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ABSTRACT 

In this dissertation we present a robust simultaneous mapping and localization 

scheme that can be deployed on a computationally limited, small unmanned aerial 

system. This is achieved by developing a key frame based algorithm that leverages the 

multiprocessing capacity of modern low power mobile processors.  The novelty of the 

algorithm lies in the design to make it robust against rapid exploration while keeping the 

computational time to a minimum. A novel algorithm is developed where the time critical 

components of the localization and mapping system are computed in parallel utilizing the 

multiple cores of the processor. The algorithm uses a scale and rotation invariant state of 

the art binary descriptor for landmark description making it suitable for compact large 

scale map representation and robust tracking. This descriptor is also used in loop closure 

detection making the algorithm efficient by eliminating any need for separate descriptors 

in a Bag of Words scheme. Effectiveness of the algorithm is demonstrated by 

performance evaluation in indoor and large scale outdoor dataset. We demonstrate the 

efficiency and robustness of the algorithm by successful six degree of freedom (6 DOF) 

pose estimation in challenging indoor and outdoor environment. Performance of the 

algorithm is validated on a quadcopter with onboard computation. 
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CHAPTER I 

INTRODUCTION 

The ability of a robot to perform tasks those are otherwise too dangerous, boring, 

onerous has led to a significant advancement in robotics research and development as 

well as their applications in industries such as auto, medical, manufacturing and space 

industries. As an example, the Mars Rover Curiosity or the underwater robot Caribou 

help us learn about places that are too dangerous to go. Robots have also begun to assist 

us in our everyday works. Starting with iRobot’s robotic vacuum cleaner “Roomba’ 

almost 12 years ago, cleaning robots are becoming ubiquitous.  

 
@ http://mars.nasa.gov/msl/multimedia/images/ @http://www2.ece.gatech.edu/research/labs/bwn/UW

ASN/figures/caribou.jpg 

a. Mars rover Curiosity b. Under water robot Caribou 

Figure 1: Examples of robots in operation. Figure a. illustrates the Mars rover Curiosity. Among other sensors it 

has one wide angle stereo camera (navcams) for ground navigation along with a pair of narrow angle 

multispectral cameras for imaging (MastCam). Figure b. illustrates the Caribou underwater robot. The robot 

comes with a side scan sonar and a sub-bottom profiler. 

Recently Unmanned Aerial Vehicles are being used for a wide range of applications such 

as target tracking [1], precision agriculture [2], monitoring construction works etc.  
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Performing the tasks assigned to a mobile robot requires interaction with the environment 

and in turns it requires the robot to be able to sense its surroundings. Sometimes purely 

reactive strategies are sufficient. For example, some robotic vacuum cleaners achieve 

their tasks without any prior planning. They change their direction arbitrarily using a 

random walk once hit an obstacle. However to perform more complex tasks and in 

unknown environment, robots require knowledge of certain quantities such as its own 

location, position of its goals, locations of other objects in its immediate environment. In 

other words, the robot needs to simultaneously map unknown environment and estimate 

its current relative location which is essentially the fundamental simultaneous localization 

and mapping (SLAM) problem. However, these variables are seldom directly observable 

in an unknown environment and the robots employ sensors to acquire knowledge of its 

surroundings. The sensor information is then used to create an internal model of the state 

of the world along with the robots current location. The model is continuously updated 

with new senor information and used to make decisions on how to accomplish the 

assigned tasks. Choice of the sensors used by the robots depends on a variety of 

conditions such as applicability of a certain sensor for a certain task, the cost, form factor, 

power consumption, etc. This is particularly true for a mobile robot which often has 

limited computation and power budget. 

Using camera as the main source of information for sensing the environment is a very 

active research topic since a camera is lightweight, consumes less power and also 

provides a rich amount of information. Nowadays, digital cameras are inexpensive and 

have a small form factor along with low power consumption. They can also operate 

reliably under harsh conditions since there are no moving mechanical parts. However, the 



3 
 

challenge is to process the large amount of information in real time to generate the model 

of the environment as well as the location of the camera at each instance. Each image 

contains hundreds of thousands of pixels and inferring the relevant information under real 

time constraints is challenging. In addition, monocular SLAM using a single camera that 

consists of only one lens and one image sensor is difficult compared to other types of 

sensors that provide range/bearing information such as laser range finders. As the depth 

information is not available, it needs to be inferred from the inter-frame motion. Given a 

world point observable in two or more image frames, the depth can be estimated using 

triangulation but only up to a scale as the triangulation needs to be performed over time 

and the depth depends on the relative displacement between the two camera positions.  

Despite the difficulties, vision is an appealing sensor as it is the most frequent sensor in 

nature. A large amount of species including humans rely mainly on vision for localization 

and navigation tasks demonstrate the applicability of visual SLAM. Our visual cortex 

enables us to perceive and interpret visual scene and images taken with cameras. We 

extract geometric information form images and also analyze their semantic contexts. This 

inspires a large number of research and the computer vision community made a great 

progress in developing systems that can detect humans, objects, locations, events, etc.  

In this thesis we emphasis on monocular SLAM; we focus on developing a reliable and 

computationally efficient SLAM algorithm for in small mobile platforms such as a 

miniature aerial vehicles.  In the remaining sections of this introduction we look at the 

formulation of the visual SLAM systems where the environment is represented as a 3D 

point cloud and then outline the main contributions of the thesis.  
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Visual SLAM 

We assume that we are given M input images of a scene acquired by a single moving 

camera at different times. The 3D structure of the scene is modeled as N 3D points that 

are partially observed in the M images. The projection of a scene point 3Rxi  , observed 

using a camera 
jP with six degree of freedom will result in an image point 2Ruij  . 

If we have a measurement of the image point iju , the error between the predicted 

and observed image point can be written as: 

ijijij uuu              (1) 

The probability density function over the error is often assumed to be a multivariate 

Gaussian distribution with diagonal covariance matrix 22Rij :  

)
2

1
exp(),|( 1

ijij

T

ijijij uuxPup             (2) 

Assuming that the observations of multiple scene points across multiple cameras is an 

independent process, then for structure and camera motion parameters 

},......,{ 21 NxxxX  , },.......,{ 21 MPPPP  along with observations }1|{  ijij cuU , the 

probability density function over all observation can be written as: 

 ),|(),|( jiij PxupPXUp           (3) 

Using Bayes rule we can write the likelihood function of the structure and motion as: 

),(),|()|,( PXPPXUpUPXp            (4) 
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where ),( PXp is the prior over the structure and camera motion parameters. The most 

likely structure and camera parameters can be estimated by maximizing the posterior 

distribution given in above equation. Equivalently we can minimize the energy function 

resulting from the negative log likelihood of )|,( UPXp . Optimization over the 

parameters is performed using a non-linear iterative minimization scheme that requires an 

initial estimate of the point positions and the camera poses. A graphical representation of 

the visual SLAM problem as a Bayesian network is shown below: 

 

Figure 2: The visual SLAM problem shown as a Bayesian Network that represents the causal 

relationships between a camera with pose jP viewing a 3D point ix  imaged as iju . 

   

A number of assumptions are made in the above formulation of the visual SLAM 

systems. It was assumed that the correspondences of the observed points across multiple 

images are known as well as initial estimates of the parameters are available. In practice 

these are the challenges that need to be solved. In addition, we are interested in real time 

structure and camera pose estimation. 
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Main Contributions 

A Real Time Large Scale Monocular SLAM System 

 A state of the art large scale monocular SLAM algorithm is presented which is robust 

and is able to operate in indoor and outdoor environments. The major features of the 

algorithm are 

1. Decoupling of the frontend tracking and exploration and backend optimization so that 

it can leverage the multiprocessing capacity of the processor while ensuring the 

robustness of the algorithm. The algorithm uses state of the art binary feature 

descriptors for both 3D point cloud map representation as well as appearance based 

loop closure detection. The algorithm is optimized by employing parallel processing 

of the computationally critical parts of the algorithm.  

2. A novel re-localization algorithm for faster recovery in the event of tracking failure 

that increases the robustness of the algorithm.  

3. A robust loop closure detection and correction algorithm based on geometric and 

temporal verification to ensure correct topological structure of the model of the 

environment. In addition, the loop detection and correction algorithm is 

computationally efficient.  

Inertial Aided Monocular Visual SLAM For Small Mobile Platforms  

The real time monocular SLAM of the previous section is extended with the IMU data 

available from the autopilot. Major contributions in this section are 

1. Development of an inertial aided large scale visual SLAM algorithm for small mobile 

platforms with limited payload capacity. The algorithm runs on a small form factor 

single board computer onboard a small quadrotor. To our knowledge, this is the first 
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full scale SLAM algorithms capable of running real time on a miniature aerial 

vehicle. Fusion of inertial and visual information in the algorithm ensures reliable 

pose estimation as well as metric scale estimation. 

2. Development of a low cost miniature aerial vehicle as a test bed for the proposed 

algorithm. The test bed development include both hardware and software 

development for control and communications.  

3. A C++ framework of the algorithm that can be used as an off the shelf product. The 

algorithm is being used with other projects in the RISL (Robotics and Intelligent 

System Lab) at UND.  

Thesis Organization 

The thesis is organized as follows: In section II we provide the mathematical 

backgrounds that are necessary to make the document self-content and easy to follow. 

Only the definitions and derivations are provided that are used in the algorithms and a list 

of references are provided for the interested reader to acquire more in depth knowledge 

on the mathematical topics.  

Section III describes the real time monocular SLAM algorithm in details. First a detailed 

process flow of the algorithm is provided and then each section is explained in details. 

The result section includes performance evaluation of the algorithm on the indoor dataset 

as well as publicly available challenging outdoor dataset. The indoor dataset is created 

from images of the indoor lab environment for initial testing and validation of the 

developed algorithm. In order to validate the effectiveness of the algorithm in challenging 

outdoor environment, a publicly available data set is used that include static and partially 

dynamic city streets as well as environment that contain only vegetation.  
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Section IV describes the extension of the SLAM algorithm that leverages IMU 

information from the mobile robotics platform to complement the visual SLAM 

algorithm described in the previous section. We provide the detail description of how the 

IMU information is integrated in the SLAM algorithm to generate the motion prediction 

as well as the fusion of the IMU and visual information for metric scale estimation. The 

performance evaluation   
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CHAPTER II 

PRELIMINARIES 

Camera Projection Model 

The camera projection model used in this thesis is the central camera projection 

model. The projection model describes how a point in 3D world is drawn on the image 

plane. Let us denote a 3D world point TZYXX ],,[ and its corresponding image plane 

point Tvuz ],[ . We follow the standard image coordinate convention that the top left 

corner of the image is the origin o , with u-axis pointing to the right and the v-axis 

pointing down. The pose of the camera in the world coordinate system is denoted as rigid 

body transformation )3(SETW

C  with the origin as the center of projection. The 

coordinate convention of the camera frame is chosen as x-axis pointing to the right, y-

axis pointing down and z-axis pointing forward. This convention simplifies the projection 

of a point from the camera coordinate to the image coordinate. 

In order to project the point from world to image plane, the first step is to transform the 

point from world to camera frame as 

    
C

W

C

W

C

W

C tXRXTX                           (5) 

Then we employ the pinhole projection model to project the point  TC zyxX ,, to the 

normalized image plane 1z . Denoting the projection function as proj(.), we can write
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y

x

z
Xproj C 1

)(                                                              (6) 

 

Figure 3: Central camera projection model 

 

If f is the focal length of the camera and the principal point Iccp yx  ),( in the image 

plane, the projection can be written as 

p
y

x

z
fXKproj C 









1

),(                       (7) 

with 
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0

y

x

cf

cf

K being the intrinsic camera matrix. 

Putting these together, our forward projection model from a 3D world point to the image 

point becomes 

),( XTKprojz C

W                              (8) 

We also require an inverse of the projection from image plane to the normalized image 

plane 1z . This is written as zKx 1 with  
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            (9) 

This is a linear model that does not take into account the lens distortions. In order to use 

this model, a preprocessing step is used to un-distort the images. This is done very easily 

using OpenCV [3] computer vision library. 

Epipolar Geometry 

Epipolar geometry plays an important role in describing the relation between 

corresponding image points of a 3D world point when viewing from different camera 

position. The forward projection model described above associates a point in 3D world 

coordinate to an image point. However, due to the projective nature of a monocular 

camera, the image point can be associated with an infinite ray in the world. That means, 

given a relative displacement ],[ tRT b

a   between two camera poses, a point in frame a 

corresponds to a line in frame b. This concept is demonstrated in the Figure 2. This is true 

since two image points x and x , the 3D world point X and the two camera centers are 

coplanar. This is written as  

Fxlb            (10) 

where, F is  called the fundamental matrix. Given two camera matrices ]0|[IKP   and

]|[ tRKP  , the fundamental matrix can be calculated as follows [22s]: 

  









  ][][][ 11 tKRRKKRKKtKRKtKF TTTT        (11) 
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Since the corresponding image point x in the b frame lies on the line bl we get the 

relation between the corresponding image points in terms of fundamental matrix F as 

0)( 
b

T lx  or 0)(  Fxx T                                (12) 

However, the fundamental matrix has a singularity which corresponds to pure rotation. In 

case of pure rotation, it can be easily verified from the equation that 0)(  Fxx T for all 

corresponding pairs x and x . 

If the camera intrinsic matrices K and K are known, we can set the first of the two 

cameras as the origin and then the fundamental matrix between two camera poses 

]0|[IP  and ]|[ tRP  is called the essential matrix and is of the form    

      ][][ tRRRtE T               (13) 

The essential matrix then satisfies the relation between two normalized image coordinates 

x̂ and xˆ as 0ˆˆ  xEx T . The relation between fundamental matrix and essential matrix can 

be written as 

FKKE T                       (14)  

 

Figure 4: Epipolar Line Geometry in two views describes the incident relationship between a image 

point in one image and the epipolar line in the other image 
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Given a set of point correspondences
ji xx  in two images, a linear solution for the 

fundamental matrix up to a scale can be found from at least 8 points correspondences 

[22].  

