

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

January 2017

Evaluating Wetland Expansion In A Tallgrass Prairie-Wetland Restoration

Katie Mae Engelmann

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Engelmann, Katie Mae, "Evaluating Wetland Expansion In A Tallgrass Prairie-Wetland Restoration" (2017). *Theses and Dissertations*. 2108. https://commons.und.edu/theses/2108

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

EVALUATING WETLAND EXPANSION IN A TALLGRASS PRAIRIE-WETLAND RESTORATION

by

Katie Mae Engelmann Bachelor of Science, University of Minnesota, 2008

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May 2017

This thesis, submitted by Katie Engelmann in partial fulfillment of the requirements for the Degree of Master of Science in Geography from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Gregory Vandeberg

Bradley Rundquist Phili

Robert Newman

Jeffrey VanLooy

This thesis is being submitted by the appointed advisory committee as having met

all of the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved

Grant McGimpsey Dean of the School of Graduate Studies

April 19, 2017

Date

PERMISSION

Title	Evaluating Wetland Expansion in a Tallgrass Prairie-Wetland Restoration
Department	Geography & Geographic Information Science
Degree	Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Katie Mae Engelmann May 1, 2017

TABLE OF CONTENTS

TABLE OF CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
ABSTRACTvii
CHAPTER
I. INTRODUCTION 1
II. LITERATURE REVIEW9
III. METHODS
IV. RESULTS
V. DISCUSSION
VI. CONCLUSION
APPENDICES
REFERENCES

LIST OF FIGURES

Figure Pa	ige
1. Study area (147.3 km ²), GRNWR located in Polk County in northeastern MN	. 6
2. Comparison of monthly precipitation totals from 2007 and 2014	. 7
3. Palmer Hydrological Drought Index values (2007 and 2014) for northwest MN	. 8
4. Process workflow for GEOBIA classification of GRNWR	23
5. Subset of image segmentation results.	28
6. Manually selected training sample objects.	29
7. Slope values within study area reported in degrees.	38
8. Aspect values within study area shown in compass degrees.	39
9. Study area with values of topographic wetness index	40
10. Output classification from June 12, 2007 image of GRNWR.	44
11. Output classification from July 22, 2014 image of GRNWR	46
12. Spatial distribution of wetland areas that have undergone change	48
13. Randomly selected field validation sites visited to collect belt transect data and perform onsite wetland delineation	50
14. Field validation site one	53
15. Field validation site two	54
16. Field validation site three	55
17. Field validation site four	56
18. Field validation site five	57

LIST OF TABLES

Table P	age
1. Summary of data collection	. 24
2. Land cover class descriptions.	. 29
3. Vegetation categories for assessing wetland vegetation including abbreviation and probability percentage of occurring within a wetland.	. 36
4. Land cover classification results including percentages	. 41
5. Classification error matrix for June 12, 2007 image	. 45
6. Classification error matrix. July 22, 2014 image	. 47
7. Total classified wetland and open water objects within and outside the lateral effect zone of restored ditches according to classification year	. 48

ABSTRACT

Remote sensing is an effective tool to inventory and monitor wetlands at large spatial scales. This study examined the effect of wetland restoration practices at Glacial Ridge National Wildlife Refuge (GRNWR) in northwest Minnesota on the distribution, location, size and temporal changes of wetlands. A Geographic Object-Based Image Analysis (GEOBIA) land cover classification method was applied that integrated spectral data, LiDAR elevation, and LiDAR derived ancillary data of slope, aspect, and TWI. Accuracy of remote wetland mapping was compared with onsite wetland delineation.

The GEOBIA method produced land cover classifications with high overall accuracy (88 – 91 percent). Wetland area from a June 12, 2007 classified image was 20.09 km² out of a total area of 147.3 km². Classification of a July 22, 2014 image, showed wetlands covering an area of 37.96 km². The results illustrate how wetland areas have changed spatially and temporally within the study landscape. These changes in hydrologic conditions encourage additional wetland development and expansion as plant communities colonize rewetted areas, and soil conditions develop characteristics typical of hydric soils.

CHAPTER I

INTRODUCTION

In the Prairie Pothole Region (PPR) of the northern Great Plains, agriculture is the dominant economic and social driver of land use and land use change. Since European settlement of the region began, wetlands have been drained, often with the encouragement and aid of local, state, and federal government agencies (van der Valk 1989). It is estimated that more than half of the original 8 million hectares of wetlands in the PPR have been lost, with rates exceeding 90 percent in the eastern portion of the region (Dahl 1990, 2006; Tiner 2003).

Change to U.S. federal environmental policy under President G. H. W. Bush in the late 1980's led to a national goal of "no net loss" of wetland area. Under this policy, unavoidable wetland losses must be offset by restoration or creation, thus, the science and practice of wetland restoration gained momentum (Mitsch and Gosselink 2007). Wetland creation and restoration are significant conservation practices in hydrologically altered and ecologically degraded landscapes. Although only a fragment of drained basins have been restored, wetland restoration in the PPR is an important component of the endangered tallgrass prairie ecosystem.

In the eastern portion of the PPR more than 99 percent of tallgrass prairie has been converted to other land uses, mostly row crop agriculture (Samson, Knopf, and Ostlie

1998). Temperate grasslands are among the most altered and least protected of the world's terrestrial biomes, making their protection a global conservation priority (Hoekstra et al. 2005). Recent reports continue to detect grassland and wetland conversion, and increasing habitat fragmentation as a result of changing trends in agriculture (Wright and Wimberly 2013; Roch and Jaeger 2014).

Loss of biodiversity, reduced ecological function and declining ecosystem services necessitate continued conservation planning and strategic management of existing habitat. Scientists and land managers are responding to these needs by directing focus on entire ecosystem preservation, targeted restoration, and adaptive management (Rowe 2010; Zedler, Dohery, and Miller 2012). These approaches are rooted in the biodiversity and ecosystem functioning hypothesis, that a large proportion of species diversity is necessary to maximize ecosystem productivity, stability, invasibility, and nutrient dynamics (Tilman, Isbell, and Cowles 2014), and that ecosystems should be preserved at the scale at which collective evolutionary processes that drive ecological diversity are sustained (Grumbine 1994;Hoekstra et al. 2005).

The driving force of wetland ecosystem restoration is an understanding of hydrologic processes, the goal being to return a wetland to its original or previous condition (Mitsch and Gosselink 2007). Attributes of restored ecosystems develop at different temporal scales. While hydrology is returned quickly, vegetation may take several years to establish, and soils require decades (Zedler 2000). The success of restoration is often measured by the degree to which wetland function has been replaced (Mitsch and Gosselink 2007). Three broad requirements have been proposed for achieving successful restoration: understanding wetland function, designing structures that are ecologically

sustainable in the long-term, and giving the system time (Mitsch and Wilson 1996). Mitsch and Wilson (1996) also suggest ecosystem-level research after the system has had time to reach a steady-state or equilibrium as a more appropriate measure of success and guide for future restoration science than what is currently required to achieve regulatory satisfaction. Restorative programs typically require once or twice per year monitoring shortly after restoration completion.

Following restoration, land managers have the task of land use planning and ecosystem management. Ecosystem monitoring is a long-term obligation in which land managers commit to a process of assessment and response. It is important to note that restoration sites are novel ecosystems that often contain decreased species richness and invasive or exotic species (Zedler, Dohery, and Miller 2012). To document ecological character or functional condition, a combination of attributes or indicators are established and monitored to characterize landscapes at any given point of time or detect changes over longer periods of time. Furthermore, to achieve optimum conservation management, ecological character and functional condition should be spatially projected at multiple scales across mixed land ownership (Jensen et al. 2000).

The physical characteristics and spatial scale of wetlands can make quantitative analysis difficult. Remote sensing is an effective tool to inventory and monitor wetlands at large spatial scales (Mitsch and Gosselink 2007). Conservationists have traditionally used remote sensing to characterize and map habitat, however trends in remote sensing capabilities have expanded to incorporate ecosystem functioning variables such as energy balance, primary productivity, and hydrological characteristics (Cabello et al. 2012).

Study Objective

Glacial Ridge National Wildlife Refuge (GRNWR) is located in the eastern portion of the PPR within the Northern Tallgrass Prairie/Aspen Parklands physiographic area (USFWS 2016). The refuge contains important fragments of remnant prairie and savanna, along with restored grassland and wetland ecosystems. Unique prairie-wetland complexes at GRNWR are habitat to resident wildlife, migratory wildlife, and other wetland and grassland obligate species including populations of greater prairie chicken (*Tympanuchus cupido*) and western prairie fringed orchid (*Platanthera praeclara*). The orchid is declared federally threatened with extinction and regulated under the Endangered Species Act (USFWS 2016). The site is presently the largest temperatetallgrass prairie-wetland restoration in the nation (Gerla et al. 2012). Initial goals to restore hydrology and vegetation to the site have been reached, however localized effects of restoration measures and baseline habitat conditions remain in question (USFWS 2016).

The U.S. Fish and Wildlife Service (USFWS) Comprehensive Conservation Plan (CCP) for the newly restored and established GRNWR identifies the collection of baseline biotic and abiotic information necessary to aid long-term refuge planning and management. The CCP also strives to complete a hydro-geomorphic analysis to evaluate wetland ecosystems in all refuge management units (USFWS 2016). By closing drainage ditches and applying wetland design principles, groundwater and surface water levels at GRNWR have changed, resulting in more water retained on the land (Cowdery, Lorenz, and Arntson 2008). These changes in hydrologic conditions affect the physical, chemical, and biological processes of the area. Anaerobic conditions encourage additional wetland development and expansion as plant communities colonize rewetted areas, and soil conditions develop characteristics typical of hydric soils.

This study aimed to analyze the relationship of hydrologic processes of restored prairie-wetlands on the adjacent land surface using remote sensing and Geographic Information Systems (GIS). The project examined the reconstruction of wetlands within GRNWR at two distinct periods of development. A better understanding of the spatial distribution of restored wetlands and wetland expansion will be valuable for adaptive management and future ecological research. The specific objectives of this research were to:

- Evaluate the effect of engineered wetlands and waterways on the distribution, location, size and temporal changes of wetlands within the Glacial Ridge National Wildlife Refuge using high-resolution, multispectral imagery, and ancillary data;
- 2. Determine the accuracy of remote wetland mapping with onsite wetland delineation;
- Document baseline characteristics of vegetation, soils and hydrology of selected wetlands as a way to assess the biotic and abiotic conditions of these wetlands.

Study Area

The research area (147.3 km²) comprised land within the acquisition boundary of the GRNWR, located in Polk County, MN (Figure 1). Some of the land within the boundary is owned and managed by private individuals or conservation partners, including the Minnesota Department of Natural Resources (MN DNR) and TNC. The

land cover of the study area consists of mostly level to gently rolling remnant and restored tallgrass prairie interspersed with wetlands.

Figure 1. Study area (147.3 km²), GRNWR located in Polk County in northeastern Minnesota. Image source: 2015 National Agriculture Imagery Program (NAIP).

The climate of the study area is sub-humid continental and characterized by extreme variations in temperature and precipitation. Long-term climate trends reveal multi-year droughts often followed by wet periods. Air masses typically flow from west to east. Climate data from 2000 through 2014 indicate the extreme annual precipitation totals during the years 2000-2014 were 66.04 cm (26.00 in.) in 2010 and 33.86 cm (13.33 in.) in 2011. The average January temperature is -15.5 degrees C (4.1 degrees F) and the average July temperature is 21.39 degrees C (70.5 degrees F). The majority of

precipitation falls during the growing season months of May through September (High Plains Regional Climate Center 2017).

Monthly precipitation data for 2007 and 2014, the image years analyzed in the study, are shown in Figure 2. Data were obtained from a gridded database whose values were calculated using data interpolated from Minnesota's precipitation database (Minnesota Climatology Working Group 2017). A two-sample difference of means (t-test) compared monthly precipitation data for significant difference. Among monthly precipitation data from the study area (N=12), there was no statistically significant difference between 2007 (M=5.09, SD=4.05) and 2014 (M=4.36, SD=4.67), t (11)= 1.11, $p = 0.29 \ge 0.05$, CI₉₅.

Figure 2. Comparison of monthly precipitation totals from 2007 and 2014. Precipitation data set obtained from gridded database at 47.70297 degrees latitude, 96.28060 degrees longitude.

The Palmer Hydrological Drought Index (PHDI) for northwest Minnesota shows long-term hydrological drought and wet conditions that affect groundwater conditions and surface water levels (Figure 3). The PHDI values typically range from -6 to +6, low values denote dry conditions while the higher values indicate wet conditions (NOAA National Centers for Environmental Information, Climate at a Glance: U.S. Time Series, Palmer Hydrological Drought Index (PHDI) 2017). In both 2007 and 2014, drought index values denote dryer conditions leading into the growing season, and wetter conditions throughout the growing season.

Figure 3. Palmer Hydrological Drought Index values (2007 and 2014) for northwest MN.

CHAPTER II

LITERATURE REVIEW

Ecosystem Management

Management of landscapes requires a systemic understanding of action and response through an experiment-based approach known as adaptive management. The USFWS adaptive management strategy uses data from inventories of plant communities to design and implement optimal management actions (Grant et al. 2009). The belt transect method is used by the agency to assess the general composition of tallgrass prairie vegetation managed by the USFWS (Grant et al. 2004; Grant et al. 2009). The method reliably conveys the status and trends of certain plant species and groups of management interest, can be applied quickly and effectively, and provides basic information to support development and application of models that describe wildlife habitat relationships (Grant et al. 2004).

Landscape indicators of ecosystem condition are measures of the current state relative to reference conditions or predetermined limits of acceptable change. A combination of attributes or indicators are established and monitored to document ecological character at any given point of time or to detect changes over longer periods of time (Horwitz and Finlayson 2011). Ecological classifications of vegetation patterns are important to ecosystem assessments because they provide a summary of resource information when combined with associated plot-level attribute information. Field data

collected at the plot level through random sampling protocols can be spatially projected at larger mapping scales (Jensen et al. 2000).

Wetland Identification

Wetlands are spatially diverse and temporally dynamic, thus, there are no universally applicable methods for their identification and classification. Selection of data sources and methodology are often determined based on available information, type of wetland, and desired level of detail. There are several methods to classify and delineate wetlands. Onsite wetland delineation is the most precise method, in which a trained wetland delineator identifies the boundary between upland and wetland based on indicators of hydrophytic vegetation, hydric soil, and hydrology (USACE 1987). This method produces accurate results but is often the most expensive, being both time and labor intensive. Onsite wetland delineation is often required for impacts to wetlands regulated under federal, state or local environmental policies. For unregulated activities, such as wetland ecosystem management or monitoring, onsite wetland delineation methods are not the most cost-effective or efficient.

Remote sensing of wetlands has the advantage of repeat coverage at large spatial scales and integrates easily with other geospatial technology (Ozesmi and Bauer 2002). There are several methods to delineate and monitor wetlands using aerial photography or satellite data. Traditional image classification methods are based on spectral reflectance values of surfaces captured as individual pixels, therefore referred to as pixel-based methods (Ozesmi and Bauer 2002). The unsupervised classification or clustering method groups together similar pixels within multispectral data and requires the analyst to discern the informational classes that result (Campbell and Wynne 2011). Unsupervised

classification has historically been the most commonly applied remote wetland classification method; however, the technique often requires a large number of clusters and subsequent separation of mixed clusters to achieve success (Ozesmi and Bauer 2002).

Supervised classification is another method where samples of known pixel identity are used to classify pixels of unknown identity based on user defined training data (Cambell and Wynne 2011). Supervised classification methods commonly used to map wetlands are minimum distance to means, parallelpiped, and maximum likelihood classification (Ozesmi and Bauer 2002). These methods are limited by the spatial resolution of sensors used to collect the data. Coarse spatial data can omit small wetlands or result in mixed pixels that can reduce classification accuracy (Mui, He, and Weng 2015).

High Spatial Resolution Remote Sensing Data

High-resolution data are becoming increasingly available and have greater potential to accurately map wetlands, including identifying small wetlands (Moffett and Gorelick 2013). The increase in resolution results in greater detail, but also greater intraclass spectral variability making separation of land cover classes more difficult as single pixels are no longer representative of classification targets (Blaschke et al. 2000; Yu et al. 2006; Mui, He, and Weng 2015). Classification of high spatial resolution imagery using traditional pixel-based methods often result in a salt-and-pepper effect where the outcome of classified pixels differ from adjacent pixels (Blaschke et al. 2000; Yu et al. 2006). For these reasons, traditional unsupervised and supervised classification methods are less suitable for processing high-resolution data (Blaschke et al 2000).

Geographical Object-based Image Analysis (GEOBIA)

Object-based image analysis (OBIA) is an alternative to pixel-based analysis, where images are segmented into spectrally homogenous objects that are the building blocks for analysis (Blaschke et al. 2000). The term geographical object-based image analysis (GEOBIA) is used to distinguish earth science applications from other disciplines (Hay and Castilla 2008). This method simultaneously integrates spectral and non-spectral data such as pixel spectrum, spatial location, spectral homogeneity and shape of adjacent clusters of similar pixels (Moffett and Gorelick 2013). The resulting objects contain features such as measures of central tendency of the individual bands, spectral variability, and spatial dimensions that are geographically valuable and that can be related to landscape features (Blaschke et al. 2000; Maxwell et al. 2015). The most widely used commercial software for object-based image analysis is eCognition Developer (Trimble Inc., Sunnyvale, CA).

GEOBIA involves two primary steps: segmentation or grouping of spatially adjacent pixels into spectrally homogenous objects, and classification with objects as the minimum processing unit (Yu et al. 2006). The variation and inconsistency among user inputs are noted as current barriers to broad application of GEOBIA methods to map wetlands (Moffett and Gorelick 2013). Wetland mapping using GEOBIA can be improved with the inclusion of information from ancillary data (Yu et al. 2006; Kim, Madden, and Xu 2010). Additional environmental information such as elevation, slope, aspect and landscape indicators represented by indices have been added to improve classification on the premise that plant diversity patterns are influenced by environmental conditions that create microhabitat conditions (Yu et al. 2006; Moeslund et al. 2013).

Also, wetlands and water bodies are positioned topographically low in the landscape in close association with groundwater and surface runoff (Mitsch and Gosselink 2007; Mui, He, and Weng 2015).

Segmentation

A variety of segmentation algorithms are available using eCognition Developer 9.1 software, multiresolution segmentation being the most commonly applied in wetlands research (Moffett and Gorelick 2013; Mui, He, and Weng 2015). Multiresolution segmentation is a bottom up merging algorithm that begins with individual pixels as seeds that are clustered together into groups based on spectral and spatial heterogeneity criteria (Trimble Inc. 2015). In this process, user defined threshold parameters constrain the size of objects (Yu et al. 2006).

Three user defined inputs are required to apply the multiresolution segmentation algorithm: (1) color and shape parameters that are weights between zero and one that determine the contribution of spectral heterogeneity (color); (2) smoothness and compactness parameters that are weights between zero and one and determine how the object shape is calculated; and (3) scale parameter, a unitless number or threshold which limits overall object color and shape complexity (Platt and Rapoza 2008; Moffett and Gorelick 2013). Spectral heterogeneity is defined as the sum of standard deviations of each image band (Platt and Rapoza 2008). Small scale parameters produce small objects while larger scale parameters produce larger objects. Pixels with similar spectral, textural and shape characteristics are merged together. Any type of spatially distributed data such as elevation can added as an input segmentation parameter to produce image objects (Jensen 2005). Presently there are no unified recommendations for segmentation

parameters, selection is best determined through a trial-and-error based approach (Platt and Rapoza 2008; Ke, Quackenbush, and Im 2010; Duro, Franklin, and Dubé 2012; Mui, He, and Weng 2015).

Classification

Once scenes are segmented into homogenous objects, the next step is classification, or assignment of classes to objects based on feature characteristics. Spatially distributed environmental data within objects, such as elevation, slope, aspect and vegetation or wetness indices can also be used for classification (Ke, Quackenbush, Im 2010). One method commonly used for GEOBIA classification is a supervised approach known as nearest neighbor classification (Yu et al. 2006; Platt and Rapoza 2008; Mui, He, and Weng 2015). This method is popular because variables derived for image objects do not typically obey normal parametric statistical distributions; thus, is suitable for integration of spatial data into the classification process, and the training sample size for each class may vary due to the uneven distribution of vegetation (Foody 2002; Trimble Inc. 2015; Pham, Brabyn, and Ashraf 2016). The supervised nearest neighbor algorithm classifies unknown samples by comparing their location in the feature space to those of known training samples based on suitable similarity or distance metric (Yu et al. 2006).

Ancillary Data

Image data and ancillary data of various origins can be analyzed simultaneously in GEOBIA (Trimble Inc. 2015). In addition to image band derivatives, ancillary data sources can provide useful information to improve classification results. Ancillary data can be incorporated into the GEOBIA process during either the segmentation or the

classification phase. The utility of including ancillary data sources has been evaluated in wetland and non-wetland landscapes (Yu et al. 2006; Mui, He, and Weng 2015; Pham, Brabyn, and Ashraf 2016). Data of differing resolution can be synchronized using software. To combine image layers with different resolutions, images with lower resolution are resampled to the size of the smallest pixel size (Trimble Inc. 2015).

A detailed vegetation classification by Yu et al. (2006) used high spatial resolution aerial imagery to test the efficiency of a supervised nearest neighbor objectbased approach incorporating image band derivatives and ancillary layers. The study sought to determine the most important features for classification. Spectral features of objects in the analysis included mean, standard deviation, band ratio, intensity, hue and saturation. Topographic parameters used in the study were elevation, slope, aspect and distance to watercourses. Findings concluded that the addition of topographic information as ancillary information was a very important feature to improve vegetation classification accuracy whereas textural and geometric features were less significant. This study also concluded that supervised nearest neighbor object-based method outperformed traditional pixel-based methods.

Mui, He, and Weng (2015) delineated wetlands across natural and human-altered landscapes using a supervised nearest neighbor classification approach in eCognition. The study detected wetlands across natural, agricultural, and urban landscapes and achieved overall accuracy results greater than eighty percent across all study sites. Multiple input layers were incorporated into image segmentation including the four multispectral bands of blue, green, red and near-infrared, a digital elevation model (DEM) layer, normalized difference vegetation index (NDVI) layer, and a standard

deviation texture layer. Results determined that input of these layers improved overall results, most notably that elevation data improved segmentation of wetland boundaries of palustrine (inland) wetlands.

Pham, Brabyn, and Ashraf (2016) combined GIS and image analysis techniques to improve classification accuracy by including mean and standard deviation values of elevation, slope, aspect and topographic wetness index (TWI) as image object features. Results showed that the green and near-infrared bands were the most valuable for separating classes, and that topographic features, especially mean slope and mean elevation were more valuable than textural data. Studies of forest land cover have confirmed the benefit of combining spectral and LiDAR-derived metrics during both segmentation and classification concluding that inclusion of this data leads to higher classification accuracy (Ke, Quackenbush, and Im 2010; Pham, Brabyn, and Ashraf 2016).

