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ABSTRACT 

Weather radar (radio detection and ranging) is a specialized meteorological tool 

used to sample and track meteorological objects.  This tool is critical for meteorologists 

and public decision-makers to inform and provide for their constituents in a timely 

manner, often with the protection of lives and property on the line.  With the application 

of using meteorological and geospatial data in the realm of geographic information 

systems (G.I.S.), the task of blending the two sciences to inhibit further research and 

dissemination of information occurs.  

This study focuses on the creation and implementation of a new geospatial tool, 

the Radar and Rainfall Analyzed in GIS (R2AIn-GIS) tool.  The R2AIn-GIS tool was built 

upon the initial concepts from Zhang and Srinivasan’s (2010) NEXRAD validation and 

calibration (NEXRAD-VC) tool for G.I.S.  R2AIn-GIS is updated to support the latest 

software features present in the geospatial world as well as analyze dual-polarization 

radar products.   

To test the R2AIn-GIS tool, a warm seasonal precipitation study along with 

statistical analysis was performed over the Glacial Ridge National Wildlife Refuge in 

Minnesota, the largest prairie and wetland restoration site.  Utilizing rain gauges operated 

by the United States Geological Survey, warm season precipitation events from 24 May 

2012 to 31 August 2013 were analyzed using the R2AIn-GIS tool.



xvii 

The R2AIn-GIS tool calculates the values from various dual-polarization radar 

products in conjunction with the recorded precipitation gauges to provide a detailed 

depiction of the weather event.  Statistical tests including several iterations of multiple-

linear regression of various combinations of dual-polarization radar variables allowed 

determination of rainfall rate prediction equations over the study area.  This contributes to 

the body of radar literature regarding the best prediction equations for other locations.  

Unlike treatments in prior literature, most of the various assumptions in multiple linear 

regression are considered herein. 

 Based off the findings of the various statistical tests that adhere to the linear 

regression assumptions, regression models utilizing both reflectivity and correlation 

coefficient were the best models found during this study.  These two variables had 

statistical significant p-values and their Durbin-Watson scores were among the highest 

even compared with the other radar variables of differential reflectivity and specific 

differential phase.  Models including the radar variables reflectivity and correlation 

coefficient were found to be heteroscedastic along with the highest R Squared values.  

While the overall rainfall amounts were too small in terms of effective precipitation 

sampling, the results still positively contribute to the literature and provides the 

opportunity for future work. 
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CHAPTER I 

INTRODUCTION 

1.1 Problem Statement 

 

Weather radar (radio detection and ranging) is a specialized meteorological tool 

that is used to sample and track meteorological objects.  Using radar, meteorologists and 

other weather enthusiasts alike make decisions to serve the public based on storm 

intensity and radar-based products.  Examples of use of radar-based products for public 

information include, but are not limited to, using reflectivity as a measurement of 

precipitation, using correlation coefficient (ρhv) to determine the presence of hail, and 

using radial velocity to determine rotation and possible presence of tornadoes.  In recent 

years, the National Weather Service (NWS) has been utilizing the -upgraded dual-

polarization (hereafter, “dual-pol”) Weather Surveillance Radar-1988 Doppler (WSR-

88D).  Using both vertically and horizontally-polarized pulses of energy, dual-pol radars 

are used to sample the atmosphere.  By sampling in two dimensions, dual-pol radars 

provide meteorologists with products that depict sizes and characteristics of precipitation 

as well as even debris lifted aloft by tornadoes.   

A goal in this study is enhancement of understanding of the spatial and temporal 

complexities of data from ground-based rain gauges and dual-pol radar.  Specifically, 

using a modified NEXRAD-validation and calibration (NEXRAD-VC) (Zhang and 

Srinivasan, 2010) for warm seasonal precipitation (May through August), this study 
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focuses on the Glacial Ridge Prairie Restoration site in Minnesota.  Improving upon the 

concepts of NEXRAD-VC, the Radar and Rainfall Analyzed In GIS (R2AIn-GIS) tool 

adds unto the ESRI® ArcGIS® Library for the spatial analysis of rainfall.   

The study domain for this analysis is displayed in Fig. 1. The study area of 

Glacial Ridge is discussed in greater detail in a later section.  The radar utilized in this 

study is KMVX, with its respective 250 km radar ring shown.  The United States 

Geological Survey (USGS) maintains and operates a network of rain gauges in the 

Glacial Ridge Prairie site, of which seven gauges are used in this study.  Data are 

recorded with these gauges at both fifteen-minute and one-hour intervals.   

 

Figure 1. Study domain area showing the Glacial Ridge Prairie site. 
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The Glacial Ridge Prairie has important impacts on the surrounding communities.  

The study site major watershed is the Souris-Red-Rainy region, which encompasses the 

northwest corner of Minnesota as well as the northeast corner of North Dakota along the 

Red River.  Breaking down the Souris-Red-Rainy watershed provides a look at smaller, 

more local watersheds that encompass Glacial Ridge.  Glacial Ridge is located on the 

convergence of three hydrologic unit code (HUC) watersheds.  The watersheds are the 

Red Lake, Clearwater, and Sandhill-Wilson.  Figure 2 shows the major watersheds 

encompassing Glacial Ridge Prairie study site.  

Figure 2. Map depicting the major and hydrologic unit code (HUC) watersheds for the 

Glacial Ridge Prairie. 

 

The inset map in Fig. 2 provides an in-depth depiction of the influence of the 

region on the nearby watershed areas.  The proximity of the seven rain gauges to each 
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other and the watersheds enables a unique study of spatial and temporal complexities of 

precipitation in a small area.  From Zhang and Srinivasan (2010), traditional rain gauge 

measurements are too sparse to accurately depict the spatial variability.  This study 

utilizes seven close proximity gauges to accurately depict the spatial variability of the 

rainfall.  The spatial distance from the furthest east to west station is less than 33 km.  

The average spacing between all seven gauges is 9.63 km.   

Before studying the spatial and temporal complexities of precipitation, several 

upgrades and changes were applied based upon Zhang and Srinivasan’s existing tool for 

R2AIn-GIS.  The first change was made of necessity while the others were based upon 

convenience for the author.  The tool was 

1) modernized to incorporate dual-pol radar products, their derived products, and 

their associated geospatial statistics; 

2) converted from Visual Basic® to Python®, and  

3) converted from outdated ArcGIS® version 9.3 to ArcGIS® version 10.3. 
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CHAPTER II 

STUDY AREA 

 

The study area is the Glacial Ridge National Wildlife Refuge (GRNWR), situated 

about 82 km ENE of KMVX (Fig. 2).  GRNWR is the United States’ largest prairie and 

wetland restoration project undertaken by the United States Fish and Wildlife Service 

(USFWS) (The Nature Conservancy, 2015; hereafter NC, 2015).  The scope of the 

restoration includes converting 24,000 acres of farmland back to their native state.  After 

the retreat of Lake Agassiz, fluvial and glacial processes led to the formation of native 

wetlands (Coulter, 1910; Todhunter, 2001; Schwert, 2011; Todhunter, 2011; Rogers et 

al., 2013).  A transition landscape between the Red River basin to the west and the forest 

landscape of north-central Minnesota, these wetlands provide a fire barrier between these 

two distinct ecosystems.  The geomorphic, hydrologic, and hydroclimatic features of the 

GRNWR, located within the Red Lake Basin (Fig. 3) that drains into the Red River 

Valley, has an impact on the annual frequency flood risk from spring snowmelt and 

heavy precipitation (Todhunter, 2011).  

The mission of the GRNWR is to preserve and restore prairie grass and wetlands 

for migratory birds, native vegetation and other wildlife (NC, 2015).  The benefits of the 

revitalized area are not just realized by wildlife.  In the process of restoring the wetlands, 

over 165 km of ditches were filled, restoring over 200 wetland areas that improved water 

quality and reduced the impacts of flooding along the Red River Valley (NC, 2015).  
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Since the mid to late 2000s, the United States Geological Survey (USGS), in 

collaboration with the USFWS, installed a small network of rain gauges to monitor 

rainfall within the GRNWR.  A more detailed description of the rain gauge network is 

provided in Chapter 3.   

Figure 3. Map of the Red River of the North Basin. 

 

The benefit of utilizing a small area rain gauge network is it enables analysis of 

small-scale variations, both meteorological and instrument-error-related that can exist 

across over just a few kilometers.  For instance, variations in the radar reflectivity of 

isolated convective storms, and consequently rainfall, can occur over distances less than 

1.6 km (Schilling, 1991).  The average spacing of adjacent gauges in the GRNWR is 

about 4.8 km.  Using a small-scale and high-density gauge network allows for improved 
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sampling of precipitation over a portion of a watershed.  This improved spatial sampling 

can then be used for improved comparisons with radar data, similar to Gebremichael and 

Krajewski (2004).   

Monitoring and investigating precipitation patterns on a watershed provides 

insight into the influences and the degree to which they impact nearby communities.  In 

terms of hydrology, a watershed’s accumulated precipitation is critical for the 

sustainability of the ecosystem as well as maintaining the water balance in the watershed.  

Hydrologic models rely upon precipitation totals to determine potential runoff and even 

overall health of the region (Schilling, 1991).   

Restoration of this wetland area back to its native self has critically important 

impacts for the growing population center in Crookston, Minnesota (United States 

Census Bureau, 2015).  The flat topography and northerly flow of the Red River of the 

North causes substantial flooding in the surrounding communities.   

Crookston, like the communities 25 miles to the NW in East Grand Forks, MN, 

and Grand Forks, ND, has experienced extensive damage from flooding in the last sixty-

five years.  A major flood event in 1950, caused by snowmelt and a prolonged rain event, 

inundated portions of the residential area in lower elevations.  Peak discharges in the 

streamflow measured 27,400 cubic feet per second (cfs), cresting on 7 May 1950 (Red 

Lake Watershed District, 2006; hereafter RLWD, 2006).  Following the flood of 1950, 

Crookston enacted emergency procedures and mitigation responses to reduce flooding 

impacts upon the city.  Flood prevention methods included construction of levees, 

sandbag operations, and blasting ice jams.  Even though April of 1965 flooding from 

heavy rainfall on frozen soil surpassed the previous record flood stage, these preventative 
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measures lessened the damage in the city (RLWD, 2006).  Major flooding occurred four 

years later when an inch of rain fell and along with 5 inches of meltwater equivalent 

snowpack, damaging the surrounding areas downstream (RLWD, 2006).  These major 

flood events changed the landscape through erosion, which led to costly repairs and 

subsequent levee improvements aimed at flood mitigation (RLWD, 2006).  Restoring 

previous land-use acreage in the GRNWR allows for the native wetlands to capture and 

slow the spread of water, thus decreasing the intensity of floodwaters.   

Several organizations and research groups partner with the GRNWR to promote 

education and research outreach from various fields.  The University of North Dakota 

(UND) Atmospheric Science Department collaborates with the GRNWR with an 

atmospheric research site.  This site includes standard weather observation equipment and 

a vertical scanning wind profiler that is part of the Collaborative Agency Profiler (CAP) 

network.  The CAP network has only one operating wind profiler in the Northern Great 

Plains that is jointly operated by the Atmospheric Sciences Department at UND.  A wind 

profiler is a vertically scanning radar that can be used to measure the reflectivity 

(precipitation intensity) and reflectivity-weighted terminal fallspeed of precipitation. 

By studying precipitation over GRNWR, further research and documentation of 

precipitation frequency can occur.  These could then be used in future hydrologic 

modeling to monitor and capture streamflow intensity and duration during snowmelt 

runoff as well as heavy, long-duration rainfall.   

The climate of GRNWR is driven predominately by continental airmasses that 

produce cold winters and warm summers in the region.  For the sake of this study, only 

warm season precipitation is considered due to inherent errors in rain gauge catchment of 
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snowfall (e.g., Giangrande and Ryzhkov, 2003).  During the warm season, GRNWR is 

affected by the Maritime Tropical airmass that originates over the Gulf of Mexico.  The 

moist atmosphere coupled with intense daytime heating contributes to instability and 

development of convective precipitation over much of the region.  Extensive wet periods 

with either widespread or localized precipitation can impact the local hydrology by 

flooding roads, farmlands, and other low-lying areas.  With an increase in available 

wetlands and water retention, the impacts from extensive rainfall should lessen, but no 

one has recently tried to determine the impacts based on the new topographic land use.   
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CHAPTER III 

LITERATURE REVIEW 

3.1 Rain Gauges 

 

A rain gauge network provides meteorologists and weather enthusiasts alike the 

ability to monitor rainfall in a given location over an extended period of time.  This 

spatial and temporal system has set the standard in precipitation measurements and has 

enabled creation of climatologies for a given location’s annual or seasonal precipitation.  

To quantify precipitation at a point, a standard rain gauge is used to measure precipitation 

fairly accurately with a 5 to 10% error (Neff, 1977).  Rain gauge monitoring is critical for 

decision-making by stakeholders that include farmers, ranchers, fisherman, emergency 

managers, and natural resource personnel.  Over shorter timescales, extreme precipitation 

events captured using rain gauges can provide information needed for emergency 

managers to prepare and inform the at-risk public.  Adequate time between rainfall and 

subsequent surface runoff enables stakeholders to prepare and mitigate the effects of 

flooding (James and Korom, 2001).   

