
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2016

A Localized Autonomous Control Algorithm For Robots With A Localized Autonomous Control Algorithm For Robots With

Heterogeneous Capabilities In A Multi-Tier Architecture Heterogeneous Capabilities In A Multi-Tier Architecture

Jeremy Straub

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Straub, Jeremy, "A Localized Autonomous Control Algorithm For Robots With Heterogeneous Capabilities
In A Multi-Tier Architecture" (2016). Theses and Dissertations. 1970.
https://commons.und.edu/theses/1970

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at
UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/1970
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1970?utm_source=commons.und.edu%2Ftheses%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

A LOCALIZED AUTONOMOUS CONTROL ALGORITHM FOR ROBOTS WITH

HETEROGENEOUS CAPABILITIES IN A MULTI-TIER ARCHITECTURE

by

Jeremy Straub

Master of Business of Administration, Mississippi State University, 2010

Master of Science, Jacksonville State University, 2011

A Dissertation

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota

May

2016

ii

Elements of this document relate to the control of cyber-physical systems in a research

environment. Users are expressly cautioned that the performance of algorithms and

systems in a real world environment will necessarily differ somewhat from the simulation-

based work presented herein. The Author, the University of North Dakota and their

successors in interest, affiliates and other related parties shall bear no liability for the use

of this work in any real world, mission critical or other environment. The user assumes all

risk of reliance on this work and is explicitly encouraged to exercise due diligence in this

regard.

This document is made available under limited license. No portion of this document shall

be used in any way to interfere with the activities of, attack, harass, intimidate, harm or

otherwise inconvenience or impair the Author, University of North Dakota or society at

large. This document is made available only pursuant to this license condition and no

party is authorized to or shall redistribute this document without the inclusion of this

license condition. Limited copying for scholarly purposes shall not necessitate the

inclusion of this condition as long as this copying is not performed, itself, in violation of or

with the intent to allow the copying party or another party to violate the foregoing.

Copyright 2016 Jeremy Straub

iii

iv

This dissertation, submitted by Jeremy Straub in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy from the University of North Dakota, has been read by

the Faculty Advisory Committee under whom the work has been done, and is hereby

approved.

 Ronald Marsh, Ph.D.

 David Whalen, Ph.D.

 Hassan Reza, Ph.D.

 Travis Desell, Ph.D.

 William Semke, Ph.D.

This dissertation is being submitted by the appointed advisory committee as having met all

of the requirements of the Graduate School at the University of North Dakota and is hereby

approved.

Wayne Swisher

Dean of the Graduate School

Date

v

Title A Localized Autonomous Control Algorithm for Robots with

Heterogeneous Capabilities in a Multi-Tier Architecture

Department Computer Science

Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University

shall make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my

dissertation work or, in his absence, by the Chairperson of the department or the dean of

the Graduate School. It is understood that any copying or publication or other use of this

dissertation or part thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of North Dakota in any scholarly use which may be made of any material in

my dissertation.

 Jeremy Straub

 April 25, 2016

vi

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGEMENTS xi

ABSTRACT xii

CHAPTER

I. INTRODUCTION 1

II. BACKGROUND 13

III. SYSTEM IMPLEMENTATION AND OPERATIONS 23

IV. EXPERIMENTAL DESIGN AND METHODOLOGY 38

V. A BLACKBOARD SOLVER AND PRUNING 49

VI. SYSTEM OPERATIONS AND THE NEED FOR

MAINTENANCE 60

VII. CREATING A DISTRIBUTED BLACKBOARD SYSTEM

 THROUGH THE USE OF BOUNDARY NODES 75

VIII. COMPARISON OF CENTRALIZED AND DISTRIBUTED

COMMAND APPROACHES FOR ROBOTIC MISSIONS 89

IX. CONCLUSION AND FUTURE WORK 106

APPENDICES 115

REFERENCES 118

vii

LIST OF FIGURES

Figure Page

1. Decomposition of an Exhaustive Survey Task. ____________________________ 3

2. Decomposition of an Interest-Based Survey Task. _________________________ 4

3. Local Decision Making Process for Craft with Subordinate Craft. _____________ 6

4. Example mission architecture. ___ 7

5. Local and group control diagrams. _____________________________________ 7

6. High-level Diagram of System Operations. ______________________________ 24

7. Depiction of the Score Determination for Each Rule. ______________________ 26

8. Rule Chain Leading to Final Rules. ____________________________________ 27

9. Multiple Collection Approaches to Assert a Fact. _________________________ 29

10. Data Collection Approach Score Generation Process. _____________________ 30

11. Centralized Control Approach. _______________________________________ 43

12. Distributed Control Approach.__ 45

13. Testing Environment. ___ 46

14. Naïve Solver [100]. __ 50

15. Pruning Engine [100]. __ 55

16. MTAMA Multi-Level Blackboard Architecture. _________________________ 62

17. Comparison of pruned and unpruned performance on network preparation time for

solving: varying number of rules (upper left), number of facts (upper right), number

of actions (lower left) and number of associations (lower right). The X-axis

represents the number of rules, facts and actions and the Y-axis represents the

preparation time. __ 71

18. Blackboard spanning multiple nodes using boundary facts. _________________ 78

viii

19. Diagram of two-blackboard connection. ________________________________ 81

20. Diagram of three-blackboard connections. ______________________________ 82

21. Diagram of five-blackboard connections. _______________________________ 82

22. Diagram of ten-blackboard connections. ________________________________ 82

23. Comparison of Techniques (Y-axis is presented in terms of replication requests). 87

24. Ideal operations of the Blackboard-based control network. _________________ 94

25. Global map for example (coloration key can be found in Figure 26). __________ 95

26. Map Key. __ 96

27. Top-left 200 x 200 grid locations for example (coloration key can be found in

Figure 26). __ 96

28. Failed operations of the Blackboard-based control network. _______________ 100

ix

LIST OF TABLES

Table Page

1. Non-Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500

runs). ... 56

2. Pruned Naïve Solver Results, Pruner Time and Results (mean values from 500 runs).

... 57

3. Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500 runs).

... 57

4. Comparative Cost of Pruning Iterations. .. 59

5. Non-Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3

Associations, times in tics). .. 65

6. Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3

Associations, times in tics). .. 65

7. Pruned Results as Percentage of Non-Pruned for Number of Initial Rules Varied

(1000 Facts, 1000 Actions, 3 Associations).. 66

8. Non-Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3

Associations, times in tics) ... 66

9. Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3 Associations,

times in tics) .. 67

10. Pruned Results as Percentage of Non-Pruned for Number of Facts Varied (1000

Rules, 1000 Actions, 3 Associations) ... 67

11. Non-Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3

Associations, times in tics) ... 67

12. Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3 Associations,

times in tics) .. 68

13. Pruned Results as Percentage of Non-Pruned for Number of Actions Varied (1000

Rules, 1000 Facts, 3 Associations) ... 68

x

14. Non-Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000

Actions, times in tics) ... 68

15. Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000

Actions, times in tics) ... 69

16. Pruned Results as Percentage of Non-Pruned for Number of Associations Varied

(1000 Rules, 1000 Facts, 1000 Actions) ... 69

17. Non-Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics)

... 69

18. Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics) 70

19. Pruned Results as Percentage of Non-Pruned for Rules, Facts and Assertions Varied

Concurrently ... 70

20. Impact of Not Pruning Certain Object Types. .. 73

21. Results for two-blackboard testing (in terms of replication requests). 83

22. Results for three-blackboard testing (in terms of replication requests). 84

23. Results for five-blackboard testing (in terms of replication requests). 84

24. Results for ten-blackboard testing (in terms of replication requests). 84

25. Summary of averages for all testing (in terms of replication requests). 86

26. Summary of Facts ... 90

27. Processing Time and T-Value for Various Error Conditions (in ms). 103

28. Scenario Completion Time and T-Value for Various Error Conditions (in turn-units).

... 103

29. Processing Time and T-Value for Combined Error Conditions (in ms). 104

30. Scenario Completion Time and T-Value for Combined Error Conditions (in turn-

units). .. 104

xi

ACKNOWLEDGEMENTS

This work has been supported by a Grant-In-Aid of Research from Sigma Xi, The Scientific

Research Society, North Dakota EPSCoR (NSF # EPS-0814442) and a Summer Doctoral

Fellowship from University of North Dakota School of Graduate Studies.

Thanks is given to the members of my dissertation committee.

This dissertation builds on and draws upon other prior work of the author. These works

may include, but are not limited to:

 Straub, J., H. Reza. 2015. A Blackboard-Style Decision Making System for Multi-Tier Craft Control and its Evaluation. Journal of
Experimental & Theoretical Artificial Intelligence, Vol. 27, No. 6.

 Straub, J. 2014. Command of a Multi-Tier Robotic Network with Local Decision Making Capabilities. International Journal of Space Science
and Engineering, Vol. 2, No. 3.

 Straub, J. 2016. Cybersecurity Methodology for a Multi-Tier Mission and Its Application to Multiple Mission Paradigms. Proceedings of the
2016 IEEE Aerospace Conference.

 Straub, J. 2016. The Development of a Simulation Environment for Testing of a Multi-Tier Mission Command Architecture. Proceedings of
the 2016 IEEE Aerospace Conference.

 Straub, J. 2014. Building Space Operations Resiliency with a Multi-Tier Mission Architecture. Proceedings of the SPIE Defense + Security
Conference.

 Straub, J. 2013. A Data Collection Decision-Making Framework for a Multi-Tier Collaboration of Heterogeneous Orbital, Aerial and Ground
Craft. Proceedings of the SPIE Defense, Security + Sensing Conference.

 Straub, J. 2013. Integrating Model-Based Transmission Reduction into a Multi-Tier Architecture. Proceedings of the 2013 IEEE Aerospace
Conference.

 Straub, J. and R. Fevig. 2012. Multi-Tier Planetary Exploration: A New Autonomous Control Paradigm. Proceedings of the AIAA Space 2012
Conference.

 Straub, J. 2012. Multi-Tier Exploration: An Architecture for Dramatically Increasing Mission ROI. Proceedings of the AIAA Space 2012
Conference.

 Straub, J. 2012. Multi-Tier Exploration Concept Demonstration Mission. Proceedings of the 2012 Global Space Exploration Conference.
 Straub, J. 2014. The Critical Role of CubeSat Spacecraft in A Multi-Tier Mission for Mars Exploration. Presented at the Mars

CubeSat/NanoSat Workshop.
 Straub, J. 2013. The Multi-Tier Mission Architecture and a Different Approach to Entry, Descent and Landing. Presented at the

International Planetary Probe Workshop.
 Straub, J. 2012. A Role for Cubesats in a Multi-Tier Exploration / Reconnaissance Architecture. Presented at the 9th Annual Cubesat

Workshop.
 Straub, J. 2012. Cubesat Integration into a Multi-Tier Exploration Framework. The 2012 European Cubesat Symposium.
 Straub, J., R. Marsh. 2015. A Comparison of Centralized and Decentralized Blackboard Architecture-Based Command Techniques for

Robotic Control Under Varying Conditions. Submitted to Expert Systems with Applications.
 Straub, J. 2013. Automating Maintenance for a One-Way Transmitting Blackboard System and Other Purposes. Accepted for publication in

Expert Systems.
 Straub, J. 2013. A Distributed Blackboard Approach Based Upon a Boundary Rule Concept. Journal of Intelligent & Robotic Systems (in

press, initial online publication Sept. 30, 2015).
 Straub, J. 2015. Comparing the Effect of Pruning on a Best-Path and Naïve-Approach Blackboard Solver. International Journal of

Automation and Computing, Vol. 12, No. 5.
 Straub, J. 2014. Evaluation of a Multi-Goal Solver for Use in a Blackboard Architecture. International Journal of Decision Support System

Technology, Vol. 6, No. 1.
 Straub, J. 2015. Using Swarm Intelligence, a Blackboard Architecture and Local Decision Making for Spacecraft Command. Proceedings of

the 2015 IEEE Aerospace Conference.
 Straub, J. 2014. Comparing the Blackboard Architecture and Intelligent Water Drops for Spacecraft Cluster Control. Proceedings of the

AIAA Space 2014 Conference.
 Straub, J., H. Reza. 2014. The Use of the Blackboard Architecture for a Decision Making System for the Control of Craft with Various

Actuator and Movement Capabilities. Proceedings of the International Conference on Information Technology: New Generations.

xii

ABSTRACT

This dissertation makes two contributions to the use of the Blackboard Architecture

for command. The use of boundary nodes for data abstraction is introduced and the use of

a solver-based blackboard system with pruning is proposed. It also makes contributions

advancing the engineering design process in the area of command system selection for

heterogeneous robotic systems. It presents and analyzes data informing decision making

between centralized and distributed command systems and also characterizes the efficacy

of pruning across different experimental scenarios, demonstrating when it is effective or

not. Finally, it demonstrates the operations of the system, raising the technology readiness

level (TRL) of the technology towards a level suitable for actual mission use.

 The context for this work is a multi-tier mission architecture, based on prior work

by Fink on a “tier scalable” architecture. This work took a top-down approach where the

superior tiers (in terms of scope of visibility) send specific commands to craft in lower

tiers. While benefitting from the use of a large centralized processing center, this approach

is limited in responding to failures and interference.

The work presented herein has involved developing and comparatively

characterizing centralized and decentralized (where superior nodes provide information

and goals to the lower-level craft, but decisions are made locally) Blackboard Architecture

based command systems. Blackboard Architecture advancements (a solver, pruning,

boundary nodes) have been made and tested under multiple experimental conditions.

CHAPTER I

INTRODUCTION1

Fink [1, 2] and others [3, 4] have proposed the use of teams of multiple robots for

exploring planets and other applications. These multi-robot teams generally require robots

of multiple configurations. Under Fink’s mission architecture, robots are separated in to

tiers based on their scope of influence and movement characteristics: specifically, orbital,

flying and ground-based tiers. Each tier exerts influence over craft in tiers of lesser range.

As part of the characterization of the benefits and drawbacks of distributed and centralized

control, a distributed approach is proposed and analyzed herein. Under this approach,

control decisions are made locally, based on assigned goals. The higher-range tiers also

have a role in the transmission and prioritization of data from the lower-range tiers and

may deploy (and re-deploy) the lower-tier vehicles. This chapter provides an overview of

this proposed control system, its control methodology, how it operates, the key planning

and control module, and system intra-communications. These topics are expanded upon

in subsequent chapters.

System Overview

The multi-tier, multi-craft control system must be able to effectively delegate

1 This chapter is derived from: Straub, J. (2012), Multi-Tier Exploration Concept Demonstration Mission. Proceedings

of the 2012 Global Space Exploration Conference and Straub, J. (2013), Control of a Multi-Tier Robotic Network with

Local Decision Making Capabilities. Submitted to the Journal of Sensor and Actuator Networks.

2

decision making while ensuring craft coordination in working on complex goals. A multi-

tier distributed management system is proposed which incorporates the concept of

decision-making delegation and management by exception. Like a well-implemented

human management system, each role is not attached to a specific craft. A role is assigned

to a craft but is automatically reassigned if the craft is unable to carry it out. Generally,

leader roles are assigned to craft based on their computational capabilities, visibility of and

visibility to the group of craft that they manage. However, aside from communications

constraints, there is no requirement for any particular assignment.

Multi-Tier Control Methodology

The proposed control methodology combines four key principles. First, the

participating craft are organized hierarchically. Each craft has one superior (the primary

orbital craft’s superior is the ground controllers) and may have multiple subordinate craft.

Second, goals are delegated from super craft to subordinate craft. The subordinate craft

are responsible for meeting the requirements encapsulated within the goal message and/or

advising if a goal is not achievable or completion criteria (such as a required timeframe)

will be violated. Each individual craft, third, makes its own planning and scheduling

decisions based on the combination of local constraints (e.g., power and other resource

availability), local conditions (e.g., movement speed on local terrain) and delegated goals.

Finally, a craft can task processing to (or request resources or assistance from) another craft

that is better equipped, if needed. Three of these elements, goal delegation, local decision

making and the utilization of resources from other craft, are now discussed.

3

Goal Delegation

High-level goals are assigned to the collection of craft by mission controllers. The

primary craft creates a plan for carrying out the mission by decomposing goals into sub-

goals which are delegated to collections of subordinate craft. Figure 1 depicts this

decomposition for a conceptually simple task of conducting an exhaustive survey of a

region. In this example, the craft are presumed to be homogeneous and equally distributed.

A single orbital craft delegates the survey of three grid locations (that are part of region

one) to three UAVs which each delegate the survey of six grid sectors (A-F) to their

subordinate ground craft. In this case, it is presumed that each grid sector must be surveyed

by a ground craft. This, however, is an atypical application for a multi-tier mission. The

value of the multi-tier architecture generally comes from the intelligent use of assets.

Specifically, in this case, by avoiding surveying regions at higher resolutions that are

deemed to be insufficiently interesting, based on lower-resolution data.

Survey Region 1

Survey Grid 1.1 Survey Grid 1.2 Survey Grid 1.3

Survey Grid 1.1A

Survey Grid 1.1B

Survey Grid 1.1C

Survey Grid 1.1D

Survey Grid 1.1E

Survey Grid 1.1F

Survey Grid 1.2A

Survey Grid 1.2B

Survey Grid 1.2C

Survey Grid 1.2D

Survey Grid 1.2E

Survey Grid 1.2F

Survey Grid 1.3A

Survey Grid 1.3B

Survey Grid 1.3C

Survey Grid 1.3D

Survey Grid 1.3E

Survey Grid 1.3F

Figure 1. Decomposition of an Exhaustive Survey Task.

Another scenario is presented, in Figure 2, to illustrate this. In this scenario, only

areas with features of interest are explored to higher levels of resolution. All three UAVs

are dispatched, as the orbital spacecraft identified features of interest in three locations.

However, the UAVs do not identify as many sub-goals for delegation to their subordinate

craft, as certain regions are deemed insufficiently interesting to merit ground exploration.

4

This adaptive approach conserves resources and allows craft to be devoted to as

high-value tasks as available. Note that in the scenario presented in Figure 2, survey

locations could be divided between craft or defined differently to assign work to all craft

for faster completion. The non-tasking shown in Figure 2 is designed to be illustrative of

the difference as compared to Figure 1’s exhaustive search approach, instead of a typical

approach to problem solving. However, it would be indicative of a tasking scenario if the

craft were assigned to other tasks or temporarily assigned to another group.

Figure 2. Decomposition of an Interest-Based Survey Task.

Local Decision Making

Goals are assigned via the hierarchical structure, but planning and scheduling for

each craft and its subordinates is performed locally. This allows each craft to consider its

local conditions and reported and derived (e.g., from task performance) subordinate

conditions in determining how to best achieve delegated goals. Figure 3 depicts the

decision making process for a craft with subordinates. First, it decomposes the assigned

goal into component goals whose achievement results in the goal’s achievement. For each,

the craft determines whether it should work on the goal itself and/or delegate it. For those

it will perform, it decomposes the goal into tasks and orders them within the goal and

relative to other pending tasks. For sub-goals that are delegated, subordinate performance

and condition information is used to determine goal assignment.

Survey Region 1

Survey Grid 1.1 Survey Grid 1.2 Survey Grid 1.3

Survey Grid 1.1A

Survey Grid 1.1C

Survey Grid 1.1E Survey Grid 1.2B

Survey Grid 1.2C

Survey Grid 1.2D

Survey Grid 1.2E

Survey Grid 1.3A

Survey Grid 1.3E

Survey Grid 1.3F

5

This process is continuous. For example, in the survey described previously

(Figure 2), the first sub-goal (for the UAV-level craft) was for the craft itself to conduct an

initial survey. From this, additional sub-goals (the ground surveys) were identified and

tasked. The craft also re-assesses task ordering and subordinate assignment when

assumptions (relied upon information from local conditions, global knowledge,

subordinate conditions and subordinate performance) are invalidated or violated. The

multi-tier model practices management by exception, where performance boundaries (both

positive and negative) are identified. Violation of these boundaries triggers an autonomous

investigation into its cause (e.g., an invalidated or violated assumption).