Restoration History of Glacial Ridge National Wildlife Refuge

Restoration measures at GRNWL have been completed; land managers now have the task of long-term planning, implementation, and monitoring. Although the goal of restoration is the return of an ecosystem to a historic, less-degraded condition, this goal is not always achievable due to the severity of impact or irreversible changes to biotic or abiotic factors (Zedler, Dohery, and Miller 2012). Community composition and structure of restored landscapes change over time as ecological succession occurs. Restoration measures at GRNWL began in 2000 and completed in 2012. The project was initiated by The Nature Conservancy (TNC) and was a coordinated partnership among more than thirty organizations. In total, 14 small tallgrass prairie remnants were reconnected to

create 15,200 ha of contiguous habitat. It is estimated that approximately 177 km of drainage ditches were filled, 1,242 ha of wetlands were restored, and 8,100 ha of native vegetation were reestablished (Gerla et al. 2012). Ownership was transferred to USFWS beginning in 2004, with a second transfer in 2012 (Benjamin Walker, Wildlife Biologist, USFWS 2016, personnel communication).

According to Cowdery, Lorenz, and Arntson (2008), the site is located on the former eastern shoreline of glacial Lake Agassiz, which was present on the landscape approximately 11,600 to 9,500 years ago. After the lake drained, the area remained a complex of north-south beach ridges, dry prairie, mesic prairie and diverse shallow wetlands. The distinct linear beach ridge formations that persist are three to five meters high, and greater than thirty-five meters wide, with continuous length that varies upon location. Soils range from gravel, till, coarse sand, fine sand, silt and clay. The primary influences on local hydrology are precipitation, local groundwater flow and evapotranspiration.

Beach ridges are surficial aquifer features. Historically, the ridges acted as dams, creating back-beach basin wetland formations. On the western side of slopes, where groundwater seeps down gradient, discharge fens and wet meadows often develop. This unique geomorphology results in wetlands that are closely interwoven between dry gravel prairies. Prior to agricultural drainage, surface water flow was parallel to and behind beach ridges. Surface flow was often inhibited until depressions or low areas allowed the flow to cut across a ridge to join an adjacent inter-beach swale. Hydrologic flow trends from southeast to northwest, intersecting several beach ridge recharge and discharge

zones on its path towards the Red and Red Lake Rivers (Cowdery, Lorenz, and Arntson 2008; Gerla et al. 2012).

Beginning in the 1920s, an extensive network of private and public drainage ditches were constructed to remove excess water and drain wetlands to make farming conditions favorable. Most small private drainage ditches were constructed in the 1980's as wheat and soybean production in the area increased (Cowdery, Lorenz, and Arntson 2008). Ditches ranged in size from small scrapes on private land to large drainage channels administered by local governments (Gerla et al. 2012). Major ditches were constructed parallel to the beach ridge orientation, and in places cut directly through a ridge.

Design and financial support for wetland restoration was largely provided through Wetland Reserve Program (WRP) contracts administered by the Natural Resources Conservation Service (NRCS). According to Gerla et al. (2012), a combination of approaches were employed to restore hydrology including installing ditch plugs, filling, compacting, and re-grading previously excavated soil. Some ditches that could not be decommissioned due to potential effects on neighboring property were reconstructed to a more natural configuration while still maintaining runoff.

Project managers set high standards for the vegetative quality of the restoration. Native seed was mechanically harvested from nearby native prairies according to landscape position, and was tested by private laboratories to assure seed germination success. In addition to this, spring flowering species were collected by hand and supplemented to the mixture. Seeding techniques varied between drilling and dormant season broadcasting. Long-term vegetation goals identified early in the planning process

stated all restorations would contain at least 25 percent of possible native plant species characteristic of the target community, and at least 75 percent cover in all restorations would be native vegetation (Gerla et al. 2012).

Regional Hydrological Assessments

Prairie wetlands are spatially, temporally, and chemically diverse (van der Valk 1989). Because the restoration of GRNWR was such a vast undertaking, several studies address hydrological properties unique to the site. Melesse et al. (2006) document the spatial and temporal evapotranspiration response of restoration activities from 2000 to 2003. Five sub-basins were delineated to represent different stages of restoration and response. Remotely sensed data were used to estimate components of the surface energy budget related to evapotranspiration. The study detected a 50 percent increase in evapotranspiration over the study period as a result of increased hydrology because of wetland restoration. Gerla (2007) investigated the flood mitigation potential of large restoration projects, specifically, the effect of cropland to grassland conversion on peak storm run-off in five and 25 year, 24 hour rainfall events. The methodology combined curve numbers, GIS and stochastic analysis to predict changes in run-off. The study concluded that cropland to grassland conversion would lead to an average 40-55 percent reduction in peak run-off.

The most comprehensive characterization of local hydrology near GRNWL is a report produced by Cowdery, Lorenz, and Arntson (2008). This investigation sought to address concerns identified during early planning stages of the restoration related to blocking, modifying, or removing ditches, reconstruction of wetland basins, and reintroducing and managing native plant communities. The study was a cooperation

between the U.S. Geological Survey (USGS), TNC, and Red Lake Watershed District, and provided detailed, pre-restoration hydrologic information on the study area to assist restoration managers and decision makers. Groundwater, surface water, and water quality were evaluated though a network of 72 groundwater wells, seven ditch gauges, 11 wetland gauges, and one lake gauge.

The report predicted groundwater levels would rise in response to increased water in surrounding wetlands and result in overall increased ground-water storage. Authors address uncertainty of the effect an increase in groundwater storage would have on wetlands, particularly in areas where ditches that cut through beach ridges have been filled in. Two scenarios were presented regarding hydrological effects of restoration activities: 1) the water table was expected to rise in these areas, which could increase wet meadow or fen development in positions down gradient from restored wetlands; 2) existing fens that receive water from a surficial aquifer down gradient from newly constructed wetlands could experience changes to groundwater discharge that are either diffuse or concentrated. If discharge is diffuse, the size of fen could increase as plant communities recolonize wet areas. If discharge to the fen is concentrated in a few areas, conditions could become wetter to the point that fen communities are no longer tolerant to the rising water levels.

As GRNWR enters a new phase of long-term monitoring and adaptive habitat management, this study will be a valuable exploratory evaluation of remote sensing and GIS capabilities coupled with field-based data collection efforts of targeted communities within the prairie-wetland landscape. GRNWR land managers will begin to employ the belt transect method of data collection in 2017 in an effort to implement, monitor, and

evaluate conservation plan objectives (Benjamin Walker, Wildlife Biologist, USFWS 2016, personnel communication). The combination of remote sensing with field study can be used to quantify specific variables of ecosystem function that are broadened regionally to support conservation efforts such as setting baseline conditions to assess environmental change, monitoring ecological restorations, and supporting ecosystem services evaluation.

CHAPTER III

METHODS

Analytical Processes

In this study, combination of remote sensing and GIS analytical approaches were used to evaluate and classify patterns of land cover change over time. A multilevel procedure was implemented including: data acquisition and preprocessing, segmentation, creation of training objects, object classification, accuracy assessment, GIS hydrological analysis, and field validation. An overview workflow is shown in Figure 4.

First multispectral image scenes and LiDAR DEM data were acquired. Second, ancillary data sets of slope, aspect and TWI were produced from the LiDAR DEM. Next, objects were created based on multispectral image data and LiDAR DEM using the multiresolution segmentation algorithm. Training samples were generated based on review of aerial imagery and site knowledge. Classification was performed separately on images incorporating spectral and spatial features using the nearest neighbor algorithm. Classification accuracy assessment was conducted for each image through the creation of an error matrix based on a random sampling method of point generation. Next, a GISbased hydrological analysis was conducted that incorporated vector files from wetland restoration practices and classification results. A final classification field validation was completed on selected wetlands based on methods derived from the belt transect method and standard wetland delineation procedures.

Figure 4. Process workflow for GEOBIA classification of GRNWR.

Data Acquisition and Preprocessing

Data included in the analysis (Table 1) represent variables of two main categories: 1) spectral data derived from aerial sensors and 2) spatial or ancillary data derived from a LiDAR DEM that represents terrain attributes of the physical environment. The study area boundary ArcGIS file was obtained from the USFWS. All spectral and ancillary data were coregistered and clipped to the study area boundary using ArcGIS[™] 10.4 (ESRI, Redlands, California). Image object creation and classification was performed using eCognition Developer 9.1 (Trimble Inc., Sunnyvale, CA) object-based image analysis software. Wetland restoration vector data were obtained from TNC restoration project records and imported directly into ArcGIS[™] 10.4 (ESRI, Redlands, California) for hydrological analysis.

Data	Туре	Origin	Spatial/Temporal	Reference
AEROCAM	Aerial Color	Remote	2.44 m/	UND Department of
	Infrared	Sensing	June 12, 2007	Earth System Science &
	Imagery			Policy, Grand Forks, ND
USFWS	Aerial Color	Remote	0.2 m/	USFWS Region 3, St.
IMAGE	Infrared	Sensing	July 22, 2014	Paul, MN
	Imagery			
LiDAR	Digital	Derived	3 m/	Minnesota Geospatial
DEM	Elevation	from	April 18-19, 2008	Commons
	Model	Lidar		https://gisdata.mn.gov/
Restored	Line Vector	Geo-		Dr. Phil Gerla
Ditches		referenced	2002-2010	UND Department of
		Digital Data		Geology & Geological
				Engineering
Restored	Polygon	Geo-		Dr. Phil Gerla
Wetlands		referenced	2002-2010	UND Department of
		Digital Data		Geology & Geological
				Engineering
Study Area	Polygon	Geo-	147.3 km^2	USFWS GRNWR
		referenced	2016	Erskine, MN
		Digital Data		

Table 1. Summary of data collection

Multispectral Image Data

Two high-resolution, multispectral images were selected for their potential to differentiate variable ground conditions. The spectral range of visible and near-infrared bands allowed for detailed information extraction. Because of the specific target dates of the change detection analysis, images from two sources were acquired. The first image represents conditions during the middle phase of the grassland and wetland restoration period. The later image represents post-restoration conditions.

An Airborne Environmental Research Observational Camera (AEROCam) multispectral image was captured on June 12, 2007 as a result of the Upper Midwest Aerospace Consortium (UMAC) project at the University of North Dakota (UND). This image had a 2.44 m spatial resolution and three multispectral bands, green, red, and nearinfrared (NIR). A second image captured on July 22, 2014 was obtained from the USFWS, and had a spatial resolution of 0.2 m. This image also contained three multispectral bands: green, red and NIR. Both multispectral images were radiometrically corrected and georeferenced prior to acquisition.

LiDAR Data

A 3-m spatial resolution LiDAR DEM was obtained from Minnesota Geospatial Commons (https://gisdata.mn.gov/). LiDAR data covering the study area were acquired on April 18 and 19, 2008, as a part of the Red River Basin Mapping Initiative 2008-2010, coordinated by the International Water Institute (IWI). The original data have a horizontal positional accuracy of one meter and vertical positional accuracy of 15 cm. This study uses the LiDAR DEM to develop the ancillary data sets of slope, aspect and topographic wetness index (TWI) used in the nearest neighbor classification.

Ancillary Data

The Spatial Analyst toolset in ArcGIS[™] 10.4 (ESRI, Redlands, California) was used to create several raster datasets from the LiDAR DEM. The slope tool was applied to produce a slope grid, in degrees. Slope is related to overland and subsurface flow, and quantifies the maximum rate of change in value from each cell to its neighbors. An aspect surface raster was created using the Aspect tool. Aspect represents downslope direction of the maximum rate of change between neighboring cells.

A flow accumulation grid and slope comprise TWI. For development of TWI, a value of 0.001 was added to each cell of the slope grid using Raster Calculator tool. This marginal addition increased the angle to avoid division by zero in subsequent TWI calculations. The final slope grid was multiplied by 0.0175 to convert to radians. Elevation irregularities or sinks were removed from the LiDAR DEM using the Fill tool. A flow direction grid was produced using the Flow Direction tool. The flow direction grid represents flow from each cell to its steepest downslope neighbor. Next, the flow direction grid was applied to the Flow Accumulation tool to produce a flow accumulation grid, a grid of accumulated flow into each cell. Flow accumulation is also referred to as catchment area as it represents overland flow paths within the watershed or drainage area.

TWI is commonly used to derive information about the spatial distribution of wetness. It is a function of both slope angle and upslope contributing cells (Moeslund et al. 2013). TWI was produced using the Raster Calculator tool using the following formula:

$$TWI = \ln (\underline{A_s}) tan \beta i$$

where TWI is the natural log (ln) of the ratio of the specific catchment area (A_s) expressed as m² per unit, divided by the tangent of the slope angle βi expressed in radians (Grabs et al. 2009). A low-pass 3 x 3 filter was run over the TWI output to remove minor variability produced using the Neighborhood tool. The slope, aspect and TWI were based on 12-Digit HUC, USGS watershed boundary, later clipped to the study area boundary.

Segmentation

The image segmentation operation in eCognition Developer 9.1 subdivides images into new image objects. Image objects contain both spectral and spatial elements referred to as, features. The multiresolution segmentation setting was selected due to its predominant use in previous studies. Input layers for image segmentation were the three spectral bands and elevation. For each image layer, the segmentation weight was equal. Scale parameters were designated for each image through a trial-and-error approach.

Two different scale parameters were selected due to the differing spatial resolution of the images. A scale parameter of 50 was selected for the June 12, 2007 image. A scale parameter of 70 was selected for the July 22, 2014 image. For both images, the color and shape parameter was set at 0.1; and the smoothness and compactness parameter was set at 0.5. A subset example of segmentation results are shown in Figure 5.

Figure 5. Subset of image segmentation results.

Training Samples

Nearest neighbor classification uses training samples of different classes to assign membership values (Trimble Inc. 2015). Training samples, typical representations of each class were manually selected based on aerial imagery and prior site knowledge. A minimum of 100 training sample objects were selected for each class. The following classes were defined: Grassland, Wetland, Open Water, Forest, and Developed (Table 2). A Cropland class was analyzed for the 2007 image classification due to the significant occurrence of the land cover. It was standard practice during the restoration period to complete the restoration seeding following a crop rotation of soybeans. In the 2014 image analysis, remaining Cropland is included with the Grassland class. A subset portion of manually selected training samples are shown in Figure 6.
Table 2. Land cover class descriptions.

Class	Description
Grassland	Land where vegetation is dominated by grass and forbs
Wetland	Fen, wet meadow, marsh, shrub wetland and similar wetland types
Open Water	Areas persistently covered with water (e.g. lakes, open water wetlands, gravel pit pond
Forest	Closed canopy forests
Developed	Areas with man-made structures (e.g. roads, gravel pit, buildings)
Cropland	Land used for agricultural production

Figure 6. Manually selected training sample objects.

Classification

Classification was performed with the supervised nearest neighbor classifier method, in which image objects are distributed to classes based on their nearest sample neighbors. The nearest neighbor calculation in eCognition Developer 9.1 computes distance using the formula:

$$d = \sqrt{\sum_{f} (\frac{vf(s) - vf(o)}{\sigma f})^2}$$

where *d* is the distance between sample object *s* and image object *o*; *vf* (s) is the feature value of sample object for feature *f*; *vf* (o) is the feature value of the image object for feature *f*, and σf is the standard deviation of the feature value for feature *f*. Distance of the feature space between a sample object and the classified image object is standardized by the standard deviation of all feature values (Trimble Inc. 2015). The nearest neighbor feature space was constructed using mean and standard deviation feature values of pixels within objects calculated from input layers of all three multispectral image bands, elevation, slope, aspect and TWI. These features were selected based on their identified importance in previous studies.

The two classified images were stacked and reclassified based on the mode value of the class name to distinguish areas of potential wetland change. Objects classified as *Open Water* and *Wetland* were combined into a new category representing wetness (*Wet*). All remaining classes were grouped as *Dry*. The stacked images were separated into four image classes: 1) Dry (Both 2007 & 2014); 2) Wet (Both 2007 & 2014); 3) Wet 2007; 4) Wet 2014. The results of this final image processing step were used for the GIS hydrological analysis. Both of the classified images and the stacked image product were exported as shapefiles to be further analyzed in ArcGIS.

Assessment of Classification Accuracy

The multinomial distribution method was used to determine sample point size according to the formula:

$$N = \underline{B \prod_i (1 - \prod_i)}_{b_i^2} = B = 1 - (\alpha/k) \times 100$$

where Π is the proportion of a population in the *i*th class out of *k* classes that is closest to 50 percent; *b* is the desired precision (5 percent); and *B* is the upper (α/k) x 100 percentile of the chi squared distribution with 1 degree of freedom; *k* is the number of classes (Manly 2009). The probability of error was established at 95 percent.

An error matrix was constructed for each of the classified images to evaluate the overall accuracy, user's accuracy (measure of omission error) and producer's accuracy (measure of commission error). Post classified image objects were converted from polygon features to raster data using the Polygon to Raster tool in ArcGIS[™] 10.4 (ESRI, Redlands, California). Two separate point generation methods were adjoined using the Create Accuracy Assessment Points tool. First fifty points were randomly generated for each class. Random points were supplemented by a stratified random sample. This method of point generation creates randomly distributed points within each class where each class has a number of points proportional to its relative area (Campbell and Wynne 2011). The two methods were combined to assure that each class had a minimum of 50 sample points. For each point, the land cover class assigned was visually compared with the corresponding area in the aerial imagery. The totals from both methods of point generation were combined in a single error matrix. Overall accuracy was derived by counting how many of the image points were correctly classified.

Classification results were compared to the original aerial images used in the classification procedure. This was done because no other high-resolution images were available for the location and dates of the study. The option of using a former or later

year image from another source was considered and rejected due to the rapidly changing hydrological conditions on the restoration site. Also, the images used for classification were easily distinguishable, having very high spatial resolution. Results of the confusion matrix indicate how many points were assigned to their correct class or misclassified into another class.

GIS Hydrological Analysis

Two vector shapefiles were obtained from the restoration and design plans of GRNWR: a *ditch* file showing locations of filled ditches; and a *wetland restoration* file showing locations of restored wetlands. The *ditch* file was a line-based shapefile feature class representing ditches filled during the restoration period between 2002-2010. The *wetland restoration* polygon shapefile was a digitized representation of restored wetland basins constructed between 2002-2010. A 121.92 meter (400 ft.) buffer was created around the *ditch* file using the Buffer tool in ArcGISTM 10.4 (ESRI, Redlands, California). This distance was selected to represent maximum lateral distance of influence of a ditch restoration on hydrology as determined from local soil type and ditch depth, also called, lateral effect. Lateral effect is defined as the width of land adjacent to a ditch that has had its hydrology modified such that it no longer satisfies wetland hydrologic criteria (Skaggs,Chescheir, and Phillips 2005).

Using the results of the stacked classified images, objects representing wetness (*Wet*) were analyzed according to their proximity within the ditch buffer or outside of it. To quantify classified wetlands influenced by ditch systems in 2007, the Wet 2007 and Wet (Both 2007 & 2014) objects were summed within the ditch buffer and outside the ditch buffer. To quantify wetlands influenced by filled ditch systems in 2014, the Wet

2014 and Wet (Both 2007 & 2014) objects were summed within the ditch buffer and outside the ditch buffer.

Determining Field Sampling Sites

A new *Wet_2014* vector polygon shapefile was extracted from the results of the image analysis. This file represented "newly wet" hydrologically restored areas that were classified as *wetland* or *open water*, in the July 22, 2014 image, and classified *Dry* based on the June 12, 2007 image results. The *Wet_2014* polygons were clipped using the buffered *ditch* file as clip feature. This resulted in a new output of wetland areas locally affected by the filled ditches. This new feature class was overlaid with the *wetland restoration* shapefile containing known restored wetland basins. The Erase tool was used to eliminate the known restored wetland basins, leaving only those wetland polygon areas within the lateral effect of the ditch buffer, but not contained in the *wetland restoration* shapefile. This process was done to target areas of potential wetland expansion to be further investigated through the field validation process. Furthermore, these potential wetlands were highlighted as they are directly attributed to restoration practices.

Field Validation

The field validation effort was completed to gain further insight as to how automated land cover mapping from remote sensing data relates to different land cover types on the ground. Belt transects were used to assess general composition characteristics of select wetland sites. The onsite wetland delineation provides precise boundary data that can be related to the remote land cover mapping from the image classification. It is important to note that data collection occurred during the growing

season of 2016, two years after the image analyzed so conditions are not directly relatable.

Belt Transect Method

The belt transect method was applied on five randomly selected sites within the study area according to procedures described in the Grassland Monitoring Team Standardized Monitoring Protocol (Vacek et al. 2015). This vegetation assessment method was undertaken to be consistent with ongoing USFWS data collection efforts. The method is an efficient, yet reliable, way to measure and monitor the ecological condition of large expanses of grassland habitat (Grant et al. 2004).

Random points were located in the field using a Trimble Geo XT handheld GPS unit. Because the sample points were anticipated to be in wetland habitats, the direction of the transect was determined perpendicular to the wetland edge. A measuring tape was stretched across the vegetation to a transect length of twenty-five meters and staked to prevent shifting. Visual obstruction reading (VOR) measurements were taken at the center-point of the transect (12.5 m), from the four cardinal directions (north, east, south, west) using a VOR pole. VOR readings were observed at a height of one meter and a distance of four meters from the pole. Litter depth measurements were recorded at five meter intervals along the transect.

Dominant plant groups (Appendix B) were identified at each 0.1-meter by 0.5meter segment along the tape and plant group codes recorded. According to the protocol, plant group codes represent a range that spans from native-dominated to invasivedominated vegetation. The prevalence of invasive species along the transect were recorded according to whether they were present or dominant (greater than 50 percent of

the quadrant). Finally, the presence of quality indicator species were documented. Field data collection was completed in late summer when both cool and warm-season plants were recognizable.

Onsite Wetland Delineation

At each of the selected transect sites an attempt was made to delineate a portion of the wetland boundary as additional validation for classification results. Standardized wetland delineation procedures from the United States Army Corps of Engineers (USACE) Wetlands Delineation Manual and Great Plains Regional Supplement were used to identify boundaries based on evaluation of three criteria: soils, vegetation and hydrology (USACE 1987; 2010). Test points were identified in obvious upland positions, and contrasted with points in obvious wetland positions. A portion of the wetland boundary was recorded via GPS points between the two reference test points.

Hydric soil indicators were evaluated in the field by digging a borehole approximately forty-five centimeters deep. The soil color was evaluated using hue, value, and chroma characteristics from the Munsell Color Chart for soils and recorded on field data sheets (Munsell Color 2015). Wetland hydrology indicators were inspected within the test hole to observe whether water seepage was encountered within thirty centimeters of the surface, as the presence of water within this depth is a strong indicator of a seasonal high water table (Lyon and Lyon 2011). Hydrological conditions were recorded on field data sheets.

Wetland vegetation was assessed by identifying dominant plant species and comparing their occurrence to the National Wetland Plant List of plant species that occur in wetlands, published by the USFWS and maintained by the USACE (USACE 2016).

The probability of a plants occurrence in wetlands was rated in one of five categories: upland, facultative upland, facultative, facultative wetland, and obligate wetland. Table 3 provides the estimated probability of occurrence in a wetland for each of the five categories. Estimates of areal cover were used to define dominant plant species. The plot sample sizes varied according to type of vegetation ranging from 1.5-m radius for herbaceous vegetation and 4.5 m for sapling/shrub vegetation. Locations were determined to have wetland vegetation when the total dominance of FAC, FACW, and OBL plants exceeded 50 percent of the total dominant plants found on the site (USACE 1989; 2010).

Plant Category	Abbreviation	Probability of
		wetland Occurrence
Upland	UPL	< 1%
Facultative Upland	FACU	< 33 %
Facultative	FAC	34% - 66%
Facultative Wetland	FACW	67% - 99%
Obligate	OBL	> 99%

Table 3. Vegetation categories for assessing wetland vegetation including abbreviation and probability percentage of occurring within a wetland.

