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Abstract

In this paper, I attempt to apply an emotional proxy derived by applying

the Affective Norms for English Words (ANEW) to messages posted to the

Twitter social networking service in order to forecast the movement two stock

market indices: the Dow Jones Industrial Average (DJIA) and the CBOE

Volatility Index (VIX). In contrast to previous works, I have compared the

results of various forecast models employing different sentiment variables, as

well as comparing the neural network approach to more standard logistic re-

gression. Additionally, several of the models used employ an as-yet unique

sentiment proxy, focusing on the average of expressed emotion rather than the

volume of expressed emotion. The results indicate that while there is a distinct

possibility that sentiment variables can assist in accurately forecasting market

movement, the differences in choice of sentiment proxy and forecast method

are less important than anticipated.
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1 Introduction

Being able to predict the future is a fascinating possibility, even when the predictions

are restricted to a single event. Recent works such as Bollen et al. (2010) and Zhang

et al. (2011) claim to have such a power, by way of using online microblogs from

Twitter as a sentiment proxy to predict the daily changes in the stock market and

related indices. In this paper, I attempt to use a similar method to predict the

direction of stock market movements and compare my results with the results of

previous works. Due both to limitations in my own capabilities as a single researcher

with limited computing ability, and some ”black box”-ish methods used by previous

work, the methods used herein are modified quite a bit, with my own focus placed

on streamlining the process to make it relatively simple and fast to reproduce and

modify. Given the binary nature of movements (either up or down) I selected two

methods that excel in categorization tasks: logistic regression and neural networks.

My findings using these methods suggest that, overall, the sentiment proxies perform

better than random guessing but slightly less well than expected given the optimism

of existing research. However, the differences between the various sentiment proxies

are minimal.

1.1 Background

The role of the emotion in economic choice has, within the neoclassical context, gotten

little attention from economists, being folded into the general concept of utility. Be-

ginning with papers such as Elster (1998) and Loewenstein (2000), the role of emotion

in economic decision theory has recently come under greater scrutiny. Both authors

propose theoretical frameworks that move beyond the utility model of emotion. These

new frameworks describe emotional states as integral to the decision-making process.

Certain, more visceral states act as a survival mechanism, shifting the perception of
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both the choices available and their outcomes. Additionally, emotions also exist on

the other side of the decision-making equation, as the outcomes of a choice can lead

to the individual obtaining a different emotional state. However, since we can’t use

future data as a predictor, the focus remains on the current and past emotional states

and their effects on decision-making.

So, knowing that sentiment has a strong effect on decision-making by the individ-

uals that make up markets, it stands to reason that we should find some correlation

between measures of sentiment and some measurable market. The most easily mea-

surable market is, of course, that for equities such as stocks (and also likely the easiest

market to profit from foreknowledge of). Much research has been done to determine

if, as Elster and Lowenstein predict, the sentiments of individuals does indeed affect

their decision making and thus correlate with stock market activity.

In Neal and Wheatley (1998), they discovered that 2 of the suggested measures

of investor sentiment did predict returns, but that others added no additional pre-

dictability. Hirschleifer and Shumway (2003) finds that a measure of general sen-

timent, the weather, is highly correlated to the daily returns of stock markets for

26 countries. The difference in the results between these papers, the first finding

only mixed results using strictly investors’ sentiment, while the second having a very

strong conclusion using a more public sentiment, suggests that a more general mea-

sure of overall public sentiment may be more useful than one that attempts to directly

capture only investors.

With the advent of Internet media, a new potential to examine the voices and sen-

timents of both investors and the general public became widely available. Antweiler

and Frank (2004) examined the contents of stock message boards. They found that

the messages posted to these boards have predictive value for returns, volume, and

volatility. Again, because message posting is not limited to those who actually do

invest, or even those who are located near a trading floor, this sample captures a
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wider range of the public than just institutional investors. So the trend appears to

exist that more general measures of public sentiment capture more of the predictive

value for stocks.

As social networking sites have grown into the omnipresent entity that they now

represent in the lives of many, a new breed of sentiment data has become available.

With so many people freely sharing their intimate thoughts and feelings, this gives

researchers a natural opportunity to compare public sentiment with world events. In

particular, the Twitter social network has been extremely attractive to researchers.