Utilization of Resources from Other Craft

One key advantage of the top-down model proposed by [1, 2] is the fact that the

majority of processing is carried out on the most capable computer in the collection of craft

(generally, on the orbital spacecraft). In the top-down model, this occurs because most

decisions (and thus the supporting analysis) are made at this node. However, in many cases

the benefits of local decision making and the benefits of utilizing the highest-performance

computer for computation can be enjoyed concurrently.

Similarly, some tests require the coordination of several craft (e.g., lifting a heavy

item or if multiple sensor capabilities are required). To service these needs, a request

message is used to ask other craft for assistance. The sending craft provides a request

prioritization, in terms of global evaluation metrics. The receiving craft compares this

prioritization to other items in its goals and tasks lists and prioritizes it appropriately

(negotiating with the requestor regarding timing, if concurrent action is required).

6

Figure 3. Local Decision Making Process for Craft with Subordinate Craft.

Combined Operations

Each control program operates in a waiting loop state. Local and group control

routines share the computational resources of the group leader craft. Action is driven by

interrupts; each triggering condition is evaluated and either immediately acted upon or

queued for later action. Each request (running and queued) is assigned a priority; any

incoming request of higher priority overrides the current request being processed. Request

priority is based on the combination of task priority and suitability metrics (closeness,

equipment suitability), as determined by the analysis module. Modules commanding

complex (and/or perilous) maneuvers can temporarily suspend interrupt processing to

Order of Tasks?

Local
Conditions

Delegate Sub-
Goal?

Delegate to
Where?

Yes

Identify Sub-Goals

Identify Tasks

No

Tasked with Goal

Task List to Execute

FOR EACH SUB-GOAL

Subordinate
Conditions

Global
Knowledge

Subordinate
Performance

Identify Target

Delegate Sub-Goal

Performance
Evaluation

Metrics

7

ensure that no intervening request causes maneuver failure. Additionally, running requests

receive a priority boost to avoid the interruption of operations which would have to be

reattempted later to process a marginally more important request.

If no other higher-priority action is tasked to the craft, random track exploration is

performed. Exploration is only undertaken, however, subject to power usage and other

operating constraints. Craft with a fixed and non-renewable fuel source (that would be

consumed by this exploration) are generally excluded from random track exploration.

Figure 4. Example mission architecture.

Group Leaders

The top of the hierarchy is filled by a leadership node (identified as ‘Orbiter’ in

Figure 4). This node is a super group leader, as the scope of its group is the entire mission.

Its upstream communications are with the human or automated controller. Aside from these

two differences, the leadership node is simply a group leader.

Figure 5. Local and group control diagrams.

8

The control module for group leader nodes (shown in Figure 5, right) has five

component modules: executive, planning, evaluation, communications and analysis. The

executive module is responsible for managing compliance with storage and other

constraints. It is also responsible for assuming emergency control (based on rules, general

objectives and assigned tasks) if upstream communications are disrupted.

The planning module evaluates goals relative to data, assertions and rules on the

local blackboard (some of which will have originated from the blackboards of superior and

inferior nodes) and delegates sub-goals to group members or subgroups. Weighted

proximity (based on the cost of the estimated path of travel), suitability (based on sensor

configuration) and task compatibility (based on other currently assigned goals and craft

sensor/actuator availability) are used to make delegation decisions.

The evaluation module reviews progress. It identifies goals that have reached an

exception condition (e.g., insufficient progress based on time or resources consumed) for

review and resolution. It also identifies lessons learned from completed and in-progress

tasks (e.g., updated cost and time values for task types) for use in future planning.

The communications module is responsible for maintaining contact with upstream

and downstream communications partners. The communications module is also

responsible for scheduling communications based on relative priority and applicable

constraints when requests upon the system exceed capacity.

Worker Nodes

A node that has no subordinates (e.g., ExBots 1 and 2 and SciBots 1 and 2 in Figure

4) is a worker node. Worker nodes perform the tasks necessary to achieve their assigned

goals autonomously and report upon completion or encountering an exception-condition.

9

The worker control module (Figure 5, left) has six component modules: executive,

planning, execution, evaluation, communications and analysis. Worker component

modules perform substantively the same as the group-level similarly named modules,

except with a local scope. The execution module is responsible for generating commands

and transmitting them to lower level hardware control systems.

Craft Control

A craft-specific control system translates each task in to a completion plan and

commands to effect task completion, which are translated to low-level commands that are

sent to hardware controllers. Each craft also has a data analysis module to identify and

prioritize data that should be placed on the blackboard of higher levels of the hierarchy.

While low level control routines and action control systems vary considerably between

craft types, the structure of the control system is consistent framework-wide.

Analysis, Planning and Tasking

The Central Analysis, Planning and Tasking (CAPaT) system is the overall director

of the long-term operations of the mission group. It runs on the leadership node, but can

run on alternate craft, if the original node is incapacitated.

Analysis & Target Identification

The leadership node CAPaT module creates sub-goals, based on mission goals,

which are communicated to group leader and worker node planning modules. Each goal

is comprised of a priority and one or more rules which, if executed, constitute the goal’s

10

satisfaction. Group leader planning modules store all active priorities for goals within their

scope of command. Worker nodes store only goals that are applicable to the craft.

The executive on each craft forwards sensed data to the analysis module for

identification, rule matching and transmission prioritization. The analysis module supplies

the executive with transmission priority (or unworthy of transmission classification) and

data to send to the superior node’s blackboard. Collected data is placed on the local

blackboard by analysis module, possibly triggering planning changes.

Planning & Tasking

The group leader planning module is responsible for plan generation for all

subordinate groups and craft. It generates a long-range plan based on current mission goals

and delegates sub-goals to each of its subordinates. Weighted task prioritization and cost

minimization values are used for goal ordering. Planning and tasking threshold values

determine how far in to the future the node plans and communicates plans to subordinates,

respectively. At the worker node level, the planning module is responsible for generating

plans for task completion. This includes determining the target visitation order, the travel

path, and the sensing schedule. It has primary responsibility for constraint compliance and

combines global task estimates (refined over time) and local correction values to generate

an estimated schedule (inclusive of an error margin).

Communications Control & Planning

The communications control and planning module is responsible for scheduling and

operating the communications subsystem based on upstream and downstream transmission

11

priorities. In group leaders, this system receives internal and subordinate requests for

upstream communications and downstream requests directed at its own and subordinate

control systems. The module calculates communications schedules (based on

communications partner availability, see [5]) for transmissions. Further, it advises

subordinate craft as to its availability for routine communications. It deals with both

upstream and downstream emergency communications in real time and adjusts the

communications schedule. At the worker level, the communications system maintains

upstream node availability schedules and general priority level information (to prevent

sending data that will be discarded due to its low priority). The communication system

accepts prioritized data and other messages from the executive and generates and executes

a transmission plan.

System Communications

System communications are based on the philosophy of management by exception

[6, 7] and data transmission by priority [8-10]. Downstream messages include goal

delegation, task time estimate updates and blackboard updates. Upstream operational

messages include blackboard data, completion and exception notifications. Upstream

communications also include responses to poll requests for task time average calculation.

Summary

The remainder of this document provides more details on the above presented

topics. Chapter II provides an overview of prior work. Chapter III discusses system

implementation and operations in greater detail. Chapter IV presents the experimental

12

design and methodology utilized. Chapter V presents and analyzes the experimental

results. Finally, Chapter VI concludes the paper and discusses directions for future work.

13

CHAPTER II

 BACKGROUND2

The work presented herein draws from multiple research areas. Fink’s work [1, 2]

defines the concept of a multi-tier mission providing craft-role and tier-level definitions. It

[1] also discusses data collection prioritization in a multi-tier environment. Sensor-web

research (e.g., [11-14]) suggests multiple ways of coordinating sensing element collections

to achieve science goals. Centralized control, bidding-based decentralized control, and

collaborative team-based approaches are discussed. Work on robotic control (e.g., [15-

18]) provides a basis for group organization and craft operation. Ground position

identification techniques, without using positioning satellites, are discussed by [19-21] and

remain an active research topic. UAV autonomous navigation work (e.g., [22, 23])

provides a foundation for aerial tier autonomous flight control.

Autonomous Robotics

An understanding of the types of robots that would be controlled as part of a multi-

tier system informs control decisions. Applications of orbital robot autonomy include

spacecraft docking (the Soviets with IGLA and KURS [24] and the United States with

ASTRO and NextSat [25]). Planning for orbital craft was demonstrated by DS-1’s Remote

2 This chapter is derived from: Straub, Jeremy. 2011. A Review of Spacecraft AI Control Systems. In the Proceedings

of the 15th World Multi-Conference on Systemics, Cybernetics and Informatics.

14

Agent Experiment [26] and EO-1’s CASPER mission planning software [27]. Health

status assessment and repair was demonstrated with DS-1’s MIR system [28] and EO-1’s

Livingstone Version 2 software [29]. Command software (AutoNav on DS-1 [30] and

software on Hayabusa [31], Rosetta [32] and Deep Impact’s impactor [33, 34]) has also

been demonstrated. These systems have lowered human staff requirements: DS-1 required

significantly less than the 100 to 300 staff required for Cassini [35], for example, using a

beacon methodology [30] (requesting aid only when required) freeing the Deep Space

Network [36] or allowing more science data to be transmitted [35].

Significant prior work has been performed on the control of unmanned aerial

vehicles. Schlecht, et al. [37] show how it can be done using only localized commuications.

Lua, et al. [38] discuss swarm-style techniques for performing a task with minimal

communications. Schesvold, et al. [39] use a partially observable Markov process for

planning, pitting short term against possible longer-term greater gain. Control of very

small UAVs, micro-aerial vehicles (MAVs) in a lozalized environment is discussed by

Michael, Stump and Mohta [40], who utilize a central system manager and solver, which

implements blackboard-like principles.

 In surface robotics, a variety of control techniques have been considered. Punzo,

et al. [41] present a swarm-based small autonomous robot planetary exploration approach.

Ambler used terrain maps including elevation and uncertainty data [42, 43] and made

decisions based on goal comparison and craft capability self-awareness [43]. The Self-

Mobile Space Manipulator (a robotic service arm) used neural networks for control [44].

Dante I’s autonomous control software operated by sensing, planning and then acting [45]:

an operator supplied trajectory was validated and then executed. Dante II, instead of

15

relying on terrain data, used servo mechanism feedback to control its walking motion [46,

47]. Rocky 7 demonstrated autonomous navigation based on controller-supplied

waypoints [48]. NOMAD used image processing of onboard camera data for obstacle

detection and terrain classification [49], creating its own traversal suitability map for both

desert [49] and polar [50] traversals. Hyperion demonstrated sun-synchronous navigation

with sliding autonomy ranging from teleoperation to full autonomy [51]: 90% of its travel

was able to be conducted autonomously [52].

Zoe’s [53, 54] science planner, science observer, instrument manager and

instrument controller components and combined satellite and local imagery [55], using an

optimistic planning approach. Scarab [56] demonstrated autonomous navigation based on

a static three-dimensional point cloud model. For Sojourner [57], on the other hand, control

was autonomous but planning was done on Earth [58]. The Spirit and Opportunity rovers’

use of autonomous driving significantly increased their movement speed [59], by allowing

the rover to navigate based on a wide-area terrain map [60]. Imagery is also used to

determine travel distance and to correct for slippage [59]. Human rover ground planning

is done with MAPGEN software [61].

Control of Robotic Systems

Individual components have been discussed. Now, focus turns to various methods

for controlling collections of robots. Prior work in this area is now presented.

The Automated Scheduling and Planning Environment (ASPEN), an artificial

intelligence-based scheduling and planning system, breaks down goals in to a sequence of

commands to send to a spacecraft [62]. It models spacecraft in terms of activities,

16

parameters and associated dependencies, temporal, resource, state variable and

reservations constraints [63]. It looks at scheduling from a repair perspective: identifying

and fixing constraint violations. An iterative repair algorithm, which uses heuristics with

associated confidence levels to order violation correction attempts, is used [63].

The Distributed Robotic Architectures (DIRA) project created a framework for

coordinating collections of robots [64]. A three-layer system where each layer

communicates with its corresponding layer in other robots was developed. The planner

breaks down goals, creates plans and coordinates teams and commitments. The executive

layer runs plans and communicates with other executive layers for coordination. The

behavior layer provides reactive control and coordinates group physical interaction.

The CASPER continuous planning system [65] extends ASPEN, adding dynamic

planning and scheduling capabilities [66]. It has a modeling language, constraint

management system, search and repair heuristics, and a temporal constraint management

system. It continuously updates plans based on real-time activity, system state and resource

information, making the system responsive to changing conditions [67].

The Closed Loop Execution and Recovery framework combines a planner’s global

perspective with a reactive executive’s responsiveness. It strikes a balance between non-

replenishable resource management and reactiveness [68].

OASIS [69] autonomously analyzes rover data, prioritizing it by interest level. It

also identifies exploration opportunities and has planning and scheduling components.

The Modified Antarctic Mapping Mission [70] had a four step planning process

consisting of selecting swaths which provide coverage of the desired area, creating a

collection schedule, creating a downlink schedule and validating the schedule’s constraint

17

and goal compliance. The mission demonstrated “overwhelmingly successful”

automation, lowered costs and increased science return.

The TEMPEST planning system uses terrain, solar visibility, Earth visibility and

vehicle state information for planning [51]. It is able to replan using an algorithm which

by propagates changes to only affected areas. It has deliberative and functional layers.

Unmanned air, ground and surface vehicles are being developed by the U.S. Army

and Navy MDARS program, the U.S. Army’s Future Combat System (FCS) program, the

DARPA’s PerceptOR program, the COUGAR program, and the U.S. Army and Navy

SPARTAN Advanced Concept Technology Demonstration program [71].

MDARS and PerceptOR are ground vehicles which can serve as a mobile launch,

landing and support platform for UAV units. SPARTAN is a water-based vehicle which

can serve as a UAV base. The FCS program incorporates UAVs as part of a network-

centric combat system. The COUGAR system has a command vehicle, long range

weapons robot, and UAV. The UAV surveys targets and confirms the missile strike. All

of these currently require some level of human control.

The Hetereogeneous Agricultural Research Via Interactive, Scalable Technology

project (HARVIST) is an intelligent system for combining multiple data sources to make

predictions about crop yield. These include satellite imagery and weather data used [72].

Sensorwebs, node networks which take action based on the detection of an event-

of-interest [73], are being implemented for various purposes [74]. For example, a volcano

sensorweb may detect an eruption with an in-volcano sensor or low resolution orbital

satellite. Based on this, the sensorweb requests observation from a planning service which

evaluates it and forwards it to a satellite for high-resolution imagery. The onboard planner

18

evaluates the request and takes the requested actions, if possible [75].

Blackboard Architecture

The MTAMA utilizes a Blackboard-style architecture. The Blackboard

Architecture utilizes a set of rules, facts and actions for decision making. Facts represent

knowledge (and can either be asserted or not) about the environment (or other matters).

Actions are, as the name suggests, activities that the system can perform or have performed.

Rules interconnect the system. A rule is triggered by having its pre-conditions met and it

can assert one or more facts and/or trigger one or more actions. Focus now turns to prior

work on Blackboard architectures and their use in robotic control.

In [76], Hayes-Roth presents the Blackboard architecture, an enhancement of the

Hearsay-II system [77]. The architecture functions like an expert system (e.g., [78, 79])

which triggers actions instead of making recommendations. It is comprised of two

blackboards (for domain and control problems). Problem solutions are arrived at by

triggering rules on the blackboard. When new information is added to the blackboard, all

rules whose activation conditions are satisfied are placed in the “Invocable-List”.

An activated rule is selected based on its rating and priority. It can create events or

modify the system state triggering other rules and/or actions. Once a rule has executed, a

cycle of assessing and selecting an activated rule continues until a solution is found or no

activated rules exist. The architecture provides documentation capabilities, as each rule

created, activated or modified and each action is recorded.

Numerous applications have demonstrated the Blackboard concept. The

PROTEAN system [80] models protein structures. It operates on top of ACCORD which

19

provides a conceptual network creation mechanism, vocabulary, a hierarchy representation

mechanism and template set for representing actions, states and events.

The SRI Procedural Reasoning System [81] is designed to solve the dual need of

attaining larger goals while reacting to environmental changes in real time. The primary

contribution of this work is the notion of running multiple blackboard-like structures

concurrently (running asynchronously and utilizing message passing to communicate).

Rice [82] presents Poligon, a language for implementing applications which follow

the Blackboard problem-solving model. It provides a syntax and framework for the

creation of a Blackboard-architecture-based system. Corkill, Gallagher and Johnson [83]

created an abstraction model to resolve the issue of implementations either being

haphazard, maximizing efficiency at the expense of flexibility or maximizing flexibility at

the expense of efficiency. Le Mentec and Brunessaux [84] modified Atome to create the

Lisp-based Atome-tr, which reacts quickly to changes via parallel processing, an interrupt

system and dynamic planning. It is comprised of the overall strategy, tasks, specialists and

multiple blackboards with state information. Asynchronous updating and summary

blackboards (containing subsets of relevant information) are also utilized.

Hewett and Hewett [85] contend that prior work on the Blackboard architectural

approach had suffered due to a lack of a common language to facilitate comparison. They

define a language comprised of four categories: actions, events conditions, state conditions

and “context generators.” All elements of the language are human-readable statements,

generally resembling “ADD <object name> to <level-name>”. To improve efficiency,

they utilize a technique for knowledge computation, a network based on RETE for

triggering and a “demon architecture” for task list maintenance. They claim to have

20

enjoyed a 52% to 65% performance enhancement in some areas.

Brzykcy, et al. [86] present an application of a Blackboard architecture to

autonomous robotics which focused on updating a perception network which acts as a

processing engine and storage mechanism for environmental features. It consisted of a

blackboard for problem solving, processing modules and control modules. The blackboard

stored a grid and vector-based maps, robot position and movement information and robots’

sensor data. Data is collected from and returned to the blackboard. Each module requires

no information about other modules to operate.

The use of a Blackboard Architecture for robotic learning is presented by Yang,

Tian and Mei [87]. The robots query the blackboard for an action to perform and return

the result back for storage in the shared database. This approach allows the robots to bypass

having to determine how to perform maneuvers that have already been explored.

Fayek, Liscano and Karam [88] present work on the use of a Blackboard

Architecture to control a ground robot. Sensors collect environmental data and a feature

extraction module translates this data into facts that are placed on the blackboard. Based

on the blackboard knowledge, user specifications, and a task decomposition routine, the

robot is commanded to perform actions which impact the environment.

De Campos and de Macedo [89] present work on the use of a Blackboard-style

architecture for autonomous navigation and vehicle control. A “parallel blackboard”

approach, with a shared memory blackboard and area-based communications approach,

was utilized. Twelve concurrent processes update and trigger off of the blackboard. The

utility of a Blackboard Architecture and a geographical information system for controlling

a group of UAVs in a multi-agent data integration and control system is considered by [90].

21

Shahbazian, Duquet and Valin [91] show how a Blackboard Architecture can be used for

data fusion. They present a naval command system and a maritime surveillance system

which combine data from numerous sensors to provide situational awareness.

Goldin and Chesnokov [92] present the use of a Blackboard-like architecture for

spacecraft control. They divide the problem into two parts: control and information. A

hierarchy is utilized for control with the system communicating with the operator and the

spacecraft and communication between the information module and the spacecraft.

Deficiencies of Prior Work

The prior work presented provides a firm foundation on which to base a new

system. It however, has serious deficiencies which limit system utility for planetary

science purposes or in a terrestrial communications-denied environment. The Blackboard

work, if it was even implemented (many papers related to this topic present theoretical and

untested improvements), was generally limited by the need to have a shared memory area.