CHAPTER IV

RESULTS

Nearest neighbor object-based land cover classification was performed on both images. The June 12, 2007 image was extracted into six classes: open water, wetland, grassland, forest, developed, and cropland. The July 22, 2014 image was extracted into five classes: open water, wetland, grassland, forest and developed. Multispectral aerial imagery, DEM and LiDAR derived ancillary data were integrated into the classification dataset. Results of the GIS-based hydrological analysis provide detail on areas of potential wetland expansion resulting from adjacent constructed wetlands. Results of the field validation provide supplemental information to remote sensing classification.

Ancillary Data

Non-spectral ancillary data were derived from LiDAR DEM and integrated into the classification process. The slope gradient for the study area was calculated in degrees, and ranged from 0-55.75 (Figure 7). The mean slope value was 0.98, consistent with the general subdued topography of the landscape. Beach ridge features and roads have moderate slope. High slope values were concentrated in locations of gravel pits, roads, and steep berms of large impoundments.

Figure 7. Slope values within study area reported in degrees.

Results of the aspect raster are shown in Figure 8. Aspect is the cardinal direction of slope, measured clockwise in degrees from 0 to 360, where 0-22.5 is north-facing, 67.5-112.5 is east-facing, 157.5-202.5 is south-facing, and 247.5-292.5 is west-facing. The aspect of a slope has significant influence on microclimate and on the distribution of vegetation (Domac and Suzen 2006).

Figure 8. Aspect values within study area shown in compass degrees.

Results of the TWI show where water collects or ponds on the landscape (Figure 9). Low TWI values are attributed to land that is almost never saturated and high values indicate land that is always saturated (Moeslund et al. 2013). Flow paths and areas of flow accumulation occur based on topography and slope, therefore TWI is a predictor of potential wetlands on landscape. In addition, water is a key driver of vegetation distribution (Pham, Brabyn, and Ashraf 2016). The mean TWI value across the study area was 6.67.

Figure 9. Study area with values of topographic wetness index. Areas that are predicted to be wet are dark, while red areas are predicted to be relatively dry.

Image Classification Results

The nearest neighbor image classification model integrated spatial and spectral properties. The classification maps (Figures 10 and 11) illustrate how wetland areas have changed spatially and temporally within the study landscape. For the June 12, 2007 image, the area associated with wetlands was 20.09 km² (\pm 3.82) out of a total area of 147.3 km² (Table 4). In the July 22, 2014 image, the classification resulted in wetlands covering 37.96 km² (\pm 8.35) of a total area of 147.3 km² (Table 4).

		6/12/2007		7/22/2014		
Class	km ²	Acres	Percent	km ²	Acres	Percent
Cropland*	34.35	8,489.2	23%	*Included in	*	*
	(± 5.50)	(±1,358.27)		Grassland Class		
Developed	2.51	619.7	2%	1.94	478.81	1%
	(± 0.05)	(±12.39)		(± 0.14)	(±33.52)	
Forest	8.63	2,133	6%	7.96	1,966.93	5%
	(± 0.60)	(±149.31)		(± 0.48)	(±118.02)	
Open Water	0.97	239.65	1%	1.00	247.63	1%
	(± 0.03)	(±7.19)		(± 0.05)	(±12.38)	
Grassland*	80.73	19,948.2	55%	98.43	24,323.91	67%
	(± 8.88)	(±2194.30)		(±1.97)	(±486.48)	
Wetland	20.09	4,965.3	14%	37.96	9,380.22	26%
	(± 3.82)	(±943.41)		(± 8.35)	$(\pm 2,063.65)$	

Table 4. Land cover classification results including percentages.

*Cropland estimates only produced in 2007 data. For 2014 data, cropland was combined into grassland class.

Results of the error matrix compare classified data to reference data. The diagonal of the matrix shows the number of points where the classified data are the same as the reference data, the values outside the diagonal show the number of points where the classified data is different from the reference data. The columns of the error matrix represent the reference data, while rows represent the classification data (Campbell and Wynne 2011). For each image year, overall accuracy, Producer's Accuracy (omission error) and User's Accuracy (commission error) were generated.

The Producer's Accuracy is a measure of the correctness of classified data, and is calculated by dividing the number of correctly classified points by the column total. It represents points that belong to a certain class but fail to be classified into that class (omitted). User's Accuracy is a measurement of the probability that a point on a map accurately represents that category on the ground, and is calculated by dividing the number of correctly classified points by the row total. It represents points that belong to a nother class but are classified as belonging to the class (committed). Overall accuracy is the sum of all points classified correctly, divided by the total points assessed. It is a metric of overall correctness of the entire classified image without regard to specific classes (Campbell and Wynne 2011).

The error matrix for the June 12, 2007 classified image produced an overall accuracy of 88 percent (Table 5). Open water was most accurately classified with a producer's accuracy of 95 percent (omission error 5 percent). The user's accuracy for the open water class was 97 percent (commission error of 3 percent). The classes that were least accurately classified were cropland and wetland. Cropland resulted in 83 percent producers accuracy (17 percent omission error); user's accuracy of 84 percent (commission error of 16 percent). The wetland class resulted in 86 percent producer's accuracy (14 percent omission error), and 81 percent user's accuracy (19 percent commission error).

With regard to the July 22, 2014 classified image, the overall accuracy achieved was 91 percent (Table 6). Open water was most accurately classified with a producer's accuracy of 93 percent (7 percent omission error) and a user's accuracy of 98 percent (2 percent commission error. The wetland class also had a producer's accuracy of 93 percent

(7 percent omission error), but a lower user's accuracy of 78 percent (22 percent commission error).

The final image processing step produced a stacked image that distinguished areas of potential wetland change. The spatial distribution of wetland areas that have undergone change are illustrated in Figure 12. Objects which were classified as *Open Water* and *Wetland* are shown as a combined new category representing both (*Wet*). All remaining classes are grouped as *Dry*. Areas identified as *Wet* in both images are assumed to be pre-existing wetlands or wetlands restored prior to 2007. Areas that were classified as *Wet* (in) 2014, but dry in 2007 indicate areas of expanded wetland change.

Results of GIS Hydrological Analysis

Restoration efforts at GRNWR resulted in the closure of drainage ditches constructed adjacent to, or through, wetlands. These drainage systems changed the hydrology of adjacent wetlands. The GIS Hydrological analysis used an estimation of lateral effect of a drainage ditch on the hydrology of wetlands to approximate wetland change that can be attributed to restoration practices. Table 7 provides an estimate of classified wetlands whose hydrology are affected by restored drainage ditches in their proximity. In 2007, restoration measures were ongoing; by 2014, the restoration structures were well established.

Figure 10. Output classification from June 12, 2007 image of GRNWR.

	Cropland	Developed	Forest	Open Water	Grassland	Wetland	Total
Cropland*	176	3	1	2	19	8	209
Developed	1	56	0	0	0	0	57
Forest	2	0	77	0	3	1	83
Open Water	1	1	0	56	0	0	58
Grassland	28	2	11	0	403	9	453
Wetland	4	1	0	1	20	111	137
Total	212	63	89	59	445	129	997

Table 5. Classification error matrix for June 12, 2007 image.

Overall Accuracy

879/997= 88%

Producer's Accuracy (measure of omission error)			User's Accu	racy (mea	asure of co	ommission error)	
Cropland*	83%	17%	omission error	Cropland	84%	16%	commission error
Developed	89%	11%	omission error	Developed	98%	2%	commission error
Forest	87%	13%	omission error	Forest	93%	7%	commission error
Open Water	95%	5%	omission error	Open Water	97%	3%	commission error
Grassland	91%	9%	omission error	Grassland	89%	11%	commission error
Wetland	86%	14%	omission error	Wetland	81%	19%	commission error

*Cropland was combined with grassland in the 2014 image analysis.

Figure 11. Output classification from July 22, 2014 image of GRNWR.

	Developed	Forest	Grassland	Open Water	Wetland	Total
Developed	52	0	2	1	1	56
Forest	0	72	0	2	3	77
Grassland*	2	13	433	0	9	457
Open Water	1	0	0	56	0	57
Wetland	5	4	36	1	161	207
Total	60	89	471	60	174	854

Table 6. Classification error matrix. July 22, 2014 image.

Overall Accuracy

774/854= 91%

Producer's Accuracy (measure of omission error)			User's Accur	acy (me	asure of c	ommission error)	
Developed	87%	13%	omission error	Developed	93%	7%	commission error
Forest	81%	19%	omission error	Forest	94%	6%	commission error
Grassland*	92%	8%	omission error	Grassland	95%	5%	commission error
Open Water	93%	7%	omission error	Open Water	98%	2%	commission error
Wetland	93%	7%	omission error	Wetland	78%	22%	commission error

*Remaining cropland was combined with grassland class in the 2014 image analysis.

Figure 12. Spatial distribution of wetland areas that have undergone change. Wet (Both Years) objects indicate preexisting wetlands or wetlands restored prior to 2007. Wet (Only 2014) objects are assumed areas of wetland expansion occurring after 2007.

	2007		2014	
	(km^2)	(acres)	(km ²)	(ha)
Within Ditch Buffer	7.07	1747.04	16.48	4072.3
Outside Ditch Buffer	13.86	3424.88	20.67	5107.67
Total	20.93	5171.92	37.15	9179.96

Table 7. Total classified wetland and open water objects within and outside the lateral effect zone of restored ditches according to classification year.

Results of Field Validation

To validate the results, five potential wetland areas were randomly selected to visit during the summer of 2016 (Figure 13). The selected field sites were classified as wetland based on the July 22, 2014 output, but non-wetland in the June 12, 2007 output. The sites were located within a 121.92 m (400 ft.) buffer of a filled ditch and outside of a constructed wetland basin. Plant composition and structure were assessed by applying the belt transect method. Site specific data from the collection protocol are provided on Vegetation Field Monitoring Datasheets in Appendix C. The resulting field validation maps in Figures 14-18 show locations of belt transect sites, which correspond to data sheets. The field-delineated wetland boundary was based on data collected from an upland sample point and a wetland sample point; the boundary was determined between these two points (USACE 1987). Wetland Determination Data Forms corresponding to upland and wetland sample points (SP) are provided in Appendix D.

Figures 14-18 contain field data including locations of belt transect sites, wetland delineation boundaries and respective upland and wetland sample point locations. The data are overlaid on 2015 NAIP imagery and the July 22, 2014 image classification output in order to contrast automated land cover mapping and ground conditions. Locations of ditch closures and restored wetland basins are also shown in proximity to validation sites. Of the five potential wetland points selected for validation, four were confirmed to be within wetlands. Site three, shown in Figure 15, was classified as wetland but was determined to be non-wetland in the field.

According to the grassland monitoring protocol, data collected in the field is meant to detect broad trends within the landscape. Variables related to prairie structure

and composition will be shared with USFWS staff. Variables are analyzed through an Access database hosted by the USFWS for biological monitoring. Data analysis serves the purpose of adaptive management modeling (Vacek et al. 2015).

Figure 13. Randomly selected field validation sites visited to collect belt transect data and perform onsite wetland delineation. Image source: 2015 NAIP.

Vegetation composition at site one (Figure 14) was mostly invasive (50-75 percent), herbaceous grass. No quality indicators were present at site one. Invasives noted were *Phalaris arundinacea* (Reed Canary Grass), *Agrostis gigantea* (Redtop), *Poa pratensis* (Kentucky Bluegrass), and *Cirsium arvense* (Canada Thistle). Litter depth on the site ranged from 4-7 cm.

At site two (Figure 15), the vegetation composition was mostly native (50-75 percent), herbaceous grass-forbs. Native quality indicators observed were *Solidago speciosa* (Showy Goldenrod), *Solidago ptarmicoides* (White Aster-like Goldenrod), *Veronicastrum virginicum* (Culver's Root) and Zizia aptera (Heart-leaved Alexanders). Invasive species present were *Poa pratensis* (Kentucky Bluegrass), *Bromus inermis* (Smooth Brome), *Agrostis gigantea* (Redtop), *Phalaris arundinacea* (Reed Canary Grass), *Cirsium arvense* (Canada Thistle), and *Melilotus alba* (Sweet Clover). Litter depth ranged from 5-8 cm.

Vegetation composition at site three (Figure 16) consisted of mostly native (50-75 percent), herbaceous grass-forbs. Native quality indicator species included *Solidago speciosa* (Showy Goldenrod), *Sorghastrum nutans* (Indian Grass), and *Solidago ptarmicoides* (White Aster-like Goldenrod). Invasive species present were *Poa pratensis* (Kentucky Bluegrass) and *Bromus inermis* (Smooth Brome). Litter depth ranged from 4-9 cm.

At site four (Figure 16), the vegetation composition consisted of mostly native (50-75 percent), herbaceous, grass-forbs. Native quality indicator species included *Zizia aurea* (Golden Alexander), *Thalictrum dasycarpum* (Tall Meadow Rue), and *Solidago ptarmicoides* (White Aster-like Goldenrod). The most common invasive present was *Phalaris arundinacea* (Reed Canary Grass), interspersed along the transect. Litter depth ranged from 4-6 cm.

The vegetation composition at site 5 (Figure 18) comprised a mixture of mostly native (50-75 percent) herbaceous grass and grass forbs, and mostly invasive (50-75 percent grass and forbs. Native quality indicator species included *Sorghastrum nutans*

(Indian Grass), *Solidago ptarmicoides* (White Aster-like Goldenrod), and *Solidago speciosa* (Showy Goldenrod). Invasive species present in the transect include *Poa pratensis* (Kentucky Bluegrass), *Bromus inermis* (Smooth Brome), *Agrostis gigantea* (Redtop), *Phalaris arundinacea* (Reed Canary Grass), *Cirsium arvense* (Canada Thistle), and *Melilotus alba* (Sweet Clover). Litter depth ranged from 1-5 cm.

Figure 14. Field validation site one. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).

Figure 15. Field validation site two. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).

Figure 16. Field validation site three. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).

Figure 17. Field validation site four. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).

Figure 18. Field validation site five. Contrasting 2015 NAIP imagery (left) and results from the July 22, 2014 output (right).

CHAPTER V

DISCUSSION

Image Classification

This study addressed GEOBIA results of two image classifications of GRNWR that tested its potential to evaluate wetland changes with high-resolution, multispectral imagery, and non-spectral ancillary data. The image classification model that integrated spectral data, LiDAR elevation, and LiDAR derived ancillary data of slope, aspect, and TWI resulted in classifications with high overall accuracy. The incorporation of ancillary topographic data was considered to be an important addition, as vegetation distribution is highly influenced by topographic features (Kim, Madden, and Xu 2010, Moeslund et al. 2013). In this study, the segmentation with spectral bands and elevation data produced results with high overall accuracy comparable to those achieved in similar studies.

The overall accuracy for the June 12, 2007 image is 88 percent (Table 5). Results show that the accuracy of the classification varies from one land cover type to another. For example, open water achieved the lowest omission error, five percent, omitting portions of cropland and wetland. Grassland had the second lowest omission error (9 percent), omitting wetland and cropland areas. The wetland class (14 percent omission error) omitted areas of cropland and grassland. Results of user's accuracy show developed land was correctly classified 98 percent of the time. Similarly, open water was correctly classified 97 percent of the time with a few commission errors from developed land and cropland. The classification model confused grassland areas with cropland, forest and wetland areas 11 percent of the time. The wetland class had the highest error of commission (19 percent) due to inclusions predominantly from grassland.

The July 22, 2014 classified image achieved an overall accuracy of 91 percent (Table 6). The open water class (7 percent omission error) omitted areas of forest, wetlands and developed lands. The wetland class (7 percent omission error) omitted areas of grassland, forest and developed land. The grassland class (8 percent omission error) omitted mostly wetland areas. The developed land class (13 percent omission error) omitted areas of wetland, grassland and open water. The forest class had the highest error of omission (19 percent), resulting from grassland and wetland omissions. Regarding errors of commission, open water produced the lowest result at two percent. Developed, grassland and forest classes resulted in similar commission errors at 7 percent, 6 percent and 5 percent, respectively. The wetland class had the highest commission error at 22 percent due to misclassification errors mainly of grassland.

Open water resulted in the highest classification accuracy in both images. This is consistent with surface water extraction studies, which conclude that the NIR band has a high ability to discriminate water, in which is strongly absorbed, while NIR is strongly reflected by terrestrial vegetation (Campbell and Wynne 2011). In both images, the classification accuracy assessment showed the wetland class resulted in the greatest percentage of commission (user's accuracy) error. This means that a portion of wetlands were classified by the model, yet confirmed to be grassland when compared to aerial images representing actual ground conditions. These results suggest the model slightly overestimated wetland areas, as compared with other classes.

The overestimation of wetland areas may be an effect of several conditions. In this model, wetland areas may be prone to misclassification due to data redundancy in the input variables. The topographic variables used in this study are influenced by the quality and resolution of the DEM from which they were derived. Errors within the original DEM are propagated into the subsequent data sets. Addition of the TWI may overestimate wetness conditions, as TWI is static and relies on the assumption that local slope is a proxy for the downslope hydraulic gradient which is not always the case in low relief terrain such as found in the study area. In flat terrain, the local slope tends to overestimate the downslope hydraulic gradient. In these landscapes, groundwater gradients can be significantly different from ground surface slopes (Grabs et al. 2009). The classes, as they were established, may be difficult to distinguish spectrally. Errors in classification may also result from the high spectral heterogeneity within classes due to the high spatial resolution of the imagery used and the diversity of wetland types grouped together (Laliberte et al. 2004, Platt and Rapoza 2008).

GIS Hydrological Analysis

An analysis of the landscape distribution of wetland change as a function of proximity to filled ditches offers additional insights into the class area changes. The purpose of the GIS hydrological analysis was to evaluate the impact of engineered wetlands and waterways on the distribution, location, size and temporal changes of wetlands within the GRNWR. Between 2007 and 2014 the spatial distribution of wetland area has changed. While many wetland basins had been restored and were present on the landscape in 2007, results from this analysis show wetland area increased in 2014. The increase in wetlands is evident, in many cases, spatially adjacent to existing wetlands and filled ditches.

Area occupied by wetland has increased in 2014 by 11 percent, compared to area occupied by the same class in 2007. Results of the analysis show the changes in wetland

relative to proximity within and outside the ditch buffer of filled ditches. The area occupied by wetlands within the ditch buffer more than doubled from 2007 to 2014, comprising 7.07 km² and 16.48 km² respectively. Wetland area outside the ditch buffer increased significantly from 13.86 km² to 20.67 km². Recalling that the accuracy assessment revealed a slight overestimation of wetlands, results from this process are likely an overestimation of what exists on the landscape.

Analysis of monthly precipitation totals that compared 2007 with 2014 revealed there was no statistically significant difference between the years. The Palmer Hydrological Drought Index values show how monthly moisture conditions depart from normal. The index considers long-term impacts of drought on hydrological systems. In 2007, conditions leading into the growing season were below normal as compared to 2014. In both 2007 and 2014, values during the growing season return to normal levels. Evaluation of weather and climate data suggest that changes to wetland areas are likely the result of construction and restoration practices and not due to changes in climate.

Field Validation

The field validation process sought to relate image objects to real landscape features. The accuracy of the remote wetland mapping was compared with onsite wetland delineation at five random sites. The remote land cover classification showed that the model was able to predict the general distribution of wetlands although there were clear differences with precise boundaries that were delineated during the field validation process.

Four out of five sample points classified as wetland were affirmed in the field. One sample point classified as wetland was determined to be upland. None of the

wetlands visited had boundaries that corresponded precisely to the remote wetland mapping results. Time and logistical constraints limited the amount of data collected consequently, partial wetland boundaries were recorded. The large size, diversity of type, and interconnectivity of wetlands observed in the field confirmed the challenges of field based wetland delineation at this scale. The field validation reveals a tradeoff between precision and practicality.

Onsite wetland delineation and belt transect methods were employed to document baseline characteristics of vegetation, soils and hydrology of selected wetlands as a way to assess the biotic and abiotic conditions of these wetlands. Plant diversity was recorded on a spectrum, which ranged from native-dominated to invasive-dominated (Vacek et al. 2015). Vegetation observed onsite was highly variable, containing mixtures of native and introduced grasses and forb species. Plant diversity was reflective of seed mixture planted and age of the restoration.

Future Research

Ancillary data layers of elevation, slope, aspect and TWI were all weighted equally in the analysis, without further exploration; it is not possible to know the contribution of each data layer in isolation. A statistical analysis of object feature properties resulting from various input layers could be conducted to better understand each source's utility to classification; doing so would further corroborate the use of ancillary data layers.

The classification scheme was designated at a broad level. This was due to an absence of plot-level data or similar resources from which to establish a more comprehensive classification. To reduce spectral heterogeneity within classes, more refined training sample data would be beneficial. This training data would ideally be based on plot data. Collection of plot data that includes plant community types such as the Ecological Classification Systems (ECS) developed by the MN DNR and U.S. Forest Service (e.g. Northern Wet Prairie, Upland Prairie, Prairie Wet Meadow/Carr), could produce more specificity among classes, and reduce heterogeneity within classes. As the refuge moves forward with the establishment of a comprehensive system of observation points, collection of community type data would be beneficial for incorporating into future remote sensing evaluations.

CHAPTER VI

CONCLUSION

Land cover mapping of GRNWR presents challenges due to its unique geomorphology positioned on the eastern beach ridges of former glacial Lake Agassiz, land use history and restoration, expansive terrain, and high diversity of interspersed wetlands. The USFWS, managers of the complex, are concerned with understanding spatial distribution of habitats seen as critical for assessing conservation status of populations, and predicting species distributions and their response to environmental change. The USFWS seeks baseline biotic and abiotic information as a foundation to base long-term refuge planning and management and to evaluate the effectiveness of land management strategies (USFWS 2016).

This study aimed to analyze the hydrologic processes of restored prairie-wetlands on the adjacent land surface using remote sensing and Geographic Information Systems (GIS). The specific objectives of this research were to:

 Evaluate the effect of engineered wetlands and waterways on the distribution, location, size and temporal changes of wetlands within the Glacial Ridge National Wildlife Refuge using high-resolution, multispectral imagery, and ancillary data;
- 2. Determine the accuracy of remote wetland mapping with onsite wetland delineation;
- Document baseline characteristics of vegetation, soils and hydrology of selected wetlands as a way to assess the biotic and abiotic conditions of these wetlands.

The overall classification results illustrate how wetland areas have changed spatially and temporally within the study landscape. For the June 12, 2007 image, wetland area was 20.09 km² out of a total area of 147.3 km². In the July 22, 2014 image, the classification resulted in wetlands covering an area of 37.96 km². The accuracy assessment for the June 12, 2007 classified image resulted in an overall accuracy of 88 percent. The July 22, 2014 classified image resulted in an overall accuracy of 91 percent.

The study also attempted a GIS-based analysis to evaluate the impact of engineered wetlands and waterways on the overall changes of wetlands within the GRNWR using lateral effect as the determinant. Results of the analysis document the changes in wetland relative to proximity within and outside the buffer of filled ditches. The area occupied by wetlands within the ditch buffer more than doubled from 2007 to 2014, comprising 7.07 km² and 16.48 km² respectively. Wetland area outside the ditch buffer increased significantly from 13.86 km² to 20.67 km² during this same time period.