Camera Poses from Essential Matrix 

Once the essential matrix is known, it can be used to compute relative camera poses up to 

a scale ambiguity. Assuming that the first camera pose is a canonical pose ]0|[IP  , the 

second camera rotation and translation can be computed by first factorizing the essential 

matrix into a product of a skew symmetric matrix S and a rotation matrix R. Denoting an 

orthogonal matrix W and a skew symmetric matrix Z as 
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A block decomposition of the skew symmetric matrix can be written as TkUZUS 

where U is orthogonal. Writing WdiagZ )0,1,1( up to sign, S can be written up to scale 

as TWUUdiagS )0,1,1( and then ))(10,1( RWUUdiagSRE T . This is singular value 

decomposition of E with two equal singular values. Because of the two equal singular 

values, the SVD is not unique and there is two possible factorization of the matrix 

SRE  . 

These factorizations are written as TUZUS  with TUWVR  or TTVUW . The 

factorization for S  determines t  part since  ][tS  with 1t . Now it can be easily 

shown that 3)1,0,0( uUt T  , since 0][   ttttSt . However, the sign of t is 
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ambiguous. As a result there are 4 possible choices for the camera rotation R and 

translation t based on two choices of R and two signs of t . The 4 potential camera 

matrices can be written as 

 3| uUWVP T

b   or  3| uUWVP T

b   or  3| uVUWP TT

b   or  3| uVUWP TT

b   

                (15) 

From the 4 potential solutions, the valid solution is found by performing 3D 

reconstruction of the corresponding points and then counting the number of valid 3D 

reconstruction. A valid 3D reconstruction is the one where the 3D position of the point is 

in front of both cameras. Theoretically, only one point is sufficient to decide between the 

four solutions, however, it is always possible that the point correspondence is not correct 

between two camera views and checking all the points and count the number of inliers is 

desirable.      

Matrix Lie Groups and Optimization on Matrix Manifolds 

Throughout the thesis, the rigid motions in 2D and 3D spaces are represents as Matrix Lie 

groups. This section is a collection of definitions and useful mathematical formulas that 

are used in subsequent chapters. We avoid rigorous introduction to Manifolds, Lie 

Groups, their algebras and the mathematical details of Lie Groups in general. However, 

we provide the definitions along with the mathematical derivations required to make the 

document self- contained. Specifically, we list the properties for matrix Lie groups of 2D 

and 3D rigid body transformations and derive the jacobians used in this thesis.  
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Motivation 

Standard optimization algorithms work properly on Euclidean vector spaces (i.e. spaces 

isomorphic to n ). However, sometimes the variables do not constitute a Euclidean 

vector space. A classic example is the representations of 3D rotations. A 3D rotation can 

be minimally represented using the Euler angles representation where the overall rotation 

is represented as a sequence of three individual rotations. In robotics, the usual 

convention is the roll-pitch-yaw (RPY) convention. However, this parameterization 

consists of two degenerate cases, specifically when pitch approaches 90 . In this case, 

the gimbal lock occurs where a change in roll becomes a change in yaw. There is not a 

unique correspondence between any possible rotation in 3D and a triplet of roll-pitch-yaw 

angles. These situations need to be detected and handled.  

One popular alternative is to over parameterizing the variables. For example, using 

quaternions (with 4 values) to represent the 3D rotations and normalize the 

parameterization in some ways. However, over parameterization has its own challenge in 

optimization. Optimization algorithms are not aware of any inner constraints between the 

parameters and they will optimize some DOF which do not actually exist. In addition, 

sometimes the parameters have non-euclidean behavior where a small change of the same 

magnitude to different parameters results in a change of the variables of quite different 

magnitude. As a result, solving optimization problems on manifolds becomes 

increasingly popular where, the variables are globally over parameterized, but local 

changes are represented with a minimal representation.  
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We are interested in rigid transformations in 2D and 3D spaces where the transformations 

need to be composed, inverted, differentiated and interpolated. Matrix Lie groups provide 

an elegant way to represent 3D rigid transformations and perform above mentioned 

operations on the rigid body transformations.  

Lie Groups, Lie Algebras and Associated Properties 

A Lie Group G is both a group and a manifold with smooth group operation. The Lie 

group g has an associated Lie algebra, which can be identified as the tangent space 

around the identity element in the group. The associated Lie algebra is a vector space 

which is generated by differentiating the group transformations along chosen directions 

in space, at the identity element of the group. The tangent space has the same structure 

for all group elements; however, a coordinate transformation is required to when a 

tangent vector is moved from one tangent space to another. The basis elements of the 

tangent space are called generators and the tangent vectors are represented as linear 

combinations of the generators.  

As a vector space the Lie algebra g  is isomorphic to
nR , and we can define the “hat 

operator” gxx  ˆ:.̂ n  , which maps n-vectors nx  to elements of g . In the case 

of matrix Lie groups, the elements x̂ of g are also nn matrices, and the map is given by  





n

i

i

iGxx
1

ˆ           (16) 

Properties. Lie group properties: 

1. Differential quantities related to a group such as velocities, Jacobians, and covariance 

of transformations are well represented in the tangent space around a transformation. 
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This is an optimal space because the tangent space is a vector space with the same 

dimension as the degrees of freedom of the group. 

2. The exponential map converts any element of the tangent space exactly into a 

transformation in the group. 

3. The adjoint linearly and exactly transforms tangent vectors from one tangent space to 

another. 

4. Matrix Lie groups has a group action. For example, 2D rotations act on 2D points and 

3D transformations act on 3D points. 

5. Matrix Lie groups are not commutative in general. For example, two invertible square 

matrices 
nnBA , , their product BAAB  . However, the group elements commute 

with the group identity element: IAAI  . Thus if we go infinity close to the identity, 

we enter a space which is commutative. This space is the tangent space at the origin: 

lie algebra for the group. 

Below we introduce the Lie groups and their associated Lie algebras used in this thesis. 

We also provide the useful Jacobians that are required in the optimizations. 

)3(SO , The Group of 3D Rotations 

The Group Representation. The elements of the group )3(SO are represented by 3D 

rotation matrices. Since the rotation matrices are orthogonal, their inversion is equivalent 

to transposition 

     
TRR

SOR





1

)3(
          (17) 
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Lie Algebra of )3(SO . The group s an associated Lie algebra )3(so  which is the set 

of 3x3 skew symmetric matrices. The base of )3(so  are 3 skew symmetric matrices (the 

generators) correspond to infinitesimal rotations along each axis. The generators are 

defined as 
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          (18) 

An element of )3(so can be represented as the linear combination of the generators. For 

example 

   
)3(332211

3

soGGG 






          (19) 

Exponential Map. The exponential map takes the member of )3(so to rotation 

matrices is defined as 

    
33

)3()3(:exp





R

SOso


          (20) 

The map is simply the matrix exponential and has the closed form solution as 

      


 

2

23

cos1sin









 Iee         (21) 
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where, the angle   . The exponential map can be inverted to get the logarithm map 

from )3(SO to )3(so as 

    )(
sin2

)ln( TRRR 



         (22) 

)3(SE , The Group of 3D Rigid Body Transformations 

The Group Representation. The group of rigid transformations in 3 space is 

denoted as )3(SE and its members are the set of 4x4 matrices with the structure











 10 31

tR
T , where )3(SOR , and 3t . 

 

Figure 5: Poses represented as rigid body transformations 

Properties. Properties of 3D rigid body transformations are described as 

1. )3(SE is a 6 dimensional manifold; three corresponding to 3D translation vector 

and the other three corresponding to the 3D rotation vector. 

2. )3(SE is a semidirect product of the groups )3(SO and 3  

3. If )3(, 21 SEgg  , then their composition )3(21 SEgg   
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4. 44TI is the identity element of )3(SE  

5. If )3(SEg , then )3(
10

1 SE
pRR

g
TT








 


 

Lie Algebra of )3(SE . The associated Lie algebra for the group is denoted as 

)3(se whose bases are six 4x4 matrices, each correspond to either infinitesimal rotation or 

translation along the axes. 

The generators are defined as  
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An arbitrary element in )3(se has six coordinates where each coordinate multiplies a 

generator matrix.  

Exponential Map. The exponential map from )3(se to )3(SE can be defined as 

follows: 

For a vector 











t
v that represents the 6 vector of coordinates in the Lie algebra )3(se , 

we define the algebra, 
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where  Tt  ,, 3
. The exponential map )3()3(:exp SEse  is well defined, 

surjective (onto) and has the closed form solution 
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where,    2
32

sincos1
 







 








 
 









IV  and  

e is defined as before. 

)3(SIM , Group of Similarity Transforms 

The Group Representation. )3(SIM is the group of affine transformations in 3D 

space which are the composition of a rotation, a translation and a scale. The group has 7 

degrees of freedom (DOF): 3 for translation, 3 for rotation and 1 for scaling. Members of 

this group are the set of 4x4 matrices with the following structure  
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T                      (26) 

with 
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             (27) 

A matrix )3(SORA   has the following properties: IsAAAA TT 2 and 3)det( sA    

Lie Algebra of )3(SIM . The Lie algebra sim(3) for the group consists of all 

(3+1)x(3+1) matrices of the form  
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with RRuso  ,),3( 3  

The generators of Sim(3) include the ones of SE(3) plus 





















0000

0100

0010

0001

)3(

7

simG

 

Exponential Map. The exponential map can be defined as follows: 

Given a 4x4 matrix B of the form 
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where  is any real 3x3 matrix, R  and 
3Ru , we have 
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Denoting 
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Nonlinear Least Square Methods 

In nonlinear least square methods, the parameter values of a model are estimated by 

minimizing a nonlinear cost function. Given a set of measurements m

i Rz   predicted by 

a model )(ˆ xzi , where x is the vector of model parameters; nonlinear least square 

methods estimate  the model parameter values by minimizing the weighted sum of 

squared errors cost function  

           
i

T

iiiii xzzxzzxf ))(ˆ())(ˆ(
2

1
)(        (31) 

where ))(ˆ( xzz ii   is the feature prediction error and i is an arbitrary symmetric positive 

semi-definite weight matrix. When the observations are independent of each other and 

are perturbed by Gaussian noise of mean zero, and constant variance, minimizing the sum 

of squared errors is equivalent to minimizing the negative log likelihood. As such, the 

weights are chosen to approximate the inverse measurement covariance of iz . In order to 

simplify the formulations of the least squares, the measurements can be assembled into a 

compound measurement vector T
k

TTT zzzZ ),......,,( 21 and the weight matrices into a 

compound block diagonal weight matrix ),......,( 2,1 kdiag  .  Under such 

compounding, the weighted squared error TxZxZxf )()(
2

1
)(  is same as the sum of 

squared errors in equation (33). 

Gauss Newton method is one of the most commonly used techniques for optimizing 

nonlinear least square problems. It is an approximation of the second order Newton 

method that uses a search direction vector and step size to iteratively update an initial 

estimate of the parameters X . Given the nonlinear weighted SSE cost function 
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TxZxZxf )()(
2

1
)(   with the prediction error )(ˆ)( xzzxz  , the gradient and 

Hessian matrix can be written as 

Jz
dx

df
g T                      (32) 

and     

     
i

i
i

TT

dx

zd
zJJ

dx

fd
2

2

2

2

)(         (33) 

with 
dx

dz
J  is the jacobian. The second term in the Hessian matrix can be ignored if the 

prediction error )(xz  is small or the model is nearly linear which means 0
2

2


dx

zd i
. 

Dropping the second term gives the Gauss-Newton approximation JJH T . With this 

approximation, the normal equation to solve for the steps become 

      ZJxJJ TT  )(                     (34) 

The parameters update equation is then xxx   

A variant of the Gauss Newton method is the Levenberg-Marquardt (LM) that alters the 

normal equation as follows 

ZJxIJJ TT   )(                     (35) 

where a small value of the algorithm parameter  results in a Gauss Newton 

approximation and a large value achieves a gradient descent update. As a result the 

parameter   is initialized with a large value so that the first updates are steps in the 

steepest descent direction. Then value of  decreases after an update, when the residual 

error is minimized. The algorithm continues until a convergence criterion is met.  
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Optimization on Manifolds 

When optimizing on Manifold, the state vector Mx is a point on an n-dimensional 

manifold. The prediction model mRMxhxz  :)()(ˆ now a function on the manifold 

that predicts the measurements z  from x . However, Lie groups are not as easy to treat 

as vector space 
n and computing the jacobians require special attention. For example, if 

we consider the group )3(SO , computing a derivative in the form 
),( jiR

R




 makes no sense 

as any infinitesimal change to a single entry of an orthogonal matrix would make the 

matrix non-orthogonal and we would leave the space of )3(SO . Elements of )3(SO  

have only 3 DOF and there are exactly three Cartesian directions about which we can 

modify R which are the basis vectors of the tangent space.  

Following the idea presented above, and denoting a small increment 
nR  in the 

linearization of the manifold around a point Mx (using M s Lie algebra as a vector 

base), the jacobian matrix is computed by first left-multiplying the point x by the 

exponential map of the increment and then differentiating the resulting expression around 

origin. This can be written as 

    
0

)(








xf
J           (36) 

where xx )ˆexp(  . In the following section we provide an example of computing 

the jacobian for the 3D point projection function. 
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Point Projection Jacobian 

For a 3D point in world coordinate frame, the projection function )(XhC maps the point 

from world to normalized image plane 1z . The transformation of the world point to the 

camera frame can be written as tRXaTX

z

y

x


















, where 



















z

y

x

a is the 3D point in 

current camera frame T . Projection of this point on the normalized image plane 1z is 

our measurement prediction and can be written as    
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 )()(         (37) 

The derivative of the projection function with respect to an arbitrary variable  can be 

computed using the chain rule as  
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         (38)

 

where 
a

aproj



 )(
is the common 1st factor in all jacobians of the point projection model. 