Various ways of attempting to circumvent this (and the issues it created) were tried. These

included asynchronous updating and triggering and the use of summary blackboards. The

notion of a distributed blackboard has even been suggested.

Other work, including most of the space robotic missions, is constrained by the

significant involvement of humans in the moment-to-moment control process. While this

approach may be suitable for a single-large-craft mission, communications and staffing

limitations are quickly reached when trying to use this approach for a multiple craft

mission. Even Fink’s work, which solves many of the foregoing, suffers from a single

point of failure (the central control node) and numerous points of mission degradation

(communications links and intermediaries). To maximize mission performance in an

22

environment where access is not feasible and repair is cost prohibitive, a distributed and

link-loss-survivable control approach is required.

23

CHAPTER III

SYSTEM IMPLEMENTATION AND OPERATIONS3

This chapter provides an overview of a proposed multi-tier system which serves as

the basis for the results, analysis and conclusions presented in subsequent chapters. It

presents an algorithm for the autonomous decomposition of mission tasks, based on a

controller-provided goal. This goal, which is stated as an assertion (e.g., ‘a given element

is present in a region’ or ‘enemy forces are not present along a given route’) is decomposed

by the autonomous control software into an initial set of sub-goals assigned to group

leaders. These sub-goals may be further sub-divided and refined based on craft state and

environmental conditions.

A utility-maximization, as a function of cost, metric is applied to assign follow-on

tasks. The utility value is computed based upon heuristics that are utilized to estimate the

value of each task that could be performed. The heuristic considers the value of previous

task-type performance, the value of exploring unexplored areas and the potential that

change has occurred. Cost is estimated based on historical localized movement cost and

task performance estimates. This decision making process is performed at every applicable

level of the hierarchy, decomposing large-scale needs into progressively smaller

3 This chapter is derived from: Straub, J. (2011), A Modular, Application-Agnostic Distributed Control Framework for

Robotic Applications. Proceedings of the International Conference on Information and Communication Technologies

and Applications, Straub, J. (2013), A Data Collection Decision-Making Framework for a Multi-Tier Collaboration of

Heterogeneous Orbital, Aerial and Ground Craft. Proceedings of the SPIE Defense, Security + Sensing Conference,

and Straub, J. (2012), Multi-Tier Exploration Concept Demonstration Mission. Proceedings of the 2012 Global Space

Exploration Conference

24

assignments.

Goal Definition

High-level goals are defined by mission controllers based on required mission

outcomes. Analysis of the blackboard’s rule set is used to determine what rules must be

triggered to reach these goals. Tasking instructions are generated to trigger the rule that is

determined to be the best candidate to advance the system towards triggering a final fact.

Figure 1 shows high-level process used for system operations.

Controller-Supplied
High-Level Goals

Identify ‘Final’ Rules
Required for Goals

Data on
Blackboard

Are rules
triggered?

Choose ‘Best’ Rule
Determine What

Data is Needed for
‘Best’ Rule

Yes
No

Run Rule

No

Can This Data
Be Obtained?

Task Data Collection

Yes

Choose Next Best
Rule

NoRule Identified

End

No More Rules

Has ‘End’
Rule Run?

End

Yes

Figure 6. High-level Diagram of System Operations.

25

This process starts with the determination of final facts based on controller-supplied

goals. Final facts are facts that, if asserted, mean that the goal has been satisfied. While

multiple final facts can be identified, the assertion of any one is taken to indicate successful

completion of the mission goal. Thus, the selection of multiple final facts means that there

are multiple possible success conditions. If multiple facts must be triggered to indicate

completion, a rule that has this combination as a precondition and asserts a final combined

fact must be created.

With the final facts identified, the system begins by determining if any rules are

triggered. The system will run all triggered rules before creating data collection tasks. This

is based on the assumption that data collection is a comparatively expensive action;

however, if some rules are similarly expensive, they can be placed into a class that require

utility evaluation prior to being run.

If multiple rules are triggered, the best rule (the one that will advance the system

furthest towards a final fact) is selected and run. This process iterates until either a final

fact is asserted or no more rules are triggered.

If no rules are triggered, the best un-triggered rule is selected. Selection is based

on a combination of three estimations: the value of triggering the rule (i.e., advancement

towards final facts), the cost of data collection and the likelihood of the collected data

triggering the rule. Data collection activities that satisfy multiple rules’ inputs have their

cost split between these rules. Figure 7 depicts the best rule determination process.

All data collection activities required to trigger the selected rule are tasked at the

same time. If some required data cannot currently be collected the rule is not considered

and the next-best is selected. If no rule is identified whose pre-conditions’ data can be

26

collected, the system enters a waiting state. Once tasked data collection is complete, the

system evaluates whether rules are triggered and begins the process again. Note that data

collection may not trigger the identified rule if the data collected indicated a different-than-

predicted fact; an alternate rule may be triggered, however.

The best rule is the one that has the highest score: the likelihood-adjusted value-

units produced by the rule running divided by the cost of data collection. This process

begins by computing the value of the rule running: the percentage advanced towards a final

rule triggering. This percentage is a function of the number of facts required for the lowest-

cost chain incorporating the rule being evaluated. For example, a chain requiring five facts

of which two could be asserted by a successful run of the rule would generate a value of

40%. The projected value is determined by adjusting this based on the likelihood of data

collection actually triggering the rule. This likelihood is based on the results of previous

data collection and the difference between the current collection task and previous tasks.

Projected Value

CostLikelihoodValue

Results of
Previous Similar

Actions

Attributed Cost

Cost of Previous
Similar Actions

Difference
Current vs.

Previous

Difference
Current vs.

Previous

Other Rules
That Can Use

Data

Summed Cost of All
Data Collection for

Rule

Value as Function of
Cost Units

For Each Data Element (Fact)
Required

Figure 7. Depiction of the Score Determination for Each Rule.

27

The cost of each data collection task is determined based on the cost of similar data

collection and the differences between the current and previous tasks. The attributed cost

is based on dividing the cost between multiple rules to whose preconditions the data may

apply. For example, if three rules could potentially use the data, one-third of the cost is

attributed to each rule. The cost of all data collection required to potentially trigger the

rule is summed. The score is computed by dividing the value by the cost.

Rule 1

Fact 1

Rule 2

Fact 2

Rule 3

Fact 3 Fact 4

Rule 4

Fact 5

Rule 5

Fact 6

Rule 6

Fact 7

Rule 7

End

Rule 7

End

Figure 8. Rule Chain Leading to Final Rules.

Decomposition

In many cases, the execution of a chain of rules is required to cause a final rule to

run. Figure 8 shows an example of a chain of rules and facts. The projected value

determination approach causes rules to run in the lowest-cost path towards a final rule.

Presuming that the rules had equal data collection costs, the data needed for rule 3 would

be collected, as it is the first member of the lowest-cost chain (rule 3 > fact 4 > rule 6 >

fact 7 > rule 7).

28

Data Application to Trigger Conditions

A key part of system operations is determining how to collect the data required for

asserting a fact required to trigger a desired rule. Approaching the process from this

direction is problematic as it requires inference without supporting data. Instead, the

system assembles a catalog of collectable data and potentially assert-able facts. This

database and is augmented as craft explore. For example, once a region is identified as

existing, the possibility of performing appropriate types of data collection activities in the

region is inserted into the database. The fact (or facts) that could be produced by each

possible outcome of each prospective test is noted. For example, testing for a type of

bacteria in region 5 might result in several possible outcomes: no bacteria, low-level of

bacteria, medium-level of bacteria, high-level of bacteria and very-high-level of bacteria

present. The produced fact may satisfy conditions requiring a particular level or conditions

requiring above or below a given level.

Choosing How To Collect The Data And What Data To Collect

Multiple collection approaches can, in some cases, be used to collect the data

required to assert a fact. In these cases, a collection approach must be selected. Three

factors are considered: the extent to which the assertion conditions will be satisfied (and

the likelihood of this occurring), ensuring that collection is balanced and comparing the

utility and cost of collection.

Assertion Condition Satisfaction

Collection approaches may satisfy assertion conditions in different ways. For

29

example, bacteria presence may be asserted by directly testing for or observing symptoms

of its presence. Both approaches could satisfy the assertion conditions; however, they may

have different levels of likelihood of being successful. For example, symptoms may not

be present immediately but presence may be able to be immediately detected. Alternately,

the testing process for symptoms may be more robust and/or require fewer tasks. Figure 9

depicts how multiple collection approaches may be utilized to collect the data required to

assert a fact.

Fact 1

Collection Approach 1 Collection Approach 2

Successful? Successful?

Yes Yes

Applicable Data?

Yes

Applicable Data?

Yes

Collection Approach 2

Successful?

Yes

Applicable Data?

Yes

Figure 9. Multiple Collection Approaches to Assert a Fact.

Balanced Collection

Because data collection adds to the database of data available for collection and

data in addition to what is specifically sought may be collected, the collection process

should be balanced. It is desirable to collect data from unexplored regions and to utilize

previously unused tests. Exploration benefits must be offset by the greater likelihood of

greater fact assertion when utilizing known techniques and/or working in known areas.

30

Utility and Cost

The utility and cost of each collection approach must be compared. The utility

value includes the likelihood-adjusted utility of fact assertion and the ancillary benefits

produced. This is divided by the cost of collection and the method with the highest value

is selected. Figure 10 depicts this process.

Value of Collection
Approach 1

Probability Successful

Probability Desired
Data

Fact Assertion Utility

Exploration Utility

Likelihood

Other Data Product
Utility

Likelihood

Collection Cost

Score

Figure 10. Data Collection Approach Score Generation Process.

Evolving Cost & Utility Heuristics

The cost and utility heuristics discussed in the previous sections are too simple for

some applications. For example, different facts may have different levels of collection

time and cost. Because of this, choosing a rule based upon the percentage that it moves

the system down the shortest path with all facts being treated equally may be unsuitable.

The selection of the shortest path may also be inaccurate because of this. Two approaches

exist to solving this: a value can be assigned to each fact to characterize its relative time

and resource consumption or facts could be decomposed to the point where they are

approximately equivalent in terms of collection time and resource use costs. Evaluating

these approaches is a subject for future work.

31

Delegation Across Tiers

The collection of some data may require coordinating multiple craft from multiple

system tiers. For example, a UAV may be needed to assess paths for ground rovers to

travel to perform data collection. In this case, a decomposed goal is assigned to a leader

that further decomposes it. For this example, the UAV in a given area may be tasked with

a survey and decompose this into two tasks for itself (conduct aerial survey of a given area,

identify paths providing coverage of the area) and goals for three rovers. Note that in all

cases the Blackboard is updated with whatever data is collected.

Methodology

Distributed command architectures have been used and proposed for various

applications [16, 93-96] related to the control of multiple robots. Autonomous control is

particularly needed for space exploration due to distance and delay [95]. Group autonomy

is appropriate in numerous other applications. Any application where human craft-level

priority-setting and control is not desirable is a candidate for group autonomy. Limited

autonomy at the group level has been demonstrated [97].

Leader Node Control

The leader node is responsible for all activities of the autonomous group; however,

it delegates most of this responsibility and authority and deals primarily with high-level

planning, evaluation and communications with users or the higher-level tier.

For a small group, the global command module may directly control worker nodes;

however, to allow larger groups, group leader modules (the AI equivalent of middle

32

managers) can be introduced. No leader module is expected to have an entire craft

dedicated to it. The module co-exists with a worker command module on a worker craft.

However, the craft selected should be one that is well suited for this use. The group leader

should be easily contactable by all group members to facilitate effective management. A

hierarchy of group leaders is created to manage large-scale tasks.

Each group leader’s leadership control module is equivalent; it is the scope of

control that differentiates them. While the overall leader communicates, accepts tasking

from and reports results to system operators, lower-level leaders report results and accept

tasks from their superior group leader.

Each controller is responsible for communications with other craft. At each level,

the communications control system will, based on constraints, choose and schedule the

most important communications for escalation to higher nodes. It also schedules contact

with lower-level and peer nodes. Application-specific decision support modules assist in

prioritizing application-domain information [27]. The communications control system

combines craft control and data messages and queues them based on priority.

Each type of controller (command, group leader and worker) has defined modules

and communications paths that can be extended for a particular application. Given this, the

adaptation of a module from one application domain to another is simplified.

Worker Node Control

The control module of the worker node is responsible for local control, goal

decomposition into tasks and task execution ordering. Each craft has a default task that it

performs when no goals are pending. The group controller assigns the craft one or more

33

goals. These goals include an importance value from the analysis module of the group

controller. The local controller decomposes the goals into tasks and inserts the new tasks

into its task list based on a weighted combination of the task’s importance, proximity and

cost. The completion level of the current task is considered when determining whether to

place a new task in to the first position. The planning module at the local level is prompted

to reevaluate the current plan, based on the updated task list. Plan recalculation may result

in the robot immediately switching to a new task.

Planning Module

The planning module at the group level is responsible for defining a strategy for

completing the assigned goals. It considers constraints and assigns sub-goals, based on

recommendations from the evaluation and analysis modules, to subordinates along with an

assigned priority level. It also observes the progress of goal completion and re-assigns

goals based on relative performance, workload and other factors.

Local planning focuses on mid-to-long-term strategies for completing assigned

goals’ component tasks. The module considers task location proximity and importance

and the possibility of task-element concurrent performance. It also monitors completion

progress, reviewing and possibly updating its plan when progress and projections differ.

Evaluation Module

The evaluation module is responsible for refining task performance estimates based

on data collected during operations. The performance of all tasks conducted within the

evaluation module’s sphere of influence is considered and projected task completion costs

34

are updated based on this. The evaluation module considers the performance of particular

craft relative to the group and particular task types relative to overall comparative craft

performance. The outcome of this evaluation is a set of modifiers that are available to the

planning module to determine costs for particular approaches to task completion. The

evaluation module distributes these modifiers to all agents within its sphere of influence

and to its superior controller. The evaluation module also incorporates global modifiers

into its local modifier set for factors that the local group has no or limited experience with.

Evaluation at the local level focuses on the values that are used as part of the task

raking process. The local evaluation module continuously refines local movement costs

and costs for procedures that the craft conducts. These updated values are provided to the

local group leader for incorporation in its modifier set. Modifier information from the

group evaluation module is also used to update the local costing values where insufficient

or out-of-date local information is available.

Analysis Module

The analysis module is responsible for problem conceptualization and solution

identification. The identified solution is then developed by the planning module and

executed. Analysis focuses on the identification of objects of interest (in light of mission

objectives). The module is tasked with separating terrain features that are normal and

uninteresting from those that are unusual or of particular mission interest (e.g., indications

of water presence are of interest in Martian exploration [98]). Features of interest are

assigned a priority level (corresponding to the interest level in the context of a particular

objective and the objective’s relative mission importance). This information is sent to the

35

group’s planning module for incorporation in to the mission plan and subsequent

assignment.

At the local level, analysis focuses on how to best complete an assigned goal. For

example several sensors onboard the craft could be candidates for completing a given goal-

derived task. The analysis module considers sensor capabilities in light of goal and task

needs and identifies one or more sensors to use. These recommendations (note that the

analysis may make multiple recommendations with associated desirability ratings to allow

trade analysis) are sent to the local planning module which evaluates how to best perform

the task in light of other tasks and constraints.

Executive Module

The executive module is responsible for the operations of the group. It takes

requests from control system component modules and determines performance order. It is

also the final arbiter of group actions and constantly checks to ensure that constraints are

met, including operating requirements and craft safety constraints. Emergency response is

a component of the executive module. At the group level, emergency response primarily

deals with the loss of upstream contact. In this eventuality, the local group executive

assumes control based on currently assigned goals and mission parameters. It also takes

actions to attempt to restore upstream communications (e.g., having various subordinate

crafts attempt direct communications with the group’s upstream controller to rule out local

interference or range issues).

At the local level the role of the executive is similar. The executive takes the plan

from the planning module and turns it in to a specific set of commands that are sent to the

36

execution module to be further decomposed and sent to actuator controllers. The local

executive also deals with emergency response, constraint checking and upstream

communications failures. It overrides the planning module’s plan in any instance where a

constraint violation has occurred. In these instances, the executive may make an initial

condition-reactive maneuver and task the planning module with refining the plan (or

creating a new plan) to resolve the problematic situation.

Execution Module

The execution module is the lowest-level module and exists only as part of the

worker control system. It is concerned with the physical actions that are taken by the craft

(excepting communications actions controlled by the communications module). It accepts

instructions from the executive module and prepares commands for transmittal to the

actuator controls. It also accepts sensor input and actuator controllers’ responses and

transmits this information back to the executive.

Communications Module

The communications module at the group level is responsible for scheduling

upstream and downstream communications based on constraints and priority. It receives

inbound communications from superior and subordinate and routes them to the appropriate

module for processing. It also accepts transmission requests from modules and queues and

processes them. It controls local group communications by assigning certain time slots to

each subordinate craft for communicating non-emergency updates. Similarly, it receives

time slots that can be used for communicating updates to its superior. It will generally have

37

more requests than available transmission time and must use prioritization provided by the

analysis module (for objective priority) and the executive to determine which requests to

action (and in what order) and which to discard.

At the local level, the communications module accepts requests from local modules

for communicating with the group controller and actions them based on timeslot

availability and priority. It also handles requests from the group communications module

to attempt to communicate with the group’s upstream controller as part of a

communications restoration attempt. On a group controller, group communications

module tasks are performed by the local communications module. Because the local craft

only communicates with its (co-located) group leader, the group communications module

is the sole client of the local communications module on group controllers.

38

CHAPTER IV4

EXPERIMENTAL DESIGN AND METHODOLOGY

This chapter provides an overview of the work done to validate the multi-tier

autonomous control software’s performance and characterize the relative performance of

the two approaches for controlling robots with heterogeneous capabilities. First,

experimental goals are described. Then, system implementation is discussed. For the

decentralized control approach (discussed extensively in prior chapters), an overview is

provided to facilitate contrast between this approach and the centralized one. The

centralized approach is described in greater detail. The experimental setup is, next,

described. Finally, the testing regime utilized is presented and discussed.

Experimental Goals

Denning, et al. [99] proffer that three approaches exist to performing work in the

computing sciences. The first, based on the discipline’s roots in mathematics, is

theoretically based and involves the use of the tools of this discipline to logically

extrapolate from what is already known. The second, based on the scientific method, is

predicated on the creation and validation or refutation of hypotheses. The third, based on

4 This chapter is derived from: Straub, J. 2016. The Development of a Simulation Environment for Testing of a Multi-

Tier Mission Command Architecture. Proceedings of the 2016 IEEE Aerospace Conference.

39

the engineering design process, views computer science as a problem-solving discipline

based upon solving the needs of system users.

Denning, et al. [99], however, did not suggest that these three approaches exist or

operate in a vacuum. For each of several key areas of computing, aspects relevant to each

paradigm were identified. In practice, the latter two of the approaches can be synergistic.

The scientific method can be useful for answering key engineering design process

questions (which require empirical study) and the engineering design process can be

integral in creating the experiments and experimental conditions required to perform

analysis using the scientific method processes.

This work centers on this synergy, as it relates to decision making for the design of

multi-craft autonomous systems. Fink [2], citing several benefits (as is typical of an

engineering design process approach), has suggested that a centralized control paradigm is

best suited for multi-craft control for a variety of applications. This autonomous control

approach also closely mirrors the current commonly used manual control paradigm. While

it is not contended that there are benefits from this methodology, it is argued that a more

nuanced analysis is required to facilitate the selection of a command methodology for real-

world missions.

To this end, the contribution of this work is the analysis of numerous factors that

may, prospectively, impact the choice of command methodology. Each experiment utilizes

the prevailing centralized control approach as a null hypothesis (H0) and then evaluates it

using empirical experimentally collected data. The results are evaluated, as applicable,

both in terms of statistical significance (i.e., an evaluation of whether random behavior

40

could have caused the difference between methodologies) and practical significance (i.e.,

whether the difference has any real-world importance).