Twitter offers easy-to-use direct access to streams of publicly shared messages, and

the length of each message is limited to 140 characters, making it very easy to compile

and analyze a large number of messages. The initial volley of research, such as Bollen

et al. (2010) and Zhang et al. (2011), found a striking correlation between Twitter

sentiment variables and the movements of stock indices. Bollen et al. (2010) find that

the calm emotion, as determined by their proprietary GPOMS algorithm, is the best

predictor of future market values, while Zhang et al. (2011) find that both ”hope”

and ”fear” as keywords in tweets predict negative movements in the market. A third

paper, Ranco et al. (2015), finds that the emotional content of messages containing a

certain stock symbol can predict the movement of those stocks. In Mittal and Goel

(2012), the authors attempt to replicate the work by Bollen et al. (2010) and arrive at

a similar predictive value, but this time find an additional mood profile (happy) that

contributes significant predictive power. With so many positive results, it seems a

natural conclusion that Twitter is indeed a perfect candidate for prediction of future

events by sentiment analysis. Indeed, Mao et al. (2011) finds that Twitter beats out

several other Internet-based sentiment measurements in forecasting accuracy. Given

these overwhelming results, Twitter appears to be a viable and natural choice for a

sentiment data source to use in my own analysis.

In a sense, the results of these studies are indication that the random walk hypoth-
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esis, and by extension the efficient market theory, may be less correct than previously

thought. This hypothesis states that the current price of assets in a market is inclusive

of all available information, so there should be no way to use a piece of information,

assuming that information is available to anyone, to predict the price. White (1988)

explores this concept by constructing a neural network designed to to forecast the

end-of-day prices for IBM stock, using the past prices as input. While the results of

the autoregression neural network on the training data were promising, out-of-sample

forecasts were inaccurate, and so the efficient market hypothesis remained unchal-

lenged by this result. If the efficient market hypothesis were correct, it would mean

that the information regarding the emotions of people, both investors and the general

public, which can be observed by anyone who is so inclined, should already be incor-

porated into and reflected in the existing asset prices. However, the conclusions of the

works referenced above, which, excepting White (1988), all find predictive ability in

their various inputs, represent a mounting pile of evidence against efficient markets.

As my own results fall more in line with White, it appears that there is much more

work to be done in this area before a solid conclusion can be made from so many

conflicting results.

2 Data

2.1 ANEW Wordlist

The development of the Affective Norms for English Words [ANEW] wordlist is de-

scribed in Bradley and Lang (1999). The dimensional model of emotion used in this

work describes emotions as points in 3-d space, defined by dimensions of Valence,

Arousal, and Dominance. Valence, or Pleasure, and Arousal are considered primary

dimensions, respectively corresponding to the psychological and physiological aspects

of a particular emotion. Dominance is a more recent addition to the affect model,
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corresponding with whether a particular emotion is associated with being in or out

of control. Within this particular wordlist, the values for each dimension range from

1 to 9. The scale is arranged such that greater numbers in valence, arousal, and

dominance indicate a greater feeling of pleasure, excitedness, or control respectively.

Given these values, any emotional state can be plotted and quantitatively compared

to others within the same model.

The affect model used in the ANEW study is presented in Russell and Mehra-

bian (1977). The primary factors of pleasure-displeasure, degree of arousal, and

dominance-submissiveness had previously been shown to be sufficient to define non-

verbal emotional expression. Russell shows that not only can the three-dimensional

space also be used to define verbal expression of emotion, but that these dimensions,

particularly the addition of the dominance-submissiveness dimension, are necessary

to fully define emotional state as expressed in English. Also important to note is that

in these psychological studies, emotional state is not defined by fleeting passions. It

is meant to represent the overall state of mind, like a mental backdrop that influences

an individual’s thoughts, decisions, and reactions. This influence should extend to

economic activity as well, and so it would seem a reasonable assumption that the

emotional state of the agents within an economy should have at least some correla-

tion to economic indicators such as stock indices. The question is whether or not

this correlation is directly observable and, if so, if it is a leading indicator for asset

pricing.

In order to gather the emotional ratings for each word, the authors employ the Self-

Assessment Manikin devised by Lang. Participants used the graphical representation

of the varying degrees of each emotional dimension (i.e. a smiling face for high

Valence, or a figure that appears to be asleep for low Arousal) that they felt in

response to each word. The resulting mean and standard deviation of responses for

each word and dimension were reported for both men and women separately, and for
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the study participants as a whole. Here, because it is impossible to determine the

gender of all Twitter users, I have used the results for all participants.

