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ABSTRACT 

 Ciliary neurotrophic factor (CNTF) is believed to promote neuronal 

sprouting and survival within the magnocellular neurosecretory system (MNS) by 

means of astrocyte activation following injury. When CNTF binds to its receptor 

complex, CNTF receptor alpha, located on the extracellular surface of the 

astrocyte, it initiates the Jak/STAT3 pathway. The activation of this pathway and 

the translocation of phosphorylated STAT3 (pSTAT3) to the nucleus is believed 

to lead to the release of multiple factors that act in a paracrine manner to 

influence survival and sprouting of MNS neurons. To confirm the ability of CNTF 

to activate the astrocyte, the three receptor components were confirmed to be 

present by means of immunocytochemistry and/or Western Blotting on in-vitro rat 

primary astrocyte cell cultures. Next activation of the astrocyte, translocation of 

pSTAT3 to the nuclease, was measured using Nuclear Extractions of cell 

cultures that had been incubated in rat recombinant CNTF (rrCNTF) and 

compared to non-treated cell cultures. Western blotting of the nuclear extractions 

indicates that rrCNTF activation of the Jak/STAT3 pathway occurs within 30 

minutes of application. Using Rat Cytokine Antibody Arrays from RayBio, the 

comparison of 72 hour rrCNTF treated astrocyte cell cultures supernatants to 

non-treated, showed an increase release of roughly 20% in several factors; 

Fractalkine (66.67%), IL-6 (22.22%), LIX (18.42), and VEGF (36.54%). Further 
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analysis of Fractalkine, IL-6, LIX and VEGF by means an Elisa on the cytosolic 

portions of nuclear extractions and the corresponding supernatants did not 

indicate any significant changes in protein production or release. To test levels of 

RNA multiple real time reverse transcriptase polymerase chain reaction (RT² 

PCR) profiler arrays were performed on RNA collected from both control and 

rrCNTF treated astrocyte cell cultures after 6, 12 or 24 hour incubations. The 

gene analysis indicates numerous changes falling beyond a threefold cut off. The 

inhibition of the Jak/STAT3 pathway within the cultured astrocytes was tested by 

the application of AG490 to inhibit Jak2 and cucurbitacin to inhibit STAT3. Within 

the cultured astrocytes, AG490 did not successfully inhibit the CNTF activated 

pathway, although the inhibition of STAT3 by cucurbitacin arrested the activation 

process. To test if astrocytes do indeed release neuronal promoting factors, 

astrocyte conditioned media from a non-treated control, rrCNTF treated, AG490, 

AG490 plus rrCNTF, cucurbitacin and cucurbitacin plus rrCNTF treatments was 

applied to hypothalamic organotypic explant cultures and the MNS neurons were 

counted and compared. The comparison showed a significant increase in 

neuronal survival for explants exposed to CNTF as well as AG490 plus CNTF. 

This indicates that AG490 does not inhibit the CNTF activation of cultured 

astrocytes. The exposure to cucurbitacin does effectively prevent the astrocytes 

from becoming activated by CNTF, preventing the release of pro-survival 

neuronal factors. In summary, CNTF potentiates the survival of axotomized 

magnocellular neurons by means of the resident astrocytes.
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CHAPTER I 

INTRODUCTION 

Hypothalamic Magnocellular Neurosecretory System 

 The hypothalamic magnocellular neurosecretory system (MNS) has 

become a classic model for peptidergic neurons over the last seventy years due 

to the initial work of Ernst and Berta Scharrer (1954). Thanks to the advances in 

tissue staining by Gyorgy Gomori (Gomori, 1939, 1941, 1950), the MNS has 

been shown to consist of two categories of peptide hormone producing neurons 

(magnocellular and parvocellular neurons) found within the paraventricular nuclei 

(PVN; magnocellular and parvocellular) and the supraoptic nuclei (SON; 

magnocellular) as well as some accessory nuclei (Figure 1). The parvocellular 

neurons have been shown to influence the anterior pituitary through the release 

of multiple regulatory hormones into the hypophyseal portal system (A. J. 

Silverman & Zimmerman, 1983). While, the axons of the magnocellular neurons 

extend through the median eminence and terminate in the posterior pituitary 

(neural lobe; NL) collectively forming the hypothalamo-neurohypophysial tract 

(Alvarez-Buylla, Livett, Uttenthal, Hope, & Milton, 1973). Activation of this system 

can be induced by numerous factors including, but not limited to, blood osmolality 

(Bourque, Oliet, & Richard, 1994), sexual stimulation (Pedersen & Boccia, 2006), 

an infant’s cry (Leng, Caquineau, & Sabatier, 2005), and invasive surgery 

(Hatton, 1983).  
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Figure 1.  Anatomy of the Magnocellular Neurosecretory System. The somas 

of the magnocellular neurons lie within the paraventricular nuclei 
(PVN; blue), supraoptic nuclei (SON; green), and accessory nuclei 
(ACC; red). The axons (indicated by arrows) of the PVN extend 
ventrally and caudally meeting up with the SON axons that extend 
medially and caudally forming the hypothalamo-neurohypophysial 
tract which passes through the median eminence and terminates in 
the pars nervosa. 

 

Paraventricular Nucleus 

 The PVN are paired triangular shaped neuronal clusters located 

adjacently to the dorsal sides of the third ventricle and consists of both 

magnocellular and parvocellular neurons. The PVN can be subdivided into eight 

distinct subdivisions of neurons, of which three are magnocellular; anterior, 

medial and posterior magnocellular divisions (Swanson & Kuypers, 1980). The 
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largest of the magnocellular divisions and the primary one of focus in our studies 

is the posterior magnocellular portion (Swanson & Sawchenko, 1983).  

 The axons of the PVN magnocellular neurons extend in one of two 

destinations; medially to the stria medullaris or laterally bending towards the 

median eminence and terminating in the peripheral regions of the pars nervosa 

(Swanson & Sawchenko, 1983). The axons found in the zona externa of the 

median eminence follow an ipsilateral arc-shaped path (Antunes, Carmel, & 

Zimmerman, 1977). Those that travel through the internal median eminence 

terminate in the peripheral regions of the pars nervosa (Alonso & Assenmacher, 

1981; Hernandez et al., 2015; Ju, Liu, & Tao, 1986). This tract is also referred to 

as the tract of Greving.  

 The five remaining divisions are distinctly parvocellular; periventricular, 

anterior parvocellular, medial parvocellular, lateral parvocellular, and dorsal 

parvocellular(Swanson & Kuypers, 1980). The parvocellular neurons found in 

these five divisions extend their axons through the ventral surface of the external 

zone of the median eminence and terminate in the proximal infundibulum.  

Supraoptic Nucleus 

 The SON are also paired nuclear groups located on the lateral boarder of 

the optic chiasm. The cytoarchitecture of the SON consist of several distinct cell 

types; the magnocellular neurons, microglia, endothelial cells, and two separate 

types of astrocytes (a macro-glial cell). The basal aspect of the SON, known as 

the ventral glial limitans (VGL) serves as a barrier between the menigial pia 

matter and the SON proper (Salm & Hawrylak, 2004). The VGL consists of tightly 
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packed protoplasmic astrocytes that extend processes perpendicular from the 

base of the brain to the dorsal aspects of the SON. The fibrous or stellate 

astrocytes are found sparsely throughout the SON proper with the magnocellular 

neuron somas (Bonfanti, Poulain, & Theodosis, 1993). The other glial cells of the  

central nervous system, oligodendrocytes and microglial are seldom seen; 

however, microglia will increase in numbers in response to chronic 

neurosecretory activity (Ayoub & Salm, 2003). The neurons extend their  

dendrites in a vertical orientation forming the dendritic zone directly dorsal to the 

VGL (Figure 2). The axons of the SON magnocellular neurons project  

mediallyand caudally from the dorsal aspect of the nucleus to the inner zone of 

the median eminence terminating throughout the pars nervosa with the highest 

density in the central region (Alonso & Assenmacher, 1981).  

Accessory Nuclei 

 There are several accessory nuclei that contain magnocellular neurons; 

rostral parventricular, anterior fornical, posterior fornical, nucleus circularis, and 

the nucleus of the medial forebrain bundle. In addition to these nuclei there is a 

series of individual magnocellular neurons that extend laterally and ventrally from 

the PVN to the SON (A. J. Silverman & Zimmerman, 1983). The axons from 

these neurons also extend to the pars nervosa. 
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Figure 2.  Anatomy of the Supraoptic Nucleus (SON). Protoplasmic astrocytes 

(green trapezoids) form the ventral glial limitans (VGL) and extend 
processes (solid green lines) to the dorsal aspect of the SON. 
Fibrous astrocytes (light green 4-point star) are found sparsely 
throughout the SON proper. The somas of the two classifications of 
magnocellular neurons lie within the SON proper (blue and teal 7-
point stars). The dendrites (solid blue and teal lines) of both types 
extend in a vertical fashion forming the dendritic zone (DZ) inferior 
to the SON proper. SON axons (blue and teal dashed lines) extend 
medially and caudally, cross in the internal zone of the median 
eminence and extend to the pars nervosa with a majority of 
termination being centrally located. 

 
 

Magnocellular Neurons 

 The primary neuron of the hypothalamic neurosecretory system is the 

magnocellular neuron, also referred to as neuroendocrine or peptidergic neuron 

for their neurosecretory functions. Immunocytochemical staining indicates that 

the somas of these neurons are round to oval in appearance with a diameter of 

20 to 35 μm (Sofroniew & Glasmann, 1981). These neurons are large modified 

bipolar neurons with two primary dendrites and the axon extending form one of   

those dendrites (Hatton, 1986). There are slight phenotypic differences between 

the SON and PVN (Weiss & Hatton, 1990a, 1990b).
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 The neurons of the SON have one to five branching dendrites that branch 

in a ventro-lateral orientation. The ventral dendrites extend toward the ventral 

glial limitans forming the dendritic zone. The axons of these neurons extend 

medially and caudally forming the hypothalmoneurohypophysial tract that 

terminates throughout the pars nervosa with a high central concentration (Felten 

& Cashner, 1979). SON cell counts indicated a range between 4400 and 7000 

magnocellular neurons (Leranth, Zaborszky, Marton, & Palkovits, 1975; 

Olivecrona, 1957). In comparison, the neurons of the PVN have two to three 

simple dendrites of which only one is a primary dendrite. The magnocellular 

neurons of the PVN have been estimate to be between 1300 and 2000 (Bodian & 

Maren, 1951; Olivecrona, 1957). 

 There are two types of magnocellular neurons, each of which is named for 

the specific neuropeptide it is responsible for producing; oxytocinergic neurons 

are responsible for the production of oxytocin (OT) and vasopressinergic which 

produces vasopressin (VP) (Cross et al., 1975). The distribution of these neurons 

has been systematically mapped by Anna Hou-Yu et.al (1986) and C. H. Rhodes 

et.al. (1981). Using immunocytochemical analysis it was determined that within 

the SON the VP and OT neurons were mixed with peripheral exemptions. 

Swanson and Sawchenko (1983) state that this organization allows for the zones 

to be functionally influenced independently. 

Parvocellular Neurons 

 The parvocellular neurons found throughout the five parvocellular divisions 

of the PVN are bipolar and multipolar simple neurons with two to three short 
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primary dendrites that have minimal branching. These neurons have been 

estimated to average 7000 in number when combining the divisions (Sawchenko 

& Swanson, 1981, 1983). Some axons of the parvocellular neurons extend to 

make synaptic connections with both magnocellular and parvocellular neurons 

within other parvocellular divisions (van den Pol, 1982). Other axons are directed 

through the ventral surface of the external zone of the median eminence and 

terminate in the proximal infundibulum for secretion of neuropeptides into the 

primary portal plexus for stimulation of the pars distalis, also known as the 

anterior pituitary. The neuropeptides produced by these parvocellular neurons 

include corticotrophin releasing factor (CRF), dopamine (DA), growth hormone-

releasing hormone (GHRH), gonadotropin-releasing hormone (GnRH), 

somatostatin (SS), and thyrotrophin-releasing hormone (TRH) (Flament-Durand, 

1980; Markakis, Palmer, Randolph-Moore, Rakic, & Gage, 2004). 

Pars Nervosa 

 The pars nervosa comprises the posterior aspect of the pituitary gland. 

Also known as the posterior pituitary, the neurohypophyis or the neural lobe, it is 

composed primarily of the axonal projections from the hypothalamic 

neurosecretory system. The axonal projections from the magnocellular neurons 

transport the neuropeptides vasopressin and oxytocin to close proximity of the 

pars nervosa capillaries. The axon terminals take one of three morphological 

appearances; undilated axon terminal, axon end swellings called Herring bodies, 

or a dilated terminal called sensu stricto (Nordmann, 1977; Rosso & Mienville, 

2009). These terminals are responsible for the release of the neuropeptides into 



8 

the hypophyseal circulation through fenestrated capillaries. In addition to the 

magnocellular axon terminals, there is an astrocyte-like cell, the pituicyte. This 

pars nervosa cell has been shown to be GFAP immunoreactive (Salm, Hatton, & 

Nilaver, 1982) and has the ability to engulf numerous axonal endings (Hatton, 

1988). The pituicyte contributes to the controlled release of oxytocin and 

vasopressin into circulation (Hatton, 1988; Rosso & Mienville, 2009).  

Oxytocin 

 The neuropeptide oxytocin is produced by magnocellular neurons from 

both the paraventricular and supraoptic nuclei and released into circulation 

through fenestrated capillaries of the pars nervosa. The production and release 

of oxytocin can be stimulated by multiple factors, some of which also elicit the 

release of vasopressin. These factors include, but are not limited to, increased 

plasma osmotic pressure, parturition, lactation, sexual stimulation and pair-

bonding (Russell & Leng, 1998).  

 Oxytocin plays a role in preventing defensive behaviors allowing for 

positive social interaction leading to bond-pairing and eventual reproduction 

(Carter, 1998). The role of oxytocin in parturition was first suggested by G. W. 

Harris, (Harris, 1947, 1948) after studying pregnant female rabbits with diabetes 

insipidus. It was later determined that increased levels of oxytocin elicits an 

augmented production of prostaglandins and leads to heightened contraction of 

the uterus. Following parturition, the neuropeptide is active in lactation by 

influencing the contractions of the myoepithelial cells of the mammary glands 

allowing for milk ejection in response to the cry or suckling of the infant(s) (Miyata 
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& Hatton, 2002; Neumann, Russell, & Landgraf, 1993; Russell & Leng, 1998). 

During the act of lactation, oxytocin is released in interval pulses to compensate 

for the diminished response of the mammary glands to continuous hormone 

exposure (Leng et al., 2005; Poulain & Wakerley, 1982). Recently, Kruger et. al 

(2003) demonstrated the possibility of an acute increase of oxytocin levels 

directly after male orgasm, although these changes were not statistically 

significant nor consistent. Additionally, oxytocin acts as a positive feedback on 

the neurons that produce it (Falke, 1991). 

Vasopressin 

 Vasopressin is also produced by magnocellular neurons of both the PVN 

and SON. Vasopressin shares multiple types of stimuli with oxytocin but is 

primarily influenced by blood plasma osmolality. The stimulation of 

vasopressinergic neurons leads to elevated levels of vasopressin mRNA which is 

controlled by synaptic activity (Sladek, Fisher, Sidorowicz, & Mathiasen, 1995). 

Vasopressin, also referred to as arginine vasopressin or antiduretic hormone 

(ADH), is released into the circulation through fenestrated capillaries within the 

pars nervosa following stimulation. Stimulation is elicited by osmotic stress 

associated with hemorrhaging, dehydration or hypotension (Dunn, Brennan, 

Nelson, & Robertson, 1973). Osmoreceptors, a specialized osmolality sensing 

receptor, have direct involvement with vasopressin release and are associated 

with thirst and salt appetite (Bourque et al., 1994). These receptors are found in 

the central nervous system as well as peripherally (Robertshaw, 1989). Those 

that are central are found in areas that lack the blood brain barrier; the 
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subfornical organ and organum vasculosum lamina terminalis (Bourque et al., 

1994). Upon sensing body hyperosmolality by means of blood plasma, these 

specialized receptors elicit the magnocellular neurons to release the pars 

nervosa vasopressin stores into the circulation. Accordingly, vasopressin 

regulates the reabsorption of water by the distal tubules and collecting ducts in 

the kidney. Increased levels of vasopressin results in increased water 

reabsorption and vice versa (Bourque et al., 1994). Thus, the physiological role 

of vasopressin is essential in maintaining a homoeostatic environment through 

the conservation of body water. 

Astrocytes 

 The macro-glial astrocyte, first described by Rudolf Virchow in 1860 (Nag, 

2011; Somjen, 1988) as a nerve glue-like cell, or neuro-glia. These stellate and 

spindle-shaped cells, which are confined to the central nervous system (CNS), 

were described as having numerous processes extending to blood vessels, 

separating neurons and enveloping neuron synapses. After the discovery that 

they could not be electrically excited, they were considered trophic, metabolic 

and structural supporting cells of neurons (Nag, 2011).  

Astrocyte Classification 

 Immunocytochemistry distinguishes astrocytes from neurons and other 

glial cells by the expression of the astrocyte specific intermediate filament glial 

fibrillary acid protein (GFAP). This classification of glial cells is divided into two 

subtypes based on localization and named for appearance; protoplasmic or 

fibrous. The protoplasmic astrocyte also known as type 1 primary, or stellate, 
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astrocytes are found throughout the gray matter of the CNS. This subtype 

develops prior to the fibrous subtype and expresses lower levels of GFAP (Miller 

& Raff, 1984). The numerous branched processes are responsible for the 

envelopment of neuronal synapses (Sofroniew & Vinters, 2010). Protoplasmic 

astrocytes also form the glail limitans that surround the brain forming an 

astrocyte barrier between the pial matter and the neural parenchyma (Salm & 

Hawrylak, 2004). The fibrous astrocyte is also called type 2, secondary or 

spindle-shaped astrocyte. This subtype is found throughout the white matter of 

the CNS and has higher basal levels of GFAP than its counterpart (Miller & Raff, 

1984). In addition to having more GFAP, fibrous astrocytes can be distinguished 

from protoplasmic astrocytes by the presence of a polysialoganglioside that is 

immunocytochemically labeled by the antibody A2B5 (Miller & Raff, 1984). The 

name fibrous was given due to the cell’s many long fiber-like processes some of 

which contact nodes of Ranvier. 

 Further classification of astrocytes in humans and primates yields four 

subtypes based on location. The protoplasmic subtype is localized to cortical 

layer 2 through 6 and includes the interlaminar astrocyte found only in cortical 

layer 1. The intermaninar astrocytes form the glial limitans and have very long 

processes that extend to layers 3 and 4 of the cortex (Nag, 2011). The fibrous 

astrocytes found throughout the white matter are shown to be the only astrocyte 

to extensively intermingle and function only in the capacity of metabolic support. 

The last subtype is the polarized astrocyte. This is a unipolar macro-glial cell that 

is found in very low numbers within cortical layers 5 and 6. The single processes 
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of the polarized astrocyte can extend up to 1 mm, but the function has yet to be 

determined (Nag, 2011; Oberheim, Wang, Goldman, & Nedergaard, 2006).  

Astrocyte Function in Development 

 The function of the astrocyte in a healthy central nervous system begins at 

development. Even though the developmental generation occurs after the initial 

development of neurons (Magavi, Friedmann, Banks, Stolfi, & Lois, 2012), the 

astrocytes play an essential role in the development of the central nervous 

system. Astrocytes are responsible for the extracellular matrix proteins and 

adhesion molecules both promoting and inhibiting the maturation and migration 

of neurons (Wiese, Karus, & Faissner, 2012). Multiple growth-promoting 

molecules have been identified including N-cadherin, laminin, neural cell 

adhesion molecule (NCAM) and fibronectin (Liesi, Dahl, & Vaheri, 1983; 

Neugebauer, Tomaselli, Lilien, & Reichardt, 1988; Price & Hynes, 1985). The 

presence of proteoglycans such as keratin sulfate and chondroitin sulfate, act as 

growth inhibitors for extending neurons (Snow, Lemmon, Carrino, Caplan, & 

Silver, 1990). Astrocytes also release factors that promote the maturation and 

survival of the developing neurons. Included among these are nerve growth 

factor (NGF), brain-derived growth factor (BDNF) fibroblastic-growth factor 

(FGF), neurotrophin-3 (NT-3) and ciliary neurotrophic factor (CNTF) (Rudge et 

al., 1992; Vaca & Wendt, 1992). The astrocytic release of molecular signals such 

as thrombospondins has recently been indicated as an essential factor in 

synapse development (Christopherson et al., 2005). 
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 There are several factors either released or displayed by astrocytes during 

vasculogenesis of the CNS. Studies indicate that prior to blood vessel 

development, astrocytes form a vascular-like plexus that will be penetrated by 

the vascular endothelial cells (Gariano, 2003). These astrocytes produce 

interlukin-6 (IL-6), FGF and vascular endothelial growth factor (VEGF) all of 

which influence the growth of blood vessels (Bernal & Peterson, 2011). The 

processes of the astrocytes that form the plexus show high expression levels of 

VEGF that decreases along with IL-6 after birth (Fee et al., 2000; Gerwins, 

Skoldenberg, & Claesson-Welsh, 2000; Saito et al., 2011; Seghezzi et al., 1998). 