The term 
a

aproj



 )(
is expanded as 
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2nd term can be written as 
 






 )( tRXa
. With respect to a landmark, it can be 

expressed as 
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         (41) 

and with respect to the camera pose, the derivative is expressed as 
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Now using 1st order Taylor series approximation we can write,     
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Finally the jacobian can be written as 
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Bundle Adjustment 

Bundle adjustment is essentially an iterative optimization technique which aims to 

generate jointly optimal three dimensional structure and viewing parameters by 

minimizing a cost function. Usually the cost function is the distance between the 
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reprojection of a three dimensional model and the associated features in the image. In this 

section we give a brief introduction to the method. An excellent tutorial on bundle 

adjustment as well as mathematical details can be found in [17]. There are several 

frameworks such as g2o[9] , ceres solver[61], etc. available to perform bundle adjustment 

if the three dimensional structure is represented as a 3D point cloud.  

Let us assume that a camera is moving in a 3D space and recording a sequence of images

nIIII ...,, 321 . Assuming the scene geometry is represented by a set of discrete 3D points 

mxxx ,...., 21 for which we have an initial estimation from a reconstruction method along 

with the initial estimation of the camera poses nTTTT ....,, 321  . We also have a set of 

observations Z for the 3D points where Zz ji ,
is a measurement of point ix in image 

frame
jI . Bundle adjustment can be considered as the refinement part starting from the 

initial estimation by iteratively minimizing the distance 
jid ,
between the observations and 

the reprojection of the 3D points in the image frames ).(ˆ:),( ,, ijjiijji xTzzxTd  . The 

parameter space is essentially a high dimensional manifold that consists of the set of 3D 

points along with the set of camera poses nTTTT ....,, 321 .  

Multivariate Gaussian 

Let nR  be a random vector with mean nR , and covariance nS  (n 

dimensional positive definite cone). We write ),(~ ttt N  to state that   is guassian 

with mean  and covariance  . We can write the probability distribution as  
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The above parameterization is referred to as moment form or the standard form of the 

Gaussian density function.  

Now we derive the canonical form of the normal density function 
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This can be compactly written as 
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Equation (3) is the canonical (or normal) form of the density function with  

ttt  1            (52) 

1 tt
           (53) 

Properties 

1. Conditioning is easy in canonical form. 

2. Merginalization is easy in the standard form. 
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CHAPTER III 

A REAL TIME MONOCULAR SLAM SYSTEM 

Introduction 

A single camera is a viable sensor choice in applications where the weight and 

power budget of the platform is very limited such as autonomous navigation of a small 

unmanned aerial vehicle (UAV) [4] in a GPS denied environment or augmented reality 

applications on a handheld device. Monocular SLAM also has the advantage of being 

effective in differently scaled environments such as an indoor office environment or a 

large scale outdoor environment. Range sensors such as depth camera can only provide 

reliable measurements in a small depth range and not suitable for large outdoor 

environment. However, the pure projective nature of a single camera makes monocular 

SLAM system more challenging as the depth of the image features cannot be measured 

from a single frame. Depth needs to be inferred by means of camera motion and feature 

observations from different viewpoints with sufficient parallax, which is the angle 

between the captured rays from a three dimensional feature to the optic center of the 

camera. Another challenge with monocular SLAM system is the scale drift. Scale of 

locally constructed map and the corresponding motion estimation tend to drift over time 

because of gauge freedom [17]. Moreover, the metric scale cannot be measured with a 

single camera and additional information source is required to recover the scale [13, 36].  
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Literature Review 

Most early approaches on monocular SLAM systems [13, 14, 15] used sequential 

filtering methods where the state of the system consists of the current camera pose and 

the map features. This state is continuously updated from the measurements by updating 

the joint probability distribution of the camera pose and the feature parameters. In 

filtering approaches, previous camera poses are marginalized out and the features that are 

required for pose estimations are retained. The pose marginalization creates new links 

between the features that are connected to the pose whose joint probabilities are then 

updated. Propagation of joint probability distribution is computationally expensive for a 

large number of features and the number of features that can be stored in the map is 

limited. More recent works [6, 7] adopted the key frame plus optimization methods, 

essentially the well-known bundle adjustment methods that incorporate a set of previous 

poses along with their associated landmarks in the optimization. As shown in [11], that 

the ability of optimization methods to efficiently incorporate a large number of 

measurements provides better accuracy compared to filter based methods for the same 

computational work. Among the monocular visual SLAM systems proposed in the 

literature, PTAM [6] remains most popular because of its real time performance in 

accurate tracking and map building. PTAM decouples the map creation from tracking to 

achieve constant time frame rate tracking. The map creation and optimization are 

performed in a separate thread that can run at a slower rate. The system uses a FAST [5] 

corner detector and 8x8 pixel patches at different image scales which are matched using 

zero mean SSD. PTAM was designed for augmented reality applications in a small work 

place and proven to be very successful in reliable tracking and map generation even with 
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erratic, loopy motion of the camera. However, the SLAM performance degrades as the 

map progressively becomes expensive and full map optimization is no longer practical 

given the time constraint. In order to tackle the scale issue of the PTAM, Strasdat et al. 

[10] proposed a graph based optimization scheme that uses a two region approach to 

achieve constant time optimization. The inner region uses the pose-point correspondences 

in the pure BA sense whereas the outer region establishes pose-pose constraints by 

marginalization of the landmark points.  

Decoupling of the tracking and mapping into two different threads allows the mapping to 

run at a lower frame rate than the tracking. The camera pose can be tracked at a high 

frame rate from the map points where the map expansion and optimization run in the 

backend. However, the limitation of this formulation is exposed during rapid exploration 

of unknown environment.    

As monocular SLAM systems suffer from scale drifts for large loops, loop closure 

detection is an important part of the accuracy of the SLAM system. In most systems the 

loop closure detection is performed using appearance only [27, 25, 65] SLAM 

framework. The appearance based methods use scale invariant strong features such as 

SIFT [31] or SURF [32] descriptors in a bag of words scheme to find matching between 

the current frame and a previously generated frame. Recently loop closure detection 

methods based on binary descriptors such as ORB [46] or BRIEF [47] have been 

proposed in literature. We also employ an appearance based loop closure detection 

method where we use the same BRISK [17] descriptor that allow us to integrate the loop 

closure method in the algorithm with no additional cost of descriptor generation and 

storage for loop closure. 
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Loop Closure Detection 

The ability for a robot to recognize an already visited place is important for longer 

duration map generation. When a robot visits a previously mapped area, detection of the 

already mapped region a.k.a. loop closure detection provides accurate data association. 

As a result, loop closure detection thereby reduces drifts and uncertainties in robot 

navigation and mapping by generating consistent map. Most recent loop closure detection 

algorithms are appearance based algorithms [26- 30] that require little to no a priori 

knowledge of the robots position. In the appearance based scheme, the entire image is 

represented as an observation and the loops are detected on the basis of image similarity. 

The basic idea is to create a database from the images during exploration of the robot so 

that the most similar image can be retrieved when the robot visits already mapped region.  

Similar to content based image retrieval, most appearance based algorithms use a visual 

Bag of Words (BOW) approach for image similarity measurement. In BOW approach, 

the images are represented as a set of visual features taken from a dictionary. This visual 

dictionary is built by clustering the sets of visual features into a collection of generalized 

visual features or visual words. Then the images are represented by a histogram of 

occurrences of each visual word in the images. Visual resemblance between the current 

image and a previous image in the database is quantified by measuring the similarity of 

their corresponding histograms of visual words.  

Bag of Words methods were initially developed for object recognition and content-based 

image retrieval. In their seminal work, Sivic and Zisserman [28] used Bag of Words for 

detecting similar scenes in video sequences. SIFT descriptors were extracted from a set of 

training images and then clustered using k means algorithm to generate the visual 
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vocabulary. When a new image arrives, its descriptors are quantized using these visual 

words and then it’s similarity with previous images was computed using a Term 

Frequency Inverse Document Frequency (TF-IDF) weighting. Nister and Stewenius  [29] 

improve the computational efficiency of the vocabulary building process by 

implementing a vocabulary tree based on a hierarchical k means approach thereby 

allowing large training dataset.  

One of the most popular loop detection method is the FAB-Map system [19] that 

performs loop detection in trajectories 70 km and 1000 km in length with 48.4% and 

3.1% recall respectively, and with no false positives. In this method, the images are 

represented as a Bag of Words, and the words’ co-visibility probabilities are learnt offline 

using a Chow Liu Tree. However, robustness of the loop detection decreases when the 

images depict very similar structures for a long time, which can be the case when using 

frontal cameras [36]. Galvez-Lopez and Tordos [23] proposed a loop detection method 

based on binary feature descriptors such as BRIEF and ORB for fast image matching. 

Their algorithm uses the hierarchical BOW model proposed by Nister [29] along with a 

direct indexing for fast descriptor matching. A temporal consistency check and a 

geometrical check are performed to increase the reliability of the loop detection.  

Some authors have also proposed [27] loop detection methods based on online 

vocabulary generation. In the work of Angeli [27], two visual vocabularies (for 

appearance and color) are created online in an incremental fashion. The two BOW 

representations are used together as input of a Bayesian filter that estimates the detection 

probability.  
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Organization 

In this chapter we present our real time monocular SLAM algorithm. Our algorithm 

differs from the previous methods in terms of both efficiency and reliability. The 

algorithm process flow as well as parallel implementation of the time critical components 

makes the algorithm computationally very efficient without compromising the reliability 

of the system. We demonstrated the effectiveness of the algorithm on challenging long 

duration visual odometry data set where the front facing camera mounted on a vehicle.  

The description of the algorithm is organized as follows: we start with a brief review of 

the binary descriptor namely BRISK descriptor used in our work. In the following 

sections we present the algorithm and provide detailed descriptions of the basic building 

blocks.   

 

Figure 6: Monocular frames and 3D points. The algorithm estimates the pose of the frames and the 

positions of the 3D points at the same time, using image projections. 

 

Brisk Feature Descriptor 

In this section, we present a brief review of the BRISK[17] approach for feature 

description and matching. The original implementation of the BRISK uses the AGAST 
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[39] corner detector which is an extension of the FAST [5] corner detection. However, 

after experimenting with both AGAST and FAST corner point detection, it was found 

that detection time decreased significantly with the FAST corner detection compared to 

AGAST detector. As a result our implementation of feature detection uses the FAST 

corner point detection. The scale invariant is achieved by detecting salient points at 

different levels in a scale space pyramid, performing non-maxima suppression and then 

interpolation across scales in the pyramid. The descriptor is built from a set of pair wise 

brightness comparisons and the results of these comparisons are stored as a binary string. 

Each bit in the binary string is the result of exactly one comparison. The feature 

description is performed using a symmetric pattern where sample points are positioned in 

concentric circles surrounding the detected salient point. Intensity at each sample point in 

the pattern is obtained after applying Gaussian smoothing in its neighborhood pixels. The 

kernel size of the Gaussian smoothing is proportional to the distance from the corner 

point. The descriptor uses two types of sample point pairs for comparison in order to 

estimate the dominant orientation of the corner point and the descriptor building. A set of 

long distance sample point comparisons is used for the orientation estimation. For each 

long distance comparison, the gradient is estimated by computing the vector displacement 

between the two sample points in the pair and weighted by the relative difference in 

intensity. The set of the long distance gradients are then averaged to deterring the 

dominant orientation of the corner point.  

After determining the dominant direction, the sampling pattern is then scaled and rotated 

before the descriptor is created from a set of short distance sample point pair 



37 
 

comparisons. The resultant bit string consists of 512 bits representing local gradients and 

shape in the patch.  

The SLAM Algorithm 

The basic algorithm can be divided into 3 major parts: The tracker and part of mapper at 

the front end, the backend optimization and the loop closure. In order to make the 

algorithm computationally efficient, we make full use of the multicore processor by 

parallelizing the tasks when possible. The algorithm is shown in Figure 7. Bellow we 

explain the major components of the SLAM system. 

 

Frontend Tracking and Mapping Backend Map Refinement and Optimization Loop Closure Detection and Correction 

Figure 7: SLAM algorithm process flow. The algorithm is divided into three parallel flows. The camera pose estimation from map 

points tracking and the map exploration is performed in the main process. The pose graph optimization is performed in the backend in a 

separate process. The loop closure detection and correction process runs in a separate thread at a lower frequency.  

 

3D Map Representation 

The 3D map is represented by a 3D point cloud along with a set of camera poses called 

key frames. The 3D points cloud map consists of the collection of feature points M 

located in the world coordinate system W . Each map point stores it 3D world coordinate
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Wm , its own index, a reference to the source key frame where it was first detected along 

with the indices of the detector and descriptor in the source frame. Each map point also 

stores a list of key frames where it was successfully matched. The map also contains the 

list of key frames. Each key frame stores the vectors of the key points and their 

descriptors computed from all levels in the image pyramid. Camera pose associated with 

each key frame is represented as a coordinate transformation between the World and 

Camera coordinate systems as W

CT . Each key frame also stores the list of indices of the 

map points that are visible in that key frame along with their corresponding image 

positions. In addition, each key frame stores a list of neighboring key frames based on 

scene overlap defined by the map points co-visibility.  

