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ABSTRACT 

To better understand the precipitation variability over the continental United States 

(CONUS), an accurate temporally and spatially homogenous precipitation dataset should 

be used. Recently developed precipitation products, including satellite-based, radar-based, 

and atmospheric reanalysis products appear to fit these criteria, however, their 

uncertainties must first be addressed. This study is divided into two parts. Part I focuses 

on a comparison between satellite-based GPCP IDD estimates and radar-based NMQ Q2 

estimates, offering physical insight into the differences between the two datasets. Part II 

evaluates the precipitation estimates from five reanalysis products, and studies the 

precipitation trend over the CONUS over the last three decades using GPCP monthly 

product, where the uncertainties associated with GPCP datasets found in part I will be 

addressed. 

In part I of this study, spatial averages of monthly and yearly accumulated 

precipitation were computed based on daily estimates from the six selected regions 

during the period from 2010 through 2012. Correlation coefficients for daily estimates 

over the selected regions range from 0.355 to 0.516 with mean differences (GPCP-Q2) 

varying from -0.86 to 0.99 mm. Better agreements are found in monthly estimates with 

the correlations varying from 0.635 to 0.787. The comparisons between two datasets are 

also conducted for warm (April-September) and cold (October-March) seasons. During 

the warm season, GPCP estimates are 9.7% less than Q2 estimates, while during the cold 

season GPCP estimates exceed Q2 estimates by 6.9%. For precipitation over the CONUS, 
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although annual means are close (978.54 mm for Q2 vs. 941.79 mm for GPCP), Q2 

estimates are much higher than GPCP over the central and southern CONUS and lower 

than GPCP estimates in the northeastern US. These results suggest that Q2 may have 

difficulty accurately estimating heavy rain and snow events, while GPCP may have an 

inability to capture some intense precipitation events, which warrants further 

investigation. 

In part II of this study, precipitation estimates from five reanalyses (ERA-Interim, 

MERRA2, JRA-55, CFSR, and 20CR) are compared against the GPCP satellite-gauge 

(SG) combined product over the CONUS during the period from 1980 through 2013. 

Compared to the annual averaged precipitation of 2.38 mm/day from GPCP, CFSR has 

the same annual mean, ERA-Interim and MERRA2 have negative biases of -9.2% and 

-3.8% respectively, while JRA-55 and 20CR have positive biases of 9.7% and 12.6% 

respectively. The reanalyses capture the variability of precipitation distribution over the 

CONUS as derived from GPCP; however, large regional differences exist. The reanalyses 

generally overestimate the precipitation over the western part of the country throughout 

the year, which could be due to the difficulty of accurately estimating precipitation over 

complex terrain. Underestimations in reanalyses over the northeastern US during fall and 

winter seasons indicate that the five selected reanalyses may be less skillful in 

reproducing snowfall events. Furthermore, systematic errors exist in all five reanalysese 

suggest that their physical processes in modeling precipitation need to be improved in the 

future. We also conduct a long-term trend analysis of precipitation over the CONUS 
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using GPCP and reanalyzed precipitation products from 1980 to 2013. Based on the 

linear regression of GPCP data, there is a decreasing trend of 2.00 mm/year. For spatial 

distribution, only north-central and northeastern parts of the county show positive trends, 

while other areas show negative trends on through the course of a year. Compared to the 

GPCP observed long-term trend of precipitation, all reanalyses except for 20CR exhibit 

similar inter-annual variation. Although comprehensive reanalyses that assimilate both 

satellite and in-situ observations can provide more reasonable precipitation estimates, 

substantial efforts are still required to further improve the reanalyzed precipitation over 

the CONUS. 
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CHAPTER I 

INTRODUCTION 

Background 

Precipitation is a critical component of land surface processes and the hydrological 

cycle. It is also an important factor for understanding climate variability. Changing 

rainfall patterns have a significant impact on water sources, and directly influence 

industrial and agricultural output as well as people’s daily lives. The characteristics of 

precipitation over the continental United States (CONUS) differ significantly in time and 

space, which is the result of the interaction of several complex atmospheric and oceanic 

processes evolving at different spatial and temporal scales. During the Northern 

Hemisphere summer, a subtropical ridge in the Atlantic Ocean often transports warm and 

humid air from the Atlantic Ocean and the Gulf of Mexico over the continent (Benton 

and Estoque 1954), aiding development of thunderstorms over the southern tier of the 

country as well as Great Plains. Obtaining the moisture from air masses that flow from 

Pacific Ocean, the western CONUS receives most of its precipitation during the winter 

(Holzman 1937). Nor’easters moving up the East coast bring cold season precipitation to 

the northeastern United States (Davis and Dolan 1993). Meanwhile, lake-effect snow 

adds precipitation to the Great Lakes regions during the cold season (Burnett et al. 2003). 

Sensitive to the variations in rainfall distribution, the changes in precipitation pattern in 

the CONUS will lead to the increase or decrease in precipitation amounts, and hence it 
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may lead to large-scale precipitation extremes (e.g. droughts and floods).  

Precipitation can be directly observed from ground-based measurements (e.g. rain 

gauges), which provide relative accurate rainfall estimates at point locations. However, in 

regions with sparse rain gauge coverage such as oceans and unpopulated areas, rain 

gauge measurements may not capture the spatial and temporal variability of precipitation 

events (Villarini et al. 2008). Radar provides high spatial and temporal resolution rainfall 

estimates, but several sources of uncertainty are associated with radar-based estimates 

including attenuation, ground clutter, beam blockage, beam height, and variability in the 

Z-R relationships (Wilson and Brandes 1979). Additionally, sufficient radar coverage for 

radar-based estimates is not widespread outside of the United States, Europe, and Japan. 

For complete global precipitation information, satellite-based and atmospheric reanalysis 

datasets are relied upon; however, these often suffer from relatively large uncertainties 

(Xie and Arkin, 1997; Huffman et al. 2001; Tian and Peters-Lidard. 2010).  

Satellite-based precipitation retrievals are typically calculated either from empirical 

relationships between measured cloud-top temperature from infrared (IR) instruments 

and precipitation rates, or passive microwave (PMW) instrument data which directly 

measure the scattering of upwelling radiation as well as the thermal emission from 

raindrops and hydrometers to estimate precipitation rate (Joyce et al. 2004). IR sensors 

onboard geostationary satellites can provide precipitation estimates at high temporal 

resolution, but errors may occur where rainfall does not correlate well with cloud-top 

temperature (i.e., nonprecipitating cirrus clouds, tropical warm clouds). Microwave 
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sensors measure precipitation in a more direct way but are only aboard polar-orbiters, and 

therefore have a significant limitation in spatial and temporal sampling (Joyce et al. 2004). 

With the limitations intrinsic in the independent measurements in mind, new techniques 

have been developed to combine IR and PMW sensors on multiple satellites in order to 

produce global precipitation estimates by making use of the advantages of each sensor. 

Since the lunch of Tropical Rainfall Measuring Mission (TRMM) in late 1997, 

precipitation techniques and algorithms have been devised and modified to combine IR 

and microwave observations to provide real-time precipitation information. To date, 

numerous satellite precipitation products have been released with various temporal and 

spatial resolutions, including Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN; Sorooshian et al. 2000); Climate 

Prediction Center morphing technique (CMORPH; Joyce et al. 2004); TRMM 

Multi-satellite Precipitation Analysis (TMPA; Huffman et al. 2007, 2010); Global 

Precipitation Mission Integrated Multi-satellite Retrievals (GPM IMERG; Huffman et al. 

2014); and Global Precipitation Climatology Project 1 Degree Daily (GPCP 1DD; 

Huffman et al. 2001), which will be used in this study.  

GPCP 1DD is based on the combination of data from multiple satellites and provides 

global daily precipitation estimates on a one degree grid box from 1996 to present. 

Recent adjustments and improvements have helped GPCP 1DD provide more reasonable 

precipitation estimates, such as the transition from Television Infrared Operational 

Satellite (TIROS) Operational Vertical Sounder (TOVS) data to Advanced Infrared 
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Sounder (AIRS) data for precipitation estimates poleward of 40° latitude in April 2005 

and the release of Version 1.2 of GPCP 1DD precipitation dataset in September 2012 

(Huffman and Bolvin 2013). Nonetheless, the satellite-based techniques are associated 

with errors resulting from sampling data from different instruments and satellites, 

inaccurate estimates from precipitation algorithms under certain conditions, and the 

instruments themselves. Therefore, the accuracy of GPCP 1DD estimates should be 

determined through careful comparisons with alternative high spatial and temporal 

resolution and coverage datasets. 

In addition to combining data from different satellites, global precipitation datasets 

can also be generated by merging rain gauge observations with satellite analysis. One 

such product is GPCP satellite-gauge (SG) combined product. GPCP SG produces 

monthly precipitation estimates by combing precipitation information available from 

each source into a final merged product, taking advantage of the strengths of each data 

type and removing biases based on hierarchical relations in the stepwise approach (Adler 

et al. 2003). Updated to version 2.2 in 2012, the GPCP SG dataset takes advantage of 

upgrades in many of the constituent datasets, including the Chang/Chiu/Wilheit (CCW) 

emission and National Oceanic and Atmospheric Administration (NOAA) scattering 

algorithms, the updated Global Precipitation Climatology Centre (GPCC) precipitation 

gauge analysis, as well as the inclusion of the Defense Meteorological Satellite Program 

(DMSP) F18 SSIMS (Huffman and Bolvin, 2013). With advanced precipitation 

estimation techniques, GPCP SG has been used as reference data for many trend analyses 
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and validation studies (Gu et al. 2007; Fensholt et al. 2011; Stanfield et al. 2015; 

Hatzianastaasiou et al. 2016). To reduce the inconsistency between GPCP products with 

different temporal scales, the monthly SG precipitation estimates are used to calibrate the 

1DD daily estimates, and the monthly sums of 1DD estimates are computed to match the 

monthly SG precipitation estimates. With relatively adequate satellite and GPCC gauge 

sampling over the CONUS, the estimates from GPCP SG might be a suitable tool to 

investigate the long-term pattern of precipitation over the US.  

Atmospheric reanalysis datasets have been widely used in climate research because of 

their spatial and temporal continuity. Reanalyses are generated through a consistent data 

assimilation system and model, which incorporates all available observations and a 

background model forecast to generate uniform gridded data (Bosilovich et al. 2008). 

With continuous improvements in data assimilation methods and numerical models, and 

the increasing availability of observation data from satellite and in-situ measurements, 

recently developed reanalysis datasets can produce reasonable output of atmospheric and 

oceanic variables for climate studies. However, errors and uncertainties can still be raised 

from aspects such as poor data quality, deficiency in model physical parameterizations, 

and inhomogeneities introduced by changes in observing system.   

Global reanalysis datasets do not directly generate precipitation analysis. In other 

words, precipitation is not a control variable in the analysis procedure (Rienecker et al. 

2011), and thus the precipitation in reanalysis is highly related to the physical 

parameterization in modeling system. For instance, Rienecker et al. (2011) concluded that 
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even though microwave-retrieved rain rate observations are assimilated into model over 

oceans, humidity information derived from passive microwave measurements was found 

to have a much larger impact on the precipitation than precipitation observation 

themselves in the Modern-Era Retrospective analysis for Research and Applications 

(MERRA) reanalysis. Therefore, errors may occur when models cannot simulate the 

physical mechanisms responsible for precipitation. In addition, the precipitation estimates 

in reanalysis products are also influenced by the changes in observational data, including 

the coverage and continuity of observation stations, radiosondes and satellite instruments, 

and this can leads to abrupt changes in precipitation records. Hence, the discontinuities 

introduced by changing observing systems may be found in reanalyzed climate data. To 

better understand and quantify the uncertainties in the precipitation estimates generated 

by reanalyses, comparisons with observation-based precipitation datasets should be 

performed.  

Previous Studies 

To date, several studies have been conducted to examine the performance of GPCP 

1DD and reanalysis precipitation estimates (Huffman et al. 2001; Mcphee and Margulis 

2005; Gebermichael et al. 2005; Bolvin et al. 2009; Joshi et al. 2012; Ma et al. 2009; 

Wang and Zeng 2012; Bosilovich 2013; Lee and Biasutti 2014; Blacutt et al. 2015; 

Dolinar et al. 2015; Prakash et al. 2015). Rana et al. (2015) evaluated GPCP 1DD, rain 

gauge, and reanalysis data against the Asian Precipitation-Highly-Resolved Observational 

Data Integration Towards Evaluation of the Water Resources (APHRODITE). They found 
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that GPCP 1DD estimates performed better than reanalysis data and were well correlated 

with APHRODITE. Alemohammad et al. (2015) investigated the uncertainties in 

NEXRAD-IV, TRMM 3B42RT, GPCP 1DD and the Geostationary Operational 

Environmental Satellite (GOES) Precipitation Index (GPI) precipitation products using 

triple collocation (TC) technique over the central part of the COUNS. The results 

indicated that GPCP 1DD, NEXRAD, and TRMM 3B42RT products had similar 

climatological pattern across the domain while GPI was different. However, GPCP 1DD 

and GPI products had poorer quality of precipitation estimates than NEXRAD and 

TRMM 3B42RT.  