The field validation process was completed to determine the accuracy of remote wetland mapping compared with onsite wetland delineation. Four out of five transect locations classified as wetland were affirmed in the field. Plant composition and structure were assessed by applying the belt transect method. The remote land cover classification was able to predict the general distribution of wetlands although there were clear

differences with precise boundaries that were delineated during the field validation process.

The GEOBIA approach to classify land cover at GRNWR and evaluate wetland change is promising. Use of GEOBIA software eCognition object-based remote mapping method, which integrated spectral and spatial properties, resulted in high overall land cover classification accuracy. A framework of integrating field-collected, plot data with remote sensing and a more refined hydro-geomorphic analysis is critical for predicting specific habitat conditions and hydrological process. This would aid a better evaluation of tallgrass prairie-wetland ecosystem dynamics. APPENDICES

Appendix A Map of Vector GIS Data from TNC Records

Study area, GRNWR with restoration practices including filled ditches and restored wetland basins.

Appendix B

Excerpt from Grassland Monitoring Team Standardized Monitoring Protocol Version 8

Invasive species lists.

This list was developed by Robert Dana (MCBS, 2008). Note that some species on this list are native to parts of Minnesota, but all are considered invasive threats to the integrity of a remnant tallgrass prairie plant community.

Tier 1 Invasives

Code	Common Name	Scientific Name	Old Code
ACENEG	Boxelder	Acer negundo	
AGRCRI	Crested Wheatgrass	Agropyron cristatum	
AGRGIG	Redtop	Agrostis gigantea/stolonifera	
ARTABS	Absinthe Sagewort	Artemisia absinthium	
BROANN	Annual Bromes	B. japonicus, tectorum, secalinus	
BROINE	Smooth Brome	Bromus inermis	
CARACA	Plumeless Thistle	Carduus acanthoides	
CARNUT	Musk Thistle	Carduus nutans	
CENSTO	Spotted Knapweed	Centaurea stoebe subsp. micranthos	CENMAC
CIRARV	Canada Thistle	Cirsium arvense	CIRCAN
CIRVUL	Bull Thistle	Cirsium vulgare	
CORVAR	Crown-vetch	Coronilla varia	
DAUCAR	Queen Anne's Lace	Daucus carota	
ELAANG	Russian Olive	Elaeagnus angustifolia	
ELYREP	Quack-grass	Elytrigia repens	
EUPESU	Leafy Spurge	Euphorbia esula	
FRAALN	Glossy Buckthorn	Frangula alnus	RHAFRA
FRAPEN	Green Ash	Fraxinus pennsylvanica	
JUNVIR	Eastern red cedar	Juniperus virginiana var. virginiana	
LEUVUL	Ox-eye Daisy	Leucanthemum vulgare	CHRLEU
LINVUL	Butter-and-eggs	Linaria vulgaris	
LONTAT	Tartarian Honeysuckle	Lonicera tatarica	
LOTCOR	Birdsfoot Trefoil	Lotus corniculatus	
MEDSAT	Alfalfa	Medicago sativa	
MELISP	Sweet Clovers	Melilotus alba & officinalis	
PASSAT	Parsnip	Pastinaca sativa	
PHAARU	Reed Canary-grass	Phalaris arundinacea	
PHLPRA	Timothy	Phleum pratense	
POACPX	Canada and Kentucky Bluegrass	Poa compressa, pratensis	
POPDEL	Cottonwood	Populus deltoides	
RHACAT	Common Buckthorn	Rhamnus cathartica	
ROBPSE	Black Locust	Robinia pseudoacacia	
SONARV	Sow-thistle	Sonchus arvensis	
TRIPRA	Red & Alsike clovers	Trifolium pratense, hybridum	
TRIREP	White Clover	Trifolium repens	

ULMAME	American Elm	Ulmus americana	
ULMPUM	Siberian Elm	Ulmus pumila	

Tier 2 Invasives

Code	Common Name	Scientific Name	Old Code
AMABLI	Prostrate Pigweed	Amaranthus blitoides	
ARCMIN	Burdock	Arctium minus	
BERINC	Hoary Alyssum	Berteroa incana	
CALSEP	Hedge Bindweed	Calystegia sepium	
CARARB	Siberian Pea-tree	Caragana arborescens	
CHERUB	Alkali Blite	Chenopodium rubrum	
CONARV	Field Bindweed	Convolvulus arvensis	
CRETEC	Hawk's Beard	Crepis tectorum	
DACGLO	Orchard Grass	Dactylis glomerata	
ERUGAL	Dog-mustard	Erucastrum gallicum	
FESELA	Meadow and Tall Fescues	Festuca pratensis & elatior	
GRISQU	Curly-top Gum Weed	Grindelia squarrosa	
KOCSCO	Summer-cypress	Kochia scoparia	
LAPPSP	Stickseeds	Lappula redowski & squarrosa	
MEDLUP	Black Medick	Medicago lupulina	
MORALB	White Mulberry	Morus alba	
NEPCAT	Catnip	Nepeta cataria	
PERMAC	Lady's Thumb	Persicaria maculosa	POLPER
PINSYL	Scotch Pine	Pinus sylvestris	
PLANSP	Common & American Plantains	Plantago major & rugellii	
POTARN	Silvery Cinquefoil	Potentilla argentea	
POTREC	Sulphur-flowered Cinquefoil	Potentilla recta	
PUCDIS	European Alkali-grass	Puccinellia distans	
RUMACE	Sheep Sorrel	Rumex acetosella	
RUMSPP	Dock	Rumex patientia, crispus, stenophyllus	
SALALB	White Willow	Salix alba	
SALTRA	Russian Thistle	Salsola tragus	
SAPOFF	Bouncing Bet	Saponaria officinalis	
SETASP	Foxtails	Setaria glauca, viridis, faberi	
SILCSE	Smooth Catchfly	Silene csereii	
SILVUL	Bladder-campion	Silene vulgaris	
SINARV	Charlock	Sinapis arvensis	
SISALT	Tumble Mustard	Sisymbrium altissimum	
TAROFF	Dandelion	Taraxacum officinale	
VERTHA	Common Mullein	Verbascum thapsus	
XANSTR	Cocklebur	Xanthium strumarium	

Native indicator species lists.

The list was developed by Robert Dana and Fred Harris (MN DNR) and includes conservative species that are sensitive to grazing and easily identified.

Code	Common Name(s)	Scientific Name	Old Code
AMOCAN	Leadplant	Amorpha canescens	
ANEPAT	Pasque Flower	Anemone patens	
ASTCRA	Ground Plum, Buffalo-bean	Astragalus crassicarpus	
CALSER	Toothed Evening Primrose	Calylophus serrulatus	
CORPAL	Bird's Foot Coreopsis	Coreopsis palmata	
DALCAN	White Prairie Clover	Dalea candida	
DALPUR	Purple Prairie Clover	Dalea purpurea	
ECHANG	Narrow-leaved Purple Coneflower	Echinacea angustifolia	ECHPAL
HELAUT	Sneezeweed	Helenium autumnale	
HEURIC	Alum Root	Heuchera richardsonii	
LIAASP	Rough Blazing Star	Liatris aspera	
LIALIG	Northern Plains Blazing Star	Liatris ligulistylis	
LIAPUN	Dotted Blazing Star	Liatris punctata	
LIAPYC	Great Blazing Star	Liatris pycnostachya	
LILPHI	Wood Lily	Lilium philadelphicum	
LYSQUA	Prairie Loosestrife	Lysimachia quadriflora	
PEDESC	Prairie Turnip	Pediomelum esculentum	
PHLPIL	Prairie Phlox	Phlox pilosa	
POTARGU	Tall Cinquefoil	Potentilla arguta	
PRERAC	Smooth Rattlesnakeroot	Prenanthes racemosa	
SYMSER	Silky Aster	Symphyotrichum sericeum	ASTSER
TRABRA	Bracted Spiderwort	Tradescantia bracteata	
ZIGELE	White Camas	Zigadenus elegans	
ZIZAPT	Heart-leaved Alexanders	Zizia aptera	
ZIZAUR	Golden Alexanders	Zizia aurea	

Tier 1 Natives

Tier 2 Natives

Code	Common Name(s)	Scientific Name	Old Code
AGOGLA	Glaucus False Dandelion	Agoseris glauca	
AMONAN	Fragrant False Indigo	Amorpha nana	
ASCOVA	Oval-leaved Milkweed	Asclepias ovalifolia	
ASCSPE	Showy Milkweed	Asclepias speciosa	
ASCTUB	Butterfly Weed	Asclepias tuberosa	
ASTADS	Prairie Milk Vetch	Astragalus adsurgens	
CARFIL	Thread-leaved Sedge	Carex filifolia	
CASSES	Downy Paintbrush	Castilleja sessiliflora	
DELCAR	Prairie Larkspur	Delphinium carolinianum subsp. virescens	DELVIR
DICLEI	Leiberg's Panic Grass	Dichanthelium leibergii	PANLEI
DOEUMB	Flat-topped Aster	Doellingeria umbellata	ASTUMB

GAIARI	Blanket Flower	Gaillardia aristata	
GENPUB	Downy Gentian	Gentiana puberulenta	
LATVEN	Veiny Pea	Lathyrus venosus	
LIACYL	Few-headed Blazing Star	Liatris cylindracea	
LYTALA	Winged Loosestrife	Lythrum alatum	
MUHCUS	Plains Muhly	Muhlenbergia cuspidata	
PEDLAN	Swamp Lousewort	Pedicularis lanceolata	
SILLAC	Compass Plant	Silphium laciniatum	
SOLPTA	White Aster-like Goldenrod	Solidago ptarmicoides	
SOLRID	Riddell's Goldenrod	Solidago riddellii	
SOLSPE	Showy Goldenrod	Solidago speciosa	
SORNUT	Indian Grass	Sorghastrum nutans	
SPOHET	Prairie Dropseed	Sporobolus heterolepis	
SYMLAE	Smooth Blue Aster	Symphyotrichum laeve var. laeve	ASTLAE
SYMOBL	Aromatic Aster	Symphyotrichum oblongifolium	ASTOBL
SYMOOL	Sky-blue Aster	Symphyotrichum oolentangiense	ASTOOL
SYNNOV	New England Aster	Symphyotrichum novae-angliae	ASTNOV
THADAS	Tall Meadow-rue	Thalictrum dasycarpum	
VERVIR	Culver's Root	Veronicastrum virginicum	

Distubrance increaser indicator species list.

Code	Common name	Scientific Name	Old Code
ACHMIL	Yarrow	Achillea millefolium	
AMBART	Ragweed	Ambrosia artemisiifolia	
AMBTRI	Giant Ragweed	Ambrosia trifida	
BECSYZ	American Sloughgrass	Beckmannia syzigachne	
CONCAN	Horseweed	Conyza canadensis	
CYCXAN	Marsh-elder	Cyclachaena xanthifolia	IVAXAN
HORJUB	Foxtail Barley	Hordeum jubatum	
JUNARC	Baltic Rush	Juncus arcticus (balticus)	
LEPDEN	Prairie Pepperweed	Lepidium densiflorum	
PANCAP	Witchgrass	Panicum capillare	
PLAPAT	Wooly Plantain	Plantago patagonica	
RANCYM	Seaside Crowfoot	Ranunculus cymbalaria	
SCIPAL	Pale Bulrush	Scirpus pallidus	

Plant group lists (updated April 2009)

Appendix C Field Data Sheets: Vegetation Field Monitoring Datasheet

: VEGETATION FIELD MONIOTORING DATASHEET

	N-S Trar	sect								
Plot	L. cattern	Plot	1	٦	Plot -		1 1	Plot	1	
Point		Point	1	-	Point			Point		
Date	9-11-120	Date		-	Date		1	Date		
Observer	Eggelmainen	Observer		1	Observer			Observer		
Aspect	3	Aspect		-	Aspect			Aspect		
Slope		Slope			Slope			Slope		
Bering		Bering		1	Bering			Bering		
Plant	Group Score	TIERI	mannes		Discoute	Induction		Titter	lanto	
0.5	130	0.5	PHOARD	10	0.5	B Colonal	ÍI	0.5		NILO
1	130	1	PHADAD	10	1					Photol -S
1.5	130	1.5	PHADELS	0	1.5			1.5		1. 5
2	120	2	PHAADO	15	2			2		L
2.5	120	2.5		D	2.5			2.5		
3	120	3		Ø	3			3		
3.5	120	3.5		D	3.5			3.5		100
4	120	4		D	4	****		4		VOR
4.5	120	4.5		D	4.5			4.5		· · · · · · · · · · · · · · · · · · ·
5	120	5		D	5			5	Standing WC	ter
5.5	120	5.5		Ø	5.5			5.5		E 37 5
6	120	6		P	6			6		E -JL.Jon
6.5	12.0	6,5		D	6.5			6.5		1 118
7	120	7		Ø	7			7		N-40cm
7.5	120	7.5		4	7.5			7.5		1
8	120	8		a	8			8		W-65cm
8.5	120	8.5	տ ղլ	Ð.	8.5			8.5		•
9	120	POLLPX 9	ACRGIG	D.	9			9		C :37 5cm
9.5	120	POALPY 9.5	PHAD RU, AG	616	9.5			9.5		S SLOOM
10	120	10	4 11	0	10			10	2cm	
10.5	120	10.5	11 11	0	10.5			10.5		
115	120	11	AGRGIG, PAAC	XD	11			11		
11.0	120	11.0	<u>n n</u>	0	11.5			11.5		
125	120	12	11 11	10	12			12	i	
12.0	120	12.0	POACPX	P	12.5			12.5		
13.5	120	10 5		D	13			13		
14	120	13.0		5	13.0			13.5		
14.5	110	14.5		6	14			14		
15	110	14.0			14.0			14.0	54.0	
15.5	110	15.5		E.	15.5			15.5	Sem	
16	110	16		e	16			10.0		
16.5	110	16.6		e	16.5			16.5		
17	110	17		e	17			17		
17.5	110	17.5		e	17.5			17.5		
18	110	18	11 11	P	18			18		
18.5	110	18.5	POAC PV. OR	hevp	18.5			18.5		
19 \	1D	19	POACPY	P	19			19		
19.5	10.	19.5	RABJ P POA	RI-P	19.5			19.5		
20	10	20	11 11	· · · ·	20			20	(acm	
20.5	110	20.5	POALPY-P		20.5			20.5		
21	10	21	W W-P		21			21		
21.5	111	21.5	POACAL P		21.5			21.5		
22	111	22 (HABRUD, C	Rite/	22			22		1
22.5 \	2.0	22,5	PHDIPPEN	P	22.5			22.5		
23)	10	23	1	P	23			23		
23.5	20	23.5		P	23.5			23.5]
24	20	24		D	24			24		1
24.5	20	24.5		D	24.5			24.5		1
20	10	26	11 1	D	25			25	Yum	1

NPAM Protocol Notebook, 15 February 2013

Transect 2 N-S **VEGETATION FIELD MONIOTORING DATASHEET**

Plot

Point

Date

Observer

0.5 410

1314P

1.5 314P

23/4P 2.53/4P

3314P 35314P 4314P

4.5 314P

5 3/UP

6 314 P 6.5 314 P

73141

7.5 314 P 8 3141

8.5 3UP

93141

9.5 3/4 P 10 2/4 P 10.5 3/4 P

113/4P 11.53/4P

12 <u>34P</u> 12.5 <u>314P</u> 13 <u>314P</u> 13.5 <u>314P</u>

14314P

14.5 314P 15314P

15 514P 15.5 214P 16 3140 16 340 17 30 4P 17.5 34P 18 314P 18 314P 18 3140 19 3.40 10 3.40

20 JUP

20.5 314P

21 314P

21.5 314P 22 314P

22.5 214P 23 314P 23.5 214P

24 314P

3148

314 P

5.5

Aspect

Slope

Bering

Plot

Point

Date

Aspect

Slope

Bering

a.

à 9-11-16

Observer KME

PGS 0.5 111

1.5 111

2 111

2.5 111.

3.5 11

4 11

5 11

11

4.5 11

5.5

7.5

8.5

6 11

6.5 \\

7 11

11 8 11

11

9 111

9.5 11

10 11

10.5

12 ||| 12.5 |||

13.5

15.5 111 16 12D

120

120

111

111 19

121

12

111

111

111

111

111

111

11)

111

111

 $\left(1\right)$

111

11 NI

13 11

14.5 11

16.5

17

17.5

18

18.5

19.5

20

21

20.5

21.5

22

23

24

25

22.5

23.5

24.5

15 111

11.5

11 111

25 NPAM Protocol Notebook, 15 February 2013

24.5

*UPLAND

VEGETATION FIELD MONIOTORING DATASHEET

Fransect 3 EW VOR Reciding Photo 1=W Z=E Observer

Plot Point

Date

Aspect Slope Bering

S=57,5cm 5cm Scm oscin CPX=) NE=2

the second statement of the se	And and the second s		-	
Plot	3		Plot	Т
Point	3	-	Point	t
Date	anni		Date	$^{+}$
Observer	Chiller 10	-	Obtonior	╋
Cuserver	Cagelman	м	Observer	+
Aspeci		_	Aspect	L
Slope			Slope	L
Bering			Bering	Τ
Diant Ga	NO S DO		houses	
0.5	A A A A A A A A A A A A A A A A A A A	ה	0.5	ř
1	- falat	-		╋
······································		-		+
1.0		_	1.5	L
2	_111		2	
2.5	1.12		2.5	Г
3	111		3	Г
3.5	111	1	3.5	t
4		-		ŀ
4.5	<u> </u>	-	4	┝
4.0	120	-	4.0	┡
0	120	-	5	L
5.5	_111	-	5.5	L
6			6	
6.5	111	1	6.5	Γ
7	111		7	
7.5	111		7.5	1-
8	171	1	1.0	-
9.5	1.6	-	0.5	-
0.0	17.1	4	0.0	_
9	121	4	9	_
9.5	111	1	9.5	
10	114		10	
10.5	121		10.5	
11	120	1	11	1
11.5)) (1	11.5	-
12	1	1	12	-
12.5		1	12.5	-
12			12.0	
10 5	11	{	13	
13.0	111		13.5	Ĵ
14	111		14	_
14.5	111		14.5	
15	112		15	
15.5	111		15.5	
16	111		16	-
16.5	111		16.5	-
17	111		17	-
17.5			17 5	
	11		17.0	_
10			18	_
18.5			18.5	
19	111		19	
19.5	11L		19.5	
20	101.		20	
20.5	101 '		20.5	-
21	101	ł	21	
21.5		ł	01 F	
22	-tild-mar	H	21.0	_
		- F	22	
22.5	1	1	22.5	
23	111	1	23	
23.5	IIL_		23.5	
24	11L	ſ	24	

ot		
int		
te		
server		
nect	·····	
De		
ring		
10921	10	I
0.5	-15	
15	15	
1.0	IP	
25	-18	
2.0	<u></u>	
- 25	15	
3.0	11-	
4	10	
4.0	<u>.ip</u>	
5 5	-172	
0.0	-1-2	
6.6	1F	
0.0	<u>jr</u>	
- 7 5	14	
7.5	<u>IP</u>	
0 5	10	
0.5	10	·
05	10	
5.0	112	
10.5	15	
11	20	
11.5	a D	
12	UAF	
12.5	1 2 6	
13	1 D P	
13.5	120	
14	Lar_	
14.5	10	
15	10	
15.5	10	
16	1P	
16.5	10	
17	1P	
17.5	1 P	
18	18	
18.5	1P	
19	1P	
19.5	IP	
20	and the second	
20.5		
21		
21.5	1P	
22	1P	
22.5	IP	
23	1P	
23.5	IP	

	<u>ل</u>	0.5			
Plot			Plot		8=412
Point			Point		
Date			Date		N=2
bserver			Observer		. 1 .
spect			Aspect		N=1
lope			Slope		
lering			Bering		
Guali	to Indicuto	\leq	Litter	Depth	
0.5	SOLSDE	Î I	0.5		
1	SOPALIT		1	<u></u>	PDAC
1.5	SNI OTVA		1.5		1 0110
2	ACCUT		2		DON
2.5			2.5		DKUI
3			3		
3.5			3.5		
4			4		
4.5			45		
5			4.0	Ling	
5.6			5.5	-1(14)	1
6.0			0.0		
6.5			65		1
7					
7.5			75		
1.0			7.0		1
0			0		1
0.0			0.0		
9			9		
9.5			9.0	11	
10			10	Acm	-
10.0			10.5		-
11		· .	11		1
11.5			11.5		4
12			12		4
12.5	·		12.5		-
13			13		1
13.5			13.5		4
14			14		4
14.0			14.5		-
15			15	Sum	4
10.5			10.5		4
16			16		4
16.5			16.5		-
17			1/		4
17.5			17.5		-
18			18		4
18.5			18.5		4
191			19		4
19.5			19.5		-
20			20	1 cm	-
20.5			20.5		-
21			21		-
21.5			21.5		1
22			22		4
22.5			22.5		-
23			23		4
23.5			23.5		-
24			24		-
24.5			24.5		_
25			25	9cm	1

NPAM Protocol Notebook, 15 February 2013

24.5

25

11

24 24.5

25

1 6

-6

90

VEGETATION FIELD MONIOTORING DATASHEET

Transect 4 (East-West)

	to an a factor of			
Plot	4	٦	Plot	17
Point	LU1	-	Point	1-1-
Date	9-11 2016		Date	
Observer	Engiman	-	Observer	
Aspect	Chenter	L.	Aspect	+
Slope		-	Slope	
Bering			Bering	
Plant	210010500		Trul	La laci
0.5	LUC	۲	<u>11er</u>	DIM LO
1	120	-		F HIAKK
15	10	-	16	PHHIT
- 1.0	120		1.0	LAHBK
. 25	111	-	25	PHAD
2.0	120	-	2.0	OUDAN
25	140	-	3	PHHI
0.0	110	-	3.0	PHAV
4	110	-	4	PHA PA
4.0	110	-	4.0	
0	10,0	-		
0.0	100	-	0.0	
0	100	4	6	<u> </u>
0.0	101	-	0.5	0
75	<u></u>	4		PHAFIE
1.5	110	-	7.5	PHAPA
8	120	-	8	PHAR
8,5	120	4	8.5	PHAAR
9	120	-	9	PHAN
9.5	120	1	9.5	PHAM
10	110		10	PHARP
10.5	110	4	10.5	PHAAR
11	120	-	11	PHANE
11.0	100	1	11.5	
12	101	1	12	
12.5	101	1	12.5	
13	101		13	
13.5	111		13.5	PHARAR
14	101	1	14	
14.5	101	1	14.5	
15	101-	1	15	•
15.5	101	1	15.5	
16	101	1	16	
16.5	101	1	16.5	
17	102		17	0115
17.5	121		17.5	PHADE
18	111		18	PITAR
18.5	101		18.5	**
19	111		19	PHADR
19.5	111'		19.5	PHANAK
20	111		20	PHA ARO
20.5	111		20.5	
21	120		21	AGRG
21.5	12		21.5	PHALL
22	111		22	
22.5	121		22.5	PHAAR
23	111		23	PITA AR
23.5	102		23.5	
24	101		24	
24.5	101		24.5	