Map Initialization 

Map initialization starts with running the key points detection and BRISK descriptor 

generation in the first image frame. This image frame constitutes the first key frame in the 

map. The key frame stores the feature points and descriptor vectors along with the initial 

camera pose relative to the world coordinate system. A subset of detected key points and 

their descriptors are selected for tracking. A quad tree method similar to Mei et al. [66] is 

used to ensure that the selected feature points are uniformly distributed. This set of 

feature points is then tracked in the image sequences until there is sufficient base line 

between the current image frame and the first frame. This is done by computing the 8-

point fundamental matrix [24] with RANSAC [42] scheme between the two frames along 

with a heuristic.  

When a new image arrives, its key point detection and descriptor generation is performed 

first. Then for each candidate point, a search region is created around the last detected 
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position in the image and only a subset of feature points in the current frame are selected 

for feature matching that lie within the search region. This step greatly improves the 

tracking efficiency by reducing the number of false matching as well as computation 

costs. After feature matching is performed, the feature points’ current positions are 

updated to the new image location and a new search region is created for the next frame.  

As a result we have a 2D-2D correspondence set between the first image frame and the 

current frame. This set of correspondences is then used to compute a fundamental matrix 

with RANSAC scheme. This fundamental matrix is used for both outlier rejection and 

also to determine if there is sufficient base line between the first frame and current frame.  

We reject the matching if it fails the epipolar constraint test. Then an essential matrix is 

computed from the fundamental matrix using the camera intrinsic parameters. This 

essential matrix is then used to compute the transformation matrix up to a scale between 

the first and current frame. Then 3D positions of the feature points in the inliers list are 

estimated using triangulation. The 3D position is considered to be valid if it is in front of 

both the first frame and the current frame and the re-projection error is below a pre-

defined threshold.  We also disregard any point which is located very far by computing 

the difference between the pixel positions in two images. Experiments show that a pixel 

distance of 8 is a sufficient distance for generating valid 3D position. A point in the 

inliers list is considered valid when both conditions are met. We conclude that a 

sufficient baseline is achieved when at least 60% of the inlier points are valid. At this 

point the current frame is considered as the second key frame. These two key frames 

along with the valid points are used to initialize the map. 
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Tracker for Camera Localization  

The tracker is responsible for estimating the camera pose from the successfully tracked 

map points. Every 3D landmark in the environment is associated with a BRISK 

descriptor that is used to search for the landmark in the environment by performing 

descriptor matching in the current image.  

 

Figure 8: Image pyramid construction by successive half sampling of the image. Half sampling is done 

by taking an average of 4 neighboring pixels.  

 

When a new image arrives, first a three layers image pyramid is constructed by 

successive half sampling the image. Fig 3 demonstrates the image pyramid generation. 

Then the corner points are detected and their descriptors are generated at each level in the 

image pyramid. At this point we take full advantage of the parallel processing capability 

of multicore processor to speed up the detector and descriptor generation process. Since 

our algorithm is designed for small platforms with single board computers, which 

generally do not have a powerful GPU, the parallel processing implementation is done on 

CPU. The process is shown in Fig 9. A parallel multithreaded process is developed where 

a separate thread is used to perform detector and descriptor generation for each pyramid 
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level. This is done using the open source framework of Intel’s threading building block 

(TBB) [67]. At the end of the operations, we combine the detectors and descriptors from 

separate pyramid level.  

 

Figure 9: Parallel detector and descriptor generation. A separate thread is used to perform the feature 

points detection and descriptor generation for each scale 

 

This set of corner points is then matched to the stored map points to generate 3D-2D 

correspondences between the 3D landmarks and their associated 2D positions in the 

current image. The camera pose is then updated from the 3D-2D matches. However, 

instead of searching for all map points in the current image, we limit the search for the 

map points that are most probable to be visible in the current image. 

Given the predicted camera pose from the prediction model, a subset of the potentially 

visible map points is selected. This subset is selected from a number of key frames that 

are closest to the current predicted camera pose. We have used 30 key frames in our 

implementation for selecting the potential visible set of map points. Now for each map 

point in the potential visible set, a neighborhood region is created around the predicted 

image position in the current frame that is obtained from the projection model, and a 

subset of corner points are selected that lie inside the region. These corner points are then 

compared with the map point by performing the descriptor matching. Similar to the 
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detector and descriptor generation, we again parallelize of the map points matching. The 

number of potentially visible map points is divided into a predefined number of sets and 

then for each set a separate thread is used for map points matching. Again we use the 

Intel’s threading building block framework for the parallel map points matching. In order 

to avoid any memory sharing, each thread gets a copy of the detector and descriptor 

vectors for the current image. This causes increased memory consumption by the threads; 

however, the compact nature of the binary descriptors limits the cost in memory usage. In 

addition, the computational efficiency far outweighs the additional memory consumption. 

This step allows for performing real time tracking even in a computationally constraint 

system. For each successful match, a 3D-2D correspondence is stored for camera pose 

update. Example of feature points matching between two images is shown in Figure 10. 

 

Figure 10: Feature points matching between 2 image frames. 

At the end of map point tracking, we obtained a set of 3D-2D correspondences between 

the 3D world positions kx  and corresponding image position ku . This set of 

correspondences is used to update the camera pose using the numerical optimization 

algorithm explained in section II. Essentially, the camera pose is iteratively optimized by 

minimizing a cost function 
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with respect to the pose iT . Here ke is the feature prediction error  
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Accuracy of the camera pose estimation using the numerical optimization methods is 

affected greatly in the presence of outliers. For example, an incorrect feature matching 

will cause a false 3D-2D correspondence. The presence of outliers can cause the 

minimization to incorrectly converge to local minima.  

One way to handle the outliers is the use of robustifier [19] where the quadratic cost 

function is replaced by a robust kernel (.)  with larger error terms have less influence on 

the overall cost. In this work a Huber kernel [24] is used as it is convex in nature. 

However, it still does not guarantee global optimization since the effectiveness of the 

robustification depends on the error model which is often unknown. 

In order to increase the accuracy of the pose estimation and remove the map points with 

false correspondences, we employ an efficient P3P [37] with RANSAC scheme to 

generate candidate 3D-2D point correspondences before final pose estimation with 

nonlinear optimization. In the RANSAC scheme, 4 points correspondences are randomly 

selected to get an initial estimate of the camera pose relative to the world. In this method,  

3 points are used to generate four possible solutions and the 4th 3D-2D correspondence is 

then used for disambiguation by computing re-projection error and selecting the solution 

with the minimum value. This estimate is then used to find the number of inliers by 
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computing their re-projection errors. The camera pose with highest number of inliers is 

our candidate pose for optimization with the point correspondences in the inliers list.  

Key frame Inclusion and Map Expansion 

 

The initial map consists of the first two key frames and a small set of 3D map points. As 

the camera starts to explore new places, the map is expanded by adding new key frames 

and map features.  

A new key frame is added to the map when the distance of the current camera from the 

closest key frame exceeds a minimum distance threshold. Minimum distance threshold is 

computed as a weighted combination of linear and angular distances. The linear distance 

depends on the mean depth of the observed features where we use an absolute angular 

distance. The key frame is initialized with the current camera pose along with the key 

points and descriptor vectors of the current image frame. The key frame also stores the 

indices of the map points that are successfully tracked along with their current image 

position. Now, in order to generate new map points, current frame feature points are 

matched with feature points in other key frames in the map. This is done by performing 

epipolar search for feature points in the other frames and then using triangulation to 

generate 3D position. 

First a set of neighboring key frames are selected based on their distance to the current 

position and the key frames from this subset are chosen for new map points generation 

that satisfy the linear and angular distance threshold. Essentially we select a set of 

neighboring key frames that satisfy the minimum distance threshold and also share co-

visibility with the current frame. A set of new feature points that are not the observations 
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for the existing map features are potential candidates for new map features. The key 

points are then searched in the other key frames. For each feature point a set of feature 

points that are within a certain distance along the epipolar line in the other key frame are 

selected for descriptor matching. If more than one match is found, then the point is 

discarded as not discriminative enough. Successfully matched points are used in 

triangulation to find their 3D position and added to the map.  

Previous methods such as PTAM use a separate thread for map expansion where they 

allowed new key frame addition along with map point generation to run at a slower rate 

than the tracker. However, during rapid exploration of the robot, the map expansion 

needs to keep pace with the robot motion to avoid tracking failure.  We use a 

heterogeneous method where new key frame addition to the map along with partial new 

map points generation are performed in the same process as the tracker when the 

condition for new key frame addition becomes true. However, the downside is that it adds 

significant computational burden on the front end tracker. In order to tackle the issue of 

computational cost, we divide the new map points generation to both frontend and 

backend. We select the key frame that shares the highest co-visibility and also satisfy the 

minimum distance threshold for map point generation in the frontend. We take advantage 

of the multicore processor to parallelize the task at hand. We use a combination of 

parallel task and parallel data framework for generating new map points. Figure 11 shows 

the process of new key frame addition and map points generation.  

The total number of key points that are our potential candidates for map point generation 

is divided into a predefined number of blocks where each block consists of a fixed 

number of points and we keep a list of their original indexing. Each block uses a separate 
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thread for feature matching and triangulation. Once the computation in each thread is 

finished they are combined together before the successfully generated points are inserted 

into the map.   

 

Figure 11: Parallel map points generation. The set of feature points are divided into a fixed number of packets. For each 

packet a separate thread is used for map points generation. 

 

Data Association Refinement 

 

In this stage we add new map points and also search for data association in the 

neighboring key frames. A set of key frames are selected that satisfy the minimum 

baseline and co-visibility threshold and also were not being selected in the frontend. New 

map points are generated using the method described previously. Since new map points 

are generated using triangulation between two key frames, it is possible that they are also 

visible in other key frames in the neighborhood of the two key frames. A large 

neighborhood of 12 key frames is selected to search for measurements of these new 

points. If successful matches are found, the new points are added to the list of map points 

visible from the key frames along with their corresponding image locations. 
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Constant Time Back End Bundle Adjustment 

As the robot explores new places over time, the map size gets larger and the number of 

parameters namely the key frames and the land marks keep constantly increasing. Thus if 

were to perform full bundle adjustment every time the map expands, the computational 

cost would become unbounded as it increases linear to cubic in complexity with the 

number of parameters. As we are interested in real time performance, it is important to 

ensure that the cost of performing a single iteration does not exceed a certain threshold.  

Essentially we need to limit the number of parameters in the optimization. In a pure 

visual odometry sense, the natural way to achieve this is to consider last n  key frames in 

the optimization in a sliding window [68] mode along with the map points visible in these 

key frames. However, complexity arises when selecting map points for optimization. In 

order to understand the problem, let us consider a situation where a map point x has its 

source key frame that is not included in the sliding window for optimization. In addition, 

this map point may be viewed in only one or two key frames in the current sliding 

window whereas it is visible in more key (e.g. 8) frames which are outside the sliding 

window. When we include all the observations, the likelihood of accurate triangulation in 

the optimization is very high. On the other hand, if we consider only one or two key 

frames that are in the active window, triangulation accuracy will degrade since it is only 

weakly constrained by the one or two active key frames in the sliding window.  

In order to address the issue, we implement a graph based incremental optimization 

method that is motivated by the method used in [68]. The sliding window consists of an 

ordered sequence of key frames. Every time a local bundle adjustment is performed, the 

index of the sequence is updated once and a new key frame is added while removing the 
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key frame with the lowest index. Now we define a set 1K as the active frames that 

include the key frames in the sliding window. 1K  also includes additional key frames that 

share significant scene overlap with the key frames in the sliding window. This scene 

overlap is determined by co-visibility of map points. The construction of the graph is 

explained as follows: Each map point consists of a list of key frames where it is visible 

along with the source key frame where it was first generated. For each map points that 

are visible in the sliding window key frames, we get the list of key frames that are not in 

the sliding window. Then we determine if a key frame in this list shares overlapping 

scene region with any key frame in the sliding window by computing the co-visibility. 

Co-visibility is computed by counting the number of map points that are shared by both 

key frames. If the number is above a predefined threshold, we conclude that the key 

frames share sufficient overlapping region. In that case, we include the key frame in the 

active frames list. Else the key frame is included in a second list denoted as 2K . The key 

frames in the set 2K  are set as fixed which ensures that the current local map is being 

anchored to the previous map.  

The resultant cost function consists of the weighted re-projection errors re  
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Where k denotes the key frame index, and m denotes the landmark index. km

rW , denotes 

the information matrix of the measurements of landmark m in the key frame k .  

This local bundle adjustment is performed in a separate thread in the backend along with 

the data association update and can be run at a slower rate than the frontend tracking and 

mapping. 
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Figure 12: An example of camera poses and 3D landmarks configuration for incremental Bundle 

Adjustment 

 

Loop Closure Detection and Pose Optimization 

We use a similar approach to [23] for our vocabulary building, database generation and 

image query. The open source version of their implementation is modified to use BRISK 

descriptors for vocabulary generation from training images and then online database 

generation using the key frames generated from the SLAM algorithm. The basic steps are 

briefly described in the following sections: 

Vocabulary Building 

The vocabulary is generated offline from a set of training images. This training set is 

created independently from a scene which is similar to the environment where the robot 

navigation and SLAM generation occurs. First a set of BRISK descriptor vectors are 

extracted from the training images and then the descriptor space is discretized into a set 

of visual words W. Following the method described in the re-localization step, the 

vocabulary is structured as a tree. As a result we get a tree with W leaves, which are the 

words of the vocabulary. Each word is assigned a weight depending on its relevance, 

decreasing the weight of the words that are very frequent and thus less discriminative. 
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This is done by using the “term frequency- inverse document frequency (TF-IDF)” 

method described in [29].  

 

Figure 13: Vocabulary tree generation. Each word contains its descriptor along with a list of frames 

where it is visible. It also stores the frequency score of the word based on how frequent it is visible. 