Epoxyeicosatrienoic acid is released by astrocytes and acts both as a 

chemokines and a morphogen for the in-coming endothelial cells (C. Zhang & 

Harder, 2002). The astrocytes are responsible for the production of the laminin 

layer found between astrocytic foot processes and the vascular endothelial cells 

(Laterra, Guerin, & Goldstein, 1990).  

Mature Astrocyte Function 

 Astrocytes play an essential role in the maintenance of the central nervous 

system be it a trophic, metabolic, or structural support. As previously stated, 

astrocytes are found throughout the CNS and play a vital role in its development, 

but their functions are a never-ending continuous string of events. The astrocytic 

foot processes that originated for the development of the brain vasculature also 

play an essential role in the blood brain barrier. The application of astrocyte 

conditioned media to endothelial cell cultures induced the endothelial cells to 

increase tight junction formation, reducing the permeability of the blood vessel 
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walls (Arthur, Shivers, & Bowman, 1987; Raub, Kuentzel, & Sawada, 1992). In 

addition to functioning in the blood brain barrier, astrocytes help control the blood 

flow through the production and release of mediators such as prostaglandins 

(PGS), nitric oxide (NO) arachidonic acid (AA), and prostaglandin 2 (Gordon, 

Mulligan, & MacVicar, 2007; Iadecola & Nedergaard, 2007; Koehler, Roman, & 

Harder, 2009). 

 The aptitude of an astrocyte to contact both a blood vessel and a neuron 

allows for the astrocyte to aid in controlling the CNS metabolism. The uptake of 

glucose from the circulation by astrocytes and storage of glycogen within 

astrocytes is used to furnish neurons with energy. Large accumulations of 

glycogen in astrocytes provides a sustained neuronal source for activity during 

hypoglycemia and during periods of high activity (Suh et al., 2007). 

Immunocytochemical localization (Pfeiffer-Guglielmi, Fleckenstein, Jung, & 

Hamprecht, 2003) and electron microscopy (Phelps, 1972) have both shown 

localization of glycogen and it’s mobilizing enzyme glycogen phosphorylase to be 

localized almost exclusively to the astrocyte.  

 Astrocyte excitability is calcium based. Cytosolic calcium levels fluctuate 

through outside influences including glutamate and extracellular calcium levels 

(Nag, 2011). In addition to calcium influences, astrocytes express potassium and 

sodium channels. Potassium channels allow for a process called potassium 

spatial buffering; the transportation of extracellular potassium from areas of high 

concentration to those of lower concentrations (Kimelberg, 2010). 
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 Each astrocyte is estimated to contact several hundred dendrites and has 

the potential of enveloping up to 140,000 synapses (Bushong, Martone, Jones, & 

Ellisman, 2002). Astrocytes provide a healthy environment for the synapse 

through the maintenance of the synaptic interstitial fluid ions, pH, and transmitter 

homeostasis. By enveloping a synapse, the astrocyte can directly affect the 

synaptic function through the release and buffering of glutamate, adenosine 

triphosphate (ATP) (Halassa, Fellin, & Haydon, 2007) gamma-aminobutyric acid 

(GABA) (Dani & Smith, 1995), and neuroactive steroids such as estradiol and 

progesterone (Garcia-Segura & Melcangi, 2006). Long-term influence is also 

possible with the release of growth factors and cytokines such as tumor necrosis 

alpha (TNFα) (Stellwagen & Malenka, 2006). All of the astrocytic reactions 

influencing the synapses are controlled by the changes of astrocytes intracellular 

calcium levels (Sofroniew & Vinters, 2010).  

 Astrocytes influence all aspects of the central nervous system. From 

development of the vasculature and the migration of neurons to providing a 

healthy environment for a functional CNS, the astrocyte is vital. Interestingly, the 

ratio of astrocytes to neurons shows a considerable increase corresponding with 

advances in evolution; in Caenorhabditis elegans the astrocyte to neuron ratio is 

1:6, rodents 1:3, cats 1.2:1, and 1.4 astrocytes to every neuron in humans 

(Nedergaard, Ransom, & Goldman, 2003). 
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Magnocellular Neurosecretory System Plasticity 

 One of the primary reasons for the magnocellular neurosecretory system 

(MNS) to become a classic model for peptidergic neurons is the plasticity of the 

system. The MNS has been shown to have predictable and reversible plasticity in 

response to outside influence. Hyperosmotic stimulation of the system causes 

the magnocellular neuron somas and axons to increase in size, displacing the 

astrocyte processes (Hatton, 1986; Kalimo, 1975). Additionally, the dendritic 

branches of the SON neurons form dendritic bundles allowing for multiple neuron 

communication including double synapses not seen at basal levels. The double 

synapses are only found between phenotypically identical neurons and can act 

as a positive feedback loop; e.g., oxytocin has the ability to stimulate its own 

production and release (Hatton, 1988).  

 At a resting state within the pars nervosa, the pituicytes completely 

surround the axon terminals regulating neuropeptide release. In response to 

stimulation, the pituicytes retract allowing the axon terminals to make close 

contact with the fenestrated capillaries permitting release of oxytocin (OT) and 

vasopressin (VP) into circulation (Hatton, 1988; Prevot et al., 1999; Rosso & 

Mienville, 2009). These events enable the system to react in an efficient, 

heightened, and synchronized manner. In addition to hyperosmotic stimulation, 

these changes are also seen during lactation, parturition and pair-bonding 

(Russell & Leng, 1998). In the case of hypoosmotic condition the magnocellular 

neuron somas decrease in size by approximately 60%. The decreased soma size 

is affiliated with 10-20% down-regulation of the mRNA for both oxytocin and 
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vasopressin (B. Zhang, Glasgow, Murase, Verbalis, & Gainer, 2001). Removal of 

physiological stimuli results in the return of the MNS to the basal anatomical 

organization and cellular relationship (Hatton, 1986). 

 Trauma to the magnocellular neurosecretory system also elicits a plastic 

response. Following a unilateral lesion of the MNS severing the hypothalamo-

neurohypophysial tract of one hemisphere, the lesion results in the loss of 90% of 

the magnocellular neurons in the injured SON (Askvig et al., 2013), which results 

in the subsequent loss of 43% of axons in the NL (Watt et al., 1999; Watt & 

Paden, 1991). Uninjured magnocellular neurons from the contralateral SON 

show increased neurosecretory activity that accompanies a collateral sprouting 

response that reinnervates the NL (Watt et al., 1999; Watt & Paden, 1991). 

Similar outcomes have been noted following adenohypophysectomy (Bodian & 

Maren, 1951). The astrocytes transition to a reactive stage that can be shown by 

increased levels of glial fibrillary acidic protein (GFAP) and nuclear hypertrophy.  

 Generally, at the site of trauma, astrocytes form a glial scar that is 

impenetrable by neuron axons and responsible for the release of chemokines 

that contribute to an inflammatory reaction (Fitch & Silver, 2008; Haas, 

Neuhuber, Yamagami, Rao, & Fischer, 2012; D. Sun, Lye-Barthel, Masland, & 

Jakobs, 2010). Although intense trauma prevents the central nervous system 

from returning to the prior uninjured state, the magnocellular neurosecretory 

system compensates by axonal projections from the uninjured hypothalamic 

nuclei (Watt & Paden, 1991).  
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 Astrocytes have become renowned for being a primary responder to brain 

trauma. Following a CNS injury, astrocytes enter a reactive state known as 

reactive astrogliosis. The occurrence of astrogliosis was proposed by Sofroniew 

(2009) to be the integration of four interdependent primary features. The first is 

that this reaction occurs for all forms and severities of trauma and CNS disease. 

Secondly, the degree of astrogliosis intensifies with the severity of the CNS 

complication. Thirdly, this reaction is mediated by specific signaling. And lastly, 

astrogliosis has the potential to affect the functionality of the astrocytes and 

therefore impacting all cell types in close proximity either negatively or positively. 

As the severity of the reactive astrogliosis increase, the levels of GFAP and 

vimentin correspondingly rise (D. Sun et al., 2010). In addition to increased levels 

of intermediate filaments, the astrocyte becomes hypertrophic and cell signaling 

cascades lead to increased levels of adhesion molecules, antigen presenting 

molecules, calcium binding proteins, and numerous cytokines, chemokines, 

neurotrophins and growth factors (Eddleston & Mucke, 1993).  

 In mild to moderate reactive astrogliosis, the cell reactivity is very localized 

and confined within the astrocyte with minimal increases in astrocyte interaction 

(Sofroniew, 2005). Proliferation and glial scar formation is rare in these cases 

allowing for a return to a comparably healthy state. Examples of mild to moderate 

reactive astrogliosis include but are not limited to regions distant from a CNS 

laceration, concussions and immunological responses to viral or bacterial 

infections (Wilhelmsson et al., 2006). More severe reactive astrogliosis results in 

proliferation and increased astrocyte interaction. These changes are more 
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pronounced and longer lasting then the mild to moderate situation (Sofroniew & 

Vinters, 2010). The change in the cytoarchitecture commonly expands beyond 

the site of injury decreasing the probability of returning to the healthy non-injured 

state. In instances of very severe astrogliosis, a glial scar will form. The glial scar 

is found at the site of severe injury and consists of densely packed, overlapping 

astrocytes and fibroblast lineage cells (Sofroniew, 2009). Localized to the site of 

injury is an immediate and robust inflammatory response brought about by the 

astrocytic release of pro-inflammatory cytokines (Sofroniew, 2005). The inability 

of glial scar formation to occur results in; prolonged increased levels of 

leukocytes, the failure of the blood-brain barrier to repair, spread of tissue 

damage, increased neuronal loss and demylination, increased neurite outgrowth 

and the decreased likelihood of function recovery (Bush et al., 1999; Faulkner et 

al., 2004). The overall response of reactive astrogliosis in any CNS trauma 

promotes CNS repair by the reformation of the various barriers and neuronal 

protection leading to reestablishment of the homeostatic environment. 

Ciliary Neurotrophic Factor 

Ciliary Neurotrophic Factor Identification and Properties 

 In the late 1970’s research was being done to determine the trophic 

factors associated with survival mediation of developing parasympathetic, 

sympathetic and sensory neurons of the chick ciliary ganglia. In addition to the 

known Nerve Growth Factor (NGF), a second agent was thought to assist in the 

survival and growth of the cultured ciliary neurons (Helfand, Riopelle, & Wessells, 

1978; Helfand, Smith, & Wessells, 1976). Analysis indicated a putative factor was 
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produced in high amounts by the ciliary body, iris and choroid layers of the 

developing chick eye that differed from NGF. The absence of this factor in 

cultured ciliary neurons resulted in cell death. For its properties this factor was 

named cholinergic neuronotrophic factor (Adler, Landa, Manthorpe, & Varon, 

1979; Ebendal, Olson, Seiger, & Hedlund, 1980; Varon, Manthorpe, & Adler, 

1979). This trophic factor later became known as ciliary neurononotrophic factor 

and eventually ciliary neurotrophic factor (CNTF).  

 Analysis and purification of CNTF from the chick eye yielded a 20.5 kDa 

monomer (Barbin, Manthorpe, & Varon, 1984; Manthorpe, Barbin, & Varon, 

1982). Purification of CNTF from the adult rat sciatic nerve extract yielded a 

24 kDa monomer (Manthorpe, Skaper, Williams, & Varon, 1986). Comparison of 

the CNTF extracts of both species showed numerous similarities. The application 

of either extract to cultures demonstrated the ability of the trophic factor to 

promote survival of dorsal root, sympathetic and ciliary ganglion as well as an 

insensitivity to anti-NGF antibodies (Manthorpe et al., 1986). Advances in the 

purification process from the rat sciatic nerve in addition to cDNA cloning of RNA 

collected from rat brain cells known to produce CNTF allowed for a more precise 

analysis of the protein. These studies yielded a 200 amino acid protein with a 

short 5’ untranslated 77 base pair region and a long untranslated 436 base pair 

3’ region ending with a poly-A tail that has a relative molecular mass of 23 kDa 

(Stockli et al., 1989). This protein is folded into a helical structure with four anti-

parallel alpha-helices (Bazan, 1991; McDonald, Panayotatos, & Hendrickson, 

1995; Panayotatos et al., 1995). The cloning of human CNTF showed an 83% 
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homology to rat CNTF (Lam et al., 1991; Sendtner, Carroll, Holtmann, Hughes, & 

Thoenen, 1994).  

 In addition to CNTF’s role in dorsal root, sympathetic and ciliary ganglion 

development and survival, this neurotrophin has been indicated in the survival of 

multiple neuronal phenotypes of both the central and peripheral nervous 

systems. The application of CNTF to CNS spinal motor neuron cultures showed 

at least a 60% survival of the developing neurons. In comparison, the application 

of trophic factors NGF or BDNF did not alter survival levels from the control 

cultures (Arakawa, Sendtner, & Thoenen, 1990). When applied to human spinal 

cord neuron cultures, the combination of CNTF with NT-3 (neurotrophin-3) and 

BDNF elicits a 4-fold increase in choline acetyltransferase activity. The 

application of any one of these trophic factors resulted in only a 2-fold increase in 

activity and the combination of CNTF plus BDNF or NT-3 plus BDNF increase 

activity by 3-fold. Increases in cholinergic function measured by the levels of 

choline acetyltransferase correlated with increased survival and differentiation of 

the spinal cholinergic neurons (Kato & Lindsay, 1994). CNTF has also been 

shown to promote survival of embryonic hippocampal neurons including 

GABAergic (2-fold), cholinergic (28-fold) and calbindin-immunopositive (3-fold) 

(Ip et al., 1991). Additionally, the local application of CNTF to axotomized motor 

neurons prevents lesion-induced death (Sendtner, Kreutzberg, & Thoenen, 

1990). Within the supraoptic nucleus astrocytes are the source of CNTF 

(Rusnak, House, Arima, & Gainer, 2002; Watt, Bone, Pressler, Cranston, & 

Paden, 2006) and CNTF has been found to contribute to magnocellular neuronal 
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survival and axonal sprouting. For example, the application of CNTF to the 

hypothalamic organotypic in vitro culture model, which allows for the 

cytoarchatecture of the PVN and SON to remain intact, shows increased survival 

of vasopressin and oxytocin producing magnocellular neurons (Askvig et al., 

2013; House, Li, Yue, & Gainer, 2009; Rusnak et al., 2002; Rusnak, House, & 

Gainer, 2003; Vutskits, Bartanusz, Schulz, & Kiss, 1998). Our lab has evidence 

suggesting a role for CNTF in promoting the collateral sprouting of 

neurosecretory axons following unilateral lesion of the 

hypothalamoneurohypophyseal tract. In response to the unilateral transaction of 

the hypothalamoneurohypophysial tract, CNTF protein levels increased in the 

contralateral SON from which the axonal sprouting originates (Askvig, Leiphon, & 

Watt, 2012; Watt et al., 2006). Moreover, our lab has also demonstrated that 

CNTF promotes magnocellular neuron process outgrowth in hypothalamic 

organotypic cultures (Askvig & Watt, 2015). 

CNTF Secretion 

 It has been proposed that the lack of a signal sequence targeting CNTF to 

the Golgi system restricts CNTF to the cytosol of the synthesizing, cell preventing 

release of CNTF through the classical secretory pathways (Lin et al., 1989; 

Stockli et al., 1989). Paradoxically, in order for CNTF to fully function, it must be 

released into the extracellular matrix to act on its target cells. It’s been 

hypothesized that CNTF is released following a rupture of the astrocyte 

(Richardson, 1994). However, Kamiguchi et.al. (1995) demonstrated release of 

CNTF from cultured astrocytes following treatment with IL-1 and tumor necrosis 
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factor alpha (TNF-α) in the absence of astrocyte cell lysis. These results suggest 

that CNTF can be released through non-classical secretory mechanisms. Within 

the magnocellular neurosecretory system, the presence of IL-1β has been 

demonstrated within the oxytocin and vasopressin neurons (Watt & Hobbs, 2000) 

and the levels of the cytokine secretion from the dendrites are increased 

following osmotic stimulation (Summy-Long, Hu, Long, & Phillips, 2008; Watt & 

Hobbs, 2000). Therefore, the method of secretion in vivo is thought to be 

paracrine in which the release of IL-1β from neuronal dendrites influences the 

activated astrocytes to release CNTF into the extra cellular matrix where it can 

act in either an autocrine or a paracrine manner (Richardson, 1994). 

The Tripartite CNTF Receptor Complex 

 Structurally and functionally, CNTF is related to the interlukin-6 cytokine 

family. This family of cytokines is based on the helical structure of the cytokine 

and the receptor subunit makeup. Cytokines included in this family are leukemia 

inhibitory factor (LIF), IL-6, interleukin-11 (IL-11), oncostatin M (OSM), 

cardiotrophin-1 (CT-1), and cardiotrophin-like cytokine (CLC). The typical 

receptor complex for any member of the IL-6 cytokine family requires the 

dimerization of the beta subunits in association with an alpha subunit (Hibi, 

Nakajima, & Hirano, 1996; Hirano, Matsuda, & Nakajima, 1994). Each alpha 

subunit confers a high-affinity specific binding region for the specific cytokine in  

contrast to the beta units which can be utilized in conjunction with multiple alpha 

subunits allowing for signal transduction (Frank & Greenberg, 1996).
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 In order for CNTF to activate the target cell, it must first bind to the 

receptor complex alpha subunit CNTF receptor- alpha (CNTFR-α). Unlike the IL-

6 receptor, the CNTFR-α component lacks both transmembrane and cytosolic 

domains and is instead anchored to the extracellular matrix by a glycosyl 

phosphatidylinositol (GPI) linkage (Davis et al., 1991). The lack of a 

transmembrane and cytosolic domain on the CNTFR-α lead to the identification 

of two beta subunits in association with CNTF cell activation; glycoprotein-130 

(GP-130) (Ip et al., 1992) and leukemia inhibitory factor beta (LIF-β) (Ip & 

Yancopoulos, 1992; Stahl et al., 1993). Collectively these three components 

constitute the tripartite CNTF receptor complex. In order for CNTF to generate a 

functional response, all three components must be present (Davis, Aldrich, Ip, et 

al., 1993; Davis, Aldrich, Stahl, et al., 1993; Gearing et al., 1994; Stahl & 

Yancopoulos, 1994).  

 The binding of CNTF to CNTFR-α induces the association and 

heterodimerization of the beta subunits leading to cellular signaling activation (Ip 

& Yancopoulos, 1996). The three components are found throughout the central 

nervous system, and all three have been identified on astrocytes (Rudge et al., 

1994). Within the SON, the only cell that contains all of the CNTF receptor 

components is astrocytes (Watt et al., 2009; Askvig and Watt, 2012). Thus, 

CNTF will function in the SON in an autocrine mechanism. 

CNTF Signal Transduction 

 Signal transduction following the binding of CNTF to CNTFR-α initiates the 

activation of multiple pathways. The most commonly known pathway is the  
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Jak-STAT (Janas kinas-signal transducers and activators of transcription) 

pathway (Justicia, Gabriel, & Planas, 2000). The hererodimerization of gp-130 to 

LIFR-β is immediately followed by the phosphorylation of the tyrosine residues on 

both beta subunits. Subsequently, the beta subunits’ associated Jak proteins are 

transphosphorylated on the tyrosine residues (Wilks et al., 1991). The 

phosphorylation of the Jak proteins recruits two STAT proteins which bind to the 

beta subunits, are phosphorylated, released and dimerize with each other. 

Following dimerization of the phosphorylated STAT proteins, they translocate 

from the cytosol to the nucleus where they bind to DNA and activate transcription 

(Bonni, Frank, Schindler, & Greenberg, 1993). Slight variations to this pathway 

are noted within the families of either the Janus kinas or STAT proteins. Of the 

four known members of the Janus kinas family, only two have been observed as 

phosphorylated following CNTF stimulation, Jak1 and Jak2 (Montmayeur & 

Borrelli, 1994; Stahl et al., 1994). The STAT molecules that are recruited in the 

activation sequence include STAT1 and two isoforms of STAT3. The primary 

isoform is the phosphorylated STAT3 tyrosine-705 (STAT3-Tyr-705). Once the 

two STAT molecules have been phosphorylated and released from gp130 and 

LIFR-β, they have the ability to heterodimerize or homodimerize. The 

translocation of the STAT molecules to the nucleus is a rapid and transient 

reaction that can be maintained while in the continual presence of CNTF. Studies 

indicate that removal of CNTF leads to decreased levels of phosphorylated STAT 

in the nucleus within 60 minutes (Frank & Greenberg, 1996; Liu, Gaffen, & 

Goldsmith, 1998; Wishingrad, Koshlukova, & Halvorsen, 1997). Askvig et. al. 
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(2013) demonstrated that not only was tSTAT3-immunoractivity highly localized 

to the SON specifying a specific localization of the Jak-STAT pathway, but that 

the inhibition of this pathway abolishes the pro-survival response elicited by 

CNTF. 

