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ABSTRACT 

Determining the ages of glacier drifts in Antarctica can help paleoclimatologists determine 

the changes Earth’s climate has gone through and thereby inform models for future climate 

change prediction. However, many of these drifts are difficult to reach for sample collection 

necessary to determine their ages. This research attempts to use multispectral remote sensing 

data to expand the mapping of drift ages from known point measurements regionally. This 

research is based on existing drift ages from Ong Valley, Transantarctic Mountains. Two 

methods were used to determine a combination of the image band data that would sufficiently 

distinguish the three age-distinct drift regions: Principal Component Analysis (PCA) and an 

empirical analysis based on observed trends in the data. The PCA results showed that virtually 

all bands contribute equally to the differences in the image data from the three drift regions, 

precluding the use of a small number of bands in an index to classify the regions.  An index was 

developed from the empirical analysis but this index was unable to sufficiently overcome the 

count variations in the data sets to successfully classify the regions.  Although neither method 

provided a conclusive means to distinguish the drift regions from the remote sensing data used in 

this analysis other remote sensing data, e.g. – data at different or more extensive bands ranges, or 

other analysis techniques, e.g. – more preprocessing of the data or machine learning algorithms 

applied to the image data, may yet yield successful results.  
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INTRODUCTION 

 

In the past four decades, with the advent and subsequent rapid growth of satellite remote 

sensing capabilities, the products of remote sensing technology have gone from those first 

Landsat images of Earth’s varied landscape in the mid-1970s to imagery so ubiquitous that many 

people with online access can find free images with sufficient resolution to show what color car 

is parked in their driveway or on the street outside their apartment. Since the use of early aerial 

photography and pre-Landsat satellites, researchers and scientists have been using remote 

sensing technology to collect data on objects of interest that would otherwise be difficult or 

impossible to obtain by any other means. One field that has greatly benefitted from the wealth of 

data in recent decades is Environment Science. More specifically, the field of glaciology has 

especially benefitted, given the remote nature and large physical scale of this field’s subject. 

 

The research presented in this thesis takes advantage of the wealth of remote sensing data 

and applies it in a new way to study glaciers – to determine the age of glacier drift with remote 

sensing. As a glacier retreats, or stagnates and ablates in place, the rock material picked up and 

transported by the glacier during its advance is left behind or exposed on the surface of the 

glacier. This material is called glacial drift. Dating glacier drift allows researchers to determine 

when a glacier retreated or stagnated, which can yield historic glacier states going back 

thousands, tens of thousands or even millions of years. Traditionally, dating glacial drift is done 

by collecting in situ till samples, transporting these samples back to the laboratory and then 

measuring their cosmogenic isotope concentrations, which is directly related to the time that has 

passed since the glacier retreated or stagnated. By analyzing remote sensing data from a glacial 

valley with known drift ages, determined through cosmogenic isotope dating, this project 
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attempts to expand the point measurements of ages to mapping a wider region in the same 

general geological region without the need for sample collection, return and analysis. 

 

LITERATURE REVIEW 

The availability of remote sensing data at a broad range of wavelengths has given researchers 

a myriad of new ways to approach glacier studies traditionally based upon on site measurements 

and observations. The most fundamental use of remote sensing data with respect to glaciers is the 

use of Visible and Near Infrared (NIR) image data to map glacier boundaries to determine a 

glacier’s area and terminus, typically with respect to changes in these parameters over time. 

Global satellite image data have been available since the launch of Earth Resources Technology 

Satellite (later renamed Landsat) imaging satellite in 1972 but ground-based and aero-based 

imagery has been available for substantially longer. Therefore, image data can provide decadal 

change information for many glacier regions in the world. While there are limitations to the 

information obtained through imagery data, the substantial collection of images from various 

satellite programs like Landsat and Terra constitute the core data sets from which glaciologists 

have determined the global glacier population and the recent changes to it. These results include, 

for example, detailed time series changes of regional glacier perimeters at both decadal (Bolch, 

2007 and Paul, et al., 2007) and seasonal time scales (Bernard, et al., 2013) and maps of Little 

Ice Age glacier ranges (Wolken, 2006) based on image data.  

 

Issues with using Visible and NIR data to study glaciers include the limitation that these data 

are only good over sun-lit, cloud-free regions and that the shadowed regions of the glacier can be 

difficult to successfully incorporate into the analysis. Microwave remote sensing via satellite 
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provides all-weather, day/night viewing and active, uniform illumination across glacier surfaces 

even in topographically challenging regions. If images of one scene are taken from sensors with 

different look angles, the images can be registered to produce topographic information, a process 

known as Interferometric Topographic Mapping. This is how the digital elevation models are 

derived, for example. If images are collected from sensors with the same look angles then 

information can be obtained on changes between the two images, a process known as 

Interferometric Velocity Mapping (Jensen, 2000). Non-image data like radar interferograms and 

have allowed researchers to develop glacier flow rates for entire glaciers (Li, et al., 2008) and 

over entire glacier regions (Luckman, et al., 2007) as well as determine glacier thickness (Lee, et 

al., 2013). 

Finally, the fusion of different remote sensing data types, like image data, digital elevation 

maps, radar and LiDAR have allowed researchers to determine glacier perimeters in regions that 

are difficult to study otherwise, such as the frequently cloud covered and topologically 

challenging terrain of the Indian Himalayan regions (Frey, et al., 2012) and small, debris-

covered glaciers (Karimi et al., (2012). These techniques and methods have even been used by 

planetologists to study glaciers on Mars, including determining seasonal carbon dioxide mass 

loss from Mars’ southern polar ice cap (Schmidt, et al., 2010) and constraining the past mass 

balance patterns of Mars’ northern polar water ice cap (Koutnik, et al., 2009). 

 

New algorithm development has been instrumental in taking advantage of the wealth of 

information on glaciers available in remote sensing data. These developments include new 

methods for combining different types of remote sensing data to produce a semi-automated way 

to classify glacier and non-glacier surfaces (Paul et al., 2004), comparison of statistical and 
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machine learning classification techniques on heavily debris-covered glaciers (Brenning, 2009), 

and an assessment of image matching algorithms on different, varied glacier regions around the 

world (Heid and Kaab, 2012). 

 

Most relevent to this study are past projects aimed at determining the best way to distinguish 

different glacier surface types using multispectral data. Two of these will be discussed in more 

detail below. 

 

Pope and Rees (2014) present an analysis of classification of glacier surfaces using full 

spectrum data to answer this question: which wavelengths are actually the most important in 

distinguishing between different glacier surface types? They collected full spectrum in situ 

reflectance spectra data on a variety of surfaces on two glaciers in Iceland in late summer, 

varieties of clean, dry and debris-covered snow and ice. For image data they selected Landsat 

EMT+ data from 2000. The image 

data was classified using an 

unsupervised ISODATA 

classification technique with a result 

of 10 different surface classes for 

glacier regions in the image. Figure 1 

shows the classification results for 

one of the two glaciers. A qualitative 

analysis was done comparing the 

spectral information with classified 
Figure 1:  Classification Results of Iceland’s 

Langjökull Ice Cap (Pope and Rees, 2014) 
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satellite imagery to determine important areas to investigate and to try to associate spectral 

features with physical properties of the glacier. This qualitative analysis revealed that brighter 

classes, i.e. - those with more reflectance, are associated with higher elevations and darker 

classes are associated with lower elevations.  

 

This suggests that brighter classes are associated with accumulation regions and darker 

classes are associated with ablation regions. However, there was no clear way to distinguish 

intermediate regions based on the image data classification. Following the qualitative analysis, a 

quantitative analysis was done using principal component analysis (PCA) on each glaciers 

spectral data to determine which wavelengths contribute the most to differentiating surface 

classes. The PCA resulted in three principal components from each data set. A plot of the PCA 

results, shown in Figure 2, revealed 

several key points.  

First, component 1, which 

accounts for 98% of the variation 

and is associated with broadband 

albedo, is consistent for both glacier 

data sets and doesn’t exhibit much 

variation across the spectrum. 

Second, component 2, which 

accounts for ~ 1.5% of the variation, 

is likewise consistent between the two data sets. Unlike component 1, however, it does exhibit a 

change across the spectrum, with positive values on the blue end of the spectrum and negative 

Figure 2:  PCA Results from Spectral Data (Pope and 
Rees, 2014) 
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values on the red end, with the switch occurring at about 750nm. This slope indicates that the 

difference between blue reflectance and NIR reflectance is an important distinguishing 

characteristic. Third, component 3, which accounts for ~ 0.5% of the variation, differs more than 

the other two components between the data sets but has a consistent sign change in the middle 

part of the spectrum. This indicates that the difference in brightness between the middle part of 

the spectrum and the ends is also a distinguishing characteristic. Using the observations from the 

PCA results, and after mapping the spectra data onto the EMT band regions, the following linear 

combinations of ETM+ bands were found to give the most distinguishable surface 

characteristics, where the coefficients for each band, e.g. – ½ for wet ice band 2, are rounded-off 

PCA coefficients: 

 

snow:  band 1 + band 2 + band 3 + band 4 

wet ice:  band 1 + 1/2(band 2) – 1/2(band 3) - band 4 

dry ice:  band 1 – 1/2(band 2) – band 3 + 1/2(band 4) 

 

As a conclusion of their analysis Pope and Rees stated that aside from surfaces with ash or 

debris, hyperspectral data such as the in situ spectra data sets do not give significantly more 

information for glacier classification than visible and near IR data do. 

 

Salvatore, et al. (2014) conducted an extensive project combining laboratory sample analysis 

and remote sense data analysis to determine the chemical variations in surface dolerite of the Dry 

Valleys in Antarctica. The team conducted substantial laboratory analysis of 64 samples 

collected in situ throughout the Dry Valleys including spectral analysis on all 64 samples and 
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spectroscopy on 18 dolerite samples to obtain bulk chemistry. They also collected in situ VNIR 

calibration data at three sites. Advanced Land Imager (ALI) and Advanced Spaceborn Thermal 

Emission and Reflection Radiometer (ASTER) remote sensing data were used after processing 

with ENVI software and a significant amount of custom processing including converting the 

digital number counts to spectral radiance value, and then correcting for atmospheric 

transmission. The in situ calibration data was used to ensure that values between the ALI and 

ASTER data sets were in agreement after atmospheric correction. The calibrated and corrected 

image data combined with laboratory spectral analysis of dolerite samples collected in situ 

allowed the team to produce maps of pure dolerite deposits and maps of regions characterized by 

unaltered Mg-rich dolerite, unaltered Mg-poor dolerite, and altered Mg-poor dolerite. The team 

discovered that this analysis works better on fine-grained dolerite than course-grained dolerite 

because weathering of the coarse-grained dolerite removes the chemical spectral signatures used 

to characterize different Mg chemical variations. 

BACKGROUND 

As the previous section outlines, a substantial amount of research has been done using remote 

sensing data to study glaciers throughout this world and beyond. This thesis adds to that body of 

work by addressing the specific topic of glacier drift ages, and even more specifically the drifts 

of the Ong Valley in the Transantarctic Mountains. This background section provides relevant 

fundamentals of remote sensing with respect to Earth observing satellites, including common 

satellite and sensor parameters, an outline of the current satellite constellation and more specific 

information on the particular remote sensing satellites whose data are used for this project. This 

section also includes background on glaciers in general and on the specific field site used in this 

study, the Ong Valley, including the previous research on its drifts that this project is based on. 
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Background:	Remote	Sensing	with	Earth	Observing	Satellites	

Remote sensing in general is the act of collecting data on an object without being in physical 

contact with the object. A very common method of collecting remote sensing data is through 

Earth observing (EO) satellites. What started as a constellation of one satellite in 1972 with Earth 

Resource Technology Satellite 1, later renamed Landsat 1, has blossomed into more than 60 EO 

satellites with dozens more set to launch over the next decade. Along with the number of 

satellites, there has been tremendous progress in the science and engineering of EO satellites 

both in hardware, as ever more sophisticated instruments are developed, in data archiving and 

distribution aided by remarkable advances in data storage media capabilities and data transfer 

rates of the internet, and in the commercialization of remotely sensed data. There has also been 

growth in the number of countries with their own satellite industry, including many developing 

countries. 

Earth observing satellites typically operate in polar (passing over or near the North and South 

Pole), low Earth orbit (LEO, below 2000 km) so as to obtain near-global coverage. These 

satellites are also commonly sun-synchronous, meaning that they pass over the same region on 

Earth at the same time each day, which allows them to observe day-to-day changes without the 

effects of local time difference, e.g. – different shadow lengths. Orbit periods for low Earth orbit 

EO satellites are on the order of 100 minutes and ground tracks, the area of Earth directly under 

the satellite, shifts about 25 degrees per orbit due to Earth’s rotation. Thus a LEO satellite will be 

back over the exact same location every ~ 14 orbits. Landsat 7, for example, orbits at 702km, has 

an orbital period of 98.9 minutes, with 14.5 orbits per day and returns to the exact same orbital 

location every 16 days. While a satellite may take many days to be over the exact same spot of 

an earlier pass, the ability to tilt or steer the sensors allows for viewing of the same location – 



9 
 

albeit from slightly different angles – much more frequently. The time between successive 

viewing possibilities is called a satellites revisit time. Some EO satellites, such as weather 

satellites, are in geosynchronous orbit, enabling them to see the same 1/3rd of Earth at all times. 

