 2012).   
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Study Objective 

Glacial Ridge National Wildlife Refuge (GRNWR) is located in the eastern 

portion of the PPR within the Northern Tallgrass Prairie/Aspen Parklands physiographic 

area (USFWS 2016). The refuge contains important fragments of remnant prairie and 

savanna, along with restored grassland and wetland ecosystems. Unique prairie-wetland 

complexes at GRNWR are habitat to resident wildlife, migratory wildlife, and other 

wetland and grassland obligate species including populations of greater prairie chicken 

(Tympanuchus cupido) and western prairie fringed orchid (Platanthera praeclara). The 

orchid is declared federally threatened with extinction and regulated under the 

Endangered Species Act (USFWS 2016). The site is presently the largest temperate-

tallgrass prairie-wetland restoration in the nation (Gerla et al. 2012). Initial goals to 

restore hydrology and vegetation to the site have been reached, however localized effects 

of restoration measures and baseline habitat conditions remain in question (USFWS 

2016).  

The U.S. Fish and Wildlife Service (USFWS) Comprehensive Conservation Plan 

(CCP) for the newly restored and established GRNWR identifies the collection of 

baseline biotic and abiotic information necessary to aid long-term refuge planning and 

management. The CCP also strives to complete a hydro-geomorphic analysis to evaluate 

wetland ecosystems in all refuge management units (USFWS 2016). By closing drainage 

ditches and applying wetland design principles, groundwater and surface water levels at 

GRNWR have changed, resulting in more water retained on the land (Cowdery, Lorenz, 

and Arntson 2008). These changes in hydrologic conditions affect the physical, chemical, 

and biological processes of the area. Anaerobic conditions encourage additional wetland 



  

5 
 

development and expansion as plant communities colonize rewetted areas, and soil 

conditions develop characteristics typical of hydric soils. 

This study aimed to analyze the relationship of hydrologic processes of restored 

prairie-wetlands on the adjacent land surface using remote sensing and Geographic 

Information Systems (GIS). The project examined the reconstruction of wetlands within 

GRNWR at two distinct periods of development. A better understanding of the spatial 

distribution of restored wetlands and wetland expansion will be valuable for adaptive 

management and future ecological research. The specific objectives of this research were 

to:  

1. Evaluate the effect of engineered wetlands and waterways on the distribution, 

location, size and temporal changes of wetlands within the Glacial Ridge 

National Wildlife Refuge using high-resolution, multispectral imagery, and 

ancillary data; 

2. Determine the accuracy of remote wetland mapping with onsite wetland 

delineation; 

3. Document baseline characteristics of vegetation, soils and hydrology of 

selected wetlands as a way to assess the biotic and abiotic conditions of these 

wetlands. 

Study Area 

The research area (147.3 km2) comprised land within the acquisition boundary of 

the GRNWR, located in Polk County, MN (Figure 1). Some of the land within the 

boundary is owned and managed by private individuals or conservation partners, 

including the Minnesota Department of Natural Resources (MN DNR) and TNC. The 
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land cover of the study area consists of mostly level to gently rolling remnant and 

restored tallgrass prairie interspersed with wetlands.  

 

Figure 1. Study area (147.3 km2), GRNWR located in Polk County in northeastern 

Minnesota. Image source: 2015 National Agriculture Imagery Program (NAIP). 

The climate of the study area is sub-humid continental and characterized by 

extreme variations in temperature and precipitation. Long-term climate trends reveal 

multi-year droughts often followed by wet periods. Air masses typically flow from west 

to east. Climate data from 2000 through 2014 indicate the extreme annual precipitation 

totals during the years 2000-2014 were 66.04 cm (26.00 in.) in 2010 and 33.86 cm (13.33 

in.) in 2011.  The average January temperature is -15.5 degrees C (4.1 degrees F) and the 

average July temperature is 21.39 degrees C (70.5 degrees F). The majority of 
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precipitation falls during the growing season months of May through September (High 

Plains Regional Climate Center 2017).  

Monthly precipitation data for 2007 and 2014, the image years analyzed in the 

study, are shown in Figure 2. Data were obtained from a gridded database whose values 

were calculated using data interpolated from Minnesota’s precipitation database 

(Minnesota Climatology Working Group 2017). A two-sample difference of means (t-

test) compared monthly precipitation data for significant difference. Among monthly 

precipitation data from the study area (N=12), there was no statistically significant 

difference between 2007 (M=5.09, SD=4.05) and 2014 (M=4.36, SD=4.67), t (11)= 1.11, 

p = 0.29  ≥ 0.05, CI95.    

 

Figure 2. Comparison of monthly precipitation totals from 2007 and 2014. Precipitation 

data set obtained from gridded database at 47.70297 degrees latitude, 96.28060 degrees 

longitude. 
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and surface water levels (Figure 3). The PHDI values typically range from -6 to +6, low 

values denote dry conditions while the higher values indicate wet conditions (NOAA 

National Centers for Environmental Information, Climate at a Glance: U.S. Time Series, 

Palmer Hydrological Drought Index (PHDI) 2017). In both 2007 and 2014, drought index 

values denote dryer conditions leading into the growing season, and wetter conditions 

throughout the growing season.  

 

Figure 3. Palmer Hydrological Drought Index values (2007 and 2014) for northwest MN.  
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CHAPTER II 

LITERATURE REVIEW 

Ecosystem Management 

Management of landscapes requires a systemic understanding of action and 

response through an experiment-based approach known as adaptive management. The 

USFWS adaptive management strategy uses data from inventories of plant communities 

to design and implement optimal management actions (Grant et al. 2009). The belt 

transect method is used by the agency to assess the general composition of tallgrass 

prairie vegetation managed by the USFWS (Grant et al. 2004; Grant et al. 2009). The 

method reliably conveys the status and trends of certain plant species and groups of 

management interest, can be applied quickly and effectively, and provides basic 

information to support development and application of models that describe wildlife 

habitat relationships (Grant et al. 2004).  

Landscape indicators of ecosystem condition are measures of the current state 

relative to reference conditions or predetermined limits of acceptable change. A 

combination of attributes or indicators are established and monitored to document 

ecological character at any given point of time or to detect changes over longer periods of 

time (Horwitz and Finlayson 2011). Ecological classifications of vegetation patterns are 

important to ecosystem assessments because they provide a summary of resource 

information when combined with associated plot-level attribute information. Field data 
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collected at the plot level through random sampling protocols can be spatially projected 

at larger mapping scales (Jensen et al. 2000).  

Wetland Identification 

Wetlands are spatially diverse and temporally dynamic, thus, there are no 

universally applicable methods for their identification and classification. Selection of data 

sources and methodology are often determined based on available information, type of 

wetland, and desired level of detail. There are several methods to classify and delineate 

wetlands. Onsite wetland delineation is the most precise method, in which a trained 

wetland delineator identifies the boundary between upland and wetland based on 

indicators of hydrophytic vegetation, hydric soil, and hydrology (USACE 1987).  This 

method produces accurate results but is often the most expensive, being both time and 

labor intensive. Onsite wetland delineation is often required for impacts to wetlands 

regulated under federal, state or local environmental policies. For unregulated activities, 

such as wetland ecosystem management or monitoring, onsite wetland delineation 

methods are not the most cost-effective or efficient.  

Remote sensing of wetlands has the advantage of repeat coverage at large spatial 

scales and integrates easily with other geospatial technology (Ozesmi and Bauer 2002). 

There are several methods to delineate and monitor wetlands using aerial photography or 

satellite data. Traditional image classification methods are based on spectral reflectance 

values of surfaces captured as individual pixels, therefore referred to as pixel-based 

methods (Ozesmi and Bauer 2002). The unsupervised classification or clustering method 

groups together similar pixels within multispectral data and requires the analyst to discern 

the informational classes that result (Campbell and Wynne 2011). Unsupervised 
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classification has historically been the most commonly applied remote wetland 

classification method; however, the technique often requires a large number of clusters 

and subsequent separation of mixed clusters to achieve success (Ozesmi and Bauer 

2002).  

Supervised classification is another method where samples of known pixel 

identity are used to classify pixels of unknown identity based on user defined training 

data (Cambell and Wynne 2011). Supervised classification methods commonly used to 

map wetlands are minimum distance to means, parallelpiped, and maximum likelihood 

classification (Ozesmi and Bauer 2002). These methods are limited by the spatial 

resolution of sensors used to collect the data. Coarse spatial data can omit small wetlands 

or result in mixed pixels that can reduce classification accuracy (Mui, He, and Weng 

2015).  

High Spatial Resolution Remote Sensing Data 

High-resolution data are becoming increasingly available and have greater 

potential to accurately map wetlands, including identifying small wetlands (Moffett and 

Gorelick 2013). The increase in resolution results in greater detail, but also greater intra-

class spectral variability making separation of land cover classes more difficult as single 

pixels are no longer representative of classification targets (Blaschke et al. 2000; Yu et al. 

2006; Mui, He, and Weng 2015). Classification of high spatial resolution imagery using 

traditional pixel-based methods often result in a salt-and-pepper effect where the outcome 

of classified pixels differ from adjacent pixels (Blaschke et al. 2000; Yu et al. 2006). For 

these reasons, traditional unsupervised and supervised classification methods are less 

suitable for processing high-resolution data (Blaschke et al 2000).  
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Geographical Object-based Image Analysis (GEOBIA) 

Object-based image analysis (OBIA) is an alternative to pixel-based analysis, 

where images are segmented into spectrally homogenous objects that are the building 

blocks for analysis (Blaschke et al. 2000). The term geographical object-based image 

analysis (GEOBIA) is used to distinguish earth science applications from other 

disciplines (Hay and Castilla 2008). This method simultaneously integrates spectral and 

non-spectral data such as pixel spectrum, spatial location, spectral homogeneity and 

shape of adjacent clusters of similar pixels (Moffett and Gorelick 2013). The resulting 

objects contain features such as measures of central tendency of the individual bands, 

spectral variability, and spatial dimensions that are geographically valuable and that can 

be related to landscape features (Blaschke et al. 2000; Maxwell et al. 2015). The most 

widely used commercial software for object-based image analysis is eCognition 

Developer (Trimble Inc., Sunnyvale, CA).  