 In addition to the Jak-STAT pathway, multiple other pathways have been 

indicated following CNTF cell activation. Alonzi et.al. (2001) showed that the 

activation of STAT also can lead to the phosphotidyl inositol-3’-phosphare-kinase 

(PI3K)/ Akt pathway and the MEK/MAK pathway (mitogen-activated protein 

kinase kinase/mitogen-activated protein kinase). Both of these pathways have 

been shown in connection with sensory and motor neuron survival (Alonzi et al., 

2001; Dolcet et al., 2001). Additionally the MAPK-ERK pathway helps to facilitate 

oxytocinergic neuron survival and the PI3K-AKT pathway has influence on 

neuronal process outgrowth in stationary organotypic cultures of the 

hypothalamus containing the SON and PVN (Askvig & Watt, 2015).  

CNTF Activation of Astrocytes 

 In regard to astrocytes, CNTF has a very intimate role. CNTF is found 

endogenously within the cytosol of astrocytes following injury (Dobrea, 

Unnerstall, & Rao, 1992; Lee, Deller, Kirsch, Frotscher, & Hofmann, 1997; Stockli 

et al., 1991) and other related glial cells such as the peripheral Schwann cell 

(Friedman et al., 1992). This coincides with studies indicating that the expression 

of CNTF messenger RNA is restricted to such no-neuronal cells (Rudge et al., 

1992). The production of CNTF within the central nervous system occurs in type-

1 astrocytes (Lillien, Sendtner, Rohrer, Hughes, & Raff, 1988) and 
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immunoreactivity is restricted to GFAP containing astrocytes (Stockli et al., 

1991). Synthesis appears to be regulated by direct or indirect signals from axons 

(Dobrea et al., 1992; Stockli et al., 1989) and expression varies by location, 

developmental stage, and presence of injury. During development of the CNS, in 

addition to the prior stated effects on various neuron phenotype development, the 

production and release of CNTF from type-1 astrocytes induces the 

differentiation of type-2 astrocytes from O2-A (oligodendrocyte-type-2-astrocyte) 

progenitor cells in cooperation with extracellular matrix associated molecules 

(Hughes, Lillien, Raff, Rohrer, & Sendtner, 1988; Lillien, Sendtner, & Raff, 1990). 

Following injury, CNTF mRNA levels increase in activated astrocytes directly 

adjacent to the site of injury and these CNTF expressing astrocytes migrate into 

the wound zone (Seniuk, Henderson, Tatton, & Roder, 1994). The increased 

expression is a rapid and compounding reaction that can be noted for an 

extended period of time following initial trauma (Ip, Wiegand, Morse, & Rudge, 

1993; Kang, Keasey, Cai, & Hagg, 2012). The reactive gliosis astrocytes undergo 

in response to trauma can also be initiated by the exogenous application of 

CNTF (Escartin et al., 2007; Kahn, Ellison, Speight, & de Vellis, 1995; Levison, 

Ducceschi, Young, & Wood, 1996; Winter, Saotome, Levison, & Hirsh, 1995).  

Hypothesis 

 Numerous studies have shown an effect of CNTF on astrocytes. It has 

been shown that this glial cell is responsible for the endogenous production of 

CNTF and can be influenced to release its product by IL-1 and TNF. In addition 

to synthesizing CNTF, astrocytes have recently been shown to have all the 
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necessary receptor components for autocrine CNTF cellular activation. The 

inhibition of the Jak2 pathway prior to CNTF exposure prevents the astrocytes 

from entering a reactive gliosis state (Sarafian et al., 2010) leading to the 

question, what is the astrocytes role in neuronal protection?  

 The following study was undertaken to test the hypothesis that “CNTF 

potentiates survival and sprouting of axotomized magnocellular neurons through 

activation of astrocyte-specific signal transduction pathways leading to increased 

expression levels of factors which mediate the neuronal response” with the 

following specific aims: 

 Specific Aim I: Determine if CNTF activates the JAK/STAT pathway in 

astrocytes. 

 Specific Aim II: Determine the functional response of astrocytes to CNTF. 

 Specific Aim III: Determine if response is a result of CNTF activation of 

the JAK2/STAT3 pathway by examining if the inhibition of JAK2/STAT3 will alter 

the CNTF induced functional outcome. 

 Specific Aim IV: Determine if the functional response promotes survival 

and sprouting of neurons utilizing the hypothalamic explants cultures. 
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CHAPTER II 

MATERIALS AND METHODS 

Animals 

 Male and pregnant female (E15) Sprague-Dawley rats, purchased from 

Harlan Laboratories (Minneapolis, MN), were housed in the Biomedical Research 

Facility on the campus of the University of North Dakota, an AAALAC accredited 

facility, with a 12-hour light: 12-hour dark cycle. The rats were allowed continual 

access to lab chow and tap water. All of the following experimental investigations 

adhered to the standards in the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the UND Institutional Animal Care and Use 

Committee approval #0704-2C. 

Mini-Osmotic Pump Infusions 

Assembly of Mini-Osmotic Pumps  

 To maintain a sterile environment, the mini-osmotic pumps (ALZET, model 

#1007D, DURECT Corporation; Cupertino, CA) were assembled in a Nuaire 

Biological Safety Cabinet (Plymouth, MN) following the manufacturer’s 

instructions. After removal of the plastic flange that was attached to the stainless 

steel pump flow moderator, a 3.0 cm polyethylene tube was connected to the 

moderator. The pumps were then filled with 100 μl of either a 0.1 mg/ml rat 

recombinant ciliary neurotrophic factor (rrCNTF; R&D Systems; Minneapolis, MN; 
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catalog #557-NT/CF) in 290 milliosmolar artificial cerebral spinal fluid (aCSF; 

0.87% NaCl, 0.02% KCl, 0.02% CaCl2 dihydrate, 0.017%MgCl2 hexahydrate, 

0.02% Na2HPO4 heptahydrate, 0.003% NaH2PO4 monohydrate; Sigma-Aldrich; 

St. Louis, MO) or aCSF. Following the reattachment of the moderator, an 8.5 mm 

cannula (Plastics One Inc.; Roanoke, VA) was connected to the free end of the 

polyethylene tube and the entire apparatus was placed in a petri dish filled with 

aCSF and incubated for 12 hours at 37ºC/5.0% CO2 to allow for priming of the 

tubing and cannula prior to implantation. 

Stereotaxic Surgery, Mini-Osmotic Pump Placement 

 Utilizing the adolescent male Sprague-Dawley rats, weighing 250-350 

grams, each rat was anesthetized with isoflurane (Butler Animal Health Supply; 

Dublin, OH) until unresponsive to a tail pinch. The fur on the superior surface of 

the head was shaved off and the rat was placed in a stereotaxic apparatus 

(Stoelting; Wood Dale, IL) with a nose cone providing a constant flow of 

isoflurane/O2 (2.5%; Abbott Laboratories; Abbott Park, IL) by means of a table 

top anesthesia apparatus in combination with a vaporizer (Matrix Quantiflex Low 

Flow V.M.C. and VIP 3000; Orchard Park, NY). Using a scalpel, a small incision 

was made parallel to the axial alignment, the incision was held open using a 

retractor and the fascia was gently displaced exposing the skull. The prepared 

cannula was inserted into a custom holder (Stoelting) on the stereotaxic 

apparatus and the bregma and lambda fissures were measured and adjusted to 

be equal to insure a level skull for precise cannula placement. Using bregma as 

stereotaxic zero, the coordinate was marked; anterior/posterior -0.9 mm, 
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medial/lateral -1.9 mm. Using a dremel drill, a small hole through the skull was 

made on the marked coordinate along with two shallow holes to either side which 

dental screws were fastened into. The cannula was slowly lowered to a depth of -

8.5 mm dorsal/ventral, placing the cannula tip directly into the dorsal supraoptic 

nuclei (Figure 3). Dental cement was then prepared and applied to the base of 

the cannula and out to the dental screws, securing the cannula in place. Once 

the cement was dry, the cannula was released from the stereotaxic apparatus 

and the top portion of the cannula was removed after which the pump was placed 

under the skin between the scapulae and additional cement was applied to the 

cannula and screws ensuring a smooth surface. When the cement was stiff to the 

touch, the scalp was sutured and the animal was removed from the stereotaxic 

apparatus, weighed and placed back into its cage on top of a heating pad until it 

recovered from anesthesia. 

Tissue Homogenate Preparation 

 Following the 72-hour infusion from the mini-osmotic pumps, the animals 

were anesthetized using isoflurane and decapitated with a small animal guillotine 

(Kent Scientific Corporation; Torrington, CT). After removal of both the skin and 

the top of the cranium, the intact brain was extricated and blocked to isolate the 

tissue directly rostral to the optic chiasm and caudal to the median eminence 

which was then placed in a petri dish filled with RIPA lysis buffer (0.24% trizma 

base, 0.877% sodium chloride, 1% nonidet P-40, 0.5% sodium-deoxycholate, 

1% 100mM EDTA, 0.1% SDS, 1% phosphate inhibitor, 0.5 % protease inhibitor, 

1% phenylmethanesulfonylfluoride, pH 7.5). Using an Olympus 
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Figure 3.  Stereotaxic Placement of Mini-Osmotic Pump Cannula.  

A) Diagram demonstrating the placement of the cannula (the blue 
cylinder) directly above the supraoptic nucleus.  
B) Cannula placement was confirmed by immunohistochemistry. 
The cannula tract, represented by the dotted line is seen dorsal to 
the labeled supraoptic nucleus. The scale bar equal 100 μm. 

 
 
stereomicroscope, the visible meninges were removed and the tissue was further 

dissected leaving two small regions containing the SONs which were then placed 

into labeled centrifuge tubes containing RIPA lysis buffer. The tissues were then 

sonicated (Misonix; Famingdale, NY) and centrifuged at 10,000 x g for 10 
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minutes after which the supernantant was transferred to a new centrifuge tube. 

The protein concentration was calculated using a BCA standard protein kit 

(Thermo Scientific; Rockford, IL) and the supernatant was stored at -80ºC.  

Primary Astrocyte Cultures 

Astrocyte Collection 

 To maintain a sterile environment, all possible steps were performed 

within a cell-culture hood (Nuaire Biological Safety Cabinets; Plymouth, MN). A 

minimum of 3 postnatal day two (P2) rat pups born at the Biomedical Research 

Facility were utilized per cell culture preparation using a modification of the 

protocol first described by Ken D. McCarthy and Jean DeVellis (1980). The rat 

pups were sprayed with 70% EtOH and the body was removed with a large 

sterilized scissors. The skin was then removed from the dorsal side of the head 

from neck to snout followed by the removal of the skull in the same manner using 

a sterile small curved-tip scissors. After removal of the skull the brain was 

carefully extracted, keeping the cerebellum attached, and placed into a petri dish 

containing sterile cold Calcium/Magnesium Free buffer (CMF; 20 mM HEPES, 

1 mM sodium pyruvate, 4.2 mM sodium bicarbonate, 3 mg/ml bovine albumin 

serum, 10% 10X HBSS, pH 7.3). Using a fine tipped forceps and tweezers, the 

meninges and visible blood vessels were removed followed by the division of the 

brain into two hemispheres. The midbrain was removed along with the 

diencephalon leaving the two cortices in the appearance of a small bowl. Any 

remaining blood vessels were carefully removed and the resulting cortices were 

transferred to a second petri dish containing sterile CMF. The remaining pups 
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were prepared in the same manner. All cortices were then finely chopped using a 

sterile one-sided razor and transferred to a sterile centrifuge tube along with the 

CMF. The cortical tissue was triturated slowly with a 10 ml pipette then placed in 

the pre-warmed water bath (37° C) for ten minutes with careful agitation every 

two minutes. Next, the tube was centrifuged at room temperature for 5 minutes at 

1500 rpm. After careful removal of the supernatant, two to four mls of Dulbecco’s 

Modified Eagle Media/F12 (DMEM/F12, Gibco, Grand Island, NY; 10 mM 

HEPES, 0.5 mM sodium pyruvate, 14.4 mM sodium bicarbonate, 10% pen step, 

10% fungizone, pH 7.4) with 15% fetal bovine serum (FBS, Gibco) was added 

and the pellet was dislodged by means of trituration with sterile flame-constricted 

siliconized glass pipettes of varying diameters while avoiding frothing of the cells. 

This process created a homogenous mixture of the 15% FBS/DMEM/F12 and 

cortical cells. The volume was then increased with additional 15% 

FBS/DMEM/F12 to accommodate the prepared flasks. The homogenous mixture 

was then divided into T-25 cell culture flasks (Corning polystyrene tissue culture 

flasks) that had been coated in 0.1 mg/ml Poly-L-Lysine (PLL, Sigma) and 

equilibrated in the cell culture incubator at 37° C/5.0% CO2 (VWR). The ratio of 

pups to T-25 flask is 1:1.5. The volume of each flask was then brought to 5 ml 

with 15% FBS/ DMEM/F12 and placed in the cell culture incubator. After 

24 hours each flask was washed twice using a volume equivalent to one third the 

original with warm DMED/F12 serum free, feed with warm 10% FBS/DMEM/F12, 

and placed in the incubator. The previous step is repeated every third day until 

the cells reached approximately 80% confluence. 
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Purification and Splitting of the Cells 

 All washes and trypsin incubations preformed used one third of the total 

feeding volume; 24-well plate (0.5 ml total volume per well), T-25 (5 ml total 

volume), T-75 (15 ml total volume), T-175 (35 ml total volume). Once cells 

reached 80% confluence, the cultures were purified to remove oligodendrocytes, 

macrophages, and type II astrocytes. Before purification, the cells were washed 

three times with warm DMEM/F12 followed by a feeding of 10% FBS/DMEM/F12 

and allowed to equilibrate in the cell culture incubator for one hour. After 

equilibration, the flask caps were tightly sealed and the flasks taped together. 

Next the flasks were vacuum sealed in two separate plastic bags and the bagged 

flasks were taped securely to the base of a warmed shaking incubator. The 

shaking incubator was set at 37° C and 250 rotations per minute (rpm) for at 

least 18 hours. After shaking the flasks, the supernatant was removed and the 

adhered cells were washed three times with warm CMF to remove the 10% 

FBS/DMEM/F12. 1x trypsin in CMF was then used to release the astrocytes from 

the culture flasks. Once the cells released, FBS was added at a 1:1 ratio to the 

trypsin in each flask, neutralizing the trypsin. The mixture of trypsin, FBS, and 

cells was then collected in sterile centrifuge tubes and centrifuged at 1500 rpm 

for five minutes at room temperature. The supernatant was discarded and the 

cell pellet re-suspended in two-four mL 10% FBS/DMEM/F12. The cell pellet was 

broken up by means of trituration with sterile flame-constricted siliconized glass 

pipettes of decreasing tip diameters while avoiding frothing of the cells. The cell 

slurry volume was increased to accommodate one T-75 PLL coated flask to each 
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of the original T-25 culture flasks allowing for a re-platting at a one-third of the 

original density. Each T-75 flasks was filled with 15 mL of the cell slurry, loosely 

capped and placed in the incubator for 48 hours. At this time the purification 

steps were repeated resulting in a ≥98% primary astrocyte culture. After 

trituration of the cells, a cell count was done using a Bright-Line hemacytometer 

(Hausser Scientific; Horsham, PA). The cell count enabled the proper cell 

number platting for the chosen experiments.  

Astrocyte Application 

Coverslip Application 

 Prior to astrocyte application to the 12 mm diameter coverslips, (Carolina 

Biological Supply, thickness of 0.13-0.17mm) were washed twice in 100% EtOH 

and exposed to germicidal UV light in the culture hood for 15 minutes while in a 

third EtOH wash. The EtOH was removed and the coverslips were rinsed 3 times 

with sterile water followed by 0.1mg/ml PLL incubation overnight at 4°C in a 

closed petri-dish. After removal of the PLL, the coverslips were washed 3 times 

in sterile water to remove any remaining PLL and transferred into the wells of a 

sterile 24-well plate and placed into the culture incubator for equilibration. Cells 

were prepared as previously stated at a concentration of 20 cells per micro-liter 

(500 astrocytes per well) in 10% FBS/DMEM/F12 and administered into the 24- 

well plate with coverslips and returned to in the culture incubator. The cells were 

washed with DMEM/F12 and fed with 10% FBS/DMEM/F12 every third day. 
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Cell Culture Flask Application 

 Astrocytes were seeded at a concentration of 200 cells per microliter in 

10% FBS/DMEM/F12 into PLL treated T-25, T-75 or T-175 cell culture flasks. 

The flasks were washed 2 times using DMEM/F12 and fed 10% FBS/DMEM/F12 

every third day until the astrocytes were at least 80% confluent. Upon reaching 

confluence, the flasks were washed 2 times with CMF followed by a DMEM/F12 

wash and were subject to treatment.  

Astrocyte Treatment 

 For all methods of astrocyte application unless otherwise noted, once 

confluence reached ≥80%, the cells were washed 2 times with CMF followed by 

a DMEM/F12 rinse removing any dead/non-adhered cells and residual FBS. The 

cells were then subject to treatment; DMEM/F12 (control), 25 ng/ml rat 

recombinant ciliary neurotrophic factor (rrCNTF; Sigma) or 25ng/ml reverse 

sequence CNTF (rsCNTF; JW reverse, NeoGroup, Cambridge MA) in 

DMEM/F12 at various time points. 

Coverslip Treatment and Fixation 

 Astrocytes adhered to coverslips were treated for 10, 20, 30, 60 or 90 

minutes with rrCNTF and the corresponding timed controls. Following treatment, 

the cells were once again washed 2 times in CMF and allowed to sit in 

paraformaldehyde-lysine-periodate extra fixative (PLP extra; 3.2% 

paraformaldehyde, 2.2% lysine-HCL, 0.33% sodium-meta-periodate) at room 

temperature for at least 30 minutes. After removal of the PLP extra, the 
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coverslips were rinsed three times for a minimum of 20 minutes with phosphate 

buffered saline (PBS; .02 M phosphate buffer, 8.5% sodium chloride). 

Cell Culture Flask Treatment and Collection 

Astrocyte Culture Homogenates 

 Astrocytes were grown up in either T-25 or T-75 culture flasks and treated 

for 24, 48 or 72 hours with rrCNTF and the corresponding control. Following 

treatment, the flasks were washed 2 times with CMF and then incubated in a 1X 

trypsin for 5 minutes. FBS was added at a 1:1 ratio with the 1X trypsin, 

neutralizing its affects. Keeping each flask as a separate experiment, the 

astrocyte/trypsin/FBS mixture was transferred to sterile conical tubes and 

centrifuged for 5 minutes at 1500 rpm at room temperature. The conical tubes 

were then aspirated leaving the cell pellet which was then washed with 10 ml 

sterile cold PBS using sterile flame-constricted siliconized glass pipettes with 

small openings and centrifuged for 5 minutes, 1500 rpm, at room temperature. 

The conical tube was aspirated again and the pellet was washed in the same 

manner using 1.5 ml of cold PBS. After breaking up and washing the astrocyte 

cell pellet, the PBS/astrocyte mixture was transferred to a 2 ml centrifuge tube 

and centrifuged for 5 minutes at 3000 rpm and 4° C. The supernatant was then 

aspirated and 100-750 micoliters of RIPA lysis buffer was added followed by 

ultrasonication (Misonic, Farmingdale, NY). The samples were then centrifuged 

for 15 minutes at 14,000 rpm at 4° C. The supernatant was then transferred to a 

pre-labeled tube and protein levels were measured using a Thermo Scientific 

BCA protein assay kit (Rockford, IL). 
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Astrocyte Nuclear Extraction 

 Nuclear extraction was performed using a kit from Chemicon International 

(Millipore; Billerica, MA) with several modifications. Astrocytes were grown in T-

75 or T-175 culture flasks and were treated for 0.5, 1, 3, 24, 48, or 72-hours with 

rrCNTF, rsCNTF or the corresponding aCSF control. Astrocytes used at the 24, 

48, and 72-hour time points were treated in a DMEM/F12 phenol red free media 

for supernatant analytical purposes. Upon completion of the treatment, the 

supernatant was removed; discarded at the 0.5, 1, and 3-hour time points, the 

24, 48 and 72-hour time points were aliquoted and stored at -80° C. The flasks 

were then washed 2 times with sterile PBS and incubated in a 1X trypsin/PBS 

solution until the cells released. Keeping all flasks as separate experiments, the 

astrocyte/trypsin mixture was then transferred to conical tubes. The flasks were 

then rinsed with 2/3 the total volume using ice cold sterile PBS, and the rinses 

were transferred to the appropriate conical tubes. The conical tubes were then 

centrifuged for 5 minutes at 300 g and 4° C. After aspirating the conical tubes, 

the cell pellets were washed in 10 ml of ice cold PBS using sterile small diameter 

flame-constricted siliconized glass pipettes and centrifuged for 5 minutes, 300 g, 

4° C. This aspiration, wash and centrifugation was repeated 2 more times with 

the third wash having a volume of 1.5 ml and transfer of astrocyte/PBS to a 2 ml 

centrifuge tube before centrifugation. After the third centrifugation, the astrocyte 

cell pellets were measured by comparison to a known amount of water in a 

separate centrifuge tube; the pellet size was used as the standard for the amount 

of buffers to be added. 1X cytoplasmic lysis buffer (0.5mM dithiothreitol, 
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.1% protease inhibitor cocktail) was added to each pellet at 5 times the pellet 

size. The pellets were resuspended by inversion and incubated on ice for 

15 minutes and centrifuged at 5 minute, 300 g, 4° C. The tubes were then 

aspirated and 2 times the pellet volume of cytoplasmic lysis buffer was added. 