 

With a few exceptions, the sensors on EO satellites are designed to collect photon data at one 

or more wavelength bands, from UV (0.4 µm) to radio (> 100 cm). However, due to atmospheric 

absorption at many regions of the electromagnetic spectrum, most sensors operate in the Visible, 

IR and microwave regions of the spectrum, where atmospheric absorption windows exist. These 

sensors are characterized primarily by spatial resolution, spectral resolution, radiometric 

resolution, and swath width. Spatial resolution is the minimum size of an object that can be 

resolved in an image. Spectral resolution is the minimum resolvable difference in wavelength for 

an image, or, equivalently, the width of the spectral bands that a sensor collects data in, e.g. – the 

Landsat 7 EMT+ sensor’s blue band collects data between wavelengths of 0.45-0.52 micron. 

Radiometric resolution is the minimum difference possible between intensity levels in an image. 

Swath width, partially determined by orbit and partially determined by sensor characteristics, is 

the ground distance covered by an image. 

 

Current EO technology is a well-developed field -- the present day remote sensing satellite 

constellation has spatial resolution down to under a meter. Furthermore, there are sufficient 

ground receiving stations that data can be disseminated in less than a day in emergency 

situations: based on a presentation given by Wang Xiaoming at the 13th DMC Consortium 

Meeting, data from Beijing-1 was given to the UN Office for Outer Space Affairs within 17 

hours of the Haiti earthquake and less than 12 hours after the request was received. The systems 
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that make this remarkable accomplishment possible include the combination of the science and 

engineering of the remote sensing satellite systems themselves and the storage, distribution and 

commercialization of the resulting data and data products.  

As of November 2011, the Committee on Earth Observing Satellites (COES) Missions, 

Instruments and Measurements database lists a total of 63 multi-purpose EO satellites. Of these, 

49 are multi-purpose land imagery measurement satellites, three measure landscape topography, 

three measure snow cover, edge and depth, three measure soil moisture, two measure land 

surface temperature and three measure vegetation. The technology and application of each of 

these measurement types will be discussed separately. 

Multi-purpose land imagery satellites, which make up the bulk of the list, are primarily used 

to produce spatial information on surface features but are also used to collect data for many of 

the other measurements listed. They generally collect data via multi-spectral or hyperspectral 

Visible and Infrared (IR) sensors. The spatial resolution of these sensors ranges from coarse, like 

the 120 m thermal IR band of Landsat TM, to very high, like the < 1 m Quickbird. Swath widths 

range from large-scale / global scenes like the 180 km Landsat TM to imaging radar (synthetic 

aperture radar, SAR) with small scenes like the 2.1x0.8 m SAR on RADARSAT-2. SAR has the 

added advantage of not being blocked by clouds. Moderate scene sized sensors like the 23.5 m 

LISS-III on Resourcesat-2 are useful as well, since the regional-scale information from them is 

used in a wide range of research and resource-management areas, e.g. – forestry, agriculture, 

disaster management, civil planning, etc. The public is most familiar with this type of satellite 

imagery due to widely adopted mapping software applications like Google Earth™. The data 

used in this thesis project comes from imaging satellites WorldView-2 and WorldView-3, which 

sport high spatial resolution (0.31 m – 2.4 m, depending on band) multi-spectral sensors with a 
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swath width of 16.4 km at nadir. The data for this project was collected by multi-purpose land 

imagery satellites WorldView-2 and WorldView-3. 

Landscape topography satellites are used primarily to produce information on the height of 

land surface features through digital elevation maps (DEMs). The data used to generate these 

maps is gathered using multi-band imagers and SARs to produce stereoimages or with radar 

altimeters like the SIRAL on CryoSat-2. Digital elevation maps have many uses including flood 

prediction, civil planning and monitoring/predicting natural disasters. 

Snow cover and ice sheet mapping satellites provide valuable information on climate change. 

Some data is collected using multi-frequency imaging microwave sensors like the SSM/IS on 

DMSP F-18 or with radar altimeters like SIRAL on CryoSat-2. RADARSAT imaging radar data 

was used to create the first high-resolution map of Antarctica. Multi-spectral data from TM or 

MODIS can be used to calculate a normalized difference snow index similar to NDVI for 

vegetation that can be used as a threshold brightness to characterize snow-covered versus non-

snow-covered land (Dozier, et al. 2004). Hyperspectral imagery is also used to extract snow and 

ice characteristics like grain size. 

Soil moisture content is also obtained, generally, from satellites via multi-frequency imaging 

microwave sensors like the TMI aboard TRMM. However, soil moisture is difficult to measure 

due to high signal to noise ratios over the smaller surface areas (10s of km) that users typically 

want measurements for. The MIRAS radiometer on SMOS was built specifically to measure sea 

surface salinity and soil moisture by employing a new measurement technique using a 2-D 

interferometer radiometer to address the spatial resolution problem with imaging microwave 

sensors. MIRAS consists of a y-shaped array of 69 antennae elements, each of which is an L-
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band sensor. This configuration of elements provides resolution similar to an 8 m antenna and 

has a spatial resolution of 35 – 50 km. Soil moisture is used in agriculture and in conjunction 

with other data to predict weather and climate change. 

Land surface temperature is measured in medium- to high-resolution IR band sensors aboard 

many satellites. The VHRR instrument on KALPANA-1 and the INSAT satellites measure 

temperatures from geostationary orbits with a spatial resolution of 8 km while the VIIRS sensor 

suite on the NPOESS pathfinding mission NPP measure surface temperature from a sun-

synchronous non-geostationary orbit with a resolution of 0.4 to 1.6 km. Land surface temperature 

information is used quite widely, for example in volcano and fire monitoring, in predicting the 

heat effects of urban areas, and in predicting best planting times and frost risk in agriculture. 

Vegetation measurements are taken using multi-spectral Visible and IR sensors such as the 1-

3 km resolution SEVRI radiometer on the Meteosat satellites or for higher resolution with SAR 

such as the 3-8 m resolution SAR-X on the RISAT satellites. A large amount of data has also 

been collected by Landsat TM and ETM+, and other multi-purpose sensors (Xie, et al. 2008). 

Global, continental, regional and local resolution data are widely available. These measurements 

typically consist of red and near-IR bands because vegetation shows characteristic relative 

relationships among these bands. Data from these bands are typically combined into a single 

value (e.g. – NDVI from AVHHR and EVI from MODIS) that characterizes the health of the 

vegetation since this value is related to the amount of photosynthesis occurring. Vegetation 

measurements at the local and regional level can be used to monitor crops while continental and 

global measurements can be used to monitor entire ecosystems. The 40-year history of Landsat 

data provides a ready means to quantify vegetative land cover change over time. 
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Background:  Glaciers 

Glaciers are large, dynamic masses of freshwater ice that persist over many years. This ice is 

formed by snowfall in accumulation regions which slowly, over decades to hundreds of years, 

turns to ice as the accumulating mass of fresh snow compresses older snow into ice crystals. This 

increasing mass also slowly forces the flow of older ice downward to ablation regions, generally 

at lower elevation, where the ice is lost to melting, evaporation or calving. When accumulation 

happens more rapidly than ablation the glacier advances; when ablation happens more rapidly 

than accumulation the glacier retreats. The mass balance of a glacier is the difference between its 

accumulation and ablation. Given that glacier mass is gained through snowfall and lost when ice 

is evaporated or melted, glacier advance or retreat is dependent on both change in precipitation 

and change in temperature. Common glacier features are crevasses, large cracks that can form 

when glaciers flow quickly, and moraines, rocky fields that become scattered across glacier 

surfaces and along the edges due to the glacier scraping along rocky surfaces as it flows and/or 

rockfalls onto the glacier’s surface. 

 

Glaciers grow or shrink based on the local climate. In turn, this growth or shrinkage by a 

glacier can impact, sometimes dramatically, the environment around it both on short time scales 

like seasons and longer time scales like decades or centuries. For example, the release of fresh 

water through melting of glaciers can have a significant impact on humans for good or ill. Much 

of the world’s population depends on fresh water runoff from seasonal glacier melt for drinking 

water, agriculture and hydroelectric power. And conversely, sudden release of glacial lakes can 

cause devastatingly destructive flooding. On a longer time scale, a continued trend of melting 

can deplete glaciers and use up the stored fresh water supply that these communities depend on. 
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According to the Intergovernmental Panel on Climate Change (Confalonieri, 2007) greater than 

1/6th of the world’s population will be impacted by a decrease in the water volume from 

decreasing glaciers. Furthermore, as glaciers are sensitive to yearly temperature trending, glacier 

retreats or advances can serve as an early indication of global climate change. Another way 

changing glaciers can change the environment is that glaciers also cause sea level rise due to 

melting. According to a different report from the Intergovernmental Panel on Climate Change 

(Lemke, 2007) global glacier melt contributed 0.37 +/- 0.16 mm/yr to sea levels from 1961 – 

1990 but 0.77 +/- 0.2 mm/yr from 1990 – 2003. Therefore the changing state of glaciers is of 

interest to environmental scientists, hydrologists, farmers, emergency planners and many others 

outside the field of glaciology. 

 

The basic properties of glaciers that can be determined from remote sense data is glacier 

perimeter and area, but change data in those properties over time can yield glacier retreat or 

advance trends, flow rate, and mass balance; furthermore, global glacier change data can give 

information about the state of the global climate. Recent advances in remote sensing technology 

and methodologies for using the resulting data have led to three-dimensional mapping of glaciers 

as well. 

 

Background: Ong Valley Site Field Area 

Antarctica is the coldest, windiest, driest and highest continent on Earth. It is located almost 

entirely within the Antarctic Circle and has a land surface that is 98% covered by ice, which 

averages almost 2 km thick over the continent. There is no indigenous population on the 

continent. Antarctica covers 14 million km2, significantly larger than the continental US (Figure 

5). 
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Figure 3:  Antarctica with Continental US for comparison 

 

The specific location used for this research project is the Ong Valley in Antarctica’s 

Transantarctic Mountain Range (Figure 6). The Ong Valley is approximately 9 km long by 3 km 

wide, and is located in the Miller Range. Unlike much of Antarctica this valley is mainly free of 

exposed ice, although a large fraction of the valley is underlain by ancient glacier ice.  
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Figure 4:  Location of Ong Valley 

Although the Ong Valley is very remote (anecdotally more people have been to the Moon 

than to Ong Valley), the drifts in this valley have been studied and samples collected by Dr. 

Jaakko Putkonen, Director of Harold Hamm School of Geology & Geological Engineering at 

University of North Dakota, and his team. This on-site survey, sample collection and the 

subsequent laboratory analysis done on the samples have yielded ages for each of the three 

distinct drift regions in the valley, results which were published by Bibby, et al. (2016). Figure 7, 

which is from Bibby, et al., is a satellite image overlaid with dashed lines showing the extent of 

each of the three drift regions and indicating where test profile samples were collected. The head 
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of the valley has an unnamed glacier (Figure 7, upper left). The entrance to the valley (Figure 7, 

lower right) is blocked by a lobe from Argosy Glacier that fills the 2km wide valley entrance. 

 

Figure 5:  Ong Valley Image with Drift Demarcation and Sample Locations (Figure 1 

from Bibby, et al., 2014) 
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The field research team concluded that most of the Ong Valley floor consists of three drifts 

(Figure 7, dashed lines), which are each composed of unconsolidated sedimentary deposits of 

different ages. The rest of the valley floor consists of talus from the surrounding bedrock 

outcrops of the valley walls. Much of the sedimentary deposits have naturally formed into 

patterned ground polygons due to contraction cracking of the till (Figure 8, upper half). For a 

sense of scale, the four yellow dots on the ice patch (white area) of Figure 8 are individual 

camping tents while the larger multicolor item is a larger tent structure. A person can be seen 

walking across the ice patch towards the larger tent structure. Finally, Figure 9 is a photograph 

taken from near the head of the valley looking up towards the entrance and Argosy Glacier, at 

approximately the ‘e’ in the ‘Oldest’ text on Figure 7. 

 

Figure 6: Ong Valley Base Camp (photo: Jaakko Putkonen) 
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The research team at Ong Valley determined from field observations that the three distinct 

lobe-shaped regions (Figure 7, dashed lines) correspond to three previous pairs of advance and 

subsequent retreat stages of Argosy Glacier into the valley. The ultimate question the team 

wanted to answer was what the ages of the drifts are, and subsequently when these three glacial 

retreats occurred. Glacial advance plucks rocky debris from the surface it is flowing over and this 

debris gets carried along as the glacier advances. When the glacier subsequently retreats, the 

plucked rock that flowed with it during advance is left behind as drift; therefore, rock that was 

once buried under ice is now exposed on the surface of Earth after the glacier retreats. Part of 

that exposure includes high energy cosmic rays, which interact with the atoms, knocking out 

neutrons or protons from the nucleus, creating an isotope that is otherwise very rare. The amount 

 

Figure 7:  Ong Valley (Photo: Jaakko Putkonen) 
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of these cosmogenic-induced isotopes, cosmogenic nuclides, in a rock sample is directly 

proportional to the amount of time the rock has been exposed on the surface of Earth. 