	_		,
	1	Plot ·	
	1	Point	
	1	Date	
	1	Obconvor	
-	1	Observer	
	1	Aspect	
		Slope	
		Bering	
NO.S	-	Rualis	~ Indicators
	10	0.5	1 Indiana
<u>v</u>	1.		
RO	12		·
20	P	1.5	
RN	D	2	
RU	Ø	2.5	
ORIA	P	3	
0.5	à	3.5	
01	6		
KU_	r .	4	
	1	4.5	
	1	5	
		5.5	
	1	6	
	1	6.5	
0.5	P	7	
KU	6	7	
RJ	5	1.0	
neu	1	8	
23	D.	8.5	
RU	D	9	
PLA	0	9.5	
	5	10	
20	P	10.5	
<u>u</u>	1	10.5	······
ev.	D	11	
		11.5	
		12	
	1	12.5	717AUR
		13	212 AUD
1	р	13.5	CICIPIN
U.	`	10.0	
		14	
		14.5	ZIZAUR
		15	ZIZAUR
		15.5	
		16	212 AUR
		16.5	
		17	
1)	0	17 5	
~	2	11.0	
<u> <0</u>	r	18	THADAS
		18.5	
\mathcal{N}	P	19	'
20	P	19.5	
)	P	20	
	1 I	20.5	212 m/6
		20.0	Scan
10		21	·····
0	D	21.5	
		22	ZIZANR SOLP
RV.	D	22.5	
20	P	23	
		23.5	
	1	24	
		24 5	
		24.0	
		25	

-		
Plot		
Point		
Date		
Observor		
Observer		
Aspect		
Slope		
Bering		0 1
Litter De	pm 110	2 Keading
0.5	1	1
1		
1.5		
2		
2.5		
3		
3.5		
4		
45	• • • • • • • • •	
4.5	Vana	
5.5	1000	
0.0		
6		
5.5		
7		
7,5		
8.5		
9		,
9.5		
10	lecon	
10.5		
11		
11.5		VOD
12		VUB.
12.5		6. 20
13		Cast - JULM
13.5		Nhon- Silver
14		0,00,0
14.5		West-SSCM
16	Ulan	an ene
15.5	- I and the second	puth-52.2 in
10.0		ľ
16.5		1
10.0		1
47 8		1
17.5		4
10		-
18.5		4
19		4
19.5	11.000	-
20	400	4
20.5		
21		1
21.5		4
22		4
22.5		
23		
23.5		
24		
24.5	1	
25	Him	1

NPAM Protocol Notebook, 15 February 2013

25

25

101

90

n

VEGETATION FIELD MONIOTORING DATASHEET

Transact E-W

Plot	5		Piot	1
Point	C		Point	┥
Data			FORR	4
Date	1-11-110		Date	1
Observer	Concerna	22	Observer	l
Aspect	5		Aspect	1
Slope	1		Slope	1
Berino			Bering	t
0		-	Dornig	1
haut a	200 Diore	4	Tier	
0.5	120		0.5	l
1	120		1	l
1.5	120.		1.5	T
2	120		2	t
25	120	-	2.5	ł
2.0	TCP	-1	2,0	ŀ
3	120	-1	3	Ļ
3.5	120		3.5	L
4	120		4	
4.5	110		4.5	Г
5	110	7	5	t
5.5	17.6	-	5.5	ŀ
6	160-	-	0.0	┝
0.5	10	-1	0	-
0.5	110	-	6.5	L
7	110		7	
7.5	110		7.5	
8	110	1	8	
8.5	110	1	85	-
0	110	-	0.0	-
0.5	110-	-		-
9.0	111	-	9,5	_
10	111	1	10	_
10.5	111		10.5	
11	111	1	11	
11.5	111	1	11.5	-
12	111	1	12	
12.5		4	10 5	-
12.0	11	4	12.0	-
10	111	4	13	
13.5	111	1	13.6	
14	120		14	
14.5	120	1	14.5	
15	111		15	-
15.5	111	1	15.5	-
16	111	1	10.0	-
16.6	-	4	10	_
10.0	111	1	10.0	
1/	111		17	
17.5	111		17.5	
18	111		18	1
18.5	111	1	18,5	
19	12.2	1 1	19	1
19.5	122		10.5	ŕ
20	122		20	-
20	160		20	1
20.0	100		20.5	-
21	122		21	l
21.5	122		21.5	ί
22	122		22	(
22.5	120		22.5	
23	12.0		23	-
22.5			20	
23.0	110		23.0	-
24	110		24	_
24.5	110		24.5	
25	10		25	

		the second s	
	1	Plot ·	Γ
	1	Point	-
	1	Date	1
	1	Observor	
	-	Annost	
	1	Aspect	
	1	Slope	
	L	Bering	
Louissies		Day Li	
11000	1	0.5	2
40	-	0.0	-
40	4	1	S
4D	1	1.5	St
YD		2	
40	1	2.5	
40	1	3	
110	1	3.5	
415	4		
SIUD	4	4	
314 P		4.5	
3/4 8		5	
1130	1	5.6	-
120	1	6	
130	1	6.5	-
1.51	1	0.0	
1,3 5	1	······	
1.3.P		7.5	
1.0		8	1.1
10		8.5	
10	1	9	
10	1	9.5	-
10	1	40	
110			
11		10.5	
1.6		11	
10		11.5	
10		12	
IP		12.5	
1p		13	-
10		12.5	
120		10.0	
4.5 1		14	
1.3.P		14.5	
30		15	
10		15.5	
IP		16	
10		16.5	
10		17	
10		47.5	
LP		17.5	
IP.		18	
1P		18.5	
69,40		19	
D UP		19.5	
		20	
LP UP			
STOD		20.0	_
00		21	
6P		21.5	
60		22	
-1/50 P		22.5	
110		23	-
40		20	_
HD		23.0	_
UP		24	
48		24.5	
UP		25	

the second s			
t ·		F	Plot
nt		F	Point
e		Ē	Date
server			bserv
ect		Ā	spect
Dé		S	lope
na		Ē	Ierino
			1
ality	Con Num	. r	1
0.0	SOBNUT	-	
1	SOLPTA.	-	
1.5	SOLSPE	- L	
2			
2.5		L	
3		L	
3.5			
4			
4.5		Γ	
5		r	
5.6			
6			
6.5			
7			
75		- F	
0		- F	
0 5		ŀ	
8.5		- H-	
9		- L-	
9.5		L	
10		L	
10.5			1
11			
11.5			1
12		Г	
12.5		Г	1
13		r	
13.5		F	1
14			
14.5			-
15			
15.5		F	
16		- F	
16.6		-	
10.0		H	
1/		-	
17.5			
18		1	
18.5		L	
19	- ••		
19.5		ſ	
20		ľ	
20.5		ľ	1
21		F	
21.5		h	
22		l t	
22 5		ŀ	
22.0	· · · · · · · · · · · · · · · · · · ·		
23			
23.0			
24		I I	

		N
		Photo 1-2
t		2.1
3		d-M
erver		
ect		
e		10 1
ng		VOK-醇
alter	deato	
0.5		N-35
1		14-00
1.5		1-375
2		W ST. Jum
2.5		0 27-
3		2-21.2
3.5		
4		Ç,
4.5		C= HOLM
5	5cm	
5.5		
6		
6.5		
7		
7.5		
8		
8.5		
9		
9.5		
10	Hem	
10.5		
11		-
11.5		
12		1
12.5		
13		
13.5		
14		
14.5		
15	Icm	
15.5		
16		O LON
16.5		PDACHY=1
17		DON LAR D
17.5		RKOINE-2
18		A6RG16=3
18.5		
19		PHAPEN=4
19.5		
20	1cm	CIRCAN:5
20.5		maichi
21		I'TECISTEC
21.5		4
22		4
22.5		4
23		- · · ·
23.5		-
24		-
24.5		4
25	14cm	

NPAM Protocol Notebook, 15 February 2013

90

Appendix D Field Data Sheets: Wetland Determination Data Form

WEILAND DETE	RMINATION DATA FORM -	Great Plains Region
Project/Site: Transe Lt	city/county: Pol V	۲ (۲۲) Sampling Date: ۹/۱٦/۱۱
Applicant/Oumar USELDS	0.1/1000.11/1	State: MA Sampling Point: 1201a.v.1.
Investigatoriali K Encelima ma	Section Township Ra	ande.
Landform (billalana larman ata): TS	Local relief (concave	convex none):////////////////////////////////////
	Lot	Long: Datum:
Sublegion (LRR). Karlson p Sanda		NIMI classification: NON I
Soli Map Offic Name. The office and the site builded of	No time of year? Yes No	/// If no, evolain in Remarks)
Are Vanatation Soil or the site typical for	pignificantly disturbed?	"Normal Circumstances" present? Yes / No
Are Vegetation, Soil, of Hydrology	_ significantly distanced in Are	eeded explain any answers in Remarks)
		souch, opposite any enterior in the start for turner of
SUMMARY OF FINDINGS – Attach site ma	p showing sampling point I	ocations, transects, important reatures, etc
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes Wetland Hydrology Present? Yes	No Is the Sampleo within a Wetla	i Area nd? Yes <u>No</u>
Kemains Wetter then a	venage conc	thors.
VEGETATION - Use scientific names of pla	ants.	
Tree Stratum (Olateiza)	Absolute Dominant Indicator	Dominance Test worksheet:
1 (Plot size)	10 COVER OPENEST DIAMS	Number of Dominant Species That Are OBL, FACW, or FAC
2.		(excluding FAC-): (A)
3		Total Number of Dominant
4		Species Across All Strata:(B)
Sapling/Shrub Stratum (Plot size:)	= Total Cover	Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
1. <u>1</u>		Prevalence Index worksheet:
2		Total % Cover of: Multiply by:
3		OBL species x 1 =
45		FACW species x 2 =
- I	= Total Cover	FAC species x 3 =
Herb Stratum (Plot size:)	0	FACU species x 4 =
1. tanicum Virgatum	- 05 V FAC	UPL species X 5 =
2. Myrostis gigantea	- do y FRW	
3. roa pratensus	S S AL FRUK	Prevalence Index = B/A =
+ Symphystrichorn eticolog	S N FAW	Hydrophytic Vegetation Indicators:
6 Rudo beckig birth	5 N FALL	1 - Rapid Test for Hydrophytic Vegetation
7 Samphustrichum Janualatum	5 N FAC	2 - Dominance Test is >50%
8. Slidago canadensis	5 N FALL	3 - Prevalence Index Is ≤3.0"
9. Solidayo gigontea	5 N AUN	data in Remarks or on a separate sheet)
10. Helianthus maximiliani.	_ d_ N_ HACK	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)	<u> Y</u> = Total Cover	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1		Ludranhutia
2	= Total Cover	Vegetation
		Present? Yes <u>No</u> No
% Bare Ground in Herb Stratum		
% Bare Ground In Herb Stratum Remarks:		
% Bare Ground in Herb Stratum Remarks:		

0	\sim	ı	έ.
5	O	ł	L

i i i	
Sampling Point: 14 P-L	
Gamping Font	-

Profile Description: (Description:	ribe to the dep	oth needed to docur	ment the i	ndicator	or confirm	n the absence of indic	cators.)
Depth Mate	rix	Redo	x Features	3			
(inches) Color (mois	. %	Color (moist)	%	Type'	Loc	Texture	Remarks
0.5 10 YR 2		• · · · · · · · · · · · · · · · · · · ·				Sandy loam	
5-11 104R3	\bot		. <u></u>			Sandy 100	lm
11-15 104R 31	<u> </u>					Lamy S	and
15-20 104R 31	2	10 YR 213	5%			red	ou concentrations
		· • • • • • • • • • • • • • • • • • • •				- <u></u>	
*				+,+		**************************************	an a
·			· · · ·				
¹ Type: C=Concentration D=	Depletion RM	=Reduced Matrix CS	S=Covered	or Coale	d Sand G	rains ² Location: F	Pl=Pore Lining M=Matrix
Hydric Soil Indicators: (Ap	plicable to all	LRRs, unless other	wise note	d.)		Indicators for Pro	blematic Hydric Soils ³ :
Histosol (A1)		Sandy (Gleved Ma	trix (S4)		1 cm Muck (A9) (LRR I, J)
Histic Epipedon (A2)		Sandy F	Redox (S5)			Coast Prairie F	Redox (A16) (LRR F, G, H)
Black Histic (A3)		Stripped	Matrix (S	6)		Dark Surface (S7) (LRR G)
Hydrogen Sulfide (A4)		Loamy	Mucky Min	eral (F1)		High Plains De	pressions (F16)
Stratified Layers (A5) (LI	RR F)	Loamy	Gleyed Ma	trix (F2)		(LRR H out	side of MLRA 72 & 73)
1 cm Muck (A9) (LRR F,	G, H)	Deplete	d Matrix (F	3)		Reduced Verte	C(F18)
Thick Dark Surface (A12	nace (ATT)	Redox L	d Dark Su	face (F7)		Very Shallow [ark Surface (TE12)
Sandy Mucky Mineral (S	1)	Bedox [Depression	iace (i 7) is (F8)		Other (Explain	in Remarks)
2.5 cm Mucky Peat or Pe	eat (S2) (LRR)	G, H) High Pla	ains Depre	ssions (F1	(6)	³ Indicators of hydro	phytic vegetation and
5 cm Mucky Peat or Pea	(S3) (LRR F)	(ML	RA 72 & 7	3 of LRR	H)	wetland hydrold	gy must be present,
	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2				<u> </u>	unless disturbe	d or problematic.
Restrictive Layer (if presen	t):						
Туре:							
Depth (inches):						Hydric Soil Present	? Yes No
Remarks:							
HYDROLOGY							
Wetland Hydrology Indicate	ors;						
Primary Indicators (minimum	of one require	d; check all that apply	/)			Secondary Indica	ators (minimum of two required)
Surface Water (A1)		Salt Crust	(B11)			Surface Soil	Cracks (B6)
High Water Table (A2)		Aquatic Inv	/ertebrates	(B13)		Sparsely Ve	getated Concave Surface (B8)
↓∠ Saturation (A3)		Hydrogen	Sulfide Od	or (C1)		Drainage Pa	tterns (B10)
Water Marks (B1)		Dry-Seaso	n Water Ta	able (C2)	_	Oxidized Rh	zospheres on Living Roots (C3)
Sediment Deposits (B2)		Oxidized R	hizospher	es on Livi	ng Roots	(C3) (where till	ed)
Drift Deposits (B3)		(where r	tilled)			Crayfish Bur	rows (C8)
Algal Mat or Crust (B4)		Presence of	of Reduced	I Iron (C4))	Saturation V	Isible on Aerial Imagery (C9)
Iron Deposits (B5)	dal harmonistic da	Thin Muck	Surface (C	<i>i(</i>)		Geomorphic	Position (D2)
Inundation Visible on Aer	rai imagery (B	() Other (Exp	ain in Rer	narks)		FAC-Neutral	Test (D5)
vvater-Stained Leaves (B	9)					rost-Heave	numinocks (D7) (LKK P)
Field Observations:	Vaa	No Double Pro-	aboa):				
Surrace water Present?	Yes	No Depth (inc	nes):	1411	-		
vvater Table Present?	Yes	No Depth (ind	cnes):	(1)	-		
Saturation Present? (includes capillary fringe)	Yes 🗸	No Depth (ind	cnes):	0.	_ Wetla	and Hydrology Preser	No
Describe Recorded Data (stre	eam gauge, mo	nitoring well, aerial p	photos, pre	vious insp	ections),	if available:	
Remarks:							

US Army Corps of Engineers

	WETLAND DETER	MINATION	DATA FORM -	Great Plains Region
	Project/Site: Transect	City	//County: POLK	Sampling Date: 9-17-16
	Applicant/Owner: USFLOS			State: Sampling Point: Wetland
	Investigator(s); K. Engelmann	Se	ction, Township, Rar	nge:
	Landform (hillslope, terrace, etc.); flat	Lo	cal relief (concave, c	convex, none); CONCAUL Slope (%); O%
	Subregion (I BB):	l at:		Long: Datum:
	Soll Man Unit Name: Valle - Valle - Sandy Is			NIM classification:
	Are allmatic thudsalaris conditions on the site turbesi for this	time of year?	Voc No.	//f no evolain in Remarks \
	Are climatic / hydrologic conditions on the site typical for this	inne ur year r		
	Are Vegetation, Soil, or Hydrologys	igniticantiy disi	urbed? Are i	Normal circumstances present? res_v No
	Are Vegetation, Soil, or Hydrology n	aturally proble	matic? (if he	eded, explain any answers in Remarks.)
	SUMMARY OF FINDINGS – Attach site map	showing sa	ampling point lo	ocations, transects, important features, etc.
	Hydrophytic Vegetation Present? Yes No	۰	Is the Sampled	Area
	Hydric Soil Present? Yes V	0	within a Wetlan	d? Yes No
	Wetland Hydrology Present? Yes Ves No	0		
	Wetter than average	e fiel	d Condit	1015
	VEGETATION – Use scientific names of plan	ts.	ominant Indiactor	Dominance Test worksheet
	Tree Stratum (Plot size:)	% Cover S	pecies? Status	Number of Dominant Species
	1			That Are OBL, FACW, or FAC
	2	· · · · · · · · · · · · · · · · · · ·		(excluding FAC-):(A)
	3			Total Number of Dominant 2
	4	· · ·		Species Across All Strata: (B)
	Sapling/Shrub Stratum (Plot size:)	= 7	otal Cover	Percent of Dominant Species 100 (A/B)
	1		·	Prevalence Index worksheet:
	2			Total % Cover of: Multiply by:
	3			OBL species x 1 =
	6			FACW species x 2 =
	0	= 1	otal Cover	FAC species x 3 =
	Herb Stratum (Plot size: 5			FACU species x 4 =
	1. Carey Sp.	30%	4	UPL species x 5 =
	2. Phalances anondinacea	30%	- FAUN	Column Totals: (A) (B)
	3. Agrostis gigantea	2000	7 - FACW	Prevalence Index = B/A =
~	4. Typha angustitolia	5	V OBC	Hydrophytic Vegetation Indicators:
1	5. JChochoplectos tarder normon	2%	DDC ARI	1 - Rapid Test for Hydrophytic Vegetation
89	6. Stachys photostrip	2%	FI C	2 - Dominance Test is >50%
'	A BALLET CHOIL TUNERED TO THE SALE TO THE	0		3 - Prevalence Index is ≤3.0 ¹
	9	· · · · · · · · · · · · · · · · · · ·		4 - Morphological Adaptations ¹ (Provide supporting
	10.			Problematic Hydrophytic Vegetation ¹ (Explain)
		94% =7	otal Cover	
	Woody Vine Stratum (Plot size:)			be present, unless disturbed or problematic.
	1			I had as a had in
	2		Catal Cause	Hydrophytic Vegetation
	% Bare Ground in Herb Stratum	=	otal Cover	Present? Yes No
	Remarks:			

SOIL

	· · ·
	1 D 1
Sampling Point:	INT-1

Profile Description: (Des	scribe to the de	pth needed to docur	nent the indicator	or confirm	n the absence of In	dicators.)
DepthM	atrix	Redo	x Features			
(inches) Color (mo	<u>vist) %</u>	Color (moist)	%Type1	Loc ²	Texture	Remarks
0-0 104R	2				Sandy loam	2
8-24" 5GY 7	<u> </u>				Sandy Loas	m
and the strength of the streng		••••••••••••••••••••••••••••••••••••••				
¹ Type: C=Concentration I)=Depletion RM	Reduced Matrix CS	=Covered or Costo	d Sand Cr	Zi sestion	
Hydric Soil Indicators: (A	Applicable to al	LRRs, unless other	wise noted.)	u sanu Gi	Indicators for P	roblematic Hydric Soils ³
Histosol (A1)		Sandy G	leved Matrix (S4)		1 cm Muck /	
Histic Epipedon (A2)		Sandy R	edox (S5)		Coast Prairie	Redox (A16) (IRR F. G. H)
Black Histic (A3)		Stripped	Matrix (S6)		Dark Surface	a (S7) (LRR G)
Hydrogen Sulfide (A4)		Loamy N	lucky Mineral (F1)		High Plains	Depressions (F16)
Stratified Layers (A5) (LRR F)	Loamy G	leyed Matrix (F2)		(LRR H o	ulside of MLRA 72 & 73)
1 cm Muck (A9) (LRR)	F, G, H)	Depleted	Matrix (F3)		Reduced Ve	rtic (F18)
V Depleted Below Dark S	Surface (A11)	Redox D	ark Surface (F6)		Red Parent I	Material (TF2)
Thick Dark Surface (A1	2)	Depleted	Dark Surface (F7)		Very Shallow	Dark Surface (TF12)
Sandy Mucky Mineral (S1)	Redox D	epressions (F8)		Other (Expla	in in Remarks)
2.5 cm Mucky Peat or I	Peat (S2) (LRR	G, H) High Plai	ns Depressions (F1	6)	³ Indicators of hyd	rophytic vegetation and
5 cm Mucky Peat or Pe	at (S3) (LRR F)	(MLF	A 72 & 73 of LRR	H)	wetland hydro	ology must be present,
Restrictive Laver (if prese	ntl		the second s		unless distur	bed or problematic.
Tunoi					1 .	
Туре:						
Depth (inches):					Hydric Soil Prese	nt? Yes 🔨 No
Remarks:						
YDROLOGY		and the second sec				
Wetland Hydrology Indica	tors:		·····			
Primary Indicators (minimum	n of one required	t; check all that apply)			Secondary Indi	cators (minimum of two required)
Surface Water (A1)		Salt Crust (E	311)		Surface So	il Cracks (B6)
High Water Table (A2)		Aquatic Inve	rtebrates (B13)		Sparsely V	egetated Concave Surface (B8)
Saturation (A3)		Hydrogen S	ulfide Odor (C1)		Drainage F	Palleros (B10)
Water Marks (B1)		Dry-Season	Water Table (C2)		Ovidized R	hizospheres on Living Roots (C3)
Sediment Deposits (B2)		Oxidized Rh	izospheres on Livin	a Roots (((where ti	iled)
Drift Deposits (B3)		(where no	t tilled)	8 110010 (1	Crowlich Ri	
Algal Mat or Crust (B4)		Presence of	Reduced Iron (C4)		CrayIIST D	Visible on Acrial Imagene (CD)
Iron Deposits (B5)		Thin Muck S	urface (C7)		Saturation	Pasilian (C9)
Inundation Visible on Ar	rial Imageny (B)	Other (Evel	in in Domorka)		Geomorphi	c Position (D2)
Water-Stained Leaves (RQ)		in in Romarks)		FAC-Neum	al Test (D5)
ield Observations:					Frost-Heav	e Hummocks (D7) (LRR F)
Surface Water Brosont?	×~~ / .	Davil Cast	11			
Valor Toble Deserve	Tes V	Depth (inch	es):	· [
valer Table Present?	res N	Depth (inch	es):			
includes capillary fringe)	Yes	vo Depth (inch	es):	Wetlar	nd Hydrology Prese	ent? Yes V No
escribe Recorded Data (str	eam gauge, mo	nitoring well, aerial ph	otos, previous inspe	ections), if	available:	
						÷
emarks:						