With regard to reanalyzed precipitation, Bosilovich et al. (2008) evaluated global 

precipitation from five reanalyses using GPCP and the Climate Prediction Center (CPC) 

merged Analysis of Precipitation (CMAP) during the period 1979-2005. Results showed 

that ERA-40 produced reasonable precipitation estimates over Northern Hemisphere 

continents, but less so over the tropical oceans. Japanese 25-year Reanalysis (JRA-25) 

performed better than ERA-40 over both Northern Hemisphere continents and tropical 

oceans but contained distinct variations in time depending on the available observing 

systems. Kishore et al. (2015) validated four reanalysis datasets with gridded India 

Meteorological Department (IMD) rainfall datasets over the Indian subcontinent, and 

concluded that all reanalyses captured the strong inter-annual variations within the Indian 

region well, and of all reanalysesERA-Interim showed more realistic values with respect 

to IMD observations. Pfeifroth et al. (2013) examined the ERA-Interim and MERRA 
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over the tropical pacific regions using gauge station data provided by Pacific Rainfall 

Database (PACRAIN) and found that both reanalysis products show similar systematic 

behaviors in overestimating light and medium precipitation events and underestimating 

heavier events. Ashouri et al. (2016) evaluated the skill of MERRA in reproducing 

historical extreme precipitation events in the United States with gauge-based CPC 

Unified data and showed that MERRA reasonably mimics the continental-scale patterns 

of change as observed by CPC while underestimating magnitude of extremes, particularly 

over the Gulf Coast regions. 

Purpose 

In the first part of this study, GPCP 1DD precipitation product is compared with the 

National Mosaic and Multi-Sensor Next Generation Quantitative Precipitation Estimation 

System (NMQ Q2) over the central and eastern parts of Continental United States 

(CONUS) during the period 2010-12. NMQ Q2 composites radar data from the Weather 

Surveillance Radar-1988 Doppler (WSR-88D) network, producing instantaneous 

precipitation estimates at a high spatial and temporal resolution. Recent evaluation 

studies of the Q2 product suggest that Q2 estimates are viable as a validation tool for 

satellite precipitation retrievals in lieu of ground-based measurements in the future (Chen 

et al. 2014; Stenz et al. 2014). Uncertainties, however, still exist in radar-derived 

precipitation estimates as mentioned in the beginning of this section. Because evaluations 

of Q2 estimates over large domains have only been performed against surface rain-gauge 

measurements (Wu et al. 2012; Chen et al. 2014), the comparison between radar-based 
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Q2 estimate and satellite-based GPCP 1DD estimate not only directly shows the 

difference between the active and passive sensing data, but may also provide insight into 

the existing and potential limitations and strengths of each dataset. Different time scales, 

from daily to annual, are used to investigate possible errors that may associated with Q2 

and GPCP 1DD estimates changing with different time scales. Because the GPCP 1DD 

monthly accumulated precipitation estimates match the GPCP SG estimates, the 

comparison may also reveal the uncertainties within the SG product. It should be noted 

that this is not a validation study, and neither GPCP 1DD nor Q2 estimates are treated as 

ground truth to validate the other. 

The second part of this study evaluates the long-term performance of precipitation 

data from five reanalysis products, including ERA-Interim, MERRA Version-2 

(MERRA2), Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis 

(CFSR), and NOAA-CIRES 20th Century Reanalysis Version 2c (20CRv2c) using the 

GPCP SG product over the CONUS during the period from 1980 through 2013. Since the 

precipitation in reanalyses are not only closely related to model parameterizations, but 

also related to the assimilated data, the evaluation against GPCP will provide an insight 

into how model and the observing system influence the precipitation output. Furthermore, 

although the assimilated input data in the reanalysis datasets are similar, an 

intercomparison between reanalyses will provide a better understanding of their 

differences in assimilation systems, physical parameterizations, and  processing 

methodologies of input data. During the evaluation, the uncertainties of GPCP SG 
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product concluded from part I of this study will be addressed. A trend analysis is also 

conducted based on the GPCP SG product from 1980 through 2013 to investigate the 

seasonal and annual precipitation tendencies, as well as the regional trends over the 

CONUS. 

The outline of this thesis is as follows: Chapters II and III describe the data and 

methods used in this study. Chapter IV shows results of a comparison between GPCP 

1DD and Q2 daily estimates and intercomparions of reanalysis products use GPCP SG as 

a reference. Chapter V discusses the findings from Chapter IV. Finally, the summary is 

provided in Chapter VI.  
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CHAPTER II 

DATA 

Global Precipitation Climatology Project (GPCP) Daily and Monthly Products 

The GPCP product is developed at the National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Centre as a part of the Global Energy and 

Water Exchanges Project (GEWEX; Arkin and Xie 1993). In this study, both the daily 

and monthly products are used. The GPCP 1DD daily estimates are compared with Q2 

estimates in part I of this study. In part II, the GPCP SG monthly accumulated 

precipitation estimates are used as a validation tool for the reanalysis datasets and for 

trend analysis. 

GPCP Satellite-Gauge (SG) Combined Monthly Product (Version 2.2) 

The GPCP SG combined product provides global monthly precipitation estimates on 

a 2.5° (latitude) × 2.5° (longitude) grid from combined multi-satellite and gauge 

observations, and is available from January 1979 to present (Adler et al. 2003). The 

monthly dataset contains 27 precipitation products. For the pre-Special Sensor 

Microwave Imager-Sounder (SSMIS) period (1979-1986), the GPCP satellite component 

is based on the outgoing longwave radiative (OLR) Precipitation Index (OPI) technique 

that retrieves precipitation using Infrared (IR) observations from low-Earth orbit satellites 

(Xie and Arkin 1998). After multiple meteorological satellites were launched in 1986, 

more satellite-based retrieval algorithms were developed and introduced to improve the 

GPCP dataset. Additions included SSMI (SSMIS) estimates calculated from the Wilheit 
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et al. (1991) emission and Grody (1991) scattering algorithms that retrieve precipitation 

from the quantity of liquid water/ice hydrometeor in a column from observed brightness 

temperatures; TOVS and AIRS estimates based on the methods of Susskind and 

Pfaendtner (1989) and Susskind et al. (1997) that infer precipitation from deep, extensive 

clouds; GPI (Arkin and Meisner 1987) product that estimates precipitation based on the 

empirical relationship between rain rate and IR brightness temperature. The GPI values 

are merged with SSMI (SSMIS) estimates calibrated by TOVS (AIRS) data between 

40°S to 40°N, while for Polarward of 40°, they are merged with SSMI (SSMIS)/TOVS 

(AIRS) data. The preliminary satellite fields from both pre-SSMI and SSMI periods are 

climatologically calibrated with the gauge data from GPCC over the large-scale domain. 

Then the gauge-adjusted satellite precipitation estimates are merged with GPCC gauge 

analyses for each grid box using the inverse variance weighting method to form the final 

SG monthly product. A more detailed description of input datasets and merging methods 

used in GPCP product can be found in Alder et al. (2003), Huffman et al. (2009), and 

Huffman and Bolvin, (2012).   

GPCP One Degree Daily (1DD) product (Version 1.2) 

GPCP 1DD Version 1.2 provides global daily precipitation estimates on a 1° × 1° 

grid from combined satellite observations. Between 40°S and 40°N, rainfall estimates are 

computed using the Threshold-Matched Precipitation Index (TMPI), which utilizes 

fractional occurrence of precipitation calculated by the Goddard Profiling Algorithm 

(GPROF; Kummerow et al. 1996) Version 2004 using SSMI-SSMIS data, the 
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geostationary IR (geo-IR) brightness temperature histograms from the Geostationary 

Satellite Precipitation Data Centre (GSPDC), and precipitation rates computed by the GPI 

based on low-earth orbit IR (leo-IR) data. The TMPI provides GPI-like precipitation 

estimates, but unlike the GPI, which assigns a conditional rain rate to all pixels within a 

given region that have a brightness temperature ( bT ) below a brightness temperature 

threshold ( 0bT ), TMPI allows both 0bT  and conditional rain rate to vary with space and 

time (Huffman et al. 2001). For each grid box, 0bT  is obtained by accumulating the 

geo-IR histograms until the fraction of pixels matches the occurrence of precipitation. 

The conditional rain rate is then calculated by dividing GPCP satellite-gauge (SG) 

monthly estimates by the frequency of pixels below the 0bT . The rain rate estimates from 

leo-IR GPI are processed to fill in gaps where there is no geo-IR data. Poleward of 40°S 

and 40°N, the precipitation estimates through March of 2005 are computed from TOVS 

data. Since April of 2005, AIRS data have been used in place of TOVS data. The 

TOVS-AIRS technique estimates precipitation using a multiple regression relationship 

between collocated rain gauge measurements and various atmospheric parameters 

including cloud-top pressure, fractional cloud cover, and relative humidity profiles 

(Susskind et al. 1997; Susskind and Pfaendtner 1989). Additionally, monthly sums of 

both TMPI and TOVS-AIRS daily estimates are computed and matched to the monthly 

SG precipitation estimates, which reduces the inconsistency between the products with 

different temporal scales. 
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NMQ Q2 

NMQ Q2 combines information from all ground-based radars in the Next-Generation 

Radar (NEXRAD) network, and provides precipitation estimates with a horizontal 

resolution of 1km × 1km and a temporal resolution of 5 minutes over the CONUS (Chen 

et al. 2013). Reflectivity data from multiple radars are mosaicked onto a common 3 

dimensional grid, then each vertical reflectivity column is objectively analyzed and 

prescribed a precipitation type (i.e., convective, stratiform, warm rain) if precipitation is 

present. The Z-R relationship determined by classified precipitation type will be assigned 

to each grid cell to estimate rainfall. Four Z-R relationships are used in association with 

the precipitation type in Q2 (Zhang et al. 2011): Convective (Fulton et al. 1998): 

1.4300Z R ; Stratiform (Marshall et al. 1955): 
1.6200Z R ; Warm rain (Rosenfield et al. 

1993): 
1.25230Z R ; and snow at the surface (Zhang et al. 2011): 

2.075Z R . 

Global Reanalysis Products 

In part II of this study, the simulated precipitation from five global reanalysis datasets 

(ERA-Interim, MERRA2, JRA-55, CFSR, and 20CRv2c) are compared and evaluated 

with GPCP SG monthly product during the period from 1980 through 2013 over the 

CONUS. A general summary of each reanalysis dataset, including horizontal and spatial 

resolutions, temporal ranges, assimilation types and references, is shown in the Table 1. 
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Table 1. Summary of the reanalyses used in this study. 

Reanalysis Model 

resolution 

Assimilation 

method 

Horizontal 

grid spacing 

(lat×lon) 

Temporal range Reference 

ERA-Interim T255 L60 4D-VAR 0.75°×0.75° 01/1979-present Dee et al. 

(2011) 

 

 

MERRA2 

 

 

72 sigma 

level 

 

 

3D-VAR 

 

 

0.625°×0.5° 

 

 

01/1980-present 

Rienecker 

et al. 

(2011) 

Bosilovich 

et al. 

(2015) 

JRA-55 T319 L60 4D-VAR 1.25°×1.25° 01/1958-12/2013 Kobayashi 

et al. 

(2015) 

CFSR T382 L64 3D-VAR 0.5°×0.5° 01/1979-present Saha et al. 

(2010) 

20CR T62 L28 Ensemble 

Kalman 

Filter 

2°×2° 01/1958-12/2014 Compo et 

al. (2011) 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim 

ERA-Interim was developed by the ECMWF as a replacement for its preceding 

version - ERA-40, emphasizing several difficulties associated with data assimilation in 

the product of ERA-40, including the poor representation of hydrological cycle (Dee et al. 

2011). The analyzed monthly precipitation estimates are produced based on a 12-hour 

segment forecast within the ERA-Interim model system. Assimilated SSM/I radiances 

data from geostationary satellites as well as data from radiosonde and ground-based 

measurements are used as important input to generate a humidity analysis field. 

Compared to ERA-40, the revised humidity analysis scheme and method for correcting 

biases in radiance data have helped ERA-Interim produce more reasonable precipitation 
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estimates with respect to observational-based precipitation product (Dee et al. 2011). 

Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) 

MERRA2 is a NASA atmospheric reanalysis using a recent version of the Goddard 

Earth Observing System Model version 5 (GEOS-5) data assimilation system (DAS; 

Bosilovich et al. 2015). The changes in GEOS-5 include physical parameterizations for 

moist, surface, gravity wave drag module algorithms, and enables the MERRA2 to 

incorporate more observations from newer satellite instruments (Molod et al. 2015). 

MERRA2 uses an incremental analysis update that minimizes the spindown effects of the 

water vapor analysis. Although MERRA2 assimilates rain rate estimates from SSM/I and 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean, 

these data are given a low weight and have a weaker impact on the increments than the 

humidity information derived from satellite radiance data, as mentioned in the previous 

section. Over land, MERRA2 does not assimilate precipitation (Rienecker et al. 2011), 

therefore, it is similar to ERA-Interim in that it produces a water vapor analysis field 

using in-situ and satellite radiance data. The large-scale precipitation model is based on 

the scheme of Zhao and Carr (1997), which is sensitive to the moisture and cloud 

condensate over land (Rienecker et al. 2008). 