The pellet was then triturated at least 5 times using sterile 27 gauge needles and 

syringes and centrifuged for 20 minutes, 8000 g, 4° C. The supernatant 

containing the cytosolic portion of the astrocytes was collected and set on ice for 

later protein analysis. Nuclear extraction buffer (0.5mM Dithiothreitol, .1% 

protease inhibitor cocktail) was added to the remaining pellet at a volume 

equivalent to the pellet size and triturated 5 times with sterile 27 gauge needles 

and syringes resulting in a homogenized lysate. The samples were placed on ice 

on a slow rotating shaker at 4° C for 1 hour. Next the samples containing the 

nuclear portion of the astrocytes were centrifuged for 5 minutes, 14000 g, at 4° C 

and placed on ice with the cytosolic portion during protein analysis. All cytosolic 

and nuclear samples protein levels were analyzed using a Thermo Scientific BCA 

protein assay kit (Rockford, IL). Samples were stored at -80°C. 

Supernatant Collection 

 Supernatants from the astrocyte culture flasks were transferred to 50 ml 

conical tubes, centrifuged for 5 minutes, 1500 rpm, at room temperate and place 

in a -80° C freezer. Supernatants for which a known amount of protein was 

needed (from nuclear extraction 24, 48, and 72 hour samples) were thawed and 

a 3 ml sample was taken for dialysis. Using hydrated Slide-A-Lyzer Dialysis 

Cassettes (Thermo Scientific, Rockford, IL) with a 7 kDA molecular weight cut 
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off, samples were dialyzed in 600 ml of 2.0 M Tris (Sigma) buffer, pH 7.4 

overnight at 4° C on a rotating shaker with 1 buffer change. Samples were 

removed from the cassettes and protein levels were measured using a Bradford 

Standard (Bio Rad; Hercules, CA) microassay for microtiter plates procedure.  

Astrocyte Ribonucleic Acid Collection 

 Ribonucleic acid (RNA) from astrocytes was collected using an RNeasy 

Mini Kit from Qiagen (Valencia, CA) with several modifications to the Purification 

of Total RNA from Animal Cells Using Spin Technology protocol. Astrocytes were 

grown up in T-75 or T-175 cell culture flasks and upon reaching confluence were 

treated for 6, 12, or 24 hours with rrCNTF and the appropriate timed control. At 

the conclusion of treatment, the supernatant was removed, aliquoted and stored 

at -80°C. The cells were then washed with sterile PBS, removing any remnants 

of the treatment along with any dead or non-adhered cells. The astrocytes were 

detached using a 1X trypsin in PBS and 10% FBS/DMEM/F12 was added at a 

1:1 ration to neutralize the trypsin. Keeping each flask as a separate experiment, 

the astrocyte/trypsin/media mixture was transferred to 50 ml conical tubes. Using 

sterile flame-constricted siliconized glass pipettes of small diameter, cell pellets 

were disrupted and a cell count was performed using a Bright-Line 

hemacytometer (Hausser Scientific; Horsham, PA), the mixture was then 

centrifuged at 300 g for 5 minutes at room temperature. After aspiration of the 

remaining supernatant, buffer RLT was added and the cell slurry then transferred 

to a 2 ml RNase free centrifuge tube with the cell pellet; 350 ul for < 5 x 106 and 

600 ul for 5 x 106 – 1 x 10 7. The cell pellet was then homogenized with the lysate 
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using a 20-gauge needle and syringe by triturating the sample 5-10 times. A 

volume equivalent to the buffer RLT of 70% EtOH was added to the samples and 

mixed by pipetting. 700 ul of the samples were transferred to an RNeasy spin 

column, placed in 2 ml collection tubes and centrifuged for 15 seconds at 10,000 

rpm. The flow-through was discarded and any leftover samples were transferred 

to the spin columns, centrifuged, and flow-through was discarded. To remove 

any genomic DNA contaminants, a DNase digestion was performed at this time 

using an RNase-Free DNase Set (Qiagen; Valencia, CA). 350 ul of buffer RW1 

was added to the spin columns and centrifuged for 15 seconds, 10,000 rpm, and 

the flow-through was discarded. 80 ul of DNase I incubation mix (10 ul DNase 

stock and 70 ul buffer RDD) was applied directly to the spin column membranes 

and allowed to incubate at room temperature for 15 minutes with the tubes 

closed. 350 ul of buffer RW1 was added to the spin columns and centrifuged for 

15 seconds, 10,000 rpm, and the flow-through was discarded. The spin column 

membranes were then washed using 500 ul of buffer RPE and then centrifuging 

the spin columns for 15 seconds at 10,000 rpm and discarding the flow-through. 

This membrane wash step was repeated with a 2 minute, 10,000 rpm 

centrifugation and the collection tube was discarded and replaced with a new 2 

ml collection tube. The spin column was then centrifuged for 1 minute at 14,000 

rpm to remove any possible buffer RPE carryover and the collection tube was 

then replaced with a 1.5 ml collection tube with a lid. 50 ul of RNase-free water 

was added directly to the membrane and allowed to incubate at room 

temperature for 10 minutes after which the spin columns were centrifuged for 1 
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minute at 10,000 rpm. 50 ul more of RNase-free water was added to the 

membrane and centrifuged, resulting in roughly 100 ul of flow-through containing 

the astrocyte RNA. The RNA was then cleaned-up further and concentrated 

using a RNeasy MinElute Cleanup Kit (Qiagen; Valencia, CA). 350 ul of Buffer 

RLT and 250 ul of 100% EtOH was added to the RNA flow-through and mixed by 

pipetting. The samples were then transferred to RNeasy MinElute spin columns 

and centrifuged for 15 seconds, 10,000 rpm and the flow-through and collection 

tubes were discarded. Using a new 2 ml collection tube, 500 ul of buffer RPE 

was added to each spin column and they were centrifuged for 15 seconds, 

10,000 rpm and the flow-through was discarded. Next, 500 ul of 80% EtOH was 

added to the spin columns and they were centrifuged for 2 minutes at 10,000 rpm 

and the collection tubes containing the flow through were discarded. After placing 

the spin columns in new 2 ml collection tubes, they were centrifuged with the lids 

open for 5 minutes at 14,000 rpm after which the collection tubes and flow-

through were discarded. The spin columns were then places in 1.5 ml lidded 

collection tubes and 20 ul of RNase-free water was added directly to the spin 

column membranes and was then eluted with the RNA by a 1 minute, 14,000 

rpm centrifugation. To calculate RNA purity and concentration, each sample was 

run in triplicates at a dilution of 1:100 with 10 mM Tris-HCL, pH 8.0 which was 

also used as a background standard. Using a Spectra Max Plus 384 (Molecular 

Devices; Sunnyvale, CA) dual readings were taken at 260nm and 280nm. After 

finding the average absorbance of each sample at both absorbencies, purity was 

calculated by A260/A280; pure RNA will have an evaluation of 1.9-2.1. Each A260 
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absorbance is equivalent to 40 µg/ml of RNA, for this reason the concentration of 

RNA was calculated with the following formula, (40 ug/ml) x (A260) x (dilution 

factor), for which the dilution factor was 100.  

Dosage Inhibition of Astrocyte Cultures 

 Astrocytes were prepared as previously described. Upon reaching 

confluency the cultures were incubated with fresh DMEM plus 10% FBS for 24 

hours. After removal of the supernatant, the cultures were washed two times with 

CMF followed by one wash of DMEM no FBS. Cultures were then introduced to 

the inhibitor in DMEM no FBS for 1 hour. After the conclusion of the hour, 

cultures were spiked with rrCNTF for 30 minutes prior to analysis or collection.  

XTT Cell Viability-Dosage Inhibition 

 Astrocytes were seeded in a 96 well plate treated with PLL at 5000 cells 

per well and allowed to mature for 4 days. After four days, the cells were treated 

as previously mentioned in dosage inhibition of astrocyte cultures. XTT (Biotium; 

Fremont, CA) was prepared by mixing 5 ml of XTT solution and 25 µl activation 

reagent. 25 µl of XTT mixture was added to each well giving a total volume of 

100 µl per well. Cell viability was determined every 2-hours over a 12-hour period   

using a Spectra Max Plus 384 (Molecular Devices; Sunnyvale, CA). Dual 

readings were taken at 475 nm and 675 nm for nonspecific absorption. 

Hypothalamic Organotypic Explant Cultures 

 All steps were performed in either a Purifier Clean Bench (Labconco, 

Kansas City, MO) or a cell culture hood for sterility purposes. Using a 

modification of techniques described previously (House, et al., 2009, House, et 
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al., 2006, House, et al., 1998, Rusnak, et al., 2003, Rusnak, et al., 2002, 

Vutskits, et al., 1998), 6-day-old Sprague Dawley rat pups were immersed briefly 

in 70% EtOH, decapitated, the brain carefully removed and placed in chilled 

Gey’s Balanced Salt Solution (Gibco) enhanced with glucose (5 mg/ml; Sigma). 

The brains were then trimmed to remove exterior cortical material and 350 um 

coronal sections were obtained using a McIlwain Tissued Chopper (Stoelting, 

Wood Dale, IL). The coronal sections were then sorted, transferring the sections 

containing the magnocellular neurosecretory system nuclei to a petri dish 

containing the Grey’s/glucose solution. The sections where then trimmed dorsal 

to the third ventricle and lateral to the SON under a dissecting microscope 

(Figure 4). All sections from the same rat pup were transferred on to a single 

MilliCell-CM filter insert (pore size 0.4 um, 30 mm diameter; Millipore, Bedford, 

MA) which was placed in a labeled 35X10 mm Petri dish containing 1.2 ml of 

astrocyte conditioned media (ACM) which was changed every third day for a 7-

day experimental period. 

Astrocyte Conditioned Media for Hypothalamic Organotypic Cultures 

 Astrocytes were collected as previously described with several 

modifications. Following the first purification the astrocyte media was changed to 

a standard culture media consisting of Eagle’s Basal Medium with Earle’s salts  

(50%; Gibco), heat inactivated horse serum (25%; Gibco), Hank’s Balanced Salt 

Solution (25%; Gibco), glucose (0.5%; Sigma), penicillin/streptomycin (25 

units/ml; Gibco), and glutamine (1.0 mM; Gibco) and cells were split into 10 T-75 

PLL treated culture flasks which were divided into 3 groups; one group of 4 and 
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Figure 4.  Hypothalamic Organotypic Explant Culture Section.  

A) Diagram representing the dissected brain sections. The 
paraventricular nuclei (PVN; blue) surrounding the third ventricle, 
supraoptic nuclei (SON; green), and accessory nuclei (ACC; red). 
B) Control treated explant section (Askvig et al. 2013). 

 

two other groups of either 2 or 3 flasks, respectively. Each group was purified, 

treated and media collected every 2 days for cell consistency and for application 

to explant cultures. Following the second purification the flasks were fed 24 hours 

before treatment (roughly 48 hours after seeding). Prior to treatment, each flask 
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was rinsed 2 times with CMF and one time with media, removing any dead 

and/or non-adhered cells. Cells were treated for 24 hours, after which the wash 

steps were repeated and media was added as a standard feed. The media was 

then collected after 48 hours as the astrocyte conditioned media and applied to 

the hypothalamic organotypic explant cultures. Treatments consisted of 25 ng/ml 

rrCNTF, media control, 50 μ/ml AG490, and 50 μm/ml AG490 plus 25 ng.ml 

rrCNTF. A pretreatment of 50 μ/ml AG490 was performed for 1 hour directly 

before application of the 50 μ/ml AG490 plus 25 ng/ml rrCNTF. 

Immunocytochemical Examination 

 All antibodies used for immunocytochemistry are listed in Table 1. All 

immunocytochemistry was performed on PLP-extra fixed 

(paraformaldehyde/lysine/periodate fixative) astrocytes. All succeeding 

incubations were followed by a minimum of three 15 minute washes in PBS. To 

prevent non-specific staining, the cells were incubated in the appropriate blocking 

buffer containing 4% normal serum (Jackson ImmunoResearch Laboratories, 

West Grove, PA) in 1% bovine serum albumin (Sigma) PBS for 1 hour. The 

primary antibody prepared in the blocking buffer was then administered overnight 

at 4°C. The cells were then incubated in a biotinylated species-specific 

secondary antibody at room temperature for 2 hours. For dual staining a second 

primary antibody was applied and incubated overnight at 4°C. After removal of 

the second primary antibody, a cocktail containing both an Alexa Fluor 

streptavidin (Invitrogen) and the appropriate florescent dye-conjugated Affinipure 

IgG (Jackson ImmunoResearch) were applied for 1 hour at room temperate in 
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the absence of light. The coverslips were them removed from the 24-well plate 

and placed upside down on pre-labeled gelatin subbed slides with the mounting 

medium for fluorescence Vectasheild plus dapi (Vector) and sealed with a clear 

fingernail polish. Cells were viewed using either an Olympus BX-51 fluorescent 

Table 1. Normal Serums, Primary, Secondary and Tertiary Antibodies. 
Target Species Dilution for 

ICC 
Dilution for 
Western Source Company 

Normal Serums     
Normal Goat Serum Goat 1:25 N/A Jackson Labs 
Normal Horse Serum Horse 1:25 N/A Jackson Labs 
Normal Donkey Serum Donkey 1:25 N/A Jackson Labs 
Primary Antibodies     
Beta-Actin Mouse N/A 1:50,000 AbD Serotec 
CNTFR α Mouse N/ A 1:20,000 BD Pharmingen 
CNTFR α Goat 1:20 N/A R&D Systems 
GFAP Mouse 1:1000 N/A Sigma 
GFAP Goat 1:1000 1:10,000 Sigma 
gp130 Rabbit N/A 1:5000 Santa Cruz 
LIFR β Rabbit N/A 1:5000 Santa Cruz 
Ox-42/CD11b Mouse 1:2000 N/A AbD Serotec 
pJAK 2 Rabbit N/A 1:2000 AbCam 
pSTAT3 Ser 727 Rabbit N/A 1:2000 Cell Signaling 
pSTAT3 Tyr 705 Rabbit 1:300 1:2000 Cell Signaling 
tJAK2 Rabbit N/A 1:2000 Cell Signaling 
Tomato Lectin N/A 1:1000 N/A Vector 
tSTAT3 Rabbit 1:500 1:6000 Cell Signaling 
Secondary Antibodies     
Goat Anti-Rabbit Goat 1:500 N/A Vector 
Horse Anti-Mouse Horse 1:500 N/A Vector 
Fluorescein Anti Mouse Donkey 1:500 N/A Jackson Labs 
Fluorescein Anti-Goat Donkey 1:500 N/A Jackson Labs 
Fluorescein Anti-Mouse Goat 1:500 N/A/ Jackson Labs 
Fluorescein Anti-Rabbit Goat 1:500 N/A Jackson Labs 
Donkey Anti-Rabbit-
HRP 

Donkey N/A 1:200,000 Santa Cruz 

Goat Anti-Rabbit-HRP Goat N/A 1:200,000 Santa Cruz 
Rabbit Anti-Goat-HRP Rabbit N/A 1:200,000 Santa Cruz 
Tertiary Antibodies     
Streptaviden Alexa 488 N/A 1:1000 N/A Invitrogen 
Streptaviden Alexa 594 N/A 1:1000 N/A Invitrogen 
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microscope with DP-71 color camera utilizing Cell Sens capture software 

(Olympus; Center Valley, PA) or an Olympus Fluoview 300 Confocal Microscope 

mounted on an Olympus IX70 inverted microscope. 

 The specificity of each primary antibody was verified by either a primary 

antibody omission, a biotinylated secondary antibody omission, or by utilizing a 

direct fluorochrom in place of the biotinylated secondary antibody while 

maintaining all other steps. The later of the controls also verified that the 

secondary antibodies biotinylated or flurochrome recognition was due to the 

primary antibody and not specific recognition of a cellular type. 

Rat Cytokine Antibody Array 

 Cytokine expression was detected using the Rat Cytokine Antibody Arrays 

1 and 2 (RayBiotech, Inc., Norcross, GA). Using the provided eight-well trays, 

each membrane was incubated at room temperature in 2 ml of the 1X blocking 

buffer for 30 minutes. After removal of the blocking buffer, 1 ml of supernatant 

from 72-hour control/non-treated or 25 ng/ml rrCNTF treated astrocytes was 

applied to the membranes and allowed to incubate on a rotating shaker at 4ºC for 

24 hours after which the supernatant was collected and stored at -80º C. Excess 

supernatant was removed with four 10 minute rinses in wash buffer followed for 

two 10 minute rinses in wash buffer II. All, but the primary omission membranes, 

were allowed to incubate in 1 ml of primary antibody on a rotating shaker at room 

temperature for 2.5 hours followed by three 10 minute rinses in wash buffer I and 

three 10 minute rinses in wash buffer II. Next, 2 ml of the horseradish 

peroxidase-conjugated streptavidin was added to each and allowed to incubate 
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at room temperature on a rotating shaker for 2 hours followed by three 10-minute 

rinses in wash buffer I and buffer II. Finally, 500 μl of a 1:1 dilution of detection 

buffer C and detection buffer D was applied to each membrane for 2 minutes at 

room temperature after which each membrane was gently blotted with a kimwipe 

and sandwiched between two pieces of plastic and taped in place in a Kodak 

BioMax Cassette (Kodak; Rochester, NY) for x-ray film exposure. The film 

(Kodak) was exposed for 30 seconds and developed using an AGFA CP1000 

film processor (DMS Health Group; Fargo, ND). 

Enzyme-Linked Immunosorbent Assay 

 Reagents for all the enzyme-linked immunosorbent assays (ELISA) were 

allowed to warm to room temperature before use. A standard dilution series was 

prepared as indicated by each kit; three-fold dilution for lipopolysaccharide 

induced C-X-C chemokines (LIX, RayBiotech) and Fractalkine (RayBiotech) and 

a two-fold dilution for vascular endothelial growth factor (VEGF R&D Systems; 

Minneapolis MN) and interlukin-6 (IL-6, R&D Systems). For the VEGF ELISA a 

total volume of 50 μl of supernatant was added with an unknown amount of 

protein. For analysis performed using a known amount of protein (cytosolic and 

supernatant for all ELISAs and SON tissue homogenates for IL-6), samples were 

diluted using the appropriate diluent; Calibrator Diluent RD5-16 for IL-6, 

Calibrator Diluent RD5-18 for VEGF, Assay Diluent B for LIX and fractalkine. For 

each R&D Systems ELISA, the appropriate assay diluent (50 μl each RD1-41 for 

VEGF and RD1-54 for IL-6, 100 μl RD1-43 for FGF basic) was pipetted into each 

well of the microplate using a multichannel pipetter followed by an equal volume 
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of standard, control or sample which were run in either duplicates or triplicates, 

covered with an adhesive cover strip and incubated for 2 hours at room 

temperature. The VEGF plate was placed on a horizontal orbital shaker (IKA 

Works, Inc; Wilmington, NC) set at 450 rpm, the IL-6 ELISAs were left stationary 

on the laboratory bench. 100 μl of standard, control or sample were added to the 

RayBiotech ELISA microplates in either duplicates or triplicates, covered with 

adhesive cover strips, and placed on the orbital shaker for 2.5 hours at room 

temperature. Next the microplate wells were washed using a squirt bottle with the 

provided wash buffers diluted with Milli-Q water; 4 washes each for the 

RayBiotech plates and 5 washes each for the R&D Systems plates. To ensure 

complete removal of each wash, the microplates were inverted and blotted on 

filter paper. To the R&D Systems microplates, 100 μl conjugate rat VEGF or rat 

IL-6 basic conjugate were added to each well, covered with a new adhesive 

cover strip and incubated at room temperature; VEGF plate for 1 hour on the 

orbital shaker and 2 hours on the bench for the IL-6 ELISA. To the RayBiotech 

plates, 100 μL of the provided biotinylated antibody that had been diluted with 

Diluent B, was added, the microplates were covered and allowed to incubate on 

the bench for 1 hour. At this point the prior specified wash steps were repeated. 

To the R&D Systems microplates, a 1:1 mixture of the color reagents A and B 

were added making the Substrate Solution, which was added to each well; 100 μl 

for both the VEGF and IL-6 ELISAs. A stationary incubation at room temperature 

for 30 minutes in the absence of light was followed by the addition of Stop 

Solution; 100 μl to both VEGF and Il-6. To the RayBiotech microplates a 100 μl 
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of the provided Streptavidin solution was added and incubated on the orbital 

shaker for 45 minutes while covered with an adhesive cover strip followed by the 

appropriate wash steps. Next 100 μl of a TMB One-Step Substrate Reagent was 

administered to each RayBiotech microplate well; the plates were covered with 

cover strips, placed on the orbital shaker and protected from light for 30 minutes 

after which 50 μl of stop solution was added to each well. The optical density of 

each plate was analyzed immediately following the addition of the stop solution 

using a Bio-Rad Model 680 Microplate reader with Microplate Manager 5.2 

software (Bio-Rad) at 450 with a wavelength correction of 570 nm and plotted 

using a parameter logistic (4-PL) standard curve. Protein concentrations were 

generated in pg/ml.  