US Army Corps of Engineers

WETLAND DETERMINATION DATA FORM - Great Plains Region

	Project/site: Transect 2		city/County: Polk	Sampling Date: 0 -11-110
	Applicant/Owner: ARNINR			State: MN Sampling Point: APlandSP.
	Investigator(s): K.Engelmann		Section, Township, Rar	nge:
	Landform (hillslope terrace, etc.):		Local relief (concave, o	convex, none): Slope (%):
	Subration (I BB):	Lat	•	Long: Datum:
	Soil Man Unit Nama: Harmon AC			NWI classification: Now
1	An all and a hudrataria conditions on the alter hubbel for this	a lime of you	ar2 Yes No No	(If no evolain in Remarks)
	Are climatic / hydrologic conditions on the site typical for the	s time of yea	dir tes No _	
1	Are Vegetation, Soll, or Hydrology s	significantly	disturbed? Are	Normal circumstances presentri res No
	Are Vegetation, Soil, or Hydrology r	naturally pro	blematic? (If ne	eded, explain any answers in Remarks.)
	SUMMARY OF FINDINGS - Attach site map	showing	sampling point lo	ocations, transects, important features, etc.
	Hydrophytic Vegetation Present? Yes N	10.	is the Sampled	Area
	Hydric Soil Present? Yes N	10	within a Wetlan	d? Yes No
	Wetland Hydrology Present? Yes N	10		
	Climate weber than nor	mal		
	VEGETATION – Use scientific names of plan	nts.		
Ì		Absolute	Dominant Indicator	Dominance Test worksheet:
	Tree Stratum (Plot size:)	% Cover	Species? Status	Number of Dominant Species
	1			(excluding FAC-):
	2			Total Number of Dominant
	3			Species Across All Strata: (B)
	4)		= Total Cover	Percent of Dominant Species
	Sapling/Shrub Stratum (Plot size:)			That Are OBL, FACW, or FAC: (A/B)
	1			Prevalence Index worksheet:
	2		<u> </u>	Total % Cover of:Multiply by:
	3			OBL species x 1 =
	4			FACW species x 2 =
	5		- Total Cavas	FAC species x 3 =
	Herb Stratum (Plot size: 5)			FACU species x 4 =
	1. And 1200goden generali	20	4 FACIL	UPL species x 5 =
	2. Sorghostrium nuteins	30	y FACU	Column Totals: (A) (B)
	3. Pon protensis	20	y Frace	Prevalence Index = B(A =
100 - 1 4	4. Splidago canadonsis	5	~ FACUL	Hydrophytic Vegetation Indicators:
010 : 10	5. Solidação eligantea	<u> </u>	- FRG	1 - Rapid Test for Hydrophytic Vegetation
ν	6. Pascopyrum smithi	_ <u> 3</u>	- HACK	2 - Dominance Test is >50%
	7			3 - Prevalence Index is ≤3.0 ¹
	8			4 - Morphological Adaptations ¹ (Provide supporting
	9			data in Remarks or on a separate sheet)
	10	- 05-		Problematic Hydrophytic Vegetation' (Explain)
	Woody Vine Stratum (Plot size:)	-12	= Total Cover	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	1			Hydrophylic
	<i>L</i>		= Total Cover	Vegetation
	% Bare Ground in Herb Stratum			Present? Yes No
	Remarks:			
	Noil 1 proto			
	1990 March 1			
				Creat Diales Vareian 2.0

US Army Corps of Engineers

SOIL

Sampling Point: U.P. SP-2

Profite Description: (Describe to the depth	needed to document the	indlcator of	or confir	m the absence o	findicator	s.)	
Depth Matrix	Redox Feature	s		• • •			
(inches) Color (moist) %	Color (moist) %	Type	Loc ²	Texture	-	Remarks	
0-24 104R2/1			. N. A.	Joanny Sand		0	
24- 104R2/2 I	7.54R. 4/6 4		FL.	loamy sand	Few	tine.	redox.concultat
-				-			
¹ Type: C=Concentration, D=Depletion, RM=Re Hydric Soil Indicators: (Applicable to all LF	educed Matrix, CS=Covere Rs, unless otherwise not	d or Coate ed.)	d Sand G	Brains. ² Loca Indicators fo	tion: PL=P or Problem	ore Lining, M atic Hydric	=Matrix. Soils ³ :
Histosol (A1)	Sandy Gleyed Ma	atrix (S4)		1 cm Mu	ick (A9) (Li	R I, J)	
Histic Epipedon (A2)	Sandy Redox (St	5)		Coast Pr	alrie Redo	(A16) (LRR	F, G, H)
Black Histic (A3)	Stripped Matrix (56)		Dark Su	face (S7)	(LRR G)	
Hydrogen Sulfide (A4)	Loamy Mucky Mi	neral (F1)		High Pla	Ins Depres	sions (F16)	0 701
Stratified Layers (A5) (LRR F)	Loamy Gleyed M	alnx (F2)		(LRR	ri outside	OT MLRA 72	a (3)
1 cm Muck (A9) (LRR F, G, H)	Depleted Matrix (F3) ace (F6)		Reduced	ent Materia	(TE2)	
Thick Dark Surface (A12)	Depleted Dark Sun	urface (F7)		Very Sha	allow Dark	Surface (TF1	2)
Sandy Mucky Mineral (S1)	Redox Depressio	ns (F8)		Other (E	xplain in R	emarks)	
2.5 cm Mucky Peat or Peat (S2) (LRR G, I	H) High Plains Depr	essions (F1	16)	³ Indicators of	hydrophyt	c vegetation	and
5 cm Mucky Peat or Peat (S3) (LRR F)	(MLRA 72 &	73 of LRR	Н)	welland I unless d	hydrology r isturbed or	nust be prese problematic.	ent,
Restrictive Layer (if present):				-		÷.	4
Type:				Undela Call D	recent?	Voc	No
Depth (inches):				Hydric Soli P	resent r	103	
HYDROLOGY							
Wetland Hydrology Indicators:	For the still of the state			Casandan	Indicators	(minimum of	(huo required)
Primary Indicators (minimum of one required; c	neck all that apply)			Secondary	Crail Crail	(Initiation of the	two lednicot
Surface Water (A1)	Salt Crust (B11)	- (040)		Sunac	e Soll Cra	ad Concave	Surface (BB)
High Water Table (A2)	Aquatic Invertebrate	es (B13)		Spars	ely vegeta	ed Concave	Surface (DD)
Saturation (A3)	riyurogen Suilide O				ed Rhizos	beres on Liv	ing Roots (C3)
vvaler Marks (B1)	Dry-season water	res on Livi	na Roote	(C3) (vh	ere tilled)	ALC: UT LIV	19 10010 (00)
Sediment Deposits (B2)	Oxiuized Kniizosphe	ICS OF LIVE	ng Nouts	Crave	sh Burrows	(C8)	
Drift Deposits (B3)	(where not tilled)	d Iron (CA	`	Crayn	ation Visible	on Aerial In	hagery (C9)
Algar Mat of Crust (B4)	Thin Muck Surface	(C7)	,	Geom	orohic Pos	tion (D2)	
Internation Vielble on Aerial Imagen (P2)	Other /Evolain in Re	marke		FAC-N	Veutral Tes	t (D5)	
Water Stained Leaves (R0)		ana na j		Frost-	Heave Hur	mocks (D7)	(LRR F)
Field Observations						(
Curface Mater Present? Vee Ma	Denth (inches):						
Mater Table Present? Ves V Ma	Denth (loches)	511					
Valer Table Present/ Tes X No	Doplin (inches).	1211	-	land Hydrology	Present?	Yes	No
Saturation Present? Yes X No (includes capillary fringe)	Depth (incres):	2	- Wet	and nyurology i	resentr		
Describe Recorded Data (stream gauge, monit	oring well, aerial photos, pr	evious insp	pections)	, If available:			
Remarks:							
Tomano.							

US Army Corps of Engineers

WETLAND	DETERMINATION	DATA FO	RM – Great P	lains Region

Investigator(s): <u>K. Engelmann</u>		Section, Township, Rar	nge:
Landform (hillslope, terrace, etc.):		Local relief (concave, o	convex, none): 10ri-C Slope (%): 0
Subregion (LRR): Great Pains	Lat:		Long: Datum:
Soll Map Unit Name: Hamar			NWI classification: PDD 1C
Are climatic / hydrologic conditions on the site typical for this	s time of ye	ar? Yes No 💃	(If no, explain in Remarks.)
Are Vegetation, Soll, or Hydrologys	significantly	disturbed? Are *	Normal Circumstances" present? Yes V No
Are Vegetation, Soil, or Hydrology r	naturally pro	blematic? (If ne	eded, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map	showing	sampling point lo	ocations, transects, important features, etc
Via Via Via Via Via Via Via	10		
Hydrophylic Vegetation Present 7 res N	lo	Is the Sampled	Area Ves V No
Wetland Hydrology Present? Yes V	io	within a wettan	
Remarks:			
HWeller than average (1)	male	(mathan)	2
(Veliver source			
VECETATION - Use scientific names of plan	ts.		
VEGETATION - ded delentation interior of press	Absolute	Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover	Species? Status	Number of Dominant Species
1	-		(excluding FAC-):
2			Total Number of Dominant
3			Species Across All Strata:(B)
4		= Total Cover	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size:)	•		That Are OBL, FACW, or FAC: 10070 (A/B)
1			Prevalence Index worksheet:
2			Total % Cover of: Multiply by:
3		· · · · · · · · · · · · · · · · · · ·	OBI. species x1 =
4			FACW species x 2 =
5		= Total Cover	FAC species x 3 =
Herb Stratum (Plot size:)			FACU species x4 =
1. Muhlenbergia richardsonis	30	y FAC	UPL species X5 = (B)
2. Agrostas gigantea	_ <u>30</u> _	y HACH	Column Totals: (A) (B)
3. Hu Paulustrus		M FACIN	Prevalence Index = B/A =
4. Pralaris arunding et a	2	JV HEW	Hydrophylic Vegetation Indicators:
5. Helianthus paucifionis	2	FALL	-1 - Rapid Test for Hydrophytic Vegelation
6.20/idago gigantee	2	FAC	2 - Dominance Test is >50%
1. veronicastrom virginicitat			- 3 - Prevalence Index is \$3.0"
9			data in Remarks or on a separate sheet)
10.			Problematic Hydrophytic Vegetation ¹ (Explain)
	98_	= Total Cover	Indicators of hydric soll and wetland hydrology must
Woody Vine Stratum (Plot size:)			be present, unless disturbed or problematic.
1	-		Hydrophytic
2		= Total Cover	Vegetation
% Bare Ground In Herb Stratum			Present? Yes V NO
Remarks:			

SOIL		Sampling Point: Wel SP-2
Profile Description: (Describe to the depth no	eded to document the indicator or c	onfirm the absence of indicators.)
Depth Matrix	Redox Features	
(inches) Color (moist) %	Color (moist) % Type1 L	.oc ² Texture Remarks
A-711 1010 2/1		Joanny Sand
	EUD when 5% C P	1 Luni Viel common Gine vedry (printe
$\frac{1-12}{1048211} = 10$	SIK-H JA C	C Counter to the counter of the state of the
12-20 104R31 10	4R4/4 10% C P	C Camy Sond
	in the second	
-		· · · · · · · · · · · · · · · · · · ·
Tupo: C=Concentration D=Depletion RM=Red	luced Matrix, CS=Covered or Coaled Sa	and Grains. ² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Applicable to all LRR	s, unless otherwise noted.)	Indicators for Problematic Hydric Solis ³ :
Historol (A1)	Sandy Glevert Matrix (S4)	1 cm Muck (A9) (LRR I, J)
Histosol (A1)	Sandy Bedox (S5)	Coast Prairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	Stripped Matrix (S6)	Dark Surface (S7) (LRR G)
Hvdrogen Sulfide (A4)	Loamy Mucky Mineral (F1)	High Ptains Depressions (F16)
Stratified Lavers (A5) (LRR F)	Loamy Gleyed Matrix (F2)	(LRR H outside of MLRA 72 & 73)
1 cm Muck (A9) (LRR F, G, H)	Depleted Matrix (F3)	Reduced Vertic (F18)
Depleted Below Dark Surface (A11)	Redox Dark Surface (F6)	Red Parent Material (TF2)
Thick Dark Surface (A12)	Depleted Dark Surface (F7)	Very Shallow Dark Surface (TF12)
Sandy Mucky Mineral (S1)	Redox Depressions (F8)	Other (Explain in Remarks)
2.5 cm Mucky Peat or Peat (S2) (LRR G, H)	High Plains Depressions (F16)	Indicators of hydrophytic vegetation and
5 cm Mucky Peal or Peal (S3) (LRR F)	(MLRA 72 & 73 of LRR H)	wetland hydrology must be present,
· · · · · · · · · · · · · · · · · · ·		unless disturbed of problematic.
Restrictive Layer (If present):		
Restrictive Layer (if present): Type:		\sim
Restrictive Layer (if present): Type: Depth (inches):	·	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks:	·	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks:		Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks:	·	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY		Hydric Soli Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators:		Hydric Soll Present? Yes No
Restrictive Layer (If present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: ch	eck all that apply)	Hydric Soll Present? Yes No No Secondary Indicators (minimum of two required)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch	eck all that apply)	
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Surface Water (A1)	eck all that apply) Salt Crust (B11) Acualic Invertebrates (B13)	
Restrictive Layer (if present): Type: Depth (inches): Remarks: -IYDROLOGY Wetland Hydrology Indicators: <u>Primary Indicators (minimum of one required; ch</u> All Surface Water (A1) High Water Table (A2) Softwalion (A2)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Order (C1)	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Al Surface Water (A1) High Water Table (A2) Saturation (A3)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dov Season Water Table (C2)	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Al Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Owilized Physenberge on Living	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Al Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxtdized Rhizospheres on Living Roots (C3) (where tilled) Craufich Rurrows (C8)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch X Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled)	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxtdized Rhizospheres on Living Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Actial (magery (C9)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch XI Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4)	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxidized Rhizospheres on Living Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Commercial Dealition (C2)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch XI Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7)	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxidized Rhizospheres on Living Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Al Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized RhIzospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch All Surface Water (A1) — High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized RhIzospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wettand Hydrology Indicators: Primary Indicators (minimum of one required; ch Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations:	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxidized Rhizospheres on Living Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aeriat Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wettand Hydrology Indicators: Primary Indicators (minimum of one required; ch Alge Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present?	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized RhIzospheres on Llving I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches):	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wettand Hydrology Indicators: Primary Indicators (minimum of one required; ch Alge Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized RhIzospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches):	Hydric Soll Present? Yes No
Restrictive Layer (If present): Type: Depth (Inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (Infimum of one required; chr) Alight Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) Field Observations: Surface Water Present? Yes No Saturation Present?	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches):	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; chr Alge Vater (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water Table Present? Yes No Saturation Present? Yes No Saturation Present?	eck all that apply) Salt Crust (B11) Aqualic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches):	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxidized Rhizospheres on Living Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Also Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imageny (B7) Water Stained Leaves (B9) Field Observations: Surface Water Present? Yes No Saturation Present? Yes No Saturation Present? Yes No Saturation Present? Yes Saturation Present? Yes No No Saturation Present? Yes No	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living I (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches):	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required)
Restrictive Layer (If present): Type: Depth (Inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Also Surface Water (A1) — High Water Table (A2)	eck all that apply)	Hydric Soll Present? Yes No Secondary Indicators (minimum of two required) Surface Soll Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Oxidized Rhizospheres on Living Roots (C3) Roots (C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Restrictive Layer (If present): Type: Depth (Inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; ch Algat Mater Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water Table Present? Yes No Saturation Present? Yes No Remarks:	eck all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living f (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Depth (inches): Depth (inches):	Hydric Soll Present? Yes No
Restrictive Layer (if present): Type: Depth (inches): Remarks: HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; cher Algentary Indicators (minimum of one required; cher Mater Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) Field Observations: Surface Water Present? Yes No Saturation Present? Yes No Gentary fringe) No Describe Recorded Data (stream gauge, monitor) Remarks: No	eck all that apply) 	Hydric Soll Present? Yes No

US Army Corps of Engineers

WETLAND DETERM		ATA FORM - C	Great Plains Region
Tanal 2	City	County Pol V	Sampling Date: 9/11/16
Project/Site:	Oky/	County	State: Sampling Point: UPland SP-3
Applicant/Owner: USP003	Sec	ion Township, Ran	de:
Investigator(s): KIERIGETIVIATU		al relief (concave, co	onvex none): 10000 Slope (%): 0
Landform (hillslope, terrace, etc.):IA	L00	ai feiter (concave, c	Lopo: Datum:
Subregion (LRR):	_ Lac		NIAI classification: PEMIBda
Soil Map Unit Name: grimbtad Find Saning	1 Dave		
Are climatic / hydrologic conditions on the site typical for this	time of year?	Yes No	
Are Vegetation, Soil, or Hydrology s	ignificantly distu	urbed? Are N	Normal Circumstances present res no
Are Vegetation, Soil, or Hydrology n	aturally problem	natic? (If nee	eded, explain any answers in Remains.)
SUMMARY OF FINDINGS - Attach site map	showing sa	mpling point lo	ocations, transects, important leatures, etc.
Hydrophytic Vecetation Present? Yes N	o N	Is the Sampled	Area
Hydric Soll Present? Yes N	• <u> </u>	within a Wetlan	d? YesNo
Wetland Hydrology Present? Yes N	o_X/		
Remarks:	A. N. S. S.		
Weter than average con	COLLIN		
VEGETATION – Use scientific names of plan	ts.		
	Absolute Do	ominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover Sr	becles? Status	Number of Dominant Species
1			(excluding FAC-):
2			Total Number of Dominant
3		<u> </u>	Species Across All Strata: (B)
4		otal Cover	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 5)		otal oover	That Are OBL, FACW, or FAC:(A/B)
1 Saliv interior	3%	N FACH	Provalence Index worksheet:
2. Saliv bebbiana	3%	N FACW	Total % Cover of: Multiply by:
3			OBL species x1 =
4	-		FACW species x 2 =
5	1.0%		FAC species x 3 =
(Lingh Stratum (Plat size)	=	otal Cover	FACU species x 4 =
Hero stratum (Flot size.	60%	y mil	UPL species x 5 =
2 Par gosterosis	20%	Y FAC	Column Totals: (A) (B)
3 Salidano otarmicoldas	5%	N NA	Prevalence Index = B/A =
4. Solidago SOPLADSEL		\sim	Hydrophylic Vegetation Indicators:
5. Symphystrichum Cricoides	2%	N FRO	1 - Rapid Test for Hydrophytic Vegetation
6			2 - Dominance Test is >50%
7			3 - Prevalence index is ≤3.01
8			4 - Morphological Adaptations' (Provide supporting
9			data in Remarks of on a separate sheet)
10	89	Total Cover	Problematic Hydrophytic vegetation (Explain)
Woody Vine Stratum (Plot size:)	0		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1			
2		Tatal Course	Vegetation
of Date Cravind in Harb Strahim	=	I otal Cover	Present? Yes No
% Bare Ground in Heith Stratum			/
01=47.5			1
5010 190			
25%			Great Plains - Version 2.0

US Army Corps of Engineers

-	\sim	• •	
s	()	Ш	
\sim	\sim		-

maling Point LLDSP-3 0.

SOIL		Sampling Point: VPOT
Profile Description: (Describe to the depth ne	eded to document the indicator or confi	irm the absence of indicators.)
Depth Matrix	Redox Features	Toytura Damarka
Incress Coror (most) % C	olor (moist) % Type Loc	S to to to
0-4" 104R 2/1		Jandy Juam
<u>1-16" 104R 4/1</u>	······································	joamy sana
16-24+ 2.54 512		loamy sand
	and the later to be a second sec	
¹ Type: C=Concentration D=Depletion RM=Redu	iced Matrix CS=Covered or Coated Sand	Grains ² Location: PL=Pore Lining, M=Matrix
Hydric Soil Indicators: (Applicable to all LRRs	s, unless otherwise noted.)	Indicators for Problematic Hydric Soils ³ :
Histosol (A1)	Sandy Gleyed Matrix (S4)	1 cm Muck (A9) (LRR I, J)
Histic Epipedon (A2)	Sandy Redox (S5)	Coast Prairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	Stripped Matrix (S6)	Dark Surface (S7) (LRR G)
Hydrogen Sulfide (A4)	Loamy Mucky Mineral (F1)	High Plains Depressions (F16)
1 cm Muck (A9) (LRR F G H)	Depleted Matrix (F2)	Reduced Vertic (F18)
Depleted Below Dark Surface (A11)	Redox Dark Surface (F6)	Red Parent Material (TF2)
Thick Dark Surface (A12)	Depleted Dark Surface (F7)	Very Shallow Dark Surface (TF12)
Sandy Mucky Mineral (S1)	Redox Depressions (F8)	Other (Explain in Remarks)
2.5 cm Mucky Peat or Peat (S2) (LRR G, H)	High Plains Depressions (F16)	Indicators of hydrophytic vegetation and
5 cm Mucky Peat or Peat (S3) (LRR F)	(MLRA 72 & 73 OF LRR H)	wetland hydrology must be present,
Restrictive Laver (if present):		
Туре:		
Depth (inches):		Hydric Soll Present? Yes No
Remarks:	<u> (e. 6. se</u>	
		i siis in eesti suurenneerinee s
HIDROLOGI		
Wetland Hydrology Indicators:	at all the state of the	Occurrence Indications (minimum of him considered)
Primary indicators (minimum of one required; che	ck all that apply)	Secondary indicators (minimum or two required)
Surface Water (A1)	Salt Crust (B11)	Surface Soll Cracks (B0)
Saturation (A3)	Hydrogen Sulfide Odor (C1)	Drainage Palteros (B10)
Water Marks (B1)	Dry-Season Water Table (C2)	Oxidized Rhizospheres on Living Roots (C3)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Root	ts (C3) (where tilled)
Drift Deposits (B3)	(where not tilled)	Crayfish Burrows (C8)
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Saturation Visible on Aerial Imagery (C9)
Iron Deposits (B5)	Thin Muck Surface (C7)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	FAC-Neutral Test (D5)
Water-Stained Leaves (B9)		Frost-Heave Hummocks (D7) (LRR F)
Field Observations:		
Surface Water Present? Yes No	Depth (inches):	A.
Water Table Present? Yes No	Depth (inches): 2	X
Saturation Present? Yes <u>X</u> No	Depth (inches): We	etland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitorin	ng well, aerial photos, previous inspections	a), if available:
Remarks:		
	ina and in the second	