GEOBIA involves two primary steps: segmentation or grouping of spatially 

adjacent pixels into spectrally homogenous objects, and classification with objects as the 

minimum processing unit (Yu et al. 2006). The variation and inconsistency among user 

inputs are noted as current barriers to broad application of GEOBIA methods to map 

wetlands (Moffett and Gorelick 2013). Wetland mapping using GEOBIA can be 

improved with the inclusion of information from ancillary data (Yu et al. 2006; Kim, 

Madden, and Xu 2010). Additional environmental information such as elevation, slope, 

aspect and landscape indicators represented by indices have been added to improve 

classification on the premise that plant diversity patterns are influenced by environmental 

conditions that create microhabitat conditions (Yu et al. 2006; Moeslund et al. 2013). 
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Also, wetlands and water bodies are positioned topographically low in the landscape in 

close association with groundwater and surface runoff (Mitsch and Gosselink 2007; Mui, 

He, and Weng 2015).  

Segmentation 

A variety of segmentation algorithms are available using eCognition Developer 

9.1 software, multiresolution segmentation being the most commonly applied in wetlands 

research (Moffett and Gorelick 2013; Mui, He, and Weng 2015). Multiresolution 

segmentation is a bottom up merging algorithm that begins with individual pixels as 

seeds that are clustered together into groups based on spectral and spatial heterogeneity 

criteria (Trimble Inc. 2015). In this process, user defined threshold parameters constrain 

the size of objects (Yu et al. 2006).   

Three user defined inputs are required to apply the multiresolution segmentation 

algorithm: (1) color and shape parameters that are weights between zero and one that 

determine the contribution of spectral heterogeneity (color); (2) smoothness and 

compactness parameters that are weights between zero and one and determine how the 

object shape is calculated; and (3) scale parameter, a unitless number or threshold which 

limits overall object color and shape complexity (Platt and Rapoza 2008; Moffett and 

Gorelick 2013). Spectral heterogeneity is defined as the sum of standard deviations of 

each image band (Platt and Rapoza 2008). Small scale parameters produce small objects 

while larger scale parameters produce larger objects. Pixels with similar spectral, textural 

and shape characteristics are merged together. Any type of spatially distributed data such 

as elevation can added as an input segmentation parameter to produce image objects 

(Jensen 2005). Presently there are no unified recommendations for segmentation 
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parameters, selection is best determined through a trial-and-error based approach (Platt 

and Rapoza 2008; Ke, Quackenbush, and Im 2010; Duro, Franklin, and Dubé 2012; Mui, 

He, and Weng 2015).   

Classification 

Once scenes are segmented into homogenous objects, the next step is 

classification, or assignment of classes to objects based on feature characteristics. 

Spatially distributed environmental data within objects, such as elevation, slope, aspect 

and vegetation or wetness indices can also be used for classification (Ke, Quackenbush, 

Im 2010). One method commonly used for GEOBIA classification is a supervised 

approach known as nearest neighbor classification (Yu et al. 2006; Platt and Rapoza 

2008; Mui, He, and Weng 2015). This method is popular because variables derived for 

image objects do not typically obey normal parametric statistical distributions; thus, is 

suitable for integration of spatial data into the classification process, and the training 

sample size for each class may vary due to the uneven distribution of vegetation (Foody 

2002; Trimble Inc. 2015; Pham, Brabyn, and Ashraf 2016). The supervised nearest 

neighbor algorithm classifies unknown samples by comparing their location in the feature 

space to those of known training samples based on suitable similarity or distance metric 

(Yu et al. 2006).  

Ancillary Data 

 Image data and ancillary data of various origins can be analyzed simultaneously 

in GEOBIA (Trimble Inc. 2015). In addition to image band derivatives, ancillary data 

sources can provide useful information to improve classification results. Ancillary data 

can be incorporated into the GEOBIA process during either the segmentation or the 
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classification phase. The utility of including ancillary data sources has been evaluated in 

wetland and non-wetland landscapes (Yu et al. 2006; Mui, He, and Weng 2015; Pham, 

Brabyn, and Ashraf 2016). Data of differing resolution can be synchronized using 

software. To combine image layers with different resolutions, images with lower 

resolution are resampled to the size of the smallest pixel size (Trimble Inc. 2015). 

 A detailed vegetation classification by Yu et al. (2006) used high spatial 

resolution aerial imagery to test the efficiency of a supervised nearest neighbor object-

based approach incorporating image band derivatives and ancillary layers. The study 

sought to determine the most important features for classification. Spectral features of 

objects in the analysis included mean, standard deviation, band ratio, intensity, hue and 

saturation. Topographic parameters used in the study were elevation, slope, aspect and 

distance to watercourses. Findings concluded that the addition of topographic information 

as ancillary information was a very important feature to improve vegetation classification 

accuracy whereas textural and geometric features were less significant. This study also 

concluded that supervised nearest neighbor object-based method outperformed traditional 

pixel-based methods.  

 Mui, He, and Weng (2015) delineated wetlands across natural and human-altered 

landscapes using a supervised nearest neighbor classification approach in eCognition. 

The study detected wetlands across natural, agricultural, and urban landscapes and 

achieved overall accuracy results greater than eighty percent across all study sites. 

Multiple input layers were incorporated into image segmentation including the four 

multispectral bands of blue, green, red and near-infrared, a digital elevation model 

(DEM) layer, normalized difference vegetation index (NDVI) layer, and a standard 
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deviation texture layer. Results determined that input of these layers improved overall 

results, most notably that elevation data improved segmentation of wetland boundaries of 

palustrine (inland) wetlands.  

 Pham, Brabyn, and Ashraf (2016) combined GIS and image analysis techniques 

to improve classification accuracy by including mean and standard deviation values of 

elevation, slope, aspect and topographic wetness index (TWI) as image object features. 

Results showed that the green and near-infrared bands were the most valuable for 

separating classes, and that topographic features, especially mean slope and mean 

elevation were more valuable than textural data. Studies of forest land cover have 

confirmed the benefit of combining spectral and LiDAR-derived metrics during both 

segmentation and classification concluding that inclusion of this data leads to higher 

classification accuracy (Ke, Quackenbush, and Im 2010; Pham, Brabyn, and Ashraf 

2016). 

Restoration History of Glacial Ridge National Wildlife Refuge 

Restoration measures at GRNWL have been completed; land managers now have 

the task of long-term planning, implementation, and monitoring. Although the goal of 

restoration is the return of an ecosystem to a historic, less-degraded condition, this goal is 

not always achievable due to the severity of impact or irreversible changes to biotic or 

abiotic factors (Zedler, Dohery, and Miller 2012). Community composition and structure 

of restored landscapes change over time as ecological succession occurs. Restoration 

measures at GRNWL began in 2000 and completed in 2012. The project was initiated by 

The Nature Conservancy (TNC) and was a coordinated partnership among more than 

thirty organizations. In total, 14 small tallgrass prairie remnants were reconnected to 
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create 15,200 ha of contiguous habitat. It is estimated that approximately 177 km of 

drainage ditches were filled, 1,242 ha of wetlands were restored, and 8,100 ha of native 

vegetation were reestablished (Gerla et al. 2012). Ownership was transferred to USFWS 

beginning in 2004, with a second transfer in 2012 (Benjamin Walker, Wildlife Biologist, 

USFWS 2016, personnel communication).  

According to Cowdery, Lorenz, and Arntson (2008), the site is located on the 

former eastern shoreline of glacial Lake Agassiz, which was present on the landscape 

approximately 11,600 to 9,500 years ago. After the lake drained, the area remained a 

complex of north-south beach ridges, dry prairie, mesic prairie and diverse shallow 

wetlands. The distinct linear beach ridge formations that persist are three to five meters 

high, and greater than thirty-five meters wide, with continuous length that varies upon 

location. Soils range from gravel, till, coarse sand, fine sand, silt and clay. The primary 

influences on local hydrology are precipitation, local groundwater flow and 

evapotranspiration.  

Beach ridges are surficial aquifer features. Historically, the ridges acted as dams, 

creating back-beach basin wetland formations. On the western side of slopes, where 

groundwater seeps down gradient, discharge fens and wet meadows often develop. This 

unique geomorphology results in wetlands that are closely interwoven between dry gravel 

prairies. Prior to agricultural drainage, surface water flow was parallel to and behind 

beach ridges. Surface flow was often inhibited until depressions or low areas allowed the 

flow to cut across a ridge to join an adjacent inter-beach swale. Hydrologic flow trends 

from southeast to northwest, intersecting several beach ridge recharge and discharge 
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zones on its path towards the Red and Red Lake Rivers (Cowdery, Lorenz, and Arntson 

2008; Gerla et al. 2012).  

Beginning in the 1920s, an extensive network of private and public drainage 

ditches were constructed to remove excess water and drain wetlands to make farming 

conditions favorable. Most small private drainage ditches were constructed in the 1980’s 

as wheat and soybean production in the area increased (Cowdery, Lorenz, and Arntson 

2008).  Ditches ranged in size from small scrapes on private land to large drainage 

channels administered by local governments (Gerla et al. 2012). Major ditches were 

constructed parallel to the beach ridge orientation, and in places cut directly through a 

ridge.  

Design and financial support for wetland restoration was largely provided through 

Wetland Reserve Program (WRP) contracts administered by the Natural Resources 

Conservation Service (NRCS). According to Gerla et al. (2012), a combination of 

approaches were employed to restore hydrology including installing ditch plugs, filling, 

compacting, and re-grading previously excavated soil. Some ditches that could not be 

decommissioned due to potential effects on neighboring property were reconstructed to a 

more natural configuration while still maintaining runoff.  