The decision to use this particular wordlist came after consideration of previous

works, which typically use dimensions that consist of single emotions based mainly

on the frequency of those emotions being stated outright or within certain, fixed,

phrases. I questioned whether using a more generalized framework such as the three-

dimensional PAD model, paired with a list such as ANEW that extracts the inherent,

non-explicitly-stated emotion conveyed by a choice of words, might provide a more

accurate picture of the prevailing emotional state of social media users. ANEW is also

freely available both in the original paper and by request from the authors, allowing

for easy replication and extension of research done using it. In this analysis the values

published in the original article are used.

It is worth noting that following in the footsteps of ANEW are a host of other

wordlists, among them an expanded version of ANEW containing over ten-thousand

words Warriner et al. (2013) and one developed solely for the purposes of measuring

Valence of social media status updates Nielsen (2011). Both of these wordlists, and

potentially more that remain unknown to me, are worthy of consideration and study,

but due to their size and the finite nature of time I must leave that duty to researchers

who have considerably greater computational resources available to them.

2.2 Acquiring the Twitter Dataset

The Twitter data was acquired directly through the streaming API provided on Twit-

ter’s developer site [https://dev.twitter.com]. The ”sample” stream provides a ran-

dom selection amounting to about 1% of all tweets sent. However, this stream provides

a volume of tweets that numbers in the millions each day, a number that far surpasses

both the needs and computing capability of this study. To cut back the stream to a

more appropriate number, a further randomized selection of about 5% is taken at the
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time of downloading. The resulting selection amounted to around ninety-thousand

tweets per day. For each selected tweet the script extracted only the relevant data:

the Date and Time the message was sent, the text of the message, the number of fol-

lowers the sender has, and an identification number unique to each tweet. All other

information, including user names, locations, etc. are discarded. The records kept

are compiled into a daily tweet dataset to be scored by sentiment analysis.

2.3 Twitter Sentiment Analysis: Creating the time-series

To begin analyzing the textual content of the tweets, a simple filter is applied which

removes all punctuation and converts the remaining text to lower-case. The scoring

script then cycles through each converted tweet and searches for words that are con-

tained within the selected sentiment dictionary, in this case the 1034 words of the

ANEW list. Any matching words and their respective sentiment scores for each of

the three dimensions are then saved in a separate variable with the corresponding

tweets. Tweets that don’t contain any matching words are discarded.

The sentiment scores for each tweet were calculated using the method outlined by

Healey and Ramaswamy (2011). To be specific, the scores of the ANEW words found

in each Tweet are used to form a weighted average score that is inversely proportional

to the relative standard deviation of their rating. The formula for a single dimension

of this weighted average is:

Scoret =
1

n− 1

n∑
1

x̄i ∗ (1− σi
S

)

Where n is the number of ANEW words found, x̄ is the mean value of the di-

mension, σ is the standard deviation of the value, and S is the sum of all standard

deviations of contained words.

Note that in order to use this function, the number of words contained in the
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message must be at least two. For messages containing only a single ANEW word,

the scores for each dimension are equal to the scores of the single contained word.

To form the daily sentiment time-series, the values of the sentiment score for each

matching tweet within each 24-hour period of the GMT time zone are averaged. A

total of 185 days of tweet values were collected, to form a final time series of 180 days

with corresponding lagged values.

A second time series is extracted using the same method, but this time using only

tweets that contain two or more matching words, which in theory should improve the

accuracy of the sentiment evaluation function.

2.4 Additional Data

As an additional sentiment proxy, the daily cloud cover in Manhattan was collected

from [http://forecast.io]. This gives the percentage of cloud cover in the Manhattan

area on that day, which I subtracted from one to arrive at an estimate of the daily

amount of sunshine at the New York Stock Exchange, in attempt to emulate the

sunshine effect described in Hirschleifer and Shumway (2003).

Daily closing data for the DJIA and VIX were collected from FRED. Because

this research is concerned only with the movements of these indices, a categorical

variable was constructed by taking the first difference, and applying a value of 1 for

an increase over the previous day, and 0 for a decrease. Narrowing the focus in this way

transforms a regression problem into a classification problem, making it much clearer

when comparing between different model predictions which is performing accurately

and which isn’t.

Before analysis, all sentiment score data is normalized to the range of 0, 1. This

normalization is necessary for the neural network to function as intended.
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3 Analysis

3.1 Models

To test the predictive effectiveness of the acquired data, I constructed three differ-

ent prediction models for each index. In each case, a present value and 3 one-day

lags of the chosen predictors are used. Additionally, the models are repeated using

only lagged values to determine if the movement can be predicted rather than just

correlated.

The first model uses the percentage of sun, defined as 1−%cloudcover, mimicking

the sentiment variable used in Hirschleifer and Shumway (2003).