The fine-scale spatial and large temporal variability inherent in a convective rain 

event drives the need for a fine-scale network of gauges capable of sampling the 

precipitation over short time periods.  To aid in hydrologic and ecological modeling, 

accurate accumulations of rainfall are critical (Arnold et al., 1998; Fodor and Kovacs, 

2005).  In many instances, rain gauge networks are spaced sparsely in an effort to provide 

equal spacing over a region.  These spread-out rain gauges sample a convective 



11 

 

precipitation event inadequately (Zhang and Srinivasan, 2010).  Numerous authors have 

developed and compared methods to comprehend the spatial distribution of precipitation 

among a sparse network of gauges (Goovaerts, 2000; Jeffrey et al., 2001; Jolly et al., 

2005; Hancock and Hutchinson, 2006; Bannayan and Hoogenboom, 2008; Zhang and 

Srinivasan, 2008, 2010).  Not often does a study focus on a dense group of rain gauges on 

the scale of 32 km to calculate and determine the spatial and temporal variability from 

precipitation.  Shepard et al. (2004) states that using dense networks of rain gauges 

provide detailed rainfall measurements to evaluate convective-mesoscale precipitation 

variability on a spatial and temporal scale.   

Meteorologists monitor precipitation inside clouds via radar through its path till it 

hits the rain gauge at the surface and joins the groundwater.  “Ground-truth” 

measurements, or what is recorded using a rain gauge, provide the best depiction of the 

amount of water that fell at that location.  However, gauges are not without error.  The 

effects of wind through turbulence and increased speeds near and around the gauge can 

result in undercatchment (Stellman et al., 2001).  Even hard rain can lead to 

undercatchment when the gauge is tipping the bucket and recording precipitation yet rain 

is still falling into the gauge not being collected and recorded.  Another source of error 

occurs when precipitation is interpolated between a sparse collection of gauges.   

This study focuses on a close-gridded network of rain gauges in Glacial Ridge 

Prairie in Minnesota over the warm-precipitation season from April through October in 

2012 and 2013.  This study utilizes gauges having periods of record of less than fifteen 

years, making a long-term climatology impossible until the period of record increases 

considerably.  Incorporated with the gauges are dual-pol radar products from KMVX.  



12 

 

Because KMVX was only upgraded to dual-pol capabilities on 24 May 2012, this study 

focuses on rain events after KMVX completed its transition to dual-pol.  Because of the 

sparse density in the national rain gauge system, NWS forecasters use Weather Service 

Radars to estimate rainfall between gauges, which aids in watch and warning operations. 

This has reduced the negative impact of spread-out gauge networks (Stellman et al., 

2001).  The polarimetric capability of such radars has existed since 2012. 

 

3.2 Radar and Dual-Polarization Products 

Since the late 1940s, weather radars have been utilized to remotely sense 

precipitation and other various weather phenomena.  The benefit of utilizing radar is to 

scan over a large area in a reasonable time.  It is beneficial to scan over a large area in a 

reasonable time.   

The NWS analyzes radar products from the NEXRAD radars that serve each 

weather forecast office (WFO).  For overviews of weather radar theory and derivation of 

the radar equation and how it applies to rainfall measurements, see Doviak and Zrnić 

(1993) and Battan (1973).   

Probably one of the most important products from radar is radar reflectivity factor 

(Z).  When radar pulses of electro-magnetic energy hits a hydrometeor target, the energy 

is absorbed and/or scattered by the hydrometeor based on the incident radiation 

wavelength and the phase and size of the hydrometeor (Clement, 1995).  Hydrometeors 

will scatter the incident radiation following the laws of Rayleigh scattering when the 

radiation wavelength is at least 16 times smaller than the diameter of the largest 
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hydrometeors.  For this study, KMVX is an S-band wavelength radar allowing for valid 

Raleigh approximation hydrometeors smaller than 6.3 - 6.9 mm diameter, which nearly 

all raindrops on earth are.   With a Raleigh approximation, the hydrometeor’s direction 

and scattering pattern is known.  The backscattering cross section for a liquid 

hydrometeor (σ) is 

𝝈 =
𝝅𝟓

𝝀𝟒
|𝑲𝒘|𝟐𝑫𝟔, 

(1) 

where λ is the radar wavelength, |Kw| is the complex index of refraction of water, and D is 

the equivalent volume spherical raindrop diameter.  One can see that radar reflectivity 

factor is related to the sixth power of the diameter of the hydrometeor. The backscatter 

measurements are a collection of all targets and hydrometeors within the volume of space 

sampled with the radar.  The volume covered by a radar pulse of energy is based on the 

distance from the radar, radar antenna beam width, and radar pulse length (e.g., Clement, 

1995; Rinehart, 2010).  The radar reflectivity calculated by the radar’s post-processor is a 

function of this radar beam, the antenna characteristics, as well as the power of the 

backscattered energy received by the radar using the so-called radar equation (not 

shown).  When contours of radar reflectivity are color-filled and animated on a map, 

meteorologists can monitor the movement and rainfall intensity of storms at range and in 

locations without rain gauges. 

However, using (1), linear radar reflectivity (mm6 m–3) can also be calculated 

using actual raindrop size measurements with either a discrete (not shown) or the 

integral/continuous equation, 
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𝒛 =
𝝀𝟒

𝝅𝟓 |𝑲𝒘|𝟐
∫ 𝑫𝟔 𝑵(𝑫)𝒅𝑫

𝑫𝒎

𝟎

, 

(2) 

where Dm is maximum drop size diameter and the drop size distribution is N(D). 

Marshall and Palmer (1948) found that raindrop size distributions, plotted on a D versus 

ln(D) scale, can be functionally fit by a line that intercepts the y-axis at 𝑁0, with negative 

slope, −𝜆 using 

𝑵(𝑫) = 𝑵𝟎𝒆−𝝀𝑫, (3) 

and this can be plugged into the continuous form of Z in (2) and is easily integrated to 

obtain an analytic solution (not shown). 

 Just as one may use measured raindrop sizes with the discrete form of (2) to 

obtain radar reflectivity, rainfall rate may additionally be calculated with raindrop 

terminal fallspeed vt(D), over different raindrop diameters, D.  As rain drops fall, they 

can collide and coalescence to form a larger drops or break-up into smaller droplets due 

to hydrodynamic effects and raindrop collisions.  Rain rate, R (usually in mm h –1), can 

be expressed as 

𝑹 =
𝝅

𝟔
∫ 𝑫𝟑𝑵(𝑫)𝒗(𝑫)𝒅𝑫

𝑫𝒎

𝟎

, 
(4) 

and there are a variety of functions fitted to raindrop vt(D) that may be used.  However, 

this is not the most common way to measure rainrate.  A simpler way is to use rain gauge 

data. 

Combining (4) and (2) provides a relationship between the z and R of the form 
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𝒛 = 𝑨𝑹𝒃. (5) 

with z (mm6 m–3) and R (mm hr–1).  Such a relationship can also result from a best fit to 

radar-observed z and gauge-observed R as will be discussed later.  Since many different 

drop size distributions can exist at different locations within a single storm and between 

nearby storms, the use of just one z-R relationship can prove ineffective.  Battan (1973) 

and Joss et al. (1970) stressed the importance for varying z-R relationships based on 

storm type, season, and location.  A new z-R relation is created herein using the 

reflectivity and rainfall values over the gauges to better calculate rain rate over the 

region.  If one is working with radar reflectivity data already provided in Z (dBZ), one 

may convert to z (mm6 m–3) using 

𝒁𝑯 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎(𝒛𝑯), (6) 

although the horizontal polarization subscript is usually omitted. 

One of radar products available from polarimetric radars (such as KMVX), being 

utilized in this study is differential reflectivity (ZDR), which utilizes the transmission of 

horizontally- and vertically-polarized pulses of radiation (Seliga and Bringi, 1976).  In 

this process, the radar emits a horizontally-polarized pulse and receives the returned 

power and then emits a vertically-polarized pulse and receives the associated returned 

power.  The vertically- and horizontally-polarized pulses are used to compute radar 

reflectivity factors for each polarization (Rinehart, 2010).  Mathematically it is given by 

𝒁𝑫𝑹 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (
𝒛𝑯

𝒛𝑽
), 

(7) 
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where ZDR is in decibels (dB), and zH and zV are the reflectivity values (mm6 m–3) at 

horizontal and vertical polarization, respectively.  Using logarithmic units for the radar 

reflectivity factors, Equation 6 can also be expressed as ZDR=ZH-ZV (e.g., Rinehart, 2010).   

 As with differential reflectivity, another dual-pol product utilized in this study is 

specific differential phase (KDP).  Similar to how reflectivity incorporates backward 

scattering, KDP is a measure of forward scattering that is used to determine rain rate.  

However, it is important to note that the physical causes are different.  KDP (degrees 

phase shift km-1) can be described by Clement (1995) as the range derivative of 

differential phase and is defined as 

𝑲𝑫𝑷 =
𝟏𝟖𝟎

𝝅
𝝀𝑹𝒆 ∫[𝒇𝑯(𝑫) − 𝒇𝒗(𝑫)] 𝑵(𝑫)𝒅𝑫, 

(8) 

where fH – fv is the phase shift between the horizontal and vertical forward-scattered 

polarized waves, integrated over all drop sizes.  

Both ZDR and KDP are helpful to identifying regions with large raindrops and 

distinguishing them from hail.  The science behind this is in the shape of large raindrops 

and hail as they fall.  Both small spherical raindrops and hail that is, or appears spherical 

to the radar due to tumbling, result in the same phase shift and same reflectivity measured 

between the horizontal and vertical components.  This gives near-zero KDP and ZDR. In 

contrast, large falling raindrops are oblate, meaning their horizontal axes are larger than 

their vertical axes and they, thus, produce positive KDP values and positive ZDR values. 

One benefit of using KDP compared to ZDR, however, is for cases where there is a mixture 

of both hail and large raindrops in the same volume.  In that case, hail would dominate 

the backscattering of the H and V pulses, resulting in ZDR closer to zero.  However, 
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spherical hail would not affect the phase shift of those pulses that were caused by large 

oblate raindrops, thereby still allowing positive KDP.  

Correlation coefficient, ρhv, in radar meteorology is the correlation between the 

radar signals at the horizontal and vertical scans for a given point at the same time.  

Following Brandes (2000), the equation to define ρhv can be given as 

𝝆𝑯𝑽 =
〈𝒔𝑽𝑽𝒔𝑯𝑯

∗ 〉

〈|𝒔𝑯𝑯|𝟐〉𝟏 𝟐⁄ 〈|𝒔𝑽𝑽|𝟐〉𝟏 𝟐⁄
, 

(9) 

where s and s* are scattering matrices and H and V represent the horizontal and vertical 

signals of the received and transmitted polarizations from the radar.  In application, 

meteorologists use ρhv to identify areas of mixed-phase, shapes, or sizes of hydrometeors 

and other items aloft.  Perfect spheres will have a ρhv value of 1.  Raindrops however 

have values ranging from 0.97 to 0.99 (Rinehart, 2010).  The benefit to this study in 

utilizing ρhv is to be able to identify and distinguish areas of rain from non-rain.  Low 

values of ρhv symbolize areas of non-homogeneous particles and are used to detect 

melting regions, tornado debris, and even non-spherical hail.  High values of ρhv 

conversely symbolize areas of homogeneous regions where hydrometeors are similar in 

phase, shape, and/or size.   

 

3.3 Geographic Information Systems (GIS)  

 

 Geographic Information Systems (GIS) are software used in many disciplines to 

input, store, analyze, manipulate, and display spatially-defined data.  Users can map and 

represent data with points, lines, polygons or rasters within a consistent coordinate 

system.  Points are features that can be represented geographically using an x,y 
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coordinate.  Lines are connections between points.  A polygon is a closed, connected 

group of lines defining an area.  Raster datasets are cellular data comprised of rows and 

columns, with cell groups representing features and each cell value being the value of the 

feature.  Lindhult et al. (1998) defines the composition of GIS to be of a data input, 

analysis and manipulation, and extracting and displaying data.  A variety of software 

platforms exist for GIS users to interpret and analyze geospatial data.  In some instances, 

some GIS software are open source and free to use, while other GIS software require paid 

subscriptions to operate.  For the study herein, Environmental Systems Research Institute 

(ESRI, 2015) ArcGIS® 10.3 software is used.   

Data input is a critical step to take real-world information and convert it into an 

applicable digital format for display.  One input method includes geo-referencing an 

image.  Another method involves reading point data in tabular form with appropriate 

headers (that include latitude and longitude) and spatially joining them to the geo-

referenced information already being displayed.  Once information has been properly 

digitized, the information present in an attribute table is linked and hence associated to 

the spatial information and vice-versa.  The attribute table is a collection of the variable 

data for a shapefile such as latitude-longitude coordinates, feature values, and description 

of feature.  In this study, the network of rain gauges were features in a shapefile.  Figure 

4 provides a glimpse into the variables associated with rain gauges used in this study and 
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the attributes associated with each gauge.  

 

Figure 4. Depiction of attribute table for the seven rain gauges in ArcGIS®. 

 

A feature utilized in the ESRI ArcGIS® product known as ArcMap has a built in 

section for displaying descriptive information.  The metadata are provided in a user-input 

section where details about the file are input.  Items such as theme keywords, abstract, 

purpose, bounding coordinates, number of records, time period for when data are relevant 

and publication information are described by the user for use by others.  

In the analysis and manipulation component of GIS, spatial and/or tabular data 

undergo user-selected procedures to determine values of particular attributes in a given 

region.  In this study, radar data are overlaid upon rain gauges.  Typical attributes of radar 

data include reflectivity values, coordinates of the radar grid cell, and time of scan.  

Typical attributes of rain gauge data include coordinates of the rain gauge, total rainfall, 

time period of rainfall, state, and name.  Utilizing both sets of spatial data enables 

determining the relationship between the two sets of data.  Much of the analysis 

performed in this study utilizes spatial analysis tools provided by ESRI in the ArcGIS® 
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software.  Spatial analysis tools within the ArcGIS® suite of products are used to 

extrapolate and interpolate between irregularly-spaced point data (like the gauge data). 