Project managers set high standards for the vegetative quality of the restoration. 

Native seed was mechanically harvested from nearby native prairies according to 

landscape position, and was tested by private laboratories to assure seed germination 

success. In addition to this, spring flowering species were collected by hand and 

supplemented to the mixture. Seeding techniques varied between drilling and dormant 

season broadcasting. Long-term vegetation goals identified early in the planning process 
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stated all restorations would contain at least 25 percent of possible native plant species 

characteristic of the target community, and at least 75 percent cover in all restorations 

would be native vegetation (Gerla et al. 2012). 

Regional Hydrological Assessments 

Prairie wetlands are spatially, temporally, and chemically diverse (van der Valk 

1989). Because the restoration of GRNWR was such a vast undertaking, several studies 

address hydrological properties unique to the site. Melesse et al. (2006) document the 

spatial and temporal evapotranspiration response of restoration activities from 2000 to 

2003. Five sub-basins were delineated to represent different stages of restoration and 

response. Remotely sensed data were used to estimate components of the surface energy 

budget related to evapotranspiration. The study detected a 50 percent increase in 

evapotranspiration over the study period as a result of increased hydrology because of 

wetland restoration. Gerla (2007) investigated the flood mitigation potential of large 

restoration projects, specifically, the effect of cropland to grassland conversion on peak 

storm run-off in five and 25 year, 24 hour rainfall events. The methodology combined 

curve numbers, GIS and stochastic analysis to predict changes in run-off. The study 

concluded that cropland to grassland conversion would lead to an average 40-55 percent 

reduction in peak run-off. 

The most comprehensive characterization of local hydrology near GRNWL is a 

report produced by Cowdery, Lorenz, and Arntson (2008). This investigation sought to 

address concerns identified during early planning stages of the restoration related to 

blocking, modifying, or removing ditches, reconstruction of wetland basins, and 

reintroducing and managing native plant communities. The study was a cooperation 
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between the U.S. Geological Survey (USGS), TNC, and Red Lake Watershed District, 

and provided detailed, pre-restoration hydrologic information on the study area to assist 

restoration managers and decision makers. Groundwater, surface water, and water quality 

were evaluated though a network of 72 groundwater wells, seven ditch gauges, 11 

wetland gauges, and one lake gauge.  

The report predicted groundwater levels would rise in response to increased water 

in surrounding wetlands and result in overall increased ground-water storage. Authors 

address uncertainty of the effect an increase in groundwater storage would have on 

wetlands, particularly in areas where ditches that cut through beach ridges have been 

filled in. Two scenarios were presented regarding hydrological effects of restoration 

activities: 1) the water table was expected to rise in these areas, which could increase wet 

meadow or fen development in positions down gradient from restored wetlands; 2) 

existing fens that receive water from a surficial aquifer down gradient from newly 

constructed wetlands could experience changes to groundwater discharge that are either 

diffuse or concentrated. If discharge is diffuse, the size of fen could increase as plant 

communities recolonize wet areas. If discharge to the fen is concentrated in a few areas, 

conditions could become wetter to the point that fen communities are no longer tolerant 

to the rising water levels.   

As GRNWR enters a new phase of long-term monitoring and adaptive habitat 

management, this study will be a valuable exploratory evaluation of remote sensing and 

GIS capabilities coupled with field-based data collection efforts of targeted communities 

within the prairie-wetland landscape. GRNWR land managers will begin to employ the 

belt transect method of data collection in 2017 in an effort to implement, monitor, and 
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evaluate conservation plan objectives (Benjamin Walker, Wildlife Biologist, USFWS 

2016, personnel communication). The combination of remote sensing with field study 

can be used to quantify specific variables of ecosystem function that are broadened 

regionally to support conservation efforts such as setting baseline conditions to assess 

environmental change, monitoring ecological restorations, and supporting ecosystem 

services evaluation.  
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CHAPTER III 

METHODS 

Analytical Processes 

In this study, combination of remote sensing and GIS analytical approaches were 

used to evaluate and classify patterns of land cover change over time. A multilevel 

procedure was implemented including: data acquisition and preprocessing, segmentation, 

creation of training objects, object classification, accuracy assessment, GIS hydrological 

analysis, and field validation. An overview workflow is shown in Figure 4.  

First multispectral image scenes and LiDAR DEM data were acquired. Second, 

ancillary data sets of slope, aspect and TWI were produced from the LiDAR DEM. Next, 

objects were created based on multispectral image data and LiDAR DEM using the 

multiresolution segmentation algorithm. Training samples were generated based on 

review of aerial imagery and site knowledge. Classification was performed separately on 

images incorporating spectral and spatial features using the nearest neighbor algorithm. 

Classification accuracy assessment was conducted for each image through the creation of 

an error matrix based on a random sampling method of point generation. Next, a GIS-

based hydrological analysis was conducted that incorporated vector files from wetland 

restoration practices and classification results. A final classification field validation was 

completed on selected wetlands based on methods derived from the belt transect method 

and standard wetland delineation procedures.  
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Figure 4. Process workflow for GEOBIA classification of GRNWR.  
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Data Acquisition and Preprocessing 

Data included in the analysis (Table 1) represent variables of two main categories: 

1) spectral data derived from aerial sensors and 2) spatial or ancillary data derived from a 

LiDAR DEM that represents terrain attributes of the physical environment. The study 

area boundary ArcGIS file was obtained from the USFWS. All spectral and ancillary data 

were coregistered and clipped to the study area boundary using ArcGIS™ 10.4 (ESRI, 

Redlands, California). Image object creation and classification was performed using 

eCognition Developer 9.1 (Trimble Inc., Sunnyvale, CA) object-based image analysis 

software. Wetland restoration vector data were obtained from TNC restoration project 

records and imported directly into ArcGIS™ 10.4 (ESRI, Redlands, California) for 

hydrological analysis.  

Table 1. Summary of data collection 

Data Type Origin Spatial/Temporal Reference 

AEROCAM Aerial Color 

Infrared 

Imagery 

Remote 

Sensing 

2.44 m/ 

June 12, 2007 

UND Department of 

Earth System Science & 

Policy, Grand Forks, ND 

USFWS 

IMAGE 

Aerial Color 

Infrared 

Imagery 

Remote 

Sensing 

0.2 m/ 

July 22, 2014 

USFWS Region 3, St. 

Paul, MN 

LiDAR 

DEM 

Digital 

Elevation 

Model 

Derived 

from 

LiDAR 

3 m/ 

April 18-19, 2008 

Minnesota Geospatial 

Commons 

https://gisdata.mn.gov/ 

Restored 

Ditches 

Line Vector Geo-

referenced 

Digital Data 

 

2002-2010 

Dr. Phil Gerla  

UND Department of  

Geology & Geological 

Engineering  

Restored 

Wetlands 

Polygon Geo-

referenced 

Digital Data 

 

2002-2010 

Dr. Phil Gerla  

UND Department of  

Geology & Geological 

Engineering 

Study Area Polygon Geo-

referenced 

Digital Data 

147.3 km2 

2016 

USFWS GRNWR 

Erskine, MN 
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Multispectral Image Data 

 

Two high-resolution, multispectral images were selected for their potential to 

differentiate variable ground conditions. The spectral range of visible and near-infrared 

bands allowed for detailed information extraction. Because of the specific target dates of 

the change detection analysis, images from two sources were acquired. The first image 

represents conditions during the middle phase of the grassland and wetland restoration 

period. The later image represents post-restoration conditions.  

An Airborne Environmental Research Observational Camera (AEROCam) 

multispectral image was captured on June 12, 2007 as a result of the Upper Midwest 

Aerospace Consortium (UMAC) project at the University of North Dakota (UND). This 

image had a 2.44 m spatial resolution and three multispectral bands, green, red, and near-

infrared (NIR). A second image captured on July 22, 2014 was obtained from the 

USFWS, and had a spatial resolution of 0.2 m. This image also contained three 

multispectral bands: green, red and NIR. Both multispectral images were radiometrically 

corrected and georeferenced prior to acquisition.  

LiDAR Data 

 A 3-m spatial resolution LiDAR DEM was obtained from Minnesota Geospatial 

Commons (https://gisdata.mn.gov/). LiDAR data covering the study area were acquired 

on April 18 and 19, 2008, as a part of the Red River Basin Mapping Initiative 2008-2010, 

coordinated by the International Water Institute (IWI). The original data have a 

horizontal positional accuracy of one meter and vertical positional accuracy of 15 cm. 

This study uses the LiDAR DEM to develop the ancillary data sets of slope, aspect and 

topographic wetness index (TWI) used in the nearest neighbor classification.  
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Ancillary Data 

The Spatial Analyst toolset in ArcGIS™ 10.4 (ESRI, Redlands, California) was 

used to create several raster datasets from the LiDAR DEM. The slope tool was applied 

to produce a slope grid, in degrees. Slope is related to overland and subsurface flow, and 

quantifies the maximum rate of change in value from each cell to its neighbors. An aspect 

surface raster was created using the Aspect tool. Aspect represents downslope direction 

of the maximum rate of change between neighboring cells. 

A flow accumulation grid and slope comprise TWI. For development of TWI, a 

value of 0.001 was added to each cell of the slope grid using Raster Calculator tool. This 

marginal addition increased the angle to avoid division by zero in subsequent TWI 

calculations. The final slope grid was multiplied by 0.0175 to convert to radians. 

Elevation irregularities or sinks were removed from the LiDAR DEM using the Fill tool. 

A flow direction grid was produced using the Flow Direction tool. The flow direction 

grid represents flow from each cell to its steepest downslope neighbor. Next, the flow 

direction grid was applied to the Flow Accumulation tool to produce a flow accumulation 

grid, a grid of accumulated flow into each cell. Flow accumulation is also referred to as 

catchment area as it represents overland flow paths within the watershed or drainage area.  