Each experiment was repeated multiple times to (1) reduce the impact of any

extraneous factors on the data set and (2) provide sufficient data such as to facilitate

meaningful statistical significance evaluation. As is commonly known, a larger data set

may facilitate the identification of smaller differences as significant (by showing that they

difference recurs over numerous experiments and thus is not attributable to randomness).

Thus, a higher level of repetition may have facilitated the identification of additional

statistically significant findings. This, of course, could be extended ad infinitum, with each

level of repetition selected yielding a suggestion that additional repetition be undertaken to

see if additionally statistically significant findings might be identified. The level of

repletion utilized was selected based on balancing multiple factors: the amount of time

required to run some of the more computationally intensive scenarios and a desire to be

able to demonstrate statistical significance for practically significant results, if applicable.

A limited pre-trial experiment was performed to characterize the level of variance present

in this area. This was used to determine the level of repetition that was implemented. To

facilitate comparison, a single level of repetition was used across al experiments

performed. In cases where data trends showed that statistical significance (at p < 0.05)

might be attainable via additional experimentation, this is commented upon in the textual

analysis. Further repetition of areas that may be of particular relevance to a various

prospective applications’ decision making process will serve as an area of future work.

The work presented, thus, informs the engineering design process of one that has

undertaken to implement a distributed multi-craft system by facilitating the quick

41

comparison of the different command methodologies relative to certain mission

characteristics. It also facilitates the rapid evaluation of decisions that have been made

under assumed conditions as iteration in the mission planning and design process results in

refinements to condition assumptions. It, thus, should facilitate a reduction in the amount

of time required to make a decision as to where to further focus the design process’s

decision making for the command methodology.

Three goals exist for the experimentation performed. First, it seeks to characterize

the performance of the Multi-Tier Autonomous Mission Architecture (MTAMA) for the

control of robots with heterogeneous movement and task performance capabilities. This is

performed via creating a testing environment that provides input that is relevant to potential

applications for MTAMA (e.g., space exploration and persistent surveillance).

Second, it seeks to evaluate the efficacy of the MTAMA control approach for

exploring an environment with limited prior knowledge (e.g., exploration of planets, moons

and asteroids). It is hypothesized (H0) that the MTAMA approach will complete the

characterization (a) faster and with (b) greater resource efficiency than the centralized

approach.

Third, it seeks to characterize the relative performance of the centralized versus the

decentralized approaches across a variety of conditions. This allows determination as to

which performs best for each scenario and the extrapolation of scenario characteristics

which lead each approach’s superior or inferior performance. This facilitates decision

making as to which approach should be used in new applications and scenarios.

42

System Implementation

Both systems have been implemented in C# using an object-oriented approach.

Extensive reuse of the code base between the two systems has occurred to facilitate the

comparison of the two approaches and minimize implementation difference impact.

A modified Blackboard approach is used in both cases, the implementation

specifics (and, in particular, the differences) are highlighted in the sections that follow. In

both cases, the system is based on a set of rules. Actions are initiated by rules which are

triggered (by their pre-conditions being met) and executed.

Centralized Control

The centralized control approach (based conceptually on [1, 2]) places all high-

level decision making in a single location (low-level decision making, such as hardware

control and obstacle avoidance, is still performed onboard each craft). The approach

presented herein augments Fink’s concept [1, 2] with the use of elements from the

Blackboard architectural approach (shown in Figure 11). The system utilizes a single

centralized blackboard that resides on the orbital spacecraft and dictates the data collection

needs and actions of the hierarchy of craft. An analysis of the data collection requirements

for triggering rules is utilized to determine which data should be collected.

43

Centralized
Blackboard

Craft 1

Craft 3Craft 2

Craft 4

Craft 5 Craft 6

Collected
Data

Data

Command

Figure 11. Centralized Control Approach.

The centralized controller devises a plan and implements a schedule that dictates

what each system-member craft does. These instructions can be delivered directly from

the orbital craft to the target craft or they can be relayed by intermediate craft (e.g., an

aerial craft relaying to a ground craft). Individual craft perform the actions assigned to

them, report task completion and send results to the orbital craft (again, this may be via

another craft). Relevant assertions and data are added to the centralized blackboard. The

blackboard evaluates this data and triggers and executes rules. The problem solving

mechanism re-evaluates the overall plan, based on the updated state of the Blackboard, and

revises goal-implementing tasks.

When changing task assignments, the centralized controller may assign one of three

approaches: immediately preempt, complete current task or send report and continue. The

immediately preempt instruction forces the craft to stop what it is doing and immediately

begin to undertake the newly assigned task. Any relevant data is immediately sent to the

central blackboard. The complete current task instruction will result in the craft completing

(or trying to complete, it will still stop if the task cannot be completed, based on its initial

44

assignment instructions) the task at hand before moving to work on the newly assigned

tasks. Finally, the report and continue approach is used if the central controller needs to

know the current progress of the task (or evaluate the data collected to-date) before

determining whether to preempt or wait for task completion. This, for example, would be

used in a case where the central controller still considers the task at hand important (though

not, now, the most important) and estimates that it is very near completion (but needs to

verify this assumption through an updated status report).

Decentralized Control

This section focuses on the differences between the centralized and decentralized

control approaches. It highlights critical elements of the previously described

decentralized control approach which inform the experimental setup and testing regime.

The decentralized approach includes a blackboard for every craft. A principal

blackboard, located on the orbital craft, contains all information relevant to achieving

mission objectives. This is comprised of most of the information present on other

blackboards throughout the system. Some information is abstracted on the principal

blackboard, as it is important to mission objectives only when aggregated with other data

(for example, an assertion may be placed on the global blackboard from the blackboard of

a subordinate craft, based on data on its blackboard).

45

Principal Blackboard Orbital Control / Actuation

Assertions, Goals & Data

Local Blackboard Aerial Control /
Actuation

Assertions, Goals & Data

Local Blackboard Aerial Control /
Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

Local Blackboard Ground Robot
Control / Actuation

Assertions, Goals & Data

A
ssertion

s, G
oals &

 D
ata

A
ssertion

s, G
oals &

 D
ata

Mission
Managers

Figure 12. Distributed Control Approach.

The system operates by moving information to and from the principal blackboard

and the blackboards of the subordinate craft. Each craft analyzes the information on its

blackboard in terms of the rules contained on the blackboard and the goals (rules which, if

triggered, constitute completion) and identifies what data to collect and/or what to delegate

as goals to subordinate craft. When data collection is complete, relevant data (and

assertions based on this data) are placed onto the blackboard of the craft that assigned the

goal to the performing craft. Data placement may trigger a chain of actions, if rules are

triggered and executed on multiple craft at levels of the mission hierarchy.

46

Experimental Setup

The experimental setup involves a simple simulation environment. A map with

application and scenario-relevant features on it was created. This is connected to an

interface layer that accepts the commands output from the control system under test and

supplies the system with relevant results. The environment operates on a turn-based system

to facilitate testing in faster-than-real-time. The testing environment, from the perspective

of the control system under test, acts as the communications layer. In actuality, it is

simulating the communications and the returned data.

Output Receiver &
Input Simulator

Map with
Features

Control
System

Under Test

Craft Database:
Location, Status
and Capabilities

Figure 13. Testing Environment.

When the system under test sends a command to the output receiver, the command

is assessed to determine what data is required from the map. This data is retrieved from

the map database. Based on the configuration of the craft that the command was issued to,

the terrain features in the area (and between the target and the craft’s current position),

other tasks assigned to the craft and other relevant details, it determines how long the task

will take and supplies final and, if applicable, interim update reports at the appropriate

times. Error can also be introduced at configurable levels. Error introduction is one of the

experimental variables manipulated. Other elements can be introduced into the scenario,

47

including temporary or permanent craft incapacitation (at adjustable occurrence levels) and

communications interference. The testing environment is depicted in Figure 13.

Testing Regime

The testing regime consists of six parts, each of which is now be described. First,

testing was performed on each of the two systems (centralized and decentralized) to

validate that they function as intended. This testing ensured that the systems being used in

subsequent phases are accurate implementations of the concepts intended. Second, testing

was performed to characterize the performance of both systems under basic scenarios

without the addition of other factors, allowing the characterization of ‘best case’

performance of each of the control approaches.

Third, system performance was characterized with the introduction of data

collection error. Forth, system performance was characterized with the introduction of

communications issues. Fifth, system performance was characterized with the introduction

of only permanent craft incapacitation. Sixth, system performance was characterized with

the introduction of both temporary and permanent craft incapacitation. Seventh, system

performance was characterized with the introduction of communications issues and

temporary and permanent craft incapacitation. Finally, system performance was

characterized with the introduction of data collection error, communications issues and

temporary and permanent craft incapacitation. The level of communications errors

(frequency of their occurrence and magnitude of their impact), craft incapacitation

(probability of a given craft being incapacitated temporarily or permanently each turn) and

data collection error (frequency of occurrence and amount of data affected) were held

48

constant throughout all of the eight experimental conditions, as the characterization of the

systems across different levels of each affecting mechanism is a topic for future work.

49

CHAPTER V

A BLACKBOARD SOLVER AND PRUNING5

 This chapter is the first of four that presents additional detail related to the system

and its evaluation (previously described in Chapters III and IV). It presents a discussion

of the development and testing of the blackboard solver that was integral to the operations

of the Blackboard Architecture-based decision making system and the use of pruning to

enhance its efficiency.

Next, an overview of the blackboard solver is provided. Then the pruning engine

is discussed. Third, results and analysis related to the use of the pruning engine are

presented. Finally, an overview of the results from this chapter is provided.

A Blackboard Solver

The contribution presented in this chapter is the use and characterization of a

blackboard solver that implements rule, fact and/or action pruning. The blackboard

solver’s importance comes from the necessity of solving (determining a path through the

blackboard’s network of rules, facts and actions) to facilitate effective use of the

Blackboard Architecture for goal-based decision making. The solver’s operations begin

with the identification of one or more goals to achieve. It then utilizes a routing algorithm

5 This chapter is derived from: Straub, J. 2015. Comparing the Effect of Pruning on a Best-Path and Naïve-Approach

Blackboard Solver. International Journal of Automation and Computing, Vol. 12, No. 5.

50

to determine what the most effective way of achieving the identified goal or goals is. A

‘best path’ is identified by the solver that serves as a guide for the lower-level decision

making of the system robots.

Select Invokable
Rule

Start

Rules, Actions and
Facts

Run Rule

Run Actions
Triggered

Mark Facts Asserted

Identify Invokable
Rules

Check to See if Final
Condition Reached

End

Yes

No

No More Actions

Actions
Triggered

Yes

More Actions

No

End
(No Solution Found)

None Available

Facts AssertedMark Facts Asserted

No

Figure 14. Naïve Solver [100].

The best path is taken to be the path that requires the lowest cost (which is a

combination of the computational cost of running rules and the costs attributable to

actions). In most systems that operate in a real-world environment, the action costs (e.g.,

the time and fuel used for moving a craft and collecting data) will dwarf the computational

costs of rule activation. However, this may not always be the case. Rules requiring

51

particularly robust analysis may take longer than actions which do not have a physical

component (e.g., triggering a message to be sent across a network). Also, the level of

concurrency possible may impact this comparison as well.

The best path is identified based on predictions related to certain elements. Facts

that are asserted can obviously be taken as given; however, the results of actions or rules

may be unpredictable (i.e., there would be little point to collecting data which is already

absolutely known; the results of data collection can be projected based on a prior

knowledge and past experiences, but surprises could and should occur). Thus, for the

purposes of solving for the best path, the outcomes of actions are predicted. A more

complex approach (a subject for prospective future work) would be to evaluate multiple

result permutations.

The naïve solver algorithm is depicted in Figure 14. It begins by selecting an

invokable rule (one with all preconditions satisfied) to run (if there is not one, the algorithm

ends with no solution found and the system performs its default action, typically

exploration, until the blackboard’s data changes or something else triggers re-solving). The

rule is then run, which may or may not assert one or more facts and/or trigger one or more

actions. Each action that is triggered may trigger additional actions (i.e., recursive chains

of actions) and assert one or more facts. Once all facts are asserted and all actions are run,

the algorithm checks to see if the designated final condition is reached. If not, the invokable

rules are identified and the process restarts with the selection of an invokable rule to run.

The naïve approach is important, in its own right, for several reasons. First, the

naïve approach is the typical method used by forward-only blackboard systems which look

for other rules to assert once a new fact is asserted. Second, even in a solving blackboard

52

system (such as the one discussed) the naïve approach serves a role in dealing with dynamic

data; thus, the impact of the pruning on it may be critical for systems that need to perform

well during periods where an assumption is violated and an update of the blackboard

network preparations for the guaranteed solver has not yet been performed. Third, there

are some network configurations where the naïve solver may outperform the guaranteed

one. Characterization of areas of superior naïve solver performance remains a subject for

future research.

A blackboard-style system was implemented incorporating the naïve solver

depicted in Figure 14 and described in the previous section. This implementation also

incorporated a pruning engine, which is described subsequently and depicted in Figure 15.

Pruning Engine

The pruning engine that was developed operates iteratively. The engine begins by

identifying facts that don’t serve as rule conditions and facts that are not currently asserted

and which cannot be asserted (e.g., there is no rule or action that asserts them). A

placeholder value is then inserted into each rule which requires one of these facts as a

precondition and they are removed from the list of facts to be asserted by rules and actions.

Rules that now cannot be asserted (e.g., those with the placeholder values) as well

as rules with empty trigger lists are next identified and removed. Finally, actions that are

no longer in any triggered list (i.e., which now cannot be invoked) are now identified and

deleted. If any change was made during this iteration of the pruning engine, the process

restarts (as the changes made may allow other changes to be made); if not, the engine ends.

53

To quantify the time required for the pruning algorithm and to test and compare the

performance of the naïve solver using pruned and un-pruned data, 500 trials were run. Each

trial began with the creation of a random blackboard configuration. The beginning

configuration included 1,000 rules, 1,000 facts and 1,000 actions. For each fact, a random

number of prerequisite facts (constrained by a maximum value parameter) was determined

and this number of facts were randomly selected for use as prerequisites. For each fact and

action, a random number of triggered facts and/or actions (constrained by a maximum

value parameter) was determined. Whether a fact or action was used was then determined

randomly for each slot. Finally, the applicable fact or action was randomly selected. A

parameter-based number of facts were randomly selected to be initially asserted.

The procedure used necessarily differed for the non-pruned and pruned trials. The

non-pruned trials required a two-step process. First, an alternate solver was run on the data

which is guaranteed to find the best path. This was performed to allow the complexity of

trials to be compared quantitatively. Second, the naïve solver was run on the blackboard.

The results of the trial were recorded and the next trial commenced.

For the pruned trials, the process began by performing the pruning of the

blackboard. This process continued iteratively until a run completed with no changes being

made. The final number of facts, rule and actions as well as the amount of time required

was recorded for each iteration. Next, the guaranteed-optimal solver was run to allow

comparison of the complexity of the solution from run to run. Finally, the naïve solver was

run and the results were recorded.

It is important to note that some of the networks produced may not be solvable or

that the naïve solver may fail to solve networks in certain cases. The solver automatically

54

gives up after an amount of time that is significantly longer than the time typically required

to find a solution.

55

Start

End

Identify Facts That
Don’t Serve as Rule

Conditions

Identify Facts Not
Currently Asserted

That Cannot be
Asserted

Remove Identified
Facts

Replace Fact
Numbers with

Placeholder in Rule
Preconditions and

Remove from Rule/
Action Trigger Lists

Identify Rules that
Cannot be Triggered

Identified Rules with
Empty Trigger Lists

Delete Identified
Rules

Identify Actions That
Cannot be Invoked

Identify Actions with
Empty Trigger Lists

Delete Identified
Actions

Was Change Made
During Iteration?

Yes

No

Remove Identified
Actions from Rule

Triggered Lists

Figure 15. Pruning Engine [100].

56

Pruning: Results & Analysis

This section presents the data collected during the experimentation previously

discussed. First, the non-pruned naïve solver results are presented in Table 1. The first four

fields present the data (number of iterations, time to populate, time to solve and the path

length determined) for the guaranteed-optimal solver. The remaining five fields

characterize the performance of the naïve solver. The find count field indicates the number

of loops of the naïve solver algorithm that were run, the rules run and acts run fields indicate

the number of rules and actions invoked, respectively. The time field indicates the total

time consumed by the naïve solver and the not found field indicates how many of the 500

trials resulted in no solution being identified. The time taken by the two solvers can be

compared by adding the populating time and solve time for the optimal solver and

comparing it to the time taken by the naïve solver. All of these time values are reported in

ticks6.

Table 1. Non-Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500 runs).

Guaranteed Optimal Solver Naïve Solver
Iter Time Solve Time Path Length Find Count Rules Run Acts Run Time Not Solved

7.9 1,197.5 23.4 8.9 33.8 28,793.6 38,039.5 5,680.3 14

The data for the pruned naïve solver is divided into two tables for ease of reading.

The first table (Table 2) provides the data for the pruner algorithm and the second (Table

3) provides the data for the solver. The pruner algorithm’s data (in Table 2) begins with

the amount of time that was required for the pruning engine to run. The next three fields

6 Ticks [101] are the smallest unit of time measured by the Windows operating system. A tick is equal to

100 nanoseconds.

57

indicate the number of facts, rules and actions, respectively, which were left when the

pruner completed.

In Table 3, the solver results begin with the data related to the guaranteed-optimal

solver (which is located in the first four fields). The remaining five fields present the data

for the naïve solver. Note that the fields in Table 3 correspond to the field in Table 1 with

the same name. Thus, the description of each field will not be repeated.

Table 2. Pruned Naïve Solver Results, Pruner Time and Results (mean values from 500 runs).

Time Facts Rules Actions

507,906.2 685.6 938.9 667.1

Table 3. Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500 runs).

Guaranteed Optimal Solver Naïve Solver

Iter Time
Solve
Time

Path
Length

 Find
Count Rules Run Acts Run Time

Not
Solved

9.6 1,317.4 20.8 11.6 14.0 12,877.8 17,747.8 2,366.0 6

The point of presenting both the guaranteed solver and naïve approaches is multi-

faceted. First, it demonstrates the impact of pruning on both. The guaranteed solver’s time

commitment for a non-preprocessed network is actually a combination of the preparation

time (i.e., the second column of Table 1 and Table 3) and the solve time (third column).

This is still less than the naïve solver – across both conditions; however, it is notable that

the pruning improves the naïve solver’s performance significantly.

Analysis of the data presented in the previous section demonstrates the value of the

pruning process to the naïve solver (a significant reduction in solver runtime). While the

performance of the guaranteed-optimal approach does not change significantly (the number

of iterations and path length increase slightly, as does the population time and the solve

58

time decreases by approximately 11%), the impact on the naïve solver is more pronounced.

Comparing Table 1 and Table 3 shows that naïve solver now only requires 41.3% of the

number of iterations that it did previously to generate a solution and it runs only 44.7% of

the rules and 46.7% of the actions of the non-pruned approach. The number of instances

where a solution could not be identified drops from 2.8% to 1.2%. Perhaps most

importantly, the amount of time required decreases to 41.7% of the non-pruned approach.

The pruner, however, is computationally intensive to run, requiring an average of

507,906.2 ticks. This is, of course, much more than the average savings per solution

generated (of 3,315.4 ticks). Thus, to justify the cost of the pruning, at least an average of

153.2 uses of the solver (based on dividing the amount of time required to run the pruner

by the average savings per solution generation) must be run for each pruning. As the solver

will typically need to be repetitively run while the blackboard system is operating

(regenerating the optimal path after data on the blackboard changes), this may be a

worthwhile tradeoff for many applications. The initial pruning, under the random model

presented is (of course) the most expensive and, thus, even with changes to the blackboard,

the benefit from the initial pruning may be enjoyed across numerous runs (with the re-

pruning runs taking significantly less time due to having to do less work).