The Japanese 55-Year Reanalysis (JRA-55) 

The JRA-55 is the second Japanese global atmospheric reanalysis created by the 

Japan Meteorological Agency (JMA), available from 1958 when regular radiosonde 
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observations started becoming available globally. JRA-55 was first produced by the 

TL319 version of JMA’s operational data assimilation system in December 2009. The 

newly available observations as well as the improved previous observations have helped 

JRA-55 produce considerably better analysis results than the JRA-25 (Kobayashi et al. 

2015). To generate convection, a prognostic mass-flux type Arakawa-Schubert Scheme 

(Arakawa and Schubert 1974) with Downward Convective Available Potential Energy 

(DCAPE) is adopted for the cumulus parameterization in JRA-55.  The vertical profile 

of upward mass flux is assumed to be linear with height (Moorthi and Suarez 1992) and 

the mass flux at the cloud base is determined by solving a prognostic equation (Randall 

and Pan 1993). The scheme was updated by Nakagawa and Shimpo (2004) by 

considering the effect of detrainment due to downdrafts instead of simply re-evaporating 

the precipitation which cools and moistens the lower troposphere, and this technique 

represents convective downdrafts more realistically (Onogi et al. 2007). 

Climate Forecast System Reanalysis (CFSR) 

CFSR is produced by the National Centers of Environmental Prediction (NCEP).   

It contains various upgrades in model physics and assimilation algorithms compared to 

the earlier NCEP/National Center for Atmospheric Research (NCAR) (R1, Kalnay et al. 

1996) and NCEP/DOE (R2, Kanamitsu et al. 2002) reanalyses. Differing from other 

reanalysis datasets that use only an atmospheric model, CFSR coupled the new Global 

Forecast System (GFS) atmospheric model with Modular Ocean Model version 4 

(MOM4) ocean model to assimilate and predict atmospheric states at every 6-hr. In each 



18 
 

analysis cycle, in situ and satellite observations are assimilated with the first guess 

obtained from 6-hr coupled forecast from the previous analysis to produce analyzed field. 

The new analysis is then taken as the background conditions for the next model forecast 

cycle (Saha et al. 2010). For the atmospheric forecast model, a simplified 

Arakawa-Schubert scheme (Arakawa and Schubert 1974; Pan and Wu 1995; Hong and 

Pan 1998) is used for the cumulus convection parameterization with cumulus momentum 

mixing and orographic gravity wave drag (Kim and Arakawa 1995; Alpert et al.). The 

shallow convection parameterization follows Tiedtke et al. (1983) for wherever the deep 

convection parameterization is not active. 

Twentieth Century Reanalysis Version 2c (20CRv2c) 

The 20CR project is an effort led by NOAA and the University of Colorado 

Cooperative Institute for Research in Environmental Sciences (CIRES) to produce a 

reanalysis dataset spanning the entire twentieth century, assimilating only the surface 

observations of sea level pressure (SLP), monthly sea surface temperature (SST) and sea 

ice distribution as boundary conditions. The 20CR version 2 uses the Ensemble Kalman 

Filter data assimilation approach (Whitaker and Hamill 2002),  yields each 6-hr analysis 

as the most likely state of the global atmosphere, and provides uncertainty estimates in 

the form of 56 realizations (Compo et al. 2011). 20CR uses the same model as the NCEP 

GFS 2008ex version 2. By applying a prognostic cloud condensate scheme, the 

precipitation rate is parameterized following the approaches of Zhao and Carr (1997) for 

ice and Sundqvist et al. (1989) for liquid water.  
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CHAPTER III 

METHODOLGY  

Part I: Comparison of GPCP 1DD with Q2 estimates 

In part I of this study, the comparison between GPCP 1DD and Q2 estimates are 

conducted over six selected tiles/regions based on the NMQ domain shown in Fig. 1a. 

Tiles 1 and 5 as well as regions in tiles 2 and 6 west of 5o longitude have been excluded 

because of significant beam blockage over the mountainous regions (Fig. 1b). Tiles 2, 3 

and 4 have northern and southern boundaries at 60°N and 40°N, while tiles 6, 7, and 8 are 

bounded by 40oN and 20oN. Western and eastern boundaries range from 110oW to 90oW 

(105oW to 90oW in this study), including 90oW – 80oW for tiles 3 and 7, and 80oW – 

60oW for tiles 4 and 8. The six selected tiles cover a total of 619 1o × 1o grid boxes. 

Figure 1. (a) NMQ product domain (dotted dark blue box) divided into eight tiles. Dots of 

different colors represent different radar networks: WSR-88D (yellow and red), Terminal 

Doppler Weather Radar (TDWR; green), and the operational Canadian weather radars 

(light blue). Image adapted from Grams (2013). (b) Map of NEXRAD radar locations and 

coverage over United States. Image provided by the NOAA/NWS/Radar Operational 

Center. 
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Q2 daily precipitation estimates from 2010 through 2012 are calculated by summing 

the hourly Q2 accumulated precipitation estimates each day. The 1km × 1km Q2 data are 

regridded into a 1o × 1o grid box by averaging the points within each grid in order to 

match the spatial resolution of GPCP 1DD. Next, concurring Q2 and GPCP 1DD grid 

boxes with zero accumulated precipitation are excluded. Furthermore, in order to 

investigate how the differences between the two datasets behave in different time-scales, 

monthly and annual accumulated precipitation are calculated by simply summing the 

daily estimates. For spatially averaged precipitation, the latitudinally weighted 

precipitation amounts are calculated for each grid box based on the latitude of that grid 

box. Then spatially averaged precipitation amounts are computed for daily and monthly 

estimates by adding up weighted precipitation values of grid boxes within the tile and 

divided by the total number of grid boxes. Scatterplots are made between the Q2 and 

GPCP 1DD for daily, monthly, and annual estimates, as well as spatial averages along 

with their corresponding linear regression fits for the six selected regions. The short- and 

long-term estimates of these two datasets and their differences can be examined and 

compared by different time scale analyses. Note that the Q2 daily estimates over some 

regions suffer from poor radar coverage which impacts estimated precipitation, however, 

the problem is not as severe as over tiles 1 and 5. Therefore, these daily estimates are 

used in the comparisons, and their uncertainties or errors are discussed in this study.  

The comparisons over the six selected tiles can provide a thorough insight into the 

regional differences between the two datasets and show how topography and 
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precipitation types affect these two estimates. GPCP 1DD estimates utilize two different 

algorithms, one for regions equatorward of 40o latitude and second one for regions 

poleward of 40o. Therefore the analysis of these selected regions (three tiles are above 

40oN and three tiles are below 40oN) might reveal the influence of different algorithms on 

GPCP 1DD estimates. In addition, because precipitation mechanisms vary with season, 

especially in the CONUS, it is insightful to perform a seasonal analysis. Therefore, 

comparisons between GPCP 1DD and Q2 estimates were conducted for both the warm 

season (April – September) and the cold season (October – March) (Wu et al. 2012). 

Spatial  averages were also calculated to study how well the GPCP estimates agree with 

the Q2 estimates in the spatial pattern of precipitation. 

Part II: Evaluation of Reanalyzed Precipitation Data and Trend Analysis 

In part II of this study, the evaluation and intercomparison of reanalysis datasets and 

a trend analysis using GPCP SG monthly data are performed over the CONUS. All 

comparisons and trend analyses are conducted based on the dataset over a grid box of 1°× 

1° with a total of 957 grid boxes over the study domain. The domain mean precipitation 

for each year and each month are calculated for GPCP and reanalyses to examine how 

well the reanalysis can reproduce the year-to-year and month-to-month GPCP SG 

precipitation patterns. In terms of spatial distribution, annual and seasonal (spring 

(MAM), summer (JJRA), fall (SON), winter (DJF)) means are calculated to study the 

regional and seasonal differences between GPCP SG and the reanalyses and among the 

reanalyses themselves. Furthermore, scatterplots are made between GPCP SG and 
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reanalyses for domain averaged precipitation over the CONUS each month (a total of 408 

months=34 years x 12 months) along with their corresponding linear regression lines. To 

investigate the differences between GPCP SG and the reanalyses in precipitation 

distribution, probability distribution functions (PDFs) and cumulative distribution 

functions (CDFs) are computed from all monthly estimates. Several statistical metrics are 

also calculated to evaluate the performance of reanalysis datasets such as correlation 

coefficients, root-mean-square-error (RMSE), and relative difference percentage 

(RDP %). For trend analysis, a linear regression function is applied to the GPCP SG 

annual and seasonal accumulated precipitation to generate inter-annual trends by 

minimizing the chi-squared error. Coefficients of determination are computed for each 

trend to measure how well the regression line represents the observed precipitation. 

Finally, the spatial trend distributions of annual and seasonal precipitation over the 

CONUS during a 34-yr study period are plotted to investigate the regional differences in 

precipitation trend over the CONUS. Non-parametric Mann-Kendall test (Mann 1945; 

Kendall 1975) is applied to each grid box to examine if the increasing or decreasing trend 

is evident.
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CHAPTER IV 

RESULTS  

Part I: Comparison of GPCP 1DD and NMQ Q2 estimates 

Comparison of Daily, Monthly, and Yearly Accumulated Precipitation Estimates 

Figures 2-4 are scatterplots of daily accumulated precipitation estimates for 

annual, warm season, and cold season in each tile, respectively, during the period 

2010-2012. Each point represents a pair of collocated Q2 and GPCP 1DD daily 

precipitation estimates (excluding the samples where both GPCP 1DD and Q2 equal 

 

Figure 2. Each point represents a pair of collocated Q2 and GPCP 1DD daily 

precipitation estimates (excluding the samples for both datasets that equal 0.0 mm) 

during the period 2010-12 for each tile. The dashed black line is one-one line; the 

solid line is the linear regression line. 
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0.0 mm). Figure 2 shows that the daily precipitation estimates over the southern tiles 

(6-8) are generally higher than those over northern tiles (2-4), with the most 

precipitation falling in tile 7 and the least in tile 2. For the comparisons between Q2 

and GPCP 1DD precipitation estimates, the correlation coefficients are slightly higher 

in southern tiles than in northern tiles, with the highest correlation (0.516) in tile 6 

and the lowest (0.355) in tile 3. Q2 estimates exceed GPCP 1DD estimates by 0.25 

mm in tile 2, 0.50 mm in tile 7, and 0.86 mm in tile 6, while GPCP 1DD estimates 

exceed Q2 estimates by 0.21 mm, 0.99 mm, and 0.06 mm in tiles 3, 4 and 8, 

respectively.  

 During the warm season, as shown in Fig. 3, daily mean precipitation estimates 

for both Q2 and GPCP 1DD are higher than annual daily mean precipitation estimates, 

particularly in tiles 2 and 3, but their correlation coefficients are slightly lower for all 

tiles except for tile 8, where correlation values are almost the same (0.475 for annual, 

0.486 for warm season). Similar to Fig. 2, Fig. 3 shows that the largest negative and 

positive differences between GPCP 1DD and Q2 precipitation are -1.35 mm in tile 6 

and 0.84 mm in tile 4. For tile 8, the difference between GPCP 1DD and Q2 estimates 

is only 0.2 mm during the warm season, however, GPCP 1DD estimates are 8.1% 
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Figure 3. As in Fig. 2, except for the warm season (April-September). 

(defined as 
2

100%
2

GPCP Q

Q


 ) larger than Q2 estimates during the cold season 

(Fig. 4). Meanwhile, except for tile 8, slightly higher correlation coefficients are 

found between GPCP 1DD estimates and Q2 estimates during the cold season (Fig. 4) 

compared to the warm season (Fig. 3). During the cold season, the difference between 

two datasets becomes smaller in tile 6 (0.21 mm) but a large difference still exists in 

tile 4 with GPCP 1DD estimates larger than Q2 estimates by 1.15 mm. As shown in 

these three figures, Q2 daily precipitation is greater than GPCP 1DD estimates in tiles 

2, 6, and 7, and lower than GPCP 1DD estimates in tiles 3, 4 and 8 for both warm and 
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cold seasons. The precipitation amounts of northern tiles (2, 3, and 4) are less than 

their related southern tiles (6, 7, and 8) for annual and warm season. Tile 4 has more 

precipitation than its related southern tile 8 for cold season. Q2 estimates have more 

samples with higher precipitation values compared to GPCP 1DD estimates. There 

are a few samples when GPCP 1DD estimates are around 10 mm while Q2 estimates 

exceed 100 mm.  

 

Figure 4. As in Fig. 2, except for the cold season (October-March). 

Figure 5 is similar to Fig. 2 except monthly accumulated precipitation from both 

Q2 and GPCP 1DD daily estimates through the course of a year. Each dot represents 

a matched pair of Q2 and GPCP 1DD monthly accumulated precipitation. The 
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distributions of Q2 and GPCP 1DD monthly accumulated precipitation and their 

differences over the six selected tiles in Fig. 5 are very similar to their annual daily 

counterparts in Fig. 2 except with higher correlation coefficients. Tile 2 has the 

highest correlation values of 0.855, followed by tile 6, tile 8, and tile 7 with 

correlation values of 0.819, 0.787 and 0.767 respectively as shown in Fig. 5.  