Y = β0 + β1Sun(t,t−1,t−2,t−3) + ε (1)

And the corresponding model using only lags:

Y = β0 + β1Sun(t−1,t−2,t−3) + ε (2)

A second set includes the full array of Tweet sentiments:

Y = β0 + β1Sentiment(t,t−1,t−2,t−3) + ε (3)

Y = β0 + β1Sentiment(t−1,t−2,t−3) + ε (4)

And finally a third model set that adjusts the Tweet sentiment to include only

the messages with two or more ANEW words:

Y = β0 + β1Sentiment
(Words≥2)
(t,t−1,t−2,t−3) + ε (5)
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Y = β0 + β1Sentiment
(Words≥2)
(t−1,t−2,t−3) + ε (6)

For each of these models, I use a training set comprised of the initial 170 days of

the dataset to fit the models, which are then used to predict the daily change in the

index for the remaining 15 days and compared to the real data to determine accuracy.

3.2 Neural Network Structure

A multi-layer feed-forward neural network, as described by Hyndman and Athana-

sopoulos (2016), is one of the primary models used in this prediction of stock index

movements. Using the guideline that the hidden layers should be smaller in size than

inputs but greater than the number of outputs, I am using a network with input

nodes equal in number to the regressors, a single hidden layers of 5 nodes, and a sin-

gle output node. Learning is done through backpropagation, and a logistic activation

function is used.

Fadlalla and Lin (2001) summarizes the findings of several papers in which both

standard methods and neural networks are used, and find that, on average, neural

networks outperform the standard statistical methods such as regression in several

financial applications, including bond rating, bankruptcy prediction, and asset value

forecasting. Given the differing conclusions reached, it would seem that while there

is a place for neural networks in economic research, the effectiveness of such methods

seem to vary by application. One major cause of the variation in results is the

flexibility that the neural network model offers in terms of topology. Many decisions

must be made about the size and number of hidden layers, the learning rules applied,

activation functions and so on. More problematic is that there seems to be no defined

rules to how best construct the network, making the discovery of an appropriate

topology largely a matter of trial-and-error.
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Figure 1: Neural Network Structure

Input nodes represent the regressors, while the output node is the predicted value.

Each node is connected to each node of the following layer by a particular weight,

which is found through an algorithm called back-propagation. The weights in the

diagram above are visualized by the thickness of the line connecting each node, with

thicker lines representing a larger weight.

To arrive at an output value, the inputs are multiplied by the weights that connect

them to a particular node and summed, then multiplied by the node’s activation

function (a sigmoid logistic) to determine a value for that node. Then, the process

is repeated with these nodes becoming the inputs for the next layer. In each layer

except the output layer, a bias node is also present. This node always holds a value

of 1, and functions similarly to the constant term of a regression.

For the network used here, represented by the diagram above, the values of each

weight and node can be computed as follows: The value of the nodes in the input

layer are just the values of the input, in this case the training data, represented by
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the matrix X. The input nodes pass a value to the hidden layer that is equal to the

values of X are multiplied by the matrix of weights connecting them to the nodes of

the hidden layer, or generally: z2 = XW1. The values passed to the nodes are then

transformed according to the activation function, and this value is assigned to the

node: a2 = f(z2). Then, values for the remaining layers of nodes are calculated as:

z3 = a2W2

ŷ = f(z3)

In contrast, if we consider the logistic regression, which is also employed herein,

we can imagine it as a neural network consisting only of input and output layers:

Figure 2: Logistic Regression imagined as a neural network

With this visual it becomes easy to see how we arrive at the final value. The

inputs are multiplied by their weights (coefficients), summed to get the value of Z,

and passed through an activation function (in this case, the logistic function) to arrive
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at a final output value.

3.3 Back-Propagation

The algorithm for determining the weights between nodes, back-propagation, is in

many ways similar to the way in which a simple linear regression is calculated. The

commonly used linear regression is essentially the same as a neural network with

only input and output nodes. The addition of hidden layers allows for more accurate

prediction of complex non-linear patterns, such as those observed in stock market

movements.

The general idea is to use a gradient descent method to minimize the error pro-

duced at the output. To begin, we start by initializing the weights, or coefficients,

to random values. Then, the weights are shifted slightly higher or lower in order

to decrease the total error, or cost. To make this movement possible, the partial

derivatives of the cost function with respect to each weight must be found.