TWI is commonly used to derive information about the spatial distribution of 

wetness. It is a function of both slope angle and upslope contributing cells (Moeslund et 

al. 2013). TWI was produced using the Raster Calculator tool using the following 

formula:  

TWI = ln (_As_) 

    tan βi 
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where TWI is the natural log (ln) of the ratio of the specific catchment area (As) 

expressed as m2 per unit, divided by the tangent of the slope angle βi expressed in radians 

(Grabs et al. 2009). A low-pass 3 x 3 filter was run over the TWI output to remove minor 

variability produced using the Neighborhood tool. The slope, aspect and TWI were based 

on 12-Digit HUC, USGS watershed boundary, later clipped to the study area boundary.  

Segmentation 

The image segmentation operation in eCognition Developer 9.1 subdivides 

images into new image objects. Image objects contain both spectral and spatial elements 

referred to as, features. The multiresolution segmentation setting was selected due to its 

predominant use in previous studies. Input layers for image segmentation were the three 

spectral bands and elevation. For each image layer, the segmentation weight was equal. 

Scale parameters were designated for each image through a trial-and-error approach.  

Two different scale parameters were selected due to the differing spatial 

resolution of the images. A scale parameter of 50 was selected for the June 12, 2007 

image. A scale parameter of 70 was selected for the July 22, 2014 image. For both 

images, the color and shape parameter was set at 0.1; and the smoothness and 

compactness parameter was set at 0.5. A subset example of segmentation results are 

shown in Figure 5. 
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Figure 5. Subset of image segmentation results.  

Training Samples 

Nearest neighbor classification uses training samples of different classes to assign 

membership values (Trimble Inc. 2015). Training samples, typical representations of 

each class were manually selected based on aerial imagery and prior site knowledge. A 

minimum of 100 training sample objects were selected for each class. The following 

classes were defined: Grassland, Wetland, Open Water, Forest, and Developed (Table 2). 

A Cropland class was analyzed for the 2007 image classification due to the significant 

occurrence of the land cover. It was standard practice during the restoration period to 

complete the restoration seeding following a crop rotation of soybeans. In the 2014 image 

analysis, remaining Cropland is included with the Grassland class. A subset portion of 

manually selected training samples are shown in Figure 6. 
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Table 2. Land cover class descriptions.  

Class Description 

Grassland Land where vegetation is dominated by grass and forbs 

Wetland Fen, wet meadow, marsh, shrub wetland and similar wetland types 

Open Water Areas persistently covered with water (e.g. lakes, open water 

wetlands, gravel pit pond 

Forest Closed canopy forests 

Developed Areas with man-made structures (e.g. roads, gravel pit, buildings) 

Cropland Land used for agricultural production 

 

 

Figure 6. Manually selected training sample objects.  

Classification 

Classification was performed with the supervised nearest neighbor classifier 

method, in which image objects are distributed to classes based on their nearest sample 
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neighbors. The nearest neighbor calculation in eCognition Developer 9.1 computes 

distance using the formula:  

d = √ ∑( vf (s) – vf (o) )2 

                                                               f            σf 

 

where d is the distance between sample object s and image object o; vf (s) is the feature 

value of sample object for feature f; vf (o) is the feature value of the image object for 

feature f, and σf is the standard deviation of the feature value for feature f. Distance of the 

feature space between a sample object and the classified image object is standardized by 

the standard deviation of all feature values (Trimble Inc. 2015). The nearest neighbor 

feature space was constructed using mean and standard deviation feature values of pixels 

within objects calculated from input layers of all three multispectral image bands, 

elevation, slope, aspect and TWI. These features were selected based on their identified 

importance in previous studies. 

 The two classified images were stacked and reclassified based on the mode value 

of the class name to distinguish areas of potential wetland change. Objects classified as 

Open Water and Wetland were combined into a new category representing wetness (Wet). 

All remaining classes were grouped as Dry.  The stacked images were separated into four 

image classes: 1) Dry (Both 2007 & 2014); 2) Wet (Both 2007 & 2014); 3) Wet 2007; 4) 

Wet 2014. The results of this final image processing step were used for the GIS 

hydrological analysis. Both of the classified images and the stacked image product were 

exported as shapefiles to be further analyzed in ArcGIS.  

Assessment of Classification Accuracy 

The multinomial distribution method was used to determine sample point size 

according to the formula: 
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N = B Πi (1- Πi) = B = 1-(α/k) x100 

        bi
2 

 

where Π is the proportion of a population in the ith class out of k classes that is closest to 

50 percent; b is the desired precision (5 percent); and B is the upper (α/k) x 100 percentile 

of the chi squared distribution with 1 degree of freedom; k is the number of classes 

(Manly 2009). The probability of error was established at 95 percent.  

An error matrix was constructed for each of the classified images to evaluate the 

overall accuracy, user’s accuracy (measure of omission error) and producer’s accuracy 

(measure of commission error).  Post classified image objects were converted from 

polygon features to raster data using the Polygon to Raster tool in ArcGIS™ 10.4 (ESRI, 

Redlands, California). Two separate point generation methods were adjoined using the 

Create Accuracy Assessment Points tool. First fifty points were randomly generated for 

each class. Random points were supplemented by a stratified random sample. This 

method of point generation creates randomly distributed points within each class where 

each class has a number of points proportional to its relative area (Campbell and Wynne 

2011). The two methods were combined to assure that each class had a minimum of 50 

sample points. For each point, the land cover class assigned was visually compared with 

the corresponding area in the aerial imagery. The totals from both methods of point 

generation were combined in a single error matrix. Overall accuracy was derived by 

counting how many of the image points were correctly classified. 

Classification results were compared to the original aerial images used in the 

classification procedure. This was done because no other high-resolution images were 

available for the location and dates of the study. The option of using a former or later 
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year image from another source was considered and rejected due to the rapidly changing 

hydrological conditions on the restoration site. Also, the images used for classification 

were easily distinguishable, having very high spatial resolution. Results of the confusion 

matrix indicate how many points were assigned to their correct class or misclassified into 

another class.  

GIS Hydrological Analysis 

Two vector shapefiles were obtained from the restoration and design plans of 

GRNWR: a ditch file showing locations of filled ditches; and a wetland restoration file 

showing locations of restored wetlands. The ditch file was a line-based shapefile feature 

class representing ditches filled during the restoration period between 2002-2010. The 

wetland restoration polygon shapefile was a digitized representation of restored wetland 

basins constructed between 2002-2010. A 121.92 meter (400 ft.) buffer was created 

around the ditch file using the Buffer tool in ArcGIS™ 10.4 (ESRI, Redlands, 

California). This distance was selected to represent maximum lateral distance of 

influence of a ditch restoration on hydrology as determined from local soil type and ditch 

depth, also called, lateral effect. Lateral effect is defined as the width of land adjacent to a 

ditch that has had its hydrology modified such that it no longer satisfies wetland 

hydrologic criteria (Skaggs,Chescheir, and Phillips 2005).  

 Using the results of the stacked classified images, objects representing wetness 

(Wet) were analyzed according to their proximity within the ditch buffer or outside of it. 

To quantify classified wetlands influenced by ditch systems in 2007, the Wet 2007 and 

Wet (Both 2007 & 2014) objects were summed within the ditch buffer and outside the 

ditch buffer. To quantify wetlands influenced by filled ditch systems in 2014, the Wet 
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2014 and Wet (Both 2007 & 2014) objects were summed within the ditch buffer and 

outside the ditch buffer. 

Determining Field Sampling Sites 

A new Wet_2014 vector polygon shapefile was extracted from the results of the 

image analysis. This file represented “newly wet” hydrologically restored areas that were 

classified as wetland or open water, in the July 22, 2014 image, and classified Dry based 

on the June 12, 2007 image results. The Wet_2014 polygons were clipped using the 

buffered ditch file as clip feature. This resulted in a new output of wetland areas locally 

affected by the filled ditches. This new feature class was overlaid with the wetland 

restoration shapefile containing known restored wetland basins. The Erase tool was used 

to eliminate the known restored wetland basins, leaving only those wetland polygon areas 

within the lateral effect of the ditch buffer, but not contained in the wetland restoration 

shapefile. This process was done to target areas of potential wetland expansion to be 

further investigated through the field validation process. Furthermore, these potential 

wetlands were highlighted as they are directly attributed to restoration practices.  

Field Validation  

The field validation effort was completed to gain further insight as to how 

automated land cover mapping from remote sensing data relates to different land cover 

types on the ground. Belt transects were used to assess general composition 

characteristics of select wetland sites. The onsite wetland delineation provides precise 

boundary data that can be related to the remote land cover mapping from the image 

classification. It is important to note that data collection occurred during the growing 
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season of 2016, two years after the image analyzed so conditions are not directly 

relatable.  

Belt Transect Method 

The belt transect method was applied on five randomly selected sites within the 

study area according to procedures described in the Grassland Monitoring Team 

Standardized Monitoring Protocol (Vacek et al. 2015). This vegetation assessment 

method was undertaken to be consistent with ongoing USFWS data collection efforts. 

The method is an efficient, yet reliable, way to measure and monitor the ecological 

condition of large expanses of grassland habitat (Grant et al. 2004).  

Random points were located in the field using a Trimble Geo XT handheld GPS 

unit. Because the sample points were anticipated to be in wetland habitats, the direction 

of the transect was determined perpendicular to the wetland edge. A measuring tape was 

stretched across the vegetation to a transect length of twenty-five meters and staked to 

prevent shifting. Visual obstruction reading (VOR) measurements were taken at the 

center-point of the transect (12.5 m), from the four cardinal directions (north, east, south, 

west) using a VOR pole. VOR readings were observed at a height of one meter and a 

distance of four meters from the pole. Litter depth measurements were recorded at five 

meter intervals along the transect.  