 

Database Generation 

In order to perform the loop closure, we use an image database of hierarchical BoW of 

the key frame descriptors. Every time a new key frame is added to the map, the descriptor 

vector for the key frame is converted into a BoW vector W

t Rv  by traversing the 

vocabulary tree from root to the leaves and by selecting at each level, the intermediate 

nodes that minimize the Hamming distance. In addition to the BoW vector, an inverted 

index is also maintained. For every word iw  in the vocabulary, a list of key frame indices 

where the word iw is visible is stored in the inverted index structure. In addition, a list of 

neighboring key frame indices is also stored. This neighborhood is generated based on 

map point co-visibility. As mentioned in section 3, each key frame stores the list of map 

points indices that are visible in that key frame. Based on this list, we find a set of key 
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frames that share common map points. When the number of shared map points between 

the current key frame and another key frame is over a predefined threshold, we include 

the other key frame index in the neighborhood list. The neighborhood list of the other key 

frame is also updated. Similarity between two BoW vectors 1v and 2v is measured by 

calculating the 1L score ]1,...,0[),( 21 vvs [22] as 
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Loop Closure Detection 

A multi stage detection method has been implemented that protects against false loop 

closing since a erroneous loop closure will result in a topologically incorrect map which 

in turn will cause failure in the localization and map building.  

When a new key frame is added to the map, its descriptor vector is converted to the BoW 

vector and added to the database. We compute the neighborhood list as explained above. 

Then we perform the similarity measure between the BoW vectors of the current frame 

and the frames in the neighborhood and store the minimum similarity score. Then the rest 

of the BoW vectors in the database that are not in the neighborhood list are searched for 

the matching candidate. However, the loop candidate searching does not start until the 

robot travels certain duration of time.  

Once the database is searched, we have an ordered list of matching candidates based on 

the similarity score that are not in the neighborhood of the current frame. Now the key 

frame indices with the similarity score greater than the minimum neighborhood score for 

the current key frame are considered as potential loop candidates and subject to further 
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computation. If no indices are found with similarity score greater than the minimum 

neighborhood score, we consider that no loop candidate is detected.  

Temporal Consistency Check. If a potential loop candidate is found, then then 

temporal and geometric consistency check is performed in order to ensure that no false 

loop candidates are added to the map for optimization. Temporal consistency is 

performed by creating clusters of topologically related loop closing hypotheses where 

loop closure sequences that relate similar positions of trajectory are grouped together. We 

perform a simple incremental way of clustering based on the time of loop closure 

candidate detection. With the first loop closure candidate that arrives, we initialize the 

first cluster, and wait for next few loop candidate search. If there is more than one 

potential loop closure candidate is found, their temporal consistency is checked. If a 

candidate frame is not in the neighborhood of the other loop closure candidates, then that 

frame is stored in its own cluster.  When the next loop closure candidate arrives, we 

check its temporal consistency by performing the neighborhood search. If the new loop 

candidate frame is in the neighborhood of the frames in a cluster, it belongs to that 

cluster. Otherwise, it is stored in its own cluster. If we don’t get any loop candidate for a 

cluster in the next 2 consecutive searches, the cluster is removed and the loop candidate is 

considered as false loop detection. A new cluster needs to be initialized for the next loop 

closure candidate. A cluster is to be considered as a valid loop candidate cluster if it 

contains at least 3 potential loop closure candidates.  

Geometric Consistency Check. Once we have a cluster with the minimum number of 

loop candidate frames required for temporal consistency, we perform the geometric 

consistency check between the search frames and their corresponding loop candidate 
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frames. The geometric consistency check consists of computing a Fundamental matrix 

with RANSAC between the search frame tI and the loop frame tL with number of inliers 

at least 15. For all the map points in the search frame tI , their corresponding image 

positions in loop frame are searched by performing feature matching between the map 

point’s descriptor with the descriptors in the loop frame. We perform an exhaustive 

search to find all the map points in the loop frame. Now we have a set of image point 

correspondences between the search frame and loop frame with outliers. Then the 

fundamental matrix is computed with RANSAC from the point correspondences and the 

number of inliers is counted. If the number of inliers is over the threshold, the frames are 

considered as geometrically consistent.  

Once a geometric consistency is found between two frames, the fundamental matrix is 

used to perform correspondence search between two sets of map points in the frames tI  

and
tL . For all the map points in the search frame tI we search for their corresponding 

map points in the loop frame using the epipolar constraints. Essentially we find a set of 

3D-3D correspondences between the two frames. The 3D-3D correspondences are then 

used to find a similarity transform between the frames using the method described in 

[41]. 

Graph Based Loop Closure 

Once we have a loop closure candidate after successful temporal and geometric 

consistency check, the loop correction problem can be formulated as a large bundle 

adjustment problem since we have to update over all map points and camera poses that 

are in the loop. However, optimization over a large number of frames and map points is 
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computationally expensive. Another major issue is that bundle adjustment is not a convex 

problem. The further the robot travels, the positional uncertainty increases and it is 

possible that bundle adjustment will get stuck in local minima.  

In order to solve the problem, we adopt the reduced form of the BA problem namely pose 

graph based optimization [40]. Instead of solving for all the parameters in a full SLAM 

problem, graph based SLAM methods solve for a sparse set of relative pose constraints 

by marginalizing out the landmark parameters onto pose parameters. This leads to a pose 

graph as shown in Figure 19. 

  

a. Pose Graph without loop Correction a. Pose Graph after loop Correction 

Figure 14: Example trajectory starting at the first frame P01 and ending at P99. The loop closure 

between frame 1 and frame 99 adds an extra edge to the graph. Loop correction generates the set of pose 

configurations that minimizes the cost function in the nonlinear optimization 

 

Let },...{ ni TTT  be a set of parameters of poses and consider two poses from the set as 

iT and 
jT . The relative constraint between the initial estimates of iT and 

jT is calculated as 

1 ijji TTT . The constraint generated from loop closure candidate is computed as 

described in the previous section. In the pose graph SLAM formulation, these relative 

constrained are regarded as virtual measurements. Now the idea is to optimize the poses 
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ni TT ,........  in such a way that the pose concatenations 1

jiji TTT are as close to identity as 

possible. Initially the sequential pose concatenations 1

jiji TTT  are set as identity except 

for the one containing the loop closure constraint. The purpose is to estimate an optimal 

configuration set of the poses that minimize the error over all constraints and hence the 

loop closes.  Considering the residual error between two poses as 
ijd , the cost function 

to minimize can be written as  
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The information matrix can be set as identity or can be computed accurately by point 

marginalization similar to [25].  

As the monocular SLAM systems suffer from scale drift over time, it is important to take 

scale into consideration when optimizing. So the optimization is performed based on 7 

DOF similarity constraints )3(SIMSk  . In order to optimize over 7 DOF similarity 

space, each 6 DOF pose kT  and relative pose constraints 
ijT  are transformed into a 

similarity kS and 
jiS . This is done by adding a scale 1s for all the relative constraints 

except the loop closure constraint where the scale is computed as described before. The 

pose graph SLAM is then solved using the g2o [9] sparse Cholesky solver.  

Once the poses are corrected from the optimization, the next step is to update the 

landmark positions. This is done by mapping each point relative to its corrected source 

frame as )()( 1

jk

corr

k

corr

j xTSx  . Afterwards, each similarity transform corr

kS is 

transformed back to a rigid transform corr

kT by setting the translation to st and leaving the 

rotation unchanged.  
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Relocalization 

The tracking system relies on a motion model to predict the camera pose and then the 

predicted camera pose is used to limit the region to search for visual feature 

correspondences. As a result a rapid camera tracking is achieved. However, motion blur, 

sudden motion change or occlusion can cause the tracking system to fail and even corrupt 

the map. The typical solution is to implement a data driven detection of pose when the 

map already exists. Since linear matching becomes computationally very expensive when 

it comes to perform comparison against a large data set, usually the linear search 

algorithm is replaced with an approximate nearest neighbor search algorithm that offers 

significant speed up.  

Most nearest neighbor algorithms for vector features use hierarchical decomposition of 

the search space and not readily suitable for binary features because of the assumption 

that the features lie in a vector space where the dimensions of the feature vectors can be 

continuously averaged. As a result most approximate nearest neighbor search algorithms 

for binary features matching proposed in literature are based on hashing methods such as 

locality sensitive hashing[45], semantic hashing[68], min hashing[69] etc. A hierarchical 

decomposition based binary features matching algorithm has been proposed in [44] 

where multiple hierarchical trees are constructed and searched in parallel during nearest 

neighbor search. Each tree is constructed by performing a hierarchical decomposition of 

the search space by successively clustering the input dataset where the cluster centers are 

randomly selected from the input points. Each non-leaf node contains a cluster center and 

the leaf nodes contain the input points that are to be matched. The algorithm was tested 

with BRIEF and ORB features and found to demonstrate significant improvements on the 
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search performances when multiple trees are used in parallel. However, building multiple 

trees requires considerable amount of computation power and serves as a bottleneck for 

low power systems.  

In this work, we propose a novel algorithm for faster matching binary features and we 

implement our algorithm for the scale invariant BRISK feature descriptors. The algorithm 

is used for relocalization in the event of tracking failure in the SLAM algorithm.  

Building the Tree 

The tree building process starts with selecting N points from the input dataset. The 

number N represents a parameter of the algorithm which is the number of initial clusters 

created from all the points in the dataset with each point as a cluster center. Similar to 

[34], we also call N as branching factor. These N points are chosen using the k-means++ 

seeding [33]. This process is followed by assigning points to each center that closer to 

that center than any of the other centers. Since for binary descriptors, the average for the 

dimensions of the feature vectors cannot be computed, we used a voting scheme to refine 

the centroid of clusters. For each cluster c, we use an accumulator vector v of the length 

of the BRISK descriptor that holds the result of bit accumulation for all the descriptors 

that belong to the cluster. An element of the accumulator array is increased by one when 

the corresponding bit of the descriptor is one. At the end, the majority rule is used to set 

the bit of the cluster centroid. If the majority of the descriptors voted for 1 as the value 

for bit element iv , then the corresponding cluster center bit takes 1, otherwise it takes 0. 

The algorithm is repeated recursively for each resulting clusters until the number of 

descriptors in each cluster goes below a certain threshold which is the maximum number 

of leaf nodes.  
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Table 1: Algorithm  for Building the Tree 

1. Input: descriptor dataset D 

2. Output: hierarchical clustering tree 

3. Parameters: branching factor N, maximum number of leafs maxL  

4. if size of maxLD  , then 

5.    Create leaf nodes with the points in D  

6. else 

7.          P select N points with the kmeans++ seeding from D  

8. C cluster the points in D around the nearest centers P  

9. P redefine the cluster centers with majority voting and re-associate descriptors 

to clusters C   

10.     for each cluster CCi
 do 

11.          create not leaf node with ceter iP  

12.          recursively apply the algorithm to the centers iP  

13.     end for 

14. end if 

Searching for Nearest Neighbors 

The searching method starts with a single traverse of the tree during which the node 

closest to the query descriptor is picked and recursively explored while the unexplored 

nodes are stored in a priority queue. The search ends when the number of points 

examined in the tree exceeds a threshold which is a parameter of the algorithm. 

Increasing the threshold increases the number of exact neighbors found with the search 

being more expensive.  

Pose Estimation from Map Points 

When sufficient matches between current image and the map points are found, a set of 

3D-2D point correspondences are created and then the camera pose estimation is 
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performed using the efficient P3P algorithm with RANSAC scheme described in the 

previous section. Once estimated, the camera pose is then updated using the pose 

optimization method using the inliers only and the tracker starts again.  

Experiments & Results 

In this section we present the experimental results. With extensive testing, we 

demonstrate that the developed system is more efficient and capable of running on a low 

power computer carried by a small quadcopter. The accuracy of the generated 3D point 

cloud map and the camera trajectories are reasonable accurate and comparable to 

previously developed SLAM system with considerably faster performance. Tests on data 

collected during the flight of the quadcopter along with the real time flight tests 

demonstrate the algorithm’s effectiveness. 

Performance Evaluation on Indoor Dataset 

In order to validate the effectiveness of the proposed algorithm, it is evaluated in both 

indoor and outdoor environment. Initially, we captured a few video sequences from 

different indoor environments with a camera mounted on the quadrotor. The images 

frames and the inertial sensor information are time stamped before storing on the disk 

drive. The camera used for the experiments is a standard Logitech webcam with image 

size 640x480. The images are captured at 25 fps. To evaluate the performance of the 

algorithm, the videos are generated by varying the camera movement from erratic, locally 

loopy motion to rapid sideways displacement for exploration and also backward and 

forward movement. 
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Figure 15: Point Cloud Map with Camera Trajectory. The camera trajectory is illustrated with the cyan 

lines while the yellow points denote the map points. 

 

Figure 15 illustrates the generated map of one of the sequences. The video consists of 

2997 frames of an indoor environment of size 10x8 meters. At the end of the sequence, a 

total of 188 key frames were generated with 5654 feature points. The camera trajectory is 

illustrated by the cyan line and the yellow points denote the feature points. The map 

shows that there are few obvious outliers. However, the accurate structure of the map and 

the camera trajectory illustrates the effectiveness of the algorithm.  Figure 16 shows a 

few snap shots of the environment where the map in Figure 13 is generated. The images 

show the map points that are successfully matched. 
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Performance evaluation of the earlier version of the algorithm is shown in Figure 17. The 

algorithm runs real time on a laptop computer with Intel i7 processor and 3 GB RAM. 

The top figure shows the number of feature points successfully matched per frame while 

the bottom figure shows the time required in seconds to perform the matching and the 

iterative pose estimation for the same image sequences. The time for each frame shown 

in the graph is the time required to process one frame that includes getting the frame from 

disk, computing the detectors and descriptors, project map points on the image, perform 

matching to obtain 3D-2D correspondences, iterative pose updates, making decisions if 

new key frame is needed and add new key frames and key points if the condition is true. 