 The final composition as defined by Lindhult et al. (1998) for GIS is the 

extracting and displaying of data.  With the GIS realm of software, data can searched and 

portrayed in a multitude of ways.  A simple method is a choropleth map using colors to 

shade and pattern trends to visually display the data.  One can focus on either a particular 

region or an entire domain.  Many of these GIS-generated maps are drafted and 

disseminated with a client or group in mind.  When exporting the data using GIS, many 

file output formats are available.  Many raster-based images can be transformed into the 

following file types: ASCII, binary, Google Earth®, Excel®, and image-based (GIF, JPG, 

etc).   

Zhang and Srinivasan (2010) state that the GIS applications available to process 

WSR-88D data are limited and lack processing power.  Having the means to process 

radar data along with other data sources, in this case rain gauges, is a critical component 

that is addressed and improved upon in this study.  The fact that the NEXRAD data 

system is not readily available in formats used in different scientific divisions suggests a 

“lack of geo-processing and geo-referencing” that could be useful, especially in 

agriculture, meteorology, and natural resource management (3 et al., 2008).  Currently, 

the National Oceanographic and Atmospheric Administration (NOAA) maintains the 

Weather and Climate Toolkit (WCT), a software application that can be used to display 

and export radar data into other formats.   

The WCT can be used to display radar data, but currently cannot be used to 

produce additional products and information about the spatial and temporal 
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characteristics of the data.  The benefit of the WCT, however, is that it enables exporting 

of radar data to a variety of different formats.  For this research, all NEXRAD data were 

exported from the WCT into an American Standard Code for Information Interchange 

(ASCII) format for visualization and processing in the ArcGIS®-software ArcMap.  A 

header file is created when the data are exported.   

ArcGIS® software provides the opportunity to geospatially reference and process 

data.  The toolset in ArcGIS® allows for analyzing and displaying spatial data through 

either user-defined or pre-defined calculations.  It is noted that this study utilized the 

applications and tools available in the ArcGIS® Spatial Analyst license.  The licensing 

provides the user authority to utilize products from ESRI.  These products add additional 

spatial modeling and analysis tools to ArcGIS® that are otherwise not available.
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CHAPTER IV 

DATA AND METHODS 

4.1 Data Sources and Case Selection 

 

The data for this study were collected from two different sources and input into 

ArcGIS® 10.3.  As shown in Table 1, the datasets include: 15-min rain gauge 

accumulation data from USGS and 0.5 degree NEXRAD Level 3 products for Z, ZDR, 

KDP and ρhv at regular scan intervals.  First, the 15-min rain totals were entered into an 

Excel® spreadsheet for each gauge in the network for each storm event.  An initial list of 

storm events was produced for the period from 24 May 2012, beginning when the 

upgrade of NEXRAD KMVX to dual-pol was completed, to 29 August 2013.  Storms 

utilized for this study produced, at one of the gauges, greater than 0.1 inches of rain, and 

must have produced precipitation at a majority of the seven gauges.   

Table 1. Sources and datasets included in the study. 

Data Source Type of Data Years Included in 

Analysis 

United States 

Geological Survey  

15-min Rain Gauge Precipitation 

(in) 

2012-2013 

National Oceanic and 

Atmospheric 

Administration 

0.5 degree radar data: Z, ZDR, KDP 

and ρhv variables  

2012-2013 
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Characteristics of the USGS rain gauges are provided in Table 2.  All of the 

gauges within the GRNWR have been in operation since 28 August 2008.  The earliest 

gauge in operation is G08 and dates back to 28 April 2003, giving it a period of record of 

less than thirteen years.  Table 3 lists the storm events that met the initial criteria for 

analysis in this study, along with USGS rain gauge availability.  Rain gauge data were 

provided by the USGS in fifteen-minute increments ending at 00, 15, 30, and 45 minutes 

past the hour, measured in inches.  For this study only seven gauges were available out of 

the 10 total operated by the USGS.  The other three were under provisional status and 

being reviewed by USGS staff to verify the measurements (T. Cowdery, personal 

communication, May 8, 2014).  As such, the precipitation data for these gauges were not 

sent to the author for analysis.   

For storm consideration, recorded precipitation for the day needed to exceed 0.10 

inches along with the majority of gauges being in operational status.  Only allowing the 

warm season limits uncertainties caused by mix-phased or solid precipitation near the 

surface along with freezing temperatures that could affect gauge reporting. These dates 

were cross-checked with storm data reports from the Storm Prediction Center for hail 

activity that could potentially interfere with gauge reports, resulting in the final list shown 

in Table 3.  Figure 5 shows a detailed flow chart of the R2AIn-GIS tool. 

 

4.2 Methodology 

Upon receipt of the rain gauge information from the USGS, the rainfall 

information were entered into a Microsoft Excel® spreadsheet.  The radar data 

availability for each storm event was confirmed using the National Centers for 
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Environmental Information (NCEI 2015; formerly the National Climatic Data Center - 

NCDC).  From NCEI, the radar data at base-scan elevation angle of 0.5° was ordered and 

obtained for variables Z, ZDR, KDP and ρhv for each initial storm event for the duration of 

precipitation being recorded with the gauges.  Level 3 radar data were ordered through 

NCEI and obtained through an ftp download in the WCT.  Additional time buffers of an 

hour on each end were ordered as well to ensure that precipitation events were captured 

in their entirety.  Once the data were obtained from NCEI, the NOAA WCT was 

launched to retrieve and export the storm event radar data.  Using the toolkit, the radar 

files for each scan were exported into an ASCII grid file (.asc), with adjoining projection 

file (.prj) for spatial reference.  The spatial reference for each file is in a Geographic 

Coordinate System North American 1983 for a spheroid.  The projection file is essential 

for drawing the grids appropriately in ArcGIS®.  Within ArcGIS®, a modelbuilder script 

was incorporated to quickly and efficiently process the rain gauge and data for each 

timestep of each storm event.  Modelbuilder is a tool within ArcGIS® for visually and 

computationally building scripts that automate data processing.  The R2AIn-GIS tool was 

created by the researcher within the confines of the modelbuilder script.   

For this study, the goal of developing a multiple linear regression (MLR) equation 

to describe rainrate in terms of the reflectivity, differential reflectivity, specific 

differential phase, and correlation coefficient.  The user provides SPSS with a table of 

values for each variable and a MLR is developed. 

This study focuses on the application of two overarching methodologies—

geospatial and statistical analysis.  Specifically, these approaches provide critical 

information to further improve the field of hydrometeorology and applications of dual- 
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polar radar data in the realm of GIS over the Glacial Ridge Prairie.  The results were 

analyzed in ArcGIS® 10.3, Microsoft Excel®, as well as the statistical software, SPSS. 

4.3 ASCII to Raster Conversion 

 As part of the R2AIn-GIS, the radar variables downloaded from WCT are 

converted from an ASCII file to an ArcGIS® float raster for viewing and calculations.  

When the user downloads radar data from WCT, the user has the option to export any or 

all of the radar data to a variety of different file extensions.  For this study, the exported 

data were set to be that of an ArcGIS® float raster.  The reason for the specific file format 

is for accessibility and processing of the raster within the software of ArcGIS®.  Once the 

ASCII files are exported, the conversion from ASCII to raster must occur to properly 

display the data and to utilize other raster tools.  A script in the R2AIn-GIS tool loops 

through the user-defined directory where the WCT exported radar files are located and 

converts them to a raster format in an output directory.  To retain the details and character 

length of the radar data, the rasters were output to a file geodatabase, which allows for all 

characters in the file name to be retained.  Raster-based files outside of a geodatabase are 

limited to a length of only thirteen characters.  
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Table 2. United States Geological Survey gauges and period of record included in the 

study.  

Station Name Latitude & 

Longitude 

(Decimal Degrees) 

Period of 

Record Begin 

Period of 

Record End 

E05-R 150N44W27ABBAA 

L058 (Denoted: E05) 

47.7889 

-96.276125 

27 August 2008 Operational 

G01-R 149N44W30CAAD 

0000620661 

(Denoted: G01) 

47.692972 

-96.341736 

30 April 2003 Operational 

G08-R 149N44W17ABAD 

0000620668 (Denoted:G08) 

47.729439 

-96.315225 

28 April 2003 Operational 

12-R 149N44W27CDBB 

0000620672 

(Denoted: G12) 

47.690381 

-96.281289 

29 April 2003 Operational 

G15-R 148N44W10CCCC 

0000620675 

(Denoted: G15) 

47.6447 

-96.258608 

29 April 2003 Operational 

G20S-R 

149N43W18DDBACA01 

0000620680 

(Denoted: G20) 

47.719017 

-96.205625 

6 May 2004 Operational 

G25-R 148N45W05DDDD 

0000620685 

(Denoted: G25) 

47.659256 

-96.410411 

6 May 2004 Operational 
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Table 3. Storm events that met criteria for analysis.  

Storm Date  Number of 

Gauges 

Reporting 

Name of 

Gauges 

Unavailable 

27 May 2012  6 E05 

28 May 2012 6 E05 

10 June 2012 6 E05 

14 June 2012 6 E05 

16 June 2012  6 E05 

20 June 2012 6 E05 

23 June 2012 6 E05 

3 August 2012 5 E05, G25 

25 August 2012 6 E05 

19 May 2013 7 None 

20 May 2013 7 None 

21 May 2013 7 None 

30 May 2013 7 None 

31 May 2013 7 None 

22 July 2013 5 G1, G15 
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Figure 5. R2AIn-GIS tool flow chart. 

 

4.4 Raster Calculator 

 Once all the WCT radar ASCII files are exported to an ArcGIS® float-raster 

format, the process of calculating radar time-averaged data begins.  The purpose of 

averaging the three sequential radar scans is to match them up with the temporal spacing 

of rain gauge data.  The next step in R2AIn-GIS is the utilization of the raster calculator 

tool to combine three consecutive radar files and compute average values.  The user 

defines the three sequential radar files that are used for each fifteen-minute period and 

sets an output for the newly created, calculated raster.  For the scanning strategies used 

by the NWS in this study, averaging base scan data for three consecutive volume scans 

resulted in periods of about 13 min to 18 min.  While not exactly an averaging period of 

15 min, it was deemed better than using only a single instantaneous radar scan.  The 

reason for user-definition in the calculation of the rasters is that the radar scans rarely 

begin at precisely 00, 15, 30, or 45 minute after every hour like the gauge data.  

Oftentimes the radar scan times are offset by several minutes relative to the recording 

times of the gauges.  These cases, take the three consecutive radar volume scan periods 
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with the last grid being closest to the gauge recording time.  The radar times were 

included in the naming scheme of each radar file.  Some raster calculations did end on 

either of those four intervals, providing a precise timing between gauge and radar.  For 

example, the period ending exactly at 15 minutes past the hour will include the average of 

the sum of the 5 minute, 10 minute and 15 minute rasters.  If there was a missing raster 

during the sequence of the 15 minute averaging, the average of the two rasters closest to 

the time of rain gauge reporting were used.  If the radar variable had no values present 

within each raster included for the 15 minute average, the value was set to missing upon 

entry into the Excel® file.  The output raster calculations for this study were exported to 

another file geodatabase where the entire file name would be retained.  An example is 

depicted in Fig. 6.  It should be noted that for the averaging of the rainrate and for this 

study that each gauge was treated independently. 

 

4.5 Point-Based Data Extraction and Table Conversion 

 Using the latitude and longitude as the basis to display the rain gauges, the points 

are exported to a shapefile format for use in ArcGIS®.  When the points are exported to a 

shapefile, an attribute table is created based on the input text or Excel® file of origin.  For 

each storm event, the gauges have columns for each fifteen-minute precipitation total.  

Using the file geodatabase that contains the raster calculations, radar variable values are 

exported to each gauge location using the “extract values to point” tool within R2AIn-

GIS.  This tool utilizes a loop iterator to extract each radar variable value (in rasters).  

The user defined point shapefile, in this case the rain gauge locations, will then have the 

radar variable values added on as additional columns in the attribute table.  Once the 
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values were appended to the attribute table, the table is exported to an Excel® file where 

the rows and columns were organized for further analysis in the statistical software SPSS.   

 

4.6 Statistical Analysis of Data 

 Within Excel®, the tables with rain gauge rainfall and averaged radar variable 

values for each gauge are formatted and saved to a comma-delimited ASCII file format 

for input into SPSS, a statistical software.  The total number of observations for all case 

dates for R, Z, ZDR, KDP and ρhv, are respectively 738, 1327, 1417, 971, and 1422.  The 

number of observations for each radar variable differs owing to missing data for certain 

variables.  Also, there are more radar observations than gauge observations shown here 

because times with zero or missing rain were included but considered null in the dataset.  