Western Blot Examination 

 All samples (nuclear extractions and tissue homogenates) for Western blot 

analysis were allowed to thaw on ice along with sample buffer (5% β-

mercaptoethanol, 2X stock sodium dodecyl sulfate) and molecular weight 

markers (Fermentas Life Sciences; Glen Burnie, MD). The determined amount of 

protein was diluted 1:1 with the sample buffer and placed on a 95º C preheated 

AccuBlock Digital Dry Bath (Labnet International; Woodbridge, NJ) for 2-5 

minutes depending on volume and centrifuged for one minute at 10,000 rpm. 

After positioning the 10 well, 12% precise protein gel (Thermo Scientific) in a 

SDS-PAGE apparatus (Bio-Rad) the wells were loaded with the samples or 5 μl 

of the molecular weight marker, any unused well was loaded with 5 μl of sample 

buffer ensuring that samples proceed straight during the one hour, 90 volts, room 
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temperature run in running buffer (12.1% Trizma base, 23.8 % HEPES, 

1% sodium dodecyl sulfate). Following a 1-minute methanol equilibration of the 

Immuno-Blot PVDF membrane (Bio-Rad), the PVDF membrane, gel, filter paper, 

and fiber pads were incubated in chilled transfer buffer (10% methanol, 1.42% 

glycine, 0.3% Trizma base) for at least 20 minutes. Following incubation, the fiber 

pad, filter paper, gel, PVDF membrane, filter paper, fiber pad transfer sandwich 

was incased in the transfer cassette and inserted into the transfer apparatus. The 

transfer apparatus was then placed in a large tupperware container, surrounded 

by ice, then filled with chilled transfer buffer and transferred for two hours at 70 

volts while stirring. Upon completion of the transfer, the membrane was removed, 

submerged in the transfer buffer, and trimmed. 

 All antibodies utilized are listed on Table 1. For antibodies obtained from 

Cell Signaling, all washes used either Tris buffered saline (TBS; 2.42% Trizma 

base, 8% NaCl, pH 7.6) or 0.05% Tween-20 TBS (TBS-Tween) and the blocking 

buffer was 5% bovine serum albumin (BSA; Sigma) TBS-Tween. Washes for all 

other antibodies used PBS and 0.05% Tween-20 PBS (PBS-Tween) and the 

blocking buffers was 5% nonfat dry milk PBS-Tween. All washes and incubations 

were performed on a rocking platform (VWR) unless otherwise noted. Following 

trimming, the membranes were washed twice in TBS/PBS followed by two 

washes in TBS-Tween/PBS-Tween each roughly 10 minutes and subsequently 

placed in blocking buffer for one hour followed by the primary antibody overnight 

at 4º C. After removal of the primary antibody, the membranes were washed for 

two hours in TBS-Tween/PBS-Tween with at least three wash changes and the 
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secondary biotinylated-HPR antibody conjugate was administered at room 

temperature for two hours followed by a two-hour wash in TBS/PBS with at least 

three wash changes. Each membrane was lightly blotted and placed inverted on 

1000 μl of the 1:1 mixture of the SuperSignal West Femto kit’s (Thermo 

Scientific) solutions for 5 minutes then sandwiched in a transparent cover sheet 

and taped in place within the Kodak BioMax Cassette for x-ray film exposure. 

Exposure time for each membrane varied by the strength of the primary antibody, 

and the film was developed with the AGFA CP1000 film processor. Following 

exposure, the membranes were stripped using a recipe from Abcam  

(15% glycine, 1% sodium dodecyl sulfate, 10% Tween-20, pH 2.2) two times for 

7 minutes each and all steps following the trimming of the membrane were 

repeated. 

Real Time Reverse Transcriptase Polymerase Chain Reaction Arrays 

 Ribonucleic acid (RNA) levels were measured using real time reverse 

transcriptase polymerase chain reaction (RT² PCR) following the manufacturer’s 

protocol (Qiagen RT² Profiler PCR Array Handbook). Using the RT² First Strand 

Kit (Qiagen) 1 μg of RNA was added to 2 μl of Buffer GE and the volume was 

brought up to 10 μl with RNase-free water in a RNase-free 2 ml capped tube and 

incubate for 5 minute at 42º C on a heat block then immediately placed on ice for 

one minute eliminating any remaining DNA. 10 μl of the reverse-transcription mix 

(4% 5x Buffer BC3, 1% Control P2, 2% RE3 Reverse Transcriptase Mix) was 

added and mixed by pipetting. The mixture was incubated at 42º C for 

15 minutes, then 5 minutes at 95ºC resulting in the RNA conversion to 
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complementary deoxyribonucleic acid (cDNA) to which 91 μl of RNase-free water 

was added, mixed by pipetting and placed on ice. The PCR components mix 

(3.8% cDNA synthesis reaction, 50% 2x RT² SYBR Green Mastermix; Qiagen) 

was prepared in a 15 ml RNase-free conical tube and 25 μl aliquots were 

distributed with a multi-channel pipetter into the RT ² Profiler PCR array; Rat 

JAK/STAT Signaling Pathway (PARN-039A), Rat Chemokines &Receptors 

(PARN-022A), Rat Signal Transduction Pathway Finder (PARN-014A), or Rat 

Neurotrophin and Receptors (PARN-031A; SABiosciences, a Qiagen company) 

The array was subsequently capped with the provided strips, centrifuged for one 

minute and placed in the iCycler iQ5 PCR Thermal Cycler (Bio-Rad) with the 

attached computer and iQ5 software. The following cycling conditions were used: 

1-10-minute cycle at 95º C, 40 cycles of 15 seconds at 95º C and 1 minute at 

60º C followed by a default melting curve.  

Real Time Reverse Transcriptase Polymerase Chain Reaction Primers 

 Glial fibrillary acidic protein (GFAP) and β-actin RNA levels were 

measured using RT² PCR primers from SABiosciences. Following the RT² qPCR 

Primer Assay Handbook (Qiagen) the samples were prepared in a similar 

manner as those for the RT² Profiler PCR Arrays with the following changes; the 

PCR components mix (4% cDNA synthesis reaction, 4% RT²qPCR Primer 

Assay, 50% RT² SYBR Green Mastermix) was aliquoted into 0.2 ml PCR tubes 

with attached flat caps (VWR). 
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Organotypic Explant Immunohistochemistry 

 At the conclusion of the 7-day experimental period, the organotypic 

hypothalamic explants were removed from the ACM, fixed in 4% 

paraformaldehyde (sigma) in 0.1 M phosphate buffer for 1.5 hours and washed in 

PBS-Triton (PBS-T; 0.01% triton X-100) for three 10 minute intervals, this wash 

was repeated before and after all incubations. To prevent any endogenous 

peroxidase activity and non-specific staining, the explants were placed in a 0.3% 

H2O2 treatment for 20 minutes and incubated in blocking buffer (10% normal 

horse serum, 0.3% Triton X-100) for 1 hour. Immediately following the blocking 

buffer step, the explants were incubated in the primary antibody with monoclonal 

mouse anti Oxytocin-neurophysin (PS 38, 1:500; a gift from Dr. Harold Gainer) 

for 36 hours at 4º C on a rotating shaker. Next the explants were incubated in 

horse anti-mouse biotinylated secondary antibody (1:500; Vector), and 

subsequently incubated in avidin-biotin complex (ABC; 10 μl/ml in PBS; Vector 

ABC Elite kit) for one hour at room temperature followed by a 0.05% 

diaminobenzidine (DAB, Sigma) in PBS using the glucose-oxidase method for 

antibody visualization. Carefully, the hypothalamic organotypic explant slices 

were removed from the filter inserts and placed on gelatin coated slides for 

alcohol dehydration followed by a Xylene rinse and coverslipped with Permount 

(Fisher, Pittsburgh, PA). 

Magnocellular Neuronal Counts 

 The immunoreactive explant culture slides were coded by a third party and 

a double-blind count of oxytocinergic neurons was performed using a drawing 
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table attached to an Olympus BX51 microscope. The neurons were categorized 

by location of paraventricular nucleus, supraoptic nucleus, or accessory neurons 

for each slide representing one animal. The mean of the double-blind count was 

used for the statistical analysis. 

Data Analysis 

Rat Cytokine Antibody Array Analysis 

 The exposed film was photographed using a Kaiser RSI Precision 

Illuminator (Northern Light) with an attached Scion camera with QICAM software 

(Q imaging; Surrey, BC, Canada). The digitized film was then analyzed using 

MCID 7.0 core software (MICD; Cambridge, MA) by collecting the relative optical 

density (ROD) of each dot. The ROD values were saved as a Microsoft Excel file  

and imported to the RayBio Rat Cytokine Antibody Array Analysis Tool software 

(RayBio). 

Enzyme-Linked Immunosorbent Assay Analysis 

 Statistical analysis of the protein was performed using a one-way ANOVA 

followed by a Dunn’s Multiple Comparison Test using GraphPad Prism 5.0 

(GraphPad Software; La Jolle, CA) and the results were graphed. 

Western Blot Analysis 

 The Western blot exposed film was digitized using an Epson Perfection 

V750 PRO (Epson; Long Beach, CA) scanner and Silver Fast (Ai) Launcher 

(LaserSoft Imaging, Inc.; Sarasote, FL) imaging software. The digitized film was 

then imported to MCID 7.0 for analysis using the following measurement 

parameters: relative optical density and density x area. The numerical values 
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calculated were exported to Microsoft Excel and were normalized with the values 

given by either total STAT3 or β-actin. The normalized values were analyzed 

using either a one-way ANOVA with a Tukey post hoc test or a student’s t-test on 

GraphPad Prism 5 with the statistical significance set at p ≤ 0.05. The results 

were then graphed. 

Real Time Reverse Transcriptase Polymerase Chain  
Reaction Array Analysis 

 
 Following completion of the PCR cycling program, the results were 

transported from the iQ5 software program and saved as a Microsoft Excel 

spreadsheet. The spreadsheet was converted to the format laid out by 

SABiosciences for each standard RT² PCR array; the first column indicating well 

identification and all sequential columns for each array containing the threshold 

cycles obtained from the iQ5 software placed in line with the appropriate well 

identification and saved as a xls file. Using the data analysis tool Web-based 

software for Cataloged and Custom arrays, RT² Profiler PCR Array Data Analysis 

version3.5 on the SABiosciences webpage, the Standard RT² PCR array was 

selected and the xls spreadsheet was uploaded. The housekeeping genes (HKG) 

were selected using the Automatic Selection of HKG Panel, which selects the 

HKG with the least amount of variance with the maximum amount of variation set 

at 1.5 cycles. Using the Scatter Plott option, the normalized expression of every 

gene was compared at a 3-fold regulation cut off. 
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Real Time Reverse Transcriptase Polymerase  
Chain Reaction Primer Analysis 

 
 The RT² qPCR Primer analysis was performed similarly to that of the RT² 

PCR array analysis with the following differences. The Excel spreadsheet was 

set up with the first column indicating the well identification, the second column 

indicating the primer gene symbol, and all sequential columns containing the 

cycle thresholds given by the iQ5 Software program. The Excel spreadsheet was 

uploaded to the SABiosciences data analysis webpage using the Single or Multi-

Gene qPCR Assays analysis option. With the absence of housekeeping genes, 

all other sets were done as indicated in the Real Time Reverse Transcriptase 

Polymerase Chain Reaction Array Analysis section. 

Hypothalamic Organotypic Explant Statistical Analysis 

 The group mean obtained by the double-blind count was analyzed using 

Graph Pad Prism Software. The Kolmogorov-Smirnov test indicated that the 

population was normally distributed allowing parametric statistical analysis to be 

conducted. Both a one-way ANOVA followed by a Tuckey post hoc test with the 

statistical significance set at p ≤ 0.05 and a Student’s t-test was performed and 

graphed. 
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CHAPTER III 

RESULTS 

Specific Aim I: Determine if CNTF Activates the JAK/STAT Pathway  
in Astrocytes 

 
Mini-Osmotic Pump Placement and Efficiency 

 Correct cannula placement and mean pump out-flow was determined 

previously by Adam Sudbeck. The placement of the mini-osmotic pump cannula 

was visually confirmed by DAB immunoreactive staining and found to be in the 

proper position at an occurrence of 75%. The pump out-flow was calculated to be 

approximately 68 μl based on the remaining volume with an infusion rate of 0.94 

μl per hour over the 72-hour time period. 

CNTF-Induced Activation of Astrocytes 

 Activation of astrocytes due to trauma has been shown to elicit a 

hypertrophic response as well as an increase in the astrocyte specific 

intermediate filament marker glial fibrillary acidic protein (GFAP). These 

responses can also be induced by exogenous application of CNTF both in vivo 

and in vitro (Hudgins & Levison, 1998; Levison, Hudgins, & Crawford, 1998). Our 

lab confirmed activation within the infused SON by quantifying GFAP protein 

levels via Western blot analysis (A. Sudbeck, unpublished observation). Figure 5, 

courtesy of Adam Sudbeck, represents the GFAP protein levels of corresponding 
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Figure 5.  3 Day 100 ng/ul rrCNTF Infusion Elicits an Increase in GFAP.  
A) The GFAP Protein ration for aCSF contralateral (n=7), aCSF 
infusion (n=7), CNFT contralateral (n=7), and CNTF infusion (n=7) 
Son analyzed by a one wat ANOVA showed that CNTF-infused 
SON GFAP protein levels were significantly increased from the 
CNTF contralateral SON (*** p < 0.0001), aCSF-infused SON  
(** p < 0.01) and aCSF-infused contralateral SON (*** p < 0.0001).  
The Ration of relative optical density (ROD) ± standard deviation 
(SD) for each groups are shown in (B). The GFAP (55 kDa) 
Western blots for the aCSF contralateral, aCSF infustion, CNTF 
contralateral, and CNTF infusion groups were normalized to beta 
actin (42 kDa). The Western blot error bars represent the means ± 
SD. [n]=number of experimental animals.  
Figure courtesy of Adam Sudbeck, M.S. 
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SON of seven 3-day CNTF infused animals and seven 3-day artificial cerebral 

spinal fluid (aCSF) animals. It was determined that the GFAP protein levels of the 

CNTF-infused SON showed an increase of 62% when compared to the control 

aCSF-infused SON. Additionally, it was determined that there was a significant 

increase in GFAP protein levels of the corresponding contralateral SON. The 

results of a one-way ANOVA of the CNTF-infused SON compared to the 

contralateral SON demonstrated a significant increase (p≤0.0001) in GFAP 

protein levels equivalent to a 127% increase.  

Confirmation of Primary Astrocyte Cultures 

 Prior to the first purification, a stratification of cell types can be noted 

within the culture flask. Found adhered to the base of the flask are the 

astrocytes, suspended directly above the astrocytes are oligodendrocytes and 

microglia. There is little to no cell interaction between the stratified layers. The 

purification process results in the disruption of any interaction between the 

stratified layers allowing for a purer culture following the splitting. The removal of 

the supernatant and washing steps dislodges any viable oligodendrocytes and 

microglia. Additionally, astrocytes mitotically divided at a faster rate (McCarthy 

and de Vellis 1980, Giulian and Baker 1986, Saura, Tusell et al. 2003, Wang, Shi 

et al. 2012). The ability for astrocytes to proliferate at a quicker rate along with 

the frequent washing steps allows for preparation of a 95-98% pure primary 

astrocyte culture. 

 Throughout the primary astrocyte culture studies, the cultures were 

subject to cell type confirmation using florescent immunocytochemistry of 
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prepared cover slips. The presence of astrocytes was confirmed with the 

astrocyte specific cell marker, GFAP. Culture purity was confirmed by the 

absence of microglia using microglia cell markers anti-CD11b (OX-42) or Tomato 

Lectin. As a positive control for microglia staining, both the OX-42 and Tomato 

Lectin were applied to rat neural lobes. Microglia cells were never observed in 

the primary astrocyte cultures and according to McCarthy and De Vellis (1980) 

the removal of oligodendrocytes in the purification and splitting process inhibits 

the reappearance of the cell type, for this reason no immunocytochemistry was 

performed testing the presence of oligodendrocytes in the final cultures. The 

immunocytochemistry analysis of the cultures indicated a ≥98% purity of primary 

astrocytes. 

Tripartite CNTF Receptor Complex Presence on Primary Astrocytes 

 As first indicated by Samuel Davis and Neil Stahl (1993; 1993), the ability 

of CNTF to initiate a cellular reaction is dependent on the presence and 

availability of three components; LIFR-β, gp130, and CNTFR-α. Our lab (Askvig, 

Leiphon, et al., 2012) previously showed that all aspects of the tripartite CNTF 

receptor complex is present within the rat supraoptic nucleus. To confirm the 

presence of CNTRα on primary astrocytes, dual fluorescent immunocytochemical 

labeling was performed (Figure 6 A-C). The presence of gp130and LIFR-β was 

confirmed using Western blot analysis (Figure 6 D). The tissue homogenates of 

two non-treated primary astrocyte culture with a protein concentrations of 100 µg 

each were loaded and compared to a 10-day post unilateral lesion SON tissue 
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Figure 6.  Expression of the Tripartite Receptor Complex in Primary Astrocyte 

Cell Cultures. Dual fluorescent immunocytochemistry demonstrates 
astrocyte reactivity for  
A.) CNTFRα (green) and  
B.) GFAP (red) the cell marker for astrocytes.  
C.) The merged image reveals the co-localization of the CNTFRα 
with the GFAP positive astrocytes.  
D.) Western bot analysis of two primary cortical rat astrocyte culture 
tissue homogenates demonstrates that LIFRβ (150 kDa), gp130 
(130 kDa), and CNTFRα (55kDa) are present in total protein 
concentrations of 100 µg when comparing to a control 10-day post 
unilateral lesion SON tissue homogenate at a 70 µg protein 
concentration. Scale bar equals 100 µm. 

 
 

homogenate control known to have all of the receptor components loaded at a 

70 µg concentration (Figure 6 D). 

Analysis of the blots revealed the presence of LIFR-β (150 kDa), gp130 

(130 kDa), and CNTFRα (55kDa) in the astrocytes cultures. Neither primary 

omission nor preabsorption controls (not shown) showed cellular 
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immunoreactivity with immunocytochemistry. This data, the 10-day lesion tissue 

homogenate and immunocytochemistry controls, provided evidence that cultured 

astrocytes maintain the tripartite CNTF receptor complex outside of the in vivo 

environment. The presence of all receptor components on the cultured primary 

astrocytes indicates the ability of CNTF to bind and initiate a cellular reaction.  

Activation of Primary Astrocyte by Exogenous CNTF Exposure 

Phosphorylation of STAT 
 

 To confirm the presences and activation of CNTF within the cultured 

astrocytes, fluorescent immunocytochemical staining was performed. Total STAT 

(tSTAT) was observed in astrocyte control cultures (Figure 7). A time dependent 

application of exogenous rat recombinant CNTF (rrCNTF) at a concentration of 

25 ng/ml in DMEM was applied prior to fixation of the cultured coverslips with 

PLP extra (Figure 8). Cultures were exposed to rrCNTF for 10 minutes (Figure 8. 

A), 20 minutes (Figure 8.B), 30 minutes (Figure 8.C), 60 minutes (Figure 8.D) 

and 90 minutes (Figure 8. E). To insure that activation was influenced by the 

exogenous rrCNTF, an omission of rrCNTF was performed as a control for 

90 minutes (Figure 8. F). Following fixation, the cultured coverslips were dual-

stained for GFAP (Texas-Red) and phospho-STAT (pSTAT; FITC). The 

immunocytochemistry shows co localization of pSTAT with the GFAP in all but 

the rrCNTF omission control. Omission and preabsorption controls for both 

antibodies was also performed and resulted in the complete absence of 

immunoreactivity within the cultured astrocytes. 
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Figure 7.  Immunofluorescent Staining for tSTAT3 and GFAP. Staining 

indicates co-localization of the tSTAT3 protein and GFAP in 
cultured astrocytes. 
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Figure 8.  Time-Dependent Activation of Cultured Astrocytes by 25 ng/ml 

Exogenous rrCNTF in DMEM. Dual fluorescent co-localization 
staining for GFAP (Texas-red) and pSTAT (FITC).  
A) 10-minute exposer,  
B) 20-minute exposer,  
C) 30-minute exposure,  
D) 60-minute exposure,  
E) 90-minute exposure,  
F) 90-minute rrCNTF omission control. Figures A-E demonstrate 
activation of pSTAT by the application of rrCNTF which is not 
present in the omission control. 