The number of matches is high in places where the camera revisits compared to the 

places of rapid exploration. For the longest video sequence, there were few instances 

where the number of matched features was low. The first instance was due to large 

rotational motion of the camera while the linear motion was small. Condition for new key 

frame addition was triggered only after the distance between the current frame and the 

closest frame reach the threshold. The second instance was due to the rapid motion of the 

camera. The images in this sequence were collected using a standard webcam mounted 

on a quadrotor. During rapid camera motion, the generated images became blurred. The 

detector generates a smaller set of feature points in those frames resulting in a small 

number of map points in those locations. The blurriness of the images was reduced to 

some extent by increasing gain and decreasing exposure values. However, it was not 

possible to completely eliminate it. In addition, some area of the environment consists of 

texture less surfaces resulting in no interest points.  
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Figure 16: Few snap shots of the environment where the SLAM algorithm was run. The pink dots 

represent the map points that are successfully tracked for camera pose estimation. 
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Figure 17: Performance evaluation of the algorithm. The top figure shows the number of matches per 

frame while the bottom figure shows the time required for tracking each frame 
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Performance Evaluation with Outdoor Dataset 

Outdoor evaluation of the proposed algorithm is performed using the publicly available 

KITTI visual odometry dataset [44]. The dataset consists of 22 stereo sequences captured 

with a stereo camera mounted on a vehicle. The sequences are of various lengths ranging 

from 100 to 800 meters. All the sequences are captured at 10 fps. This dataset is quite 

challenging for monocular SLAM algorithm because of the forward motion of the vehicle 

with varying speed ranging from near stop to 60 kilometers per hour. In addition the 

sequences consist of environments with different structures and vegetation.  In our 

experiments, we use images from the left camera of the stereo pairs. The algorithm was 

successfully able to run on the dataset and generate accurate camera trajectories. 

However, the trajectories show significant scale drifts when there was no loop in the 

image sequences.  

Error Analysis 

In order to evaluate the accuracy of the SLAM algorithm the generated trajectory is 

compared against the ground truth camera pose data from the dataset. Since the scale in 

unknown in the monocular SLAM system, initially the scale is fixed by computing the 

distance between the first two key frames and then comparing with the corresponding 

ground truth poses from the dataset. Error in orientation is evaluated by first computing 

the relative orientation between two successive key frames. This relative orientation is 

then compared with the relative orientation of the ground truth poses. Figure 18 shows 

the comparison between the ground truth and generated trajectory form the developed 

SLAM system. This trajectory consists of several loop closures. The algorithm was 

successfully able to detect the loop and performed loop closure.  
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Figure 18: Comparison of trajectory generation between the ground truth and the SLAM algorithm on KITTI 

dataset. The scale of the trajectory is set using the ratio of distances between the first two key frame poses and their 

corresponding ground truth distances. The trajectory consists of several loop closures thereby preventing the scale 

drift in the pose estimation. 

 

Error in relative orientations in the generated trajectory is shown in Figure 19. Result 

shows that orientation error stays within a small range around 0 during the full length of 

the trajectory. Figure 20 shows a few generated trajectory from the dataset and compared 

with the ground truth. The scale is fixed in the beginning with first two key frames. The 

left images show the generated trajectories while on the right the relative orientation 

errors are plotted. The orientation errors are computed by comparing the relative 

orientations between the key frames generated by the SLAM algorithm and the relative 

orientations. Results show that the relative orientation errors consistently stay within a 

small threshold.
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Loop Closure Detection and Correction 

We tested our loop detection and correction algorithm in the two different image 

sequences in the KITTI dataset. The first sequence is 4541 images long and the second 

sequence is 2400 images long. Our results show that in each case the algorithm is 

successfully able to perform the loop detection and correction. Figure shows some 

images from the loop detection algorithm.  

 

 
Figure 19: shows the error in relative orientation between two key frames. The computed relative orientation 

is compared against ground truth to generate the error. 
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Figure 20: Comparison of generated trajectory. The generated trajectory demonstrated the scale drift in the monocular 

slam algorithm. The scale of the generated trajectory is fixed by computing the distance ratio between the first two key 

frame and their corresponding ground truth data 
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The vocabulary is created using a set of 138 images that are independent of the data set 

used for evaluation. The vocabulary tree is created using a depth level 5 and branching 

factor 12. Some example loop closure detections in two long image sequences in the 

KITTI dataset is shown in Figure 21.   

 

 

Figure 21: Some example loop closure detections in the KITTI dataset. 

 

Figure 22 demonstrates the importance of computing the fundamental matrix in order to 

find the map point correspondences between the loop frame and the current frame. 

Initially a brute force method is applied to find the corresponding image positions in the 

loop frame for the map points in the current frame. The top figure shows the matching 

with a significant number of outliers. The bottom figure shows the outlier rejection by 

computing the fundamental matrix with a RANSAC scheme and then by performing 

epipolar constraint test. This is important in order to compute the similarity transform 

between the current frame and the loop candidate frame.  
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Figure 22: Using fundamental matrix for outlier rejection in loop matching. Top figure: A brute force searching for the map 

points correspondences results in a significant number of outliers. Bottom figure: rejecting outliers to find correct points 

correspondences between the loop candidate frame and the current frame. 

Comparison between the trajectories generated by the algorithm with and without loop 

closure is shown in Figure 23. The results clearly demonstrate the importance of loop 

closure in monocular SLAM algorithm as the algorithm suffers from scale drift in 

absence of loop closure.  

  

Figure 23: Trajectory generation with and without loop closure. The left image shows the generated trajectory 

without loop closure. The right image shows the corrected and optimized trajectory after loop closure is detected 
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Time required by the major components of the loop closure detection is shown in Table 

2. The database query to find a loop candidate frame takes a very small amount of time. 

This demonstrates the effectiveness of the algorithm to build a long duration map where 

the loop closure detection can be performed in a very short amount of time. 

 

Table 2: Time break down of the major components of the loop detection  

Items Time in Sec 

Data Base Query 0.045 

Map Points Matching 0.08 

Fundamental Matrix With RANSAC 0.047 

 

Computational Study 

We evaluated the efficiency of the algorithm by measuring the time required for the 

computationally expensive components of the algorithm. The algorithm was run multiple 

times and then the times required are averaged to obtain an estimate of the time required 

for the components of the algorithm. The major time critical components are feature 

detection and descriptor generation, new map points creation and the map points 

matching. Especially on the ODROID computer, feature detector and descriptor 

generation is particularly slow with serial processing. However, the time improves 

significantly when done in parallel.  

Comparison Between Serial and Parallel Processing. In order to evaluate the 

performance enhancement with parallel processing, the algorithm is run on the dataset 

using both serial and parallel processing. The effectiveness of the parallel feature 
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detection and descriptor generation is demonstrated in Figure 24 as majority of the time 

for tracking each frame is spent on the detection and descriptor generation. On a standard 

laptop, time required for the parallel feature detection and descriptor generation is less 

than half of what is required for the serial feature detection. For each frame 2000 feature 

points are generated on 8 pyramid level. The image size used in the comparison is 

1241x376.  

 

Figure 25 shows the comparison between times required to track one frame using serial 

and parallel descriptor generation and map points tracking. Tracking one frame include 

detection and descriptor generation, map points matching and pose optimization from the 

matches found in the image.  

 

 
Figure 24: Comparison between parallel and serial feature detection and descriptor generation. With parallel 

detection and descriptor generation, the time requirement is reduced to less than half of the time required for 

serial processing. 
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Performance Evaluation on The Onboard Computer 

In order to evaluate the performance of the SLAM algorithm on ODROID XU3 

computer, the SLAM algorithm was run on ODROID using the image sequence 00 of 

KITTI dataset with the same parameters settings as the laptop computer.  The algorithm 

runs significantly slower that the laptop. However, the computational time clearly 

suggests that it is possible to use the algorithm for onboard large scale localization and 

mapping with a low power small form factor computer.  

 

With the parallel threading for detector and descriptor generation, map points tracking 

and new map points generation, average tracking time for 1600 images is 0.1238 seconds 

per frame. The major time critical components of the tracking system is the detector and 

descriptor generation which requires on an average 0.085 sec or 85 millisecond for 2000 

features on 8 pyramid level on an image size 1241x376. Figure 26 shows the processing 

time per frame on the ODROID.  

 

                                Figure 25: Comparison between parallel and serial tracking on the KITTI dataset. 
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The algorithm was also compared with the open source ORB SLAM algorithm [20]. To 

compare the performances, both algorithms were run on the ODROID using the same 

parameters settings for detector and descriptors generation. On the KITTI dataset, the 

average tracking time for the ORB SLAM was found 0.23 seconds per frame which 

required almost twice the amount of time to track each frame. In worst case, it took over 

0.3 seconds to track one frame. 

 
Figure 26: Time requirement for tracking per frame on the ODROID. The algorithm was run on the 

KITTI dataset to evaluate the performance of the algorithm  

 

Comparison On Flight Data. The developed SLAM algorithm is also compared 

with the publicly available ORB SLAM algorithm on a dataset generated during the 

manual flight of the quadcopter. The image sequence include quad takeoff and flight in 
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an indoor environment. The images were captured with a chameleon 3 camera with 

image size 1228x376. In order to compare the performances, 2000 corner points are 

detected on 8 image pyramid levels. The FAST threshold was set at 20 in both cases.  

The result demonstrate the robustness and efficiency of the developed algorithm as the 

ORB SLAM failed right after initialization. This is due to the amount of time required for 

the ORB SLAM to track each frame. Initially the quadcopter was sitting motion less on 

the ground before takeoff. During this time, the ORB SLAM took about 0.45 second to 

process one frame. In comparison, the developed algorithm took about 0.24 second to 

process each frame. Since a large number of features were tracked (~900) during the 

initialization, the computation time remained high until the SLAM algorithm was 

initialized.  Once initialized, the algorithm was able to process each frame at a rate of 

0.13 second. However, the time required for processing one frame suggests that the 

image size is too large for real time performance.  

Figure 27 shows the time required for tracking one frame. The camera position from the 

SLAM algorithm is shown in Figure 28.  
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Figure 27. Time required for processing one frame on the flight data 

 

 
Figure 28. Camera Poses generated by the SLAM algorithm on the flight data 
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Summery 

In this chapter we presented our real time scalable monocular SLAM system. The 

algorithm process flow is shown first and the major components of the algorithm are 

described in details. In order to achieve robustness in rapid exploration, camera pose 

tracking and map expansion is performed in the frontend while the incremental local 

bundle adjustment for map optimization is performed in the backend. The map expansion 

occurs only when the robot visits previously unexplored area. Parallelization of the time 

critical components help make the algorithm computationally efficient and capable of 

running real time. A robust and efficient appearance based loop closure detection 

algorithm is developed that run in a separate thread. Temporal and geometric consistency 

check is performed to prevent from false loop closure detection.  

Performance evaluation of the algorithm was done using indoor and outdoor dataset. 

Initially the indoor dataset was created by mounting the camera on the quadrotor and 

carrying the quadrotor in an indoor environment. Additional dataset was created by flying 

the quadrotor with the camera and the onboard computer. In order to evaluate the 

algorithm in outdoor environment, we have used the publicly available KITTI visual 

odometry dataset. Results demonstrate the algorithm’s effectiveness in the challenging 

outdoor environment such as partially dynamic environment as well as environment with 

only vegetation.   
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CHAPTER IV 

INERTIAL AIDED VISUAL SLAM FOR SMALL MOBILE PLATFORM 

Introduction 

Over the last few years, a substantial amount of research has been done on integrating 

visual and inertial sensors for localization and navigation in the mobile robotics 

community [ 50-53]. The complementary nature of these sensors provides rich 

information to build a system that is capable of navigation in an unknown environment 

without any external infrastructure. This is a key advantage for mobile robots operating in 

an unstructured and unknown environment. However, mobile robots have limited 

computational capacity and require a reliable and efficient method to estimate the 

physical quantities related to navigation. This is particularly true for small aerial robots 

such as micro aerial vehicles (MAV).  

Aerial robots offer great potential for applications ranging from precision agriculture, 

construction site monitoring to search and rescue. They have the capabilities to reach 

places where it is impossible or hazardous for human beings. However, the reach the full 

potential of the aerial robots, certain degrees of autonomy is imperative. While the use of 

GPS in outdoor environment is the most common way to achieve the autonomy, sole 

reliance on GPS signal is problematic as reception cannot be guaranteed (signal can be 

lost or compromised). Ideally we would like to have an aerial robot that is equipped with     
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proprioceptive sensors capable of localization itself and perform navigation in the 

absence of any external information or communication.   

Localization and mapping based on laser or RGBD cameras have been successfully 

implemented for autonomous micro-aerial vehicles [50, 51]. However they are only 

usable in certain environments. For example, laser based localization requires at least a 

partially structured environment for incremental motion calculation [51, 52]. On the other 

hand RGBD camera has a limited depth range thus making these sensors not feasible for 

unstructured outdoor environment.  

An onboard vision based state estimation method is described in [53] where vision and 

IMU information are used in a visual inertial navigation system for MAV localization 

and trajectory control. The system uses a combination of two cameras where a primary 

camera is used for fast frame to frame tracking in a visual odometry framework. The 

second camera runs at a much slower rate to generate map points using triangulation. The 

use of a second camera in a stereo scheme allows for metric scale recovery.  The system 

uses a KLT tracker [54] with Shi-Tomasi corners [55] for frame to frame motion 

estimation. The pose estimation is performed at 20 fps on a 1.6 GHz Intel Atom based 

onboard computer. However, the system does not address the full SLAM problem and 

from our experience KLT tracker is not suitable for repeated environment as well as large 

change in scale and illumination.  