As part of the formatting within Excel®, an initial scatterplot of the variables were 

plotted to verify the need to perform transformations of the data (not shown).  First, a 

units conversion for rainfall (inches per 15 minutes to mm per hour) was done.  Then, in 

keeping with the literature, and because the raw data plots were curved (not shown), R 

was changed into a logarithmic variable by calculating log10(R).   Z and ZDR are both 

already logarithmic variables, however, because Z=10log10(z), then Z/10 (dBZ) was 

calculated and prepared for input.  ZDR (dB) was input directly (though prior authors seem 

to have calculated and used ZDR/10).  No transformation was applied to ρhv (although 

prior authors seem to have applied log10).  Finally, following Giangrande and Ryzhkov 

(2003), the log of the absolute value of specific differential phase was calculated and then 

multiplied by its sign to preserve the integrity and avoid mathematical error.  Thus, the 

general form of the regression equation that was tested was as follows,  
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𝐥𝐨𝐠𝟏𝟎(𝑹) = 𝒃𝟎 + 𝒃𝟏(𝒁/𝟏𝟎) + 𝒃𝟐(𝒁𝑫𝑹) + 𝒃𝟑𝝆𝑯𝑽

+ 𝒃𝟒 𝐥𝐨𝐠𝟏𝟎|𝑲𝑫𝑷|𝒔𝒊𝒈𝒏(𝑲𝑫𝑷), 

(10) 

which can also be written, after substitution of Equations (6) and (7), 

𝐥𝐨𝐠𝟏𝟎(𝑹) = 𝒃𝟎 + 𝒃𝟏 𝐥𝐨𝐠𝟏𝟎(𝒛) + 𝒃𝟐 𝟏𝟎𝐥𝐨𝐠𝟏𝟎(𝒛𝒅𝒓) + 𝒃𝟑𝝆𝑯𝑽

+ 𝒃𝟒 𝐥𝐨𝐠𝟏𝟎|𝑲𝑫𝑷|𝒔𝒊𝒈𝒏(𝑲𝑫𝑷) 

(11) 

Where 𝑧𝑑𝑟 = (
𝑧𝐻

𝑧𝑉
) is referred to by Giangrande and Ryzhkov (2003) as the unitless 

“linear zdr term”.  After the SPSS is run, one may write the resulting equation in power 

law form by raising each side of the equation as the power to 10 giving 

𝑹 = 𝟏𝟎𝒃𝟎 𝒛𝒃𝟏 𝒛𝒅𝒓
𝟏𝟎𝒃𝟐 𝟏𝟎(𝒃𝟑𝝆𝑯𝑽)𝑲𝑫𝑷

𝒃𝟒 𝒔𝒊𝒈𝒏(𝑲𝑫𝑷) (12) 

Where z (mm6 m–3), zdr and 𝜌𝐻𝑉 (both unitless), and 𝐾𝐷𝑃 (deg km–1).  The sign(KDP) is 

logic used to keep rain rate from becoming negative.  Within SPSS, each comma-

delimited ASCII file is imported.  Following the import steps, the user, when applicable, 

sets any missing values that might exist due to missing radar variables found during 

periods.  The user can specifically specify the correct value used to denote a missing 

value such as in the case of having missing values for correlation coefficient being -999 

but reflectivity after transformation to reflectivity/10 becomes -99.9.  The user also sets 

the decimal placement for the variables to ensure the values are properly read into the 

program.  Then, statistics are computed —these include Analysis of Variance (ANOVA), 

Pearson Correlation, linear regression, and multiple linear regression (MLR).  Linear 

regression is performed to obtain a predictive equation for rainrate based upon each radar 

variable.  The so-called z-R relationship is one example and results from performing 
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linear regression only between z and R observations, as first done by Marshall and Palmer 

(1948).  In that case, Equation (12) only has one independent variable 𝑅 = 10𝑏0𝑧𝑏1 

The correlation (positive [>0], no correlation [0], or negative [<0]) between the 

independent (radar products) and the dependent variable (rainfall) is used to evaluate the 

strength of the linear relationship between the two variables.  Similarly, multiple linear 

regression is used to evaluate the relationship between the rainfall reported at each gauge 

(dependent variable) and two to four radar variables mentioned before (independent 

variables).  Multiple correlation evaluates the combined strength of the linear relationship 

between the independent variables and dependent variable.  Such an equation serves as a 

predictor for Glacial Ridge Prairie rainfall amounts based on the corresponding radar 

variable values.  By having an equation to apply to predict rainfall, people with an 

interest or stake in the Glacial Ridge Prairie can monitor and react appropriately to 

rainfall or lack thereof.   
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Following Giangrande and Ryzhkov (2003), multiple linear regression was 

performed with different combinations of the four radar variables to determine which 

combination is the best predictor of rainfall.  Each of the models were evaluated 

independently using Analysis of Variance (ANOVA).  The multiple correlation 

coefficient is used to evaluate the overall best model.  Each variable within each model is 

also evaluated separately (with t-statistic and p-values) to determine how much of the 

variance in rainrate is explained by each variable.  Specifically, the p-value provides an 

indication of the probability that the independent variable is explaining the variability 

using a non-zero slope by random chance when the slope is actually zero (no effect).  

Statisticians refer to the p-value as “the probability of falsely rejecting the null 

hypothesis”.  In this case, the null hypothesis is that the radar variable has no effect on 

rain rate (zero slope).  If the p-value is sufficiently small, we reject the null in favor of the 

alternative (that the slope is actually “real” and not an accident). Most commonly, it is 

said that a p-value of 0.050 or less is statistically significant, where it is “safe” to reject 

the zero slope notion, but variables with smaller p-values are considered even better 

because that means that those variables are less likely to have zero slope (more likely to 

have a nonzero slope value).  If the p-value is greater than 0.050 then it is said to not be 

statistically significant as there is a larger probability that the variable actually has zero 

slope (zero predictive capability), even though ANOVA may calculate a non-zero slope.  

This allows one to determine whether an unhelpful variable can be excluded from a 

particular model.  

The significance of the results (smallness of the p-value) in any statistical test, as 

well as the representativeness and accuracy of a regression equation, is highly dependent 
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upon the number of independent observation samples.  This means that if the sample size 

of rainfall to the radar variables is too small, obtaining a predictive rainfall rate equation 

using linear regression based on the radar variables will be neither accurate nor 

representative of the region.  Following Giangrande and Ryzhkov (2003), fifteen rain 

events with 114 hours of observations were analyzed, similar to their 15 rain events with 

52 hours of observations.  It should be noted that Giangrande and Ryzhkov (2003) did not 

make mention of whether they checked that their linear regression was appropriate.  This 

study strives to ensure the linear regressions are appropriate with various statistical 

testing performed.  Again, the storm events for this study follow the criteria previously 

mentioned in Chapter 4 Section 1.   

There are also several assumptions that are made when performing a multiple 

linear regression that must be checked and satisfied before trusting the models resulting 

from a multiple linear regression.  Some of these would ideally be checked prior to 

conducting the statistical ANOVA and multiple linear regression while others can be 

checked by examining the results of the regression. Usually statistical tests are involved 

that describe the degree of violation of the assumption.  If the assumptions are violated in 

some way, sometimes data transformations can be applied such that the assumptions are 

satisfied.    

The first assumption is that the data exhibits a linear relationship between the 

dependent and each independent variable.  A scatterplot of each radar variable 

(independent variables) versus rain rate (dependent variable) can be used to check a 

linear relationship prior to performing the regression (figures were checked but are not 

shown in results).  If the scatter appears nonlinear, a transformation can be applied (such 
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as modeling the log of the variable rather than the variable itself) prior to performing the 

regression.  In addition, after performing regression (and particularly useful for multiple 

regression with multiple independent variables), a plot of observed versus predicted rain 

rate can be used to check that the overall pattern was indeed linear (shown later in the 

results section).  If it is not, then that would indicate one or more independent variable 

has a non-linear relationship with rain rate.   

The second assumption is that there is little multicollinearity and singularity 

among the radar products.  Multicollinearity occurs when the independent variables are 

highly correlated—for instance an R Squared value1 is ≥ 0.9 and when the tolerance (1 

minus R Squared) is less than 0.1 would be indicative of multicollinearity.  Alternatively, 

multicollinearity is revealed when the variance inflation factor (VIF; the inverse of the 

tolerance) js greater than 10. This will be shown in the results section. 

The third assumption is that each of the variables going into the regression is 

normally distributed.  This can be evaluated by checking that the plotted distribution of 

any variable involved in the regression is normal.  Non-normality can also be checked 

using skewness or kurtosis computations.  Should data be found to be non-normal, it may 

be transformed into a normal distribution using the Box-Cox transformation (Box and 

Cox, 1964).  This assumption was not checked for the present study. 

The fourth assumption is that the model is homoscedastic (errors being equally 

distributed about the regression line).  Heteroscedasticity can be revealed by visually 

examining the predicted versus observed rain rate plot (shown later in results) or by using 

                                                 
1 The statistical computation of R Squared and its square root, R, should not be confused 

with the rain rate (abbreviated as R). 
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the test developed by Goldfeld and Quandt (1965).  SPSS software does not support the 

Goldfeld-Quandt Test so further testing of homoscedasticity would need to be addressed 

in later research beyond the existing plots and brief analysis mentioned in this study.  

The fifth and final assumption is that the residuals are not auto-correlated. This 

can arise if the data being sampled are highly correlated in time. This can occur in time 

series data.  Since both rain gauge data and radar data from a time series, this is a 

potential issue.  The Durbin-Watson test can be used to check for significant auto-

correlation (Tillman 1975).  If significant auto-correlation exists, the auto-correlation can 

be used to decrease the N (effectively reducing the number of “repeated” samples), which 

results in increased p-values.
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CHAPTER V 

RESULTS AND DISCUSSION  

5.1 Statistical Results  

With 15 storm events (regression models) and 114 hours of rainfall observations, 

statistical analysis provides insight into how well the radar variables estimate the rainfall 

amounts over the Glacial Ridge Prairie.  Utilizing the outputs from the single and 

multiple linear regressions, the resultant data provide an assessment of the warm season 

rainfall for the first two seasons of dual-pol availability.  Furthermore, it is critical to 

provide further discussion on the individual regression models and the subsequent results 

to better understand its applicability and also utility for future research projects. 

In the process of running the statistical tests, each of the radar variables were 

separately plotted (not shown) against the rainrate to ensure there existed a linear trend 

between the independent and dependent variables.  Without transforming the variables 

appropriately, the plots (not shown) based off the data would not follow a linear trend at 

all.  It should be noted that for all statistical tests performed throughout this study with 

the exception of the initial scatterplots (not shown), variables that were originally 

transformed remained that way for all of the statistical tests.  It was imperative to 

transform the data accordingly to accurately and appropriately run the statistical tests, 

beginning with Pearson Correlation and followed by ANOVA.  
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Table 8 describes the Pearson Correlation of the various regression models to 

determine the correlation between the various radar variables and the rainfall.  It is 

imperative to determine the correlation between the variables in an effort to verify which 

of the four radar variables are crucial in estimating rainfall.  It is crucial to assess that the 

independent variables (reflectivity, correlation coefficient, specific differential phase, and 

differential reflectivity) have some relationship with the dependent variable (rainfall) 

included in the study.  Ideally, a numerical representation of this essential relationship 

should be ±0.30 (Cohen, 1988).  A Pearson Correlation value of 0.30 indicates a weak 

but positive linear relationship, whereas a Pearson Correlation value of -0.30 indicated a 

weak negative linear relationship.  The positive or negative symbol only shows the 

relationship between the variable and with no influence on the magnitude.  Furthermore, 

if the Pearson Correlation value is 0, this indicates that there is no direct linear 

relationship between independent variables and the dependent variable.  Pearson 

Correlation values that range from 0.50-0.99 have a moderate to strong positive linear 

relationship, while Pearson Correlation values that range from -0.50- -0.99 would have a 

moderate to strong negative linear relationship.  It is also important to note that Pearson 

Correlation values of 1 represent an ideal positive linear relationship and conversely, 

Pearson Correlation values of -1 represent an ideal negative linear relationship.  As seen 

in Table 8, all of the independent variables did not exceed the 0.30 threshold for the 

Pearson Correlation results.  However, the Pearson Correlation value for the Z and R was 

0.288, which was the closest correlation to the 0.30 threshold.  This indicated that there 

was a weak but positive linear relationship between Z and R.  Additionally, the Pearson 

Correlation values for ρhv, KDP, and ZDR indicated little to no linear relationship.  
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Specifically, ρhv had a Pearson Correlation of -0.097, KDP had a Pearson Correlation 

value of -0.073, and ZDR had a Pearson Correlation of -0.048.  It is critical to identify and 

evaluate the relationship between the independent variables against each other.  The 

Pearson Correlation values of the other radar variables to ρhv include a value of 0.164 for 

KDP, a value of 0.722 for Z, and a value of 0.23 for ZDR.  For ZDR and KDP, there was a 

weak but positive linear relationship to ρhv, while Z had a strong, positive linear 

relationship.  When investigating the linear relationship of the radar variables to KDP, 

there was a Pearson Correlation value of -0.012 with Z and a value of 0.092 for ZDR.  For 

Z and KDP, there was little to no linear relationship given its low negative value close to 

zero.  In addition, for ZDR there was also little to no linear relationship since the value 

was positive and close to zero.  Furthermore, it is also important to assess the Pearson 

Correlation for Z and ZDR, which is 0.112.  Again, this indicated a weak and little to no 

linear relationship given its close proximity to zero.  As a result, the data indicated that a 

majority of the independent variables when compared to their dependent counterpart, 

showed very little linear relationship with the exception of Z.  While these results are not 

ideal, this is not to say that the data were invalid or not helpful.  Rather, it provides the 

opportunity for further application in future research studies and serves as a framework.  

 The Pearson Correlation assessment provided an initial review of the four radar 

variables for estimating rainfall.  In order to further understand how the different radar 

variables influence rainfall and to better understand the five assumptions of linear 

regression, further statistical analyses such as ANOVA were conducted and assessed for 

this research study  



 

41 

 

As seen in Table 4, insight is provided into the overall goodness of fit2 for each of 

the regression models by analyzing the Coefficient of Determination (R Squared). 