 

Figure 5. Each point represents a pair of Q2 and GPCP 1DD monthly accumulated 

precipitation from all of the daily precipitation estimates during a month from 2010 to 

2012. 

Table 2 presents the mean values and standard deviations for warm and cold 

seasons’ monthly accumulated precipitation estimates of GPCP 1DD and Q2 and 

their correlation coefficients for each tile. For Q2 estimates, the standard deviations 
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vary from 29.11 mm (tile 4) to 56.39 mm (tile 6) during the warm season. While 

GPCP 1DD estimates have lower standard deviations for each tile range from 20.56 

mm (tile 3) to 40.77 mm (tile 8) compared to Q2 estimates. During the cold season, 

lower standard deviations are found for both GPCP 1DD and Q2 estimates compared 

to the warm season, expect for tile 4 of GPCP 1DD estimates (25.50 for warm season 

vs. 31.75 for cold season). Strong correlations are still found in tile 6 for both the 

warm (0.760) and cold (0.858) seasons, and weaker correlations are found in tile 4 

during the warm season (0.451) and in tile 3 during the cold season (0.418). 

Table 2. Mean values (mm) and standard deviations (mm) of monthly accumulated 

precipitation estimates of Q2 and GPCP 1DD and their correlations for each tile. 

  Tile 2 Tile 3 Tile 4 Tile 6 Tile 7 Tile 8 

 

 

Warm 

Q2 97.60 106.34 96.11 93.54 128.43 122.01 

  55.28 36.90 29.11 56.39 52.34 55.54 

GPCP 1DD 84.97 101.20 113.36 73.66 115.38 118.00 

  32.51 20.56 25.50 37.75 37.94 40.77 

R 0.743 0.514 0.451 0.760 0.687 0.760 

RDP (%) -12.94 -4.83 17.95 -21.25 -10.16 -3.29 

 

 

Cold 

Q2 26.64 58.37 80.76 52.44 92.18 77.68 

  19.90 28.71 30.01 43.82 46.05 35.53 

GPCP 1DD 31.31 70.88 102.50 50.12 88.75 83.94 

  17.38 24.39 31.75 35.59 34.45 27.41 

R 0.745 0.418 0.447 0.858 0.797 0.684 

RDP (%) 17.53 21.43 26.92 -4.42 -3.72 8.06 

To further investigate the relationship between Q2 and GPCP 1DD estimates, 

yearly accumulated precipitation is displayed in Fig. 6. Similar to the monthly 
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Figure 6. Q2 and GPCP 1DD yearly accumulated precipitation estimates for all 1o × 

1o grid points in each tile during the period 2010-12 for each tile. 

accumulated precipitation in Fig. 5, each point represents a pair of Q2 and GPCP 

1DD yearly accumulated precipitation estimate. As presented in Fig. 6, the least 

amount of precipitation occurs in tile 2 for both Q2 and GPCP 1DD estimates (745.42 

mm and 697.70 mm), while the greatest amount of precipitation is in tile 7 from Q2 

estimates (1323.69 mm) and in tile 4 from GPCP 1DD estimates (1295.14 mm). The 

smallest difference (GPCP-Q2 = 13.55 mm) occurs in tile 8, whereas the largest one 

(233.87 mm) occurs in tile 4.  

Table 3 is similar to Table 2 except for yearly accumulated precipitation 
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estimates. For the warm season, Q2 estimates vary from 560.54 mm (tile 6) to 770.59 

mm (tile 7), and GPCP 1DD estimates have a range from 441.43 mm (tile 6) to 

708.02 mm (tile 8). For the cold season, Q2 estimates range from 159.82 mm (tile 2) 

to 553.10 mm (tile 7), and GPCP 1DD estimates vary from 187.89 mm (tile 2) to 

614.97 mm (tile 4). The highest standard deviations occur at tile 6 for both Q2 and 

GPCP 1DD estimates during warm (311.38 mm for Q2 vs. 211.88 mm for GPCP) and 

cold (236.55 mm for Q2 vs. 188.07 for GPCP) seasons. Consistent with its daily and 

monthly comparisons, tile 6 has the highest correlation coefficients (0.914, 0.837, 

0.925) for yearly, warm season, and cold season comparisons. Tile 4 has the lowest 

correlation coefficients for warm and cold seasons. Also for tile 4, the correlation is  

Table 3. Mean values (mm) and standard deviations (mm) of yearly accumulated 

precipitation estimates of Q2 and GPCP 1DD and their correlations for each tile. 

  Tile 2 Tile 3 Tile 4 Tile 6 Tile 7 Tile 8 

 

 

Warm 

Q2 585.60 638.04 576.69 560.54 770.59 732.06 

  227.83 119.65 114.82 232.45 158.35 182.29 

GPCP 1DD 509.81 607.21 680.17 441.43 692.28 708.02 

  134.22 71.44 60.51 153.17 85.96 79.37 

R 0.816 0.417 0.397 0.837 0.473 0.802 

RDP (%) -12.94 -4.83 17.95 -21.25 -10.16 -3.28 

 

 

Cold 

Q2 159.82 350.23 484.59 313.93 553.10 466.08 

  97.20 139.01 112.56 223.28 141.13 119.63 

GPCP 1DD 187.89 425.29 614.97 300.05 532.483 503.67 

  82.02 106.67 114.31 179.42 96.96 97.38 

R 0.802 0.536 0.025 0.925 0.647 0.496 

RDP (%) 17.53 21.43 26.92 -4.42 -3.73 8.07 
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near zero between two datasets in terms of annual accumulated precipitations. 

Comparison of Daily Precipitation Occurrence 

Figure 7 shows the probability distributions of GPCP 1DD (Q2) daily estimates 

where Q2 (GPCP 1DD) daily estimates are equal to zero in the six selected tiles. The 

N0 in Figure 7 represents the total number of daily estimates where both GPCP 1DD 

and Q2 are equal to 0. While the N1 and N2 represent the total numbers of daily 

estimates equal to zero for GPCP 1DD and Q2, respectively, during the 3-yr period. 

Also shown is the percentage of GPCP 1DD (Q2) estimates that are zero given the 

corresponding Q2 (GPCP 1DD) estimate is equal to zero. For example, in tile 2, with 

a total of N2=99,231 samples for Q2=0.0 mm, 73.6% of GPCP 1DD samples are 

equal to 0.0 mm while the other 26.4% GPCP 1DD samples are distributed from 0.0 

to 15.0 mm. On the other hand, with a total of N1=94,009 for GPCP 1DD=0.0 mm in 

tile 2, 77.7% Q2 samples are equal to 0.0 mm while the other 22.3% Q2 samples are 

distributed from 0.0 to 15.0 mm.  The probability distributions for other tiles are 

similar to those in tile 2, ranging from 70-80% with a maximum co-occurrence ~83% 

in tile 6.  The differences between N1 and N2 for each tile are relatively small, 

ranging from 1147 (tile 8) to 5222 (tile 2). 
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Figure 7. Histograms of GPCP (black) and Q2 (Red) (Q2) daily estimates when daily 

estimates of the opposite dataset are equal to zero for each tile. N0 represents the total 

number of daily estimates when both GPCP and Q2 equal to zero. N1 and N2 

represent the total numbers of daily estimates equal to zero for GPCP and Q2, 

respectively. Also shown is the percentage of GPCP (Q2) estimates that are zero given 

the corresponding Q2 (GPCP) estimate is equal to zero. 

Comparison of Regional Precipitation Estimates 

Figure 8 presents spatially averaged precipitation from collocated Q2 and GPCP 

1DD daily weighted estimates in each tile during the period 2010-2012. The mean 

precipitation in each tile is calculated from the sum of all daily weighted precipitation 

estimates (the weighted values are computed based on values used in Fig. 2, i.e., 

excluding the samples where both Q2 and GPCP 1DD = 0 mm) within the tile, and 
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then divided by the number of grid boxes. There are a total of 1096 points 

(2×365+366) in each tile during the 3-yr period. The mean values of Q2 and GPCP 

1DD daily precipitation in Fig. 8 are different to those in Fig. 2 mainly due to the 

spatial weighting and spatial averaging. This also results in the slight changes in 

relative difference percentage (RDP, defined as
2

100%
2

GPCP Q

Q


 ) between the two 

datasets. For example, in Fig.2, GPCP 1DD estimates are larger than Q2 estimates by 

22.2% for tile 4, whereas this difference is slightly increased to 25.1% in Fig. 8. The

 

Figure 8. Spatially averaged precipitation from collocated Q2 and GPCP 1DD 

weighted daily estimates (excluding the samples for both data sets = 0 mm) in each 

tile during the period 2010-12. Each point represents the mean precipitation in each 

tile per day.  
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significant differences between Figures 2 and 8 are much higher correlation 

coefficients (0.638-0.788) and stronger linear relationships in Figure 8, indicating that 

there are strong correlations for spatially averaged daily precipitation estimates. 

Figure 9 is similar to Fig. 8 except that spatially averaged weighted monthly 

accumulated precipitation for each tile is shown. Similar to the comparison between 

Fig. 2 and Fig. 8, the mean values in Fig. 9 are different from those in Figure 5 due to 

the spatially weighting, moreover, very strong correlations found between GPCP 

 

Figure 9. Spatially averaged precipitation from Q2 and GPCP 1DD monthly 

accumulated precipitation in each tile during the period 2010-2012. Each point 

represents the spatially averaged (over a tile) monthly accumulated precipitation per 

month.  



35 
 

1DD and Q2 estimates with a range of values from 0.903 in tile 3 to 0.954 in tile 2. 

To further investigate the precipitation distributions over the CONUS, the 

averages of yearly and seasonal accumulated precipitation, as well as their differences 

(GPCP – Q2) and normalized difference percentages (NDP, defined as

2
100%

( 2) / 2

GPCP Q

GPCP Q





) during the period 2010-2012 are presented in Figures 10 - 

12. For the yearly precipitation distribution, GPCP 1DD estimates have a similar 

pattern to Q2 estimates, with precipitation estimates increasing from west to east over 

 
Figure 10. Average yearly precipitation from (a) Q2, (b) GPCP 1DD estimates, (c) 

their difference (GPCP-Q2), and (d) normalized difference 

((GPCP-Q2)/(Q2+GPCP)/2) during the period 2010-2012. 
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the central U.S., and then decreasing slightly towards the eastern U.S., however, Q2 

estimates show more variation than GPCP estimates. Although the difference 

between their yearly precipitation estimates is only 36.75 mm (3.8%) over the 

CONUS, there are large regional differences between two datasets. Q2 estimates are 

much larger than GPCP 1DD estimates over the central US, up to 600 mm larger in 

GPCP 1DD estimates as illustrated in Fig. 10c. GPCP 1DD estimates are 400 mm less 

over some areas, while in northern and northeastern regions Q2 estimates are less 

than GPCP estimates over the Mississippi River Basin, including Missouri, the 

 
Figure 11. Averaged warm season (April-September) precipitation from (a) Q2, (b) 

GPCP 1DD estimates, (c) their difference (GPCP-Q2), and (d) their normalized 

difference ((GPCP-Q2)/(GPCP+Q2)/2) during the period 2010-12. 
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northeastern corner of Texas to northern Louisiana, northern Mississippi and western 

West Virginia. The normalized difference percentages (NDP) between GPCP 1DD 

and Q2 estimates are relatively small with values between -10% to 10% for most of 

the study region. 

Figure 11 shows the distributions of the warm season accumulated precipitation 

from Q2 and GPCP 1DD, which resembles their yearly precipitation distributions 

where Q2 estimates vary from 0 to 1200 mm while GPCP estimates have a range of 0 

to 1000 mm. GPCP 1DD estimates, on average, are 60.75 mm (NDP=-10.2%) less 

than Q2 estimates. For the cold season shown in Figure 12, the spatial distribution 

pattern in Q2 estimates is almost the same as that in the GPCP 1DD estimates with 

minor differences in some regions. Mean GPCP precipitation is 24.20 mm 

(NDP=6.6%). larger than mean Q2 precipitation. For some areas over southern 

Montana and Wyoming, and southwestern Texas, where GPCP 1DD estimates are 

greater than Q2 estimates by ~100 mm, the NDPs exceed -40% as presented in Fig. 

12d. From warm season to cold season, the precipitation amount estimated by Q2 

decreased 273.76 mm while GPCP 1DD decreased 188.61 mm. 
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Figure 12. Averaged cold season (October-March) precipitation from (a) Q2, (b) 

GPCP 1DD estimates, (c) their difference (GPCP-Q2), and (d) their normalized 

difference ((GPCP-Q2)/(GPCP+Q2)/2) during the period 2010-12. 
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Part II: Evaluation of Reanalyzed Precipitation Data and Trend Analysis 

Evaluation of reanalysis datasets using GPCP SG data 

Figure 13 illustrates the spatial distribution of annual mean precipitation of (a) 

GPCP SG, and (b) – (f) five reanalyses (ERA-I, MERRA2, JRA-55, CFSR, and 20CR) 

over the CONUS during the period 1980-2013. Fig. 13a shows that the GPCP 

precipitation amounts generally decrease from the East coast to the West coast with 

the highest rainfall amounts over the northwest coast, southeast coast, and south 

central parts of the US while the central west mountain regions receive the lowest. 