US Army Corps of Engineers

WETLAND DETERMINA	TION DA	TA FORM - G	Great Plains Region
Transpit 3	City/Co	unty: Polk	Sampling Date: 9-11-16
Project/site:			State: MN_ Sampling Point: Wetland SP-3
Applicantowner Kocelicoepo	Section	. Township, Ran	ge:
Investigator(s):	Local r	elief (concave, co	onvex, none): 1000.00 Slope (%): 0
Landform (hillslope, terrace, etc.):	Loour		Long: Datum:
Subregion (LRR):	1 20	*	NWI classification: PEMIBda
Soll Map Unit Name: (11 (14)) Columnation of the line	1 Lave	n No I	(if no, explain in Remarks.)
Are climatic / hydrologic conditions on the site typical for this time of	Si yearr ie		No
Are Vegetation, Soil, or Hydrology significa	intly disturb	ed? Ale n	Normal Circumstances processing and a second s
Are Vegetation, Soil, or Hydrology naturally	y problemat		actions transacts important features etc.
SUMMARY OF FINDINGS - Attach site map show	ing sam	oling point lo	cations, transects, important leatures, etc.
Hudsonhudio Vegetation Present? Yes V No		Is the Sampled	Area
Hydro Soil Present? Yes V No		within a Wetland	d? Yes No
Wetland Hydrology Present? Yes No			
Remarks:	1 - 6	ad bay	
Wetter than average clin	nate (ONG TION	
VEGETATION – Use scientific names of plants.			
Abso	olute Dom	inant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:) % Co	over Spec	les? Status	Number of Dominant Species
1			(excluding FAC-):
2			Total Number of Dominant
3	·		Species Across All Strata: (B)
4	= Tota	al Cover	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size:)			That Are OBL, FACW, or FAC: 10070 (AVB)
1. Saliv interior			Prevalence Index worksheet:
2			Total % Cover of: Multiply by:
3			OBL species x 1 =
4			FACW species x 2 =
5	= Tota	al Cover	FAC species x 3 =
Herb Stratum (Plot size:)		(<u> </u>	FACU species X 4 =
1 Pra palusiais50	1% 4	FACW	UPL species X 5 = (B)
2. Typne, angustifulia 20	<u>% 4</u>	OBL	Column Totals: (A) (B)
3. Aurostis Siganten 10	<u> </u>	TACW	Prevalence Index = B/A =
4. Slidajo giganten 3	<u>%</u>	Fact	Hydrophytic Vegetation Indicators:
5. Phalaris anundina ceas	7	621	1 - Rapid Test for Hydrophytic Vegetation
6. Stachus paulustuis	-+	OBI	X)2 - Dominance Test is >50%
7. Silidayo ridellin	%		3 - Prevalence Index Is ≤3.0'
8. Cavey Sp. 22	70 1		data in Remarks or on a separate sheet)
12 Angunation of making 12	10	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
10. <u>11 poly</u> 1011 (Contraction 195	5% = Tot	al Cover	Indicators of byttle soil and wetland bytrology must
Woody Vine Stratum (Plot size:)			be present, unless disturbed or problematic.
1			Hydrophytic V
2		al Cover	Vegetation
% Bare Ground In Herb Stratum	= 10		Present? Yes V No
Remarks:			
50%=47.5			
0/0 10			
20= 19			Great Plains - Version 2.0

US Army Corps of Engineers

Great Plai

SOIL

Color (molet) 9/	Redox Features		
(Inches) Color (moist) 70	Color (moist) % Type Lo	c ² Texture	Remarks
0-10" 104R 2/1		MUCK	
10-18 1048.211	IOYR 411 C P	L loam	
		21.00	
Type: C=Concentration, D=Depletion, RM=R Hydric Soil Indicators: (Applicable to all L	RRs, unless otherwise noted.)	Indicators	for Problematic Hydric Solls ³ :
Histosol (A1)	Sandy Gleyed Matrix (S4)	1 cm M	uck (A9) (LRR I, J)
Histic Epipedon (A2)	Sandy Redox (S5)	Coast I	Prairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	Stripped Matrix (S6)	Dark S	urface (S7) (LRR G)
Hydrogen Sulfide (A4)	Loamy Mucky Mineral (F1)	High Pi	ains Depressions (F16)
Stratified Layers (A5) (LRR F)	Loamy Gleyed Matrix (F2)	(LR	$K H OUISIDE OF MURA 72 \propto 73)$
1 cm Muck (A9) (LRR F, G, H)	Depieted Matrix (F3)	Reduce	vent Material (TE2)
Depleted Below Dark Surface (A11)	Donleted Dark Surface (F7)	Very Si	nallow Dark Surface (TF12)
Sandy Mucky Mineral (S1)	Redox Depressions (F8)	Other (Explain in Remarks)
2.5 cm Mucky Peat or Peat (S2) (LRR G.	H) High Plains Depressions (F16)	³ Indicators	of hydrophylic vegetation and
5 cm Mucky Peat or Peat (S3) (LRR F)	(MLRA 72 & 73 of LRR H)	wetland unless	hydrology must be present, disturbed or problematic.
Restrictive Layer (if present):		-	1
Туре:		Libertale Coll	
Depth (inches):		riyane son	Present Tes AZ NU
YDROLOGY		i	1
YDROLOGY Wetland Hydrology Indicators:			·
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required;	check all that apply)	Seconda	ry Indicators (minimum of two required
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: Surface Water (A1)	check all that apply) Salt Crust (B11)	<u>Seconda</u> Surfa	ry Indicators (minimum of two required ace Soil Cracks (B6)
YDROLOGY Wetland Hydrology Indicators: <u>Primary Indicators (minimum of one required;</u> Surface Water (A1) XI High Water Table (A2)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13)	<u>Seconda</u> Surfa Spar	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) X High Water Table (A2) Saturation (A3)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)	<u>Seconda</u> Surfa Spar Drah	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) nage Patterns (B10)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2)	<u>Seconda</u> Surfa Spar Drah Oxid	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) nage Patterns (B10) ized Rhizospheres on Living Roots (C3
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F	<u>Seconda</u> Surfa Spar Drain Oxid Roots (C3) (W	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) nage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled)	Seconda Surfa Spar Drain Oxid Roots (C3) (Wi Cray	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) nage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled) Presence of Reduced Iron (C4)	Seconda Surfa Spar Drain Oxid Roots (C3) Cray Satu	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required: Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7)	Seconda Surfa Spar Drain Oxid Roots (C3) Cray Satu Seconda	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) nage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)	<u>check all that apply)</u> <u>Salt Crust (B11)</u> Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Seconda Surfa Spar Drah Double Coots (C3) Cray Satu Satu FAC	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) X High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stalned Leaves (B9)	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living R (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Seconda Spar Drah Drah Oxid Roots (C3) Cray Satu Geon FAC Fros	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sędiment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerlat Imagery (B7) Water-Stained Leaves (B9) Field Observations:	check all that apply) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living F (where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	Seconda Surfa Spar Drale Oxid Roots (C3) Cray Satu Geo FAC Fros	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerlat Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No	check all that apply)Salt Crust (B11)Aquatic Invertebrates (B13)Hydrogen Sulfide Odor (C1)Dry-Season Water Table (C2)Oxidized Rhizospheres on Living F(where not tilled)Presence of Reduced Iron (C4)Thin Muck Surface (C7)Other (Explain in Remarks)	Seconda Surfa Spar Drah Oxid Coots (C3) Cray Satu Geo FAC Fros	ny Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
IYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sędiment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerlat Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes Water Table Present? Yes	check all that apply)	Seconda Surfa Spar Drah Oxid Coots (C3) Cray Satu Seconda FAC Fros	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
IYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aeriat Imagery (B7) Water Stalned Leaves (B9) Fleid Observations: Surface Water Present? Yes Yes No Saturation Present? Yes No Saturation Present?	check all that apply)	Seconda Surfa Spar Drah Drah Oxid Coots (C3) Cray Satu Satu FAC Fros	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) X High Water Table (A2) Saturation (A3) Water Marks (B1) Sędiment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerlat Imagery (B7) Water-Stained Leaves (B9) Teld Observations: Surface Water Present? Yes Nater Table Present? Yes Nater Table Present? Yes Nater Table Present? Yes Saturation Present? Yes Nater Table Present? Yes Saturation Present? Yes <	check all that apply)	Seconda Surfa Spar Drah Drah Oxid Coots (C3) Cray Satu Satu FAC Fros Wetland Hydrology	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
YDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) X High Water Table (A2) Saturation (A3) Water Marks (B1) Sędiment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerlat Imagery (B7) Water Stained Leaves (B9) Teld Observations: Surface Water Present? Yes Nater Table Present? Yes Nater Table Present? Yes Nater Table Present? Yes Saturation Present? Yes Nater Table Present? Yes Saturation Present? Yes Includes capillary fringe) Describe Recorded Data (strearn gauge, monitage)	check all that apply)	Seconda Surfa Spar Spar Drale Oxid Oxid Cray Satu FAC Fros Wetland Hydrology ions), if available:	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C3 here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)
YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of one required; Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algat Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Teld Observations: Surface Water Present? Yes Notes Saturation Present? Yes Notes	check all that apply)	Vetland Hydrology	ry Indicators (minimum of two required ace Soil Cracks (B6) sely Vegetated Concave Surface (B8) hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) morphic Position (D2) -Neutral Test (D5) I-Heave Hummocks (D7) (LRR F)

WETLAND DETERMINATION DA	TA FORM – Great Plains Region
Project/Site: Transect 4 City/Co	unty: POIK sampling Date: 9-110-110
Applicant/Owner: USFWS	State: MN Sampling Point: UPI and SP-L
Investigator(s): K. Engelmann Section	n, Township, Range:
Landform (hillslope, terrace, etc.): Local r	ellef (concave, convex, none): Concave, Slope (%): O
Subregion (LRR): Lat:	Long: Datum:
Soil Map Unit Name: Strathcona - Line Sandy 10	NWI classification: Am
Are climatic / hydrologic conditions on the site typical for this time of year? Ye	s No (If no, explain in Remarks.)
Are Vegetation, Soll, or Hydrology significantly disturbed	ed? Are "Normal Circumstances" present? Yes Ves No
Are Vegetation, Soil, or Hydrology naturally problemati	c? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing same	oling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soll Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland? Yes No
Remarks: Wetter than average year	r

VEGETATION - Use scientific names of plants.

	Tree Stratum (Plot size: ////////////////////////////////////	<u>% Cover_Species?</u> _Status	Number of Dominant Species That Are OBL, FACW, or FAC (excluding FAC-):
	3	· ····································	Total Number of Dominant Species Across All Strata: (B)
	Sapling/Shrub Stratum (Plot size:)	= Total Cover	Percent of Dominant Species (A/B)
	2 3		Total % Cover of: Multiply by: OBL species 1 x 1 = 1
	5	= Total Cover	FACW species 10 $x^2 = 32$ FAC species 10 $x^3 = 30$ FACU species 10 $x^4 = 248$
	1. Sorghestrum nutans	30% Y FACU 30% Y FACU	UPL species $x_5 =$ Column Totals: 89 (A) 311 (B)
610:11	4. Panicum virgetum 5. Solidago gigantea 6. Solidago placmicoides 7. Thelic trum pubescens 8. Symphyotrichum ericoides 9. Asclepias incornata 10. Solidago riddellii Heliantims maximiliani Woody Vine Siratum (Plot size:)	10% N FAC. 5% N FAC. 1% N AA 1% NA 1% NA	Prevalence Index = B/A =
20%	2 % Bare Ground in Herb Stratum	= Total Cover	Hydrophylic Vegetation Present? Yes No
240,8	Remarks:		Great Plaips - Version 2.0

SOIL

Sampling Point: UPSP-4

Profile Description: (Describe to t	he depth needed to document the indicator or o	confirm the absence of Indicators.)			
Depth Matrix	Redox Features				
(inches) Color (moist)	<u>% Color (moist) % Type' 1</u>	.oc ^e <u>Texture</u> <u>Remarks</u>			
0-16 NZ.5/0 9	5%	(00/			
16+ 56481 9	5%	Loam			
Hydric Sail Indicators: (Applicable	m. RM=Reduced Matrix, CS=Covered of Coated S	and Grains. *Location: PL=Pore Lining, M=Matrix.			
Hydric Son moleators. (Applicable	e to all EKRS, unless otherwise hoted.)	Indicators for Problematic Hydric Solis :			
Histosol (A1)	Sandy Gleyed Matrix (S4)	1 cm Muck (A9) (LRR I, J)			
Plack Histic (A3)	Sandy Redox (SS)	Coast Praine Redox (A10) (LRK F, G, H)			
Hydrogen Sulfide (A4)	Loamy Mucky Mineral (E1)	High Plains Depressions (E16)			
Stratified Lavers (A5) (LRR F)	Loamy Macky Mineral (17)	/I BR H outside of MI BA 72 & 73)			
1 cm Muck (A9) (LRR F. G. H)	Depleted Matrix (F3)	Reduced Vertic (F18)			
Depleted Below Dark Surface (A	11) Redox Dark Surface (F6)	Red Parent Material (TF2)			
Thick Dark Surface (A12)	Depleted Dark Surface (F7)	Very Shallow Dark Surface (TF12)			
Sandy Mucky Mineral (S1)	Redox Depressions (F8)	Other (Explain in Remarks)			
2.5 cm Mucky Peat or Peat (S2)	(LRR G, H) High Plains Depressions (F16)	³ Indicators of hydrophytic vegetation and			
5 cm Mucky Peat or Peat (S3) (L	RR F) (MLRA 72 & 73 of LRR H)	wetland hydrology must be present,			
Destabling Lange (Kenner al)		unless disturbed or problematic.			
Restrictive Layer (if present):					
Type:					
Depth (inches):		Hydric Soil Present? Yes No			
Remarks:					
		10-2110-11-2-01-11-1			
HYDROLOGY					
Wetland Hydrology Indicators:					
Primary Indicators (minimum of one re	equired; check all that apply)	Secondary Indicators (minimum of two required)			
Surface Water (A1)	Salt Crust (B11)	Surface Soil Cracks (B6)			
High Water Table (A2)	Aquatic Invertebrates (B13)	Sparsely Vegetated Concave Surface (B8)			
Saturation (A3)	 Hydrogen Sulfide Odor (C1) 	Drainage Patterns (B10)			
Water Marks (B1)	Dry-Season Water Table (C2)	 Oxidized Rhizospheres on Living Roots (C3) 			
Sediment Deposits (B2)	Oxidized Rhizospheres on Living	Roots (C3) (where tilled)			
Drift Deposits (B3)	(where not tilled)	Crayfish Burrows (C8)			
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Saturation Visible on Aerial Imagery (C9)			
Iron Deposits (B5)	Thin Muck Surface (C7)	Geomorphic Position (D2)			
Inundation Visible on Aerial Image	ery (B7) Other (Explain in Remarks)	FAC-Neutral Test (D5)			
Water-Stained Leaves (B9)		Frost-Heave Hummocks (D7) (LRR F)			
Field Observations:					
Surface Water Present? Yes	No Depth (inches):	/			
Water Table Present? Yes	No Depth (inches): 12_''				
Saturation Present? Yes	No Depth (inches):	Wetland Hydrology Present? Yes V No			
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:					
Remarks:					

US Army Corps of Engineers

WETLAND DETERMINATION	ON DATA FORM – Great Plains Region		
Project/Site: Travsect 4	City/County: Polk Sampling Date: 9 11/1/1		
Applicant/Owner: USPINS	State: MN Sampling Point: Wetland JP-4		
Investigator(s): K. Enje Mann	Section, Township, Range:		
Landform (hillstope, terrace, etc.):S	Local relief (concave, convex, none): (ON ca UL Slope (%): _O		
Subregion (LRR): Lat:	Long: Datum:		
Soil Map Unit Name: Stratbuono Fine Sandy	19am NWI classification: PEMICA		
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes No (If no, explain in Remarks.)		
Are Vegetation, Soll, or Hydrology significantly	bed? Are "Normal Circumstances" present? Yes Vo		
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If needed, explain any answers in Remarks.)		
SUMMARY OF FINDINGS - Attach site map showing	g sampling point locations, transects, important features, etc.		
Hydrophylic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland? Yes <u>No</u>		
Remarks: Weller than average	year		

VEGETATION - Use scientific names of plants.

	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: VV +T)	% Cover Species / Status	Number of Dominant Species
1		(excluding FAC-): (A)
2		
3		Total Number of Dominant Species Across All Strate: (B)
4		
Carling Charle Stratum (Distaire) A	= Total Cover	Percent of Dominant Species
Saping/Shrub Stratum (Piot size: / / / /)		That Are OBL, FACW, or FAC: (A/B)
1		Prevalence Index worksheet:
2.		Total % Cover of: Multiply by:
3.		OBL species x 1 =
4.		FACW species x 2 =
5.	- Tatal Cause	FAC species x 3 =
Herb Stratum (Plot size: 5 ¹)	= Total Cover	FACU species x 4 =
1 Phalams avendiage a	(D% Y FAW)	UPL species x 5 =
2 Agrostis gigantea	20% N FAW	Column Totals: (A) (B)
3 longers archeus	20% N FACH	
4 BUMEN CRICEDUS	1% N FAC	Prevalence Index = B/A =
5		Hydrophytic Vegetation Indicators:
6		1 - Rapid Test for Hydrophytic Vegetation
7		2 - Dominance Test is >50%
0		3 - Prevalence Index is ≤3.0'
9.	· · · · · · · · · · · · · · · · · · ·	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10.		Problematic Hydrophytic Vegetation ¹ (Explain)
	101% = Total Cover	
Woody Vine Stratum (Plot size:)		¹ Indicators of hydric soil and wetland hydrology must
1		be present, unless disturbed of problematic.
2		Hydrophytic
	= Total Cover	Vegetation Present?
% Bare Ground in Herb Stratum		
Remarks:		

US Army Corps of Engineers

SOIL

Sampling Point: Wet SP-4

Deoth Matrix	Redox Features		
(inches) Color (moist) %	Color (moist) % Type ¹ Loc ²	Texture	Remarks
		· · · · · · · · · · · · · · · · · · ·	
	educed Matrix CS=Covered or Coated Sand	Graine ² l costion	- Di «Dara Linina MaMatri»
ydric Soil Indicators: (Applicable to all LI	Res, unless otherwise noted.)	Indicators for P	roblematic Hydric Soils ³ :
Histosol (A1) Histic Epipedon (A2) Black Histic (A3)	 Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) 	1 cm Muck (Coast Prairie Dark Surface	A9) (LRR I, J) e Redox (A16) (LRR F, G, H) e (S7) (LRR G)
Hydrogen Sunde (A4) Stratified Layers (A5) (LRR F) 1 cm Muck (A9) (LRR F, G, H)	Loamy Gleyed Matrix (F2) Depleted Matrix (F3)	LRR H c Reduced Ve	Depressions (F16) outside of MLRA 72 & 73) rtic (F18)
_ Depleted Below Dark Surface (A11) _ Thick Dark Surface (A12) _ Sandy Mucky Mineral (S1)	Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	Red Parent Very Shallov Other (Expla	Material (TF2) v Dark Surface (TF12) in in Remarks)
 2.5 cm Mucky Peat or Peat (S2) (LRR G, 5 cm Mucky Peat or Peat (S3) (LRR F) 	H) High Plains Depressions (F16) (MLRA 72 & 73 of LRR H)	³ Indicators of hyd wetland hydr unless distur	frophytic vegetation and ology must be present, bed or problematic.
estrictive Layer (if present):		-	
Depth (inches):		Hydric Soil Prese	ent? Yes No
emarks:			
DROLOGY			
etland Hydrology Indicators:			
imary indicators (minimum of one required; o	heck all that apply)	Secondary Ind	icators (minimum of two required)
Surface Water (A1)	Salt Crust (B11)	Surface S	oil Cracks (B6)
_ High water Table (A2)	Aquatic Invertebrates (B13)	Sparsely \	regetated Concave Surface (B8)
_ Saturation (A3)	mydrogen Suilde Odor (C1)	Drainage	ratterns (B10)
Sediment Dencelle (B2)	Ovidized Discontered on Living Dest	Oxidized F	Calcospheres on Living Roots (C3
Drift Deposite (B3)	(where not tilled)	Crawfield D	ucours (CP)
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Crayisti B	Visible on Aerial Imagoni (CO)
Iron Denosits (B5)	Thin Muck Surface (C7)	Geomorph	ic Position (D2)
Inundation Visible on Aerial Imagery (87)	Other (Explain in Remarks)	FAC-Neut	ral Test (D5)
Water-Stained Leaves (89)		Erost-Heat	e Hummocks (D7) (LRR F)

Field Observations: Yes V. No ____ Depth (inches): 1.2." Surface Water Present? Yes _____ No _____ Depth (inches): _____ Water Table Present? Yes _____ No ____ Depth (inches): ____ _____No__ Wetland Hydrology Present? Yes 🗹 Saturation Present? (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

US Army Corps of Engineers

WETLAND DETERMINATION DATA FORM – Great	Plains Region
---	---------------

Project/Site: Travspcc. 5	City/County: POIK Sampling Date: 9-11-1 (0 State: Sampling Point: UP land SP-5
Investigator(s): <u>K. Engelman</u> Landform (hillstope, terrace, etc.): <u>Flat</u>	Section, Township, Range:
Subregion (LRR): Lat:	Long: Datum:
Soil Map Unit Name: Hedman Fram C	NWI classification: NON
Are climatic / hydrologic conditions on the site typical for this time of year Vegetation, Soil, or Hydrology significantly Are Vegetation, Soil, or Hydrology naturally pr	ear? Yes No (If no, explain in Remarks.) y disturbed? Are "Normal Circumstances" present? Yes No roblematic? (If needed, explain any answers in Remarks.) g sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area within a Wetland? Yes No
Remarks: Wetter then a range	c year

VEGETATION - Use scientific names of plants.