Specifically, the R Squared value describes how much of the variance in the dependent 

variable can be explained by all of the independent variables that together make up the 

model.  It provides key insight into how well a given model may fit the data presented.  It 

is commonly known that R Squared values range from 0-1, with 0 indicating that a given 

model does not explain any of the variance of the data centered on the mean, whereas, 

values near or equal to 1 indicate that a given model accounts for most or all of the 

variance, respectively, and the better the predictor that model will be.  Thus, if R squared 

is larger, the prediction (regression line) will better explain the rain rate data and those 

points will be distributed along it.  

For this study, the R Squared value provides a measure of how well each model 

explains total variance in observed rainfall. As seen in Table 4, none of the R Squared 

values provide a clear and strong indication that any of the models fits the regression line 

exactly since they all explain less than 30% of the variability in rainfall.  However, it is 

still important to mention the specific results and compare between the different models.  

Four out of 15 models provide the highest R Squared values.  For the R(Z,KDP,ZDR,ρhv) 

model, the R Squared value is highest at 0.295 thus explaining 29.5% of the variability in 

rainfall recorded.  Three other cases also produced a similar R Squared value including 

R(Z,ZDR,ρhv), R(Z,KDP,ρhv), and R(Z,ρhv) with respective R Squared values of 0.292, 

0.280, and 0.278.  As seen in Table 4, the remaining models have much lower R Squared. 

                                                 
2 Adjusted R Squared, the Coefficient of Multiple Correlation, R, and Standard Error of 

the Estimate are also included in this table from the SPSS output for completeness.   
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The lowest-performing models with the lowest R Squared values, not even reaching 0.01, 

include R(ZDR), R(KDP), and R(KDP, ZDR).  The seven remaining models in Table 4 are 

middle-of-the-road in explaining only between 1% and 10% of the variability in rainfall.     

Upon inspection, it is evident that the model utilization of both reflectivity and 

correlation coefficient were associated with the highest R Squared.  Though none of the 

models produced R Squared values over 0.3, low R Square values do not necessarily 

mean bad results.  Unfortunately, other prior authors did not report their R Squared 

values in their studies, so while 0.3 might seem low, it is unknown what to expect. 

How important was each predictor variable within each model?  ANOVA 

provides information in how likely each regression model explains the variance in rainfall 

simply due to chance as well as how significant each independent variable is to the 

overall model.  In ANOVA, each independent variable achieves a p-value and those less 

than 0.050 are typically considered statistically significant, with smaller p-values 

indicating more statistical significance and less chance of a type-1 error. All output from 

SPSS for ANOVA testing is included for completeness herein, but only the p-value and 

statistically significant columns will be further discussed below.  

Table 4 already provided information on poorly-performing models.  The 

ANOVA results in Table 5 show that the same poor models with small R squared (from 

Table 4) have non-significant p-values.  For instance, R(KDP), R(KDP,ZDR), and R(ZDR) all 

have p-values ranging from 0.07 to 0.22 and thus those models have a greater probability 

that they are explaining the rain variance simply by chance rather than having true 

predictive value.  This means that the values pertaining to specific differential phase and 

differential reflectivity were, alone and together, no good in predicting rainfall.  In 
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contrast, eight of the regression models have very good p-values of  <0.001, indicating a 

very high statistical significance and these were also the ones that had the highest R 

squared values in Table 4: R(Z,KDP,ZDR,ρhv), R(Z,KDP,ZDR), R(Z,KDP,ρhv), R(Z,ZDR,ρhv), 

R(Z,KDP), R(Z,ρhv), R(Z,ZDR), and R(Z).  Four additional models, that had mediocre R 

Squared values in Table 4, were still found significant in Table 5 with p-values < 0.04, 

including R(KDP,ZDR,ρhv) with a significance of 0.034, R(ZDR,ρhv) with a value of 0.022, 

R(KDP,ρhv)’s significance value of 0.021, and R(ρhv) with its significance value of 0.012.   

From the ANOVA testing (Table 5), it is clear that the best regression models had 

to include reflectivity.  Furthermore, models including one or more of correlation 

coefficient, specific differential phase, and differential reflectivity were helpful when 

included with reflectivity but not helpful in any combination in models that were missing 

reflectivity.  Furthermore, from Table 4, one can surmise that the most important variable 

after reflectivity is correlation coefficient as those models have the largest R Squared 

values.  However, Table 5 also shows that models missing correlation coefficient but 

having differential reflectivity and/or specific differential phase joining reflectivity were 

also highly statistically significant.  Next, to determine the relative importance of each 

independent variable to the different regression models, an examination of the regression 

models’ statistical coefficients must be assessed.  

Table 6 provides the statistical coefficients of the regression models with 

computed correlations.  The entire output from SPSS for the statistical coefficients for the 

regression models are included but only the unstandardized coefficient B and the p-value 

column (“Sig”) will be further discussed for the purpose of this study.  In this context, the 

p-value in Table 6 shows how well each of the radar variables individually explain rain 
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rate for the combination of independent variables in that given regression model.  As 

before a p-value of less than 0.05 is considered statistically significant (only 5% chance 

of a type-1 error) and p<0.001 is considered very significant (highly unlikely for a type-1 

error).  The unstandardized coefficient B provided the values for the resultant equations 

to determine the rainfall are provided in Table 9.  It should be noted that the B values 

were applied after transforming the equations to a power law form from an initial 

logarithmic form.  The slopes of each independent variable show up in the associated 

exponent, with the power law version of the equation.  For the ZDR exponents that are 

extremely small, based on taking the B values directly from Table 6, the value for ZDR 

gets mathematically solved to be 1.  Obviously, if the variable were to actually have no 

effect, the zero slope is plugged into the exponent and any variable to zero power is like 

just multiplying by 1 (no effect on rain rate).  This is an indication of that even though the 

p-value can be of statistical significance, the B value constrains the variable to be of no 

beneficial use in the regression model equations to determine rainfall.   

Delving deeper into Table 6, let’s first consider the models that include 

reflectivity.  The first regression model R(Z,KDP,ZDR,ρhv) has all variables very 

significant with a p-value < 0.001 with the exception of specific differential phase 

(p=0.107).  Conversely, the regression model of R(Z,KDP,ZDR) only has the constant 

value and reflectivity p<0.001 with specific differential phase and differential reflectivity 

values of p=0.108 and p=0.058 respectively.  For the R(Z,ZDR,ρhv) regression model, all 

variables are very significant with differential reflectivity p=0.001 and others p<0.001. In 

both the R(Z,KDP,ρhv) and R(Z,KDP)  regression models, specific differential phase is the 

only variable that is not statistically significant (p= 0.236 and 0.074, respectively) while 
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the constant and other variables were very significant (p<0.001). The R(Z,ρhv), R(Z), and 

R(Z,ZDR)  regression models had all variables very significant (p <0.001) except for 

differential reflectivity that was only significant (p= 0.035).  One will note by comparing 

the model results, that the individual performance of certain variables differed depending 

upon what other variables were included in the equation.  

Regarding the models that performed poorly in Tables 4 and 5 because they do 

not include reflectivity, but still included correlation coefficient, for the R(KDP,ZDR,ρhv) 

regression model, the only variables being statistically significant are the constant and 

correlation coefficient.  The variables specific differential phase and differential 

reflectivity, similar to the previous model are not of significance statistically with p-

values of 0.182 and 0.322 respectively. For the regression model of R(ZDR,ρhv), the 

constant value was very significant (p < 0.001), the correlation coefficient was significant 

(p= 0.013), but differential reflectivity was not significant (p=0.24). Also, the regression 

model R(KDP,ρhv) had the constant value very significant (p<0.001), correlation 

coefficient significant (p=0.034), and specific differential phase not significant (p=0.153).  

For the R(ρhv) model, the constant variable was very significant (p<0.001) and correlation 

coefficient significant (p<0.012). These last four models show that while the overall 

equation predicted poorly without reflectivity, the constant and the correlation coefficient 

were still much more important to these models than were differential reflectivity or 

specific differential phase.  

For the models without correlation coefficient and without reflectivity, what were 

the most important variables?  For R(KDP,ZDR), R(KDP), and R(ZDR), only the constant 

variable was statistically significant (p<0.05).   
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What about some of the assumptions regarding multiple linear regression?  The 

above results may be corrupt to a degree if one does not check that the multiple linear 

regression assumptions were all satisfied.  Were those assumptions satisfied? One 

important assumption is to check that there is little to no multicollinearity.  

Table 7 showcases the collinearity statistics of the multiple linear regression 

models.  These statistics are important to determine if multicollinearity exists.  The 

tolerance value indicates how much of the variability of each of the independent variables 

cannot be explained from the other independent variables.  Recall that tolerance is 

mathematically defined as one minus the R Squared value and VIF is just the inverse of 

the tolerance.  Tolerance values less than 0.10 (or Variance Inflation Factor, VIF, greater 

than 10) indicate that multicollinearity might exist.  As seen in Table 7, none of the 

multiple regression models have multicollinearity. Specifically, three of the regression 

models R(Z,KDP,ZDR,ρhv), R(Z,ρhv), and R(Z,KDP,ρhv) had tolerance values greater than 

0.4 for each independent variable while all other models had tolerance values greater than 

0.9. (Table 7).  Thus, it is evident by the results in Table 7 that none of the values indicate 

multicollinearity.  The results presented in Table 7 fulfill one of the multiple linear 

regression assumptions of little to no multicollinearity.  To further fulfill the assumptions 

of multiple linear regression, it is also important to assess the correlation between the 

variables for each regression model.  

The Durbin-Watson test was necessary to perform in order to test the multiple 

linear regression assumption of autocorrelation, since the data gathered were part of a 

time series.  The range of outputs commonly found from running a Durbin-Watson test 

range from 0 to 4.  Values that are under 2 tend to have a positive autocorrelation while 
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values above 2 tend to have a negative autocorrelation.  Ideally, it is best to have the 

Durbin-Watson results centered around the value of 2.  According to Field (2013), 

generally any Durbin-Watson values <1 or >3 could be problematic, implying the 

assumption of autocorrelation is invalid related to the multiple linear regression criteria.  

As seen in Table 10, none of the regression models have an ideal Durbin-Watson value, 

and more specifically, two of the regression models had values of concern (R(Z,ZDR)’s 

value of 0.982 and R(Z)’s value of 0.983).  Even though these two regression models are 

<1, they were still close overall to the Durbin-Watson value of 1, and for this study the 

autocorrelation assumption would not be considered invalid for these regression models. 

However, two of the regression models, R(Z,KDP,ZDR,ρhv) and R(Z,ZDR,ρhv) had the 

highest Durbin-Watson values with 1.287 for both.  The regression model for 

R(Z,KDP,ρhv) had the third highest Durbin-Watson result with a value of 1.279 followed 

by R(Z,ρhv) with 1.198.  The regression cases of R(Z,KDP,ZDR), R(Z,KDP), and R(KDP) 

values around 1.1, specifically 1.106, 1.107, and 1.114 respectively.  The regression 

models of both R(KDP,ρhv) and R(KDP,ZDR) had Durbin-Watson values of 1.075.  

R(ZDR,ρhv) and R(ρhv) had similar Durbin-Watson values of 1.030 and 1.031 respectively.  

Furthermore, the case of R(ZDR) had a value of 1.013 and R(KDP,ZDR,ρhv)’s value of 

1.073.  For all of the regression models, their Durbin-Watson values were below the 

threshold value of 2, implying positive autocorrelation based off the data but not less than 

1.0 (Field’s “problematic” trigger) (Field, 2013).  The Durbin-Watson test suggests that 

the data were indeed autocorrelated. Again, if one were to account for the autocorrelation 

by reducing N (repeated data), the favorable p-values reported earlier would not have 

looked as favorable.  To accomplish this (though not performed in this study 
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specifically), one would apply an equation that adjusts these values accordingly with the 

end result of reducing the impact of autocorrelation.   

To further understand one other assumption related to linear regression, linearity, 

Figures 7-21 show the regression scatterplots for each of the regression models.  The x-

axis is the standard predicted value in this case the rainfall amount based on the given 

model of radar variables.  The y-axis is the standard residual value of the model and can 

be alternatively described as the observed value minus the predicted value.  A perfect 

prediction would have all data points distributed along the y=0 line, implying the 

difference between the observed and predicted rainfall be zero.  When assessing 

scatterplots it is important to discuss the direction, form, and strength of the given plots.  

The direction can be either a positive or negative association (gradient).  The form of a 

scatterplot follows a perfect linear association (all points are plotted on the trend line), 

linear association (some of the points but not all are on the trend line, all points though 

follow the trend whether it be positive or negative), no linear association (points follow a 

trend like a bell curve but are not linear), or no association at all (points are scattered but 

with no overall trend) depending on the data.  Also, the strength of a scatterplot is based 

upon the correlation also known as the clustering of the data points.  By utilizing the 

Coefficient of Multiple Correlation (R value) as seen in Table 4, the correlation strength 

can identified as either near zero, weak, moderate, or strong.  R values roughly under 

0.20 were identified as near zero and this applied to seven models. R values between 

0.20-0.49 were identified as weak and this applied to four models. R values ranging from 

0.50-0.69 were classified as moderate and four models fell in that category.  There were 
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no R values above 0.69 which would have been categorized as having a strong 

correlation strength.  

As seen in Figure 7, there was a negative association between the predicted 

rainfall and the difference between the model and the observed.  When evaluating the 

form of Figure 7, it is evident that there was a linear association.  In addition, when 

examining the strength of the data, there was a moderate correlation (R value of 0.543, as 

seen in Table 4).  Figure 8 has an overall negative association between the predicted 

rainfall and the difference between the model and the observed.  However, when 

evaluating the form of the scatterplot, the points did not have a distinct linear association.  