Therefore, determining the amount of cosmogenic isotopes in rocks from the different drift 

regions of the Ong Valley will allow determination of the ages of the drifts. The team collected 

drift samples at several locations in the valley (Figure 7, black circles). From cosmogenic dating 

analysis, the team concluded that the oldest drift is at least 1.56 Ma and likely older than 2.63 

Ma, the middle drift is at least 1.1 Ma and likely greater than 1.78 Ma, and the youngest drift is 

11 – 13 ka. 

With this ground truth data and available remote sensing data of the region, the Ong Valley is 

an ideal choice to determine if remote sensing data can be used to differentiate glacier drifts of 

varying ages and/or same age drifts in the general region of the central Transantarctic Mountains. 

DATA AND METHODOLOGY 

Multispectral remote sensing image data sets were obtains and assessed for suitability in the 

analysis, processed to extract sub-images from each drift region in the image and then used in a 

principal component analysis (PCA) to determine the best way to qualitatively characterize the 

drift regions using remote sensing data and to determine which spectral bands would be most 

useful in differentiating the regions. These PCA results combined with the ground truth data will 

be used to determine a method to quantitatively characterize the drift region ages based on 

remote sensing data. 
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Data	

The remote sensing data for this study came from the WorldView-2 and WorldView-3 

satellites. WorldView-2, launched in 2009, and WorldView-3, launched in 2014, are commercial 

Earth-observing imagers, each slightly larger than a minivan (excluding solar arrays), that are 

owned and operated by DigitalGlobe. Both are in sun-synchronous orbits with periods of about 

100 minutes. Table 1, which is based on data from Satellite Image Corporation’s web site 

www.satimagingcorp.com, gives the relevant specifications for these two imaging satellites. 

Table 1: Relevant Spacecraft and Sensor Specifications for Worldview-2 and Worldview-3 
Imagers 

Specification WorldView-2 WorldView-3 

Launch Date October 8, 2009 August 13, 2014 

Orbit Altitude 770 km 617 km 

Orbit Type Sun synchronous, 10:30 am (LT) 
descending Node 

Sun synchronous, 1:30 pm (LT) 
descending Node 

 
Orbit Period 100 minutes 97 minutes 

Spacecraft Size, Mass, & 
Power 

4.3 m (14 ft) tall x 2.5 m (8 ft) 
across, 7.1 m (23 ft) across the 

deployed solar arrays; 2800 
kilograms (6200 pounds); 3.2 kW 

solar array, 100 Ahr battery 

5.7 m (18.7 ft) tall x 2.5 m (8 ft) 
across, 7.1 m (23 ft) across the 

deployed solar arrays; 2800 
kilograms (6200 pounds); 3.1 kW 

solar array, 100 Ahr battery 

Sensor Bands Panchromatic: 450-800 nm 
 

8 Multispectral: (red, red edge, 
coastal, blue, green, yellow, near-IR1 

and near-IR2) 400 nm - 1040 nm 
 

Panchromatic: 450-800 nm 

8 Multispectral: (red, red edge, 
coastal, blue, green, yellow, near-IR1 

and near-IR2) 400 nm - 1040 nm 

Sensor Resolution Panchromatic Nadir: 0.46 m GSD at 
Nadir, 0.52 m GSD at 20° Off-Nadir 

 
Multispectral Nadir: 1.84 m GSD at 
Nadir, 2.4 m GSD at 20° Off-Nadir 

Panchromatic Nadir: 0.31 m GSD at 
Nadir, 0.34 m at 20° Off-Nadir 

Multispectral Nadir: 1.24 m at Nadir, 
1.38 m at 20° Off-Nadir 

Sensor Dynamic Range 11 bits per pixel 11 bits per pixel 
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The WorldView data used in this project were provided by the Polar Geospatial Center at the 

University of Minnesota. This data set includes 190 GB (120 image sets) of data collected from 

2010 to 2015. The data are minimally processed with just radiometric correction and sensor 

correction performed. These data consist of .tif image files containing an 8192 by 9216 by 8 

raster image stack (8192 pixels tall by 9216 pixel wide with one image per band) and associated 

metadata xml files. The metadata files contain information such as image dimensions, latitude 

and longitude of each corner of each image in the stack, timestamp for when the image was 

taken, collection parameters like swath mode, and cloud cover. The metadata files were used to 

filter out images that were not sufficient for PCA analysis, although these images may still be 

useful for testing the PCA results. Images were rejected for PCA analysis using a basic 

algorithm:  if they did not contain the center coordinate of the valley (-83.2333333 latitude, 

157.6166667 longitude) or if they had > 25% of cloud cover they were rejected. A MATLAB 

script was written to select out all image files that met the criteria listed above. However, 

although the metadata file contains a cloud cover value, these values were found to be unreliable. 

Therefore, each image that passed the test of containing the center of the valley was assessed for 

cloud cover manually. This two-step filtering process resulted in 10 image files sufficient for use 

in the analysis, 8 from WorldView-2 and two from WorldView-3. Some of these 10 image files 

do not contain the entirety of the valley or contain only small, cloud-free parts of the valley; 

these will be used to test the PCA analysis results. Below is a representative set of images, one 

for each band, from data collected on February 17, 2011. 
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Figure 8:  Example Image Set used in Analysis. Data collected February 17, 2011. All 
images set to same color scale. (a) Band 1, Costal: 400-450 nm, (b) Band 2, Blue: 450-510 
nm, (c) Band 3, Green: 510-580 nm, (d) Band 4, Yellow: 585-625 nm, (e) Band 5, Red: 630-
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690 nm, (f) Band 6, Red Edge: 705-745 nm, (g) Band 7, Near IR-1: 770-895 nm, (h) Band 8, 
Near IR-2: 860-900nm. 

Due to the size of the full image data sets, an image chip containing just the Ong Valley was 

extracted from the full image for each of the data sets to minimize processing time. The image 

chip row and column pixel ranges are given in Table 2 and are relative to the full image 8192 by 

9216 pixel size.  After extracting image chips from each full image, three sub-images containing 

a representative section of each of the three drift regions of the valley was extracted from each 

image chip. Each region was manually identifiable because each of the three regions is visually 

distinct in the image chip, as are the termini between each of the regions. These row and column 

ranges are different for each image in the analysis, i.e. - data sets from each of the three regions 

are not necessarily the same size, but the row and column ranges are the same for each band 

within an image set. The pixel values from these sub-images, three sub-images for each of the 

eight bands per image file, are the data used in the analysis for this project. Table 2 lists the row 

and column pixel ranges, relative to the image chip, for each of the three regions in each data 

file. The green data rows in the table were the sub-image data sets used as input to the PCA 

function. The rows in white were not sufficient for PCA analysis input but can be used to assess 

performance of PCA results. 

Figure 12 and 13 show the relationship between the full image, the image chip and the three 
sub-images.  
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Table 2:  Image Data used in PCA Analysis 

Filename Image Chip 
 

Region 1 
(oldest drift) 

Region 2 Region 3 
(youngest drift) 

WV02_10DEC21180354_103001000817E
D00_10DEC21180354-M1BS-
500092301160_01_P010_u16ns3031 

4630:10060, 1607:5520 Shaded 3078:3509, 1619:2066 3814:4207,2606:2981 

WV02_11DEC22195305_1030010010AA
EE00_11DEC221953050x2DM1BS0x2D5
0 

1530:5728, 5380:9334 1414:1710 ,1770:1953 2254:2480 , 1565:1856 2980:3327 , 2318:2771 

WV02_11FEB17175403_10300100092952
00_11FEB171754030x2DM1BS0x2D50 

4469:10450, 1273:6189 Cloud Cover 3144:3565 ,2347:2682 4187:4403 , 3295:3716 

WV02_13DEC13163520_103001002B973
000_13DEC131635200x2DM1BS0x2D50 

4469:10450, 1273:6189 1665:2030 ,1249:1389 2693:3038 ,1028:1319 3336:3609 ,1621:2192 

WV02_13DEC13163632_103001002A0A9
500_13DEC131636320x2DM1BS0x2D50 

2586:6913, 2299:6195 1407:1752 ,1718:1894 2576:3055 ,1463:1875 3141:3472 ,2218:2765 

WV02_14JAN25201052_103001002B37A
900_14JAN252010520x2DM1BS0x2D50 

2642:7541, 5166:8729 2067:2419 ,1613:1828 2791:3492 ,1266:1755 3683:4000 ,2172:2764 

WV02_15FEB02191005_103001003C260
800_15FEB021910050x2DM1BS0x2D50 

2535:7464, 4610:7603 1543:1822 ,1065:1200 2520:3273 ,887:1204 3302:3623 ,1510:2152 

WV02_15FEB02191125_103001003CC6E
400_15FEB021911250x2DM1BS0x2D50 

2169:6835, 4404:7659 1712:1967 ,1291:1449 2626:3503 ,1138:1376 3430:3778 ,1756:2161 

WV03_14NOV01201351_10400100047E1
900_14NOV012013510x2DM1BS0x2D50 

6943:12510, 4606:8992 1998:2617 ,2696:2953 2037:4234 ,2342:2863 Not in Image 

WV03_14NOV01201353_10400100047E1
900_14NOV012013530x2DM1BS0x2D50 

1492:5964, 2792:7363 Not in Image 895:1935 ,1161:1730 2211:2429 , 2398:3034 
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Figure 9:  22 Dec. 2011 Band 1 full image with image chip outlined (red box). Coordinate values 
are pixel number relative to full image origin. Color indicates intensity of signal, in digital number 
counts. 

 

Figure 10:  22 Dec 2011 Band 1 image chip with sub-images for each Region outlined (red 
boxes). Coordinate values are pixel number relative to image chip origin. Color indicates intensity 
of signal, in digital number counts. 
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Figure 11:  22 Dec 2011 Sub-Images from Figure 13. Coordinate values are pixel number 
relative to sub-image origin. Color indicates intensity of signal, in digital number counts. 

Ground Truth Data 

As mentioned previously in this paper, the ground truth used in this analysis consists of 

independently determined ages for each of the three drift regions of the Ong Valley. These ages 

were determined by measuring the cosmogenic isotope concentrations from rock samples 

collected at each of the three drift regions of the Ong Valley. 

Cosmogenic isotopes are created when material such as rock is exposed to high-energy 

cosmic rays on the Earth’s surface, as they are after a glacier retreats and leaves behind the 

accumulated rock plucked from the glacier’s bed during its advance. These cosmic rays 

occasionally hit the nucleus of an atom in the rocks and expel either a neutron or proton from it, 

creating an isotope that is otherwise rare in nature. Since the incidence of cosmic rays is well 
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characterized, the amount of cosmogenic nuclides is directly proportional to the amount of time 

the rock has been exposed on the surface. Bibby, et al. (2016) determined the rate at which 

cosmogenic nuclides would have been produced in the Ong Valley, correcting the standard 

production rate for altitude, latitude and the shielding from the valley walls. 

Bibby, et al. collected both surface and subsurface sediment samples from the middle of each 

drift region to minimize contamination from rock fall from the valley walls. These samples were 

collected at two locations within 10m of each other in each region to determine reproducibility of 

the results. Quartz from each of the samples was assessed via mass spectrometry to determine its 

10Be or 26Al content. Additional samples from one location per region were assessed for 21Ne 

content. By looking at the change in isotope content with depth, the team was able to determine 

that no significant vertical mixing has occurred in the three drift regions. Additionally, from the 

10Be/9Be and 27Al/26Al isotope ratios the team was able to estimate the sublimation and erosion 

rates of the drifts. 

For the youngest drift, the subsurface 21Ne content was not significantly different from the 

surface 21Ne content, suggesting a young drift and also providing information on the amount of 

initial 21Ne content from prior exposure. Based on 10Be/9Be and 27Al/26Al isotope ratios, the 

youngest drift was determined to be 11–13 ka old. For the middle and oldest drifts, the 10Be/9Be 

and 27Al/26Al ratios were approaching their steady state values, thus becoming less reliable for 

dating. However, these regions show decreasing 21Ne content with depth, which allows for a 

better estimate of the ages than the 10Be and 27Al ratios alone allow for.  Using the surface 21Ne 

content of the middle and oldest regions along with an initial 21Ne content based on the youngest 

drift data, the middle drift was determined to be  at least 1.1 Ma and likely greater than 1.78 Ma, 

while the oldest drift was determine to be 1.56 Ma and likely older than 2.63 Ma. 
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ANALYSIS AND RESULTS 

This section details the analysis performed on the Ong Valley image data and also shows the 

results of the analysis. Initially a principal component analysis was performed in an attempt to 

determine a way to differentiate the three drift regions in the image data. That analysis proved to 

be ineffective, and so another method, based on an empirical, qualitative study of the data, was 

performed. 

Analysis:  PCA 

The goal of this project is to determine whether remote sensing data can be used to 

differentiate glacier drifts of different ages. To that end, the sub-image pixel data from each of 

the three drift regions was processed using a Principal Component Analysis (PCA) technique. 

PCA is a mathematical method to reduce a potentially-correlated multivariable data set to its 

uncorrelated components. As this reduction is done starting with the component exhibiting the 

most variability in the set, it provides for a way to characterize members of a data set based on 

fewer, potentially many fewer, variables than exist in the source data set. Furthermore, the 

component coefficients produced by PCA indicate the degree to which each variable contributes 

to the variation. 