A cost function J =
∑ 1

2
(y− ŷ)2 for a single hidden layer network such as the one

used here would look like:

J =
∑ 1

2
(y − f(f(XW1)W2))

2 (7)

Where y are the actual output values, function f is the activation function of the

neural network, X is the matrix of inputs, and Wi is the matrix of weights for the ith

layer. In most cases, the activation function is either a sigmoid (when outputs are

between 0 and 1) or hyperbolic tangent function (for outputs between -1 and 1). So,

the partial derivative of the cost function for the set of weights connecting the hidden

layer to the output would be:

∂J

∂W2

=
∂
∑ 1

2
(y − ŷ)2

∂W2

(8)
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or:

∂J

∂W2

= aT2 ∆3|∆3 = −(y − ŷ)f ′(z3) (9)

Then, the partials for the first layer of weights, which connect the input layer to

the hidden layer, can be represented by:

∂J

∂W1

= XT∆2|∆2 = ∆3W
T
2 f
′(z2) (10)

In this way the errors of the second set of weights are taken into account when

finding the gradient of the first layer, since changes to the first layer will also affect

the error caused by the second. This method of calculating the gradients backwards

from the output gives the algorithm its name.

To update the weights, a value equal to the partial of the cost function times the

learning rate, α, is subtracted from each weight and the resulting value assigned as

the new weight.

Wi,j ← Wi,j − α ∗
∂J

∂Wi,j

(11)

This update occurs simultaneously for all weights in the network. Then, the same

algorithm is repeated until the gradient of the cost converges to some acceptably low

level, ideally something close to zero, or after a specified number of iterations have

been performed without finding any convergence.

3.4 Back-propagation Caveats

The primary issue with the use of a neural network, especially in contrast to simpler

functions like logistic regression, is that the cost function of a logistic regression

is always convex, while that of a neural network rarely is. The added layers of the

neural network bring with them local minima that badly complicate the minimization

14



of error. To limit the chance that the algorithm would converge to the incorrect

minimum, it can be run multiple times with different initial values, and either the

best model can be chosen, or an average of all models can be created. Here, being

heavily limited by available processing power, I have chosen to average the results of

25 fitting procedures for each model.

Also worth noting is the potential for over-fitting, which is alleviated by adding

a regularization term, λWi to each partial derivative of the cost function. This dis-

courages having an overly fitted model by penalizing large weights more than smaller

ones.

The implementation of the backpropagation algorithm used in this research is

provided by the nnet and neuralnet packages in R. The networks’ output are then used

to predict values for the test set comprised of the remaining 15 days, and compared

to the actual values for the change and movement direction of the indices.

4 Results

After the models are trained on the first 170 days of the data, the resulting coefficients

were applied to the independent variables for the remaining 15 days to arrive at a

predicted value. To translate the model predictions to the binary result, the outputs

are rounded to 0 if they are less than 0.5, or 1 if they are equal or greater than 0.5.

These final results are compared to the actual market movement for the corresponding

day.

The results of the prediction for each model, predicted by both logistic regression

and neural network, can be seen in the charts below. Particularly notable is the

accuracy of the logistic models for the DJIA. The most accurate of these models

predicted the correct direction of movement 11 out of 15 days in this test set. It also

appears that the choice of the sentiment proxy may be less important than expected.
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While there were differences in the number of correct predictions, they are not striking

enough to conclusively say one is more effective than the other, especially with only

one trial.

Figure 3: Prediction accuracy for DJIA forecast models
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Figure 4: Prediction accuracy for VIX forecast models

Table 1: Accuracy of DJIA prediction by model and method

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Log 10 9 7 9 11 9
Nnet 10 9 7 8 9 9

Table 2: Accuracy of VIX prediction by model and method

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Log 7 8 9 7 8 8
NNet 8 8 7 9 10 7

The next set of graphs show the individual predictions and how they compare to

the actual index movements. In these graphs, the predicted value as output by the

model appears as a blue dot. The green crosses represent the implied movement of

the model output, defined as 1 if the output is greater than 0.5 and 0 if the model

output is less than 0.5, while the actual movements are depicted as black circles.
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The days on which the green cross and black circle are overlapping indicate a correct

prediction from the model.
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Figure 5: Predicted values for DJIA forecast models
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Figure 5: Predicted values for VIX forecast models

23



Interestingly, although some of the regressions on DJIA have formed a fairly ac-

curate prediction for the test set, there were no statistically significant coefficients in

any of the regressions. The full output summaries for the regressions can be found in

the appendix.