Furthermore, the strength of the correlation was weak, with a R value of 0.288 (Table 4).  

Additionally, Figure 9 also has a negative association with no apparent linear association 

either.  The scatterplot also indicated a weak correlation with a R value of 0.299 (Table 

4).  As seen in Figure 10, there was a negative gradient of the predicted rainfall versus the 

differences in the observed and predicted values.  This scatterplot indicated no 

association in terms of its linear form.  The strength of the scatterplot was near zero with 

a R value of 0.084 (Table 4).  In contrast, the scatterplot in Figure 11 had a slight 

negative gradient and no distinct linear association.  This scatterplot also had a near zero 

strength with a R value of 0.073 (Table 4).  As seen in Figure 12, there was a negative 

association between the predicted rainfall and the difference in the observed and 

predicted.  The form had no linear association and the strength of the correlation was 

weak with an R value of 0.306 (Table 4).  Figure 13 also had a negative association 

gradient and no linear form.  It also had correlation strength near zero (R value of 0.120 

as seen in Table 4).  When assessing the direction of the scatterplot in Figure 14, it was 
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apparent that there was a negative gradient and a slight linear association.  Furthermore, 

the correlation strength was moderate with a R value of 0.529 (Table 4).  As seen in 

Figure 15, there was a negative association between the predicted rainfall and the 

difference in the observed and predicted and the form had a slight linear association.  The 

strength of the correlation was moderate with a R value of 0.540 (Table 4).  Additionally, 

Figure 16 had a negative direction and no associated form, while the correlation strength 

was near zero (R value of 0.113 as seen in Table 4).  As seen in Figure 17, once again 

there is a negative direction and the potential for a slight linear association.  The strength 

of the correlation is weak with an R value of 0.297 as seen in Table 4.  In contrast, Figure 

18 provides a unique display of the data with a slight negative direction and no linear 

association.  Also, in Figure 18 it was apparent that the strength of the correlation was 

near zero with an R value of 0.107 (Table 4).  Figure 19 also presented a negative 

direction of the data and a slight linear association.  The correlation strength was 

moderate (R value of 0.527 as seen in Table 4).  The scatterplot in Figure 20 was similar 

to that of Figure 18.  Here, the data had a slight negative direction with no linear 

association.  The strength of the correlation was also near zero with an R value of 0.097 

(Table 4).  Figure 21 presented the worst results and basically shows no predictive value 

as the dots are not varying along the x-axis.  Remember that the three distinct 

characteristics of direction, form, and strength are needed when interpreting such results.  

Here, the data presents no distinct direction given the majority of the points align on the 

x=0 value.  .  The form was not apparent and the correlation strength was reported near 

zero with a R value of 0.048 (Table 4).  As seen in the discussion of the scatterplots, there 

is quite a lot of variability in terms of strength and form given the various independent 
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variables utilized.  All of the scatterplots had either a slight or distinct negative direction 

implying an inverse relationship between the difference of the predicted and observed 

and the predicted based on the regression model  Finally, to test the last assumption of 

linear regression analysis, it is important to assess for homoscedasticity (as seen in 

subsequent figures mentioned below). 

Figures 22-36 represent the scatterplots of each of the regression models for 

assessing homoscedasticity.  In analyzing for homoscedasticity it is imperative to identify 

any deviations from the overall trend and clustering of points.  Generally, when 

evaluating the scatterplots for homoscedasticity the points are tightly clustered in a linear 

manner along the entire x-axis, whereas scatterplots that present points in a fan-like 

manner are classified as heteroscadastic because the errors get larger in one direction 

along the x-axis.  Recall that the assumption in linear regression is that the errors are 

homoscedastic. In order to fully understand and assess for homoscedasticity, a Goldfeld-

Quandt test would need to be conducted.  However, unfortunately, SPSS does not support 

the statistical test.  Thus, for the purpose of this study, scatterplots were created to 

provide some degree of analysis related to homoscedasticity.  While this is not ideal, it is 

better to provide a brief overview than nothing at all in order to assess the five 

assumptions of linear regression.   

As seen in Figure 22, the scatterplot points appeared to follow a general fan-like 

distribution, initially the points clustered around the smaller x-axis values and expanded 

in point distribution the higher on the x-axis.  This would suggest heteroscedasticity for 

the regression model R(Z,KDP,ZDR,ρhv).  Figure 23 for the regression model of 

R(KDP,ZDR,ρhv), conversely displayed a scatterplot with points tightly bound and 
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relatively close to each other, suggesting homoscedasticity.  The regression model of 

R(Z,ZDR,ρhv) in Figure 24 showed a similar heteroscedastic trend of point distribution as 

seen in Figure 22.  Additionally, Figure 25 representing the regression model of 

R(Z,KDP,ZDR) was more like Figure 23 in displaying a homoscedastic trend given the 

points are tightly clustered from the lower bounds of the x-axis to the upper bounds.  The 

R(Z,KDP,ρhv) regression model shown in Figure 26 has quite the fan-like distribution 

among the points.  This implied that the data points were in a heteroscadastic pattern.  

Figure 27 of the regression model R(ZDR,ρhv) displayed a homoscedastic trend with the 

points tightly clustered in a linear manner.  The R(Z,ρhv) regression model in Figure 28 

had a heteroscedastic pattern to it with the points again fanning out from the lower to 

upper bounds of the x-axis.  Conversely, the regression model of R(Z,KDP) in Figure 29 

had tightly bound array of points implying homoscedasticity.  Figure 30 displayed the 

regression model R(Z,ZDR) and had the points generally following a heteroscedastic form.  

Even with the outliers shown in Figure 31 of the regression model R(KDP,ZDR), the 

scatterplot overall indicated a homoscedasticity of the points.  In addition, R(KDP,ρhv) 

displayed in Figure 32 also followed a homoscedastic trend with the points tightly 

clustered together in a linear manner across the graph.  Similarly, the regression model of 

R(ρhv) in Figure 33 also showed a homoscedastic pattern of the points.  Conversely, as 

shown in Figure 34, the pattern of points followed a heteroscedastic pattern for the 

regression model of R(Z).  The regression model of R(ZDR) displayed in Figure 35 had 

tight clustering of the points implying homoscedasticity.  Finally, as seen in Figure 36, 

R(KDP) regression model followed a homoscedastic trend with a close clustering of points 

following in a near-linear manner.  In summary the heteroskedastic patterns were seen in 
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R(Z), R(Z,ZDR), R(Z,ρhv), R(Z,KDP,ρhv), R(Z,ZDR,ρhv), and R(Z,KDP,ZDR,ρhv) which 

happen to also have the highest R Squared values.  In contrast, the homoscedastic 

patterns were seen in all other models with the lower R Squared values: R(KDP), R(ZDR), 

R(ρhv), R(KDP,ρhv), R(KDP,ZDR), R(Z,KDP), R(ZDR,ρhv), R(Z,KDP,ZDR), and 

R(KDP,ZDR,ρhv).  There is not a clear indication that a specific radar variable is 

contributing to heteroscedasticity or homoscedasticity.  Rather, it is seen that those 

models that do the best in predicting rainrate are also the models that are heteroskedastic. 

Thus, there may unfortunately be worse errors due to heteroscedasticity precisely in the 

models where we would wish they would not occur –affecting the significance (p-values) 

of the regression equations as well as individual variables within the equations. 

Finally, as part of the output from SPSS, P-P plots were created.  These plots (not 

shown) are a way to address the non-normality assumption.  It was evident upon review 

of the P-P plots that no significant deviations from the normality existed.  With this 

conclusion, the remainder of the statistical tests were performed with other plots analyzed 

in regards to the linear regression assumptions.   

Overall, the numerous figures and tables provided thoroughly discussed the 

potential for computing an equation to determine rainfall based on the combination of 

different regression models of the radar variables.  Since, there was no clear indication of 

an equation that will satisfy all the linear regression criteria required, it is important to 

discuss the limitations of this study and overall summary of this study.   

In an effort to establish a relationship for the GRNWR between the radar 

variables and the rainfall rate based off the gauges, it is useful to compare these to the 

relationships the NWS used operationally: convective, tropical, Marshall-Palmer, east-
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cool stratiform, and west-cool stratiform respectively.  These five main z-R relationships 

(R in mm h–1 and z in mm6 mm–3) are as follows: deep convection (z=300 R1.4), tropical 

convective systems (z=250 R1.2), general stratiform (z=200 R1.6), winter rain east of the 

Continental Divide (z=130 R2.0), and winter rain west of the Continental Divide (z=75 

R2.0).  While this form of the equation is shown, the equation is inverted to solve for R 

(mm h–1).  Thus, for deep convection R = (z/300)1/1.4   or , after inverting the equation,  

R = 0.017 z0.714.   One may convert Z (dBZ) to z (mm6 m–3) for use in this equation using 

z = [10Z/10].  These relationships are chosen by forecasters at each weather forecast office 

to effectively sample and quantify precipitation.  In light of the recent upgrades to dual-

polarization, quantitative precipitation estimations also utilize dual-pol products.   

 Since the upgrade to polarimetric, the NWS also uses a quantitative precipitation 

estimation algorithm consisting of four location-dependent equations for computing rain 

rate.  The first is the traditional convective z-R relationship (already inverted) with 

R(z)=(0.017)z0.714  with z (mm6 m–3) and R (mm h–1) (Prentice, 2016).  Converting the 

leading constant for consistency with linear regression results herein gives R(z)=10–1.77z 

0.714 (Prentice, 2016).  The second equation combines differential reflectivity and 

reflectivity to handle cool season and warm season deep convection.  That equation is 

R(z,zDR)=(0.0142)z0.77 zdr
–1.67 with z (mm6 m–3) and zdr (nondim) (Prentice, 2016).  

Converting the leading constant for consistency with results herein, R(z,zdr)=(10–1.84) z0.77 

zdr
 –1.67 (Prentice, 2016).  A third equation is used for warm seasons and tropical events 

dominated by warm rain processes: R(z,zDR)=(0.0067)z0.927zdr
–3.43 with z (mm6 m–3) and 

zdr (nondim) (Prentice, 2016).  Adjusting the leading constant, R(z,zdr)=(10–2.174) z0.927zdr
–

3.43 (Prentice, 2016).  Lastly, the fourth rain estimation equation is based upon specific 
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differential phase when hail has been identified and known as 

R(KDP)=44.0|KDP|0.822sign(KDP) with KDP (deg km–1) (Prentice, 2016).  Adjusting the 

leading constant for comparison with results herein, R(KDP)=101.64|KDP|0.822sign(KDP).  

The quantitative precipitation algorithm has built in logic to handle when this last 

equation is negative (Prentice, 2016).  In deriving new regression models based off of this 

research study, initial testing was performed to validate and determine if the rainrate from 

these equations and the equations from Giangrande and Ryzkhov (2003) were in 

agreement to the observed rainfall and the derived equations from the regression models 

of this study (not shown).  It should be noted that an initial assessment was undertaken to 

see if the equations compared well to the observed rainfall based on the radar variable 

values from this study.  The derived equations from the regression models herein did not 

compare well to the other equations used by the NWS and Giangrande and Ryzkhov 

(2003).  Further research should be addressed to obtain higher rainfall amounts to more 

appropriately sample and refine the regression models to do a more accurate comparison. 
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Table 4. Regression summary of the Coefficient of Multiple Correlation (R), Coefficient 

of Determination (R Squared), Adjusted R Squared, and Standard Error of the Estimate 

(rounded for display purposes). 

Regression 

Model 

R R 

Sq. 

Adj. 

R 

Sq.  

Std. 

Error of 

the Est. 

R(Z,KDP,ZDR,ρhv) .543 .295 .290 .355 

R(Z,KDP,ZDR) .306 .093 .089 .403 

R(KDP,ZDR,ρhv) .120 .014 .010 .420 

R(Z,KDP,ρhv) .529 .280 .276 .359 

R(Z,ZDR,ρhv) .540 .292 .288 .356 

R(Z,KDP) .297 .088 .085 .404 

R(ZDR,ρhv) .107 .012 .009 .420 

R(Z,ρhv) .527 .278 .276 .359 

R(KDP,ρhv) .113 .013 .010 .420 

R(KDP,ZDR) .084 .007 .004 .421 

R(Z,ZDR) .299 .089 .087 .403 

R(Z) .288 .083 .082 .404 

R(KDP) .073 .005 .004 .421 

R(ρhv) .097 .009 .008 .420 

R(ZDR) .048 .002 .001 .422 
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Table 5. Analysis of variance (ANOVA) summary where the rain gauge is the dependent 

variable and the various radar variables are the independent variables.  The “Significant 

Value” is also known as the p-value and is the probability that the model would explain 

the rain variability by chance (probability of type-1 error). 

Regression 

Model 

Sum of 

Squares 

Degrees 

of 

Freedom 

(df) 

Mean 

Square 

F Significant-

Value 

Significant? 