As a simple example, suppose one wanted to determine by mass whether fat, carbohydrates 

or protein contributed the most to the calorie content of food. Given known total calorie content 

of a variety of foods along with their relative fat, carbohydrate and protein content and the total 

mass of each food item, a PCA could be performed on this data. It would show that fat 

contributes about twice as much to total calorie content per gram as fiber and carbohydrates. 
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Specifically, the PCA component 1 coefficient for fat should be approximately twice the value as 

the coefficients for carbohydrates and protein. 

As with the simple example above, PCA analysis on the sub-image data set should provide a 

method to characterize the image data into three distinct sets, each one corresponding to a 

different drift region and therefore different age. The relative values of the components should 

indicate which bands contribute most to the differences between regions and can be used to 

inform what linear combination of bands may be most effective in differentiating the three 

regions. Although PCA is a complex statistical analysis method, MATLAB provides a pre-made 

PCA function that eliminates the need for developing code to perform the analysis method. This 

MATLAB function was used in conjunction with the sub-image pixel data to produce PCA 

results, as detailed below. 

The steps taken in this analysis are as follows: 

1. For each image data set, extract out sub-image data from each band. This will be three n 

by m arrays of pixels, one for each drift region, and one set of three for each band in the 

image data set. The result is 24 sub-images for each image data set. Note that n and m, 

the number of rows and columns, may differ for each region within an image set but will 

be the same for each sub-image taken from the same region. In other words, if Region 1 

sub-image is 300 x 350, then that will be the array size for each of the sub-images for that 

region in all 8 bands. 

2. Determine the mean for each sub-image. This will produce a 3 x 8 matrix of image means 

for each image data set. Standard deviation will also be calculated. 
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3. Aggregate the means from all image sets into an overall 3 x 8 matrix that is a mean of 

means. This is what will be input into the PCA algorithm. 

4. Assess the results of the PCA algorithm to determine the best way to combine the band 

values to differentiate the three regions in the image data. 

As mentioned in the previous section, to minimize processing time and memory usage, image 

chips containing just the Ong Valley were extracted from the full image data sets and processing 

was done on these image chips. Two assumptions were made about the data sets used in this 

analysis:  1. Any count value differences due to shaded regions in the valley would be removed 

during the normalization process of the PCA function, i.e. – shade changes count values equally 

across all bands. 2. The valley floor is flat enough to not require correction for slope in the data. 

Before the analysis can begin, the sub-images need to be extracted from the image chips and 

the mean and standard deviation for each one needs to be computed. A MATLAB script was 

written to extract out the sub-image pixels for each band of each data set, determine the means 

and standard deviation of those sub-images and then form the aggregate means into a table. This 

resulted in an eight by three matrix, one element for each of the eight bands and each of the three 

sub-image means, which is input into the PCA function in MATLAB. The MATLAB script is 

listed in Appendix A.  Table 3 shows the resulting aggregate means from this script. Appendix C 

contains tables for each image set’s mean and standard deviation. An aggregate table of standard 

deviations was not produced. 
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Table 3:  Sub-Image Aggregate Means for Each Band, as Input to PCA Function 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 285.24 324.11 359.71 195.99 298.41 174.61 289.94 154.46 

Region 2 Mean 265.03 307.27 361.63 209.13 334.18 203.55 361.18 195.72 

Region 3 Mean 274.63 322.89 380.34 210.36 324.64 190.95 327.97 174.60 

 

To perform the PCA calculation in MATLAB, the values from Table 3, called tbl_mean, are 

entered as follows: 

[coeff score, latent, tsquared, explained] = pca(tbl_mean); 

The primary result is coeff, an eight by eight matrix of coefficient values, with the first 

column of eight values corresponding to the coefficients that map the data onto the component 

vector that most differentiates the data. An additional part of the output provided by the PCA 

function is the PCA score explained, which is a metric for how much of the variation among the 

three bands is accounted for by each column vector of coefficients. Once the component 

coefficients are determined from the data set, these coefficients can then be applied to the 

original data or other data to assess -- both visually and with the use of metrics -- the success of 

coefficients in differentiating the regions. Table 4 contains the coefficient results from the PCA. 
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Table 4:  PCA Coefficient Results from Table 3 Input 

Band 
Coefficient 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC8 

1 -0.2040 0.0293 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 -0.1640 0.3494 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3 0.0349 0.8339 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.1386 0.2995 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5 0.3670 0.2656 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.2931 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.7197 -0.0763 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

8 0.4153 -0.1249 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

With the following scores: 

1st component: 93.07 % 

2nd component: 6.93 % 

These results indicate the following: 

1. The variation in the data set is completely accounted for by the first two Principal 

components. 

2. The vast majority – 93% – is accounted for in the first component. As with the Pope and 

Rees analysis (Pope and Rees, 2014) this is likely variation due to broadband albedo of 

the surface and may not be the most useful set of coefficients to use to differentiate the 

regions since it reflects albedo differences rather than spectral differences in the image 

data. 
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3. Within that first component, Band 7 is the most influential variable, although all bands 

contribute to a significant degree. There is anti-correlation between Bands 1 and 2 versus 

Bands 3 through 8.  

4. Within the second component, Band 3 contributes the most to the differences between 

regions although most other bands contribute to a significant degree. There is anti-

correlation between Bands 7 and 8 versus Bands 1 through 6.  

A common analysis technique used to interpret PCA results is to plot the first two component 

coefficient values and observe any clustering. Figure 12 is the resulting plot for the coefficient 

values in Table 4. No discernable clustering can be identified in the plot. 

 

Figure 12:  Principal components plot from Table 4 
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Since data from most of the spectral bands contribute a significant degree to the differences 

between drift regions, based on their coefficients, a simple linear combination of a small number 

of band to differentiate the regions does not seem apparent. Furthermore, since the component 

coefficient plot did not reveal any obvious clustering of coefficient pair data, differentiating 

bands or groups of bands from others which could be exploited to differentiate the regions, these 

PCA results are not easily interpreted as a straightforward linear combination of band data. 

Given that the initial attempt at a PCA analysis didn’t produce clearly usable results, a 

closer look at the data was warranted to determine if variation among the data could be due to 

factors not directly related to the differences of interest in this analysis. When comparing the 

tables of means and standard deviations in Appendix C, it is clear that the image data sets fall 

into two categories, one in which Region 1 image data is shaded and one in which Region 1 

image data is not shaded.  For example, see the Image Chip for 25 Jan 2014 (unshaded) versus 

the Image Chip for 13 Dec 2013 (shaded) in the Appendix B. Figures 15 and 16 illustrate this 

difference. Each plot is the mean count value for each region plotted for each band. Error bars 

are the standard deviations of the mean values. It is clear that whereas Region 2 and Region 3 

data are similar between the two plots, Region 1 data is dissimilar. Because all image set means 

were aggregated together for PCA input, this difference is likely muddying the analysis results. 

To address this issue, a second PCA was performed, this time using only data from image sets 

that do not contain shaded Region 1 data. 
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Figure 13:  Plot of Mean Counts with 1 Sigma Error Bars, 22 Dec. 2011 Data 
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Figure 14:  Plot of Mean Counts with 1 Sigma Error Bars, 12 Dec. 2013 Data 

Table 5 contains the aggregate sub-image means for just the non-shaded data.  

Table 5:  Sub-Image Means for Each Band using only Shadow-Free Image Sets, as Input to 
PCA Function 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 384.64 484.98 628.39 384.07 626.83 390.52 694.34 381.07 

Region 2 Mean 323.36 382.61 464.72 273.61 439.98 270.12 481.94 264.66 

Region 3 Mean 349.97 423.39 516.37 292.05 456.28 272.23 469.31 253.82 

 

The data is Table 5 produces the following PCA results. 
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Table 6:  PCA Coefficient Results from Table 5 Input (Non-Shaded Data Sets) 

Band 
Coefficient 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC8 

1 0.12893 0.32171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.21951 0.48234 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3 0.36616 0.56770 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.26559 0.13658 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5 0.46600 0.00728 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.30971 -0.12141 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.56475 -0.45985 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

8 0.31393 -0.31089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

With the following scores: 

1st component: 97.62 % 

2nd component: 2.38 % 

These results indicate the following: 

1. The variation in the data set is completely accounted for by the first two Principal 

components. 

2. The vast majority – 98% – is accounted for in the first component. As with the Pope and 

Rees analysis (Pope and Rees, 2014) this is likely variation due to broadband albedo of 

the surface and may not be the most useful set of coefficients to use to differentiate the 
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regions since it reflects albedo differences rather than spectral differences in the image 

data. 

3. Within that first component, Band 7 is the most influential variable, although all bands 

contribute to a significant degree. Unlike the initial PCA results, there is no anti-

correlation in this set of coefficients. 

4. Within the second component, Band 3 contributes the most to the differences between 

regions although most other bands contribute to a significant degree. There is anti-

correlation between Bands 6, 7 and 8 versus Bands 1 through 5. 

As with the previous PCA results, the two component coefficients were plotted to find 

clustering in the data. Figure 15 is the resulting plot for the coefficient values in Table 6. No 

discernable clustering can be identified in the plot.  
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Figure 15:  Principal components plot from Table 6 

As with the previous PCA results, since data from most spectral bands contribute a 

significant degree to the differences between drift regions, based on their coefficients, a simple 

linear combination of a small number of band to differentiate the regions does not seem apparent. 

Furthermore, since the component coefficient plot did not reveal any obvious clustering of 

coefficient pair data, differentiating bands or groups of bands from others which could be 

exploited to differentiate the regions, these PCA results are not easily interpreted as a 

straightforward linear combination of band data. 

Analysis:  Empirical 

Because the PCA analysis did not provide a clear linear combination of band values to 

differentiate the drift regions, a follow-on empirical analysis was attempted. When working with 



41 
 

the data, it was noted that there are characteristic difference in the band relationships between 

each of the three regions, particularly which region has a maximum value and which has a 

minimum value within each band set. The table below illustrates the point. It is the same data as 

in Table 3 with an additional column for standard deviation. Cells in green are the maximum of 

the data set within a band, cells in orange are the minimum. It is clear that bands 1 and 2, bands 3 

and 4 and bands 5 through 8 behave differently in terms of which sub-image region has the 

maximum and minimum values.  

Table 7:  Sub-Image Means for Each Band, Color-Coded by Max, Min with Standard Deviation 
(green = band maximum, orange = band minimum) 

 Band 
1 

Band 
2 

Band 
3 

Band 
4 

Band 
5 

Band 
6 

Band 
7 

Band 
8 

Region 1 Mean 285.24 324.11 359.71 195.99 298.41 174.61 289.94 154.46 

Region 2 Mean 265.03 307.27 361.63 209.13 334.18 203.55 361.18 195.72 

Region 3 Mean 274.63 322.89 380.34 210.36 324.64 190.95 327.97 174.60 

Std Dev 10.11 9.39 11.40 7.97 18.52 14.51 35.65 20.63 

 

At first glance, this pattern of maximum and minimum values within a region could be used 

to develop an empirical method to differentiate the three regions. A mathematical combination of 

values from three different bands, with one set of data from each of the three band sets that 

behaves similarly, e.g. – values from either Band 1 or Band 2, combined with values from either 

Band 3 or Band 4, combined with any value from Bands 5 -8 should best maximize the 

differences. This is analogous to band ratios values like those calculated for determining glacial 

areas, as mentioned in the several papers in the Literature Review section of this document. 

However, as mentioned previously, when looking more closely at the data, specifically at the 
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means for each of the six data sets that were incorporated into the values for Table 7, it is clear 

that the above pattern of maximum and minimum values is the result of the averaging and does 

not hold true for each of the data sets individually. Instead the data sets fall into one of two 

maximum/minimum patterns, as shown in Tables 8 and 9, based on whether Region 1 is shaded 

or not. Note that to minimize the effects of different illumination levels, the mean values in these 

tables are normalized by the sum of the mean values for the region, i.e. – each band’s mean 

count value was divided by the sum of the count values for all 8 bands of that region. Two of the 

six sub-image mean tables follow Pattern 1 and four follow Pattern 2. Looking at the image chip 

figures (see Appendix B, e.g. - Image Chip for 25 Jan 2014 (unshaded) versus the Image Chip 

for 13 Dec 2013 (shaded)) it appears that the pattern, as mentioned before, has to do with 

whether Region 1 is shaded or not. Based on this observation, it would seem that the unshaded 

data should be used to derive the empirical formula so that 

Table 8:  Example Pattern 1 Normalized Sub-Image Means, Color-Coded by Max, Min with 
Standard Deviation (green = band maximum, orange = band minimum) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 
(normalized) 

0.10073 0.12562 0.15985 0.09620 0.15529 0.09703 0.17047 0.09481 

Region 2 Mean 
(normalized) 

0.11126 0.13303 0.16217 0.09469 0.15162 0.09285 0.16388 0.09050 

Region 3 Mean 
(normalized) 

0.11298 0.13883 0.17020 0.09653 0.15117 0.09095 0.15490 0.08444 

Std Dev 0.00664 0.00662 0.00543 0.00098 0.00226 0.00311 0.00782 0.00521 
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Table 9:  Example Pattern 2 Normalized Sub-Image Means, Color-Coded by Max, Min with 
Standard Deviation (green = band maximum, orange = band minimum) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 
(normalized) 

0.21995 0.22308 0.19891 0.08696 0.11395 0.05438 0.07034 0.03244 

Region 2 Mean 
(normalized) 

0.11941 0.13652 0.15840 0.09188 0.14965 0.09133 0.16399 0.08883 

Region 3 Mean 
(normalized) 

0.12903 0.14884 0.17172 0.09392 0.14606 0.08502 0.14763 0.07779 

Std Dev 0.05548 0.04683 0.02065 0.00358 0.01965 0.01977 0.05002 0.02989 

 

all regions’ data sets are comparable. However, the results may not work to differentiate regions 

in an image that contains shaded parts of the valley. Figure 13 is also informative in helping 

choose which bands to include in the band ratio. Ideally, the count value sets for the selected 

bands should be as far apart as possible from each other but should also be separated by greater 

than their standard deviations, otherwise noise in the data will potentially nullify the separation 

method. To help clarify the band selection choices, the normalized mean count values were 

plotted for one of the data image sets (Figure 16). 
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Figure 16:  Normalized Mean Count Values, 22 Dec. 11 data 

The band selection criteria are therefore the following: 

1. Choose bands that have different max/min relationships for each of two or three regions 

2. Among the possible choices that satisfy condition 1, choose bands whose three mean 

count value standard deviations minimally overlap (Figure 13) 

3. Among the possible choices that satisfy condition 2, choose bands with the largest 

normalized standard deviations (Table 7) or, comparably, data spread within a band 

(Figure 17) 
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Based on those considerations and using commonly developed methods of band 

combinations, such as for NDVI, the following formula was developed as Normalized Drift 

Index: 

ሻܫܦሺܰ	ݔ݁݀݊ܫ	ݐ݂݅ݎܦ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
7	݀݊ܽܤ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ െ 2	݀݊ܽܤ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ
7	݀݊ܽܤ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൅ 2	݀݊ܽܤ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ

 

where, as with NDVI, each band value is first normalized by the total count value in all 

bands before use in the calculation. This allows for an analysis that is independent of the relative 

signal intensity between bands and in relative signal differences between other data sets. Tables 

10 and 11 show the normalized values used for the analysis as well as the resulting NDI value for 

each of the two image sets. 