The reanalyses generate similar spatial distributions to the GPCP SG results and 

capture the variation of the precipitation very well, particularly over the Pacific 

Northwest regions. However, large differences exist between GPCP SG and the 

reanalyses over the mountainous areas (approximately between 100 ゚W –120 ゚W) 

where precipitation amounts predicted by the reanalyses are generally higher than 

GPCP SG. Most of the GPCP SG precipitation estimates range from 0.25 mm/day to 

1.75 mm/day, while all five reanalyzed precipitation amounts can exceed 2.5 mm/day 

over the mountainous regions. 20CR and JRA-55 also show large areas with 

discontinuities in precipitation distribution located in the southern part of Montana. 

For the South-central US (AR, MS, LA), JRA-55, CFSR, and 20CR show similar 
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features as in GPCP SG whereas ERA-I and MERRA2 predict lower precipitation 

amounts compared to GPCP SG.  

 

Figure 13. Spatial distribution of annual mean precipitation (mm/day) for (a) GPCP, 

(b) ERA-Interim, (c) MERRA2, (d) JRA-55, (e) CFSR, and (f) 20CR during the 

period 1980-2013. 
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The first row of Fig. 14 shows the GPCP SG’s averaged seasonal mean 

precipitation (spring, summer, fall, and winter) for the period from 1980 through 2013. 

Rows from two through six show the differences of seasonal mean precipitation in 

percentage between GPCP SG and ERA-I (second row), MERRA2 (third row), 

JRA-55 (fourth row), CFSR (fifth row), and 20CR (sixth row). The first row of Fig. 

14 shows that high climatological seasonal mean precipitation amounts (first row) are 

observed by GPCP in the South-central and Northwest regions during the spring. 

During the summer months, abundant precipitation fall into the southeastern part of 

the CONUS that the GPCP SG estimated precipitation amounts are greater than 5.0 

mm/day. Great Plain regions receive most of its annual precipitation during the 

summer. From late fall to winter, the precipitation over Northwestern CONUS are 

generally higher than the rest of the country and the precipitation amount exceeds 5.5 

mm/day during the winter as observed in GPCP SG. Meanwhile, the winter 

precipitation amounts are higher than other three seasons over the northeastern part of 

the country with precipitation values greater than 4.0 mm/day. The western mountain 

regions receive the minimum rainfall throughout the year.  
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Figure 14. Spatial distribution of seasonal mean precipitation (mm/day) for GPCP 

(top row) and seasonal relative differences between GPCP and five reanalyses during 

the period 1980-2013. The columns indicate: Spring (MAM, far left), Summer (JJA, 

middle left), Fall (SON, middle right), and Winter (DJF, far right).   
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From rows two through six of Fig 14, the relative difference percentages (RDPs) 

between GPCP and the reanalyses are defined as  

    ( ) / 100%RDP R GPCP GPCP   ,                  (1)  

where R represents the precipitation amounts from the reanalyses. Figure 14 has 

clearly demonstrated that the reanalyzed precipitation amounts are overestimated over 

the western regions through the course of a year. During spring and winter, the 

reanalyzed precipitation amounts are as twice as GPCP SG over some parts of 

Montana, Idaho, and Wyoming. The seasonal spatial distributions of ERA-I, 

MERRA2 and CFSR are similar to each other in that they underestimate the 

precipitation amounts over the south-central regions during spring, over the northeast, 

Great Plains, and southwest during summer, and over the northeast-central regions 

during fall and winter. The RDP patterns in JRA-55 during fall and winter are similar 

to the three reanalysis datasets mentioned above, but during spring and summer the 

underestimated regions of JRA-55 are more concentrated over the Great Lakes and 

northeast regions. With regard to 20CR, there is a negative bias in the West coast for 

all seasons, significant underestimation over the southwest region during summer. 

Differing from the other reanalyses, 20CR severely overestimates the precipitation 

amounts over the mountain and central regions during spring and winter.  
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Table 4. Annual and seasonal mean precipitation (mm/day) and standard deviations 

(in parenthesis) estimated by GPCP SG and the five reanalyses. 

 Annual Spring 

(MAM) 

Summer 

(JJA) 

Fall (SON) Winter 

(DJF) 

GPCP 2.38 (1.89) 2.40 (1.75) 2.61 (1.89) 2.31 (1.91) 2.22 (2.00) 

ERA-I 2.16 (1.67) 2.28 (1.48) 2.34 (1.85) 2.08 (1.65) 1.96 (1.67) 

MERRA2 2.29 (1.83) 2.49 (1.78) 2.29 (1.80) 2.01 (1.84) 2.16 (1.88) 

JRA-55 2.61 (1.87) 2.70 (1.63) 3.07 (2.07) 2.40 (1.86) 2.25 (1.80) 

CFSR 2.38 (1.88) 2.59 (1.69) 2.28 (2.03) 2.30 (1.93) 2.34 (1.82) 

20CR 2.68 (1.92) 3.11 (1.88) 2.72 (2.25) 2.30 (1.73) 2.60 (1.70) 

 

The seasonal mean precipitation amounts (mm/day) and their standard deviations 

estimated by GPCP SG and five reanalyses are shown in Table 4. GPCP SG has 

annual mean precipitation of 2.38 mm/day and a standard deviation of 1.89 mm/day. 

CFSR has the same annual mean as GPCP SG and closest standard deviation among 

reanalyses (1.88 mm/day vs 1.89 mm/day) among all the reanalysis datasets. The 

seasonal mean precipitation of GPCP SG ranges from 2.22 mm/day during winter to 

2.61 mm/day during summer. The highest standard deviation of 2.00 mm/day occurs 

during winter and is likely because of the large precipitation amounts in the northwest 

region that increases the variation of precipitation values in GPCP SG. Other than 

MERRA2, which has its highest standard deviation during winter, the highest 

standard deviations for the other reanalyses occurred during summer. Table 5 provides 

the RMSEs (first row) and RDPs (second row) of seasonal mean precipitation for 
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each reanalysis using GPCP SG as reference. The RDPs are calculated using the 

spatially integrated mean values instead of averaging the RDPs from each grid box. 

On average, ERA-I underestimates the annual precipitation by ~9%, and the negative 

biases of ERA-I are observed throughout the year. Nonetheless, the RMSEs of ERA-I 

for each season are the smallest among the five reanalyses. On the contrary, JRA-55 

overestimates the precipitation for all seasons, especially during summer, with a RDP 

of ~17%. MERRA2 and CFSR show lower biases, except they significantly 

underestimate the summer precipitation with RDPs greater than 12%.  20CR has 

positive biases for all seasons except for fall, particularly during spring when 20CR is 

~29% higher than GPCP SG. 20CR also has the highest RMSE during each season.  

Table 5. RMSE (first row) and relative differences in percentage (second row) of five 

reanalyses using GPCP SG as a reference. 

 Year around Spring 

(MAM) 

Summer 

(JJA) 

Fall (SON) Winter 

(DJF) 

ERA-I 0.95 0.90 1.05 0.92 0.93 

-9.2% -5.0% -10.3% -10.0% -11.7% 

MERRA2 1.01 0.99 1.11 0.94 0.97 

-3.8% 3.8% -12.3% -13.0% -2.7% 

JRA-55 1.07 1.00 1.28 1.00 0.98 

9.7% 12.5% 17.6% 3.9% 1.4% 

CFSR 1.14 1.09 1.35 1.07 1.01 

0.0% 7.9% -12.6% -0.4% 5.4% 

20CR 1.34 1.40 1.63 1.20 1.08 

12.6% 29.6% 4.2% -0.4% 17.1% 
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To further examine the performance of the reanalysis datasets, the correlation 

coefficients of monthly precipitation amounts between reanalyses and GPCP SG are 

calculated from 1980 through 2013 for each grid box and are presented in Fig. 15. 

The spatial distributions of correlation coefficients have illustrated that all reanalyses 

are in excellent agreement with GPCP SG over the western part of the US, where the 

correlation coefficients exceed 0.9. For the central to eastern parts of the country, 

MERRA2 is well correlated with GPCP SG, with most of the study region having 

correlation coefficients greater than 0.8. For ERA-I and JRA-55, the correlations are 

less than 0.7 over the north to central mountain regions, which corresponds to the 

regions where ERA-I and JRA-55 largely overestimate precipitation as shown in Fig. 

14. For CFSR, the correlations are between 0.65 and 0.8 for the central and east 

regions. 20CR is less correlated with GPCP SG with respect to other reanalyses. 

Lower correlations around 0.2 to 0.35 are found between GPCP and 20CR over the 

eastern Arizona to western New Mexico.   
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Figure 15. Spatial distribution of correlation coefficients between GPCP SG and five 

reanalyses during the period 1980-2013.  

 

 Figure 16 shows the time series of (a) annual mean precipitation averaged over 

the CONUS (mm/day) and their (b) anomalies (mm/day) from GPCP SG and 

reanalyses from 1980 through 2013. Although the reanalyses exhibit similar 
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Figure 16. (a) Annual average precipitation (mm/day) for GPCP SG and five 

reanalyses and (b) their respective anomalies from 1980 through 2013. 
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inter-annual variability and trend of precipitation to GPCP SG over the CONUS, their 

magnitudes are significantly different. During the study period, 20CR (yellow line) 

and JRA-55 (grey line) have constant positive biases while ERA-I (red line) shows 

constant negative biases compared to GPCP (black line). MERRA2 (purple line) and 

CFSR (green line) have precipitation nearer to GPCP, and CFSR shows almost 

identical precipitation values as GPCP during the periods from 1985 to 1988, and 

from 1997 to 1999. Their annual precipitation anomalies are given by the annual 

mean precipitation for that year minus the climatological mean precipitation during 

the period 1980-2013. Except for 20CR, the anomaly patterns of the reanalyses are in 

good agreement with GPCP SG and well capture the inter-annual variations. For 

instance, GPCP SG, ERA-I, CFSR, MERRA2, and JRA-55 have highest positive 

anomaly at year 1983, but 20CR does not catch this feature and the trend of 20CR 

shifts from other datasets. 

To investigate the seasonal variations, the mean precipitation for each month is 

calculated from 1980 to 2013 as displayed in Fig. 17. The monthly mean precipitation 

monotonically increases from January to June, reaches the maximum in June, and 

then generally decreases through the following months to December as observed in 
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Figure 17. Monthly mean precipitation (mm/day) for GPCP SG and five reanalyses 

during the period 1980-2013. 

 

GPCP SG. JRA-55 and ERA-I show similar seasonal variations to GPCP SG but 

JRA-55 overestimates the precipitation values, particularly during the warm season 

months, while ERA-I underestimates the precipitation throughout the year. Both 

MERRA2 and CFSR overestimate precipitation from January to May, peak in March, 

but greatly underestimate precipitation from June to September. In contradiction to 

others, 20CR shows a somewhat unreasonable seasonal variation with decreasing 

precipitation amount from May to October and then increasing from October to 

following May. 

 Histograms of the probability distribution functions (PDFs) and cumulative 
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distribution functions (CDFs) of monthly mean precipitation from GPCP SG (blue 

line in each plot) and five reanalyses (red line in each plot) are plotted in Fig. 18 (a 

total of 957 grid boxes×408 months). The median precipitation values of GPCP SG 

(blue) and reanalyses (red) are presented in Fig. 18. Both ERA-I and MERRA2 have 

similar number of light precipitation events (< 1.0 mm/day) as GPCP SG, but there 

are more estimates with precipitation values between 1.0 to 3.0 mm/day and less 

estimates between 3.0 to 8.0 mm/day (i.e., more skewed).  The percentages of 

JRA-55 and 20CR reanalyzed precipitation amounts that are less than 1 mm/day are 

around 20%, which is ~8% less than the GPCP SG estimates. Their PDFs are more 

skewed to higher precipitation values, especially for 20CR; therefore, the median of 

20CR is much higher than GPCP SG (2.39 mm/day vs. 1.99 mm/day). This is likely 

the result of a relatively coarse spatial resolution (2°× 2° for 20CR, and 1.25°× 1.25° 

for JRA-55), making it difficult to capture light and localized precipitation events. 

Except few percent differences for estimates between 0 to 3.0 mm/day, the PDFs of 

CFSR mimic the PDFs of GPCP SG. Unexpectedly, the total number of high 

precipitation analyses (> 8.0 mm/day) of all reanalyses agrees well with GPCP, but it 

may due to the small number of samples.  
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Figure 18. Probability Distribution Functions (PDFs) (%) and Cumulative 

Distribution Functions (CDFs) (%) for GPCP SG (blue) and five reanalyses (red) of 

monthly mean precipitation (mm/day) (a total of 951 grid boxes×408 months). Dash 

line represents the median line (50%). The values listed in the plots are the median 

monthly mean precipitation of GPCP SG (blue) and reanalyses (red). 
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The scatterplots of the monthly spatially-averaged precipitation within the 

CONUS are presented in Fig. 19. GPCP SG is on the x-axis, and the reanalysis 

product is on the y-axis. Also shown are the correlation coefficient and RMSE 

between GPCP SG and the reanalysis, and their linear regression function. From the 

plot, strong linear relationships and good agreement are found between GPCP SG and 

all reanalyses with correlation coefficients ranging from 0.697 for 20CR to 0.892 for 

JRA-55. These results indicate that reanalyses can represent the spatial pattern of 

GPCP SG reasonably well. Compared to the values in Table 5, smaller RMSEs are 

observed between GPCP and the reanalyses, varying from 0.243 mm/day for 

MERRA2 to 0.490 mm/day for 20CR, which is due to the large domain spatial 

averaging.  