R(Z,KDP,ZDR,ρhv) 

     Regression 

     Residual 

 

31.380 

75.034 

 

4 

594 

 

7.845 

.126 

62.10 <.001 Yes, Very 

R(Z,KDP,ZDR) 

     Regression 

     Residual 

 

9.940 

96.474 

 

3 

595 

 

3.313 

.162 

20.43 <.001 Yes, Very 

R(KDP,ZDR,ρhv) 

     Regression 

     Residual 

 

1.541 

104.872 

 

3 

595 

 

.514 

.176 

2.92 0.034 Yes 

R(Z,KDP,ρhv) 

     Regression 

     Residual 

 

29.759 

76.654 

 

3 

595 

 

9.920 

.129 

77.00 <.001 Yes, Very 

R(Z,ZDR,ρhv) 

     Regression 

     Residual 

 

32.659 

79.270 

 

3 

626 

 

10.886 

.127 

85.97 <.001 Yes, Very 

R(Z,KDP) 

     Regression 

     Residual 

 

9.356 

97.058 

 

2 

596 

 

4.678 

.163 

28.73 <.001 Yes, Very 

R(ZDR,ρhv) 

     Regression 

     Residual 

 

1.361 

116.797 

 

2 

662 

 

.681 

.176 

3.86 .022 Yes 

R(Z,ρhv) 

     Regression 

     Residual 

 

31.111 

80.819 

 

2 

627 

 

15.556 

.129 

120.68 
<.001 Yes, Very 
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Table 5 (Cont.). Analysis of variance (ANOVA) summary where the rain gauge is the 

dependent variable and the various radar variables are the independent variables.  The 

“Significant Value” is also known as the p-value and is the probability that the model 

would explain the rain variability by chance (probability of type-1 error). 

Regression 

Model 

Sum of 

Squares 

Degrees 

of 

Freedom 

(df) 

Mean 

Square 

F Significan

t-Value 

Significant? 

R(KDP,ρhv) 

     Regression 

     Residual 

 

1.368 

105.046 

 

2 

596 

 

.684 

.176 

3.88 .021 Yes 

R(Z,ZDR) 

     Regression 

     Residual 

 

10.014 

101.916 

 

2 

627 

 

.5.007 

.163 

30.803 <.001 Yes, Very 

R(Z) 

     Regression 

     Residual 

 

9.292 

102.638 

 

1 

628 

 

9.292 

.163 

56.851 <.001 Yes, Very 

R(KDP) 

     Regression 

     Residual 

 

.574 

105.840 

 

1 

597 

 

.574 

.177 

3.238 .072 No 

R(ρhv) 

     Regression 

     Residual 

 

1.119 

117.217 

 

1 

664 

 

1.119 

.177 

6.338 .012 Yes 

R(ZDR) 

     Regression 

     Residual 

 

.269 

117.890 

 

1 

663 

 

.269 

.178 

1.510 .220 No 
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Table 6. Coefficients of regression models where the rain gauge is the dependent variable 

and the various radar variables are the independent variables.  Singular regression does 

not provide intercorrelations among independent variables. 

Regression 

Model 

Unstandardized 

Coefficients 

t Sig. 95.0% 

Confidence 

Interval for B 

Correlations 

Part 

B Std. 

Error 

Lower 

Bound 

Upper 

Bound 

R(Z,KDP,ZDR,

ρhv) 

     Constant 

     Z 

     KDP 

     ZDR 

     ρhv 

 

 

.577 

.285 

.016 

<.001 

-.771 

 

 

.037 

.019 

.010 

<.001 

.059 

 

 

15.571 

15.369 

1.616 

-3.582 

-13.03 

 

 

<.001 

<.001 

.107 

<.001 

<.001 

 

 

.504 

.249 

-.003 

<.001 

-.887 

 

 

.650 

.322 

.035 

<.001 

-.655 

 

 

 

.530 

.056 

-.123 

-.449 

R(Z,KDP,ZDR

) 

     Constant 

     Z 

     KDP 

     ZDR 

 

 

.249 

.107 

-.017 

>-.001 

 

 

.031 

.014 

.011 

<.001 

 

 

8.079 

7.527 

-1.608 

-1.897 

 

 

<.001 

<.001 

.108 

.058 

 

 

.188 

.079 

-.039 

<.001 

 

 

.309 

.135 

.004 

<.001 

 

 

 

.294 

-.063 

-.074 

R(KDP,ZDR, 

ρhv) 

     Constant 

     KDP 

     ZDR 

     ρhv 

 

 

.514 

-.015 

>-.001 

-.100 

 

 

.044 

.011 

<.001 

.047 

 

 

11.818 

-1.338 

-.992 

-2.114 

 

 

<.001 

.182 

.322 

.035 

 

 

.429 

-.038 

<.001 

-.192 

 

 

.600 

.007 

<.001 

-.007 

 

 

 

-.054 

-.040 

-.086 
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Table 6 (Cont.). Coefficients of regression models where the rain gauge is the dependent 

variable and the various radar variables are the independent variables.  Singular 

regression does not provide intercorrelations among independent variables. 

Regression 

Model 

Unstandardized 

Coefficients 

t Sig. 95.0% 

Confidence 

Interval for B 

Correlations 

Part 

B Std. 

Error 

Lower 

Bound 

Upper 

Bound 

R(Z,KDP,ρhv) 

     Constant 

     Z 

     KDP 

     ρhv 

 

.575 

.275 

.012 

-.747 

 

.037 

.059 

.010 

.019 

 

15.376 

14.845 

1.187 

-12.58 

 

<.001 

<.001 

.236 

<.001 

 

.502 

.239 

-.008 

-.864 

 

.649 

-.631 

.031 

.311 

 

 

.517 

.041 

-.438 

R(Z,ZDR,ρhv) 

     Constant 

     Z 

     ZDR 

     ρhv 

 

.555 

.279 

<.001 

-.746 

 

.034 

.018 

<.001 

.056 

 

16.521 

15.739 

-3.497 

-13.37 

 

<.001 

<.001 

.001 

<.001 

 

.489 

.244 

<.001 

-.856 

 

.621 

.314 

<.001 

-.636 

 

 

.529 

-.118 

-.450 

R(Z,KDP) 

     Constant 

     Z 

     KDP  

 

.254 

.104 

-.019 

 

.031 

.014 

.011 

 

8.257 

7.344 

-1.791 

 

<.001 

<.001 

.074 

 

.193 

.076 

-.040 

 

.314 

.132 

.002 

 

 

.287 

-.070 

R(ZDR,ρhv) 

     Constant 

     ZDR 

     ρhv  

 

.535 

>-.001 

-.110 

 

.039 

<.001 

.044 

 

13.882 

-1.176 

-2.488 

 

<.001 

.240 

.013 

 

.459 

<.001 

-.197 

 

.611 

<.001 

-.023 

 

 

-.045 

-.096 

R(Z,ρhv) 

     Constant 

     Z 

     ρhv  

 

.559 

.271 

-.730 

 

.034 

.018 

.056 

 

16.507 

15.269 

-13.01 

 

<.001 

<.001 

<.001 

 

.492 

.236 

-.840 

 

.625 

.306 

-.620 

 

 

.518 

-.442 

  



 

61 

 

Table 6 (Cont.). Coefficients of regression models where the rain gauge is the dependent 

variable and the various radar variables are the independent variables.  Singular 

regression does not provide intercorrelations among independent variables. 

Regression 

Model 

Unstandardized 

Coefficients 

t Sig. 95.0% 

Confidence 

Interval for B 

Correlations 

Part 

B Std. 

Error 

Lower 

Bound 

Upper 

Bound 

R(KDP,ρhv) 

     Constant 

     KDP 

     ρhv  

 

.514 

-.016 

-.100 

 

.044 

.011 

.047 

 

11.824 

-1.432 

-2.122 

 

<.001 

.153 

.034 

 

.429 

-.039 

-.193 

 

.600 

.006 

-.007 

 

 

-.058 

-.086 

R(KDP,ZDR) 

     Constant 

     ZDR 

     KDP  

 

.432 

>-.001 

-.019 

 

.020 

<.001 

.011 

 

21.977 

-1.006 

-1.699 

 

<.001 

.315 

.090 

 

.393 

<.001 

-.041 

 

.471 

<.001 

.003 

 

 

-.041 

-.069 

R(Z,ZDR) 

     Constant 

     Z 

     ZDR 

 

.262 

.107 

>-.001 

 

.029 

.014 

<.001 

 

9.087 

7.749 

-2.108 

 

<.001 

<.001 

.035 

 

.206 

.080 

<.001 

 

.319 

.135 

<.001 

 

 

.295 

-.080 

R(Z) 

     Constant 

     Z 

 

.270 

.104 

 

.029 

.014 

 

9.377 

7.540 

 

<.001 

<.001 

 

.213 

.077 

 

.326 

.131 

 

 

.288 

R(KDP) 

     Constant 

     KDP 

 

.432 

-.020 

 

.020 

.011 

 

21.972 

-1.799 

 

<.001 

.072 

 

.393 

-.042 

 

.471 

.002 

 

 

-.073 

R(ρhv) 

     Constant 

     ρhv 

 

.537 

-.111 

 

.038 

.044 

 

13.948 

-2.518 

 

<.001 

<.012 

 

.461 

-.198 

 

.613 

-.024 

 

 

-.097 
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Table 6 (Cont.). Coefficients of regression models where the rain gauge is the dependent 

variable and the various radar variables are the independent variables.  Singular 

regression does not provide intercorrelations among independent variables. 

Regression 

Model 

Unstandardized 

Coefficients 

t Sig. 95.0% 

Confidence 

Interval for B 

Correlations 

Part 

B Std. 

Error 

Lower 

Bound 

Upper 

Bound 

R(ZDR) 

     Constant 

     ZDR 

 

.448 

>-.001 

 

.016 

<.001 

 

27.381 

-1.229 

 

<.001 

.220 

 

.416 

<.001 

 

.480 

<.001 

 

 

-.048 

 

Table 7. Tolerance and variance inflation factor (VIF) statistics for multiple regression 

models where the raingauge is the dependent variable and the various radar products are 

the independent variables. 

Regression Model Collinearity Statistics 

Tolerance VIF 

R(Z,KDP,ZDR,ρhv) 

     Z 

     KDP 

     ZDR 

     ρhv 

 

.449 

.924 

.967 

.443 

 

2.225 

1.082 

1.034 

2.257 

R(Z,KDP,ZDR) 

     Z 

     KDP 

     ZDR 

 

.987 

.991 

.979 

 

1.013 

1.009 

1.022 

R(KDP,ZDR,ρhv) 

     KDP 

     ZDR 

     ρhv 

 

.965 

.991 

.973 

 

1.036 

1.009 

1.028 
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Table 7 (Cont.). Tolerance and variance inflation factor (VIF) statistics for multiple 

regression models where the raingauge is the dependent variable and the various radar 

products are the independent variables. 

Regression Model Collinearity Statistics 

Tolerance VIF 

R(Z,KDP,ρhv) 

     Z 

     KDP 

     ρhv 

 

.461 

.938 

.461 

 

2.170 

1.066 

2.229 

R(Z,ZDR,ρhv) 

     Z 

     ZDR 

     ρhv 

 

.469 

.981 

.475 

 

2.131 

1.020 

2.106 

R(Z,KDP) 

     Z 

     KDP  

 

1.000 

1.000 

 

1.000 

1.000 

R(ZDR,ρhv) 

     ZDR 

     ρhv  

 

.999 

.999 

 

1.001 

1.001 

R(Z,ρhv) 

     Z 

     ρhv  

 

.478 

.478 

 

2.091 

2.091 

R(KDP, ρhv) 

     KDP 

     ρhv  

 

.973 

.973 

 

1.028 

1.028 

R(KDP,ZDR) 

     KDP 

     ZDR  

 

.991 

.991 

 

1.009 

1.009 

R(Z,ZDR) 

     Z 

     ZDR 

 

.988 

.988 

 

1.013 

1.013 
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Table 8. Pearson Correlation results for regression models including the following 

transformed variables: log10(R), ρhv, log10|KDP|sign(KDP), Z/10, and ZDR.. 

Variable log10(R) ρhv log10|KDP| 

sign(KDP) 

Z/10 ZDR 

log10(R) 

ρhv 

log10|KDP|sign(KDP) 

Z/10 

ZDR 

1.00 

 

 

 

-.097 

1.000 

 

 

 

-.073 

.164 

1.000 

 

.288 

.722 

-.012 

1.000 

 

-.048 

.023 

.092 

.112 

1.000 

 

  



 

65 

 

Table 9. Power law form of regression equations where the rain rate (mm h–1) is the 

dependent variable and the various radar variables are the independent variables: z (mm6 

m–3), KDP (deg km–1), and zDR (nondim). 

Regression Model Rainfall Equation  following form shown in Eq. 12 

R(z,KDP,zDR,ρhv) R=10.577  z.285    zdr
0                   10 –.771ρhv  |KDP|016 

sign(KDP)
     

R(z,KDP,zDR) R=10.249  z.107   zdr
–6.869E–5                   |KDP|–.017 

sign(KDP)
   

R(KDP,zDR,ρhv) R=10.514                zdr
–3.720E–5    10–.100 ρhv    |KDP|–.015 

sign(KDP) 

R(z,KDP,ρhv) R=10.575  z.275                       10–.747 ρhv   |KDP|012   
sign(KDP)

                                

R(z,zDR,ρhv) R=10.555  z.279  zdr
0                   10–.746 ρhv 

R(z,KDP) R=10.254  z.104                                       |KDP|–.019 
sign(KDP) 

R(zDR,ρhv) R=10.535           zdr
–4.169E–5   10–.110 ρhv 

R(z,ρhv) R=10.559  z.271                                10–.730 ρhv 

R(KDP,ρhv) R=10.514                             10–.100 ρhv   |KDP|–.016   
sign(KDP)

                                 

R(KDP,zDR) R=10.432          zdr
–3.758E–5                              |KDP|–.019   

sign(KDP)
   

R(z,zDR) R=10.262  z.107  zdr
–7.41E–5  

R(z) R=10.270  z.104  

R(KDP) R=10.432                                                                  |KDP|–.020
 sign(KDP)

     

R(ρhv) R=10.537                                           10–.111 ρhv    

R(zdr) R=10.448         zdr
–4.374E–5 
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Table 10. Durbin-Watson summary where the rain gauge is the dependent variable and 

the radar products denoted are the independent variables.  Items from other tables are 

repeated, and the table has been sorted in descending order of R Squared. 