Table 10:  Normalized Band Values Used for Differentiation of Drift Regions 22 Dec. 2011 

 Band 2 Band 7 Result 

Region 1 0.12562 0.17047 0.151474

Region 2 0.13303 0.16388 0.103904

Region 3 0.13883 0.1549 0.05471 

 

Table 11:  Normalized Band Values Used for Differentiation of Drift Regions 25 Jan. 2014 

 Band 2 Band 7 Result 

Region 1 0.11741 0.18006 0.21061 

Region 2 0.13008 0.16970 0.13216 

Region 3 0.14095 0.15436 0.04541 
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The resulting NDI values in the tables show that a similar relationship holds for each of the 

two image data sets, namely that NDI values are highest for Region 1 and lowest for Region 3. 

From this, as with NDVI, a range of values could be established for each Region, indicating that 

if a pixel’s NDI value falls within that range, it is of that Region type, i.e. – drift age. However, 

while the relative assessment of highest and lowest NDI values holds, it is worrying that the 

values themselves differ between data sets. For example, the Region 2 NDI value from the 25 

Jan. data is close to both the Region 1 and Region 2 value from the 22 Dec. data. Depending on 

how much these values vary over the image region in question, it may be difficult to find value 

ranges that unambiguously determine that a pixel, based on its NDI, belongs to one of the three 

Regions.  
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To assess how effective these NDI values might be in determining which Region a pixel 

belongs to, the NDI method was applied to image data. This method to differentiate pixels based 

on regions should work best on the data sets used to generate the NDI values. To that end, a 

MATLAB script was written that takes each sub-image from the 22 Dec. data image set, 

normalizes each pixel of each of the three sub-images by the sum of the count values for that 

pixel in all bands and then calculates the NDI as listed above. The following figures are the 

result. Note that the color scale is the same for all three images. 

 

Figure 17:  Region 1 Sub-Image NDI, 22 Dec. 2011 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 
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Figure 18:  Region 2 Sub-Image NDI, 22 Dec. 2011 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 
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Figure 19:  Region 3 Sub-Image NDI, 22 Dec 2011 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 

A similar analysis was done for the 25 Jan. 2014 data with the following figures as a result. 

Note that the color scale is the same for all three images but different from the color scale for the 

22 Dec data. 
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Figure 20:  Region 1 Sub-Image NDI, 25 Jan. 2014 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 
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Figure 21:  Region 2 Sub-Image NDI, 25 Jan. 2014 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 
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Figure 22:  Region 3 Sub-Image NDI, 25 Jan. 2014 Data. Coordinate values are pixel 
number relative to sub-image origin. Color indicates Normalized Drift Index (NDI) value. 

It is clear from the images, both visually and when their means and standard deviations are 

considering that the data within a sub-image have too wide of a count value range to characterize 

the regions accurately using their NDI values. In other words, the standard deviation within a 

sub-image and the mean count value differences between image sets for the same region produce 

greater differences than the NDI method is able to produce between different regions. Given that 

these data sets represent the best case scenario for applying this method it is apparent that the 

developed NDI is not sufficient to characterize drift regions based on the remote sense data as 

used in this analysis. 
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CONCLUSION 

Knowing the ages of glacier drifts in Antarctica would help map out changes in the 

paleoclimate and give researchers a better understanding of how Earth’s climate has changed 

over the last several million years. The ability to determine the age of glacier drifts in Antarctica 

via remote sensing would be a great asset to these researchers as it would eliminate the need to 

visit these remote areas to collect samples for laboratory analysis. 

The analysis behind this thesis was an attempt to find out how to use remote sensing data to 

determine drift ages for the three drifts of the Ong Valley, whose ages are known from sample 

collection and laboratory analysis. The remote sensing data set used in this analysis was 8 band 

multispectral image level 1B data from WorldVew-2 and WorldView-3 collected between 2010 

and 2015.  Sub-image means for each of the drift regions and all 8 bands were used in the 

analysis of this project.  Both Principal Component Analysis and an empirical analysis of the 

remote sensing image data were performed. 

The PCA analysis showed that all of the variation within the data set is captured in two 

principal components.  The coefficients for first component were all within the same order of 

magnitude and all but one of the coefficients for the second component were likewise all within 

the same order of magnitude.  Therefore the PCA results suggest that all bands contribute 

roughly the same to the differences between the regions.  Furthermore, the coefficients pairs do 

not cluster in a way to indicate that particular bands or groups of bands exhibit properties 

different from other groups which could be exploited to differentiate the regions. These results 

suggest that a linear combination of a small subset of band data would not be sufficient to 

differentiate the drift regions for classification as different ages. 
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Nevertheless, an empirical analysis was performed as well.  This analysis was based on 

observed trends in the data, i.e. - which normalized count values within a band are a maximum 

and which are a minimum for each region.  From this data trend a drift index was developed, a 

combination of data from bands 2 and 7.  This index was then applied to the image data to assess 

whether the three drift regions exhibit index values in distinct and separate ranges.  While these 

index results showed statistically significant differences between regions 1 and 3 within an 

image data set region 2 was not statistically different from the other regions.  Furthermore drift 

index values for the same region between image data sets were not quantitatively comparable, 

i.e. – index values from region 1 were higher than values from regions 2 and 3 within their 

respective data sets but index values from region 1 in one image data set were closer to index 

values from region 2 in the other image data set.  Therefore this developed index could 

potentially be used to qualitatively differentiate drift regions by age, with higher index values 

corresponding to older drifts but does not seem sufficient to quantitatively differentiate between 

drifts of different ages.  A qualitative differentiation of drift regions is likely to be of limited use 

to paleoclimatologists and therefore further work in this area is recommended. 

This analysis did not cover all possible ways to assess and use the available data, and thus 

future research may provide a solution. Just the literature review in this document, which is by 

no means a complete summary of the research to date, indicates several potential avenues to 

explore for this problem. To begin with, little preprocessing was done on the data used – just 

radiometric correction and sensor correction. Perhaps geometric correction or noise removal 

would produce a more compatible set of images that eliminates much of the variation in the data 

that prevented a successful NDI criteria test in this project. Furthermore, the only PCA 

performed for this analysis was the standard version found in MATLAB. Variations on that 
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function, such as using eigenvalue decomposition or alternating least squares weighted variance 

instead of the singular value decomposition default, were not explored. And while PCA was used 

for this analysis, it is only one of several analysis techniques that could be applied to this data 

set. Finally, as new and better remote sensing technologies become available, new data will 

likely be collected at better spatial and spectral resolution and in different parts of the EM 

spectrum, possibly requiring the need for more extensive computing power, such as cloud 

computing, to analyze larger data set volumes. This new data may yield a solution to dating 

glacier drifts. Alternatively, following the method used in Pope and Rees (2014) and a similar 

method used to map surface mineralogy on the south Tamil Nadu coast of India (Chandrasekar, 

et al., 2011) spectral analysis on collected drift samples from the Ong Valley could be used to 

inform the image data analysis as to which bands or band combinations would best differentiate 

the image data into the different drift regions. 

 

  



56 
 

REFERENCES 

Bernard, É., Friedt, J. M., Tolle, F., Griselin, M., Martin, G., Laffly, D., & Marlin, C. (2013). 

Monitoring seasonal snow dynamics using ground based high resolution photography 

(Austre Lovénbreen, Svalbard, 79°N). ISPRS Journal of Photogrammetry and Remote 

Sensing, Volume 75, 92-100. 

Bibby, T., Putkonen, J., Morgan, D., Balco, G., & Shuster, D. L. (2016). Million year old ice 

found under meter thick debris. Geophysical Research Letters, 43(13), 6995–7001. 

Bolch, T. (2007). Climate change and glacier retreat in northern Tien Shan 

(Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 

Volume 56, Issues 1–2, 1-12. 

Brenning, A. (2009). Benchmarking classifiers to optimally integrate terrain analysis and 

multispectral remote sensing in automatic rock glacier detection. Remote Sensing of 

Environment, Volume 113, Issue 1, 239-247. 

Chandrasekar, N., Sheikmujabar, P., & Rajamanickam, G. V. (2011). Investigation of heavy-

mineral deposits using multispectral satellite data. International Journal of Remote 

Sensing, 8641–8655. 

Confalonieri, U. M. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. 

Contribution of Working Group II to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University 

Press. 



57 
 

Dozier, J., & Painter, T. H. (2004). Multispectral and Hyperspectral Remote Sensing of Alpine 

Snow Properties. Annual Review Earth Planetary Science, 32, 465-95. 

Frey, H., Paul, F., & Strozzi, T. (2012). Compilation of a glacier inventory for the western 

Himalayas from satellite data: methods, challenges, and results. Remote Sensing of 

Environment, Volume 124, 832-843. 

Heid, T., & Kääb, A. (2012). Evaluation of existing image matching methods for deriving glacier 

surface displacements globally from optical satellite imagery. Remote Sensing of 

Environment, Volume 118, 339-355. 

Jensen, J. R. (2000). Remote Sensing of the Environment, An Earth Resource Perspective. Upper 

Saddle River, NJ: Prentice-Hall, Inc. 

Kargel, J. S., Abrams, M. J., Bishop, M. P., Bush, A., Hamilton, G., Jiskoot, H., . . . Wessels, R. 

(2005). Multispectral imaging contributions to global land ice measurements from space. 

Remote Sensing of Environment, Volume 99, Issues 1–2, 187-219. 

Karimi, N., Farokhnia, A., Karimi, L., Eftekhari, M., & Ghalkhani, H. (2012). Combining optical 

and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh 

Glaciers, Iran). Cold Regions Science and Technology, Volume 71, 73-83. 

Koutnik, M. R., Waddington, E. D., & Winebrenner, D. P. (2009). A method to infer past surface 

mass balance and topography from internal layers in martian polar layered deposits. 

Icarus, Volume 204, Issue 2, 458-470. 



58 
 

Lee, H., Shum, C. K., Tseng, K.-H., Huang, Z., & Sohn, H.-G. (2013). Elevation changes of 

Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. 

Remote Sensing of Environment, Volume 132, 40-48. 

Lemke, P. J. (2007). Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge, United Kingdom: Cambridge University Press. 

Li, S., Benson, C., Gens, R., & Lingle, C. (2008). Motion patterns of Nabesna Glacier (Alaska) 

revealed by interferometric SAR techniques. Remote Sensing of Environment, Volume 

112, Issue 9, 3628-3638. 

Luckman, A., Quincey, D., & Bevan, S. (2007). The potential of satellite radar interferometry 

and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of 

Environment, Volume 111, Issues 2–3, 172-181. 

Paul, F., Huggel, C., & Kääb, A. (2004). Combining satellite multispectral image data and a 

digital elevation model for mapping debris-covered glaciers. Remote Sensing of 

Environment, Volume 89, Issue 4, 510-518. 

Paul, F., Kääb, A., & Haeberli, W. (2007). Recent glacier changes in the Alps observed by 

satellite: Consequences for future monitoring strategies. Global and Planetary Change, 

Volume 56, Issues 1–2, 111-122. 

Pope, A., & Rees, G. (2014). Using in situ spectra to explore Landsat classification of glacier 

surfaces. International Journal of Applied Earth Observation and Geoinformation, 

Volume 27, Part A, 42-52. 



59 
 

Raup, B., Racoviteanu, A., Khals, S. J., Helm, C., & Armstrong, R. (2007). The GLIMS 

geospatial glacier database: A new tool for studying glacier change. Global and 

Planetary Change, Volume 56, Issues 1–2, 101-110. 