These results are somewhat in line with previous works, but are also extremely

curious in their own right. While in theory the neural network should be as good or

better than a logistic regression, it seems that the logistic regression is a better first

choice for those without the ability to re-run the hundreds of iterations it might take

to achieve the absolute minimum error. Also, while the DJIA results are promising,

the VIX results are not quite as impressive. It may be the case that volatility is less

correlated to sentiment than is the ending price.

Also worth taking into consideration is some curious differences between the results

when including same-day sentiment versus those without. It would be reasonable to

assume that including the same-day data can only help, but in the case of DJIA’s

model 3 and 4, the lag-only model performs better using both methods. Because both

time-series are daily, it is also unclear whether the same-day sentiment is occurring

before, therefore being a predictor of movement, or occurring after and being a result

of the movement. Accurate tick data for the stock prices, as well as a corresponding

Twitter data stream, would be necessary to determine this relationship.

5 Conclusion

Most of the models for index movement prediction fell just above fifty-percent ac-

curate, with the average number of correct predictions being 8.9 for DJIA and 8 for

VIX. While the predicted values vary considerably between sentiment variables and

categorization method, the accuracy for each remains within a similar range. It could

be assumed from this result that the actual difference in usefulness between sentiment
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variables is very low, as they all measure the same thing: general public sentiment.

One possible concern is the lack of statistically significant regressors even in the most

accurate models. The only explanation for this that seems in any way plausible is

that, while individually the variables are next to useless, some combinations of them

may be very significant.

As seen in the graph of the Valence dimension seen below, the sentiment measures

do seem to coincide with other events, such as a huge increase around Christmas and

New Years, and a sharp decrease during the time of the November terror attacks in

Paris. So the sentiment data derived from ANEW does appear to be valid and satisfy

expectations with regard to real life correlation.

Figure 6: Valence score means across the study period

For both indices the neural network provides far less advantage than expected,

and in the DJIA actually performs much worse. The most likely explanation for the

lesser predictive ability of the neural network, when compared to the logistic regres-

sion, is the previously mentioned lack of a convex cost function. Because gradient
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descent stops immediately upon finding any minimum point, the logistic regression

can always find its global minimum error level, while it could potentially take hun-

dreds of iterations before finding the global minimum for a neural network’s error.

It may also be the case that this neural network’s structure or one of its learning

parameters is not ideal for the task.

The results of these models suggest that, at least for the tested period, the sen-

timent of the public is a stronger predictor for the movement of the DJIA index

than for the VIX index. While there is a strong possibility that this particular set

of predictions are just a fluke, and would not carry over to another set of tweet and

stock data, based only on the results here it appears that there are some predictable

patterns in stock movement.

The lack of significant predictive ability found in this set of sentiment variables, in

contrast to the existing studies on the topic, supports the efficient market hypothesis.

While it cannot be stated confidently that there is no value in the information found

in the Twitter sentiment variable, it also does not differ enough from randomness in

this small sample size to positively state that there is. However, the differences in

results may also be caused by the choice of sentiment variable, or even the possibility

that increased awareness of the phenomenon has changed peoples’ behavior since the

original study. The previous works have shown that there is a very real potential

for finding a very powerful predictive method using social network sentiment, but

continued iteration and experimentation with methods and models are necessary to

conclusively determine the most effective techniques.
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6 Appendix: Logarithmic Regression Output

Call:

glm(formula = djia_model_anew1, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6341 -1.1568 -0.1535 1.0779 1.8052

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.0264 1.1909 3.381 0.000722 ***

vMean_ 1.5586 6.4155 0.243 0.808051

vMean.l1 -6.0903 9.0873 -0.670 0.502729

vMean.l2 3.8954 7.6440 0.510 0.610334

vMean.l3 -1.0116 5.4452 -0.186 0.852622

aMean_ -1.1390 2.6863 -0.424 0.671568

aMean.l1 -0.3374 3.1655 -0.107 0.915115

aMean.l2 -1.2736 3.1568 -0.403 0.686609

aMean.l3 1.8023 2.4625 0.732 0.464235

dMean_ -3.9835 5.2678 -0.756 0.449529

dMean.l1 2.2963 7.4003 0.310 0.756331

dMean.l2 -5.4015 6.5212 -0.828 0.407499

dMean.l3 -1.8215 4.6693 -0.390 0.696465

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

29



(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 212.05 on 154 degrees of freedom

AIC: 238.05

Number of Fisher Scoring iterations: 4

Call:

glm(formula = djia_model_anew1f, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5472 -1.1768 -0.1421 1.0862 1.8151