A real time onboard vision based navigation system was proposed in [56] where they 

used a visual inertial system within an EKF framework for localization. The information 

coming from visual and inertial system is fused for state estimation in a loosely coupled 
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manner for pose and scale estimation. For visual pose estimation, the system used a 

modified version of PTAM where the original algorithm was simplified to achieve 

onboard processing capability for a small hexacopter. The simplification came at a cost 

where they discard all bust a few previous frames as the system was not intended for 

large scale map building. In addition, the implementation used a downward looking 

camera essentially limit its applicability.  

Using stereo systems for MAVs have also been proposed in literature [57,62]. A stereo 

vision based approach for autonomous mapping and exploration using a forward looking 

stereo system is presented in [57] where they use a combination of onboard and offboard 

computation for map generation and navigation. The onboard computer is used for pose 

estimation in a visual odometry framework from the stereo images and the images are 

sent to a ground computer for map generation and loop closing. Indoor and outdoor 

experiments are performed while the MAV was flying at a low altitude. Since the range 

estimation from a stereo system is quite limited, scale estimation in larger environment is 

a limitation in the system.  

In light of these developments, we propose a full scale SLAM system that is capable of 

running onboard the small UAV. The SLAM algorithm is capable of running in both 

indoor and outdoor environments in a GPS denied environment. We also provide a filter 

based multi-sensor fusion framework where additional sensors such as GPS (when 

available) can be incorporated in the state estimation easily. In this chapter, we provide a 

detailed description of the SLAM algorithm that is developed to run onboard a small 

computer carried by the quadroter developed in our lab.  
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Coordinate Frames 

 

Figure 29: Vision and IMU reference frames and their relative transformation   

 

The coordinate systems for our framework consists of an inertial frame, a body fixed 

frame for the quadrotor and the vision reference frame. For our test purposes, the inertial 

frame considered is the earth fixed NED (North East Down) coordinate frame with x axis 

pointing north, y axis pointing east and the z axis pointing to the center of the earth. The 

origin of the inertial frame is selected as the position when the SLAM algorithm starts. 

The body fixed frame is attached to the quadrotor with x axis pointing forward, y axis 

pointing to the right and the z axis pointing downwards. The center of the body frame is 

considered as the center of the IMU. Assuming that the camera is rigidly mounted on the 

platform, a constant transformation matrix between the IMU and the camera center is 
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considered in this work. This transformation matrix is estimated by measuring the 

distance between the coordinate center of the flight controller and the camera.   

Prediction From IMU 

The autopilot is equipped with three accelerometers and three gyros measuring the 

accelerations of the three orthogonal coordinates and angular velocities about the 

coordinates respectively. The gyros generate angular rate signals when the platform  

that the image arrivals and can be integrated between the poses to estimate the relative 

orientation and positions between two successive image arrivals.   

 

Figure 30: Sensor measurement over time. The measurements from IMU arrive at a faster rate than the 

camera images. 

 

Denoting the attitude of the IMU at time 1t and 2t  as 1I and 2I , the relative rotation can 

be computed by propagating the rotation matrix using the gyro measurements t to 

estimate the attitude change during the time between two image arrival. With high 

sampling rate ( t is small) the propagation of the rotation matrix can be performed as 

follows [6]: 
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is the propagated rotation matrix computed from the rotation matrix 1I

tR of the 

last time step t and the relative rotation tR in the interval t and 1t . t is the rotation 

vector and 
tgb ,
is the bias vector in gyro measurement.  

Since this relative rotation from the gyros measurements are in the IMU coordinate frame 

of the platform, a coordinate transformation is needed to estimate the relative orientation 

in camera frame. Assuming the relative transformation between the IMU and the camera 

is fixed, relative orientation in the camera frame is denoted as 
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It is well known that measurements from low cost gyros suffer from a slow drift term. 

However, the relative measurement between only two consecutive image frames limits 

the accumulation of the drift and a reasonable prediction for the absolute camera pose is 

obtained as follows 
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One way to predict the position is to integrate the acceleration measurements between 

two image arrivals to get a relative displacement. However, displacement computation 

from double integrating acceleration measurements is very sensitive to noises as even a 

small error in the orientation or biases gets amplified by the integration process. In order 

to obtain a prediction for the motion, the method used in this work is similar to the IMU 

pre integration method described in [47] where the IMU measurements are integrated in 
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the IMU frame of last image arrival. We use the notations ,, 11 II
VP 


and 1

2

I

IR to 

represent the position, velocity and orientation components that are computed from the 

IMU measurements obtained between time intervals 1t  and 2t . Since the accelerometers 

provide specific force measurements, 1IV represents the change in velocity between the 

poses 1I and 2I . However, the position change estimation requires an initial velocity at 

the beginning of the integration period. As such, the term 


 1IP is considered as a 

corrective term generated from the acceleration profile during the time of integration. 

Table 3 Algorithm for IMU measurement integration 

1: 01 
I

P  

2: IR I
1  

3: for 21 ttt   do 

4:     ttt t  1  

5:     )(111

1 t

I

t

I

t

I

t

I

t bfRVV  
 

6:      tVPP I

t

I

t

I

t 



111

1
 

7:       
t

I

t

I

t RRR 
11

1
 

8. End for 

9. Output = 






















t

I

t

I

t

R

V

P

1

1

 

 

In the IMU frame of the first image arrival, the relative velocity and displacement during 

the time interval 1t and 2t can be calculated as  
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Together the rotation and translation component of the relative motion of the platform is 

represented as a rigid body transformation  











10

1

2

delpR
T          (69) 

Finally, the predicted pose in the navigation frame can be computed as 
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After the new image arrival, the rotation matrix is set to identity and the delta 

components for position and velocity are set to zero before starting the pre-integration of 

the IMU measurements. Since the velocity estimation is subjected to large drift because 

of error accumulation, the initial velocity I

tv is updated after the camera pose is optimized 

from the map points.  

Tracking And Pose Estimation 

The map feature points tracking is similar to the previous chapter where a region is 

created around the predicted image position for the potential visible map points and then 

perform descriptor matching to find map points in the current frame. However, the pose 

estimation method takes a different path where we take advantage of the IMU 

measurements. Since the relative rotation from the IMU measurements between two 

image arrivals can be considered reliable, we use the attitude prediction as a measurement 

and estimate the camera position using a 2 points RANSAC scheme [21]. Assuming the 

rotation is known, the only unknown parameter is the 3D translation vector and can be 

solved using 2 points correspondences. From the successfully tracked map points, 2 
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points are selected randomly to get an estimate of the camera pose and then the number 

of inliers is computed from the projection model. At the end, we select the camera pose 

with maximum number of inliers as our initial camera pose estimate and finally the 

camera pose is optimized using the nonlinear optimization method explained before.  

Implementation Details 

The original implementation of the BRISK descriptors uses the SSE instructions for Intel 

processors for performing both the image sampling and the hamming distance 

calculations. For the single board computer, the image sampling is performed using the 

neon instructions set for ARM processors [3]. Hamming distance calculation is 

performed using the standard OpenCV implementations for ARM processors.  

Metric Scale Estimation 

One major challenge with monocular camera is that the scale is observable with a 

monocular SLAM. In addition the scale tends to drift because of the gauge freedom.  

Most state of the art visual inertial navigation systems (VINS) [48, 49, 59] use IMU 

information in a filtering or nonlinear optimization scheme to recover scale of the system. 

A closed form solution for scale estimation using a monocular camera along with the 

IMU data is also shown in [60]. However, a nonlinear observability analysis of the state 

estimation problem shows that there exist unobservable modes with monocular VINS that 

can only be eliminated through motions that involve non-zero linear accelerations [56, 

59]. This is challenging for a platform such as quadrotor that can have hover mode as 

well as complex motion. In addition the quality of the IMU data from the low cost IMU 
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integrated to the autopilot makes direct use the state of the art VINS systems for state and 

scale estimation quite impossible.  

We take advantage of the ultrasound sensor that is pointing to the ground along with a 

vertical motion in order to set the scale when the map initialization is performed. When 

the SLAM is initialized, the motion of the quad is constraint in such a way that in 

addition to sideways motion, the quad also has some vertical motion. This condition is 

easy to achieve for a quad motion. As the quadrotor takeoff mostly consists of vertical 

motion until it reaches a hover mode, we can initialize the SLAM during the takeoff and 

the map will be initialized once the initialization conditions mentioned above are met. On 

the other hand, if the SLAM is initialized when the quadrotor is in hover mode, the hover 

set point can be set higher than the current height and the map can be initialized when 

there is sufficient parallax between the initial and current position of the quadrotor. In 

order to set the scale of the system, the ground height from the ultrasonic sensor is stored 

when the SLAM is first initialized and when the map initialization is done. The next step 

is to compute the difference in height between the first quadrotor pose and the pose when 

the map is initialized and compute the ratio of the height from direct distance 

measurement and the vision system. The result is our scale. Once the scale is known, the 

whole map along with the two quadrotor poses in the map is adjusted for the scale.  

The above step ensures the proper scale of the state estimation using the monocular 

SLAM. However, we still need to have a method to account for the scale drift during 

exploration. To address this, we use an extended kalman filter (EKF) to estimate the scale 

when the quadrotor is in motion. We assume that the attitude computed from the vision 
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system is rather accurate and setup our state as a 10 elements vector consisting of 3D 

position, velocity, acceleration and scale. 
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The prediction model for the EKF can be written as 

     kkk wXfX  )(1          (72) 
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Where kw is the Gaussian process noise and T is the time difference. Every vector is 

resolved in the inertial coordinate. In order to keep the algorithm fast and simple, we used 

the simplification [] that the uncertainty is infinity when no measurement is available and 

update the states when a measurement is received either from the vision system or the 

IMU.  

The measurement update equations for the vision and IMU can be written as 

kkkVkV XIXHy ]000[ 333,,          

(74) 

kkkIkI XIXHy ]000[ 333,,          (75) 

Innovation for the vision is written as  
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And innovation for the IMU part as 
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Software Architecture for onboard computation 

 

Figure 31: The modular architecture of the software that runs on the onboard computer 

 

Loop Closure Detection 

The loop detection method is already described in the previous chapter where every new 

key frame is checked against the database that is continuously built during the mapping 
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process. However, we don’t implement a full pose graph optimization in order to make 

the implementation efficient. Here we adopt a global relaxation method by creating a 

graph that consists of a local region. When a loop closure is detected, the relative pose 

between the two key frames generates an edge in the graph. Using the two key frames as 

the roots, we construct a graph based on the co-visibilities list for both key frame. We 

essentially perform a breadth first search based on the co-visibility score and 

incrementally add key frames up to a fixed number of key frames based on their co-

visibility score.  The graph is then optimized using the procedure explained in the 

previous chapter. This is essentially pushing the uncertainty to the farthest key frames.  

Experiments & Results 

Effectiveness of the proposed algorithm to be able to run onboard has been validated 

during manual flights of the quadrotor in an indoor environment. The SLAM algorithm 

ran on the single board computer onboard the quadrotor during the flight and generated 

camera pose estimation. The effectiveness of the re-localization algorithm was also 

demonstrated during these flights. At one instance, the tracking failed due to sudden yaw 

movement of the quadrotor. However, once the quadrotor rotates back to previously 

explored place, the relocalization algorithm was able to recover from tracking failure and 

the tracking resumes again. Figure 32 shows the performance of the SLAM system 

during the manual flight of the quadrotor. The top image shows the quad pose trajectory 

generation from the tracker. The bottom image shows the number of successfully 

matched points. The tracker fails at around frame 248 due to the sudden rotation of the 

quadrotor. However, the system was able to relocate once the quad was moved back to 

previously explored region and tracking starts again.  
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Figure 32: 3D position of the quadrotor in local NED (North-East-Down) coordinate frame generated from the 

SLAM during manual flight of the quad. The bottom figure shows the number of matches per frame.   
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Summery 

In this section we presented an inertial aided scalable monocular visual SLAM algorithm 

that suitable for small mobile platforms equipped with a monocular camera and an 

inertial measurement unit. All the computations are performed onboard a small payload 

computer with limited power consumption and weight. Effectiveness of the algorithm is 

demonstrated on the dataset collected by flying a small quadcopter with the camera and 

the computer as well as during actual flight of the quadcopter. Results show that the 

algorithm is capable of running real time on the single board computer and robust to 

tracking failure, and it can be used for autonomous robot navigation and path planning 

without depending on the communication with a control station. However, the absence of 

any ground truth data does not allow us to perform any quantitative error analysis. Future 

works include evaluating the performance of the algorithm with a ground truth data as 

well as using the algorithm for autonomous control of the quadrotor using the pose 

estimation from the SLAM system. 
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CHAPTER V 

TEST PLATFORM 

In this chapter we describe the development of the test platform which includes both 

hardware and software development. This test platform is used for validating the 

developed SLAM algorithm and vision based control algorithms. 

Hardware Development 

A low cost quadrotor is built as part of the hardware development. The quadrotor was 

built using low cost off the shelf (OTS) equipment and assembled in the lab. The 

quadrotor is capable of carrying around 700 gms of payload with a flight time of 12 

minutes. The payload consists of an onboard computer and a camera. The major 

components of the quadrotor are described below. 

Quadrotor Frame 

A DJI 450F flame wheel frame with X-configuration is used that includes the frame, 920 

kV brushless DC motors, OPTO 30A electronic speed controllers (ESC) and two metal 

plates.  The bottom plate works as a built-in power bus for connecting the battery to the 

speed controllers and the top plate is essentially used as the payload bay that holds the 

onboard computer and the camera. Two pairs of motors rotate in the opposite direction. 