Salvatore, M., Mustard, J., Head, J., Marchant, D., & Wyatt, M. (2014). Characterization of 

spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry 

Valleys, Antarctica: Weathering, alteration, and magmatic processes. Antarctic Science, 

49-68. 

Schmidt, F., Schmitt, B., Douté, S., Forget, F., Jian, J.-J., Martin, P., . . . the OMEGA Team. 

(2010). Sublimation of the Martian CO2 Seasonal South Polar Cap. Planetary and Space 

Science, Volume 58, Issue 10, 1129-1138. 

Wolken, G. J. (2006). High-resolution multispectral techniques for mapping former Little Ice 

Age terrestrial ice cover in the Canadian High Arctic. Remote Sensing of Environment, 

Volume 101, Issue 1, 104-114. 

Xiaoming , W. (2011). Beijing-1 Small Satellite System & Its Application. 13th DMC 

Consortium Meeting. http://www.spaceconference.co.uk/dmc13.html. 

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. 

Journal of Plant Ecology, 1 Number 1, 9-23. 

 

 

  



60 
 

APPENDIX A:  MATLAB PROGRAMS 

% This script opens each image file used in the analysis, extracts out the 
% image chip, then determines the mean for each sub-region in the image 
% chip 
% The result is an 8x3 matrix of where each element is the mean of the 
% means of each image's regional mean 
  
clear; 
close all; 
  
% 22Dec 2011 data 
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_11DEC22195305_103001001
0AAEE00_11DEC22195305-M1BS-500092642100_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(1530:5728,5380:9334,:); 
% clear the full array so save processing time and memory 
clear rawDataFull; 
  
data_11Dec(1,1) = mean(mean(rawData(1414:1710 , 1770:1953,1))); 
data_11Dec(1,2) = mean(mean(rawData(2254:2480 , 1565:1856,1))); 
data_11Dec(1,3) = mean(mean(rawData(2980:3327 , 2318:2771,1))); 
s1 = size(rawData(1414:1710 , 1770:1953,1)); 
s2 = size(rawData(2254:2480 , 1565:1856,1)); 
s3 = size(rawData(2980:3327 , 2318:2771,1)); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,1), s3(1)*s3(2),1); 
std_11Dec(1,1) = std(double(vec1)); 
std_11Dec(1,2) = std(double(vec2)); 
std_11Dec(1,3) = std(double(vec3)); 
  
data_11Dec(2,1) = mean(mean(rawData(1414:1710 , 1770:1953,2))); 
data_11Dec(2,2) = mean(mean(rawData(2254:2480 , 1565:1856,2))); 
data_11Dec(2,3) = mean(mean(rawData(2980:3327 , 2318:2771,2))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,2), s3(1)*s3(2),1); 
std_11Dec(2,1) = std(double(vec1)); 
std_11Dec(2,2) = std(double(vec2)); 
std_11Dec(2,3) = std(double(vec3)); 
  
  
data_11Dec(3,1) = mean(mean(rawData(1414:1710 , 1770:1953,3))); 
data_11Dec(3,2) = mean(mean(rawData(2254:2480 , 1565:1856,3))); 
data_11Dec(3,3) = mean(mean(rawData(2980:3327 , 2318:2771,3))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,3), s3(1)*s3(2),1); 
std_11Dec(3,1) = std(double(vec1)); 
std_11Dec(3,2) = std(double(vec2)); 
std_11Dec(3,3) = std(double(vec3)); 
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data_11Dec(4,1) = mean(mean(rawData(1414:1710 , 1770:1953,4))); 
data_11Dec(4,2) = mean(mean(rawData(2254:2480 , 1565:1856,4))); 
data_11Dec(4,3) = mean(mean(rawData(2980:3327 , 2318:2771,4))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,4), s3(1)*s3(2),1); 
std_11Dec(4,1) = std(double(vec1)); 
std_11Dec(4,2) = std(double(vec2)); 
std_11Dec(4,3) = std(double(vec3)); 
  
data_11Dec(5,1) = mean(mean(rawData(1414:1710 , 1770:1953,5))); 
data_11Dec(5,2) = mean(mean(rawData(2254:2480 , 1565:1856,5))); 
data_11Dec(5,3) = mean(mean(rawData(2980:3327 , 2318:2771,5))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,5), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,5), s3(1)*s3(2),1); 
std_11Dec(5,1) = std(double(vec1)); 
std_11Dec(5,2) = std(double(vec2)); 
std_11Dec(5,3) = std(double(vec3)); 
  
data_11Dec(6,1) = mean(mean(rawData(1414:1710 , 1770:1953,6))); 
data_11Dec(6,2) = mean(mean(rawData(2254:2480 , 1565:1856,6))); 
data_11Dec(6,3) = mean(mean(rawData(2980:3327 , 2318:2771,6))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,6), s3(1)*s3(2),1); 
std_11Dec(6,1) = std(double(vec1)); 
std_11Dec(6,2) = std(double(vec2)); 
std_11Dec(6,3) = std(double(vec3)); 
  
data_11Dec(7,1) = mean(mean(rawData(1414:1710 , 1770:1953,7))); 
data_11Dec(7,2) = mean(mean(rawData(2254:2480 , 1565:1856,7))); 
data_11Dec(7,3) = mean(mean(rawData(2980:3327 , 2318:2771,7))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,7), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,7), s3(1)*s3(2),1); 
std_11Dec(7,1) = std(double(vec1)); 
std_11Dec(7,2) = std(double(vec2)); 
std_11Dec(7,3) = std(double(vec3)); 
  
data_11Dec(8,1) = mean(mean(rawData(1414:1710 , 1770:1953,8))); 
data_11Dec(8,2) = mean(mean(rawData(2254:2480 , 1565:1856,8))); 
data_11Dec(8,3) = mean(mean(rawData(2980:3327 , 2318:2771,8))); 
vec1 = reshape(rawData(1414:1710 , 1770:1953,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2254:2480 , 1565:1856,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(2980:3327 , 2318:2771,8), s3(1)*s3(2),1); 
std_11Dec(8,1) = std(double(vec1)); 
std_11Dec(8,2) = std(double(vec2)); 
std_11Dec(8,3) = std(double(vec3)); 
  
clear rawData; 
  
% 13 Dec 2013 data 
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rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_13DEC13163520_103001002
B973000_13DEC13163520-M1BS-500106170150_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(3349:7872,2532:5709,:); 
clear rawDataFull; 
  
data_13Dec(1,1) = mean(mean(rawData(1665:2030 , 1249:1389,1))); 
data_13Dec(1,2) = mean(mean(rawData(2693:3038 , 1028:1319,1))); 
data_13Dec(1,3) = mean(mean(rawData(3336:3609 , 1621:2192,1))); 
s1 = size(rawData(1665:2030 , 1249:1389,1)); 
s2 = size(rawData(2693:3038 , 1028:1319,1)); 
s3 = size(rawData(3336:3609 , 1621:2192,1)); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,1), s3(1)*s3(2),1); 
std_13Dec(1,1) = std(double(vec1)); 
std_13Dec(1,2) = std(double(vec2)); 
std_13Dec(1,3) = std(double(vec3)); 
  
data_13Dec(2,1) = mean(mean(rawData(1665:2030 , 1249:1389,2))); 
data_13Dec(2,2) = mean(mean(rawData(2693:3038 , 1028:1319,2))); 
data_13Dec(2,3) = mean(mean(rawData(3336:3609 , 1621:2192,2))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,2), s3(1)*s3(2),1); 
std_13Dec(2,1) = std(double(vec1)); 
std_13Dec(2,2) = std(double(vec2)); 
std_13Dec(2,3) = std(double(vec3)); 
  
data_13Dec(3,1) = mean(mean(rawData(1665:2030 , 1249:1389,3))); 
data_13Dec(3,2) = mean(mean(rawData(2693:3038 , 1028:1319,3))); 
data_13Dec(3,3) = mean(mean(rawData(3336:3609 , 1621:2192,3))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,3), s3(1)*s3(2),1); 
std_13Dec(3,1) = std(double(vec1)); 
std_13Dec(3,2) = std(double(vec2)); 
std_13Dec(3,3) = std(double(vec3)); 
  
data_13Dec(4,1) = mean(mean(rawData(1665:2030 , 1249:1389,4))); 
data_13Dec(4,2) = mean(mean(rawData(2693:3038 , 1028:1319,4))); 
data_13Dec(4,3) = mean(mean(rawData(3336:3609 , 1621:2192,4))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,4), s3(1)*s3(2),1); 
std_13Dec(4,1) = std(double(vec1)); 
std_13Dec(4,2) = std(double(vec2)); 
std_13Dec(4,3) = std(double(vec3)); 
  
data_13Dec(5,1) = mean(mean(rawData(1665:2030 , 1249:1389,5))); 
data_13Dec(5,2) = mean(mean(rawData(2693:3038 , 1028:1319,5))); 
data_13Dec(5,3) = mean(mean(rawData(3336:3609 , 1621:2192,5))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,5), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,5), s3(1)*s3(2),1); 
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std_13Dec(5,1) = std(double(vec1)); 
std_13Dec(5,2) = std(double(vec2)); 
std_13Dec(5,3) = std(double(vec3)); 
  
data_13Dec(6,1) = mean(mean(rawData(1665:2030 , 1249:1389,6))); 
data_13Dec(6,2) = mean(mean(rawData(2693:3038 , 1028:1319,6))); 
data_13Dec(6,3) = mean(mean(rawData(3336:3609 , 1621:2192,6))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,6), s3(1)*s3(2),1); 
std_13Dec(6,1) = std(double(vec1)); 
std_13Dec(6,2) = std(double(vec2)); 
std_13Dec(6,3) = std(double(vec3)); 
  
data_13Dec(7,1) = mean(mean(rawData(1665:2030 , 1249:1389,7))); 
data_13Dec(7,2) = mean(mean(rawData(2693:3038 , 1028:1319,7))); 
data_13Dec(7,3) = mean(mean(rawData(3336:3609 , 1621:2192,7))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,7), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,7), s3(1)*s3(2),1); 
std_13Dec(7,1) = std(double(vec1)); 
std_13Dec(7,2) = std(double(vec2)); 
std_13Dec(7,3) = std(double(vec3)); 
  
data_13Dec(8,1) = mean(mean(rawData(1665:2030 , 1249:1389,8))); 
data_13Dec(8,2) = mean(mean(rawData(2693:3038 , 1028:1319,8))); 
data_13Dec(8,3) = mean(mean(rawData(3336:3609 , 1621:2192,8))); 
vec1 = reshape(rawData(1665:2030 , 1249:1389,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2693:3038 , 1028:1319,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3336:3609 , 1621:2192,8), s3(1)*s3(2),1); 
std_13Dec(8,1) = std(double(vec1)); 
std_13Dec(8,2) = std(double(vec2)); 
std_13Dec(8,3) = std(double(vec3)); 
  
clear rawData; 
  
% 13 Dec 2013 data second data set 
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_13DEC13163632_103001002
A0A9500_13DEC13163632-M1BS-500110222050_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(2586:6913,2299:6195,:); 
clear rawDataFull; 
  
data_13Dec2(1,1) = mean(mean(rawData(1407:1752 ,1718:1894,1))); 
data_13Dec2(1,2) = mean(mean(rawData(2576:3055 ,1463:1875,1))); 
data_13Dec2(1,3) = mean(mean(rawData(3141:3472 ,2218:2765,1))); 
s1 = size(rawData(1407:1752 ,1718:1894,1)); 
s2 = size(rawData(2576:3055 ,1463:1875,1)); 
s3 = size(rawData(3141:3472 ,2218:2765,1)); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,1), s3(1)*s3(2),1); 
std_13Dec2(1,1) = std(double(vec1)); 
std_13Dec2(1,2) = std(double(vec2)); 
std_13Dec2(1,3) = std(double(vec3)); 
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data_13Dec2(2,1) = mean(mean(rawData(1407:1752 ,1718:1894,2))); 
data_13Dec2(2,2) = mean(mean(rawData(2576:3055 ,1463:1875,2))); 
data_13Dec2(2,3) = mean(mean(rawData(3141:3472 ,2218:2765,2))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,2), s3(1)*s3(2),1); 
std_13Dec2(2,1) = std(double(vec1)); 
std_13Dec2(2,2) = std(double(vec2)); 
std_13Dec2(2,3) = std(double(vec3)); 
  
data_13Dec2(3,1) = mean(mean(rawData(1407:1752 ,1718:1894,3))); 
data_13Dec2(3,2) = mean(mean(rawData(2576:3055 ,1463:1875,3))); 
data_13Dec2(3,3) = mean(mean(rawData(3141:3472 ,2218:2765,3))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,3), s3(1)*s3(2),1); 
std_13Dec2(3,1) = std(double(vec1)); 
std_13Dec2(3,2) = std(double(vec2)); 
std_13Dec2(3,3) = std(double(vec3)); 
  
data_13Dec2(4,1) = mean(mean(rawData(1407:1752 ,1718:1894,4))); 
data_13Dec2(4,2) = mean(mean(rawData(2576:3055 ,1463:1875,4))); 
data_13Dec2(4,3) = mean(mean(rawData(3141:3472 ,2218:2765,4))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,4), s3(1)*s3(2),1); 
std_13Dec2(4,1) = std(double(vec1)); 
std_13Dec2(4,2) = std(double(vec2)); 
std_13Dec2(4,3) = std(double(vec3)); 
  