 
 

Translocation of pSTAT3 

 The activation of the cultured astrocytes was also determined by 

observation of the translocation of pSTAT 3 tyrosine 705 by means of western 

blot analysis on nuclear extraction components. Second passage (P2) astrocytes 

were allowed to reach confluency in 25 cm³ flasks after which they were washed 

and the media replaced with DMEM without FBS for 24 hours. Following the 
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FBS-free incubation period, the cultures were subject to a 10 minute (Figure 10 

A), 20 minute (Figure 10 B), 30-minute (Figure 9.) or 40 minute (Figure 10 C) 

incubation with 25 ng/ml rrCNTF in 0.1% BSA in PBS. The nuclear extraction 

procedure was performed on the cultures providing a cytoplasmic lysis buffer 

(CLB) portion containing the cytosolic contents and a nuclear extraction buffer 

(NEB) portion containing the nuclear contents. rrCNTF omission control cultures 

were performed in parallel with the rrCNTF treated cultures. 

 Following the nuclear extraction protocol, the protein levels were 

calculated and western blot analysis of was performed on a protein concentration 

of 20 µg of each treated and control samples. The blots were then stained for 

pSTAT3 tyrosine 705 (tyr 705) and normalized using total STAT3 (tSTAT3) 

(Figure 9 A and B). Figure 9 C shows a western blot stained for pSTAT3 Serine 

727 (ser 727) in addition tSTAT and pSTAT3 tyr 705. 

Specific Aim II: Determine the Functional Response of Astrocytes  
to CNTF Cytokine Release Analysis 

 
 Since it was demonstrated that there is activation of the Jak/STAT 

pathway following exposure to exogenous rrCNTF in cultured astrocytes it was 

our working hypothesis that the astrocytes were releasing potential 

neuroprotective factors in response to exogenous rrCNTF.  

Cytokine Membrane Arrays 

Upon reaching confluency in 6 well plates, the astrocytes were rinsed five times 

with DMEM in the absence of FBS and subject to a spike application of 25 ng/ml 

rrCNTF in DMEM FBS free for an incubation of 72 hours. The control received a 

spike of 0.1% BSA in PBS. The supernatant from three treated and one control 
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Figure 9.  Translocation of pSTAT3 following 30-minute, 25 ng/ml rrCNTF 
incubation followed by isolation of cytoplasmic and nuclear 
extractions.  
A) Calculation of the ratio of optical density (ROD) of pSTAT3 tyr 
705 normalized by tSTAT. Nuclear extraction samples of cultures 
treated by rrCNTF (n=2) had a ROD of 1.08. Cytosolic extraction 
samples of treated cultures (n=2) had a ROD of 0.61. Nuclear 
extraction samples of control nontreated (n=3) had a ROD of 0.65. 
Cytosolic extraction samples of control nontreated (n=3) had a 
ROD of 0.28.  
B) The ROD of the pSTAT3 tyr 705 (86 kDa) Western blot was 
normalized to that of tSTAT (79 kDa). 
C) Western blot analysis of pSTAT3 tyr 705, pSTAT3 serine 727, 
and tSTAT3 determined that the phosphorylation of tyrosine 705 
was translocating factor to proceed with. The error bars are the 
mean ± SD. [n] = number of experimental samples. 
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Figure 10.  Preliminary Western Blot Analysis of Nuclear Extraction. Time 

dependent exogenous incubation in 25 ng/ml rrCNTF showing 
translocation of pSTAT3 tyr 705 and their parallel controls. All 
samples were normalized using tSTAT3.  
A.) 10-minute incubation control cytosolic lysis buffer (CLB; n = 1), 
control nuclear extraction buffer (NEB; n = 1), treated CLB (n=2), 
treated NEB (n = 2).  
B.) 20-minute incubation control CLB (n = 1), control NEB (n = 1), 
treated CLB (n = 2), and treated NEB (n = 2).  
C.) 40-minute incubation control CLB (n = 1), control NEB (n = 1), 
treated CLB (n = 2), and treated NED (n = 2).  
The error bars are the mean ± SD. [n] = number of experimental 
samples. 

 
 
culture was collected and used following the procedure described by the 

manufacturer (RayBiotech) (Figure 11). The membranes were allowed to 

incubate in the supernatant for 24 hours to allow for optimal adhesion to the 

arrays. 
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Figure 11.  RayBio Cytokine Membrane Arrays.  

A.) Array one analyzes 19 cytokines.  
B.) Array 2 analyzes 34 cytokines. 

 

 Analysis of the array’s provided a comparison of the increase in cytokine 

levels by performing a normalization with background subtraction (Tables 2 and 

3). The average of each cytokine from treated samples was used to calculate the 

percent change in comparison to the average control samples (Table 4). From 

the top six cytokines of interest three were investigated further by means of 

ELISA; IL-6 (22.22% increase), fractalkine (66.67% increase) and VEGF (36.54% 

increase). 

ELISA 

 In the course of development, astrocytes release both vascular endothelial 

growth factor (VEGF) and interlukin-6 (IL-6) amoung other factors during the 

vasculogenesis of the CNS. (Bernal & Peterson, 2011). These levels decrease 

following birth (Fee et al., 2000; Gerwins et al., 2000; Saito et al., 2011; Seghezzi 

et al., 1998). Additionally, fractalkine, IL-6 and VEGF release have been shown 

to increase in neurodegenerative disorders such as amyotrophic lateral sclerosis 

(H. Sun et al., 2013). 
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Table 2. RayBio Cytokine Antibody Array 1. Analysis of supernatants from three 
72-hour 25ng/ml rrCNTF treated astrocyte cultures and one 72-hour control 
astrocyte culture. Normalization with background subtraction. Preliminary 
cytokines of interest shown in red. 

RayBio® Cytokine Antibody Arrays — Rat Cytokine Antibody Array 1 

Normalization (with Background Subtraction) 
  .1%BSA 72 hr rrCNTF a 72 hr rrCNTF b 72 hr rrCNTF c Average 

POS 0.8 0.8 0.8 0.8 0.8 
NEG 0 0 0 0 0 

CINC-2 0.27 0.34 0.29 0.29 0.3 
CINC-3  0.05 0.09 0.07 0.05 0.07 
CNTF 0.07 0.49 0.66 0.56 0.57 

Fractaline 0.04 0.11 0.06 0.08 0.08 

GM-CSF 0.15 0.15 0.17 0.15 0.16 

IFN-gamma  0.12 0.12 0.14 0.12 0.12 
IL1-alpha  0.21 0.2 0.19 0.18 0.18 
IL-1bate 0.09 0.08 0.11 0.07 0.08 

IL-4 0.21 0.23 0.28 0.2 0.24 
IL-6 0.13 0.17 0.2 0.15 0.17 
IL-10 0.14 0.17 0.2 0.15 0.17 
LIX 0.22 0.37 0.31 0.41 0.36 

Leptin 0.04 0.05 0.05 0.04 0.04 
MCP-1 0.74 0.81 0.77 0.82 0.8 
MIP-3a 0.29 0.43 0.39 0.5 0.44 

beta-NGF 0.5 0.45 0.63 0.54 0.54 
TIMP-1 0.75 0.74 0.81 0.75 0.76 

TNF-alpha 0.16 0.18 0.22 0.15 0.18 
VEGF 0.49 0.81 0.58 0.71 0.7 
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Table 3. RayBio Cytokine Antibody Array 2. Analysis of supernatants from three 
72-hour 25ng/ml rrCNTF treated astrocyte cultures and one 72-hour control 
cytokines of interest shown in red. 

 
 
 

.1%BSA 72 hr rrCNTF a 72 hr rrCNTF b 72 hr rrCNTF c Average
POS 1 1 1 1 1
NEG 0.01 0 0 0 0

Activin A 0.44 0 0.38 0.41 0.39
Agrin 0.83 0 0.8 0.75 0.77

B7-2/CD86 0.29 0 0.31 0.32 0.31
beta-NGF 0.74 0 0.76 0.78 0.77
CINC-1 0.84 0 0.92 0.79 0.85

CINC-2alpha 0.41 0 0.61 0.41 0.51
CINC-3 0.23 0 0.38 0.17 0.27
CNTF 0.24 0 0.66 0.61 0.63

Fas Ligand 0.66 0 0.67 0.61 0.64
Fractalkine 0.14 0 0.25 0.16 0.21
GM-CSF 0.44 0 0.39 0.37 0.38
ICAM-1 0.3 0 0.3 0.33 0.31

IFN-gamma 0.38 0 0.39 0.41 0.4
IL-1alpha 0.4 0 0.45 0.53 0.49
IL-1beta 0.2 0 0.22 0.21 0.21
IL-1 R6 0.32 0 0.4 0.35 0.37

IL-2 0.51 0 0.55 0.57 0.56
IL-4 0.34 0 0.39 0.38 0.39
IL-6 0.4 0 0.5 0.45 0.48
IL-10 0.36 0 0.43 0.36 0.39
IL-13 0.26 0 0.34 0.22 0.28

Leptin 0.14 0 0.14 0.13 0.13
LIX 0.54 0 0.64 0.42 0.53

L-Selectin 0.32 0 0.28 0.32 0.3
MCP-1 0.86 0 0.83 0.82 0.82

MIP-3alpha 0.53 0 0.71 0.64 0.67
MMP-8 0.1 0 0.12 0.19 0.15

PDGF-AA 0.27 0 0.32 0.21 0.26
Prolactin R 0.3 0 0.36 0.3 0.33

RAGE 0.36 0 0.42 0.35 0.38
Thymus Chemokine-1 0.57 0 0.6 0.55 0.57

TIMP-1 0.89 0 0.96 0.82 0.89
TNF-alpha 0.25 0 0.33 0.22 0.27

VEGF 0.54 0 0.81 0.62 0.71

RayBio® Cytokine Antibody Arrays - Rat Cytokine Antibody Array System 2
Normalization (with Background Subtraction)
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Table 4. Percent Change in Cytokine Release. Averages from both array 1 and 
array 2 were calculated from tables 2 and 3 and used in determining overall all 
percent change in cytokine release. The cytokines of interest were determined by 
having a minimum percent change of 18%. 

Cytokine Array 1 
Control 

Array 2 
Control 

 Control 
Average 

Array 1 
Treatment 
Average  

Array 2 
Treatment 
Average  

Treatment 
Average  % Δ 

CINC-3 0.05 0.23 0.014 0.07 0.27 0.17 21.43% 

Fractalkine 0.04 0.14 0.09 0.08 0.21 0.15 66.67% 

IL-6 0.13 0.4 0.27 0.17 0.48 0.33 22.22% 

LIX 0.22 0.54 0.38 0.36 0.53 0.45 18.42% 

MIP-3-α 0.29 0.53 0.41 0.44 0.67 0.56 36.59% 

MMP-8   0.1 0.1   0.15 0.15 50.00% 

VEGF 0.49 0.54 0.52 0.7 0.71 0.71 36.54% 

 
 
ELISA-VEGF 

 
 R&D Systems VEGF ELISAs were loaded using 50 µl of supernatant with 

unknown amounts of protein. A total of 36 samples were analyzed, twelve in 

each of the following time dependent groups; 24 hours, 48 hours, or 72 hours. All 

treated cultures (six from each group) received a dosage spike of 25 ng/ml 

rrCNTF in DMEM and the parallel controls (six of each group) received a 0.1% 

BSA in PBS spike in DMEM. A non-parametric t-test analysis of the optical 

densities indicating pg/ml showed no significance (Figure 12). 

ELISA- IL-6 
 

 The IL-6 ELISA analysis comprised 27 samples of which each plate well 

was loaded with 2.0 µg of supernatant. Nine samples were used to analyze the 

potential release of IL-6 from cultured astrocytes following 24 hours (n = 2),  
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Figure 12.  R&D Systems VEGF ELISA. Comparison of VEGF release by 
astrocytes into the supernatant following a time dependent 
incubation in 25 ng/ml rrCNTF (black bars) and their parallel 
controls (blue bars) that received 0.1% BSA in PBS. A non-
parametic t-test showed no significance. The error bars are the 
mean ± SD. [n] = number of samples. 
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48 hours (n = 4), or 72 hours (n = 3) of exposure to a spike of 25 ng/ml rrCNTF in 

DMEM. Another nine samples were analyzed following either 24 hours (n = 3),  

48 hours (n = 3), or 72 hours (n = 3) exposure to a spike of 25 ng/ml reverse 

sequence CNTF (rsCNTF) in DMEM. The remaining nine samples were controls 

that received a spike 0.1% BSA in PBS to the DMEM for either 24 hours (n = 4), 

48 hours (n = 2), or 72 hours (n = 3). As seen in Figure 13, a one-way ANOVA of 

the optical densisities showed significance only for the 72 hour incubations. The 

0.1% BSA in PBS (DMEM; blue bar) showed significance towards both of the 

treated samples rrCNTF and rsCNTF with p values of 0.0225 and 0.0115 

respectively. A two-way ANOVA indicates a very significant column factor with a 

p value of 0.0021. 

ELISA- Fractalkine 
 

 The RayBio Fractalkine ELISA was performed on 20 samples using 

2.25 µg of the cytosolic portion from nuclear extraction of cultured astrocytes and 

supernatant from astrocyte cultures. The cytosolic samples included cultures that 

were subject to a 24 hour exposre of either a spike of 25 ng/ml rrCNTF into the 

DMEM (n = 3), a spike of 25 ng/ml rsCNTF into the DMEM (n = 2), or a control 

spike of 0.1% BSA in PBS added to the DMEM (n = 3). The supernate samples 

received the same treatments with the all with an [n] of 3 (Figure 14). Anlysis of 

the optical densities showed no significance by one-way ANOVA or t-test. 
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Figure 13.  R&D Systems IL-6 ELISA. Comparison of IL-6 release by 

astrocytes into the supernatant following a time dependent 
incubation in 25 ng/ml rrCNTF (black bars), 25 ng/ml rsCNTF (red 
bars), and their parallel controls (DMEM, blue bars) that received 
0.1% BSA in PBS. A one-way ANOVA showed significance only at 
the 72 incubation analysis between the DMEM control and the 
rsCNTF with a p = 0.0115 and a significance between the DMEM 
control and the rrCNTF with a p = 0.0225. A two-way ANOVA 
showed column factor very significant with a p value of 0.0021. The 
error bars are the mean ±SD. [n] = number of samples. 



78 

 
 
 

Figure 14.  RayBio Fractalkine ELISA. Comparison of Fractalkine release by 
astrocytes into the supernatant to the cytosolic portion of cultured 
astrocytes following a time dependent incubation in 25 ng/ml 
rrCNTF (black bars), 25 ng/ml rsCNTF (red bars), and their parallel 
controls (DMEM, blue bars) that received 0.1% BSA in PBS. No 
significance was determined.  
The error bars are the mean ± SD. [n] = number of samples. 
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Elisa-LIX 
 

 The RayBiotech LIX elisa was performed using samples from 24 hour 

exposure to 25 ng/ml rrCNTF, 25 ng/ml rsCNTF, or 0.1% BSA in PBS. These 

samples were loaded at 2.25 µg total protein and included both supernatants and 

cytosolic portions from nuclear extraction. No optical densities were detectable 

by the microplate reader. 

PCR 

 Gene expression was analysed by of RT² PCR. The mRNA was measured 

in fold increases. The GFAP mRNA was measured and normilized to beta-actin 

following a time-dependent exposre to 25 ng/ml rrCNTF. The parallel non-treated 

control samples were used as a zero standard base line to observe the changes 

induced by the rrCNTF exposure. Figure 15 shows the fold increase for 6 hour  

(n = 4), 12 hour (n = 4), 24 hour (n = 8), and 72 hour (n = 2) exposure times. 

Analysis showed no statistical signifiance by either a one-way ANOVA or a non-

parametric t-test.  

SABiosciences RT² PCR plates were used to analyse mRNA changes following 

time dependent exposure to either 25 ng/ml or 100 ng/ml rrCNTF. Four plate kits 

where utilized; Rat Neurotrophin and Receptors (PARN-031), Rat Signal Signal 

Transduction Pathway Finder (PARN-014), Rat Chemokines & Receptors 

(PARN-022), and Rat JAK/STAT Signaling Pathway (PARN-039). The cut off to 

determine significance in mRNA up-regulation or down-regulation was 3-fold. 
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Figure 15.  Real-Time Reverse Transcriptase Polymerase Chain Reaction 

Primers. mRNA fold increases of GFAP following a 6,12, 24 and 
72 hour 25 ng/ml rrCNTF treatment of astrocyte cultures with 
DMEM timed controls equaling zero. Both a one-way ANOVA and 
non-parametric t-test analysis demonstrates no statistical 
significance in GFAP mRNA levels following rrCNTF exposure.  
The error bars are the mean ±SD. [n] = number of samples run in 
duplicate. 

 

Rat Neurotrophin and Receptors 
 

 After 6 hours of exposure to 25 ng/ml rrCNTF only one neurotrophin was 

seen to meet the set parameters; IL-1β showed a 6.9588 fold increase in mRNA 

expression (Figure 16). Twelve hour exposure to the same levels of 

rrCNTFshowed a upregulation of 5 neurotrophins and a down regulation of one 
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Figure 16.  6 Hour Neurotrophins and Receptors RT² PCR. 6 hour exposure to 

25 ng/ml rrCNTF. Upregulation of IL-1β mRNA with a 6.9588 fold 
increase. Fold alteration cut off set at 3. 
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receptor (Figure 17). Those with fold increase mRNA were Cerebellin 1 precursor 

(Cbln1; 4.1718), glial cell derived neurotrophic factor (GDNF; 3.4643), interlukin-

6 (IL-6 ; 6.6903), transforming growth factor alpha (TGFA; 5.7408) and VGF 

nerve growth factor inducible (VGF; 4.4184). The down regulated mRNA was of 

neuropeptide Y receptor Y1 (NPY1R; -4.752). 

 The 24 hour expure to 25 ng/ml rrCNTF showed changes in 3 mRNA 

levels. Increases were noted in artemin (ARTN; 3.993), interlukin-10 (IL-10; 

14.8271) (Figure 18). Table 5 shows the comparison between the time points 

and the fold changes for the Neurotrophins and Receptors RT² PCR. 

Chemokines and Receptors 
 

 Exposure to 25 ng/ml rrCNTF for six hours resulted in the up-regulation of 

12 genes and no down- regulation was noted. Increased mRNA was seen in C-

X-C motif chemokine ligand-10 (CXCL-10; 4.7693); C-X-C motif chemokine 

ligand-11 (CXCL-11; 4.8922), C-C motif chemokine ligand-12 (CCL-12; 3.1066), 

C-X-C motif chemokine ligand-9 (CXCL-9; 6.8312), C-X-C motif chemokine 

ligand-13 (CXCL-13; 5.2326), C-C motif chemokine ligand-4 (CCL-4; 8.4304), C-

C motif chemokine ligand-5 (CCL-5; 3.0842), C-C motif chemokine ligand-3 

CCL3; 3.0582), platlet factor-4 (PF-4; 5.7743). interlukin 1-α (IL-1α; 4.9676), and 

interlukin-13 (IL-13; 4.324) (Figure 19). 

 Following 12 hours of exposure, there was an expression change over 3 

fold for 7 genes (Figure 20). The three genes that saw an increase in expression 

were C-C motif chemokine ligand-3 (CCL-3; 3.3708), C-C motif chemokine 
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Figure 17.  12 Hour Neurotrophins and Receptors RT² PCR. 12 hour exposure 

to 25 ng/ml rrCNTF. Upregulated factors shown in red. 
Downregulated factors shown in green. Fold alteration cut off set  
at 3. 
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Figure 18.  24 Hour Neurotrophins and Receptors RT² PCR. 24-hour exposure 

to 25 ng/ml rrCNTF. Upregulated factors shown in red. 
Downregulated factors shown in green. Fold alteration cut off set 
 at 3. 
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Table 5. Rat Neurotrophin and Receptors RT² PCR. Fold increases shown 
 in red. Fold decreases shown in green. 

Gene 6 hour 12 
hour 24 hour 

IL-1β (Interlukin 1 beta) 6.9588     
Vgf (VGF nerve growth factor inducible)   4.4184   
Tgfa (Transforming growth factor alpha)   5.7408   
IL-6 (Interlikin 6)   6.6903   
Gdnf (Glial cell derived neurotrophic factor)   3.4643   
Cbln-1 (Cerebellin 1 precursor )   4.1718   
Npy1r (Neuropeptide Y receptor Y1)   4.752   
IL-10 (interlukin 10)     14.8271 
Artn (Artemin)     3.993 
RGDC (Rat genomic DNA contamination     3.8853 

 

ligand-11 (CCL-11; 3.771), and IL-13 (3.3131). The four down-regulated 3 genes 

were PF-4 (-4.0465), chemokine-like receptor-1 (CMKLR-1; -3.4125), C-C motif 

chemokine ligand-20 (CCL-20, -3.2557) and chemokine (C-X-C motif) receptor-4 

(CXCR-4; -3.0867). After 24 hours of exposure to 100 ng/ml rrCNTF there was 

no documented gene expression changes with the fold cut off of 3 (Figure 21). 

Table 6 shows the comparison between the time points and the fold changes for 

the Chemokines and Receptors RT² PCR. 