Dominant plant groups (Appendix B) were identified at each 0.1-meter by 0.5-

meter segment along the tape and plant group codes recorded. According to the protocol, 

plant group codes represent a range that spans from native-dominated to invasive-

dominated vegetation. The prevalence of invasive species along the transect were 

recorded according to whether they were present or dominant (greater than 50 percent of 
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the quadrant). Finally, the presence of quality indicator species were documented. Field 

data collection was completed in late summer when both cool and warm-season plants 

were recognizable.  

Onsite Wetland Delineation 

At each of the selected transect sites an attempt was made to delineate a portion of 

the wetland boundary as additional validation for classification results. Standardized 

wetland delineation procedures from the United States Army Corps of Engineers 

(USACE) Wetlands Delineation Manual and Great Plains Regional Supplement were 

used to identify boundaries based on evaluation of three criteria: soils, vegetation and 

hydrology (USACE 1987; 2010). Test points were identified in obvious upland positions, 

and contrasted with points in obvious wetland positions. A portion of the wetland 

boundary was recorded via GPS points between the two reference test points.  

Hydric soil indicators were evaluated in the field by digging a borehole 

approximately forty-five centimeters deep. The soil color was evaluated using hue, value, 

and chroma characteristics from the Munsell Color Chart for soils and recorded on field 

data sheets (Munsell Color 2015). Wetland hydrology indicators were inspected within 

the test hole to observe whether water seepage was encountered within thirty centimeters 

of the surface, as the presence of water within this depth is a strong indicator of a 

seasonal high water table (Lyon and Lyon 2011). Hydrological conditions were recorded 

on field data sheets.  

Wetland vegetation was assessed by identifying dominant plant species and 

comparing their occurrence to the National Wetland Plant List of plant species that occur 

in wetlands, published by the USFWS and maintained by the USACE (USACE 2016). 
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The probability of a plants occurrence in wetlands was rated in one of five categories: 

upland, facultative upland, facultative, facultative wetland, and obligate wetland. Table 3 

provides the estimated probability of occurrence in a wetland for each of the five 

categories. Estimates of areal cover were used to define dominant plant species. The plot 

sample sizes varied according to type of vegetation ranging from 1.5-m radius for 

herbaceous vegetation and 4.5 m for sapling/shrub vegetation. Locations were determined 

to have wetland vegetation when the total dominance of FAC, FACW, and OBL plants 

exceeded 50 percent of the total dominant plants found on the site (USACE 1989; 2010).  

Table 3. Vegetation categories for assessing wetland vegetation including abbreviation 

and probability percentage of occurring within a wetland.  

Plant Category Abbreviation  Probability of  

Wetland Occurrence  

Upland UPL < 1% 

Facultative Upland FACU < 33 % 

Facultative FAC 34% - 66% 

Facultative Wetland FACW 67% - 99% 

Obligate OBL > 99% 
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CHAPTER IV 

RESULTS 

 

Nearest neighbor object-based land cover classification was performed on both 

images. The June 12, 2007 image was extracted into six classes: open water, wetland, 

grassland, forest, developed, and cropland. The July 22, 2014 image was extracted into 

five classes: open water, wetland, grassland, forest and developed. Multispectral aerial 

imagery, DEM and LiDAR derived ancillary data were integrated into the classification 

dataset. Results of the GIS-based hydrological analysis provide detail on areas of 

potential wetland expansion resulting from adjacent constructed wetlands. Results of the 

field validation provide supplemental information to remote sensing classification.  

Ancillary Data 

Non-spectral ancillary data were derived from LiDAR DEM and integrated into 

the classification process. The slope gradient for the study area was calculated in degrees, 

and ranged from 0-55.75 (Figure 7). The mean slope value was 0.98, consistent with the 

general subdued topography of the landscape. Beach ridge features and roads have 

moderate slope. High slope values were concentrated in locations of gravel pits, roads, 

and steep berms of large impoundments.
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Figure 7. Slope values within study area reported in degrees.  

Results of the aspect raster are shown in Figure 8. Aspect is the cardinal direction 

of slope, measured clockwise in degrees from 0 to 360, where 0-22.5 is north-facing, 

67.5-112.5 is east-facing, 157.5-202.5 is south-facing, and 247.5-292.5 is west-facing. 

The aspect of a slope has significant influence on microclimate and on the distribution of 

vegetation (Domac and Suzen 2006).   
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Figure 8. Aspect values within study area shown in compass degrees.  

 

Results of the TWI show where water collects or ponds on the landscape (Figure 

9). Low TWI values are attributed to land that is almost never saturated and high values 

indicate land that is always saturated (Moeslund et al. 2013). Flow paths and areas of 

flow accumulation occur based on topography and slope, therefore TWI is a predictor of 

potential wetlands on landscape. In addition, water is a key driver of vegetation 

distribution (Pham, Brabyn, and Ashraf 2016). The mean TWI value across the study area 

was 6.67.
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Figure 9. Study area with values of topographic wetness index. Areas that are predicted to be wet are dark, while red 

areas are predicted to be relatively dry.   
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Image Classification Results 

 

The nearest neighbor image classification model integrated spatial and spectral 

properties. The classification maps (Figures 10 and 11) illustrate how wetland areas have 

changed spatially and temporally within the study landscape. For the June 12, 2007 

image, the area associated with wetlands was 20.09 km2 (± 3.82) out of a total area of 

147.3 km2 (Table 4). In the July 22, 2014 image, the classification resulted in wetlands 

covering 37.96 km2 (± 8.35) of a total area of 147.3 km2 (Table 4).   

Table 4. Land cover classification results including percentages.  
 

6/12/2007 7/22/2014 

Class km2 Acres Percent km2 Acres Percent 

Cropland* 34.35  

(± 5.50) 

8,489.2 

(±1,358.27) 

23% *Included in 

Grassland Class 
* * 

Developed 2.51  

(± 0.05) 

619.7  

(±12.39) 

2% 1.94  

(± 0.14) 

478.81 

(±33.52) 

1% 

Forest 8.63  

(± 0.60) 

2,133  

(±149.31) 

6% 7.96  

(± 0.48) 

1,966.93 

(±118.02) 

5% 

Open Water 0.97  

(± 0.03) 

239.65  

(±7.19) 

1% 1.00  

(± 0.05) 

247.63 

(±12.38) 

1% 

Grassland* 80.73  

(± 8.88) 

19,948.2 

(±2194.30) 

55% 98.43  

(±1.97) 

24,323.91 

(±486.48) 

67% 

Wetland 20.09  

(± 3.82) 

4,965.3 

(±943.41) 

14% 37.96  

(± 8.35) 

9,380.22 

(±2,063.65) 

26% 

*Cropland estimates only produced in 2007 data. For 2014 data, cropland was combined 

into grassland class.  

Results of the error matrix compare classified data to reference data. The diagonal 

of the matrix shows the number of points where the classified data are the same as the 

reference data, the values outside the diagonal show the number of points where the 

classified data is different from the reference data. The columns of the error matrix 

represent the reference data, while rows represent the classification data (Campbell and 

Wynne 2011).  For each image year, overall accuracy, Producer’s Accuracy (omission 

error) and User’s Accuracy (commission error) were generated.  
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The Producer’s Accuracy is a measure of the correctness of classified data, and is 

calculated by dividing the number of correctly classified points by the column total. It 

represents points that belong to a certain class but fail to be classified into that class 

(omitted). User’s Accuracy is a measurement of the probability that a point on a map 

accurately represents that category on the ground, and is calculated by dividing the 

number of correctly classified points by the row total. It represents points that belong to 

another class but are classified as belonging to the class (committed). Overall accuracy is 

the sum of all points classified correctly, divided by the total points assessed. It is a 

metric of overall correctness of the entire classified image without regard to specific 

classes (Campbell and Wynne 2011).  

The error matrix for the June 12, 2007 classified image produced an overall 

accuracy of 88 percent (Table 5). Open water was most accurately classified with a 

producer’s accuracy of 95 percent (omission error 5 percent).The user’s accuracy for the 

open water class was 97 percent (commission error of 3 percent). The classes that were 

least accurately classified were cropland and wetland. Cropland resulted in 83 percent 

producers accuracy (17 percent omission error); user’s accuracy of 84 percent 

(commission error of 16 percent). The wetland class resulted in 86 percent producer’s 

accuracy (14 percent omission error), and 81 percent user’s accuracy (19 percent 

commission error).  

With regard to the July 22, 2014 classified image, the overall accuracy achieved 

was 91 percent (Table 6). Open water was most accurately classified with a producer’s 

accuracy of 93 percent (7 percent omission error) and a user’s accuracy of 98 percent (2 

percent commission error. The wetland class also had a producer’s accuracy of 93 percent 



  

43 
 

(7 percent omission error), but a lower user’s accuracy of 78 percent (22 percent 

commission error).  

The final image processing step produced a stacked image that distinguished areas 

of potential wetland change. The spatial distribution of wetland areas that have 

undergone change are illustrated in Figure 12. Objects which were classified as Open 

Water and Wetland are shown as a combined new category representing both (Wet). All 

remaining classes are grouped as Dry. Areas identified as Wet in both images are 

assumed to be pre-existing wetlands or wetlands restored prior to 2007. Areas that were 

classified as Wet (in) 2014, but dry in 2007 indicate areas of expanded wetland change.   

Results of GIS Hydrological Analysis 

 

Restoration efforts at GRNWR resulted in the closure of drainage ditches 

constructed adjacent to, or through, wetlands. These drainage systems changed the 

hydrology of adjacent wetlands. The GIS Hydrological analysis used an estimation of 

lateral effect of a drainage ditch on the hydrology of wetlands to approximate wetland 

change that can be attributed to restoration practices. Table 7 provides an estimate of 

classified wetlands whose hydrology are affected by restored drainage ditches in their 

proximity. In 2007, restoration measures were ongoing; by 2014, the restoration 

structures were well established.  
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Figure 10. Output classification from June 12, 2007 image of GRNWR.
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Table 5. Classification error matrix for June 12, 2007 image.  