Regression 

Model 

Durbin-

Watson 

Hetero-

skedastic 

R Squared  

(from Table 4) 

p-value (from 

Table 5) 

R(Z,KDP,ZDR,ρhv) 1.287 YES .295 <.001 

R(Z,ZDR,ρhv) 1.287 YES .292 <.001 

R(Z,KDP,ρhv) 1.279 YES .280 <.001 

R(Z,ρhv) 1.198 YES .278 <.001 

R(Z,KDP,ZDR) 1.106  .093 <.001 

R(Z,ZDR) .982 YES .089 <.001 

R(Z,KDP) 1.107  .088 <.001 

R(Z) .983 YES .083 <.001 

R(KDP,ZDR,ρhv) 1.073  .014 0.034 

R(KDP,ρhv) 1.075  .013 .021 

R(ZDR,ρhv) 1.030  .012 .022 

R(ρhv) 1.031  .009 .012 

R(KDP,ZDR) 1.075  .007 <.001 

R(KDP) 1.114  .005 .072 

R(ZDR) 1.013  .002 .220 
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Figure 7. Scatterplot of the multiple regression case utilizing all four radar variables: 

correlation coefficient, specific differential phase, reflectivity, and differential 

reflectivity, for all storm events. 
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Figure 8. Scatterplot for the singular regression case of reflectivity for all storm cases. 
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Figure 9. Scatterplot of the multiple regression case of the radar variables reflectivity and 

differential reflectivity for all storm cases. 
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Figure 10. Scatterplot for the multiple regression case involving the radar variables 

specific differential phase and differential reflectivity for all storm cases. 
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Figure 11. Scatterplot for the singular regression case involving the radar variable 

specific differential phase for all storm events. 

  

D
if

fe
r
en

ce
 i

n
 t

h
e 

lo
g

 o
f 

o
b

se
rv

ed
 r

a
in

fa
ll

 (
lo

g
 m

m
/h

r)
 

a
n

d
 l

o
g

 o
f 

p
re

d
ic

te
d

 r
a

in
fa

ll
 (

lo
g

 m
m

/h
r)

 

(R
eg

re
ss

io
n

 S
ta

n
d

a
rd

iz
ed

 R
es

id
u

a
l)

 

 

Predicted log of rainfall (mm per hr) based on the derived linear regression for specific 

differential phase  

 (Regression Standardized Predicted Value) 



72 

 

Figure 12. Scatterplot for the multiple regression case involving the radar variables 

reflectivity, specific differential phase, and differential reflectivity for all storm events. 
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Figure 13. Scatterplot for the multiple regression case involving the radar variables 

correlation coefficient, specific differential phase, and differential reflectivity for all 

storm events. 
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Figure 14. Scatterplot for the multiple regression case involving the radar variables 

reflectivity, specific differential phase, and correlation coefficient for all storm events. 
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Figure 15. Scatterplot for the multiple regression case involving the radar variables 

reflectivity, correlation coefficient, and differential reflectivity for all storm events. 
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Figure 16. Scatterplot for the multiple regression case involving the radar variables 

specific differential phase and correlation coefficient for all storm events. 
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Figure 17. Scatterplot for the multiple regression case involving the radar variables 

reflectivity and specific differential phase for all storm events. 
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Figure 18. Scatterplot for the multiple regression case involving the radar variables 

correlation coefficient and differential reflectivity for all storm events. 
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Figure 19. Scatterplot for the multiple regression case involving the radar variables 

reflectivity and correlation coefficient for all storm events. 
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Figure 20. Scatterplot for the linear regression case involving the radar variable 

correlation coefficient for all storm events. 
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Figure 21. Scatterplot for the linear regression case involving the radar variable 

differential reflectivity for all storm events. 
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Figure 22. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of reflectivity, specific differential phase, 

correlation coefficient, and differential reflectivity. 

  

Figure 23. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of specific differential phase, correlation 

coefficient, and differential reflectivity. 

Observed log of rainfall (mm per hr) based on the derived linear regression for reflectivity, specific 
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Figure 24. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of reflectivity, correlation coefficient, and 

differential reflectivity. 

 
Figure 25. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of specific differential phase, reflectivity, and 

differential reflectivity.  
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Figure 26. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of specific differential phase, reflectivity, and 

correlation coefficient. 

 
Figure 27. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of differential reflectivity and correlation 

coefficient. 
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Figure 28. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of reflectivity and correlation coefficient. 

 
Figure 29. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of reflectivity and specific differential phase. 
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Figure 30. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of reflectivity and differential reflectivity. 
 

 
Figure 31. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of specific differential phase and differential 

reflectivity. 
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Figure 32. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the multiple linear regression model of specific differential phase and correlation 

coefficient. 

 
Figure 33. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the linear regression model of correlation coefficient. 
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Figure 34. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the linear regression model of reflectivity. 

 
Figure 35. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the linear regression model of differential reflectivity. 
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Figure 36. Scatterplot for log of the rainfall (mm per hour) vs the unstandardized residual 

of the linear regression model of specific differential phase. 
 

5.2 Limitations of Results 

 In applying the R2AIn-GIS tool, limitations arose.  For instance there are several 

occurrences in the various storm events where there was radar data but no precipitation 

indicated with the rain gauges.  It is possible that the rain could be falling around the 

gauge and just not in it to be measured.  Wind and distance between radar scan height and 

the ground can contribute to differences in the gauge to radar measurement of 

precipitation as discussed in the next section.   

Further limitations are associated with the seasonality of the storm events.  

Following Giangrande and Ryzhkov (2003), this study focused on the warm season from 

May through August during the first two seasons sampled with the polarimetric KMVX 

radar.  To develop an adequate MLR that is representative of the region, a full-season 
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MLR should be further developed or at the very least a cold-season MLR should also be 

developed.  By computing various statistical tests for the gauges operated by the USGS 

for the Glacial Ridge Prairie, limitations arise in having station E05 missing from the 

2012 storm cases.  This gauge is crucial in providing a thorough depiction of rainfall 

within the Glacial Ridge Prairie.  

 Following Giangrande and Ryzhkov (2003), the number of observation hours 

utilized in this study was 114 hours compared to their 52 hours.  This increase in  

observation hours does provide a larger data collection for analysis.  However, a 

limitation arises in the number of gauges for this study area, with seven gauges versus the 

108 gauges of the Oklahoma Mesonet.  It should be noted that the region of the Glacial 

Ridge Prairie is significantly smaller than the domain covered under the Oklahoma 

Mesonet.  The average spacing between each Oklahoma Mesonet gauge is 35 km while 

this study site has an average gauge spacing of 9.6 km.  Another limitation is the raster 

calculator function of the R2AIn-GIS.  Again, because the radar does not always have 

three consecutive radar scans ending at 00, 15, 30, and 45, the scans are not always an 

identical representation of the fifteen-minute gauge data.  The average of the sum of three 

consecutive radar scans that end near or at the rain gauge intervals listed above was used 

to calculate a value for each radar variable.  Occasional radar grids missing from various 

storm events occurred during analysis.   

 

5.3 Limitations and Errors from Data Sources  

 

It is evident that limitations exist when analyzing storm events on a spatial and 

temporal scale.  Tipping bucket rain gauges serve as a great point indicator of rainfall on 
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a temporal scale.  Although these gauges are used in many locations across the United 

States, flaws exist.  Commons errors that can cause rainfall estimates to be incorrect are: 

turbulent airflow around the gage, melting hail, evaporation, adhesion of drops to gauge, 

and water splashing (Speltz 1992).  With each bucket tip containing 0.01 inches of water 

in the bucket, the effects of evaporation, drop adhesion and splashing can cause 

underestimates in rainfall totals.  Dahlstrom (1973) found that less than 2% of 

underestimated rainfall totals were from the contributions of evaporation, drop adhesion 

and splashing.  Very hard rainfall in the presence of wind can cause rain droplets to not 

fall within the small orifice of the gauge, leading to underestimates of rainfall.  Average 

deficits at 5 m s-1 and 10 m s-1 are 12% and 19% respectively (Larson and Peck 1974).   

Meteorologists have utilized windshields around gauges to reduce the effects of 

wind as have also strategically placed gauges in open areas with no structural 

obstructions to eliminate shadowing effects.  Another issue with the tipping bucket style 

of rain gauge is with the bucket itself.  If there is insufficient rain to tip the bucket, the 

gauge will not report precipitation until the bucket tips (at which point it sending an 

electronic signal to the receiver).  This delay affects the reporting time of the 

precipitation.  An error that can cause overestimates in tipping bucket rain gauges are 

faulty reed switches.  This occurs when the full bucket tips, releasing the collected water 

and returning back to the collection position quickly with very little to no time for the 

other bucket to collect rain (Clement 1995).  This problem can result in the collecting 

bucket to inefficiently remove water, meaning when it tips again the precipitation amount 

will overestimate by counting some of the precipitation that fell more than once.   
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During heavy downpour events, funnel misdirection can occur.  Clement (1995) 

defines this as “when a sudden onset of precipitation partially fills the collector and a 

vortex action is created within the funnel.”  The vortex action forces some or all of the 

water away from the collecting bucket, leading to underestimates in rain total.   

With the rain gauges in the study area located out in fields, the potential for small 

animals and insects to make homes in rain gauges exist.  A remedy for this pest issue is 

regular maintenance and inspection of the gauges.   

A factor that could hinder further precipitation analysis over the region is the 

period of the rain gauge observation record.  With the rain gauges recording since 2003 

or 2004, the capability of doing point to area frequency of precipitation is reduced with 

no coverage prior to installation.  With continued maintenance and operation, the gauges 

in the GRNWR will provide further precipitation data to contribute to rainfall analysis 

and further hydrologic modeling. 

 Radars also have significant limitations.  No drop size distribution data were 

available for estimation of a refined Z-R herein.  The distance between KMVX and 

GRNWR gauge network is ~93 km, meaning that the 0.5° is at an altitude of ~700 m 

AGL.  Thus, evaporation is possible, which in the extreme could leading to non-missing 

radar variables but no ground precipitation.  Winds aloft—similar to winds at the 

surface—near the gauge can lead to underestimates of accumulated precipitation.  Strong 

winds aloft can steer the precipitation so that when a radar scans the rain aloft it is over a 

grid cell but could it reaches the surface outside the grid cell.  Conversely, the radar can 

scan rain aloft and away from the gauge but strong winds aloft can steer the rain into the 

gauge with clear radar scans above the gauge.  
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CHAPTER VI 

 

CONCLUSION  

 

 The R2AIn-GIS is an additional data processing and analysis tool that uses GIS 

software to effectively combine radar and rain gauge information in a convenient manner.  

By taking parts of the concepts of Zhang and Srinivasan (2010), R2AIn-GIS builds upon 

their original construct with the incorporation of dual-polarization radar capabilities as 

well as updated scripting languages for current use in the ArcGIS® software suite.  The 

R2AIn-GIS tool was used to analyze warm season (May through August) storm events 

over the GRNWR in an effort to determine the validity of the tool as an effective means 

to analyze storms in a GIS environment.  The tool was used on a variety of storm events 

that occurred in the warm season of 2012 and 2013 to utilize data from the recently 

upgraded dual-pol KMVX radar. The average fifteen minute radar grid was paired with 

the fifteen minute rainfall to allow further statistical analysis.  Including statistical 

frequency, gauges and radar values alike, data were inputted into SPSS, a statistical 

analysis software, to determine a multiple linear regression relationship between the 

variables of rainfall, reflectivity, correlation coefficient, differential reflectivity, and 

specific differential phase.  The results of the statistical analysis show that based on the 

number of storm cases and resultant fifteen minute radar, gauge pairings that there are 

models that can be used that predict better than the standard Z-R relationship.  
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Based off the findings of the various statistical tests, it appeared that the overall 

best models included the radar variables of reflectivity and correlation coefficient as seen 

in Table 10.  These two variables had significant p-values and their Durbin-Watson 

scores were among the highest even compared with the other radar variables.  Models 

including the radar variables reflectivity and correlation coefficient were found to be 

heteroscedastic along with the highest R Squared values.  Future work on the 

implementation of a reflectivity and correlation coefficient equation that is truly 

representative for more than just the area in GRNWR would greatly benefit the 

hydrometeorological and radar meteorology literature.  

It is suggested that future work focus on additional storm analysis and operation 

of the gauges within the GRNWR as the region undergoes a transformation from 

farmland back to wetland.  More storm events and a growing period of record for gauges 

will enable continuous updating of the MLR and statistical values of the regression 

models.  It would be further beneficial to include the Goldfeld-Quandt test to also address 

the assumption of homoscedasticity and apply this to the previous cases with more 

advanced statistical software.   

Future research should focus on utilizing precipitation data that is more robust and 

covers a larger geographic landscape.  The data for this research study had very little 

precipitation to offer the best results.  Thus, it is critical that any future research 

conducted includes larger amounts of precipitation.  Perhaps, since the study area was so 

refined the results were not as ideal as in other instances where researchers would assess 

the precipitation over a larger geographic landscape.  It is also important that future 

researchers provide specific details on methodologies and results.  In so many instances, 
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such as Giangrande and Ryzhkov (2003), the authors fail to even report the important 

components of their methodologies and results such as important issues regarding 

ANOVA.  This research study at least attempted to address each step of the 

methodologies and results, allowing future researchers to mimic and improve upon the 

study. 
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