To demonstrate the lower level of cost that may be enjoyed by subsequent prunings,

the amount of time required for the first three iterations of the pruner was collected across

five trials. In each of these trials, the third pruner run did not produce any additional results

(though this would not always be the case). This is presented in Table 4. From this, it is

clear that re-prunings (which benefit from the previous prunings performed and, thus,

require less work) are less expensive (requiring approximately one-half of the time of the

59

initial pruning).

Table 4. Comparative Cost of Pruning Iterations.

 Iteration 1 Iteration 2 Iteration 3

Max (ticks) 352841 183148 193167

Min (ticks) 293395 157702 152937

Average (ticks) 332,487 170,356.8 170,268.4

Percent 49.4% 25.3% 25.3%

Overview

This chapter has provided an overview of the research contribution of using and

characterizing a blackboard solver and pruner. The solver is a key component of the

creation of a goal-driven blackboard system and the pruner increases its efficacy, for some

applications, and operating efficiency.

The speed enhancement provided by solving a pruned network was compared to

the cost of pruning, demonstrating that approximately 153 uses of the pruned network

would be required to cost-justify the pruning solely on this metric. The notion of a reducing

re-pruning cost was discussed (allowing this initial cost to be spread over extended

operations with a significantly lower cost level being incurred for subsequent re-prunings).

However, the value of shifting time from periods of critical demand to off peak times is

not considered from this purely quantitative analysis.

Pruning is an activity that can be conducted on an as-resources-are-available basis,

while the benefit can be enjoyed (potentially) during times where performance is critical,

such as decision making for a cyberphysical system. The comparative value of the two

types of processing time consumed should, thus, also be taken into account as part of the

analysis process. This relative value is (of course) application-specific and, thus, must be

considered in the context of a prospective use of the Blackboard Architecture.

60

CHAPTER VI

SYSTEM OPERATIONS AND THE NEED FOR MAINTENANCE7

The previous chapter discussed pruning and demonstrated its utility, in general, for

blackboard systems. The contribution of this chapter is the characterization of pruning’s

efficacy for the maintenance of robotic systems. This is important as, due to the nature of

a Blackboard Architecture-based system for robot control, over time more and more

information is added to the blackboard network and some existing or new information is

or becomes irrelevant to blackboard solving. In the absence of regular maintenance to

resolve this, as progressively more facts are discovered and assertions added, the speed of

the system may decline. Searches will take longer, due to the amount of things to search;

time-constrained searches may miss identifying critical facts or assertions, due to being

forced to terminate before reaching them.

It is thus desirable to remove stale, obsolete or unused data and assertions from the

blackboard and/or to archive data and assertions that, while still potentially relevant, do not

appear to be likely to be used. The former can be identified by being: (a) still present after

an inherent time limitation on the data, (b) supplanted by later or directly conflicting data,

(c) not relevant to any rule that could be triggered (e.g., data may have been added to

support a rule whose trigger condition can now never be activated due to another trigger

7 This chapter is derived from: Straub, J. 2013. Automating Maintenance for a One-Way Transmitting Blackboard

System and Other Purposes. Accepted for publication in Expert Systems.

61

condition being shown, through data collection, to be false) or (d) too old to be relied upon,

for data that is likely to change occasionally. The latter is identified by not being relevant

to any rule on the best or top-few (the exact setting can be customized as a parameter) next-

best rules.

A System for Performing Ongoing Maintenance

A system for performing this ongoing Blackboard maintenance, autonomously, is

now presented. The system can be activated at regular intervals. The exact interval is

configured as a system parameter; however, it is expected that it will be run several time

during each expiration period (the amount of time that an item on the blackboard is not

rechecked for after being checked and stamped) so that only a fraction (ideally 1/3rd to

1/5th) of the blackboard items will need to be checked during each run.

Each run will assess all items on the blackboard by iterating through them. Each

item on the blackboard’s status will be assessed as having one of the following five

statuses: current, stale / obsolete, unused, unlikely to be used, or used. The actions

performed are different based on what status the item is assigned. Figure 16 presents an

overview of the path taken for each possible item-status.

Current – The current status means that the item has been checked within the

expiration period and does not need to be checked again at this time. When a current item

is identified, no further actions are taken. The next item on the board is selected and

processed.

Stale / Obsolete – Stale or obsolete items meet one of several conditions. They may

be (a) data that has a definite lifetime, such as the presence of a moving robot in a particular

62

grid location, (b) data that has an implicit lifetime, such as the amount of an evaporating

substance that remains, (c) data that changes occasionally but at unknown interval, such as

weather conditions or (d) data that is replaced by different, more current data.

For each fact / assertion / rule
 on blackboard:

Begin Maintenance

End Maintenance

Mark as Stale /
Obsolete

Status?

Evaluate Item

Mark as Unused
Mark as Unlikely to

be Used
Mark as Current

Stamp Last
Reviewed as Current

Date/Time

stale / obsolete unused unlikely to be used used

Archive to stale data
database

Archive to unused
database

Archive to ancillary
database

Update don’t collect
list with element

Update don’t collect
list with element

Select first/next
item on blackboard

Items Remain?

Yes

No

Update available
element list with

element

current

Figure 16. MTAMA Multi-Level Blackboard Architecture.

63

When data of each of the first three of these types is inserted into the blackboard, it

is given a ‘current until’ expiration value. The next time the data is checked after this

expiration it is removed from the blackboard. The forth is checked for during this process

by looking for data with the same definition but with different timestamps. If duplicates

are found, the older piece of data is marked as stale/obsolete and removed from the

blackboard. Removal is effected by marking it as stale/obsolete and archiving it to the stale

data database. The data can be retained in archive for a configurable period of time to

facilitate system debugging (e.g., to determine why a rule executed, after the data later

expires).

Unused – Unused data and assertions are data and assertions that don’t meet the

activation conditions for any trigger-able rule. Rules are considered able to be triggered if,

for each required activation condition (or a collection of conditions meeting one triggering

combination): (a) data could be collected to meet the activation conditions (e.g., it is not

known that the data collection in question would return an non-applicable result), (b)

another rule exists to assert the assertion that is required to trigger a give rule, (c) data

already exists to meet the activation condition or (d) the required assertion has already been

asserted. Thus rules become not able to be triggered if it is found that a critical data element

is not as expected or a critical assertion cannot be asserted (due, for example, to the removal

of another rule or the removal of an starting assertion for which there is no way to reassert).

Data and assertions that are not needed (as described above), rules that produce

only unneeded assertions and rules that cannot be activated (as described above) are

considered unused. When an item is determined to be unused it is marked as such and

archived to the unused database. A list of collection restrictions (the ‘don’t collect’ list) is

64

updated for data elements that are removed in this way to prevent effort from being wasted

on trying to collect non-perishable data that will not be useful. Note that this list is checked

and items removed from it if new rules are added that would make the data useful. In these

instances, the data could be retrieved from the archive, if still present.

Unlikely to be Used – items are deemed unlikely to be used if they are not needed

for items in the currently selected best path or one of the near-best paths. Items are deemed

to be needed if they are required as part of a chain that meets an activation condition. Note

that rules that end in required assertions are retained after the needed assertion has been

asserted in case the assertion should be removed and be required to be re-asserted to meet

the rule activation conditions. All other elements that are not needed for one of these paths

and do not qualify as stale / obsolete or unused are deemed to be unlikely to be used.

However, because conditions could change rendering the currently selected best and near-

best paths untenable, these elements are retained in an ancillary database (items are not

removed from this database, except in the case of storage limits being exceeded). Data

items meeting this criteria are listed in the don’t collect list to preclude effort being spent

to recollect already existing data. They are also added to the available element list which

is checked occasionally as part of the process of ensuring that the best and near-best paths

are still actually the most desired paths and/or when best / near-best paths are rendered

untenable.

Used – Elements that are used are needed by a rule that is in the currently selected

best path or one of the paths identified as a near-best path. Used data is stamped with a

new expiration date/time for this status (based on the expiration period) and left on the

blackboard. The next item is then selected and processed.

65

Quantitative Analysis of Maintenance System

The data presented in the previous chapter demonstrated the computational savings

afforded by using pruned data. This is, of course, offset by the cost of actually performing

the data pruning required. This chapter considers the impact of different blackboard

configurations on the efficacy of pruning in the context of autonomous control. It presents

data from varying the initial number of rules, facts and actions as well as the number of

associations between the rules, facts and actions.

First, the number of rules is varied with six different levels between 750 and 2000

rules presented. Table 5 presents the results for non-pruned operations with these rule

levels. Table 6 presents the impact of pruning on operations. Then, Table 7 facilitates

comparison by presenting the performance of the pruned system as a percentage of the non-

pruned system.

Table 5. Non-Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3 Associations, times in tics).

Rules

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 5.0 739.8 6.9 5.8 1.2

1000 9.6 1731.5 17.1 12.7 1.3

1250 14.4 2974.9 40.1 25.6 1.6

1500 12.1 3272.0 23.0 15.1 1.5

1750 10.4 3102.2 18.3 11.2 1.6

2000 8.9 3283.9 17.7 9.8 1.8

Table 6. Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3 Associations, times in tics).

Rules

Pruning

Time #Facts #Rules #Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 384944.1 573.6 703.5 668.3 6.5 692.9 8.9 7.6 1.2

1000 503849.3 683.6 939.1 666.2 10.2 1338.2 21.2 14.3 1.5

1250 630555.8 768.0 1173.3 668.0 12.1 2043.9 28.6 15.6 1.8

1500 763121.7 826.6 1406.6 668.5 10.4 2172.1 22.9 11.0 2.1

1750 889030.1 873.7 1640.4 666.5 9.5 2348.7 20.6 10.6 2.0

2000 1016860.7 907.1 1878.9 668.6 8.5 2420.9 18.1 8.3 2.2

66

Next, the number of facts is varied. Five levels of initial fact counts are used (the

1000-level is omitted as this data has already been presented in Table 5 and Table 6). Table

8 presents the non-pruned system performance, while Table 9 presents the performance of

the system which utilizes pruning. Table 10, again, compares the two, presenting the

performance of the pruned system as a percentage of the non-pruned system.

Table 7. Pruned Results as Percentage of Non-Pruned for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3

Associations).

Rules

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 131.0% 93.7% 129.9% 132.3% 98.2%

1000 107.1% 77.3% 123.5% 112.3% 110.0%

1250 84.2% 68.7% 71.5% 60.9% 117.4%

1500 86.4% 66.4% 99.6% 73.0% 136.4%

1750 91.5% 75.7% 112.7% 94.4% 119.4%

2000 95.2% 73.7% 101.9% 84.8% 120.1%

Table 8. Non-Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3 Associations, times in tics)

Facts

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 12.4 2245.5 26.3 17.2 1.5

1250 4.9 908.9 5.5 5.1 1.1

1500 4.4 955.4 5.5 4.8 1.1

1750 3.8 820.5 4.7 4.5 1.0

2000 3.7 1368.2 7.1 4.4 1.6

Now the number of actions is varied, again using the base values of 1000 facts and

1000 rules and 3 associations. Table 11 and Table 12 present the non-pruned and pruned

data, respectively. Table 13 presents a comparison between the pruned and non-pruned

67

systems, with the performance of the pruned system as a percentage of the non-pruned

system computed.

Table 9. Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3 Associations, times in tics)

Facts

Pruning

Time #Facts #Rules #Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time

per Unit

Length

750 404473.0 603.6 937.1 664.4 10.4 1430.0 23.2 12.6 1.8

1250 595891.3 724.9 938.2 664.2 7.0 992.9 14.9 7.8 1.9

1500 683227.3 747.1 938.8 667.7 5.5 760.3 12.2 5.8 2.1

1750 768395.4 753.2 937.9 667.1 4.5 652.8 6.2 5.2 1.2

2000 853479.1 746.5 937.9 666.8 4.3 623.2 6.4 5.0 1.3

Table 10. Pruned Results as Percentage of Non-Pruned for Number of Facts Varied (1000 Rules, 1000 Actions, 3

Associations)

Facts

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 83.4% 63.7% 88.1% 73.3% 120.3%

1250 144.5% 109.2% 271.7% 152.5% 178.1%

1500 125.3% 79.6% 220.8% 119.8% 184.2%

1750 118.2% 79.6% 132.4% 115.5% 114.6%

2000 116.5% 45.5% 89.7% 113.1% 79.3%

Table 11. Non-Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3 Associations, times in tics)

Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 6.4 1241.5 8.7 6.4 1.4

1250 8.8 1536.6 12.8 10.2 1.3

1500 8.1 1422.4 10.5 8.7 1.2

1750 7.2 1413.8 9.8 7.2 1.4

2000 7.6 1523.7 12.2 9.0 1.3

68

Table 12. Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3 Associations, times in tics)

Actions

Pruning

Time #Facts #Rules #Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time

per Unit

Length

750 454137.7 664.3 938.4 500.7 9.5 1285.3 22.7 12.9 1.8

1250 552255.1 696.9 937.3 833.9 10.4 1362.4 22.5 13.5 1.7

1500 594598.9 709.6 937.5 999.7 10.5 1378.6 14.7 12.2 1.2

1750 650037.8 722.3 938.9 1166.6 10.5 1398.7 22.2 11.9 1.9

2000 694694.5 729.1 937.6 1336.2 11.4 1578.2 26.9 16.2 1.7

Table 13. Pruned Results as Percentage of Non-Pruned for Number of Actions Varied (1000 Rules, 1000 Facts, 3

Associations)

Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 148.1% 103.5% 260.4% 200.3% 130.0%

1250 118.0% 88.7% 175.9% 131.9% 133.4%

1500 130.3% 96.9% 140.1% 140.4% 99.8%

1750 146.3% 98.9% 226.6% 164.4% 137.9%

2000 150.6% 103.6% 221.2% 179.0% 123.6%

The level of association (the number of other object types associated with each

object) is now varied. Table 14 and Table 15 present association levels of 2, 4 and 5

(adding to the common association level of 3 that has been used throughout the other

tables). Table 16 presents the performance of the pruned systems as a percentage of the

non-pruned systems.

Table 14. Non-Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000 Actions, times in tics)

Associations

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

2 6.8 752.6 6.6 5.7 1.2

4 9.2 2015.7 24.1 16.1 1.5

5 12.4 3364.0 49.9 27.9 1.8

69

Table 15. Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000 Actions, times in tics)

Assns

Pruning

Time #Facts #Rules #Actions

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time

per Unit

Length

2 272993.6 443.3 832.9 499.0 6.2 483.0 7.1 5.2 1.3

4 701340.2 817.6 969.8 749.0 13.6 2593.3 47.3 27.4 1.7

5 874828.3 898.6 981.8 798.6 12.4 2953.9 38.8 25.6 1.5

Table 16. Pruned Results as Percentage of Non-Pruned for Number of Associations Varied (1000 Rules, 1000 Facts,

1000 Actions)

Associations

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

2 92.0% 64.2% 107.1% 92.3% 116.1%

4 147.4% 128.7% 196.4% 170.4% 115.3%

5 99.9% 87.8% 77.7% 91.5% 85.0%

Finally, the impact of concurrently manipulating multiple variables is considered. In Table 17 and Table 18, the

number of rules, facts, actions and associations is varied concurrently. Table 17 presents this data for non-pruned

systems, while Table 18covers systems using pruning.

Table 19, again, presents the performance of the pruned system as a percentage of

the non-pruned system.

Table 17. Non-Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics)

Rules Facts Actions Associations

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 750 750 2 6.5 516.2 6.2 5.6 1.1

1000 1000 1000 2 6.7 694.1 6.6 5.8 1.1

1250 1250 1250 4 9.4 2741.4 30.6 16.5 1.9

1500 1500 1500 4 10.1 3244.0 20.7 14.1 1.5

1750 1750 1750 5 9.3 4255.4 30.9 16.7 1.9

2000 2000 2000 5 10.2 5506.9 56.4 27.0 2.1

70

Table 18. Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics)

R
u

le
s

F
ac

ts

A
ct

io
n

s

A
ss

o
ci

at
io

n
s

P
ru

n
in

g
 T

im
e

#
F

ac
ts

#
R

u
le

s

#
A

ct
io

n
s

A
v

er
ag

e

It
er

at
io

n
s

A
v

er
ag

e

T
im

e

S
o

lv
e

T
im

e

P
at

h
 L

en
g

th

T
im

e
p

er

U
n

it
 L

en
g

th

750 750 750 2 152151.0 331.8 625.8 374.0 5.5 335.0 9.1 5.3 1.7

1000 1000 1000 2 271295.9 442.2 833.5 500.5 6.2 452.2 8.3 5.4 1.5

1250 1250 1250 4 1130483.6 1027.6 1212.7 938.9 12.9 2987.3 46.0 25.2 1.8

1500 1500 1500 4 1650845.5 1234.3 1455.8 1124.1 11.9 3425.7 45.5 24.8 1.8

1750 1750 1750 5 2832415.0 1572.5 1718.0 1399.1 14.2 6112.9 56.2 31.5 1.8

2000 2000 2000 5 3722875.8 1794.7 1965.1 1598.7 14.4 7354.6 76.0 38.7 2.0

Table 19. Pruned Results as Percentage of Non-Pruned for Rules, Facts and Assertions Varied Concurrently

Rules Facts Actions Associations

Average

Iterations

Average

Time

Solve

Time

Path

Length

Time per

Unit

Length

750 750 750 2 84.7% 64.9% 147.3% 94.2% 156.4%

1000 1000 1000 2 92.7% 65.1% 124.4% 93.1% 133.6%

1250 1250 1250 4 136.6% 109.0% 150.5% 152.6% 98.6%

1500 1500 1500 4 118.4% 105.6% 219.9% 175.9% 125.0%

1750 1750 1750 5 152.9% 143.7% 181.6% 189.1% 96.1%

2000 2000 2000 5 141.2% 133.6% 134.7% 143.4% 93.9%

Network Impact on Pruning Efficacy

The results of the use of pruning at various numbers of rules, actions and facts and

with different levels of associations are quite varied. The average time to prepare the

network (a comparatively expensive process) is generally less with the use of pruning. This

is the case with all levels of rules and 17 of 25 cases, overall.

The average path length tended to be generally more for pruned data, with 16 of the

25 cases requiring more iterations of solving for the pruned condition. A different group

of 16 of the 25 cases also require a greater, on average, number of iterations, as well. In

many cases, however, the differences between the two were not statistically significant at

71

p<0.05. In only 5 of the 20 cases did the pruning approach generate a faster average solve

time; however, given the correlation between path length and solve time, this is not

unexpected. The time per unit length was also, on average, higher for the pruned version;

however, in many cases these differences were again not statistically significant ay p<0.05.

It is, thus, clear that the principal value of the pruning approach, generalizing across

all conditions, is the reduction in the preparation time of the network (which can be two

orders of magnitude greater than a single solution). This is visually depicted in Figure 17

which compares the pruned and non-pruned performance across the four experimental

conditions previously discussed. Additional analysis of the variations between the

conditions and between specific runs will serve as a subject for future work.

Figure 17. Comparison of pruned and unpruned performance on network preparation time for solving: varying number

of rules (upper left), number of facts (upper right), number of actions (lower left) and number of associations (lower

right). The X-axis represents the number of rules, facts and actions and the Y-axis represents the preparation time.

0

1000

2000

3000

4000

0 500 1000 1500 2000 2500

Unpruned Pruned

0

1000

2000

3000

0 500 1000 1500 2000 2500

Unpruned Pruned

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

Unpruned Pruned

0

1000

2000

3000

4000

0 2 4 6

Unpruned Pruned

72

Comparing the Impact of Different Types of Pruning

Up until this point a combined pruning strategy has been considered. Under this,

previously described, iterative strategy, rules, facts and actions are pruned and each pruning

action may result in more objects qualifying for pruning. This section considers the impact

of pruning only a subset of the object types. The results for tests, which each eliminate one

type of pruning, are presented in Table 20.