 Cropland Developed Forest Open Water Grassland Wetland Total   
Cropland* 176 3 1 2 19 8 209   
Developed 1 56 0 0 0 0 57   
Forest 2 0 77 0 3 1 83   
Open Water 1 1 0 56 0 0 58   
Grassland 28 2 11 0 403 9 453   
Wetland 4 1 0 1 20 111 137   
Total 212 63 89 59 445 129 997   

          

          
Overall Accuracy          

879/997= 88%         

          
Producer's Accuracy (measure of omission error) User's Accuracy (measure of commission error) 

Cropland* 83% 17% omission error Cropland 84% 16% commission error 

Developed 89% 11% omission error Developed 98% 2% commission error 

Forest 87% 13% omission error Forest 93% 7% commission error 

Open Water 95% 5% omission error Open Water 97% 3% commission error 

Grassland 91% 9% omission error Grassland 89% 11% commission error 

Wetland 86% 14% omission error Wetland 81% 19% commission error 
 

*Cropland was combined with grassland in the 2014 image analysis.  
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Figure 11. Output classification from July 22, 2014 image of GRNWR.
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Table 6. Classification error matrix. July 22, 2014 image.  

 Developed Forest Grassland Open Water Wetland Total    
Developed 52 0 2 1 1 56    
Forest 0 72 0 2 3 77    
Grassland* 2 13 433 0 9 457    
Open Water 1 0 0 56 0 57    
Wetland 5 4 36 1 161 207    
Total 60 89 471 60 174 854    

          

          
Overall Accuracy         

774/854= 91%         

          
Producer's Accuracy (measure of omission error) User's Accuracy (measure of commission error) 

Developed 87% 13% omission error Developed 93% 7% commission error 

Forest 81% 19% omission error Forest 94% 6% commission error 

Grassland* 92% 8% omission error Grassland 95% 5% commission error 

Open Water 93% 7% omission error Open Water 98% 2% commission error 

Wetland 93% 7% omission error Wetland 78% 22% commission error 

          

          
*Remaining cropland was combined with grassland class in the 2014 image analysis.  
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Figure 12. Spatial distribution of wetland areas that have undergone change. Wet (Both 

Years) objects indicate preexisting wetlands or wetlands restored prior to 2007. Wet 

(Only 2014) objects are assumed areas of wetland expansion occurring after 2007.  

 

Table 7. Total classified wetland and open water objects within and outside the lateral 

effect zone of restored ditches according to classification year.  
 

2007  2014   
(km2) (acres) (km2) (ha) 

Within Ditch Buffer  7.07 1747.04 16.48 4072.3 

Outside Ditch Buffer 13.86 3424.88 20.67 5107.67 

Total  20.93 5171.92 37.15 9179.96 
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Results of Field Validation 

To validate the results, five potential wetland areas were randomly selected to 

visit during the summer of 2016 (Figure 13). The selected field sites were classified as 

wetland based on the July 22, 2014 output, but non-wetland in the June 12, 2007 output. 

The sites were located within a 121.92 m (400 ft.) buffer of a filled ditch and outside of a 

constructed wetland basin. Plant composition and structure were assessed by applying the 

belt transect method. Site specific data from the collection protocol are provided on 

Vegetation Field Monitoring Datasheets in Appendix C. The resulting field validation 

maps in Figures 14-18 show locations of belt transect sites, which correspond to data 

sheets. The field-delineated wetland boundary was based on data collected from an 

upland sample point and a wetland sample point; the boundary was determined between 

these two points (USACE 1987). Wetland Determination Data Forms corresponding to 

upland and wetland sample points (SP) are provided in Appendix D.  

Figures 14-18 contain field data including locations of belt transect sites, wetland 

delineation boundaries and respective upland and wetland sample point locations. The 

data are overlaid on 2015 NAIP imagery and the July 22, 2014 image classification 

output in order to contrast automated land cover mapping and ground conditions. 

Locations of ditch closures and restored wetland basins are also shown in proximity to 

validation sites. Of the five potential wetland points selected for validation, four were 

confirmed to be within wetlands. Site three, shown in Figure 15, was classified as 

wetland but was determined to be non-wetland in the field.  

According to the grassland monitoring protocol, data collected in the field is 

meant to detect broad trends within the landscape. Variables related to prairie structure 
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and composition will be shared with USFWS staff. Variables are analyzed through an 

Access database hosted by the USFWS for biological monitoring. Data analysis serves 

the purpose of adaptive management modeling (Vacek et al. 2015).  

 

Figure 13. Randomly selected field validation sites visited to collect belt transect data and 

perform onsite wetland delineation. Image source: 2015 NAIP. 

Vegetation composition at site one (Figure 14) was mostly invasive (50-75 

percent), herbaceous grass. No quality indicators were present at site one. Invasives noted 

were Phalaris arundinacea (Reed Canary Grass), Agrostis gigantea (Redtop), Poa 

pratensis (Kentucky Bluegrass), and Cirsium arvense (Canada Thistle). Litter depth on 

the site ranged from 4-7 cm.  
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At site two (Figure 15), the vegetation composition was mostly native (50-75 

percent), herbaceous grass-forbs. Native quality indicators observed were Solidago 

speciosa (Showy Goldenrod), Solidago ptarmicoides (White Aster-like Goldenrod), 

Veronicastrum virginicum (Culver’s Root) and Zizia aptera (Heart-leaved Alexanders). 

Invasive species present were Poa pratensis (Kentucky Bluegrass), Bromus inermis 

(Smooth Brome), Agrostis gigantea (Redtop), Phalaris arundinacea (Reed Canary 

Grass), Cirsium arvense (Canada Thistle), and Melilotus alba (Sweet Clover). Litter 

depth ranged from 5-8 cm.  

Vegetation composition at site three (Figure 16) consisted of mostly native (50-75 

percent), herbaceous grass-forbs. Native quality indicator species included Solidago 

speciosa (Showy Goldenrod), Sorghastrum nutans (Indian Grass), and Solidago 

ptarmicoides (White Aster-like Goldenrod). Invasive species present were Poa pratensis 

(Kentucky Bluegrass) and Bromus inermis (Smooth Brome). Litter depth ranged from 4-9 

cm.  

At site four (Figure 16), the vegetation composition consisted of mostly native 

(50-75 percent), herbaceous, grass-forbs. Native quality indicator species included Zizia 

aurea (Golden Alexander), Thalictrum dasycarpum (Tall Meadow Rue), and Solidago 

ptarmicoides (White Aster-like Goldenrod).  The most common invasive present was 

Phalaris arundinacea (Reed Canary Grass), interspersed along the transect. Litter depth 

ranged from 4-6 cm.  

The vegetation composition at site 5 (Figure 18) comprised a mixture of mostly 

native (50-75 percent) herbaceous grass and grass forbs, and mostly invasive (50-75 

percent grass and forbs. Native quality indicator species included Sorghastrum nutans 
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(Indian Grass), Solidago ptarmicoides (White Aster-like Goldenrod), and Solidago 

speciosa (Showy Goldenrod). Invasive species present in the transect include Poa 

pratensis (Kentucky Bluegrass), Bromus inermis (Smooth Brome), Agrostis gigantea 

(Redtop), Phalaris arundinacea (Reed Canary Grass), Cirsium arvense (Canada Thistle), 

and Melilotus alba (Sweet Clover). Litter depth ranged from 1-5 cm.  
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Figure 14. Field validation site one. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).   



  

54 
 

 
Figure 15. Field validation site two. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).   
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Figure 16. Field validation site three. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).   
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Figure 17. Field validation site four. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).   
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Figure 18. Field validation site five. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).  
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CHAPTER V 

DISCUSSION  

Image Classification 

This study addressed GEOBIA results of two image classifications of GRNWR 

that tested its potential to evaluate wetland changes with high-resolution, multispectral 

imagery, and non-spectral ancillary data. The image classification model that integrated 

spectral data, LiDAR elevation, and LiDAR derived ancillary data of slope, aspect, and 

TWI resulted in classifications with high overall accuracy. The incorporation of ancillary 

topographic data was considered to be an important addition, as vegetation distribution is 

highly influenced by topographic features (Kim, Madden, and Xu 2010, Moeslund et al. 

2013). In this study, the segmentation with spectral bands and elevation data produced 

results with high overall accuracy comparable to those achieved in similar studies.  

The overall accuracy for the June 12, 2007 image is 88 percent (Table 5). Results 

show that the accuracy of the classification varies from one land cover type to another. 

For example, open water achieved the lowest omission error, five percent, omitting 

portions of cropland and wetland. Grassland had the second lowest omission error (9 

percent), omitting wetland and cropland areas. The wetland class (14 percent omission 

error) omitted areas of cropland and grassland. Results of user’s accuracy show 

developed land was correctly classified 98 percent of the time. Similarly, open water was 

correctly classified 97 percent of the time with a few commission errors from developed 

land and cropland. The classification model confused grassland areas with cropland, 

forest and wetland areas 11 percent of the time. The wetland class had the highest error of 

commission (19 percent) due to inclusions predominantly from grassland.  
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The July 22, 2014 classified image achieved an overall accuracy of 91 percent 

(Table 6). The open water class (7 percent omission error) omitted areas of forest, 

wetlands and developed lands. The wetland class (7 percent omission error) omitted areas 

of grassland, forest and developed land. The grassland class (8 percent omission error) 

omitted mostly wetland areas. The developed land class (13 percent omission error) 

omitted areas of wetland, grassland and open water. The forest class had the highest error 

of omission (19 percent), resulting from grassland and wetland omissions. Regarding 

errors of commission, open water produced the lowest result at two percent. Developed, 

grassland and forest classes resulted in similar commission errors at 7 percent, 6 percent 

and 5 percent, respectively. The wetland class had the highest commission error at 22 

percent due to misclassification errors mainly of grassland.  