To further evaluate the performance of reanalyzed precipitation estimates with 

GPCP SG, Taylor diagram has been generated in Fig. 20. The standard deviation is 

defined as the standard deviation of the ratio of the reanalysis precipitation amount to 

GPCP SG precipitation amount, which shows the amplitude of the variation of 

reanalysis with respect to GPCP SG. Both correlation coefficient and standard 

deviation are calculated using monthly mean precipitation during the period 

1980-2013. For each season, all reanalysis datasets are well correlated with GPCP SG 
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Figure 19. Scatterplots of GPCP SG and each reanalyses domain averaged monthly 

mean precipitation over the CONUS (a total of 408 dots=34 years X 12 months), and 

their correlation coefficient, RMSE with their linear regression line.    
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(correlation coefficients > 0.7). The standard deviations are higher during summer, 

particular in CFSR and MERRA2. The standard deviation of 20CR is high during the 

fall, which is around 2.5. JRA-55 shows the least seasonal variations, with 

comparatively constant correlations between 0.8 to 0.88 and standard deviations 

around 1.2. 

 

Figure 20. Taylor diagram for the correlations and standard deviations of seasonal 

precipitation from five reanalyses using GPCP SG as a reference. Each point shown 

on the plot is calculated based on a total of 957 grid boxes×102 months (99 months 

for winter). 
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Trend Analysis 

To perform a long-term trend analysis, a homogeneous dataset should be used to 

represent the nature of precipitation variation. Because GPCP product incorporates 

the satellite observations, it should be noted that changes in the input data sources 

might lead to inhomogeneity in GPCP product and could result in the false trending. 

For example, the GPCP precipitation estimates were primarily from the OPI estimates 

during the period 1979-1986, thereafter, the GPI estimates calibrated by SSM/I data 

were used (Adler et al. 2003). Efforts have been made to minimize the 

inhomogeneous in GPCP from the original to current version. Additional adjustments 

using gauge data have been applied to OPI estimates during the pre-SSM/I period 

(Huffman and Bolvin 2013) to reduce the inconsistences brought by the transition 

between OPI and GPI estimates and the inclusion of SSM/I data. Before Version 2.1, 

the gauge analyses used in GPCP were from the Global Historical Climate Network 

and Climate Analysis and Monitoring System (GHCN + CAMS) during the period 

1979-1985, and GPCC gauge data thereafter. Starting with Version 2.1, the entire 

GPCP gauge analysis field (1979-present) is reprocessed with the upgraded GPCC 

gauge analysis with much higher number of gauges (Huffman et al. 2009). This 

change benefits the precipitation estimates over land, particularly for the regions with 
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good coverage of GPCC network, such as the CONUS. Gruber and Levizzani (2008) 

examined the changes in global precipitation from GPCP Version 2 during the 

pre-SSM/I (1979-1986) and SSM/I (1988-2003) periods. The results showed that the 

overall spatial distributions of precipitation for these two periods have great 

similarities, except for slightly lower values in the mid-latitudes over land and 

slightly higher values in the tropics during the period 1988-2013. Note that over the 

CONUS, the differences between two periods are within a range from -0.5 to -0.2 

mm/day. Huffman et al. (2009) also investigated the influences of the input data by 

computing the linear rate of change in precipitation for both GPCP Version 2 and 

Version 2.1 during the entire period (1979-2007) and SSM/I period (1988-2007). 

Because Version 2.1 is driven by the GPCC gauge data and focuses more over the 

land, the rate of change for global land shifts from +0.0018 mm day-1 decade-1 in 

Version 2 to -0.0118 mm day-1 decade-1 in Version 2.1 during the period1979-2007. 

As for SSM/I period, the linear rate over global land decreases from +0.0630 to 

+0.0252 mm day-1 decade-1 from Version 2 to Version 2.1. Over the CONUS, the 

linear changes range from -0.3 to -0.1 mm day-1 decade-1 over the western part of the 

country. Consequently, a decreasing precipitation trend over the CONUS should be 

expected using the current version of GPCP.  
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Figure 21 shows the inter-annual variabilities of GPCP SG annual and seasonal 

accumulated precipitation over the CONUS during the 34-yr study period. The blue 

line represents the linear regression fit to the accumulated precipitation by 

minimizing the chi-square error. The shaded areas contain the precipitation values 

within the 95% confidence level, which are calculated based on the student-t test. 

Numbers shown are the slope of the regression line and the coefficient of 

determination (denoted as
2R ) between GPCP SG precipitation estimates and 

 

Figure 21. (a) Annual and (b-e) seasonal accumulated precipitation (mm) estimated 

by GPCP SG and their linear trends (red line) during the period 1980-2013. The 

shaded areas represent the area within 95% confidence interval of the slope (based on 

the student t-test). 
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calculated values by the regression line. GPCP SG has an annual average 

precipitation of 870.9 mm over the 34-yr period. According to the regression line, the 

annual precipitation amounts decreased 2.0 mm/yr from 1980 to 2013. This 

decreasing trend is also observed during four seasons with the minimum decreasing 

rate of -0.01 mm/yr during summer and the maximum rate of -0.75 mm/yr during 

spring. The variation of inter-annual precipitation is large from 1980 to 2013 with R2 

values near zero and more than 17 years of samples outside of 95% confidence 

interval range for year around as well as seasonal precipitation. The annual 

accumulated precipitation amounts are extremely high in 1983 (1002.0 mm), and 

lows in 1988 (762.6 mm) and 2012 (727.4 mm).    

 In addition to temporal trend analysis, a trend analysis of spatial distribution is 

conducted for annual and seasonal GPCP SG precipitation shown in Fig. 22. Based on 

a total 34 years of data, the precipitation trend is calculated at each grid box using the 

same linear regression method as above. Furthermore, Mann-Kendall test is used to 

determine if the grid box has an increasing or decreasing trend which is significant at 

the 95% confidence interval. For the grid box having evident trend are marked as a 

cross on Fig. 22. For annual trend, the northeastern and north-central parts of the 

country show positive trends, while other regions show negative trends in annual 
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Figure 22. Spatial distribution of GPCP precipitation trend for averaged (a) annual 

and (b-e) seasonal precipitation during the period 1980-2013. Solid black marks 

indicate grid boxes that have trends are significant at the 95% confidence interval 

(based on the Mann-Kendall test). 

 

precipitation amounts. Both increasing and decreasing trend rates are moderate for the 

annual scale, with the trends varying from -0.3 to 0.3 mm/year over most of the 



61 
 

CONUS. The maximum negative trends are observed over southern Louisiana, where 

precipitation decreases significantly by ~1.2 mm/yr. The negative trends are also 

evident over the mountainous regions. Compared to annual trends, the seasonal 

variations over different regions are significant. During spring, moderate positive 

trends (~0.9 mm/yr) are found over the north-central and Great Lakes regions. 

Whereas the decreasing trends over the south-central part of the US are more severe 

as high as -2.4 mm/yr. During summer asons, increasing trends are observed over 

eastern, central and southern boundaries of the country while decreasing trends are 

still found over western regions. Most of the country experiences decreasing trends 

during fall except for northeastern regions and southern Texas. The significant 

decreasing trends (~ -2.1 mm/yr) are found over southern Oregon to northern 

California, Oklahoma, and northern Wisconsin. Unlike the other three seasons, part of 

the western region shows a monotonous increasing trend, ranging from 0.0 to 0.9 

mm/yr during winter. Similar to spring, positive trends are also found from the 

northern Great Plains to the Great Lake areas but are not as significant as during 

spring.  
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CHAPTER V 

DISCUSSION  

Part I: Comparison of GPCP 1DD with Q2 Estimates 

The relative difference percentages (RDPs) between Q2 and GPCP 1DD estimates 

remain consistent in each tile from daily to yearly comparisons (Figures 2, 5 and 6) 

during the period 2010-2012. However, seasonal differences exist in tiles 2, 3, and 8 

as the RDPs switch the sign from negative in the warm season to positive in the cold 

season. The different algorithms of GPCP 1DD used to estimate the precipitation 

between northern and southern regions may partially contribute to the RDP 

differences, such as between tiles 4 and 8. Correlation coefficients for monthly 

analyses are much higher than those for daily analyses in all tiles, which is expected 

due to temporal averaging. However, when transitioning from monthly to yearly 

analyses, the correlations in tiles 3, 4, 7, and 8 actually decrease, which is 

counterintuitive. This may be because the differences between Q2 and GPCP 1DD 

accumulated monthly estimates are in different directions or highly variable and 

significant decrease in sample numbers.  

From Figure 3, it is noticed that during the warm season, GPCP 1DD estimates 

are significantly less than Q2 estimates in tile 2 (RDP=-12.83%) and tile 6 (RDP= 
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-21.26%). Since tiles 2 and 6 encompass the plains region, much of the warm season 

rainfall is dominated by convective precipitation, particularly in tile 6. Because of the 

smaller scale of the convective systems and the fact that satellite instruments are 

limited in spatial resolution compared to radar observations, GPCP 1DD estimates 

suffer from an inability to capture some daily intense precipitation events. Meanwhile, 

Q2 has a wet bias when estimating the accumulated precipitation from Deep 

Convective Systems (DCSs) during the warm season (Stenz et al. 2014; Wang et al. 

2016). Therefore, the actual value of precipitation during intense convection may fall 

between GPCP 1DD and Q2 estimates. As a result, the accumulated warm season 

precipitation estimated by GPCP 1DD is less than that from Q2 for daily to yearly 

accumulated precipitation (Fig. 3, Tables 2, 3) for all tiles except for tile 4, where 

DCSs are much less frequent than in the other tiles.   

The Q2 and GPCP 1DD comparisons in tile 6 are consistent with the findings in 

Stenz et al. (2014) and Huffman et al. (2001). Q2 daily precipitation estimates were 

compared with Oklahoma Mesonet observations during the period 2010-2012 with a 

correlation coefficient of 0.851 and a 5% wet bias during the cold season, which 

indicates that the Q2 precipitation estimates from NEXRAD reflectivity are 

reasonable for stratiform-dominated precipitation (Stenz et al. 2014). Meanwhile, 
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GPCP 1DD estimates display a minimum bias during winter compared to Oklahoma 

Mesonet observations in Huffman et al. (2001), implying that the stratiform 

precipitation characteristics during the cold season generally yield more accurate 

satellite-based estimates. Therefore, the higher correlations and smaller differences 

between GPCP 1DD and Q2 estimates during the cold season than the warm season 

in tiles 6 and 7 are anticipated due to the stratiform-dominated precipitation.  

Most of the GPCP 1DD estimates are greater than Q2 estimates during the cold 

season, especially in the northern tiles (tiles 2-4) where the differences between 

GPCP 1DD and Q2 estimates are around 20%. Winter precipitation, particularly 

snowfall, is typically associated with shallow clouds that are close to the surface, 

making a radar beam more likely to overshoot falling precipitation, which may lead to 

underestimations in Q2 estimates. Furthermore, unlike typical warm season rainfall, 

which is classified into three separate groups each with its own Z-R relationship, there 

is only one Z-R relationship for snowfall in Q2. This relationship is designed for 

orographic precipitation and stratiform frozen precipitation (Zhang et al. 2011) and 

therefore is likely not skillful at estimating the heavier convective snowfall events. 

Additionally, GPCP 1DD estimates tend to overestimate precipitation amounts during 

the cold season, which is likely because of the difficulty satellite instruments have 
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when estimating frozen precipitation (McPhee and Margulis, 2005; Bolvin et al. 

2009).  

 In tiles 3 and 4, GPCP 1DD estimates are greater than Q2 estimates for the 

entire year. When compared to other tiles, a more significant portion of yearly 

precipitation occurs during the cold season in tiles 3 and 4 than in the remaining tiles. 

As presented in Table 3, the Q2 and GPCP 1DD precipitation estimates during the 

cold season contribute approximately 35% and 46% (Q2), 41% and 47% (GPCP 1DD) 

to their yearly accumulated precipitation in tiles 3 and 4. Tiles 3 and 4 are located in 

the Great Lakes Region and the Northeastern United States, where frozen 

precipitation typically dominates during winter. Thus, Q2 estimates likely 

underestimate the precipitation over these two tiles. For the warm season, mesoscale 

convective systems (MCSs) in tile 4 are less frequent and generally weaker than in 

tiles 6 and 7. As a result, MCSs may be misclassified as stratiform events, leading to 

the use of inappropriate Z-R relationships and underestimation of precipitation 

amounts. For tile 2, although frozen precipitation is the dominant precipitation type 

during the cold season, a more significant portion of annual precipitation comes from 

warm season (79% for Q2, 73% for GPCP 1DD) than in tiles 3 and 4. Therefore, the 

difference between GPCP 1DD and Q2 precipitation estimates in tile 2 is much less 
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than those in tiles 3 and 4.  