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1665 1.0191 3.107 0.00189 **

vMean.l1 -7.1769 6.4730 -1.109 0.26754

vMean.l2 5.0267 7.1222 0.706 0.48032

vMean.l3 -1.4784 5.2634 -0.281 0.77880

aMean.l1 -1.1672 2.6629 -0.438 0.66115

aMean.l2 -0.7189 3.0178 -0.238 0.81171

aMean.l3 1.7620 2.4194 0.728 0.46646

dMean.l1 1.7557 5.1159 0.343 0.73145

dMean.l2 -6.0482 6.1334 -0.986 0.32408
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dMean.l3 -1.2400 4.5036 -0.275 0.78306

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 215.10 on 157 degrees of freedom

AIC: 235.1

Number of Fisher Scoring iterations: 4

Call:

glm(formula = djia_model_anew2, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.716 -1.139 -0.103 1.071 1.628

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.11503 1.62178 3.771 0.000163 ***

vMean2_ 0.02235 8.47127 0.003 0.997895

vMean2.l1 -3.30324 9.79063 -0.337 0.735825

vMean2.l2 6.55276 9.78901 0.669 0.503240

vMean2.l3 -2.70340 8.03101 -0.337 0.736403
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aMean2_ -1.55549 3.40654 -0.457 0.647946

aMean2.l1 -2.15642 3.94054 -0.547 0.584214

aMean2.l2 3.22841 3.92711 0.822 0.411029

aMean2.l3 0.94237 3.34373 0.282 0.778073

dMean2_ -3.98118 5.95023 -0.669 0.503445

dMean2.l1 0.86459 6.85064 0.126 0.899569

dMean2.l2 -10.44351 6.96462 -1.500 0.133742

dMean2.l3 -1.41226 5.76891 -0.245 0.806607

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 207.46 on 154 degrees of freedom

AIC: 233.46

Number of Fisher Scoring iterations: 5

Call:

glm(formula = djia_model_anew2f, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6758 -1.1532 -0.1435 1.0937 1.5424
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.7190 1.3726 3.438 0.000586 ***

vMean2.l1 -6.7003 8.3935 -0.798 0.424710

vMean2.l2 6.8524 9.5858 0.715 0.474700

vMean2.l3 -3.0682 7.8329 -0.392 0.695278

aMean2.l1 -3.4311 3.4621 -0.991 0.321668

aMean2.l2 3.6723 3.8218 0.961 0.336603

aMean2.l3 1.0336 3.2944 0.314 0.753721

dMean2.l1 1.6621 5.7301 0.290 0.771760

dMean2.l2 -10.0894 6.7606 -1.492 0.135599

dMean2.l3 -0.8557 5.6337 -0.152 0.879276

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 212.07 on 157 degrees of freedom

AIC: 232.07

Number of Fisher Scoring iterations: 4

Call:

glm(formula = djia_model_sun, family = binomial(link = "logit"),

data = train.set)
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Deviance Residuals:

Min 1Q Median 3Q Max

-1.4968 -1.1574 -0.8568 1.1597 1.5324

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1657 0.4540 -0.365 0.715

sun 0.0987 0.6994 0.141 0.888

sun.l1 1.0835 0.8134 1.332 0.183

sun.l2 -0.2350 0.7935 -0.296 0.767

sun.l3 -0.6483 0.6905 -0.939 0.348

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 227.41 on 162 degrees of freedom

AIC: 237.41

Number of Fisher Scoring iterations: 4

Call:

glm(formula = djia_model_sunf, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4863 -1.1583 -0.8619 1.1631 1.5441
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1421 0.4220 -0.337 0.736

sun.l1 1.1425 0.6981 1.637 0.102

sun.l2 -0.2577 0.7771 -0.332 0.740

sun.l3 -0.6336 0.6824 -0.928 0.353

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 227.43 on 163 degrees of freedom

AIC: 235.43

Number of Fisher Scoring iterations: 4

Call:

glm(formula = vix_model_anew1, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8008 -1.0955 0.1015 1.1531 1.7709

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.6064 1.1716 -3.078 0.00208 **
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vMean_ -6.7123 6.3138 -1.063 0.28773

vMean.l1 8.4328 9.1417 0.922 0.35629

vMean.l2 -0.9185 8.6335 -0.106 0.91527

vMean.l3 -1.6199 5.6226 -0.288 0.77327

aMean_ 1.2968 2.6741 0.485 0.62770

aMean.l1 0.5965 3.0575 0.195 0.84532

aMean.l2 1.0482 3.2581 0.322 0.74767

aMean.l3 -0.4440 2.4176 -0.184 0.85430

dMean_ 8.1882 5.3002 1.545 0.12237

dMean.l1 -5.8371 7.4540 -0.783 0.43358

dMean.l2 5.0235 7.1627 0.701 0.48309

dMean.l3 1.4216 4.7557 0.299 0.76500

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 211.56 on 154 degrees of freedom