Jak/STAT Signaling Pathway 
 

 There were a total ot ninteen genes that showed an up-regulation for the 

Jak/STAT Signaling Pathway RT² PCR plate after a 6 hour incubation in 25 ng/ml 

rrCNTF (Figure 22). These nineteen included alpha-2-macroglobulin (A2M; 

3.0939), suppressor of cytokine signaling-3 (SOCS-3; 3.1295), upstrearm 

transcription factor-1 (USF-1; 3.3338), ISG-15 ubiquitin-like modifier (ISG-15; 

4.4753), signal-regulatory protein alpha (SIRPA; 3.1842), SP1 transcription factor  

(SP-1; 3.2241), high mobility group AT-hook 1 (HMGA-1; 10.6167), guanylate 
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Figure 19.  6 Hour Chemokines and Receptors RT² PCR. 6 hour exposure to 
25 ng/ml rrCNTF. Upregulated factors shown in red. No 
downregulated factors. Fold alteration cut off set at 3. 
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Figure 20.  12 Hour Chemokines and Receptors RT² PCR. 12 hour exposure to 

25 ng/ml rrCNTF. Upregulated factors shown in red. Downregulated 
factors shown in green. Fold alteration cut off set at 3. 
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Figure 21.  24 Hour Chemokines and Receptors RT² PCR. 24 hour exposure to 
100 ng/ml rrCNTF. Fold alteration cut off set at 3. 
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Table 6. Rate Chemokines and Receptors RT2 PCR Fold Changes. Fold 
increases shown in red. Fold decreases shown in green. 

 

 
binding protein-1-interferion inducible (Gbp-1; 5.0376), platelet derived growth 

factor receptor-alpha polypeptide (Pdgfra; 3.0685), CCXL-9 (10.5109), interferon 

(alpha, beta, and omega) receptor-1 (Ifnar-1; 4.9294), spleen focus forming virus 

proviral inteegration oncogene spi-1 (Spi-1; 3.4471), suppressor of cytokine 

signaling-1 (Socs-1; 5.8105), Janus kinase-3 (Jak-3; 4.2888), colony stimulating 

factor 1 receptor (Csf1r; 3.5242), erythropoietin receptor (Epor; 3.0516), protein 

tyrosine phosphate receptor type C (Ptprc; 4.4017), GATA binding protein-3 

(Gata-3; 4.1153), and SH2B adaptor binding protein-2 (Sh2b2; 3.5085). No 

genes were reported to have a down regulation within the test parameters of a  

3-fold cut off. 

 

Gene 6 hour 12 hour 24 hour
Cxcl-10 (C-X-C motif chemokine ligand-10) 4.7693
Cxcl-11 (C-X-C motif chemokine ligand 11) 4.8922
Ccl-12 (C-C motif chemokine ligand-12) 3.1066
Cxcl-9 (C-X-C motif chemokine ligand-9) 6.8312
Cxcl-13 (C-X-C motif chemokine ligand -13) 5.2326
Ccl-4 (C-C motif chemokine ligand-4) 8.4304
Ccl-5 (C-C motif chemokine ligand 5) 3.0842
Ccl-3 (C-C motif chemokine ligand 3) 3.0582 3.3708
Pf-4 (Platlet factor -4) 5.7743 4.0465
IL-1a (interlukin 1 alpha) 4.9676
IL-13 (Interlukin-13) 4.324 3.3131
Ccl-11 (C-C motif chemokine ligand 11) 3.771
Cmklr-1 (Chemokine-like receptor 1) 3.4125
Ccl-20 (C-C motif chemokine ligand 20) 3.2557
Cxcr4  (C-X-C motif chemokine receptor 4) 3.0867
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Figure 22.  6 Hour Jak/STAT Signaling Pathway RT² PCR. 6 hour exposure to 
25 ng/ml rrCNTF. Upregulated factors shown in red. Fold alteration 
cut off set at 3. 
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 The twelve hour incubation in 25 ng/ml rrCNTFanalysis using the 

Jak/STAT signaling pathway RT² PCR plate showed no gene expression 

changes withing the test parameters of a 3-fold cut off (Figure 23). Using the 

Signal Transduction Pathway Finder RT² PCR (Figure 24), the 24 hour 

incubation resulted in expression changes for 7 genes. Only one gene showed 

an up-regulation in expression; C-C motif chemokine ligand-20 (CCL-20; 4.8775). 

The six genes that displayed a down regulation were Jun-B proto-oncogene 

(Junb; -3.0441), nuclear factor of kappa light polypeptide gene enhancer in B-

cells (Nfkb; -5.3454), myelocytomatosis oncogene (Myc; -4.9734), interlukin 4 

receptor alpha (IL-4ra; -3.1791), bone morphogenetic protein-2 (Bmp-2; -3.3723), 

and t cell specific transcription factor-7 (Tcf-7; -3.8404). Table 7 shows the 

comparison between the 6 hour and 12 hour Jak/STAT Signaling Pathway RT² 

PCR and the 24 hour Signal Transduction Pathway Finder RT² PCR. 

Specific Aim III: Determine if Response is a Result of CNTF Activation  
of the JAK2/STAT3 Pathway by Examining if the Inhibition of  

JAK2/STAT3 will Alter the CNTF Induced Functional Outcome 
 

Inhibition Testing-AG490 

 Cell viabilty was tested using XTT assay in 96 well plates. Each treatment 

was run in triplicate. Media only wells and wells without treatment were used as 

controls. Graphs are desinged with the Y-axis being percent survivability and the 

X-axis being time passed since treatment. Cell viabilty readings were taken every 

two hours up to 12 hours. (Figure 25 A) shows the cell viabilty following 5 µM 

AG490 (blue), 10 µM AG490 (red), 25 µM AG490 (green), 50 µM AG490  

(purple), and 100 µM AG490 (teal). Figure 25 B) displays the viability following 
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Figure 23.  12 Hour Jak/STAT Signaling Pathway RT2 PCR. 12 hour exposure 

to 25 ng/ml rrCNTF. Fold alteration cut off set at 3. 
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Figure 24.  24 Hour Signal Transduction Pathway Finder RT² PCR. 24 hour 

exposure to 25 ng/ml rrCNTF. Upregulated factors shown in red. 
Downregulated factors shown in green. Fold alteration cut off set  
at 3. 
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Table 7. 6 and 12 Hour Jak/STAT Signaling Pathway RT² PCR and the 24 Hour 
Signal Transduction Pathway Finder RT² PCR Fold Changes. Fold increases 
shown in red. Fold decreases shown in green. 
Gene 6 hr 12 hr 24 hr 
Ccl-20 (C-C motif chemokine ligand 20)     4.8875 
Bmp-2 (Bone morphogenetic protein 2)     3.33723 
IL-4ra (Interlukin 4 receptor alpha)     3.1791 
Junb (Jun B proto-oncogene)     3.0441 
Myc (Myelocytomatosis oncogene)     4.9734 
Nfkb-1 (Nuclear factor of kappa light polypeptide 
gene enhancer in B-cells 1)     5.3454 
Tcf-7 (Transcription factor 7, T-cell specific)     3.8404 
A2M (Alpha-2-macroglobulin) 3.0939     
Socs (Suppressor of cytokine signaling-3) 3.1295     
Usf (Upstream transcription factor-1) 3.3338     
Isg-15 (ISG-15 ubiquitin-like modifier ) 4.4753     
Sirpa (Signal-regulatory protein alpha) 3.1842     
Sp-1 (SP1 transcription factor) 3.2241     
Hmga-1 (High mobility group AT-hook 1) 10.6167     
Gbp-1 (guanylate binding protein-1-interferion 
inducible) 5.0376     
Pdgfra (platelet derived growth factor receptor-
alpha polypeptide) 3.0685     

Ccxl-9 (C-X-C motif chemokine ligand-9) 10.5109     
Ifnar-1 (interferon-alpha-beta-omega-receptor-1) 4.9294     
Spi-1 (spleen focus forming virus proviral 
inteegration oncogene spi-1) 3.4471     

Socs-1 (suppressor of cytokine signaling-1) 5.8105     
Jak-3 (Janus kinase-3) 4.2888     

Csf-1r (Colony stimulating factor 1 receptor) 3.5242     

Epor (erythropoietin receptor) 3.0516     
Ptprc (Protein tyrosine phosphate teceptor type C) 4.4017     
Gata-3 (GATA binding protein-3) 4.1153     
Sh2b2 (SH2B adaptor binding protein-2) 3.5085     
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Figure 25.  XTT Cell Viability Dosage Inhibition with AG490.  

A) Cell viabilty from 2 to 12 hours following 5 dosages of AG490.  
B) Cell viablity from 2-12 hours following 5 dosages of AG490 plus 
25 ng/ml rrCNTF. X-axis time passed.  
Y-axis percent survivability. 
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5 µM AG490 plus 25 ng/ml rrCNTF (blue), 10 µM AG490 plus 25 ng/ml rrCNTF 

(red), 25 µM AG490 plus 25 ng/ml rrCNTF (green), 50 µM Ag490 plus 25 ng/ml 

rrCNTF (purple), and 100 µM AG490 plus 25 ng/ml rrCNTF (teal). Cell viabilty 

was highest at 4 hours for all treatment conditions. Cell exposure to 50 µM/ml 

AG490 and higher resulted in highest cell death with and without rrCNTF. 

Western blot analysis was performed on both nuclear extraction portions 

following treatments as listed in the prior paragraph. The blot was stained for 

pSTAT3 tyr 705 and normalized using tSTAT3 (Figure 26). The nuclear portion is 

shown with black bars and the cytoslic portion in white. Controls included no 

treatment and rrCNTF only each with a sample number of 2. All AG490 dilution 

samples had an (n) of 1 and all AG490 dilutions plus 25 ng/ml rrCNTF had 2 

samples each. Statistical analysis showes no significant decrease between the 

CNTF only samples, the AG490 only samples, or the CNTF plus AG490 

samples. 

Inhibition Testing-Cucurbitacin 
 

 Cell viabilty was tested using XTT assay in 96 well plates. Each treatment 

was run in with a n of 8. Media only wells and wells without treatment were used 

as controls. Graphs are desinged with the Y-axis being percent survivability and 

the X-axis being time passed since treatment. Readings were taken every two 

hours up till 12 hours. Figure 27 A) shows the cell viabilty in DMEM with 10% 

FBS with the following treatments 25 ng/ml rrCNTF (blue), 10nM/ml cucurbitacin 

(red), and 25 ng/ml rrCNTF plus 10 mM/ml cucurbitacin (green). Figure 28 B)  

 



97 

 

Figure 26.  Nuclear Extraction Western Blot Analysis of pSTAT3 tyr 705 
Translocation Following Dosage Inhibition with AG490. Astrocyte 
nuclear extraction (black) and cytosolic extraction (white) 
comparison. Ration of optical density normilized with tSTAT3. The 
error bars are the mean ± SD. [n] = number of experimental 
samples. 
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Figure 27.  XTT Cell Viability Dosage Inhibition with Cucurbitacin.  

A) Cell viabilty in DMEM with 10% FBS from 2 to 12 hours following 
25 ng/ml rrCNTF exposure (blue), 10 mM/ml curcubitacin (red) or 
25 ng/ml rrCNTF plus 10 mM/ml curcubitacin.  
B) Cell viabilty in DMEM without FBS from 2 to 12 hours following 
25 ng/ml rrCNTF exposure (blue), 10 mM/ml curcubitacin (red) or 
25 ng/ml rrCNTF plus 10 mM/ml curcubitacin.  
X-axis time passed. Y-axis percent survivability reading 
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Figure 28.  GFAP Protein Western Blot Analysis. 1 hour exposure to 10 mM/ml 

curcurbitacin.  
A) ration of optical density analysis of control sample (n=2; white) 
and treated sample (n=2; black). Ration of optical density 
normalized with ß-actin.  
B) Western blot showing protein expression.  
The error bars are the mean ± SD. [n] = number of experimental 
samples.  
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displays the viability in DMEM without FBS with the same treatments as figure A. 

Cell viabilty was highest in cultures that recieed FBS.  

 Western blot analysis was performed on total protein from astrocyte tissue 

homogenants following treatment a 1 hour exposure to 10 mM/ml cucurbitacin. 

The blot was stained for GFAP and normalized using β-actin (Figure 27). The 

control is shown in white (n=2) and the treated sample (n=2) in black. Statistical 

analysis showes no significant change in GFAP protein expression.  

The translocation of pSTAT3 tyr 705 following cucurbitacin treatment was 

analyzed using nuclear extraction Western blots. The blot was stained for 

pSTAT3 tyr 705 and normalized using tSTAT3 (Figure 29). The nuclear portion is 

shown with black bars and the cytosolic portion in white. Controls included no 

treatment, rrCNTF only, and cucurbitacin only. Each sample was run in triplicate. 

Treated samples were exposed to 10 mM/ml cucurbitacin for 1 hour. Samples 

receiving 25 ng/ml rrCNTF were spike treated for 30 minutes following the 

completion of the 1 hour cucurbitacin incubation. Figure 28 A shows the ration of 

optical density of the samples with a one-way ANOVA significance between the 

CNTF cytosolic and nuclear extraction (p = 0.0061). Figure B is the Western blot 

showing the protein expression for pSTAT3 and the normalizing protein tSTAT3. 
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Figure 29.  Cucurbitacin Inhibition of pSTAT3 tyr 705. Inhibition with 

Cucurbitacin for 1 hour followed by 30 minute spike of rrCNTF. 
Astrocyte nuclear extraction (black) and cytosolic extraction (white) 
comparison.  
A) ROD analyisis of control extractions (n = 3), 25 ng/ml rrCNTF 
extractions (n = 3), 10 mM/ml cucurbitacin (n = 3), and 25 ng/ml 
rrCNTF plus 10 mM/ml cucurbitacin (n = 3) extractions. One-way 
ANOVA indicates significane between CNTF nuclear and cytosolic 
extractions (p = 0.0061). Samples normilized with tSTAT3  
B) Western blot showing protein expression for pSTAT3 tyr 705 and 
tSTAT3.  
The error bars are the mean ± SD. [n] = number of experimental 
samples 
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Specific Aim IV: Determine if the Functional Response Promotes  
Survival and Sprouting of Neurons Utilizing the  

Hypothalamic Explants Cultures 
 

Paraventricular Nucleus Oxytocinergic Neuron Counts 

 The functional response of astrocytes to CNTF was examened using the 

application of astrocyte conditioned media (ACM) to the hypothalamic explants 

cultures. Treatments included control ACM (n = 15), 25 ng/ml rrCNTF exposure 

(n = 19), 50 µM AG490 (n = 22), 25 ng/ml rrCNTF plus 50 µM AG490 (n = 18), 

10 µM cucurbitacin (n = 16), and 25 ng/ml rrCNTF plus 10 µM cucurbitacin  

(n = 20). Figure 29 shows the oxytocenergic cell counts (Y-axis) within the PVN. 

Using a one-way ANOVA there was significance between the control ACM and 

the rrCNTF (p ≤ 0.01), between the CNTF plus AG490 (p ≤ 0.01), and between 

the CNTF and CNTF plus cucurbitacin (p ≤ 0.001) (Figure 30). 

Supraoptic Nucleus Oxytocinergic Neuron Counts 

 The functional response of astrocytes to CNTF was examened using the 

application of astrocyte conditioned media (ACM) to the hypothalamic explants 

cultures. Treatments included control ACM (n = 15), 25 ng/ml rrCNTF exposure 

(n = 19), 50 µM AG490 (n = 22), 25 ng/ml rrCNTF plus 50 µM AG490 (n = 18), 

10 µM cucurbitacin (n = 16), and 25 ng/ml rrCNTF plus 10 µM cucurbitacin  

(n = 20). Figure 30 shows the oxytocenergic cell counts (Y-axis) within the SON. 

Using a one-way ANOVA there was significance between the control ACM and 

the rrCNTF (p ≤ 0.05), between the AG490 and CNTF plus AG490 (p ≤ 0.01),  
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Figure 30.  Paraventricular Nucleus Oxytocinegic Neuron Counts. 
Immunohistochemical neuronal cell counts demonstrates that 
astrocytes produce neuroprotective factors in response to 
exogenous CNTF. CNTF treated astrocytes ACM promoted the 
survival of OT neurons (p≤0.01) as did the application of CNTF plus 
AG490 ACM (p≤0.01). The astrocytes intracellular pathway involved 
can be inhibited by cucurbitacin and showed a significant decrease 
in OT neuron survival (p≤0.001).  
Y-axis OT neuron cell count.  
The error bards are the mean ± SD. [n] = number of experimental 
samples.
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between the CNTF and CNTF plus cucurbitacin (p ≤ 0.01), between the control 

ACM and the cucurbitacin (p ≤ 0.01), and between the control ACM and the 

cucurbitacin plus CNTF (p ≤ 0.01) (Figure 31).
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Figure 31.  Supraoptic Nucleus Oxytocinergic Neuron Counts. 

Immunohistochemical neuronal cell counts demenstrates that 
astrocytes produce neuroprotective factors in response to 
exogenous CNTF. CNTF treated astocytes’ ACM promoted the 
survival of OT neurons compared to control (p ≤ 0.05) as did the 
application of CNTF plus AG490 ACM compared to just AG490 (p ≤ 
0.01). The astrocytes intracellular pathway involved can be 
inhibited by cucurbitacin and showed a significant decrease in OT 
neuron survival (p ≤ 0.01). Y-axis OT neuron cell count. The error 
bars are the mean ± SD. [n] = number of experimental samples.  
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CHAPTER IV 

DISCUSSION 

 The results of the this study demonstrate the activation of primary cortical 

rat astrocyte cultures by the application of exogenous rrCNTF. First, this 

activation was confirmed by comparison of GFAP upregulation following 

exposure and the confirmation that primary cortical rat astrocytes maintain the 

tripartite CNTF receptor complex. Then it was determined that this activation 

produces a cascade effect through the JAK/STAT3 pathway by means of 

phoporylation of STAT3 tyrosine 705. This cascade effect influences genes 

expression by either upregulation or down-regulation. This changed expression 

of possible neuroprotective factors was tested by means of applying astrocyte 

conditioned media to hypothalamic organotypic explant cultures. Our data 

suggest that CNTF potentiates survival and sprouting of axotomized 

magnocellular neurons through activation of astrocyte-specific signal 

transduction pathways leading to increased expression levels of factors which 

mediate the neuronal response. 
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Specific Aim I: Determine if CNTF Activates the  
JAK/STAT Pathway in Astrocytes 

 
rrCNTF Infused SON  

 The cannula placement and pump-outflow was determined for each 

cannula based on the reports of Adam Sudbeck. It was determined that the 

cannua was inserted to the proper position at an occarancce of 75% by 

immunhistocemical analysis. The out-flow rate of was calculated at 0.94 µl per 

hour over the 72 hours the mini-osmotic pump was in place. We observed an 

increase in the immunoreactivity of GFAP in the astrocytes within the SON and 

the brain parenchyma surrounding the cannula tip. This immunoreactivity was 

confimed via western blot analysis of GFAP levels within the rrCNTF infused 

SON, aCSF infused SON, and the corresponding contralateral SON (Figure 4). 

Our data is in agreement with data published by Seidel et al. (2015) and Park et 

al. (2000) that increase levels of CNTF, from exogenous application or naturally, 

results in increased levels of GFAP protein within the proximal astrocytes. This 

data established that these samples could be used as a positive control for 

comparisson with the primary rat coritical astrocyte cultures.  

Primary Astrocyte Cultures 

 The primary rat cortical astrocyte cell cultures were visually assessd 

throughout the purification process. This visual assessment would look for 

abnormalities within the media, the confluency of the cells, and overall 

appearance of the astrocytes. Any abnormalities would classify a culture as 
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contaminated and result in its disposal. Cultures that were deamed visually 

normal were used for further experaments.  

 Once cells had reached the desired visial confluency of 70-80% they were 

analized for purity and cell type identification. The identification of astrocytes was 

verified by florescent immunocytochemistry staining for the GFAP protein which 

is localized to the astrocyte cytosol. Purity was assessed by florescent 

immunocytochemistry staining for microglial cells with OX-42 or Tomato Lectin. 

Microglial cells were never observed following the second purification of the cell 

cultures and according to McCarthy and De Vellis (1980), the layered 

stratification seen prior to the first pass provides a complete removal of 

oligodendrocytes in the purification and splitting process inhibiting the 

reappearance of the cell type. This immunocytochemical analysis demonstrated 

that the cultures had a purity level of ≥98% primary astrocytes.  

 In order for CNTF to activate it’s signaling pathways, it must first bind to 

the receptor complex. It has been shown that the gp130 and LIFR-β components 

are neccessary for CNTF signaling and mediate the intracellular signaling 

response to the binding of CNTF to CNTFR-α (Davis, Aldrich, Stahl, et al., 1993; 

Davis et al., 1991; Ip, McClain, et al., 1993). Askvig et al. (2012) demonstrated 

that all three components to the tripartite CNTF receptor complex are found 

colocalized on the astrocytes of the intact SON. Additionally, it has been shown 

that LIFR- β is not present on the vassopressenergic magnocellular neurons of 

the SON (Askvig et al., 2013). This presumable absence of a crucial componet to 

CNTF induced activation suggests that the observed CNTF effect of 
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magnocellular neuron survial and sprouting is due to an autocrine signaling 

mechanism via the astrocytes.  