In tile 8, the difference between GPCP 1DD and Q2 estimates is relatively small 

throughout the year. Tile 8 is located on the East Coast of the United States, next to 

the Atlantic Ocean. Abundant moisture transported from the ocean and like-tropical 

climate lead to less variability in precipitation type. The RDPs switch the sign from 

positive to negative from the warm to cold season; this is likely due to the snowfall 

events that occur at the northern part of the tile during the cold season, which leads to 

underestimates in Q2.  

For spatially averaged comparisons, strong correlations exist between Q2 and 

GPCP 1DD estimates which is expected due to large scale averaging. The two 

datasets also show similar spatial patterns where the precipitation estimates increase 

from the western Great Plains to central US (95-85oW) as illustrated in Figures 8-9. 

The large precipitation estimate amount (≥1400 mm) over the central US are 

primarily due to the strong moisture transport from the Gulf of Mexico by the low 

level jet during the warm season (Dong et al. 2011). Because Q2 estimates are 

derived from radar retrievals and have a 1 km spatial and a 5 min temporal resolution, 

Q2 estimates are likely to capture more instantaneous precipitation events; 

particularly small scale and short period events that are not detected by the 
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satellite-derived GPCP 1DD estimates. Thus, Q2 estimates show more detail in 

precipitation variability than GPCP 1DD estimates as demonstrated in Figures 10a 

and 10b.  Figure 10c shows the differences between Q2 and GPCP estimates and 

illustrates that the regions where Q2 estimates are significantly less than GPCP 1DD 

estimates (GPCP - Q2 > 400 mm shown in Fig. 10c) correspond well with the 

locations of poor radar coverage and the bottom of beam height is between ~1830 m 

and ~3050 m or higher, as illustrated in Fig. 1b. There are some exceptions in tile 4 

where Q2 estimates are less than GPCP 1DD estimates, which is mainly due to the 

problems associated with Z-R relationships and radar overshooting problem when 

estimating snowfall. For the other regions where GPCP 1DD estimates are much 

larger than Q2 estimates, specifically from northern West Virginia down to northern 

Georgia, the Appalachian Mountains create beam blockage for local radars, and 

underestimation by Q2 likely occurs. During the cold season (Fig. 12d), the 

normalized differences between the two datasets over the poor radar coverage regions 

are much greater than those during the warm season (Fig. 11d), which is more likely 

because of radar over shooting problems when shallow precipitation events occurs in 

the regions with poor radar coverage during the cold season. 

95% confidence intervals are calculated for the mean differences between GPCP 
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1DD and Q2 estimates for each tile. Due to a lack of physical reasoning behind GPCP 

1DD or Q2 being consistently different than the other dataset in one tile, a two tailed 

test was chosen using a Z value of 1.96. The confidence interval of the difference   

is calculated by 

2
1.96

diff

diff

X

N






 ,                     (2) 

where diffX is the mean difference of daily estimates between GPCP 1DD and Q2 

(GPCP-Q2, mm); diff is the standard deviation of daily estimate difference; N is 

the total sample number of daily estimates for GPCP 1DD and Q2 in each tile. As 

shown in Table 6, the confidence intervals are relatively small due to the large sample 

Table 6. The mean differences between GPCP 1DD and Q2 daily estimates 

(GPCP-Q2, mm) and their 95% confidence interval (mm) for each tile. 

 Tile 2 Tile 3 Tile 4 Tile 6 Tile 7 Tile 8 

All -0.25 0.21 0.99 -0.86 -0.50 0.06 

[-0.30, 

-0.18] 

[0.12, 

0.29] 

[0.91, 

1.06] 

[-0.95, 

-0.79] 

[-0.59, 

-0.41] 

[-0.08, 

0.20] 

Warm -0.68 -0.28 0.84 -1.35 -0.72 -0.20 

[-0.78, 

-0.59] 

[-0.41, 

-0.14] 

[0.72, 

0.94] 

[-1.46, 

-1.23] 

[-0.84, 

-0.58] 

[-0.40, 

0.00] 

Cold 0.33 0.73 1.15 -0.21 -0.24 0.39 

[0.28, 

0.38] 

[0.65, 

0.83] 

[1.05, 

1.25] 

[-0.32, 

-0.10] 

[-0.37, 

-0.10] 

[0.20 

0.58] 
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size of daily estimates. Most of the confidence intervals have the same sign as their 

mean daily difference value, indicating that most of the GPCP 1DD estimates are 

either larger (if both bounds of interval are greater than zero) or smaller (if both 

bounds of interval are less than zero) than Q2 daily estimates. With the smallest 

sample size among tiles and least variations of sample variances, tile 8 shows the 

largest range of mean differences and confidence intervals vary from negative to 

positive for year-around daily differences. 

Compared to radar-based Q2 estimates, satellite-based GPCP 1DD estimates 

have coarse spatial and temporal resolutions. Furthermore, satellite instruments may 

have detectability issues for small scale and short duration precipitation events, 

especially during the warm season when intense convective precipitation events occur 

frequently. Therefore, Q2 estimates may provide more reasonable results than GPCP 

1DD estimates over the Great Plains region during the warm season as long as the 

wet bias in Q2 estimates is taken into consideration. The excellent agreement between 

GPCP 1DD and Q2 estimates for tiles 6 and 7 during the cold season, as well as 

strong correlations with Oklahoma Mesonet observations for both GPCP and Q2 

estimates in previous studies, indicate that GPCP and Q2 estimates can well represent 

the stratiform rainfall during the cold season. However, for ice phase precipitation - 
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especially snow over northeastern regions - GPCP 1DD estimates may be more 

reliable than Q2 estimates. This could be due to the issues involved with radar 

overshooting and Z-R relationship, resulting in the underestimation by Q2. 

Nevertheless, the accuracy of TOVS-AIRS technique used in GPCP 1DD product to 

estimate high latitude cold season precipitation should be determined via comparison 

with the high-quality surface observations. Depending on the availability of radar 

coverage, Q2 estimates show a discontinuity in precipitation estimates, which is also 

noted in Stenz et al. (2014). When using Q2, the underestimation of precipitation 

amounts over the regions with insufficient radar coverage should be taken into 

account. Fortunately, this is the kind of issue that can be avoided by satellite-based 

GPCP estimates. 
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Part II: Evaluation of Reanalyzed Precipitation Estimates and Trend Analysis 

The reanalyzed precipitation estimates illustrate reasonable spatial distribution of 

precipitation over the CONUS when compared with GPCP SG as shown in Fig. 13, 

however, significant seasonal and regional differences exist (Fig. 14). Over the 

mountainous regions, the reanalyzed precipitation estimates are generally higher than 

GPCP SG precipitation throughout the year. GPCP SG may be less trustworthy over 

these regions because of relatively sparse GPCC gauge coverage resulting in 

underestimation in GPCP SG. The underestimation over orography was also found in 

Mcphee and Margulis (2005) and Nijssen et al. (2001) and related mainly to the 

relative lack of the rain gauges in mountainous regions. Meanwhile, the satellite 

observations, both PMW and IR, have difficulty detecting shallow, orographic 

precipitation (Alder et al. 2003). The precipitation amounts from GPCP show less 

variation than those in the reanalyses over the mountain regions (Fig. 13). Since 

GPCP SG has a spatial resolution of 2.5°× 2.5° which is coarser than the reanalysis, it 

may be challenging for GPCP SG to capture small scale precipitation events which is 

also found in the part I of this study. Therefore, GPCP SG might not be suitable to use 

as a reference data for validation studies over the orography regions. However, the 

reliability of reanalysis precipitation estimates cannot be determined due to the 
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difficulties within models to accurately estimate precipitation over the complex 

terrain, and lacking of observatory upper air data to assimilate into the model. The 

regions where the five reanalyses significantly overestimate (RDPs > 100%) the 

precipitation (southern Montana extending to Utah and Colorado) correspond well 

with the locations where GPCP SG and the reanalysis datasets are less correlated in 

Fig. 15. In addition to positive biases over mountainous regions, negative biases are 

found in five reanalyses over the northeast part of the country especially during fall 

and winter when snowfall and sometimes heavier convective snowfall occur 

frequently, indicate that the models used in reanalysis may be less skillful in 

reproducing snowfall events.  

ERA-Interim, MERRA2, and CFSR show very similar systematic behaviors in the 

spatial distribution of RDPs during different seasons (Fig. 14). These resemblances 

could result from assimilating similar satellite radiance data as input into their models. 

Underestimations are also noticed in these three reanalyses over the central part of the 

country, where precipitation is related to atmosphere-land interactions that may be 

deficiently presented in the models. During the summer time when convective 

precipitation events occur over the Great Plains region, more severe underestimations 

are found in these three reanalyses, implying that the negative biases might be caused 
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by the convective parameterization of the models. In the part I of this study and 

Huffman et al. (2001), a negative bias was found in GPCP product when estimating 

convective precipitation, therefore, the underestimation in reanalyses should be 

considered as more extreme.  JRA-55 also assimilates the reprocessed radiance data 

from Japanese Geostationary Meteorological Satellite (GMS) and Multi-functional 

Transport Satellites (MTSAT), which is only used in JRA-55. Therefore, JRA-55 

shows similar characteristics in RDP distribution but also shows differences over 

central part of the US differences (Fig. 14) compared to three reanalyses discussed 

above. The convective scheme adopted by JRA-55 seems to produce more realistic 

precipitation estimates, though it slightly overestimates the precipitation over the 

Plains during spring and summer.  

Previous studies (Zhang et al. 2012; Rienecker et al. 2011; Robertson et al. 2011; 

Bosilovich et al. 2015) have shown that precipitation in reanalysis datasets is very 

sensitive to the observation system. For example, with the introduction of SSM/I in 

late 1987 and Advanced Microwave Sounding Unit-A (AMSU-A) series in late 1998, 

series of jumps or shifts in trend were found in MERRA and ERA-Interim global 

precipitation (Rienecker et al. 2011). According to Bosilovich et al. (2015), a satellite 

instrument on the ATOVS changed water vapor analysis at 0600 and 1800 UTC when 
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no radiosondes were available to anchor the analysis, and apparently lead to a 

decrease in range of seasonal precipitation over the central United States. In this study, 

however, it is noteworthy that some of the inter-annual variabilities seem to be well 

captured by four of five reanalyses as shown in Fig. 16 although some biases exist. 

Caution should be taken when use JRA-55 product because it has a consistent 

positive bias. Note that ERA-I shows a decreasing trend in precipitation after 1990. 

Simmons et al. (2010) also found this decreasing trend and concluded that it may be 

related to a declining shift that starts in the early 1990s due to the change in 

prescribed SSTs data used in ERA-I. Contradicting to JRA-55, ERA-I shows a 

negative bias throughout the study period. This underestimation of ERA-I is also 

found in Kishore et al. (2015) when compared with the gauge data over the India.  

To further investigate the influence of changes in observation data, the correlation 

coefficients between the reanalyses and GPCP as well as their RMSEs are calculated 

for each month and presented in Fig. 23 and Fig. 24, respectively. ERA-I and GPCP 

are in good agreement throughout the entire study period except for several months 

that have moderate correlations (~0.75) and high RMSEs during the pre-SSM/I period. 

MERRA2 compares reasonably well with GPCP but performance appears to become 

worse after 2004. For JRA-55, a decrease in correlation coefficient is found 
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Figure 23. Correlation coefficients between reanalyses and GPCP for each monthly 

precipitation, x-axis represents each month, y-axis represents each year. 

 

after mid-1999, assuming it is due to the unavailability of the atmospheric motion 

vectors (AMVs) data from geostationary and polar orbiting satellites (Kobayashi et al. 

2015) and JRA-55 no longer uses observations from IR sensors after 2004. Zhang et 

al. (2012) found that CFSR has a sudden change in precipitation in 1998 resulted 

from the inclusion of ATOVS data. In this study, however, CFSR is relatively 

consistent over time. Note that during the spring and summer seasons, five reanalyses 

have higher RMSEs and are less correlated with GPCP which could be associated 

with the systematic errors of the assimilation models.  
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Figure 24. Similar to Fig. 23 but for RMSE. 

 

20CR only assimilates SLP and SST observations throughout, and thus it is less 

sensitive to the introductions of new observing systems (Lee and Biasutti, 2014). 

Therefore, 20CR has less in common with other reanalyses in precipitation fields 

during the comparisons. Nevertheless, the biases in precipitation generated by 20CR 

are more significant than in the comprehensive reanalysis, regarding the highest 

RDPs and RMSEs throughout the year (Fig.14, Tables 4 and 5), the lowest spatial 

correlation coefficients (Fig. 15), and some unrealistic inter-annual variability (Fig. 

16). The most possible reason is that SST and SLP data used in 20CR cannot well 

represent atmospheric moisture and thus the model cannot reproduce the physical and 

dynamical processes when generating precipitation analysis. Note that despite a dense 
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observational network and a complete sea level pressure record through the satellite 

era over the United States (Lee and Biasutti, 2014), the performance of the 20CR, 

when compared with GPCP, is still the worst among the reanalysis datasets in this 

study. This is not unexpected due to the simplicity of the data ingested – a sacrifice 

made for a longer data record.  