Each motor with its attached 10” propellers contributes a maximum thrust of 420 gm. 
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Our design also includes powering the autopilot from the power bus thus eliminating 

need for external power source for the autopilot.  The quadrotor is capable of flying with 

a 2000 gms total load including the payloads. 

 
Figure 33: Image of the quadrotor. The pencil is used to get a perspective of the size of the quadrotor 

Autopilot 

An open source low cost autopilot called PIXHAWK is used in the quadrotor. The 

autopilot consists of a 32 bit 168 Hz ARM Cortex® M4 Processor, a 256 KB RAM, a 2 

MB flash memory and runs a light weight real time UNIX operating system. The 

autopilot includes 5 UART ports and one I2C® interface in order to connect to external 

sensors and interfacing with payload computer onboard the quadrotor. It also houses the 

IMU, barometers and a magnetometer sensor suite. 
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Figure 34:Image of the PIXHAWK Autopilot 

Onboard Computer 

The onboard computer used in this project is the ODROID XU3 lite single board 

computer. The computer has a form factor of 94x70x18 mm and weighs about 72 gms. 

The maximum power consumption is about 20 watt making it a suitable candidate for 

applications where the payload capacity is very limited. The autopilot consists of a 

Cortex A15 1.8 GHz quad core and Cortex A7 quad core CPUs, A 2 GB low power 

DDR3 RAM at 933MHz with memory bandwidth of 14.9 GB/s. The peripherals include 

4 USB ports which allows for serial interfacing with the autopilot as well as connecting 

with external sensors. The computer also runs a light weight UNIX operating system 

allowing for software development and compiling on the board thus eliminating the 

necessity of cross compilation.  
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Figure 35: The ODROID single board comuter used as the onboard computer.  

Sensors 

The sensors used in the project can be divided into two types: ones that are integrated or 

connected to the autopilot and the ones that are connected to the onboard computer. The 

first category of the sensors includes a 3 axis IMU (Inertial Navigation Unit) integrated in 

the autopilot, a barometric pressure sensor, an external sonar sensor and an external 

magnetometer. The IMU unit has a 3 axes accelerometer as well as a 3 axes gyroscope.  

Both the external sonar and the magnetometer sensors are connected to the autopilot 

using I2C interface. The camera is connected to the onboard computer using an usb 

interface.  

Camera. The camera used in this project is a point gray Chameleon usb3 camera. 

The camera has a resolution of 1288x964 with a maximum frame rate of 30 fps. The 

camera is a global shutter camera with CCD sensor type. However, we use a 640x480 

image size in this thesis with images captured at 10 Hz.  
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Figure 36: Image of Chameleon usb3 camera used as the front looking camera 

 

 

Figure 37: Image of the Developed Quadrotor during flight 

 

Software Development 

Software development for the test platform is divided into two sections: a) 

communication with the autopilot and ground station and b) control algorithm for the 

autonomous flights of the quadrotor. 
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Communication 

The onboard computer communicates with the autopilot using a serial communication 

using two separate threads. In the receiving thread, the onboard computer reads the 

incoming sensor data and the vehicle’s current state from the autopilot. The second thread 

is for sending vehicle position estimation from the SLAM system and control commands 

to the autopilot for autonomous takeoff, hover and motion. The commands are sent in the 

form of vehicle attitude and position. The stock firmware on the autopilot is also 

modified to send the sensor information at the desired rate as well as receive the control 

signals from the payload computer. The second form of communication developed is 

between the payload computer and a ground computer in order to visualize the 

performance of the SLAM system as well as having greater control of the events and 

failsafe for safe operation of the quadrotor. The communication with the ground 

computer is achieved using a UDP socket communication that runs on its own thread. 

Control Algorithm 

The control algorithm is responsible for the autonomous flight of the quadrotor using the 

SLAM system. The algorithm includes generating attitude and position commands for 

takeoff, hover and the motion of the vehicle. The control scheme in the autopilot does not 

allow for autonomous flying of the autopilot without receiving position estimation either 

from a GPS source or a vision system at a rate 2 Hz or more.  

Autonomous Takeoff. Since the SLAM system does not start until the quadrotor 

is in hover mode, we don’t have any position estimation during takeoff. As a result the 

algorithm continuously send attitude setpoints to the autopilot where the roll and pitch 
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setpoints are kept 0 in order for vertical takeoff. However the yaw setpoint is the current 

yaw position of the quad in the NED coordinate. The algorithm continuously receive the 

current yaw position updates from the autopilot and send back the same yaw position as 

the setpoint thus eliminating the possibility of quadrotor rotation during takeoff. In order 

to have a smooth takeoff, the thrust setpoints are generated using a sigmoid function 

where the steepness of the curve depends on the desired time to reach the maximum 

thrust. This time is a configurable parameter that can be adjusted to optimize the takeoff 

performance. The maximum desirable thrust is determined empirically by manually 

flying the quad at the desired height and recording the thrust required. The time required 

to reach the desired height from takeoff is also captured to estimate the time required to 

achieve the thrust in the autonomous mode.  

Hover. The equation for altitude Control 
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Altitude can be stabilized with a feedback linearizable input u  
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Software Architecture 

The software architecture includes running the algorithm in the onboard computer, 

communicating with the autopilot and also a ground computer. Communication between 
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the autopilot and the onboard computer is achieved using a serial interface. The algorithm 

receives raw sensor data (IMU, barometric pressure etc.) from the autopilot and sends 

Quad pose estimation in the NED coordinate to the autopilot. In addition, the algorithm 

receives quad attitude data and flight mode from the autopilot. In a separate thread, the 

algorithm also communicates with a ground computer using a UDP socket. The algorithm 

takes command from the ground and in turns send signal to the autopilot for system 

arming, takeoff and hover. The algorithm sends the estimated quad pose to the ground 

station for visualization purposes. The serial and the socket communication run on their 

own thread.  

 

Figure 38: Communication between the onboard computer and the autopilot and also between the 

onboard computer and ground computer 

 



100 
 

CHAPTER VI 

CONCLUSION 

This thesis tackles the efficient vision based monocular SLAM by concentrating on real-

time strategies for robust and locally accurate estimation of scene structure and camera 

motion with global consistency. Based on the previously developed key frame based 

SLAM algorithms a number of new techniques have been presented. The main 

achievements are: 

 Development of a real time monocular SLAM algorithm that is proven to be robust 

and locally accurate. The new frontend and backend decoupling ensures that the 

algorithm is suitable even during fast exploration in a challenging outdoor 

environment with a front facing camera. Parallelization of the time critical 

components of the algorithm allows for real time performances without 

compromising the robustness of the algorithm. This is particularly important in 

computationally constraint systems.  

 An efficient technique for monocular loop closure detection and correction using the 

same binary descriptor used to represent the 3D map points. This eliminates the 

requirement for using separate strong descriptors for loop closure detection in 

previous SLAM algorithms. In addition, the temporal and geometrical consistency 

check ensures the robustness of the correct loop closure detection.  
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 Development of an efficient re-localization algorithm by creating a novel tree 

structure for binary descriptors. The validity of the algorithm was demonstrated 

during the flight test of the algorithm.  

 A monocular SLAM framework that can be extended and used for other purposes 

such as extracting semantic information from the generated 3D points cloud map.  

 Augmenting the real time SLAM algorithm with IMU information when available in 

order to increase the robustness and efficiency of the algorithm as well as recovering 

the metric scale of the map. The IMU information is used for initial camera pose 

prediction and estimation before the pose is optimized using the nonlinear 

optimization method. This ensures a good initial estimation for the optimization to 

converge in a short amount of time. The effectiveness of the algorithm is 

demonstrated by performing real time SLAM generation on the onboard computer 

while flying the quad in an indoor environment. 

 Development of a low cost quadrotor as a test platform. The quadrotor carries an 

ODROID onboard computer along with the camera during flight. A software 

framework is developed for communication and autonomous flight of the quadrotor 

that takes pose estimation and control signals from the onboard computer. 

In order to evaluate the performance of the algorithm, initially we have collected data in 

an indoor environment and run the algorithm on the indoor dataset. The results clearly 

show the resemblance in the generated 3D structure with the actual structure of the 
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environment. However, the lack of ground truth prevents us to estimate the amount of 

error. Usually the accuracy in the algorithm is compared to the ground truth data 

generated in a lab environment using absolute pose estimation methods such as vicon 

[70] systems. A similar method is required for complete evaluation of our algorithm.  

The algorithm is also validated in the publicly available KITTI dataset. The KITTI 

dataset provides stereo images captured with a front facing stereo camera mounted on top 

of a vehicle. Our algorithm was able to localize and generate 3D point cloud map in 

challenging outdoor environments.  

In order to validate the applicability for small mobile robots, the algorithm was 

implemented on the ODROID single board computer carried by the small quadrotor 

developed as the test platform. Initially the algorithm was validated on the collected 

dataset and then tested during manual flight of the quadrotor. The results are shown in the 

previous chapter. However, the lack of ground truth data does not allow us to quantify the 

error in the estimated quad poses.  

Discussion & Future Work 

Monocular SLAM algorithm provides an efficient solution to the localization and 

mapping problem for small mobile platforms with strict payload constraints. This system 

offers an alternative solution when GPS signal is unavailable or lost thus increases the 

application range for small robots. However, it is also more challenging since depth 

information is not readily available and need to be estimated from inter frame translation 

over time. Any error in the relative motion estimation is accumulated in depth estimation 

from triangulation. One way to reduce the amount of error is to use large number of 3D 
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map features for camera pose estimation. However, it comes at a cost of increasing 

computational complexity as the computational cost increases linear to quadratic with the 

number of map points. In addition, using 3D point cloud as the map features also causes 

the SLAM algorithm to fail in environments with lack of distinctive features. This is 

particularly true in manmade environment where surfaces with uniform colors, repeated 

patterns and reflective surfaces cause distinctive feature selection and tracking 

impossible.  

 

Figure 39: Example of an environment with reflective surfaces. The algorithm fails to detect and track 

sufficient distinctive corner points for accurate camera pose estimation.   

One alternative approach is to use line features for the map representation. However line 

features are not as easy to handle as point features. Line features are 1-dimensional 

features and also it is hard to determine the end points. In addition they are only prevalent 

in manmade environment causing the SLAM algorithm to be applicable only in city like 

environment.  
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Most recent structure from motion algorithms are focused on dense reconstruction of the 

environment and extraction of semantic information of the environment. Most of these 

algorithms requires training and are used in an offline manner with powerful computers 

thus are not suitable to be applied for real time SLAM on computationally constraint 

systems.  

In our view, the developed algorithms can be considered as the starting point for future 

development and there are a few paths that can be taken to improve the robustness of the 

vision based pose estimation, rich environment representation as well as motion planning. 

A hybrid of line and point features based localization and mapping can certainly increase 

the robustness of the algorithm. Parallel implementation of the feature detection and 

tracking along with a joint pose optimization would keep the computational cost under a 

limit.  

Another hybrid method for rich environment representation using a combination of 

sparse and dense representation might be useful in some applications such as obstacle 

avoidance and semantic information retrieval where only the nearby objects are 

reconstructed with a dense method whereas objects that are far from the robot can be 

represented using sparse 3D points or lines similar to wire models.  
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APPENDIX 

Mathematical group and its properties 

A group is a mathematical structure consisting of a set G  together with a binary 

operation GGG : . The properties of a mathematical group are 

Closure: If ,, 21 Ggg  then Ggg 21   

Identity: The group has an identity element such that ggeeg   for every Gg  

Inverse: For each Gg , there exist a unique inverse Gg  , such that

egggg    11  

Associativity: If Gggg 321 ,, then )()( 321321 gggggg    

Group Actions 

Group action refers to a group element acting on an element of a manifold M. For 

example, a left action of G on M is defined as a smooth map MMG : such that: 

1. the identity element e has no effect, i.e. ppe ),( composing two actions can be 

combined into one action: ),()),(,( pghphg    

2. for matrix Lie groups, the usual action is the matrix vector multiplication on 
nR  
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Tangent Space 

We start with some basic definitions from multivariate calculus that are used in the 

definition of the tangent space. 

A Smooth Path. Let 
mX  is an m-dimensional vector space and let ],[ bat is 

a real interval. Now a smooth path )(:: tPtXP  is a differentiable function from 

the real interval ],[ ba to the vector space. Now consider a nn matrix as a member of a 

vector space
2, nmm  , the smooth path maps real interval to the matrix groups. For 

example, a smooth path for )3(SO can be written as 
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Where )(tRx describes the rotation around x-axis at time t. 

Tangent Vectors of a Space. Let 
nX  be a n-dimensional vector space and 

there exists a path P such that XyyP  ;)0( . Now x is a tangent vector of X at y , if 
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is the tangent vector of )(tRx and therefore a tangent vector of )3(SO . Since IRx )0( , 

it is a tangent vector at the identity. Now the set of all tangent vectors at y  spans a vector 

space: the tanget space at y . Specifically, the tangent vectors at the identity of a Lie 

group G spans a vector space g  which is the tangent space at the identity. The tangent 

space can be identified with the space of directional derivative operators along smooth 

paths through y . As an example, we show the construction of the tangent space for the 

group SO(3). The matrices )3(SOA are orthogonal, so they satisfy IAAT  . Assuming 

a smooth path )(tAA   with IA )0( . Now differentiating the equation ItAtA T )()(

, we get 

    0)()()()(  TT tAtAtAtA          (86) 

for 0t , IA )0( and the equation becomes 
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          (87) 

Now )0(A is a skew symmetric matrix since 
T . Thus the tangent space for 

the group )3(SO is spanned by three skew symmetric matrices which corresponds to 

infinitesimal rotations around three rotations axes. These set of matrices are called 

generators for the group.  



108 
 

 

Figure 40: Example of a 2D manifold in a 3D space. The tangent vectors are represented by m 
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