 The necessity of all three receptor components to potentiate the noted 

effects made it crucial to demonstrate that the cultured primary astrocytes retain 

all the components. Figure 6 A-C showed via flourescent staining that the 

expression of CNTFR-α is present. The western blot vizualization (Figure 6 D) 

showed that LIFR-β and gp130 are also present in ithe cultured astorcytes. The 

levels of gp130 appear to be much lower than LIFR-β in comparison to the SON 

tissue homoginate control. One reason for this discrepancy is that the tissue 

control is a heterogenious mixture of cells incorporating both astrocytes and the 

magnocellular neurons. As previously stated, LIFR-β is localized to the 

astrocytes of the SON and not the neurons where as the gp130 component is 

found on both of these cells. Therefore the tissue homogenate control would 

have an expectedly larger ratio of gp130 to LIFR-β in comparison to the two 

astrocyte samples. Regardless of the lower astrocytic gp130 levels, the receptor 

compoent was still present allowing for proper binding of CNTF. These lower 

levels overall may lead to decreased activity levels of CNTF activated astrocytes. 

The possible decreased activity may result in lower levels of STAT activity.  

 The binding of CNTF to its receptor complex, and subsequential activation 

of the astrocytes is seen via the activation of multiple pathways. The focus of this 

study was the Jak/STAT pathway. The Jak2/STAT3 pathway has been 

demonstrated by Askvig et al. (2013) to be present in the SON that the inhibition 

of this pathway abolishes the pro-survival response elicited by CNTF. To ensure 
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the ability of the cultured astrocytes to be activated following exposure to 

exogenous CNTF, the translocation of pSTAT tyr 705 was observed by 

fluorescent immunocytochemical staining (Figure 8) and western blot analysis 

(Figures 9 and 10) of the nuclear extraction components. The fluorescent 

immunocytochemical staining at five time points (10, 20, 30, 60, and 90 minutes) 

showed that not only are the cultured primary astrocytes able to be activated 

following exogenous CNTF exposure, but that this activation is a relatively quick 

and transient activation with the translocation of pSTAT tyr 705 from the cytosol 

to the nucleus within the first 10 minutes of exposure  

Summary of Specific Aim I 

 From this information we were able to confirm that not only are the primary 

rat cortical astrocyte cultures ≥98% pure cultures, but that they react to CNTF in 

manners similar to astrocytes found in vivo within the SON. These cultured 

astrocytes maintained the presence of all three components of the CNTF 

receptor complex; CNTFR-α, gp-130, and LIFR-β. The cultured cells became 

activated in response to exogenous rrCNTF as seen by elevated levels of GFAP. 

The Jak/STAT pathway was activated in as little as ten minutes as noted by the 

presence of phosphorylated STAT3 tyrosine 705 in immunocytochemical staining 

and the translocation of pSTAT3 tyr 705 from the cytosol of the astrocyte to the 

nucleus as analyzed by western blot. 

Specific Aim II: Determine the functional response of astrocytes to CNTF 

 The magnocellular neuronal cells of the SON and PVN have 

demonstrated enhanced survival numbers following CNTF exposure. 
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Additionally, the exposure has been shown to have an influence on axonal 

sprouting. Our lab has evidence suggesting CNTF potentiates a collateral 

sprouting response following unilateral lesion (Askvig, Leiphon, et al., 2012; Watt 

et al., 2006). Furthermore, our lab has also demonstrated that CNTF promotes 

magnocellular neuron process outgrowth in hypothalamic organotypic cultures 

(Askvig & Watt, 2015). Moreover, our lab has determined that astrocytes are the 

source of CNTF within the supraoptic nucleus (Watt et al., 2006). Following the 

release of CNTF from astrocytes, CNTF is presumed to evoke a response via an 

autocrine signaling mechanism on the very cells that released it. The question 

that we are addressing is regarding the possible functional response supplied by 

cultured astrocytes following CNTF stimulation that may potentially lead to the 

observed pro-survival and sprouting effects seen both in vivo and in the 

organotypic cultures. 

Cytokine Release Analysis 

 The central nervous system environment is highly influenced by the 

resident astrocytes. These glial cells are responsible for many aspects of keeping 

the CNS in a homeostatic environment. One of the many ways astrocytes 

influence their environment is through the release of cytokines. In order to 

determine the cytokine production and release of cultured astrocyte following 

exogenous rrCNTF exposure, of the supernatant was analyzed using a 

membrane array. The comparison of 34 cytokines using the RayBio Cytokine 

Arrays 1 and 2 showed an increase in release of multiple cytokines. Of the 

cytokines that exhibited an increased release four were chosen to study further; 
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fractalkine, IL-6, VEGF, and LIX. These cytokines were further observed via 

ELISA and compared at several exposure time points to either rrCNTF, rsCNTF, 

or a no treatment control.  

Fractalkine 

 Fractalkine, also known as CXCL1, has been shown to induce migration 

and cell activation of microglial cells. Additionally, this cytokine is known to help 

in the support and survival of developing neurons (Arnoux & Audinat, 2015). The 

membrane arrays analysis of fractalkine showed a 66.67% increase in release 

over the control supernatant following rrCNTF exposure. This increase is a 

1.836-fold change. Upon further quantitative exploration using the RayBio 

Fractalkine ELISA kit, no significant increase was detected in either the 

supernatant or the cytosolic portion of the treated cultured cells comparted to the 

control.  

 Intracellularly, fractalkine was also observed using the Rat Chemokines 

and Receptors RT² PCR kit from SABiosciences. This examination of RNA for 

fractalkine showed an 18% increase or a 1.18-fold increase over the control 

values. Unfortunately, this fold increase did not fall within our parameters of a 3-

fold increase for significance. 

 The reason for the discrepancies seen in the cellular release is unknown. 

Originally there was the possibility that the phenol red dye in the DMEM 

supernatant was affecting the ELISA outcome. This factor was removed by using 

phenol red free DMEM and no significant changes were observed. Another 

potential concern was the possibility of the supernatant being oversaturated. The 
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supernatant is a soup composing of the media components as well as of the 

substances released from cultured cells. This potential oversaturation might 

prevent adequate sampling and analysis when attempting to observe one 

component among the many. This possible issue was tackled through a Slide-A-

Lyzer Dialysis Cassettes (Thermo Scientific, Rockford, IL) with a 7 kDA 

molecular weight cut off. Even with the trouble shooting performed, the ELISAs 

were unable to replicate the increase in fractalkine release seen using the 

membrane arrays.  

IL-6 

 IL-6 became a cytokine of interest because it is a known pro-anti-

inflammatory cytokine that is believed to promote survival of cholinergic neurons, 

induce synthesis of nerve growth factor, aid in the regulation of synaptic functions 

(Gruol, 2015), and is known to assist astrocytes during the vasculogenesis phase 

of development. Additionally, CNTF is a member of the IL-6 cytokine family with 

the shared gp130 receptor (Patterson, 1992). And the expectation the IL-6 would 

be a potential neuroprotective and axonal sprouting factor has been documented 

by Leibinger et al. (2013). 

 Our analysis showed a combined increase of 22.22% on the RayBio 

Membrane Arrays 1 and 2, equivalent to a 1.24-fold increase. Quantitative 

analysis of IL-6 release into the supernatant by the cultured astrocytes using the 

R&D Systems ELISA did show significance at the 72-hour time point using a one-

way ANOVA between the control and treated samples with a p value of 0.0225. A 

two-way ANOVA indicated a very significant column factor of p = 0.0021. 
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Unfortunately, this significance was with a higher quantity of IL-6 release in the 

control supernatant over either of the treated samples. At the RNA level, the 

Neurotrophins and Receptors RT² PCR analysis of IL-6 showed a down 

regulation. Here we observed a -1.01-fold decrease equivalent to a -3.23% 

change.  

 Similar to that of fractalkine, the reasons for the discrepancies is unknown. 

A possible solution would be to increase the number of (n) for each of the tests. 

Increasing the number of samples may help bring the different experimental data 

sets closer together. Additionally, the ELISAs and cytokine membrane arrays 

observed cytokine release following 72 hours of rrCNTF exposure and the RT² 

PCR only went to 24 hours. It is possible that an increased RNA change would 

be seen at a later time point.  

VEGF 

 VEGF acts on endothelial cells by increasing permeability, inducing 

angiogenesis, migration, but most importantly by inhibiting apoptosis (Saito et al., 

2011). Interestingly, a European study of 1000 amyotrophic lateral sclerosis 

patients exhibited a reduced VEGF plasma level (Lambrechts et al., 2003). 

Additionally the application of VEGF to organotypic cultures has shown an 

increased survival of dopaminergic neurons (W. F. Silverman, Krum, Mani, & 

Rosenstein, 1999). These finding point towards VEGF having neuroprotective 

potential within our system. 

 The release of VEGF by cultured astrocytes presented a 36.54% increase, 

or a 1.386-fold increase, after a 72 hour rrCNTF incubation when analyzing the 
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cytokine membrane arrays. Quantitative analysis of VEGF using the R&D 

Systems ELISA showed a different outcome. No significance was observed 

between the rrCNTF treated cultures’ and the control cultures’ supernatants. 

Furthermore, the RT² PCR Signal transduction Pathwayfinder analysis showed a 

121% decrease in RNA equivalent to a -2.22-fold reduction.  

 VEGF’s production by astrocytes is known to decrease following the 

vacuolization of the CNS (Sofroniew & Vinters, 2010). However, it could be 

hypothesized that following traumatic brain injury, one would see increased 

levels of VEGF during the repair and formation of blood vessels within the CNS. 

Similar to IL-6, the RT² PCR only looked at 6, 12 and 24-hour time points. It is 

possible that the increase in RNA production happens at a later time point, or 

that the astrocyte needs an outside stimulus in addition to CNTF for the 

production of VEGF.  

LIX 

 According the to cytokine membrane array, the chemokine LIX, also 

known as CXCL5, showed an 18.4% increase in cellular release. This is 

equivalent to a 1.24 fold increase following a 72 hour exogenous exposure to 

CNTF. The ELISA was not able to detect any optical density, and the RT² PCR 

Chemokines and Receptors showed a -23.98%, or 1.24 fold down regulation in 

gene expression.This chemokine, which acts as a neutrophil chemoattractant, 

currently has no published data regarding it’s release from astrocytes in 

response to CNTF and very little is known about it’s role in the CNS. 

 



116 

Summary of Specific Aim II 

 The tested cytokines (IL-6, fractalkine, VEGF, and LIX), all showed 

variances between the RayBio Cytokine Membrane Arrays and the quantitative 

RayBio and R&D Systems ELISAs for expression and release. The 

SaBiosciences RT² PCRs indicated that there are changes in RNA expression, 

although these changes did not fall with in our set 3-fold parameter and some 

indicated a down regulation. However, even though there was little to no 

consistency between the data sets, these cytokines may still have a potential 

neuroprotective effect. An additional data point of 72 hours should be established 

with the RT² PCR for a better time comparison. Additionally, these cytokines 

could be individually administer exogenously to MCN cell cultures or to the 

hypothalamic explant cultures to test the possibility of prosurvival factors 

associated with each of the cytokines. 

Specific Aim III: Determine if Response is a Result of CNTF Activation of the 
JAK2/STAT3 Pathway by Examining if the Inhibition of JAK2/STAT3  

will Alter the CNTF Induced Functional Outcome 
 

 It has been demonstrated that the neurotrophin CNTF functions through 

the activation of multiple pathways (Alonzi et al., 2001; Askvig & Watt, 2015; 

Dolcet et al., 2001). The pathway of interest in this study was the Jak2/STAT3 

pathway which had previously been shown to be necessary in the CNTF-

mediated survival of the MCN (Askvig, Lo, et al., 2012; Askvig et al., 2013). This 

was demonstrated by decreased neuronal survival following the use of two 

inhibitors; AG490, a Jak2 inhibitor, and cucurbitacin a STAT3 inhibitor. 
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AG490 

 The Jak2 inhibitor AG490 is a proven inhibitor preventing the prosurvival 

effects of CNTF within the intact SON (Askvig, Lo, et al., 2012). Prior to the 

application of AG490 to the cultured cells for testing the inhibitory affects, the 

proper dosage was determined by cell viability. Cell viability was the highest after 

4 hours of incubation in AG490 and dosages of 50 µM and higher had a roughly 

20% decrease in cell survival regardless of CNTF exposure (Figure 26). 

However, even with the higher dosages of 50 µM and 100 µM we saw a survival 

rate between 40-50% over the twelve-hour testing period allowing for us to use 

the same dosage of 50 µM used by Askvig et.al. (2013) in our inhibition 

experiments. Following the AG490 exposure, the translocation of pSTAT3 tyr 705 

from the astrocyte cytosol to the nucleus was still observed The translocation 

seen within the inhibited cultures was equivalent to those that did not receive 

AG490. This observation indicates that the inhibition of Jak2 via AG490 either did 

not occur or that the cultured astrocytes were utilizing another pathway. With the 

translocation of pSTAT3 tyr 705 to the nucleus, it is expected that the astrocytes 

would still be able to produce its neuroprotective effects in response to activation 

by CNTF. The binding of CNTF to its receptor has the ability to potentiate an 

activity via the phosphorylation of any member of the Jak-Tyk family (Stahl et al., 

1994; Stahl et al., 1995). Additionally, Stahl et al. (1995) indicated that in their 

unpublished data, the phosphorylation of STAT3 is a constant but that the 

activation of different Jak subunits is cell dependent. This is a possible 

explanation for the discrepancy seen between the inhibition documented within 
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the explant cultures and the in ability of AG490 to inhibit the CNTF induced 

activation of the cultured astrocytes. Being the explant cultures are an intact 

cellular brain model, it is possible that the exposure to AG490 played an 

inhibitory roll within a different cell resulting in the decreased neuronal survival 

seen. Conversely, it possible that being the cultured astrocytes are a cortical 

culture and not just astrocytes cultured from the hypothalamic neurosecretory 

system, that different population of astrocytes respond differently to the exposure 

of CNTF by eliciting either Jak 1 or Tyk2. 

Cucurbitacin 

 Cucurbitacin, a known STAT3 inhibitor, has been demonstrated by our lab 

to prevent the prosurvival effects initiated by CNTF in organotypic cultures 

(Askvig et al., 2013; Askvig & Watt, 2015). Similar to AG490, cell viability was 

tested for this inhibitor to ensure that prolonged exposure did not induce 

detrimental cellular death. Figure 27 illustrates that the cell viability is highest for 

cells exposed to FBS and CNTF while in the presence of cucurbitacin over a 12-

hour time frame starting. A majority of the readings indicate a cell viability higher 

than 100% when compared to the controls. This could be a result of several 

factors. One possible factor is that astrocytes proliferate at a high rate, especially 

when exposed to stress (Sofroniew & Vinters, 2010). The introduction of CNTF 

and or cucurbitacin may potentially increase the proliferation rate of the cultured 

astrocytes. Regardless of the readings, we were able to determine that 

cucurbitacin does not have an apoptotic effect on the cultured astrocytes at the 

given dosage. 
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 The examination of cucurbitacin’s inhibition effect on the cultured 

astrocytes was tested by observing the translocation of pSTAT3 tyr 705 from the 

cytosol to the nucleus. It is expected that the inhibition of STAT by cucurbitacin 

would prevent the translocation event from occurring. The nuclear extraction 

analysis showed the expected results as can be seen in Figure 29. By preventing 

the translocation of pSTAT3 tyr 705 to the nuclease, it can be deduced that the 

activation of the astrocyte by CNTF is being prevented. This inhibitory effect 

would theoretically prevent the cultured astrocyte from producing any probable 

neuroprotective substances in response the CNTF that has been documented in 

vivo and in the hypothalamic explant cultures. This arresting of the CNTF 

activation pathway would undoubtedly result in magnocellular neuron loss. 

Specific Aim IV: Determine if the Functional Response Promotes  
Survival and Sprouting of Neurons Utilizing the  

Hypothalamic Explants Cultures 
 

Astrocyte Conditioned Media Application 

 The organotypic hypothalamic explant cultures provides a model that is 

very comparable to experimentation in vivo. This model provides a exceedingly 

effective means of observing the OT and VP neurons found with in the MNS 

(Askvig, Lo, et al., 2012; House, Thomas, Kusano, & Gainer, 1998). Our lab has 

previously shown that the exogenous application of CNTF to the explant cultures 

results in a significant oxytocinergic neuron survival rate. Additionaly, Askvig et 

al. (2012, 2015) showed that multiple pathways are activated by CNTF through 

the inhibition of those pathways in these cultures. 
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 The application of treated astrocyte conditioned media to the organotypic 

hypothalamic expant cultures displayed significant neuroprotective effects. ACM 

from astrocytes treated with exogenous CNTF displayed a significant rate of OT 

neuron survival when compared to ACM from non-treated cultures. This effect 

attests that CNTF stimulates cultured astrocytes and initiates an increased 

production and expression of factors that result in a prosurvival neuronal 

response.  

 The addition of an AG490 inhibition treatment to the astrocyte cultures did 

not deminish the prosurvival affects seen with CNTF (Figures 30 and 31). This 

corresponds to the previous discussion indicating that the inhibition of Jak2 by 

AG490 in astrocyte cultures does not prevent the phosphorylation and 

translocation of STAT3 tyr 705 the the nucleus. With the translocation of pSTAT3 

tyr 705, we are still seeing an activation of the cultured astrocyte and the 

upregulation of prosurvival factors as displayed by the application of the ACM to 

the explant cultures. This was the expected outcome following the translocation 

study, and confirmed that the inhibition of Jak2 within cultured astrocytes does 

not arrest the CNTF signaling pathway. As previously mentioned, this is in 

contrast to the explant inhibition studys which applied the inhibitor AG490 directly 

to the explant cultures mediating a decreased survival of the OT neurons. Again, 

this could be due to CNTF activating another member the the Jak-Tyk family 

within the cultured corticle astrocytes. 

 The inhibition of STAT3 in the astrocyte cultures with cucurbitacin 

produced a drastic and significant decrease in OT neuron survival following the 
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ACM application (Figures 30 and 31). The addition of cucurbitacin resulted in 

lower neuron survival compared to all other treatments, including the control 

ACM. Unlike the other treatments, the addition of CNTF following a 1 hour 

incubation in the presence of the inhibitor did not result in a statistically significant 

increase in neuron survival within either the PVN or the SON. This data brings to 

light that the translocation of pSTAT tyr 705 is absolutly necessary for the 

activation of cultured astrocytes by CNTF to potentiate survival of axotomized 

magnocellular neurons. 

Summary 

 The present study demonstrated that CNTF potentiates survival of 

axotomized magnocellular neurons through activation of astrocyte-specific signal 

transduction pathways leading to increased expression levels of factors which 

mediate the neuronal response. In order for this to occur, it was necessary to 

demonstrate the activation of the Jak/STAT pathway within the cultured 

astrocytes by first proving that the tripartite receptor complex is maintained and 

expressed in the primary rat cortical astrocyte cultures. 

 Activation of the Jak/STAT pathway by exogenous CNTF in astrocytes 

was shown by the translocation of phosphorylated STAT3 tyrosine 705 from the 

cytosol to the cell nucleus. The translocation of STAT initiates a functional 

response within the astrocytes. This functional response is seen in the 

expression changes of an undetermined amount of cytokines, chemokines, 

receptors, and neurotransmitters among other possible factors. Some potentially 

increased factors include VEGF, IL-6, LIX, and fractalkine.  
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 The inhibition of Jak2 by AG490 does not diminish the activation of 

cultured astrocytes by CNTF, as shown by the nuclear extraction analysis 

displaying that pSTAT3 tyr was still translocating. This was further demonstrated 

in the OT neuron counts of both the PVN and SON from the explant cultures. 

Conversely, the inhibition of STAT3 via cucurbitacin did prevent the translocation 

of pSTAT3 tyr 705. This inhibition was shown to significantly arrest the CNTF 

induced release of neuronal pro-survival affects within the explant cultures.  

 This study demonstrates that astrocytes are an essential component to 

the CNTF story. Further experiments to expand on this study would be designed 

to better understand what neuronal pro-survival factors are being released by the 

astrocytes in response to CNTF. Our current VEGF, LIX, IL-6 and fractalkine 

data is inconsistent. As previously mentioned, it would be worthwhile to divulge 

further into these cytokines by looking at additional time points and doing qPCR. 

A continuation study could utilize a Digi west which analyzes over 1000 potential 

proteins by using only 1 mg of sample. This experimentation could be utilized on 

a condensed supernatant as well as the cytosolic nuclear extraction. This 

analysis, albeit broad, is more qualitative than the cytokine membrane arrays and 

would potentially assist in honing in on potential neuroprotective factors produced 

by the astrocytes. Additionally, further exploration of the low level of gp130 

expression on the cultured astrocytes would be necessary to determine if the in 

vitro expression affects the overall outcome. As noted by the RT² PCR data, 

numerous genes have a minimum of a three-fold expression change and the 

ACM application to explant cultures proves that astrocytes are reacting to CNTF 
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in a manner that promotes oxytocin magnocellular neuron survival. Among these 

genes is the explanation for the astrocytes ability to potentiate the survival of 

magnocellular neurons.  
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