Of the four, eliminating only fact pruning (condition 1) results in the best

performance, in terms of several key metrics, each of which will now be discussed. It

generates a significantly better (nearly 20% reduction in time) performance in terms of the

average time of populating the network for solution determination. Its time per unit length

is also approximately 15% lower than the base condition. Rules and actions must be

traversed to determine the nature and best paths through the network; however, facts are

referenced only when implicated by a rule or action. Because of this, the benefit of their

reduction stems primarily from reducing the time cost of fact access (from having a smaller

number to maintain and search, etc.). Pruning rules and actions, on the other hand,

eliminates vestigial components of the network. This rule and action pruning provides the

search benefits for the relevant object type as well as reducing the level of facts implicated

(and the associated search and access costs).

73

Table 20. Impact of Not Pruning Certain Object Types.

Condition P
ru

n
in

g
 T

im
e

#
F

ac
ts

#
R

u
le

s

#
A

ct
io

n
s

A
v

er
ag

e

It
er

at
io

n
s

A
v

er
ag

e

T
im

e

S
o

lv
e

T
im

e

P
at

h
 L

en
g

th

T
im

e
p

er

U
n

it
 L

en
g

th

Base (#0) 0 1000 1000 1000 8.0 1418.2 11.2 8.7 1.3

No Fact Pruning (#1) 386811.9 1000 939.2 669.7 8.2 1156.3 11.5 10.3 1.1

No Action Pruning (#2) 402558.5 702.0 1000 1000 10.0 1608.0 25.3 12.2 2.1

No Rule Pruning (#3) 387782.7 704.4 1000 664.0 9.8 1368.4 16.5 12.3 1.3

The elimination of only rule pruning (condition 3) is marginally better than the base

case, with an approximately 4% decrease in network population time and a similar time

per unit length. Eliminating action pruning (condition 2) – which also, largely, prevents

rule pruning due to network properties – actually causes the pruning system to

underperform the base (non-pruning approach), resulting in it taking 13% longer to

populate the network and requiring 62% more time per unit of length.

Summary

This section has presented the research contribution of characterizing the

enhancement to performance that can be provided by the pruning of a blackboard network.

Specifically, it has demonstrated the value of pruning, in particular for the network

preparation time, across numerous different experimental conditions (including conditions

that combined multiple experimental variables). In 17 out of the 25 experimental

conditions, pruning decreased network preparation time. Combinations of experimental

variable also demonstrated enhanced (as compared to the base condition) performance.

Combined action and rule pruning provided a 15% reduction in network preparation time,

while the combination of fact and action pruning reduced preparation time by 4%. In some

74

cases, however, pruning was not effective at reducing network preparation time (and

actually, in some cases, increased it). Combined fact and rule and fact pruning, for

example, under-performed the base condition: it took 15% longer to prepare the network.

This chapter has, in addition to considering the benefits and drawbacks related to

network preparation time, demonstrated that pruning has performance impacts on multiple

other areas. For all of the areas of impact (network preparation and otherwise), it has

characterized the areas where pruning is and is not justified, based upon the benefits

provided.

75

CHAPTER VII

CREATING A DISTRIBUTED BLACKBOARD SYSTEM

THROUGH THE USE OF BOUNDARY NODES8

Focus now turns to another aspect of creating a distributed blackboard system that

is suitable for robotic command. The contribution of this chapter is the introduction and

characterization of the use of boundary nodes to facilitate distributed blackboard

operations. The proposed boundary node-based system is compared to other data

synchronization and replication approaches including hierarchical, full replication, limited

replication and centralized blackboard approaches.

This work was conducted in the context of the aforementioned robotic command

system which is utilizes a collection of facts, rules and actions which are used to solve

problems. A problem’s solution (i.e., a medical diagnosis or scientific assertion) is

generally determined by reaching a final fact (that represents a complete satisfaction of

system requirements); however, in some cases, a system review mechanism (which

characterizes the current state of the system after a period of time or an event) may be used.

Fact-rule-action chains may span the various robots of the system. This may result

in a node requiring remote-to-node information to its trigger rules. New information from

a given node may also be needed for decision making on other nodes. A system for

8 This chapter is derived from: Straub, J. 2013. A Distributed Blackboard Approach Based Upon a Boundary Rule

Concept. Journal of Intelligent & Robotic Systems (in press, initial online publication Sept. 30, 2015).

76

managing data communications between nodes is, thus, needed. Boundary nodes serve as

both logical encapsulations of data as well as replication / synchronization points between

the robots in the multi-robot system.

This chapter presents an analysis of the benefits and trade-offs of multiple

approaches of synchronization between nodes in a distributed multi-node blackboard

system. It continues with a discussion of the creation of a distributed multi-node

blackboard system. Then, the use of boundary nodes for this distributed system is

discussed. Next, the system is analyzed qualitatively. Following this, the quantitative data

that has been collected from experimentation is presented and discussed.

Creation of a Multi-Node Blackboard System

For robotic applications, it is desirable under certain circumstances (Chapter VIII

discusses when this is the case) to spread decision making across multiple robots via the

use of a multi-node system. For this work, an adaption of the Blackboard Architecture is

used for this purpose. To expand the blackboard/solver-based system that was discussed

in the previous chapter to a multi-node system, several requirements exist. The data

communication mechanism needs to be able to use low-bandwidth links effectively

(without having system operations delayed by waiting for queued data transfer for extended

periods of time), support peer-to-peer collaboration and interaction and facilitate the

solving of problems where the data required would be on multiple nodes.

The need for low bandwidth utilization is driven by several factors, which may exist

individually or in combination. Many heterogeneous craft applications will have

significant bandwidth limitations between various points in the craft collection. This may

77

be due to craft operating at the edges of communications range, the need to transmit data

products for storage, backup or additional analysis (meaning that the transmission of excess

data would be constraining the ability to maximize the amount of higher-value data that

was moved over a given link capacity) or link design limitations. The use of boundary

nodes were identified as one prospective approach to solving this problem.

Boundary Node-Based System

Facts which are boundary objects (boundary objects are discussed in [102]) can

serve to encapsulate areas of a blackboard (such as was described in [103]); alternately,

they can serve to signal between different areas of the multi-node system. In the latter case,

multiple boundary facts could be shared between the same two nodes to allow different

types of collaboration, to facilitate the dissemination of different types of information or to

solve different types of problems (or subsets of a single large problem).

Boundary facts have several characteristics:

 They are shared between the blackboards of two nodes (a multi-node boundary

fact is considered as a subject for future work). Either blackboard can change the

status of the fact (subject to the business logic of the system developer) and the

other blackboard is notified.

 They are non-directional. Subject to the business rules of the two systems, the

assertion or de-assertion of this fact can be performed by either blackboard and

this will serve to fulfil (or not) the requisite input requirements for nodes which

indicate the boundary fact as an input pre-condition.

78

 They can be final facts. This may be of little importance in some systems;

however, if the system will continue operations (with a refined focus, etc.) the

replication of the results of the first problem-solving process will be required.

 They can serve as inputs or outputs of rules and presumed or actual outcomes of

actions on either (any) blackboard they are part of.

 They are unique and distinct within the system. Each is assigned a globally

unique identifier (GUID) and this identifier is associated only with a single

boundary fact.

 Multiple boundary fact links between nodes’ local blackboards can be created;

each can have its status modified separately.

Blackboard 2Blackboard 1

Blackboard 3

Fact

Fact

Rule

Action

Fact Fact

Fact Fact

Fact

Rule

Fact

Rule

Fact

Rule

Fact

Fact

Rule

Fact

Fact

Fact

Rule

Action

Fact

Fact Fact Fact

Fact

Rule

Fact

Rule

Fact

Rule

Fact

Rule

Fact

Fact

Fact

Action

Fact

Fact

Rule Rule

Fact

Rule

Fact

Fact

Rule

Fact

Key:

Boundary Fact

Final Fact

Blackboard Local Objects:

Fact

Fact Action Rule
Fact Action Rule

Fact Action Rule

Key:

Rule Triggered

Fact Asserted

Action Triggered

Fact

Action

Rule

FactFact

Figure 18. Blackboard spanning multiple nodes using boundary facts.

An example of a multi-blackboard system (MBS) using boundary nodes is

79

presented in Figure 18. Note that the links over which the status updates occur are left to

the discretion of the system developer and may vary significantly from application to

application.

Given the wide variety of system types that could make use of this architecture,

concurrency management is largely left to the system implementation developer. For the

purposes of testing, a limited locking mechanism (to prevent duplicate updates) was used.

This is sufficient to allow demonstration and characterization of the concept. However,

the planned robotic system will use a resultant-set-of-changes determination mechanism to

facilitate system operations over an extended period with intermittent connectivity between

any given set of nodes.

This work has been performed in the context of evaluating the MBS boundary node

concept for use by a planned robotic system. This system will include multiple craft with

heterogeneous movement, sensing and actualization capabilities.

Data Collected

To characterize the comparative performance of the proposed distributed

Blackboard system, numerous multi-blackboard scenarios were created. Each scenario

was randomly generated, based on the creation of a set number of agents (each with a local

blackboard). The blackboards are populated randomly with a collection of facts and

linking rules and actions. For the purposes of this testing, actions are presumed to always

assert the projected output facts (as introducing a probabilistic model for this would serve

to obscure the comparison of the distributed blackboard architectures). Each blackboard

was populated with 1,000 facts and 1,000 actions and rules. Of these local facts, 400 were

80

initially marked as asserted. One-hundred of these facts were identified as final facts;

three-hundred facts per blackboard were identified as boundary facts and a corresponding

linked fact was inserted elsewhere.

The performance of the different distributed blackboard approaches (the version

proposed herein, full replication, limited replication, single central blackboard and

hierarchy) is characterized via running ten trials for each of four different scenarios (2 agent

/ blackboard, 3 agent / blackboard, 5 agent / blackboard and 10 agent / blackboard). For

the hierarchy approach, arbitrary hierarchies were established; these are shown in Figure

19, Figure 20, Figure 21 and Figure 22. Each trial begins with the aforementioned

randomly asserted initial facts. The agent continues running the triggered actions and rules

until a final rule is reached (or a set number of iterations has completed without any final

fact being reached – these non-solutions are discarded as they are not useful for comparison

purposes). For each scenario, the number of iterations (each iteration consists of a single

action/rule being run) and the level of replication communications activity is recorded. The

amount required by other approaches, based on using the same path (rule/action order)

selection is calculated. These two metrics have been selected for several reasons.

Replication communications, first are selected as they are critical to understanding the

impact of architecture selection on the communications requirements and system usage of

the system. This is essential information for sizing a communications system (i.e., making

sure that it is able to handle the magnitude and configuration of inter-craft communications

needs). This is critical to inform design decisions for future work utilizing actual hardware.

Second, both of these metrics are not highly application dependent, like other prospective

metrics would be. This allows greater generalizability than, for example, metrics which

81

characterize performance in a particular mission environment or hardware configuration.

This allows this work to inform future studies progressing towards multiple application

areas.

The test system was custom developed. It is an enhancement of a previous (also

custom) implementation [104] of a generic Blackboard architecture that has been

significantly augmented to support multi-blackboard problems and, in particular, to utilize

boundary objects for this purpose. The system utilizes a turn-based methodology.

Prospectively, different actions can incur different time-cost levels. Physical movement

times, however, were not considered for two reasons. First, they are arbitrary, and thus

better left to consideration in the context of a specific set of mission objectives and

circumstances. Second, they do not impact the metrics considered, with the exception of

introducing an arbitrary amount of delay, which (if this is not a controlled and manipulated

variable) is effectively noise being added to the data. The particular implementation for

this test system was created in C#; however, this is an arbitrary selection. Replication

traffic is measured by monitoring the requests made to the system to simulate data

transmission / receipt.

Blackboard

1
Blackboard

2

Figure 19. Diagram of two-blackboard connection.

82

Blackboard

1

Blackboard

2
Blackboard

3

Figure 20. Diagram of three-blackboard connections.

Blackboard

1

Blackboard

2
Blackboard

5

Blackboard

3
Blackboard

4

Figure 21. Diagram of five-blackboard connections.

Blackboard

1

Blackboard

2
Blackboard

10

Blackboard

3
Blackboard

4

Blackboard

5

Blackboard

6
Blackboard

7

Blackboard

8
Blackboard

9

Figure 22. Diagram of ten-blackboard connections.

83

The results of these trials are presented in Table 21, Table 22, Table 23 and Table

24 and summarized and analyzed in the immediately succeeding section. These results

correspond with the networks shown in Figure 19, Figure 20, Figure 21 and Figure 22,

respectively. Table 21 presents the results for using two blackboards; Table 22 presents

the results for using three blackboards. Table 23 and Table 24 present the results for using

five and ten blackboards, respectively.

In addition to presenting data for the proposed approach, the tables also present

several other approaches, for comparison purposes, which could also be candidates for use

in a multi-robot system. A full replication approach, based on having a shared

communications medium to all nodes, is presented. A limited replication approach, again

requiring extensive interconnectivity, is also included. The use of a central blackboard

system (where all data is sent to, and all instructions are received from a central node) is

also considered. Finally, data for a hierarchical system (where the hierarchy is used to

transfer / filter replication requests) is also presented.

Table 21. Results for two-blackboard testing (in terms of replication requests).

Run Proposed

Full

Replication

Limited

Replication

Central

Blackboard Hierarchy

1 2 8 8 820 8

2 8 14 14 1432 14

3 0 4 4 412 4

4 2 12 12 1228 12

5 0 8 8 820 8

6 4 8 8 820 8

7 0 6 6 616 6

8 6 24 24 2452 24

9 4 12 12 1228 12

10 10 42 42 4288 42

84

Table 22. Results for three-blackboard testing (in terms of replication requests).

Run Proposed

Full

Replication

Limited

Replication

Central

Blackboard Hierarchy

1 2 6 4 618 2

2 12 36 24 3678 19

3 3 6 6 618 4

4 11 21 22 2148 15

5 3 9 6 924 3

6 5 6 10 618 7

7 14 21 28 2148 18

8 3 6 6 618 4

9 1 3 2 312 1

10 3 3 6 312 5

Table 23. Results for five-blackboard testing (in terms of replication requests).

Run Proposed

Full

Replication

Limited

Replication

Central

Blackboard Hierarchy

1 7 10 28 1030 14

2 7 10 28 1030 11

3 12 15 48 1540 21

4 11 15 44 1540 20

5 10 15 40 1540 18

6 4 5 16 520 7

7 5 10 20 1030 8

8 7 10 28 1030 13

9 14 20 56 2050 29

10 9 10 36 1030 15

Table 24. Results for ten-blackboard testing (in terms of replication requests).

Run Proposed

Full

Replication

Limited

Replication

Central

Blackboard Hierarchy

1 10 10 90 1040 36

2 9 10 81 1040 25

3 18 20 162 2060 52

4 9 10 81 1040 27

5 9 10 81 1040 26

6 9 10 81 1040 28

7 26 30 234 3080 76

8 17 20 153 2060 53

9 9 10 81 1040 25

10 18 20 162 2060 49

The random placement of facts and distribution of rules and actions was selected

so as to not favor any particular approach to facilitate direct comparison. An actual

implementation, however, might be optimized in an application-specific manner. The

limited replication approach underperformance of full replication is indicative of a non-

85

optimized solution. Full replication uses multicast transmissions, while limited replication

utilizes point-to-point communications. Due to this, the full replication approach generally

outperforms limited replication. Limited replication would, thus, generally not be used in

this type of scenario (unless multicasting was impossible, in which case it would equal or

outperform full replication). The hierarchy approach is based on node-to-node relaying

(which is a typical feature of this approach), whereas all other approaches are point-to-

point communications. It is also worth noting that the central blackboard approach

presumes that the local agents must retrieve and check rules for termination (final fact

assertion) conditions. If this could be performed on the central blackboard, data transfer

for this approach could be reduced significantly. Whether this could be accommodated

centrally or not is an implementation-specific detail.

Analysis of Data

A summary, to facilitate comparison, of the data presented in the foregoing section

is included as Table 25 and visually depicted in Figure 23. From the dramatic difference

in performance, it is obvious that the proposed approach significantly outperforms the

limited replication, central blackboard and hierarchy approaches. It outperforms the full

replication approach significantly for the two, three and five blackboard tests; however, the

performance of the full replication approach is only 1.6 communications lower, on average,

for the ten blackboard testing. At higher levels it appears that the full replication approach

would overtake the proposed approach.

While this comparison (visually depicted in Figure 23) allows a quantitative

analysis of the communications resources used by each approach, this is not the only factor

86

in a selection decision. The application and system configuration play a large role in this

decision (in some cases larger than the performance considerations). As perhaps the most

obvious example, the hierarchy approach requires a specific configuration of network

connections. In the absence of this, the approach either won’t work or will work virtually

on top of another topology (creating a, perhaps significantly different, communications

profile). Similarly, full replication requires that all nodes be connected to a single network

segment. If they are not, it turns in to a (generally less efficient) hierarchy approach. The

central blackboard, similarly, requires direct connectivity to the blackboard (dictating a flat

network structure). Limited replication, conversely, would generally not be used on a

network that can multicast (with all nodes being directly connected) as it would

underperform full replication. The proposed approach, conversely, expects to have direct

connectivity to any node that it shares a fact with. This allows it to exist in several different

network structures. It can support peer-to-peer communications as well as communications

with superior/inferior nodes. A hybrid hierarchy/proposed approach could be utilized to

facilitate direct communications within the local group and use the hierarchy for

transmitting to nodes outside of this group.

Table 25. Summary of averages for all testing (in terms of replication requests).

 Proposed

Full

Replication

Limited

Replication

Central

Blackboard Hierarchy

2 Blackboards 3.6 13.8 13.8 1411.6 13.8

3 Blackboards 5.7 11.7 11.4 1199.4 7.8

5 Blackboards 8.6 12 34.4 1234 15.6

10 Blackboards 13.4 15 120.6 1550 39.7

87

Figure 23. Comparison of Techniques (Y-axis is presented in terms of replication requests).

An example of a scenario with characteristics where the proposed architecture

would excel is illustrative. One such example is a planetary exploration mission where

local groups of craft conduct research in discrete areas which is designed to contribute to

larger regional or planet-wide conclusion goals. These craft would have shared facts with

other members of the local group which they were collaborating on specific data collection

(or providing actuation in support of, etc.) and the group would have shared facts with other

adjacent groups and summative shared facts which served as the relationship with higher

levels in the hierarchy.

Summary

This chapter has described the research contribution of using boundary nodes as

logical blackboard network and robot-to-robot intermediaries. The use of boundary nodes

has been compared to other synchronization / replication approaches including

hierarchical, full replication, limited replication and centralized blackboard approaches.

Through this process, the efficacy of using boundary nodes was demonstrated. The full

1

10

100

1000

10000

Proposed Full Replication Limited
Replication

Central
Blackboard

Hierarchy

2 Blackboards 3 Blackboards 5 Blackboards 10 Blackboards

88

replication approach (which relies on multicast traffic making it unsuitable for many

applications), for example, required between 12% and 283% more transmission traffic than

the proposed approach. Limited replication approaches require between 13.8 and 120.6

times as much traffic, while the hierarchical and central blackboard approaches require as

much as 1550 and 39.7 times as many transmissions, respectively. As the foregoing

demonstrates, there is significant value to using the boundary node approach, both in terms

of reducing communications as well as benefiting from the associated time savings from

not having to receive, process and store changes from all of the additional transactions

generated by other approaches. Notably, it appears that the full (multicast-based)

replication may be less expensive (in cases where multicast traffic is available) for systems

with more than 10 robots / blackboards.