As far as trend analysis, the results from this study are consistent with the findings 

from Adler et al. (2003) and Huffman et al. (2009), in that the overall precipitation 

amounts over the CONUS are decreasing from 1979 to present based on the GPCP 

data. However, from the fifth Intergovernmental panel on Climate Change (IPCC, 

2014) report, an evident positive trend in annual precipitation is observed over Great 

Plains Region as well as the Eastern CONUS (~5 mm year-1 decade-1) during the 

period 1951-2010. The decrease in precipitation is only found in small areas in the 

western part of the CONUS. Peterson et al. (2013) also investigated the changes in 

precipitation over the CONUS from 1908 to 2008 based on the gauge data. By 

calculating the least square trend using the second half of 100-yr period (1958-2008) 

minus the first half (1908-1958) period, they found negative trends in the Southwest 

and Southeast, while the West Coast, and great plains extending to the Northeast had 

positive trends, which differs from the results in this study. Nevertheless, whether the 
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trend present in this study is realistic and whether it is actually associated with the 

changes in large-scale climate pattern or it is influenced by the changes in input data 

cannot be determined because no other observation-based precipitation datasets are 

available to compare with GPCP results in this study for the same study period.  
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CHAPTER VI 

CONCLUSIONS 

In the first part of study, the GPCP 1DD precipitation estimates are compared 

with high-quality radar estimates from NMQ Q2 over the Central and Eastern 

CONUS covering a total of 619 1°×1° grid boxes. The GPCP 1DD and Q2 

precipitation estimates are compared over six different regions specified by the NMQ 

domain from January 2010 – December 2012. The temporal analyses include daily, 

monthly, and yearly accumulated precipitation estimates, and the spatial averages 

include annual, warm, and cold season estimates. In this study, we utilize the RDPs 

instead of NDPs to quantify the magnitude of differences between Q2 and GPCP 

estimates due to the relatively smaller values of NDPs which cannot well represent 

the differences between these two datasets. From the 3-year comparisons between 

Q2 and GPCP precipitation estimates, we report the following conclusions for the 

part I of this study: 

1）Both Q2 and GPCP 1DD daily precipitation estimates show that precipitation 

amounts over southern tiles (6-8) are generally larger than those over 

northern tiles (2-4), with the most precipitation in tile 7 and the least 

precipitation in tile 2. Monthly accumulated precipitation and differences in 
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estimated precipitation over the six selected tiles are very similar to their 

daily counterparts except that correlation coefficients at the monthly scale 

(0.472-0.855) are much higher than those at the daily scale (0.355-0.516). 

However, this is not true moving from monthly to annual accumulated 

precipitation in tiles 4, 7, and 8 because the differences between Q2 and 

GPCP monthly estimates are in different directions and inadequate sample 

size of annual estimates over relatively short study period. RDPs between Q2 

and GPCP estimates remain consistent in each tile from daily to yearly 

comparisons. However, there are seasonal differences of RDPs exist in tiles 2, 

3, and 8 as they switch the sign from negative in the warm season to positive 

in the cold season. 

2）During the warm season, the averages of daily precipitation from both Q2 and 

GPCP are generally larger than annual daily precipitation amounts, 

particularly in tiles 2 and 3, but correlation coefficients are slightly lower for 

all tiles except for tile 8. In contrast to the warm season comparisons, their 

counterparts during the cold season are much smaller than their annul and 

warm season daily precipitation estimates, especially in tile 2. Cold season 

correlation coefficients are slightly higher or close to their annual ones. 
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During the warm season, the NDPs of GPCP estimates are 10.2% less than 

Q2 estimates, while during the cold season, the NDPs of GPCP estimates 

exceed Q2 estimates by 6.6%, resulting -3.83% of the annual NDP for GPCP 

estimate over the CONUS. 

3）For spatially averaged precipitation in each tile, excellent agreements are 

found between GPCP and Q2 estimates, especially for monthly accumulated 

precipitation with strong correlations ranging from 0.903 to 0.954. Although 

the difference between yearly averaged precipitation estimates is only -36.75 

mm (-3.76%) over the entire study region, there are large regional differences 

between GPCP and Q2 estimates. Q2 estimates are much larger than GPCP 

estimates over central US, while in northern and northeastern regions Q2 

estimates are less than GPCP estimates.  

First part of this study focuses on the comparison of GPCP 1DD and Q2 

estimates and gains a better understanding of advantages, weaknesses, similarities, 

and differences between these widely used satellite-based and radar-based 

precipitation estimates. In this study, for long-term estimates, GPCP 1DD and Q2 

estimates both show fairly similar characteristics; however, on seasonal and regional 

scales large differences arise. For example, during the warm season in plain regions, 
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Q2 estimates might be more reliable than GPCP 1DD estimates for convective 

precipitation events since they accurately capture the characteristics of DCSs (Stenz 

et al. 2014) as long as the wet bias of Q2 estimates is accounted for. For cold season 

precipitation in the northern U.S., GPCP 1DD is likely a better choice for most 

applications because of radar overshooting issues, and the use of one Z-R relationship 

for all snowfall in Q2 estimates. Additionally, Q2 may largely underestimate the 

precipitation over regions with poor radar coverage, which is a problem the 

satellite-derived GPCP 1DD estimates can avoid. These factors should be carefully 

considered when using these two products for different applications. 

In the part II of this study, we compare the performance of precipitation data from 

five recent reanalysis datasets (ERA-Interim, MERRA2, JRA-55, CFSR, and 20CR) 

with satellite-gauge merged GPCP SG product over the CONUS from January 1980 

through December 2013. The spatial distributions and inter-annual variability of 

reanalyzed precipitation have been validated using GPCP SG in this study. Several 

statistical metrics including correlation coefficients, root-mean-square-error (RMSE), 

and relative difference percentage (RDP %) have been calculated to quantify the 

magnitude of differences between the reanalyses and GPCP SG. In addition, a trend 

analysis has been conducted based on the GPCP SG dataset during different seasons 
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(spring, summer, fall, and winter) using a sample linear regression. Based on the 

results from 34-yr comparisons and trend analysis, we summarize the following 

conclusions:  

4) All of the reanalyses are able to depict reasonable spatial patterns of 

precipitation over the CONUS, especially for northwest part of the country. 

However, they generally overestimate the precipitation over the 

mountainous regions and underestimate over the Great Plains region 

throughout the year with respect to GPCP SG. Underestimations in 

reanalyses have also been found in northeast part of the country during fall 

and winter seasons. ERA-I, MERRA2, and CFSR show very similar 

spatial distributions of RDPs during different seasons while RDPs of 

20CR are relatively different from other reanalysis datasets.  

5) Compared to the annual averaged precipitation of 2.38 mm/day from GPCP 

SG, CFSR has the same value, ERA-Interim and MERRA2 have negative 

biases of 9.2% and 3.8% respectively, while JRA-55 and 20CR have 

positive biases of 9.7% and 12.6% respectively. For seasonal precipitation, 

GPCP SG ranges from 2.22 mm/day during winter to 2.61 mm/day during 

summer. Of all five reanalyses, CFSR has the closest seasonal means to 
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GPCP SG except during summer. In terms of RMSE, ERA-Interim has the 

lowest value varying from 0.90 to 1.05 mm/day while 20CR has the 

highest value with a range of 1.08 to 1.34 mm/day for annual and seasonal 

scales.  

6) For inter-annual precipitation, 20CR and JRA-55 have positive biases while 

ERA-Interim has negative bias throughout the study period. Some of the 

inter-annual variabilities of GPCP SG precipitation are well represented by 

MERRA2, CFSR and JRA-55 but not by 20CR. A decreasing trend in 

precipitation is observed in ERA-Interim after 1990 which may be related 

to the prescribed SSTs data used in it. 

7) For users of reanalysis product, we conclude that ERA-Interim and 

MERRA2 are comparatively better in representing the precipitation over 

the CONUS based on their performance in correlation coefficients and 

standard deviations against with GPCP SG estimates. Even though a 

decreasing trend exists in ERA-Interim, it is still the most consistent when 

compared against the GPCP SG. 

8) For annual and seasonal accumulated precipitation derived from GPCP SG 

during the period from 1980 through 2013, strong annual and seasonal 
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cycles are found, with more than 15 years out of 34 years being outside of 

the 95% confidence interval range. The precipitation over the CONUS 

shows a negative trend throughout the study period, with an annual 

decreasing trend of 2.00 mm/year. Negative trends are also observed 

during four different seasons. For spatial trend, in addition to north central 

and northeastern parts of the county show positive trends, rest of the 

regions show negative trends for annual scale. 

Overall, although reanalyses can provide realistic precipitation analysis, caution 

should be taken when using reanalyzed precipitation data for climate studies. For 

instance, errors may exist in model land-atmosphere interactions over the central 

United States, errors associated with model in convection and snowfall 

parameterizations, and the difficulties in model to accurately estimating precipitation 

over complex terrain. The negative bias in ERA-Interim as well as the positive bias 

in JRA-55 should be also taken into account for their users. Even though the changes 

in observing system seem to have less influence on the continuity of precipitation 

over the CONUS, they might still cause inhomogeneities in reanalyzed climate over 

other parts of the world where radiosonde data is less dense compared to the United 

States and their estimated precipitation is highly dependent upon satellite 
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observations, such as over oceans and Africa. Furthermore, the general type and 

quality of assimilated data will affect the performance of reanalyses. The 

comprehensive reanalyses (ERA-Interim, CFSR, JRA-55, MERRA2) that assimilate 

both satellite retrievals and upper air information show comparatively better 

performance in presenting precipitation than simple reanalysis (20CR) that only 

assimilates SST and SLP data. We do understand there are errors and uncertainties 

affiliated with GPCP product, and they are considered when comparing with 

reanalysis datasets and are discussed in this paper. The results presented in this study 

provide useful information to the limitations and strengths of each reanalysis datasets, 

lead to better utilization by their users, and suggesting substantial efforts are 

necessary to further improve the reanalysis precipitation estimates in the future. 
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Appendix 

List of Abbreviations 

Table 6. List of Abbreviations 

Abbreviation Full Text 

AIRS Advanced Infrared Sounder 

AMSU-A Advanced Microwave Sounding Unit-A 

APHRODITE 
Asian Precipitation-Highly-Resolved Observational Data 

Integration Towards Evaluation of the Water Resources 

ATOVS Advanced TIROS Operational Vertical Sounder 

CAMS Climate Analysis and Monitoring System 

CFSR Climate Forecast System Reanalysis 

CIRES Cooperative Institute for Research in Environmental Sciences 

CMAP Climate Prediction Center merged Analysis of Precipitation 

CMORPH Climate Prediction Center morphing technique 

CONUS Continental United States 

CPC Climate Prediction Center 

DAS Data assimilation system 

DCAPE Downward Convective Available Potential Energy 

DMSP Defense Meteorological Satellite Program 

ECMWF European Centre for Medium-Range Weather Forecasts 

GEOS-5 Goddard Earth Observing System Model version 5 

GEWEX Global Energy and Water Exchanges Project 

GFS Global Forecast System 

GHCN Global Historical Climate Network 

GMS Geostationary Meteorological Satellite 

GOES Geostationary Operational Environmental Satellite 

GPCC Global Precipitation Climatology Centre 

GPCP Global Precipitation Climatology Project 

GPM Global Precipitation Mission 

GPROF Goddard Profiling Algorithm 

GSPDC Geostationary Satellite Precipitation Data Centre 

IMERG Integrated Multi-Satellite Retrievals 

IPCC Intergovernmental panel on Climate Change 

IR Infrared 
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JMA Japanese Meteorological Agency 

JRA-25 Japanese 25-year Reanalysis 

JRA-55 Japanese 55-year Reanalysis 

MERRA Modern-Era Retrospective analysis for Research and Applications 

MERRA2 MERRA2 version2 

MOM4 Modular Ocean Model version 4 

MTSAT Multi-functional Transport Satellites 

NASA National Aeronautics and Space Administration 

NCAR National Center for Atmospheric Research 

NCEP National Centers of Environmental Prediction 

NDP Normalized Difference Percentage 

NEXRAD Next-Generation Radar 

NMQ Q2 
National Mosaic and Multi-Sensor Next Generation Quantitative 

Precipitation Estimation System 

NOAA National Oceanic and Atmospheric Administration 

OLR Outgoing longwave radiative 

OPI OLR Precipitation Index 

PACRAIN Pacific Rainfall Database 

PERSIANN 
Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks 

PMW Passive microwave 

RDP  Relative Difference Percentage 

RMSE Root-Mean Squared Error 

SG Satellite-gauge 

SLP Sea level pressure 

SSIMS Special Sensor Microwave Imager-Sounder 

SST Sea surface temperature 

TIROS Television Infrared Operational Satellite 

TMI TRMM Microwave Imager 

TRMM Tropical Rainfall Measuring Mission 

TMPA 
Tropical Rainfall Measuring Mission Multi-Satellite Precipitation 

Analysis 

TMPI Threshold-Matched Precipitation Index 

TOVS TIROS Operational Vertical Sounder 

WSR-88D Weather Surveillance Radar-1988 Doppler 

1DD One Degree Daily 
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20CR 20th Century Reanalysis 
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