data_13Dec2(5,1) = mean(mean(rawData(1407:1752 ,1718:1894,5))); 
data_13Dec2(5,2) = mean(mean(rawData(2576:3055 ,1463:1875,5))); 
data_13Dec2(5,3) = mean(mean(rawData(3141:3472 ,2218:2765,5))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,5), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,5), s3(1)*s3(2),1); 
std_13Dec2(5,1) = std(double(vec1)); 
std_13Dec2(5,2) = std(double(vec2)); 
std_13Dec2(5,3) = std(double(vec3)); 
  
data_13Dec2(6,1) = mean(mean(rawData(1407:1752 ,1718:1894,6))); 
data_13Dec2(6,2) = mean(mean(rawData(2576:3055 ,1463:1875,6))); 
data_13Dec2(6,3) = mean(mean(rawData(3141:3472 ,2218:2765,6))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,6), s3(1)*s3(2),1); 
std_13Dec2(6,1) = std(double(vec1)); 
std_13Dec2(6,2) = std(double(vec2)); 
std_13Dec2(6,3) = std(double(vec3)); 
  
data_13Dec2(7,1) = mean(mean(rawData(1407:1752 ,1718:1894,7))); 
data_13Dec2(7,2) = mean(mean(rawData(2576:3055 ,1463:1875,7))); 
data_13Dec2(7,3) = mean(mean(rawData(3141:3472 ,2218:2765,7))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,7), s1(1)*s1(2),1); 
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vec2 = reshape(rawData(2576:3055 ,1463:1875,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,7), s3(1)*s3(2),1); 
std_13Dec2(7,1) = std(double(vec1)); 
std_13Dec2(7,2) = std(double(vec2)); 
std_13Dec2(7,3) = std(double(vec3)); 
  
data_13Dec2(8,1) = mean(mean(rawData(1407:1752 ,1718:1894,8))); 
data_13Dec2(8,2) = mean(mean(rawData(2576:3055 ,1463:1875,8))); 
data_13Dec2(8,3) = mean(mean(rawData(3141:3472 ,2218:2765,8))); 
vec1 = reshape(rawData(1407:1752 ,1718:1894,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2576:3055 ,1463:1875,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3141:3472 ,2218:2765,8), s3(1)*s3(2),1); 
std_13Dec2(8,1) = std(double(vec1)); 
std_13Dec2(8,2) = std(double(vec2)); 
std_13Dec2(8,3) = std(double(vec3)); 
  
clear rawData; 
  
% 25 Jan 2014 data 
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_14JAN25201052_103001002
B37A900_14JAN25201052-M1BS-500100296100_02_P007_u16ns3031.tif'); 
rawData = rawDataFull(2642:7541,5166:8729,:); 
clear rawDataFull; 
  
data_14Jan(1,1) = mean(mean(rawData(2067:2419 ,1613:1828,1))); 
data_14Jan(1,2) = mean(mean(rawData(2791:3492 ,1266:1755,1))); 
data_14Jan(1,3) = mean(mean(rawData(3683:4000 ,2172:2764,1))); 
s1 = size(rawData(2067:2419 ,1613:1828,1)); 
s2 = size(rawData(2791:3492 ,1266:1755,1)); 
s3 = size(rawData(3683:4000 ,2172:2764,1)); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,1), s3(1)*s3(2),1); 
std_14Jan(1,1) = std(double(vec1)); 
std_14Jan(1,2) = std(double(vec2)); 
std_14Jan(1,3) = std(double(vec3)); 
  
data_14Jan(2,1) = mean(mean(rawData(2067:2419 ,1613:1828,2))); 
data_14Jan(2,2) = mean(mean(rawData(2791:3492 ,1266:1755,2))); 
data_14Jan(2,3) = mean(mean(rawData(3683:4000 ,2172:2764,2))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,2), s3(1)*s3(2),1); 
std_14Jan(2,1) = std(double(vec1)); 
std_14Jan(2,2) = std(double(vec2)); 
std_14Jan(2,3) = std(double(vec3)); 
  
data_14Jan(3,1) = mean(mean(rawData(2067:2419 ,1613:1828,3))); 
data_14Jan(3,2) = mean(mean(rawData(2791:3492 ,1266:1755,3))); 
data_14Jan(3,3) = mean(mean(rawData(3683:4000 ,2172:2764,3))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,3), s3(1)*s3(2),1); 
std_14Jan(3,1) = std(double(vec1)); 
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std_14Jan(3,2) = std(double(vec2)); 
std_14Jan(3,3) = std(double(vec3)); 
  
data_14Jan(4,1) = mean(mean(rawData(2067:2419 ,1613:1828,4))); 
data_14Jan(4,2) = mean(mean(rawData(2791:3492 ,1266:1755,4))); 
data_14Jan(4,3) = mean(mean(rawData(3683:4000 ,2172:2764,4))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,4), s3(1)*s3(2),1); 
std_14Jan(4,1) = std(double(vec1)); 
std_14Jan(4,2) = std(double(vec2)); 
std_14Jan(4,3) = std(double(vec3)); 
  
data_14Jan(5,1) = mean(mean(rawData(2067:2419 ,1613:1828,5))); 
data_14Jan(5,2) = mean(mean(rawData(2791:3492 ,1266:1755,5))); 
data_14Jan(5,3) = mean(mean(rawData(3683:4000 ,2172:2764,5))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,5), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,5), s3(1)*s3(2),1); 
std_14Jan(5,1) = std(double(vec1)); 
std_14Jan(5,2) = std(double(vec2)); 
std_14Jan(5,3) = std(double(vec3)); 
  
data_14Jan(6,1) = mean(mean(rawData(2067:2419 ,1613:1828,6))); 
data_14Jan(6,2) = mean(mean(rawData(2791:3492 ,1266:1755,6))); 
data_14Jan(6,3) = mean(mean(rawData(3683:4000 ,2172:2764,6))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,6), s3(1)*s3(2),1); 
std_14Jan(6,1) = std(double(vec1)); 
std_14Jan(6,2) = std(double(vec2)); 
std_14Jan(6,3) = std(double(vec3)); 
  
data_14Jan(7,1) = mean(mean(rawData(2067:2419 ,1613:1828,7))); 
data_14Jan(7,2) = mean(mean(rawData(2791:3492 ,1266:1755,7))); 
data_14Jan(7,3) = mean(mean(rawData(3683:4000 ,2172:2764,7))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,7), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,7), s3(1)*s3(2),1); 
std_14Jan(7,1) = std(double(vec1)); 
std_14Jan(7,2) = std(double(vec2)); 
std_14Jan(7,3) = std(double(vec3)); 
  
data_14Jan(8,1) = mean(mean(rawData(2067:2419 ,1613:1828,8))); 
data_14Jan(8,2) = mean(mean(rawData(2791:3492 ,1266:1755,8))); 
data_14Jan(8,3) = mean(mean(rawData(3683:4000 ,2172:2764,8))); 
vec1 = reshape(rawData(2067:2419 ,1613:1828,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2791:3492 ,1266:1755,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3683:4000 ,2172:2764,8), s3(1)*s3(2),1); 
std_14Jan(8,1) = std(double(vec1)); 
std_14Jan(8,2) = std(double(vec2)); 
std_14Jan(8,3) = std(double(vec3)); 
  
clear rawData; 
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% 2 feb 2015 data  
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_15FEB02191005_103001003
C260800_15FEB02191005-M1BS-500316195110_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(2535:7464,4610:7603,:); 
clear rawDataFull; 
  
data_15Feb1(1,1) = mean(mean(rawData(1543:1822 ,1065:1200,1))); 
data_15Feb1(1,2) = mean(mean(rawData(2520:3273 ,887:1204,1))); 
data_15Feb1(1,3) = mean(mean(rawData(3302:3623 ,1510:2152,1))); 
s1 = size(rawData(1543:1822 ,1065:1200,1)); 
s2 = size(rawData(2520:3273 ,887:1204,1)); 
s3 = size(rawData(3302:3623 ,1510:2152,1)); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,1), s3(1)*s3(2),1); 
std_15Feb1(1,1) = std(double(vec1)); 
std_15Feb1(1,2) = std(double(vec2)); 
std_15Feb1(1,3) = std(double(vec3)); 
  
data_15Feb1(2,1) = mean(mean(rawData(1543:1822 ,1065:1200,2))); 
data_15Feb1(2,2) = mean(mean(rawData(2520:3273 ,887:1204,2))); 
data_15Feb1(2,3) = mean(mean(rawData(3302:3623 ,1510:2152,2))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,2), s3(1)*s3(2),1); 
std_15Feb1(2,1) = std(double(vec1)); 
std_15Feb1(2,2) = std(double(vec2)); 
std_15Feb1(2,3) = std(double(vec3)); 
  
data_15Feb1(3,1) = mean(mean(rawData(1543:1822 ,1065:1200,3))); 
data_15Feb1(3,2) = mean(mean(rawData(2520:3273 ,887:1204,3))); 
data_15Feb1(3,3) = mean(mean(rawData(3302:3623 ,1510:2152,3))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,3), s3(1)*s3(2),1); 
std_15Feb1(3,1) = std(double(vec1)); 
std_15Feb1(3,2) = std(double(vec2)); 
std_15Feb1(3,3) = std(double(vec3)); 
  
data_15Feb1(4,1) = mean(mean(rawData(1543:1822 ,1065:1200,4))); 
data_15Feb1(4,2) = mean(mean(rawData(2520:3273 ,887:1204,4))); 
data_15Feb1(4,3) = mean(mean(rawData(3302:3623 ,1510:2152,4))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,4), s3(1)*s3(2),1); 
std_15Feb1(4,1) = std(double(vec1)); 
std_15Feb1(4,2) = std(double(vec2)); 
std_15Feb1(4,3) = std(double(vec3)); 
  
data_15Feb1(5,1) = mean(mean(rawData(1543:1822 ,1065:1200,5))); 
data_15Feb1(5,2) = mean(mean(rawData(2520:3273 ,887:1204,5))); 
data_15Feb1(5,3) = mean(mean(rawData(3302:3623 ,1510:2152,5))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,5), s1(1)*s1(2),1); 
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vec2 = reshape(rawData(2520:3273 ,887:1204,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,5), s3(1)*s3(2),1); 
std_15Feb1(5,1) = std(double(vec1)); 
std_15Feb1(5,2) = std(double(vec2)); 
std_15Feb1(5,3) = std(double(vec3)); 
  
data_15Feb1(6,1) = mean(mean(rawData(1543:1822 ,1065:1200,6))); 
data_15Feb1(6,2) = mean(mean(rawData(2520:3273 ,887:1204,6))); 
data_15Feb1(6,3) = mean(mean(rawData(3302:3623 ,1510:2152,6))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,6), s3(1)*s3(2),1); 
std_15Feb1(6,1) = std(double(vec1)); 
std_15Feb1(6,2) = std(double(vec2)); 
std_15Feb1(6,3) = std(double(vec3)); 
  
data_15Feb1(7,1) = mean(mean(rawData(1543:1822 ,1065:1200,7))); 
data_15Feb1(7,2) = mean(mean(rawData(2520:3273 ,887:1204,7))); 
data_15Feb1(7,3) = mean(mean(rawData(3302:3623 ,1510:2152,7))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,7), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,7), s3(1)*s3(2),1); 
std_15Feb1(7,1) = std(double(vec1)); 
std_15Feb1(7,2) = std(double(vec2)); 
std_15Feb1(7,3) = std(double(vec3)); 
  
data_15Feb1(8,1) = mean(mean(rawData(1543:1822 ,1065:1200,8))); 
data_15Feb1(8,2) = mean(mean(rawData(2520:3273 ,887:1204,8))); 
data_15Feb1(8,3) = mean(mean(rawData(3302:3623 ,1510:2152,8))); 
vec1 = reshape(rawData(1543:1822 ,1065:1200,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2520:3273 ,887:1204,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3302:3623 ,1510:2152,8), s3(1)*s3(2),1); 
std_15Feb1(8,1) = std(double(vec1)); 
std_15Feb1(8,2) = std(double(vec2)); 
std_15Feb1(8,3) = std(double(vec3)); 
  
clear rawData; 
  