Open water resulted in the highest classification accuracy in both images. This is 

consistent with surface water extraction studies, which conclude that the NIR band has a 

high ability to discriminate water, in which is strongly absorbed, while NIR is strongly 

reflected by terrestrial vegetation (Campbell and Wynne 2011). In both images, the 

classification accuracy assessment showed the wetland class resulted in the greatest 

percentage of commission (user’s accuracy) error. This means that a portion of wetlands 

were classified by the model, yet confirmed to be grassland when compared to aerial 

images representing actual ground conditions. These results suggest the model slightly 

overestimated wetland areas, as compared with other classes.  

The overestimation of wetland areas may be an effect of several conditions. In 

this model, wetland areas may be prone to misclassification due to data redundancy in the 

input variables. The topographic variables used in this study are influenced by the quality 
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and resolution of the DEM from which they were derived. Errors within the original 

DEM are propagated into the subsequent data sets. Addition of the TWI may 

overestimate wetness conditions, as TWI is static and relies on the assumption that local 

slope is a proxy for the downslope hydraulic gradient which is not always the case in low 

relief terrain such as found in the study area. In flat terrain, the local slope tends to 

overestimate the downslope hydraulic gradient. In these landscapes, groundwater 

gradients can be significantly different from ground surface slopes (Grabs et al. 2009). 

The classes, as they were established, may be difficult to distinguish spectrally. Errors in 

classification may also result from the high spectral heterogeneity within classes due to 

the high spatial resolution of the imagery used and the diversity of wetland types grouped 

together (Laliberte et al. 2004, Platt and Rapoza 2008).  

GIS Hydrological Analysis 

An analysis of the landscape distribution of wetland change as a function of 

proximity to filled ditches offers additional insights into the class area changes. The 

purpose of the GIS hydrological analysis was to evaluate the impact of engineered 

wetlands and waterways on the distribution, location, size and temporal changes of 

wetlands within the GRNWR. Between 2007 and 2014 the spatial distribution of wetland 

area has changed. While many wetland basins had been restored and were present on the 

landscape in 2007, results from this analysis show wetland area increased in 2014. The 

increase in wetlands is evident, in many cases, spatially adjacent to existing wetlands and 

filled ditches.  

Area occupied by wetland has increased in 2014 by 11 percent, compared to area 

occupied by the same class in 2007. Results of the analysis show the changes in wetland 



  

61 
 

relative to proximity within and outside the ditch buffer of filled ditches. The area 

occupied by wetlands within the ditch buffer more than doubled from 2007 to 2014, 

comprising 7.07 km2 and 16.48 km2 respectively. Wetland area outside the ditch buffer 

increased significantly from 13.86 km2 to 20.67 km2. Recalling that the accuracy 

assessment revealed a slight overestimation of wetlands, results from this process are 

likely an overestimation of what exists on the landscape.  

Analysis of monthly precipitation totals that compared 2007 with 2014 revealed 

there was no statistically significant difference between the years. The Palmer 

Hydrological Drought Index values show how monthly moisture conditions depart from 

normal. The index considers long-term impacts of drought on hydrological systems. In 

2007, conditions leading into the growing season were below normal as compared to 

2014. In both 2007 and 2014, values during the growing season return to normal levels. 

Evaluation of weather and climate data suggest that changes to wetland areas are likely 

the result of construction and restoration practices and not due to changes in climate.  

Field Validation 

The field validation process sought to relate image objects to real landscape 

features. The accuracy of the remote wetland mapping was compared with onsite wetland 

delineation at five random sites. The remote land cover classification showed that the 

model was able to predict the general distribution of wetlands although there were clear 

differences with precise boundaries that were delineated during the field validation 

process.  

Four out of five sample points classified as wetland were affirmed in the field. 

One sample point classified as wetland was determined to be upland. None of the 
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wetlands visited had boundaries that corresponded precisely to the remote wetland 

mapping results. Time and logistical constraints limited the amount of data collected 

consequently, partial wetland boundaries were recorded. The large size, diversity of type, 

and interconnectivity of wetlands observed in the field confirmed the challenges of field 

based wetland delineation at this scale. The field validation reveals a tradeoff between 

precision and practicality.  

Onsite wetland delineation and belt transect methods were employed to document 

baseline characteristics of vegetation, soils and hydrology of selected wetlands as a way 

to assess the biotic and abiotic conditions of these wetlands. Plant diversity was recorded 

on a spectrum, which ranged from native-dominated to invasive-dominated (Vacek et al. 

2015). Vegetation observed onsite was highly variable, containing mixtures of native and 

introduced grasses and forb species. Plant diversity was reflective of seed mixture planted 

and age of the restoration.  

Future Research 

Ancillary data layers of elevation, slope, aspect and TWI were all weighted 

equally in the analysis, without further exploration; it is not possible to know the 

contribution of each data layer in isolation. A statistical analysis of object feature 

properties resulting from various input layers could be conducted to better understand 

each source’s utility to classification; doing so would further corroborate the use of 

ancillary data layers.  

The classification scheme was designated at a broad level. This was due to an 

absence of plot-level data or similar resources from which to establish a more 

comprehensive classification. To reduce spectral heterogeneity within classes, more 
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refined training sample data would be beneficial. This training data would ideally be 

based on plot data. Collection of plot data that includes plant community types such as 

the Ecological Classification Systems (ECS) developed by the MN DNR and U.S. Forest 

Service  (e.g. Northern Wet Prairie, Upland Prairie, Prairie Wet Meadow/Carr), could 

produce more specificity among classes, and reduce heterogeneity within classes. As the 

refuge moves forward with the establishment of a comprehensive system of observation 

points, collection of community type data would be beneficial for incorporating into 

future remote sensing evaluations. 
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CHAPTER VI 

CONCLUSION  

             Land cover mapping of GRNWR presents challenges due to its unique 

geomorphology positioned on the eastern beach ridges of former glacial Lake Agassiz, 

land use history and restoration, expansive terrain, and high diversity of interspersed 

wetlands. The USFWS, managers of the complex, are concerned with understanding 

spatial distribution of habitats seen as critical for assessing conservation status of 

populations, and predicting species distributions and their response to environmental 

change. The USFWS seeks baseline biotic and abiotic information as a foundation to base 

long-term refuge planning and management and to evaluate the effectiveness of land 

management strategies (USFWS 2016). 

This study aimed to analyze the hydrologic processes of restored prairie-wetlands 

on the adjacent land surface using remote sensing and Geographic Information Systems 

(GIS). The specific objectives of this research were to:  

1. Evaluate the effect of engineered wetlands and waterways on the distribution, 

location, size and temporal changes of wetlands within the Glacial Ridge 

National Wildlife Refuge using high-resolution, multispectral imagery, and 

ancillary data;
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2. Determine the accuracy of remote wetland mapping with onsite wetland 

delineation; 

3. Document baseline characteristics of vegetation, soils and hydrology of 

selected wetlands as a way to assess the biotic and abiotic conditions of these 

wetlands. 

The overall classification results illustrate how wetland areas have changed 

spatially and temporally within the study landscape. For the June 12, 2007 image, 

wetland area was 20.09 km2 out of a total area of 147.3 km2. In the July 22, 2014 image, 

the classification resulted in wetlands covering an area of 37.96 km2. The accuracy 

assessment for the June 12, 2007 classified image resulted in an overall accuracy of 88 

percent. The July 22, 2014 classified image resulted in an overall accuracy of 91 percent.  

The study also attempted a GIS-based analysis to evaluate the impact of 

engineered wetlands and waterways on the overall changes of wetlands within the 

GRNWR using lateral effect as the determinant. Results of the analysis document the 

changes in wetland relative to proximity within and outside the buffer of filled ditches. 

The area occupied by wetlands within the ditch buffer more than doubled from 2007 to 

2014, comprising 7.07 km2 and 16.48 km2 respectively. Wetland area outside the ditch 

buffer increased significantly from 13.86 km2 to 20.67 km2 during this same time period. 

The field validation process was completed to determine the accuracy of remote 

wetland mapping compared with onsite wetland delineation. Four out of five transect 

locations classified as wetland were affirmed in the field. Plant composition and structure 

were assessed by applying the belt transect method. The remote land cover classification 

was able to predict the general distribution of wetlands although there were clear 
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differences with precise boundaries that were delineated during the field validation 

process.  

The GEOBIA approach to classify land cover at GRNWR and evaluate wetland 

change is promising. Use of GEOBIA software eCognition object-based remote mapping 

method, which integrated spectral and spatial properties, resulted in high overall land 

cover classification accuracy. A framework of integrating field-collected, plot data with 

remote sensing and a more refined hydro-geomorphic analysis is critical for predicting 

specific habitat conditions and hydrological process. This would aid a better evaluation of 

tallgrass prairie-wetland ecosystem dynamics.  
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Appendix A 
Map of Vector GIS Data from TNC Records 

 

 

Study area, GRNWR with restoration practices including filled ditches and restored 

wetland basins.  
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Appendix B 

Excerpt from Grassland Monitoring Team Standardized Monitoring Protocol Version 8 

Invasive species lists.   

This list was developed by Robert Dana (MCBS, 2008). Note that some species on this list are 

native to parts of Minnesota, but all are considered invasive threats to the integrity of a remnant 

tallgrass prairie plant community. 