89

CHAPTER VIII

COMPARISON OF CENTRALIZED AND DISTRIBUTED COMMAND

APPROACHES FOR ROBOTIC MISSIONS9

This chapter builds upon the work presented in prior chapters that evaluates several

critical aspects of system design. It presents the contribution of comparing the efficacy

and efficiency of centralized and distributed command systems under multiple

experimental conditions. These conditions include both normal and impaired operations

and experimental conditions that are the combination of multiple impairments. In this

chapter, thus, results relevant to the key question of when centralized and decentralized

command approaches are most effective are presented and analyzed.

A simulation environment was used to test the two command approaches. It

utilized a 1,000 × 1,000 location grid. The premise of the test was to locate a phenomena

via symptoms that are observable at different levels of data resolution, ranging from long-

distance scanning to on-site analysis. For the purposes of the testing, six prospective

conditions were deemed to be of interest. These conditions are part of two sets (1-3 and 4-

6) with the respective positions in each set (1 and 4, 2 and 5, 3 and 6) having similar

characteristics. The first and forth are observable at the lowest resolution (e.g., orbital)

level, the second and fifth are observable starting at the middle (e.g., UAV) resolution level

9 This chapter is derived from: Straub, J., R. Marsh. 2015. A Comparison of Centralized and Decentralized Blackboard

Architecture-Based Command Techniques for Robotic Control Under Varying Conditions. Submitted to Expert

Systems with Applications.

90

and the third and the sixth are observable only at the highest (e.g., ground rover) resolution

level. To be an area of interest (the identification of which is the deemed completion

criteria for the scenarios), a region must have a concentration of locations with both

conditions three and six present. This is an analog for numerous possible mission

scenarios, ranging from the identification of scientifically interesting regions to missions

to locate mineral sites for extraction. There is a presumption of correlation between the

presence of conditions 1, 2 and 3 and, separately, 4, 5 and 6. Thus, a location with one of

the lower-resolution-detectable conditions becomes a candidate for exploration with

higher-resolution equipment.

This decision making process has been embodied into the Blackboard-based

architecture through the creation of an elaborate rule network comprised of over 6,000,000

facts. This network can be sub-divided, conceptually, into eight categories of facts (which

are summarized in Table 26). Facts 0 to 999,999 relate to the presence of condition 1 at

each of the 1,000 x 1,000 grid locations. Five more bands (facts 1,000,000 to 5,999,999)

relate to conditions 2 to 5. The next 100 facts (6,000,000 to 6,000,099) relate to the

suitability of regions and the last fact (6,000,100) is the final rule for the purposes of system

operations (the triggering of which means that the system has successfully completed its

mission). Rules and actions are denoted by their pre and post conditions and their

placement in the corresponding data structure is arbitrary.

Table 26. Summary of Facts

Fact Range Corresponds to

0 to 999,999 Condition 1 (orbital perceivable, group 1)

1,000,000 to 1,999,999 Condition 2 (aerial perceivable, group 1)

2,000,000 to 2,999,999 Condition 3 (ground perceivable, group 1)

3,000,000 to 3,999,999 Condition 4 (orbital perceivable, group 2)

4,000,000 to 4,999,999 Condition 5 (aerial perceivable, group 2)

5,000,000 to 5,999,999 Condition 6 (ground perceivable, group 2)

6,000,000 to 6,000,099 Suitability of 100 (100x100) regions

6,000,100 Final Rule (indicates mission complete)

91

A collection of rules and actions interconnect this network. Rules are automatically

triggered, if their pre-conditions are met, and assert one or more facts. Actions are

conceptually similar; however, they seek to (in this case) trigger data collection. While an

outcome for each action is presumed (based on the assumption of condition correlation),

this is not guaranteed. Thus, a robotic explorer (UAV or ground) may be dispatched to a

location to find that the presumed outcome is not accurate. The UAV or ground robot will

report any conditions that it detects at the location (or on the way, while traveling).

Figure 24 and Figure 28 depict the operations of this network control approach

under successful (Figure 24) and unsuccessful (Figure 28) runs. Note that the labeling of

rules and actions is arbitrary (based, for illustration purposes, on the expected result), as

rules are referenced within the network by their pre- and post-conditions and actions are

numbered arbitrarily (with the number being immediately stored in a corresponding rule).

Both figures exclude extraneous details. For example, given the crafts’ sensing

range, numerous additional facts (not relevant to the example) would be concurrently

asserted (triggering corresponding rules and queueing corresponding actions). Additional

facts would also be asserted, while performing actions, as the craft all sense while moving.

In Figure 24, the process starts with an orbital sensing of grid position <50,500>.

Presuming (as is assumed in this example) that conditions 1 and 4 are detected, the

appropriate facts are identified and asserted. Condition 1 facts are determined by

multiplying the x coordinate by 1000 and adding the y coordinate so, in this case, fact

50500 is asserted to store the presence of condition 1 at this location. Condition 4 facts are

determined by multiplying the x coordinate by 1000 and adding the y coordinate and

3,000,000. Thus, fact 3050500 is asserted to denote the presence of condition 4.

92

The identification of conditions 1 and 4 trigger (separate) processes to search for

conditions 2 and 5, which are associated with (but not guaranteed by) the presence of

conditions 1 and 4, respectively, at a location. This is done by triggering an action that will

assign a nearby air-based craft to explore this region. If conditions 2 and 5 are detected

(supporting the possibility of conditions 3 and 6 being present), than a similar process will

occur. Facts 1050500 and 4050500 will be asserted to store the presence of these

conditions and actions will be triggered to explore this grid area with a ground-based craft.

If the ground based craft confirms the presence of both conditions 3 and 6, this will

identify the grid location as a target location and support the triggering (along with the

presence of other targets) of final rule 6000100, when a sufficient number of target

locations have been identified in the region.

A portion of this process, from actual operations, is shown in Listing 1 which uses

the data sensed from the map shown in Figure 25 (a detail view of the top-left 200x200

grid locations is also shown, for ease of viewing, in Figure 27 and a key to the coloration

is shown in Figure 26). Three elements are highlighted to illustrate key portions of the

process.

The collection of data by robotic exploration, for condition 1, is highlighted in

yellow in Listing 1. Fact 1101461 is asserted, triggering rule (F1101461) >> (A507306),

which launches action 507306. The same process, for condition 2, is highlighted in red.

Fact 3105461 is asserted, triggering rule (F3105461) >> (A527307) and launching action

527307. From the numbering of the facts (and the discussion of the fact numbering system,

previously), it is clear that these two facts relate to the same grid coordinate.

93

The assertion of the final rule is also highlighted (in magenta). This indicates that

the assertion of facts 2922586 and 5922586 (related to a different grid coordinate than the

previous example) causes rule (F2922586, F5922586) >> (F6000100) to run. Shortly

thereafter, the system again checks to see if final rule 6000100 has been asserted and, when

it does, it determines that the mission has been completed and stops.

94

Fact 50500
Asserted

Action
1050500

Taken

Rule 50500
Triggered

Grid Location
<50, 500>
Sensed -
Orbital

Feature 1 Detected

...

Grid Location
<50, 500>
Sensed -

Aerial

Fact 1050500
Asserted

Action
2050500

Taken

Rule 1050500
Triggered

...
Grid Location

<50, 500>
Sensed -
Ground

Fact 2050500
Asserted

Fact 3050500
Asserted

Action
4050500

Taken

Rule 3050500
Triggered

Grid Location
<50, 500>
Sensed -
Orbital

Feature 4 Detected

...

Grid Location
<50, 500>
Sensed -

Aerial

Fact 4050500
Asserted

Action
5050500

Taken

Rule 4050500
Triggered

...
Grid Location

<50, 500>
Sensed -
Ground

Fact 5050500
Asserted

Rule Triggered

...

Rule Triggered Rule Triggered Rule Triggered

Fact 6000100
Asserted

Figure 24. Ideal operations of the Blackboard-based control network.

95

Figure 25. Global map for example (coloration key can be found in Figure 26).

Under this ideal scenario, the system could theoretically operate in forward-only

mode and be successful. The process becomes more complex when non-ideal locations

(such as shown in Figure 28) are present. In Figure 28, the presumption of the presence of

condition 5 is not accurate. Thus, when an aerial sensing of this location occurs, fact

4050500 is not asserted. This prevents the remainder of the network from triggering.

96

Figure 26. Map Key.

Figure 27. Top-left 200 x 200 grid locations for example (coloration key can be found in Figure 26).

97

 Listing 1. Sample Log of Operations

FACT 4152504 Asserted

FACT 1154504 Asserted

FACT 4897858 Asserted

FACT 1898858 Asserted

FACT 5834010 Asserted

FACT 3236990 Asserted

FACT 4238990 Asserted

FACT 5239990 Asserted

FACT 973805 Asserted

FACT 974805 Asserted

FACT 1976805 Asserted

FACT 218314 Asserted

FACT 3530148 Asserted

FACT 3531148 Asserted

FACT 1884008 Asserted

FACT 2893278 Asserted

FACT 4894278 Asserted

FACT 3544983 Asserted

FACT 3547983 Asserted

FACT 1101461 Asserted

FACT 2103461 Asserted

FACT 3105461 Asserted

FACT 4151203 Asserted

FACT 175138 Asserted

FACT 1176138 Asserted

FACT 177138 Asserted

FACT 3177138 Asserted

FACT 509796 Asserted

FACT 511796 Asserted

FACT 5147835 Asserted

FACT 3150835 Asserted

RULE (F1101461) >> (A507306) has run

ACTION 507306 triggered

RULE (F3105461) >> (A527307) has run

ACTION 527307 triggered

RULE (F3150835) >> (A754177) has run

ACTION 754177 triggered

RULE (F4151203) >> (A756018) has run

ACTION 756018 triggered

RULE (F4152504) >> (A762523) has run

ACTION 762523 triggered

RULE (F1154504) >> (A772521) has run

ACTION 772521 triggered

RULE (F175138) >> (A875690) has run

ACTION 875690 triggered

RULE (F1176138) >> (A880691) has run

ACTION 880691 triggered

RULE (F177138) >> (A885690) has run

ACTION 885690 triggered

RULE (F3177138) >> (A885692) has run

ACTION 885692 triggered

RULE (F218314) >> (A1091570) has run

ACTION 1091570 triggered

RULE (F3236990) >> (A1184952) has run

ACTION 1184952 triggered

RULE (F4238990) >> (A1194953) has run

ACTION 1194953 triggered

RULE (F509796) >> (A2548980) has run

ACTION 2548980 triggered

RULE (F511796) >> (A2558980) has run

ACTION 2558980 triggered

RULE (F3530148) >> (A2650742) has run

ACTION 2650742 triggered

RULE (F3531148) >> (A2655742) has run

ACTION 2655742 triggered

RULE (F3544983) >> (A2724917) has run

ACTION 2724917 triggered

RULE (F3547983) >> (A2739917) has run

ACTION 2739917 triggered

RULE (F1884008) >> (A4420041) has run

ACTION 4420041 triggered

RULE (F4894278) >> (A4471393) has run

ACTION 4471393 triggered

RULE (F4897858) >> (A4489293) has run

ACTION 4489293 triggered

RULE (F1898858) >> (A4494291) has run

RULE (F509796) >> (A2548980) has run

RULE (F511796) >> (A2558980) has run

RULE (F3530148) >> (A2650742) has run

RULE (F3531148) >> (A2655742) has run

RULE (F3544983) >> (A2724917) has run

RULE (F3547983) >> (A2739917) has run

RULE (F1884008) >> (A4420041) has run

RULE (F4894278) >> (A4471393) has run

RULE (F4897858) >> (A4489293) has run

RULE (F1898858) >> (A4494291) has run

RULE (F973805) >> (A4869025) has run

RULE (F974805) >> (A4874025) has run

RULE (F1976805) >> (A4884026) has run

FACT 2237988 Asserted

FACT 5237988 Asserted

FACT 4239988 Asserted

FACT 4240988 Asserted

FACT 4241988 Asserted

FACT 973805 Asserted

FACT 974805 Asserted

FACT 1976805 Asserted

FACT 5532147 Asserted

FACT 1884008 Asserted

FACT 4544984 Asserted

FACT 3546984 Asserted

FACT 4923482 Asserted

FACT 1118159 Asserted

FACT 5409249 Asserted

FACT 101459 Asserted

FACT 2103459 Asserted

FACT 2176139 Asserted

FACT 507797 Asserted

FACT 4148836 Asserted

FACT 2237988 Asserted

98

FACT 5237988 Asserted

FACT 4239988 Asserted

FACT 4240988 Asserted

FACT 4241988 Asserted

…

RULE (F922535) >> (A4612675) has run

RULE (F1922535) >> (A4612676) has run

RULE (F1922537) >> (A4612686) has run

RULE (F4922545) >> (A4612728) has run

RULE (F4922548) >> (A4612743) has run

RULE (F4922580) >> (A4612903) has run

RULE (F922585) >> (A4612925) has run

RULE (F922586) >> (A4612930) has run

RULE (F2922586, F5922586) >> (F6000100) has

run

RULE (F922587) >> (A4612935) has run

RULE (F4922587) >> (A4612938) has run

RULE (F922589) >> (A4612945) has run

RULE (F922591) >> (A4612955) has run

RULE (F1922598) >> (A4612991) has run

RULE (F1922666) >> (A4613331) has run

RULE (F922670) >> (A4613350) has run

RULE (F922673) >> (A4613365) has run

RULE (F4923482) >> (A4617413) has run

RULE (F4923518) >> (A4617593) has run

RULE (F4923519) >> (A4617598) has run

RULE (F3923523) >> (A4617617) has run

RULE (F3923525) >> (A4617627) has run

RULE (F3923526) >> (A4617632) has run

RULE (F923534) >> (A4617670) has run

RULE (F923537) >> (A4617685) has run

RULE (F923538) >> (A4617690) has run

RULE (F1923550) >> (A4617751) has run

RULE (F1923572) >> (A4617861) has run

RULE (F1923578) >> (A4617891) has run

RULE (F923589) >> (A4617945) has run

RULE (F923590) >> (A4617950) has run

RULE (F1923629) >> (A4618146) has run

RULE (F4923643) >> (A4618218) has run

RULE (F4923645) >> (A4618228) has run

RULE (F923669) >> (A4618345) has run

RULE (F4923699) >> (A4618498) has run

RULE (F1923716) >> (A4618581) has run

RULE (F1923726) >> (A4618631) has run

RULE (F1923741) >> (A4618706) has run

RULE (F4924484) >> (A4622423) has run

RULE (F1924489) >> (A4622446) has run

RULE (F4924492) >> (A4622463) has run

RULE (F1924493) >> (A4622466) has run

RULE (F1924499) >> (A4622496) has run

RULE (F4924504) >> (A4622523) has run

RULE (F1924507) >> (A4622536) has run

RULE (F3924508) >> (A4622542) has run

RULE (F3924509) >> (A4622547) has run

RULE (F4924510) >> (A4622553) has run

RULE (F4924522) >> (A4622613) has run

RULE (F1924529) >> (A4622646) has run

RULE (F924530) >> (A4622650) has run

RULE (F1924532) >> (A4622661) has run

RULE (F924534) >> (A4622670) has run

RULE (F4924534) >> (A4622673) has run

RULE (F924538) >> (A4622690) has run

RULE (F1924538) >> (A4622691) has run

RULE (F4924550) >> (A4622753) has run

RULE (F1924557) >> (A4622786) has run

RULE (F1924560) >> (A4622801) has run

RULE (F1924580) >> (A4622901) has run

RULE (F924587) >> (A4622935) has run

RULE (F924589) >> (A4622945) has run

RULE (F4924655) >> (A4623278) has run

RULE (F924671) >> (A4623355) has run

RULE (F924672) >> (A4623360) has run

RULE (F4924707) >> (A4623538) has run

RULE (F4924714) >> (A4623573) has run

RULE (F1924741) >> (A4623706) has run

RULE (F1927759) >> (A4638796) has run

RULE (F4935764) >> (A4678823) has run

RULE (F4938771) >> (A4693858) has run

RULE (F1940769) >> (A4703846) has run

RULE (F4940771) >> (A4703858) has run

RULE (F3941772) >> (A4708862) has run

RULE (F3941774) >> (A4708872) has run

RULE (F3942772) >> (A4713862) has run

RULE (F4942772) >> (A4713863) has run

RULE (F3942774) >> (A4713872) has run

RULE (F4943774) >> (A4718873) has run

RULE (F3943775) >> (A4718877) has run

RULE (F3944776) >> (A4723882) has run

RULE (F3945774) >> (A4728872) has run

RULE (F3945775) >> (A4728877) has run

RULE (F4945776) >> (A4728883) has run

RULE (F3946775) >> (A4733877) has run

RULE (F4946778) >> (A4733893) has run

RULE (F947005) >> (A4735025) has run

RULE (F4947777) >> (A4738888) has run

RULE (F4948778) >> (A4743893) has run

RULE (F1948781) >> (A4743906) has run

RULE (F1952783) >> (A4763916) has run

RULE (F4959792) >> (A4798963) has run

RULE (F4954787) >> (A4773938) has run

RULE (F4956789) >> (A4783948) has run

RULE (F3957788) >> (A4788942) has run

RULE (F4957789) >> (A4788948) has run

RULE (F4959788) >> (A4798943) has run

RULE (F3959790) >> (A4798952) has run

99

RULE (F3959791) >> (A4798957) has run

RULE (F4959791) >> (A4798958) has run

RULE (F3959792) >> (A4798962) has run

RULE (F3960792) >> (A4803962) has run

RULE (F3960793) >> (A4803967) has run

RULE (F4960793) >> (A4803968) has run

RULE (F3961790) >> (A4808952) has run

RULE (F961793) >> (A4808965) has run

RULE (F3961793) >> (A4808967) has run

RULE (F4961793) >> (A4808968) has run

RULE (F4962792) >> (A4813963) has run

RULE (F3962793) >> (A4813967) has run

RULE (F1963792) >> (A4818961) has run

RULE (F4963792) >> (A4818963) has run

RULE (F4963794) >> (A4818973) has run

RULE (F1963795) >> (A4818976) has run

RULE (F3964794) >> (A4823972) has run

RULE (F4965794) >> (A4828973) has run

RULE (F1965795) >> (A4828976) has run

RULE (F3965797) >> (A4828987) has run

RULE (F966795) >> (A4833975) has run

RULE (F966796) >> (A4833980) has run

RULE (F966797) >> (A4833985) has run

RULE (F967797) >> (A4838985) has run

RULE (F1967797) >> (A4838986) has run

RULE (F967800) >> (A4839000) has run

RULE (F968797) >> (A4843985) has run

RULE (F1968800) >> (A4844001) has run

RULE (F1969798) >> (A4848991) has run

RULE (F970800) >> (A4854000) has run

RULE (F1971801) >> (A4859006) has run

RULE (F1971804) >> (A4859021) has run

RULE (F1972802) >> (A4864011) has run

RULE (F973804) >> (A4869020) has run

RULE (F1973804) >> (A4869021) has run

RULE (F973805) >> (A4869025) has run

RULE (F974805) >> (A4874025) has run

RULE (F1976805) >> (A4884026) has run

RULE (F980005) >> (A4900025) has run

FACT 6000100 Asserted - Mission Accomplished

This occurrence illustrates the need for the solver mechanism that has been

previously described. Because the solver always works backwards from the goal (in this

case final fact 6000100), any rule, fact or action that is not in a chain to this will not be

identified as a goal and thus no effort will be made to further explore areas that have no

pathway to achieving the overall system goals. For example, if the non-presence of

condition 5 was known at the time, no ground robot tasking would be performed to seek

condition 3 as, even if condition 3 was detected, this would not advance the system towards

its goal.

Some networks will be inherently unsolvable due to a failure to have enough (or

any) target locations. Other networks may be unsolvable under conditions that impair the

ability of the system to fully function. This is considered in the subsequent section.