AIC: 237.56

Number of Fisher Scoring iterations: 5

Call:

glm(formula = vix_model_anew1f, family = binomial(link = "logit"),

data = train.set)
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Deviance Residuals:

Min 1Q Median 3Q Max

-1.8470 -1.1032 0.1701 1.1797 1.5264

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6363 0.9841 -2.679 0.00739 **

vMean.l1 4.8833 6.3205 0.773 0.43975

vMean.l2 -1.6685 7.7547 -0.215 0.82964

vMean.l3 -1.3046 5.3109 -0.246 0.80595

aMean.l1 1.0958 2.5822 0.424 0.67129

aMean.l2 0.7067 3.0937 0.228 0.81930

aMean.l3 -0.5046 2.3519 -0.215 0.83011

dMean.l1 -1.4958 5.0781 -0.295 0.76834

dMean.l2 5.3151 6.5510 0.811 0.41717

dMean.l3 0.9249 4.5027 0.205 0.83726

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 216.34 on 157 degrees of freedom

AIC: 236.34

Number of Fisher Scoring iterations: 4
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Call:

glm(formula = vix_model_anew2, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6960 -1.0503 0.1513 1.0995 1.8138

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.408 1.621 -3.337 0.000847 ***

vMean2_ -9.651 8.676 -1.112 0.265943

vMean2.l1 6.552 9.998 0.655 0.512227

vMean2.l2 -4.624 10.270 -0.450 0.652515

vMean2.l3 -3.980 8.056 -0.494 0.621269

aMean2_ 3.939 3.519 1.119 0.263004

aMean2.l1 2.830 4.008 0.706 0.480079

aMean2.l2 -5.288 4.143 -1.276 0.201864

aMean2.l3 2.725 3.275 0.832 0.405346

dMean2_ 9.849 6.242 1.578 0.114579

dMean2.l1 -4.470 7.051 -0.634 0.526116

dMean2.l2 12.363 7.235 1.709 0.087497 .

dMean2.l3 2.526 5.853 0.432 0.666032

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 203.93 on 154 degrees of freedom

AIC: 229.93

Number of Fisher Scoring iterations: 5

Call:

glm(formula = vix_model_anew2f, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5897 -1.0886 0.1454 1.1230 1.6878

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.125 1.346 -3.065 0.00217 **

vMean2.l1 5.100 8.349 0.611 0.54129

vMean2.l2 -3.995 9.991 -0.400 0.68924

vMean2.l3 -4.139 7.748 -0.534 0.59319

aMean2.l1 4.402 3.421 1.287 0.19824

aMean2.l2 -5.431 3.959 -1.372 0.17011

aMean2.l3 2.636 3.189 0.827 0.40842

dMean2.l1 -2.159 5.768 -0.374 0.70813

dMean2.l2 11.336 6.945 1.632 0.10261

dMean2.l3 2.280 5.642 0.404 0.68608
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 210.39 on 157 degrees of freedom

AIC: 230.39

Number of Fisher Scoring iterations: 5

Call:

glm(formula = vix_model_sun, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4410 -1.1767 0.9421 1.1680 1.4127

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.0643 0.4522 -0.142 0.887

sun 0.2172 0.6977 0.311 0.756

sun.l1 -0.5183 0.8027 -0.646 0.519

sun.l2 -0.3492 0.7892 -0.442 0.658

sun.l3 0.8071 0.6888 1.172 0.241
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 229.24 on 162 degrees of freedom

AIC: 239.24

Number of Fisher Scoring iterations: 4

Call:

glm(formula = vix_model_sunf, family = binomial(link = "logit"),

data = train.set)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4057 -1.1701 0.9252 1.1658 1.3900

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.01205 0.41976 -0.029 0.977

sun.l1 -0.38827 0.68482 -0.567 0.571

sun.l2 -0.39832 0.77316 -0.515 0.606

sun.l3 0.83821 0.68171 1.230 0.219

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 231.51 on 166 degrees of freedom

Residual deviance: 229.33 on 163 degrees of freedom
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AIC: 237.33

Number of Fisher Scoring iterations: 4
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