% 2 feb 2015 data set 2 
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_15FEB02191125_103001003
CC6E400_15FEB02191125-M1BS-500340690080_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(2169:6835,4404:7659,:); 
clear rawDataFull; 
  
data_15Feb2(1,1) = mean(mean(rawData(1712:1967 ,1291:1449,1))); 
data_15Feb2(1,2) = mean(mean(rawData(2626:3503 ,1138:1376,1))); 
data_15Feb2(1,3) = mean(mean(rawData(3430:3778 ,1756:2161,1))); 
s1 = size(rawData(1712:1967 ,1291:1449,1)); 
s2 = size(rawData(2626:3503 ,1138:1376,1)); 
s3 = size(rawData(3430:3778 ,1756:2161,1)); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,1), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,1), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,1), s3(1)*s3(2),1); 
std_15Feb2(1,1) = std(double(vec1)); 
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std_15Feb2(1,2) = std(double(vec2)); 
std_15Feb2(1,3) = std(double(vec3)); 
  
data_15Feb2(2,1) = mean(mean(rawData(1712:1967 ,1291:1449,2))); 
data_15Feb2(2,2) = mean(mean(rawData(2626:3503 ,1138:1376,2))); 
data_15Feb2(2,3) = mean(mean(rawData(3430:3778 ,1756:2161,2))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,2), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,2), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,2), s3(1)*s3(2),1); 
std_15Feb2(2,1) = std(double(vec1)); 
std_15Feb2(2,2) = std(double(vec2)); 
std_15Feb2(2,3) = std(double(vec3)); 
  
data_15Feb2(3,1) = mean(mean(rawData(1712:1967 ,1291:1449,3))); 
data_15Feb2(3,2) = mean(mean(rawData(2626:3503 ,1138:1376,3))); 
data_15Feb2(3,3) = mean(mean(rawData(3430:3778 ,1756:2161,3))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,3), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,3), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,3), s3(1)*s3(2),1); 
std_15Feb2(3,1) = std(double(vec1)); 
std_15Feb2(3,2) = std(double(vec2)); 
std_15Feb2(3,3) = std(double(vec3)); 
  
data_15Feb2(4,1) = mean(mean(rawData(1712:1967 ,1291:1449,4))); 
data_15Feb2(4,2) = mean(mean(rawData(2626:3503 ,1138:1376,4))); 
data_15Feb2(4,3) = mean(mean(rawData(3430:3778 ,1756:2161,4))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,4), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,4), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,4), s3(1)*s3(2),1); 
std_15Feb2(4,1) = std(double(vec1)); 
std_15Feb2(4,2) = std(double(vec2)); 
std_15Feb2(4,3) = std(double(vec3)); 
  
data_15Feb2(5,1) = mean(mean(rawData(1712:1967 ,1291:1449,5))); 
data_15Feb2(5,2) = mean(mean(rawData(2626:3503 ,1138:1376,5))); 
data_15Feb2(5,3) = mean(mean(rawData(3430:3778 ,1756:2161,5))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,5), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,5), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,5), s3(1)*s3(2),1); 
std_15Feb2(5,1) = std(double(vec1)); 
std_15Feb2(5,2) = std(double(vec2)); 
std_15Feb2(5,3) = std(double(vec3)); 
  
data_15Feb2(6,1) = mean(mean(rawData(1712:1967 ,1291:1449,6))); 
data_15Feb2(6,2) = mean(mean(rawData(2626:3503 ,1138:1376,6))); 
data_15Feb2(6,3) = mean(mean(rawData(3430:3778 ,1756:2161,6))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,6), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,6), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,6), s3(1)*s3(2),1); 
std_15Feb2(6,1) = std(double(vec1)); 
std_15Feb2(6,2) = std(double(vec2)); 
std_15Feb2(6,3) = std(double(vec3)); 
  
data_15Feb2(7,1) = mean(mean(rawData(1712:1967 ,1291:1449,7))); 
data_15Feb2(7,2) = mean(mean(rawData(2626:3503 ,1138:1376,7))); 
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data_15Feb2(7,3) = mean(mean(rawData(3430:3778 ,1756:2161,7))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,7), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,7), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,7), s3(1)*s3(2),1); 
std_15Feb2(7,1) = std(double(vec1)); 
std_15Feb2(7,2) = std(double(vec2)); 
std_15Feb2(7,3) = std(double(vec3)); 
  
data_15Feb2(8,1) = mean(mean(rawData(1712:1967 ,1291:1449,8))); 
data_15Feb2(8,2) = mean(mean(rawData(2626:3503 ,1138:1376,8))); 
data_15Feb2(8,3) = mean(mean(rawData(3430:3778 ,1756:2161,8))); 
vec1 = reshape(rawData(1712:1967 ,1291:1449,8), s1(1)*s1(2),1); 
vec2 = reshape(rawData(2626:3503 ,1138:1376,8), s2(1)*s2(2),1); 
vec3 = reshape(rawData(3430:3778 ,1756:2161,8), s3(1)*s3(2),1); 
std_15Feb2(8,1) = std(double(vec1)); 
std_15Feb2(8,2) = std(double(vec2)); 
std_15Feb2(8,3) = std(double(vec3)); 
  
clear rawData; 
  
% now that all the means have been found for each subimage of each image 
% chip, combine these is a mean for each region for each band 
for b = 1:8 
    for i = 1:3 
        vec = [data_11Dec(b,i) data_13Dec(b,i) data_13Dec2(b,i) data_14Jan(b,i) data_15Feb1(b,i) data_15Feb2(b,i)]; 
        tbl_mean(i,b) = mean(vec); 
    end     
end 
  
% tbl_mean can now be used as input to the PCA function 
  
 
% This script inputs an image, computes NDI on each pixel in the image  
% and plot the results 
%  load image chip 
clear; 
close all; 
  
% 22Dec 2011 data 
rawDataFull = 
importdata('C:\Users\Paula\Desktop\thesisAnalysis\thesis_data_subset\output\WV02_11DEC22195305_103001001
0AAEE00_11DEC22195305-M1BS-500092642100_01_P003_u16ns3031.tif'); 
rawData = rawDataFull(1530:5728,5380:9334,:); 
% clear the full array so save processing time and memory 
clear rawDataFull; 
r1Sum = 0; 
r2Sum = 0; 
r3Sum = 0; 
  
for i = 1:8 
    r1Sum = r1Sum + rawData(1414:1710 , 1770:1953,i); 
    r2Sum = r2Sum + rawData(2254:2480 , 1565:1856,i); 
    r3Sum = r3Sum + rawData(2980:3327 , 2318:2771,i); 
end 
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r1_2 = double(rawData(1414:1710 , 1770:1953,2))./double(r1Sum); 
r2_2 = double(rawData(2254:2480 , 1565:1856,2))./double(r2Sum); 
r3_2 = double(rawData(2980:3327 , 2318:2771,2))./double(r3Sum); 
  
r1_7 = double(rawData(1414:1710 , 1770:1953,7))./double(r1Sum); 
r2_7 = double(rawData(2254:2480 , 1565:1856,7))./double(r2Sum); 
r3_7 = double(rawData(2980:3327 , 2318:2771,7))./double(r3Sum); 
  
% calculate NDI for each pixel 
  
ndiData1 = (r1_7 - r1_2)./(r1_7 + r1_2); 
ndiData2 = (r2_7 - r2_2)./(r2_7 + r2_2); 
ndiData3 = (r3_7 - r3_2)./(r3_7 + r3_2); 
  
% map 
figure 
imagesc(ndiData1); 
figure 
imagesc(ndiData2); 
figure 
imagesc(ndiData3); 
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APPENDIX B:  IMAGE CHIPS AND SUB-IMAGES 

Below are figures showing the image chips from each data set used in the PCA analysis as well as the 

sub-image from each of those image chips. All image chips and sub-images are from Band 8 of the data 

set. Note that color scale is different for each image and pixel sizes vary for each of the sub-images. 

 

Figure 23:  Image Chip from 22 Dec 2011, Band 8 
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Figure 24:  Region 1 Sub-Image from 22 Dec 2011, Band 8 
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Figure 25:  Region 2 Sub-Image from 22 Dec 2011, Band 8 
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Figure 26:  Region 3 Sub-Image from 22 Dec 2011, Band 8 
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Figure 27:  Image Chip from 13 Dec 2013, Band 8 
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Figure 28:  Region 1 Sub-Image from 13 Dec 2013, Band 8 



78 
 

 

Figure 29:  Region 2 Sub-Image from 13 Dec 2013, Band 8 
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Figure 30:  Region 3 Sub-Image from 13 Dec 2013, Band 8 
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Figure 31:  Image Chip from 13 Dec 2013 (second image collected), Band 8 
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Figure 32:  Region 1 Sub-Image from 13 Dec 2013 (second image collected), Band 8 
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Figure 33:  Region 2 Sub-Image from 13 Dec 2013 (second image collected), Band 8 
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Figure 34:  Region 3 Sub-Image from 13 Dec 2013 (second image collected), Band 8 
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Figure 35:  Image Chip from 25 Jan 2014, Band 8 
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Figure 36:  Region 1 Sub-Image from 25 Jan 2014, Band 8 
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Figure 37:  Region 2 Sub-Image from 25 Jan 2014, Band 8 
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Figure 38:  Region 3 Sub-Image from 25 Jan 2014, Band 8 
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Figure 39:  Image Chip from 2 Feb 2015, Band 8 
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Figure 40:  Region 1 Sub-Image from 2 Feb 2015, Band 8 
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Figure 41:  Region 2 Sub-Image from 2 Feb 2015, Band 8 
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Figure 42:  Region 3 Sub-Image from 2 Feb 2015, Band 8 
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Figure 43:  Image Chip from 2 Feb 2015 (second image collected), Band 8 
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Figure 44:  Region 1 Sub-Image from 2 Feb 2015 (second image collected), Band 8 
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Figure 45:  Region 2 Sub-Image from 2 Feb 2015 (second image collected), Band 8 
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Figure 46:  Region 3 Sub-Image from 2 Feb 2015 (second image collected), Band 8 
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APPENDIX C:  SUM-IMAGE PIXEL MEAN TABLES 

This appendix contains a table for each image set’s sub-image pixel means and standard deviations. 

Sub-Image Means for 11Dec 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 449.14 560.13 712.77 428.97 692.44 432.68 760.15 422.77 

Region 2 Mean 395.90 473.36 577.03 336.95 539.51 330.38 583.13 322.04 

Region 3 Mean 444.53 546.20 669.62 379.80 594.76 357.83 609.46 332.22 

 

 

Sub-Image Standard Deviations for 11 Dec 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 54.44 82.47 115.42 70.12 112.95 70.54 117.01 63.63 

Region 2 Std 39.21 60.67 88.10 54.49 88.86 56.24 97.75 53.11 

Region 3 Std 25.09 39.45 59.65 37.48 63.20 40.17 73.06 41.05 
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Sub-Image Means for 13Dec 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 268.37 272.18 242.69 106.10 139.04 66.34 85.82 39.58 

Region 2 Mean 271.81 310.77 360.57 209.16 340.66 207.89 373.31 202.22 

Region 3 Mean 272.39 314.22 362.52 198.29 308.35 179.50 311.66 164.22 

 

 

Sub-Image Standard Deviations for 13Dec 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 35.14 40.61 36.90 15.76 21.25 10.01 13.28 5.37 

Region 2 Std 33.83 52.81 79.00 51.42 88.73 56.90 103.78 55.44 

Region 3 Std 11.16 24.70 50.31 35.93 64.79 42.02 82.14 44.61 

 

Sub-Image Means for 13Dec2 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 234.88 240.58 218.67 97.56 129.24 62.88 83.68 39.37 

Region 2 Mean 235.31 269.64 305.42 170.50 271.27 161.71 282.36 150.27 

Region 3 Mean 231.36 262.06 293.73 156.83 238.99 137.07 234.02 123.35 
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Sub-Image Standard Deviations for 13 Dec2 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 35.24 39.00 35.60 15.37 20.34 9.60 12.37 5.25 

Region 2 Std 44.59 68.66 99.13 61.56 105.97 65.63 117.50 61.66 

Region 3 Std 11.83 22.67 44.28 31.44 56.42 36.65 71.89 39.26 

 

Sub-Image Means for 14Jan 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 320.15 409.84 544.00 339.17 561.22 348.35 628.53 339.36 

Region 2 Mean 250.82 291.87 352.41 210.26 340.46 209.85 380.76 207.28 

Region 3 Mean 255.41 300.57 363.12 204.30 317.81 186.62 329.17 175.41 

 

 

Sub-Image Standard Deviations for 14Jan 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 83.03 136.60 200.75 122.17 200.47 120.70 200.06 96.91 

Region 2 Std 35.41 59.25 91.49 59.57 99.89 63.49 111.93 59.12 

Region 3 Std 11.92 27.25 57.27 41.12 72.48 47.13 92.13 51.05 
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Sub-Image Means for 15Feb1 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 221.16 231.37 218.96 101.09 132.44 67.47 88.39 41.51 

Region 2 Mean 223.67 257.47 302.89 176.76 281.04 172.85 308.16 165.40 

Region 3 Mean 229.44 268.06 316.17 175.38 268.21 157.95 272.30 142.55 

 

 

Sub-Image Standard Deviations for 15Feb1 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 27.00 32.35 32.03 14.72 20.21 9.92 13.31 5.62 

Region 2 Std 21.25 36.94 62.26 43.47 78.23 50.74 98.61 52.79 

Region 3 Std 9.51 22.43 49.05 36.39 64.59 42.61 83.84 45.27 

 

Sub-Image Means for 15Feb2 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Mean 217.73 230.56 221.17 103.06 136.07 69.93 93.04 44.18 

Region 2 Mean 212.64 240.49 271.42 151.15 232.15 138.63 239.39 127.13 

Region 3 Mean 214.63 246.23 276.90 147.59 219.69 126.70 211.23 109.83 
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Sub-Image Standard Deviations for 15Feb2 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Region 1 Std 26.22 31.98 31.33 14.05 19.55 9.48 12.79 5.39 

Region 2 Std 21.72 36.41 58.06 39.54 67.96 44.42 81.70 44.33 

Region 3 Std 7.62 17.36 36.38 26.64 47.69 31.33 61.78 33.44 
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