Tree Stratum (Plot size: <u>NA</u>) 1.	Absolute Dominant Indicator <u>% Cover</u> Species? Status 	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC (excluding FAC-): (A) Total Number of Dominant Species Across All Strata: (B) Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1 2 3 4 5 Herb Stratum (Plot size: <u>S1</u>) 1. <u>Sorzipastrum hyterns</u> 2. <u>Andro Degadensis</u> 2. <u>Andro Degadensis</u> 3. <u>Solidage condensis</u> 4. <u>Apocynum conscissons</u> 5. <u>Andro Degadensis</u> 4. <u>Apocynum conscissons</u> 5. <u>Andro Degadensis</u> 4. <u>Apocynum conscissons</u> 5. <u>Andro Degadensis</u> 4. <u>Apocynum conscissons</u> 5. <u>Andro Degadensis</u> 4. <u>Apocynum conscissons</u> 5. <u>Andro Degadensis</u> 6. <u>Symphystricum vicegatum</u> 6. <u>Symphystricum conscissons</u> 7 8 9 10 <u>Woody Vine Stratum</u> (Plot size: <u>AIA</u>) 1.	$= Total Cover$ $= Total Cover$ $= 40\% 4es FACU$ $= 5 N FBCU$ $= 5 N FBCU$ $= 5 N FBCU$ $= 5 N FBCU$ $= 7 Total Cover}$	Prevalence Index worksheet:
2 % Bare Ground in Herb Stratum	= Total Cover	Hydrophytic Vegetation Present? Yes No
Remarks:		

US Army Corps of Engineers

SOIL

Profile Description: (Describe to the	e depth needed to docu	ment the indicator	or confirm	n the absence	e of indicators.)
Depth Matrix	Redo	x Features			· · · · · · · · · · · · · · · · · · ·
(inches) Color (moist) %	Color (moist)	% Type'	Loc ²	Texture	Remarks
0-1 104R 412				Sandy	Dam
1-24+ 104R 83				Sandyle	sam
				Contraction	
ł					
'Type: C=Concentration, D=Depletion,	RM=Reduced Matrix, CS	S=Covered or Coated	Sand Gr	ains. ² Loc	cation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Applicable to	o all LRRs, unless other	wise noted.)		Indicators	for Problematic Hydric Soils ³ :
Histosof (A1)	Sandy G	Gleyed Matrix (S4)		1 cm M	Auck (A9) (LRR I, J)
Histic Epipedon (A2)	Sandy F	(S5) (edox		Coast	Prairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	Stripped	Matrix (S6)		Dark S	Surface (S7) (LRR G)
Hydrogen Sullide (A4)	Loamy M	Aucky Mineral (F1)		High P	lains Depressions (F16)
1 cm Muck (A0) (LRR F)	Loamy C	bleyeo Matrix (F2)		(LR	R H outside of MLRA 72 & 73)
Depleted Below Dark Surface (A11)	Depleted	a matrix (F3)		Reduc	ed Vertic (F18)
Thick Dark Surface (A12)	Denteter	Dark Surface (FD)		Red Pa	arent Material (TF2)
Sandy Mucky Mineral (S1)	Redox D	epressions (F8)		Very S	Explain in Remarke)
2.5 cm Mucky Peat or Peat (S2) (LF	RR G, H) High Pla	ins Depressions (F1	6)	3Indicators	of hydrophytic vegetation and
5 cm Mucky Peat or Peat (S3) (LRF	RF) (MLF	RA 72 & 73 of LRR I	-1)	wetland	hydrology must be present.
				unless	disturbed or problematic.
Restrictive Layer (if present):				1	
Туре:					
Depth (inches):				Hydric Soil	Present? Yes No
Remarks:					
HYDROLOGY					
Wetland Hydrology Indicators:		1.111 1.1			
Primary Indicators (minimum of one requ	ired; check all that apply			Secondar	V Indicators (minimum of two required)
Surface Water (A1)	Salt Crust (B11)		Surfa	nce Soil Cracke (B6)
High Water Table (A2)	Aquatic Inve	ertebrates (B13)		Span	selv Verietated Conceve Surface (BR)
Saturation (A3)	Hydrogen S	ulfide Odor (C1)		Optim	age Patterns (810)
Water Marks (B1)	Dry-Season	Water Table (C2)		Oxidi	zed Rhizospheres on Living Roots (C3)
Sediment Deposits (B2)	Oxidized Rh	izospheres on Living	Roots (C	(wh	pere tilled)
Drift Deposits (B3)	(where no	ot tilled)		Crav	Tish Burrows (C8)
Algal Mat or Crust (B4)	Presence of	Reduced Iron (C4)		Satur	ation Visible on Aerial Imageny (CO)
Iron Deposits (B5)	Thin Muck S	Surface (C7)		Geon	nombic Position (D2)
Inundation Visible on Aerial Imagery	(B7) Other (Expla	ain in Remarks)		FAC	Neutral Test (D5)
Water-Stained Leaves (B9)		, and the second of		Frost	Heave Hummocke (D7) (I DD E)
Field Observations:			1		
Surface Water Present? Yes	No V Depth (inch	les).			
Water Table Present? Yes	No Depth (inch	181 181H			,
Saturation Present? Yes	No Dopth (Inch	() 1()	Man	مراجع المراجع	
(includes capillary fringe)	Deptir (inci	(=5)	vvetian	ia Hyarology	Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:					
Remarks:					
				and the second second second second	

US Army Corps of Engineers

WETLAND DETERMINATION DATA FORM – Great Plains	Region
--	--------

Project/Site: Transect 5	_ city/County: Pol K	Sampling Date: 9-11-16 Sampling Point Wet law SP
nvestigator(s): K.Emelmann	Section, Township, Range: Local relief (concave, convex, none): (COTCALRSlope (%): 0
Subregion (LRR): Lat:	Long:	Datum:
Soil Map Unit Name: Hedman - Fram Complex	NWI	classification: Nowe
Are climatic / hydrologic conditions on the site typical for this time o	fyear? Yes No 🔨 (If no, exp	plain in Remarks.)
Are Vegetation, Soil, or Hydrology significan Are Vegetation, Soil, or Hydrology naturally SUMMARY OF FINDINGS - Attach site map show	rtly disturbed? Are "Normal Circumst problematic? (If needed, explain an ing sampling point locations, tra	tances" present? Yes <u>No</u> No ny answers in Remarks.) nsects, important features, etc.
Hydrophytic Vegetation Present? Yes <u>No</u> No Hydric Soil Present? Yes <u>Ves</u> No	Is the Sampled Area	Ves No.

VEGETATION - Use scientific names of plants.

	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: /////)	% Cover Species? Status	Number of Dominant Species
1		That Are OBL, FACW, or FAC
2.		(excluding FAC-): (A)
3		Total Number of Dominant
1		Species Across All Strata: (B)
**	- Tatal Cause	
Senling/Shruh Stratum (Plot size: A 1 A)	= Fotal Cover	Percent of Dominant Species
Sapingronius Stratem (160 Size. 1771		
- · · · · · · · · · · · · · · · · · · ·		Prevalence Index worksheet:
2		Total % Cover of: Multiply by:
3		OBL species x1=
4		
5		
C	= Total Cover	
Herb Stratum (Plot size:)	000 100 0 1	FACU species X 4 =
1. Malanis annolinacea	80% yes FACW	UPL species x 5 =
2. Tuppa angustifolia	10% NO 0BL	Column Totals: (A) (B)
3 Aprilian canabinum	3% NO FAC.	- 1
A Ascleping incorpota	2% NO EW	Prevalence Index = B/A =
E CONTRACTOR		Hydrophytic Vegetation Indicators:
5		1 - Rapid Test for Hydrophytic Vegetation
6		2 - Dominance Test is >50%
7		3 - Prevalence Index is ≤3.0 ¹
8	and the second s	4 - Morphological Adaptations ¹ (Provide supporting
9		data in Remarks or on a separate sheet)
10		Problematic Hydrophytic Vegetation ¹ (Explain)
	95 = Total Cover 475	
Woody Vine Stratum (Plot size: NP-)	20%= 19	Indicators of hydric soil and wetland hydrology must
1		be present, unless disturbed or problematic.
2		Hydrophytic /
	= Total Cover	Vegetation
% Bare Ground in Herb Stratum		Present? Yes V No
Remarks:	and the second	

US Army Corps of Engineers

WETLAN	D DETE	RMINATION	DATA	FORM -	Great	Plains	Region
--------	--------	-----------	------	--------	-------	--------	--------

Project/Site: Transect 5 Applicant/Owner: UDFUS	City/County: POLK Sampling Date: 9-11-10 State: MN Sampling Point: Wet land		
Investigator(s): K.Engelmann Landform (hillslope, terrace, etc.): <u>Aat</u>	Section, Township, Range: Local relief (concave, convex, none): Corocave Slope (%): O		
Subregion (LRR): Lat:	Long: Datum:		
Soil Map Unit Name: Hedman- Fram Complex	NWI classification:		
Are climatic / hydrologic conditions on the site typical for this time of	of year? Yes No v (If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrology significa Are Vegetation, Soil, or Hydrology naturally	antly disturbed? Are "Normal Circumstances" present? Yes No ly problematic? (If needed, explain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map show	ring sampling point locations, transects, important features, etc		

VEGETATION - Use scientific names of plants.

	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: ////-/)	% Cover Species? Status	Number of Dominant Species
1		That Are OBL, FACW, or FAC
2		(excluding FAC-).
3		Total Number of Dominant
4.		Species Across All Strata: (B)
	= Total Cover	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: NA)		That Are OBL, FACW, or FAC: (A/B)
1.		
2		Prevalence Index worksheet:
2		Total % Cover of: Multiply by:
		OBL species x 1 =
4		FACW species x 2 =
5		FAC species x 3 =
Hoch Stratum (Plateiza: 5)	= Total Cover	FACU species x 4 =
1 Poala and a complete a (AC)	RN90 yes Fril	UPL species x 5 =
1. Thatava avprainacta	10%2 110 681	Column Totals: (A) (B)
2. IADDA angustation	2%	
3. Aprillion canapinum		Prevalence Index = B/A =
4. Asclepias incarnata	/V0 FW	Hydrophytic Vegetation Indicators:
5		1 - Rapid Test for Hydrophytic Vegetation
6		2 - Dominance Test is >50%
7		3 - Prevalence Index is <3.0 ¹
8		Morehological Adoptations ¹ (Provide Supporting
9		data in Remarks or on a separate sheet)
10.		Problematic Hydrophytic Vegetation ¹ (Explain)
	95 = Total Cover 475	
Woody Vine Stratum (Plot size: N P-)	20%-19	Indicators of hydric soil and wetland hydrology must
1		be present, unless disturbed or problematic.
2.		Hydrophytic /
	= Total Cover	Vegetation
% Bare Ground in Herb Stratum		Present? Yes V No
Remarks:		

US Army Corps of Engineers

SOIL

Sampling Point: Wetland SP-5

Profile Description: (Describe to the depth n	eeded to document the indicator or confirm	n the absence of indicators.)
Depth Matrix	Redox Features	
(inches) Color (moist) %	Color (moist) % Type1 Loc2	Texture Remarks
0-11" 2.5 9 2.5/1		loam
11-2011 2.54 62 7	54R516 5% Fet	Sandy-loom
21+ 2.54 512 10	4R 516 5% Fet	loam
		· · · · · · · · · · · · · · · · · · ·
		the second se
¹ Type: C=Concentration, D=Depletion, RM=Rec	luced Matrix, CS=Covered or Coated Sand Gr	ains. ² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Applicable to all LRR	s, unless otherwise noted.)	Indicators for Problematic Hydric Soils ³ :
Histosol (A1)	Sandy Gleyed Matrix (S4)	1 cm Muck (A9) (LRR I, J)
Histic Epipedon (A2)	Sandy Redox (S5)	Coast Prairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	Stripped Matrix (S6)	Dark Surface (S7) (LRR G)
Stratified Lavers (A5) (LRP F)	Loamy Gloved Metrix (F1)	High Plains Depressions (F16)
1 cm Muck (A9) (LRR F, G, H)	Depleted Matrix (F3)	(LKK F) outside of MLKA 72 & 73) Reduced Verlic (E18)
Depleted Below Dark Surface (A11)	Redox Dark Surface (F6)	Red Parent Material (TF2)
Thick Dark Surface (A12)	Depleted Dark Surface (F7)	Very Shallow Dark Surface (TF12)
Sandy Mucky Mineral (S1)	Redox Depressions (F8)	Other (Explain in Remarks)
2.5 cm Mucky Peat or Peat (S2) (LRR G, H)	High Plains Depressions (F16)	³ Indicators of hydrophytic vegetation and
5 cm Mucky Peat or Peat (S3) (LRK F)	(MLRA 72 & 73 of LRR H)	wetland hydrology must be present,
Restrictive Laver (if present):		uniess disturbed or problematic.
Type:		
Denth (inches):		
Demarke-		
Remarks.		
HYDROLOGY		,
Wetland Hydrology Indicators;		
Primary Indicators (minimum of one required: che	ck all that apply)	Secondary Indicators (minimum of two required)
X Surface Water (A1)	Salt Crust (B11)	Surface Soil Cracke (B6)
High Water Table (A2)	Aquatic Invertebrates (B13)	Sparsely Vegetated Concave Surface (B8)
Saturation (A3)	Hydrogen Sulfide Odor (C1)	Drainage Palleros (B10)
Water Marks (B1)	Dry-Season Water Table (C2)	Oxidized Rhizospheres on Living Roots (C3)
Sediment Deposits (B2)		
	Oxidized Rhizospheres on Living Roots (Comparison of the second secon	C3) (where tilled)
Drift Deposits (B3)	 Oxidized Rhizospheres on Living Roots ((where not tilled) 	C3) (where tilled) Crayfish Burrows (C8)
Drift Deposits (B3) Algal Mat or Crust (B4)	 Oxidized Rhizospheres on Living Roots ((where not tilled) Presence of Reduced Iron (C4) 	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) 	Oxidized Rhizospheres on Living Roots ((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7)	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)	Oxidized Rhizospheres on Living Roots ((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)	Oxidized Rhizospheres on Living Roots ((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations:	Oxidized Rhizospheres on Living Roots ((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks)	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes Yes No	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches):11	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No Water Table Present? Yes No	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches):	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>No</u> Water Table Present? Yes <u>No</u> Saturation Present? Yes <u>No</u>	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Wetlan	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No Water Table Present? Yes No Saturation Present? Yes No Cincludes capillary fringe) Describe Recorded Data (stream gauge, monitorial	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Wetlan Wetlan well, aerial photos, previous inspections). If	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) available:
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>No</u> Water Table Present? Yes <u>No</u> Saturation Present? Yes <u>No</u> (Includes capillary fringe) Describe Recorded Data (stream gauge, monitoring)	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): The mathematical protos, previous inspections), if	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) nd Hydrology Present? Yes No available:
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>No</u> Water Table Present? Yes <u>No</u> Saturation Present? Yes <u>No</u> Cincludes capillary fringe) Describe Recorded Data (stream gauge, monitoring Remarks:	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Wetlan Depth (inches): Wetlan ng well, aerial photos, previous inspections), if	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) nd Hydrology Present? Yes No available:
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>No</u> Water Table Present? Yes <u>No</u> Saturation Present? Yes <u>No</u> Cincludes capillary fringe) Describe Recorded Data (stream gauge, monitoring Remarks:	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Wetlai ng well, aerial photos, previous inspections), if	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) nd Hydrology Present? Yes No ravailable:
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>V</u> No	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): 111 Depth (inches): 111 Depth (inches): Wetlan My well, aerial photos, previous inspections), if	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) nd Hydrology Present? Yes No available:
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes <u>V</u> No Water Table Present? Yes No Saturation Present? Yes No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring Remarks:	Oxidized Rhizospheres on Living Roots (((where not tilled) Presence of Reduced Iron (C4) Thin Muck Surface (C7) Other (Explain in Remarks) Depth (inches): Depth (inches): Depth (inches): Mwetlan ng well, aerial photos, previous inspections), if	C3) (where tilled) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) nd Hydrology Present? Yes No available:

US Army Corps of Engineers
Appendix E Field Photographs

Belt transect site 2. Photo oriented towards the transect center from south looking north.

Belt transect site 2. Photo oriented towards the transect center from north looking south.

Belt transect site 3. Photo oriented towards the transect center from east looking west.

Belt transect site 3. Photo oriented towards the transect center from west looking east.

Belt transect site 4. Photo oriented towards the transect center west looking east.

Belt transect site 4. Photo oriented towards the transect center east looking west.

Belt transect site 5. Photo oriented towards the transect center west looking east.

Belt transect site 5. Photo oriented towards the transect center east looking west.

REFERENCES

- Blaschke, T., S. Lang, E. Lorup, S. Strobl, and P. Zeil. 2000. Object-oriented image processing in an Integrated GIS/remote sensing environment and perspectives for environmental application. *Environmental Information for Planning* 2: 555-559.
- Cabello, J., N. Fernández, D. Alcara-Segura, C. Oyonarte, G. Piñeiro, A. Altesor, M. Delibes and J. Paruelo. The ecosystem functioning dimension in conservation: Insights from remote sensing. *Biodiversity Conservation* 21: 3287-3305.
- Campbell J., and R. Wynne. 2011. *Introduction to remote sensing*. New York, NY: The Guilford Press.
- Cowdery, T., D. Lorenz, and A. Arntson. 2008. Hydrology prior to wetland and prairie restoration in and around the Glacial Ridge National Wildlife Refuge, northwestern Minnesota, 2002-5: U.S. Geological Survey Scientific Investigations Report 2007-5200.
- Dahl, T. 1990. Wetlands losses in the United States, 1780s to 1980s. U.S. Department of Interior, Fish and Wildlife Service, Washington, D.C.
- Dahl, T. 2006. Status and trends of wetlands in the conterminous United States 1998 to 2004. U.S. Department of Interior, Fish and Wildlife Service, Washington, D.C.
- Domac, A, and M. Suzen. 2006. Integration of environmental variables with satellite images in regional scale vegetation classification. *International Journal of Remote Sensing* 27(7): 1329-1350.
- Duro, D., S. Franklin, and M. Dubé. 2012. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. *Remote Sensing of Environment* 118: 259-272.
- Foody, G. 2002. Status of land-cover classification accuracy assessment. *Remote Sensing of Environment* 80(1): 185-201.Gerla, P. 2007. Estimating the effect of cropland to prairie conservation on peak storm run-off. *Restoration Ecology* 15(4): 720-730.
- Gerla, P., M. Cornett, J. Eckstein and M. Ahlering. 2012. Talking big: Lessons learned from a 9,000 hectare restoration in the northern tallgrass prairie. *Sustainability* 4: 3066-3087.

- Grabs, T., J. Seibert, K. Bishop, and H. Laudon. 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. *Journal of Hydrology* 373: 15-23.
- Grant, T. A., E. M. Madden, R. K. Murphy, K. A. Smith and M. P. Nenneman. 2004. Monitoring native prairie vegetation: The belt transect method. *Ecological Restoration* 22(2): 106-112.
- Grant, T., B. Flanders-Wanner, T. Shaffer, R. Murphy, and G. Knutsen. 2009. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management. *Ecological Restoration* 27(1): 58-65.
- Grumbine, R. 1994. What is ecosystem management? *Conservation Biology* 8(1): 27-38.
- Hay, G., and G. Castilla. 2008. Spatial concepts for knowledge-driven remote sensing applications Berlin:Springer-Verlag.
- High Plains Regional Climate Center. 2017. http://www.hprcc.unl.edu/ (last accessed 4 May 2017).
- Jensen M., R. Redmond, J. Dibenedetto, P. Bourgeron, and I. Goodman. 2000. Application of ecological classification and predictive vegetation modeling to broad-level assessments of ecosystem health. *Environmental Monitoring and* Assessment 64: 197-212.
- Jensen, J.R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective, ed. K. C. Clarke. New Jersey: Pearson Prentice Hall.
- Ke, Y., L. Quackenbush, and J. Im. 2010. Synergistic use of QuickBird multispectral imagery and LiDAR data for object-based forest species classification. *Remote Sensing of Environment* 114: 1141-1154.
- Kim, M., M. Madden, and B. Xu. 2010. GEOBIA vegetation mapping in Great Smoky Mountains National Park with spectral and non-spectral ancillary information. *Photogrammetric Engineering & Remote Sensing* 76(2): 137-149.
- Laliberte, A., A. Rango, K. Havstad, J. Paris, R. Beck, R. McNeedly, and A. Gonzalez. 2004. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. *Remote Sensing of Environment* 93: 198-210.
- Lyon, J., and L. Lyon. 2011. *Practical handbook for wetland identification and delineation*. 2nd ed. Boca Raton, FL: Taylor & Francis Group.
- Maxwell, A., T. Warner, M. Strager, J. Conley, and A. Sharp. Assessing machinelearning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. *International Journal of Remote Sensing* 36 (4): 954-978.
- Manly, B. 2009. *Statistics for environmental science and management*. Boca Raton, FL: Chapman & Hall/CRC Press.

- Melesse, A., J. Oberg, V. Nangia, O. Beeri, and D. Baumgartner. 2006. Spatiotemporal dynamics of evapotranspiration at the Glacial Ridge prairie restoration in northwestern Minnesota. *Hydrological Processes* 20: 1451-1464.
- Minnesota Climatology Working Group. 2017. Precipitation data retrieval from a gridded database.http://climate.umn.edu/gridded_data/precip/monthly/monthly_gridded_p recip.asp (last accessed 1 May 1 2017).
- Mitsch, W. and R. Wilson. 1996. Improving the success of wetland creation and restoration with know-how, time, and self-design. *Ecological Applications* 6: 77-83.
- Mitsch, W., and J. Gosselink. 2007. *Wetlands*. 4th ed. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Moeslund, J., L. Arge, P. Bocher, T. Dalgaard, R. Ejrnaes, M. Odgaard, and J. Svenning. 2013. Topographically controlled soil moisture drives plant diversity patterns within grasslands. *Biodiversity Conservation* 22: 2151-2166.
- Moffett, K. and S. Gorelick. 2013. Distinguishing wetland vegetation and channel features with object-based image segmentation. *International Journal of Remote Sensing* 34(4): 1332-1354.
- Mui, A. Y. He, and Q. Weng. 2015. An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. *International Society for Photogrammetry and Remote Sensing Inc.* 109: 30-46.
- Munsell Color. 2015. Munsell Soil Color Book. Grand Rapids, MI: Munsell Color X-rite.
- NOAA National Centers for Environmental Information, Climate at a Glance: U.S. Time Series, Palmer Hydrological Drought Index (PHDI) 2017. http://www.ncdc.noaa.gov/cag/ (last accessed 27 April 2017).
- Ozesmi, S., and M. Bauer. 2002. Satellite remote sensing of wetlands. *Wetlands Ecology* and Management 10(5): 381-402.
- Pham, L., L. Brabyn, and S. Ashraf. 2016. Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree species in a complex landscape using an object-based classification approach. *International Journal of Applied Earth Observation and Geoinformation* 50: 187-197.
- Platt, R. and L. Rapoza. 2008. An evaluation of an object-oriented paradigm for land use/land cover classification. *The Professional Geographer* 60(1): 87-100.
- Roch, L. and J. Jaeger. 2014. Monitoring an ecosystem at risk: What is the degree of grassland fragmentation in the Canadian Prairies? *Environmental Monitoring and Assessment* 186(4): 2505-2534.

- Rowe, H. 2010. Tricks of the trade: Techniques and opinions from 38 experts in tallgrass prairie restoration. *Restoration Ecology* 18(2): 253-262.
- Samson, F, F. Knopf, and W. Ostlie. 1998. Status and trends of the Nation's biological resources. *Grasslands* 2: 437-472.
- Skaggs, R., G. Chescheir, and B. Phillips. 2005. Methods to determine lateral effect of a drainage ditch on wetland hydrology. *American Society of Agricultural Engineers* 48(2): 577-584.
- Tilman, D., F. Isbell, and J. Cowles. 2014. Biodiversity and ecosystem function. *Annual Review of Ecology, Evolution and Systematics* 45: 471-493.
- Tiner, R. W. 2003. Geographically isolated wetlands of the United States. *Wetlands* 23: 494-516.
- Trimble Inc. 2015. eCognition Developer 9.1 User Guide. Munich, Germany.
- United States Army Corps of Engineers. 1987. Corps of Engineers wetlands delineation manual. http://www.bwsr.state.mn.us/wetlands/publications/corpsmanual.pdf (last accessed at 1 February 2017).
- United States Army Corps of Engineers. 2010. Regional supplement to the Corps of Engineers wetland delineation manual: Great Plains Region. http://www.bwsr.state.mn.us/wetlands/delineation/Great_Plains_Supplement.pdf (last accessed at 1 February 2017).
- United States Army Corps of Engineers. 2016. National wetland plant list. http://rsgisias.crrel.usace.army.mil/NWPL/ (last accessed at 1 February 2017).
- United States Fish and Wildlife Service. 2016. Glacial Ridge National Wildlife Refuge environmental assessment and comprehensive conservation plan. https://www.fws.gov/Midwest/Planning/GlacialRidge/EA-CCP%20C omplete/GR%20EA-CCP%20Final%2009-13-2016.pdf (last accessed at 1 February 2017).
- Vacek, S., M. Cornett, D. Carlson, M. Ahlering. 2015. Grassland monitoring team standardized monitoring protocol. https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/ UnitedStates/minnesota/Documents/GMT_Protocol_v7.pdf (last accessed at 4 May 2017).
- Van der Valk, A. 1989. *Northern Prairie Wetlands*. Ames, Iowa: Iowa State University Press.
- Wright, C., and M. Wimberly. 2013. Recent land use change in the western corn belt threatens grasslands and wetlands. *Proceedings of the National Academy of Sciences* 110(10): 4134-4139.

- Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer. 2006. Objectbased detailed vegetation classification with airborne high spatial resolution remote sensing imagery. *Photogrammetric Engineering & Remote Sensing* 72(7): 799-811.
- Zedler, J. 2000. Progress in wetland restoration ecology. *Trends in Ecology and Evolution* 15: 402-407.
- Zedler, J., J. Doherty, and N. Miller. 2012. Shifting restoration policy to address landscape change, novel ecosystems, and monitoring. *Ecology and Society*. 17(4): 36.