 

Tier 1 Invasives 

Code Common Name Scientific Name Old Code 

ACENEG Boxelder Acer negundo  

AGRCRI Crested Wheatgrass Agropyron cristatum  

AGRGIG Redtop Agrostis gigantea/stolonifera  

ARTABS Absinthe Sagewort Artemisia absinthium  

BROANN Annual Bromes B. japonicus, tectorum, secalinus  

BROINE Smooth Brome Bromus inermis  

CARACA Plumeless Thistle Carduus acanthoides  

CARNUT Musk Thistle Carduus nutans  

CENSTO Spotted Knapweed Centaurea stoebe subsp. micranthos CENMAC 

CIRARV Canada Thistle Cirsium arvense CIRCAN 

CIRVUL Bull Thistle Cirsium vulgare  

CORVAR Crown-vetch Coronilla varia  

DAUCAR Queen Anne's Lace Daucus carota  

ELAANG Russian Olive Elaeagnus angustifolia  

ELYREP Quack-grass Elytrigia repens  

EUPESU Leafy Spurge Euphorbia esula  

FRAALN Glossy Buckthorn Frangula alnus RHAFRA 

FRAPEN Green Ash Fraxinus pennsylvanica  

JUNVIR Eastern red cedar Juniperus virginiana var. virginiana  

LEUVUL Ox-eye Daisy Leucanthemum vulgare CHRLEU 

LINVUL Butter-and-eggs Linaria vulgaris  

LONTAT Tartarian Honeysuckle Lonicera tatarica  

LOTCOR Birdsfoot Trefoil Lotus corniculatus  

MEDSAT Alfalfa Medicago sativa  

MELISP Sweet Clovers Melilotus alba & officinalis  

PASSAT Parsnip Pastinaca sativa  

PHAARU Reed Canary-grass Phalaris arundinacea  

PHLPRA Timothy Phleum pratense  

POACPX Canada  and Kentucky Bluegrass Poa compressa, pratensis  

POPDEL Cottonwood Populus deltoides  

RHACAT Common Buckthorn Rhamnus cathartica  

ROBPSE Black Locust Robinia pseudoacacia  

SONARV Sow-thistle Sonchus arvensis  

TRIPRA Red & Alsike clovers Trifolium pratense, hybridum  

TRIREP White Clover Trifolium repens  
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ULMAME American Elm Ulmus americana  

ULMPUM Siberian Elm Ulmus pumila  

 

Tier 2 Invasives 

Code Common Name Scientific Name Old Code 

AMABLI Prostrate Pigweed  Amaranthus blitoides  

ARCMIN Burdock Arctium minus  

BERINC Hoary Alyssum Berteroa incana  

CALSEP Hedge Bindweed Calystegia sepium  

CARARB Siberian Pea-tree Caragana arborescens  

CHERUB Alkali Blite Chenopodium rubrum  

CONARV Field Bindweed Convolvulus arvensis  

CRETEC Hawk's Beard Crepis tectorum  

DACGLO Orchard Grass Dactylis glomerata  

ERUGAL Dog-mustard Erucastrum gallicum  

FESELA Meadow and Tall Fescues Festuca pratensis & elatior  

GRISQU Curly-top Gum Weed Grindelia squarrosa  

KOCSCO Summer-cypress Kochia scoparia  

LAPPSP Stickseeds Lappula redowski & squarrosa  

MEDLUP Black Medick Medicago lupulina   

MORALB White Mulberry Morus alba  

NEPCAT Catnip Nepeta cataria  

PERMAC Lady's Thumb Persicaria maculosa POLPER 

PINSYL Scotch Pine Pinus sylvestris  

PLANSP Common & American Plantains Plantago major & rugellii  

POTARN Silvery Cinquefoil Potentilla argentea  

POTREC Sulphur-flowered Cinquefoil Potentilla recta  

PUCDIS European Alkali-grass Puccinellia distans  

RUMACE Sheep Sorrel Rumex acetosella  

RUMSPP Dock Rumex patientia, crispus, stenophyllus  

SALALB White Willow Salix alba  

SALTRA Russian Thistle Salsola tragus  

SAPOFF Bouncing Bet Saponaria officinalis  

SETASP Foxtails Setaria glauca, viridis, faberi  

SILCSE Smooth Catchfly Silene csereii  

SILVUL Bladder-campion Silene vulgaris  

SINARV Charlock Sinapis arvensis  

SISALT Tumble Mustard Sisymbrium altissimum  

TAROFF Dandelion Taraxacum officinale  

VERTHA Common Mullein Verbascum thapsus  

XANSTR Cocklebur Xanthium strumarium  
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Native indicator species lists. 
The list was developed by Robert Dana and Fred Harris (MN DNR) and includes conservative 

species that are sensitive to grazing and easily identified.  

 

Tier 1 Natives 

Code Common Name(s) Scientific Name Old Code 

AMOCAN Leadplant Amorpha canescens  

ANEPAT Pasque Flower Anemone patens  

ASTCRA Ground Plum, Buffalo-bean Astragalus crassicarpus  

CALSER Toothed Evening Primrose Calylophus serrulatus  

CORPAL Bird's Foot Coreopsis Coreopsis palmata  

DALCAN White Prairie Clover Dalea candida  

DALPUR Purple Prairie Clover Dalea purpurea  

ECHANG Narrow-leaved Purple Coneflower Echinacea angustifolia ECHPAL 

HELAUT Sneezeweed Helenium autumnale  

HEURIC Alum Root Heuchera richardsonii  

LIAASP Rough Blazing Star Liatris aspera  

LIALIG Northern Plains Blazing Star Liatris ligulistylis  

LIAPUN Dotted Blazing Star Liatris punctata  

LIAPYC Great Blazing Star Liatris pycnostachya  

LILPHI Wood Lily Lilium philadelphicum  

LYSQUA Prairie Loosestrife Lysimachia quadriflora  

PEDESC Prairie Turnip Pediomelum esculentum  

PHLPIL Prairie Phlox Phlox pilosa  

POTARGU Tall Cinquefoil Potentilla arguta  

PRERAC Smooth Rattlesnakeroot Prenanthes racemosa  

SYMSER Silky Aster Symphyotrichum sericeum ASTSER 

TRABRA Bracted Spiderwort Tradescantia bracteata  

ZIGELE White Camas Zigadenus elegans  

ZIZAPT Heart-leaved Alexanders Zizia aptera  

ZIZAUR Golden Alexanders Zizia aurea  

 

Tier 2 Natives 

Code Common Name(s) Scientific Name Old Code 

AGOGLA Glaucus False Dandelion Agoseris glauca  

AMONAN Fragrant False Indigo Amorpha nana  

ASCOVA Oval-leaved Milkweed Asclepias ovalifolia  

ASCSPE Showy Milkweed Asclepias speciosa  

ASCTUB Butterfly Weed Asclepias tuberosa  

ASTADS Prairie Milk Vetch Astragalus adsurgens  

CARFIL Thread-leaved Sedge Carex filifolia  

CASSES Downy Paintbrush Castilleja sessiliflora  

DELCAR Prairie Larkspur Delphinium carolinianum subsp. virescens DELVIR 

DICLEI Leiberg's Panic Grass Dichanthelium leibergii PANLEI 

DOEUMB Flat-topped Aster Doellingeria umbellata ASTUMB 
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GAIARI Blanket Flower Gaillardia aristata  

GENPUB Downy Gentian Gentiana puberulenta  

LATVEN Veiny Pea Lathyrus venosus  

LIACYL Few-headed Blazing Star Liatris cylindracea  

LYTALA Winged Loosestrife Lythrum alatum  

MUHCUS Plains Muhly Muhlenbergia cuspidata  

PEDLAN Swamp Lousewort Pedicularis lanceolata  

SILLAC Compass Plant Silphium laciniatum  

SOLPTA White Aster-like Goldenrod Solidago ptarmicoides  

SOLRID Riddell's Goldenrod Solidago riddellii  

SOLSPE Showy Goldenrod Solidago speciosa  

SORNUT Indian Grass Sorghastrum nutans  

SPOHET Prairie Dropseed Sporobolus heterolepis  

SYMLAE Smooth Blue Aster Symphyotrichum laeve var. laeve ASTLAE 

SYMOBL Aromatic Aster Symphyotrichum oblongifolium ASTOBL 

SYMOOL Sky-blue Aster Symphyotrichum oolentangiense ASTOOL 

SYNNOV New England Aster Symphyotrichum novae-angliae ASTNOV 

THADAS Tall Meadow-rue Thalictrum dasycarpum  

VERVIR Culver's Root Veronicastrum virginicum  

 

 Distubrance increaser indicator species list. 
 

Code Common name Scientific Name Old Code 

ACHMIL Yarrow Achillea millefolium  

AMBART Ragweed Ambrosia artemisiifolia  

AMBTRI Giant Ragweed Ambrosia trifida  

BECSYZ American Sloughgrass Beckmannia syzigachne  

CONCAN Horseweed Conyza canadensis  

CYCXAN Marsh-elder Cyclachaena xanthifolia IVAXAN 

HORJUB Foxtail Barley Hordeum jubatum  

JUNARC Baltic Rush Juncus arcticus (balticus)  

LEPDEN Prairie Pepperweed Lepidium densiflorum  

PANCAP Witchgrass Panicum capillare  

PLAPAT Wooly Plantain Plantago patagonica  

RANCYM Seaside Crowfoot Ranunculus cymbalaria  

SCIPAL Pale Bulrush Scirpus pallidus  
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 Plant group lists (updated April 2009) 
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Appendix C 

Field Data Sheets: Vegetation Field Monitoring Datasheet 
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Appendix D 

Field Data Sheets: Wetland Determination Data Form 
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Appendix E 

Field Photographs 

 

 

Belt transect site 2. Photo oriented towards the transect center from south looking north. 

  

Belt transect site 2. Photo oriented towards the transect center from north looking south. 
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Belt transect site 3. Photo oriented towards the transect center from east looking west.  

 

Belt transect site 3. Photo oriented towards the transect center from west looking east.  
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Belt transect site 4. Photo oriented towards the transect center west looking east.  

 

 

Belt transect site 4. Photo oriented towards the transect center east looking west.  
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Belt transect site 5. Photo oriented towards the transect center west looking east. 

  

Belt transect site 5. Photo oriented towards the transect center east looking west. 
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