100

Fact 50500
Asserted

Action
1050500

Taken

Rule 50500
Triggered

Grid Location
<50, 500>
Sensed -
Orbital

Feature 1 Detected

...

Grid Location
<50, 500>
Sensed -

Aerial

Fact 1050500
Asserted

Action
2050500

Taken

Rule 1050500
Triggered

...
Grid Location

<50, 500>
Sensed -
Ground

Fact 2050500
Asserted

Fact 3050500
Asserted

Action
4050500

Taken

Rule 3050500
Triggered

Grid Location
<50, 500>
Sensed -
Orbital

Feature 4 Detected

...

Grid Location
<50, 500>
Sensed -

Aerial

Fact 4050500
Asserted

Rule Triggered

Fact 6000100
Asserted

Figure 28. Failed operations of the Blackboard-based control network.

101

Robotic Command: Testing Under Typical and Atypical Conditions

 Simulations were performed to assess the comparative efficacy of the two

approaches (centralized and decentralized) under a variety of experimental conditions. To

facilitate comparison, the same command methodology and software code was used (to the

extent possible, excepting some code necessary for the specifics of each approach) for both

the distributed and centralized methodologies. This same code base was used across all

experimental conditions. Experimentation was conducted on a cluster of Intel i7 computers

(each with 8 processor cores and 16 GB of RAM). Total command processing runtime (in

milliseconds) and the amount of simulated time taken to complete each scenario are

reported.

 Simulations were conducted by creating a randomly-generated field of operations

that is 1,000 x 1,000 grid locations in size (each grid location is nominally sized to

correspond to a 100 meter x 100 meter area; however, for most purposes, the exact size of

the grid locations is irrelevant, as the command decision making algorithm would work

similarly across multiple grid sizes). Experimental conditions are created by controlling

the frequency of several categories of scenario elements: map features (of multiple types)

of interest and the rates of data collection errors, communications errors, temporary craft

incapacitation and permanent craft incapacitation. For each run of the experiment, a new

map is generated, a new scenario file (corresponding to the occurrences of various

simulated error conditions) is generated, a corresponding Blackboard-style network is

generated and the simulation is run.

Comparison of Approaches Under Error Conditions

 The first area of data collection and analysis was the performance of the system

102

under normal and various error conditions. These error conditions simulated temporary

and ongoing periods of system incapacitation. They included data collection error,

communication error, temporary craft incapacitation and permanent craft incapacitation.

Performance of the two systems under the various conditions was compared and a

statistical t-test was applied to assess statistical significance. A one-tailed t-test was

calculated for all conditions (based on the nominal thesis that the distributed system would

outperform the centralized system). The processing times, scenario completion times and

t-values are presented in Table 27 and Table 28.

As might be expected, no statistically significant (at p < 0.10) difference was

experienced under the error-free condition, for either processing time or scenario

completion time. Statistically significant (at p < 0.10) out performance of the distributed

approach was demonstrated for the communications error and temporary incapacitation

conditions, in terms of the number of turns required to complete the scenario. The

distributed approach under-performed for the data collection error and permanent

incapacitation scenarios, in terms of scenario completion (violating the premise of the one-

tailed t-test that was conducted) and, thus, a two-tailed t-test was used to assess the

statistical significance of the difference in performance. For the data collection error

scenario, a significant difference in performance was identified, showing that the

centralized approach may be more resilient to this type of error. This will serve as a

prospective topic for future study. The difference in performance under the permanent

incapacitation scenario was not shown to be significant at p < 0.10 for this data set; however

the prospective efficacy of the centralized approach for this condition also merits further

review.

103

Table 27. Processing Time and T-Value for Various Error Conditions (in ms).

Condition Processing Time T-Value

 Centralized Distributed

 Mean Median Mean Median

No Error 292388.95 228494 321729.7 295468 -

Data Collection Error (20) 287998.55 219042 270079.7 226006 0.34

Communication Error (20) 355701.5 284873.5 397089.3 284019 -

Temporary Incapacitation (10) 419561.4 299730 304835.9 261264 0.08

Permanent Incapacitation (10) 318422.65 265797.5 316975 240180.5 0.98

Table 28. Scenario Completion Time and T-Value for Various Error Conditions (in turn-units).

Condition Scenario Completion Time T-Value

 Centralized Distributed

 Mean Median Mean Median

No Error 88 85 87.5 72.5 0.48

Data Collection Error (20) 84.25 65 119.25 115 0.08*

Communication Error (20) 126 100 92.25 67.5 0.07

Temporary Incapacitation (10) 111.25 92.5 82.75 60 0.07

Permanent Incapacitation (10) 98.75 97.5 139.75 127.5 0.10*

* Two-tailed t-test

 For four of the five scenarios, no statistically significant difference was detected

between the centralized and distributed approaches in terms of processing time. A

significant (at p < 0.10) difference was detected in terms of responding to temporary

incapacitation.

 Performance under several experimental conditions which combined the simulation

of multiple types of error was then conducted. These are presented in Table 29 and Table

30. In all cases (excepting the no error case), the distributed approach out-performed the

centralized one in terms of processing time. However, this difference was only significant

(at p < 0.10) in the case of the combined temporary and permanent incapacitation scenario.

 In terms of scenario completion time, the distributed approach, again, outperformed

in all areas except for one (combined communications error and incapacitation). None of

these differences in performance (including a two-tailed assessment of the difference in the

104

area where the distributed approach didn’t outperform the centralized one) was statistically

significant at p < 0.10.

Table 29. Processing Time and T-Value for Combined Error Conditions (in ms).

Condition Processing Time T-Value

 Centralized Distributed

 Mean Median Mean Median

No Error 292389 228494 321729.7 295468 -

Temporary (10) & Permanent (10) Incapacitation 423331.1 398438.5 268171.7 214913 0.009

Communications Error (20) & Incapacitation (10/10) 329056.6 235045.5 297672.7 217480 0.32

All Errors (Comm./Coll. = 20; Incap. = 10) 405592.8 360067.5 364212.6 318271.5 0.26

Table 30. Scenario Completion Time and T-Value for Combined Error Conditions (in turn-units).

Condition Scenario Completion Time T-Value

 Centralized Distributed

 Mean Median Mean Median

No Error 88 85 87.5 72.5 0.49

Temporary (10) & Permanent (10) Incapacitation 123.75 107.5 106.5 87.5 0.22

Communications Error (20) & Incapacitation (10/10) 87.75 72.5 91.25 70 0.86*

All Errors (Comm./Coll. = 20; Incap. = 10) 76.3 62.5 69.15 56.5 0.36

* Two-tailed t-test

Summary

This chapter has presented the research contribution of comparing the performance

of centralized and decentralized command approaches under normal operating and

impaired conditions. It has demonstrated the approximate equivalency (non-statistically

significant difference) of the centralized and decentralized command approaches under

normal operating conditions and how the impairment conditions affect the two command

approaches differently.

Multiple statistically significant findings (at p < 0.10) were recorded through this

process of assessment. The decentralized approach was shown to have (statistically

significant) faster processing time for temporary craft incapacitation. The decentralize

approach was also shown to have faster scenario completion time for communications error

105

and temporary craft incapacitation. The centralized approach was shown to have faster

scenario completion time under the data collection error scenario. The decentralized

command approach was also shown to have faster processing time under scenarios that

combined both temporary and permanent craft incapacitation. No statistically significant

findings were generated for scenario completion time for combined error conditions.

The foregoing demonstrates that the type of interference and/or other risk factors

applicable to a given application play a significant role in the determination of what type

(centralized or distributed) of command strategy to select for the mission. Neither

approach is an across-the-board best decision; thus, the prospective likelihood, frequency

and severity of events that could cause each of the various types of impairments should be

taken into account when selecting a mission command strategy.

106

CHAPTER IX

CONCLUSIONS AND FUTURE WORK

 The proceeding chapters have each discussed the design, development and

characterization of critical elements of a system for commanding heterogeneous craft.

Chapter 1 provided an overview of the work, the research question and the key questions

that the work sought to answer. Chapter 2 presented prior related work. In Chapter 3,

focus turned to the development of a distributed Blackboard Architecture-based system for

robotic control. Chapter 4 presented an overview of the research methodology.

Chapters 5 to 8 presented work on the characterization of various components of

the system. Chapter 5 discussed the use of pruning on blackboards and the benefits that it

provides. Chapter 6 applied this pruning to a long-running robotic control system. In

Chapter 7, focus turned to the implementation of the distribution of knowledge and the use

of boundary nodes was proposed. Chapter 8 spoke to the key question of this work:

characterizing circumstances under which centralized or distributed control would

outperform each other.

Summary of Contributions

The work presented in these chapters has considered multiple approaches to

conducting multi-craft missions for craft with heterogeneous capabilities (a number of

which apply to, but may not be needed in, the simpler case of commanding a collection of

107

homogeneous robots). The work, thus, has made a number of contributions to the

discipline. First, it has applied the pre-existing Blackboard Architecture to this command

challenge. A variety of logistical and development challenges were solved in this process.

Second, the basic Blackboard Architecture concept has been expanded to support

mission-driven operations through the addition of a solver mechanism. The solver changes

the traditional forward-chaining approach to Blackboard operations (where conclusions are

drawn from information provided and actions are potentially triggered by operating

principles embodied in rules) to a data and goal driven methodology. Under this paradigm,

rules give context to the data (instead of being created with a particular type of operation

in mind) allowing the system to expand beyond its originally intended area of use. The

solver attempts to find pathways to support or refute conclusions of interest through data

collection and analysis operations. Multiple solver approaches and their comparative

merits were assessed.

Third, several key additions were made to the Blackboard Architecture to support

distributed and long-term robotic operations. Boundary nodes, extending existing work on

boundary objects, are an integral part of making a system that is locally-responsive while

being globally aware and able to communicate over limited bandwidth connections. In

addition to their utility for robotic control, other subsequent work [0] has demonstrated

their prospective efficacy for multi-homed online system control.

Forth, a key operating issue has been resolved. Operation in a real-world

environment over any extended period of time presents a problem of data overload. The

system is either forced to arbitrarily discard information (without knowing its importance)

or become bogged down by the ever-growing data set. Pruning was applied to the

108

Blackboard Architecture and, subsequently, considered in the context of a robotic mission

as a solution to this problem.

Finally, information was collected to help answer a key design question in robotic

command: whether centralized or distributed control was most effective for normal

operations and a variety of impairment scenarios. This expands the existing knowledge in

this area which, previously, was based on a non-validated design assumption by Fink

related to the selection of a centralized architectural approach.

Key Findings

 A key goal of the work presented herein is to provide information to system

designers to inform design decisions for heterogeneous multi-robot systems. Several

results of this work are directly responsive to this goal.

 The characterization of the pruning process demonstrated the efficacy and value of

the use of pruning. Pruned networks were shown to require less than one-half of the time-

to-solve of non-pruned networks. Moreover, the comparative cost of solving and pruning

were considered. For networks similar to the one used for testing, approximately 150

solver uses (typically the solver is run repetitively as new information is added or

information is updated on the Blackboard) would be required to justify the time-cost of

pruning. Of course, the fact that pruning can be done at convenient times (when the

system’s processors are not otherwise needed) means that pruning may be adopted for its

real-time / near real-time performance benefits alone. Re-pruning was also shown to be

much less computationally intensive than initial pruning. The effect of pruning on system

longevity was also demonstrated.

109

 The utility of boundary node-based data encapsulation and replication has also been

demonstrated. Using the boundary nodes, data transmission needs were reduced by two

orders of magnitude from the use of a centralized blackboard approach and were about

60% less to one-third of the data transmission requirements of a hierarchical approach. The

proposed approach also consistently outperformed limited and full replication strategies.

Boundary nodes, thus, have been shown to be a key way to reduce communications needs.

In addition to demonstrating their efficacy, this demonstrate communications reduction

potential may be a key factor in command architecture selection decisions for many

(communications constrained) missions.

 Finally, the efficacy of the distributed and centralized command approaches was

demonstrated. The distributed approach was shown to perform roughly equivalent to the

centralized approach under many scenarios. However, in the case of communications

errors and temporary craft incapacitation, it was shown to reduce scenario completion time

by a statistically (p<0.10) and practically significant amount. It was also shown to reduce

processing time for temporary craft incapacitation and combined temporary/permanent

craft incapacitation scenarios by a statistically and practically significant amount. The

centralized command approach, conversely, was shown to provide practically and

statistically significant superior performance for completion time under data collection

error scenarios and approached statistical significance (with a practically significant

difference in result) for completion time for permanent craft incapacitation scenarios.

Considering Pruning and Command Strategy Selection

 Previous chapters have discussed the impact of utilizing pruning (Chapters V and

110

VI) and the comparative performance of centralized versus decentralized command

strategies (Chapter VIII). The efficacy of using pruning in any given application is driven

by a number of application-specific factors that determine what level of prunable rules,

facts and actions are present and the impact of their presence on network operations. The

work in Chapters V and VI assessed this impact in terms of randomly generated networks,

to provide a general-purpose heuristic that could serve the process of initial decision

making. However, a final decision is more nuanced.

 The networks generated in Chapters V and VI initially had a significant number of

immediately prunable nodes. This, however, is more typical of an exploration system’s

network at later points, once significant data has been collected, rendering parts of the

network irrelevant (as they would only be activated by the assertion of facts that are now

known to be false). Pruning the networks presented in Chapter VIII before system

operations would not result in a significant level of removal (depending on the settings for

the potentially network-operations-impactful ‘unlikely to be needed’ pruning, it may result

in no removal at all).

 At later points in network operations, pruning may be more helpful. However,

given the typical prioritization of system operations processing over data processing, the

impact would likely not be on mission completion time (unless the data processing being

potentially displaced was required for mission completion) but on the potential to do

scientific analysis onboard (potentially being most impactful to secondary and tertiary

goals, and not to the primary one). The prospective benefits of pruning might also be

considered in the context of processor sizing, where the 50% reduction in pruning might

facilitate the use of a lower-cost, lower-mass and/or lower-volume processor, reducing

111

overall mission cost levels.

 Because of the parallel construction of the blackboard networks, the impact of

pruning would be similar between centralized and distributed command approaches.

Boundary nodes would typically not be prunable, as they represent higher-level data

abstractions. Pruning would have some impact on the comparative performance on

different types of data replication. The use of pruning might remove nodes that would

otherwise be replicated under full replication, limited replication and central blackboard

configurations (these nodes could be changed despite the fact that the change is irrelevant

to future network operations). The impact, here, would be highly dependent on blackboard

network design. However, as full and limited replication are not viable for most scenarios

(as they require the nodes to be fully connected in a way that supports multicast traffic)

and the central blackboard approach is two-to-three orders of magnitude more

transmission-expensive than the proposed and hierarchical solutions, the prospective

impact of pruning won’t be a major consideration in replication configuration, for most

applications.

Future Work

 Several areas for prospective future work are indicated by the work that has been

presented herein. First, as was previously identified, further assessment of the performance

of the system under different levels of error conditions may yield other indications of areas

of prospective differences in performance. Second, conditions which may be specific to

various operating scenarios (such as dramatically difference movement conditions in

certain areas of the operating region) should be assessed to determine what impact these

112

may have on the comparative performance of the two command approaches. The

identification of additional comparative differences may inform, more granularly, the

selection of a given approach for real-world missions with some or all of these

characteristics present.

 Third, the technologies developed for this work may have application to other areas

of research (and real-world use) beyond the application described herein. An exploration

of these prospective additional uses may drive future work in several areas.

 Fourth, the characterization of the impact of pruning on multiple forms of the

blackboard decision-making rule-fact-action networks remains a topic for future work.

Two key areas of work are prospectively interesting, in this area. The first is the

characterization of the impact of pruning on changing networks. Specifically, the impact

of pruning on a network that is concurrently changing while the pruner runs and that is

solving as the pruner is running and as the network is changing between prunings would

provide additional insight into the efficacy of the pruner’s use for craft where the data

collection capability to processing capability ratio is higher than was simulated herein.

 The simulation of this would test several independent variables: multiple (3) speeds

of pruning, multiple test durations (e.g., 1,000, 5,000, 10,000, 20,000 and 50,000 turns),

the impact of beginning pruning at multiple points (100, 250, 500, 1,000, 5,000) during

longer duration tests and multiple simulation area (and thus blackboard network) sizes

(e.g., 1,000 x 1,000, 2,000 x 2,000, 5,000 x 5,000). For each, the duration to first result,

the average number of results and the total computational time required would be collected

and recorded. Tests of statistical significance would then be applied to each of the 225

113

experimental conditions to assess the comparative impact of pruning during the applicable

mission.

 The second are of prospective interest, relative to Blackboard network pruning,

would be to conduct static network tests across the experimental conditions listed above.

This would eliminate any potential confounding of the data caused by the concurrent

occurrence of data changes and pruning. The juxtaposition of these two result sets (using

the same experimental conditions), using statistical significance testing, would facilitate

the determination of the impact of concurrent pruner-solver operations. Demonstrating

that this works (or does not work) well would inform the mission design of future

prospective missions.

 Fifth, the testing of the impact of pruning on the two different command strategies

and multiple replication strategies is another area of interest. Based on the results of the

long-running simulation testing described above, several conditions (with specific variable

combinations for pruning speed, multiple test durations, point of pruning and simulation

area size) could be selected to serve as independent variables in conjunction with a choice

of command architecture (centralized or distributed). In the context of the distributed

command architecture selection, each of the five data transmission / synchronization

strategies (boundary node, full replication, limited replication, central blackboard and

hierarchical) could also be tested. Presuming that three long-running simulation

configurations were selected to serve as an independent variable (along with the six

command architecture / data transmission / synchronization strategy choices), this would

generate 18 experimental conditions. This data could then be analyzed using statistical

114

significance testing to ascertain the impact of using these different options in system

design.

 Finally, the validation of the experimentation performed via simulation through a

real-world test mission is required to advance the Technology Readiness Level (TRL) to a

point where the control technology would be deemed suitable for future work. This large-

scale endeavor may identify other characteristics that may differentiate the performance of

the distributed and centralized control approaches.

115

APPENDICES

116

Appendix A

Glossary of Terms

Central Analysis, Planning and Tasking – A system module that is responsible for high-

level system planning.

Globally Unique Identifier – A value generated in a manner such that the chance of

duplication is extremely low.

Ground Rover – A robot that operates on the surface of the Earth or another planet.

Micro-Aerial Vehicles – Unmanned aerial vehicles of a small size (typically small

enough to fit in a human hand.

Multi-Blackboard System – A system that utilizes multiple agents, each with their own

Blackboard for decision making.

Multi-Tier Autonomous Mission Architecture – The presented approach for controlling a

mission comprised of orbital, aerial and ground craft.

Null Hypothesis – an assertion of current status that can be rejected through assessment

of statistical significance.

Remotely Piloted Vehicle – An unmanned aerial vehicle that is controlled by a human

from a remote location.

Technology Readiness Level – A system for evaluating the current status of a technology

or system to facilitate the assessment of it for missions being planned.

Ticks - Ticks are the smallest unit of time measured by the Windows operating system

[101]. A tick is equal to 100 nanoseconds.

117

Appendix B

Glossary of Acronyms / Abbreviations

CAPaT – Central Analysis, Planning and Tasking

GUID – Globally Unique IDentifier

H0 – null hypothesis

MAVs – Micro-Aerial Vehicles

MBS - Multi-Blackboard System

MTAMA – Multi-Tier Autonomous Mission Architecture

RAM – Random Access Memory

RPV – Remotely Piloted Vehicle

TRL – Technology Readiness Level

UAV – Unmanned Aerial Vehicle

UAS – Unmanned Aerial System

118

REFERENCES

[1] W. Fink. Generic prioritization framework for target selection and instrument usage

for reconnaissance mission autonomy. Presented at Neural Networks, 2006.

IJCNN'06. International Joint Conference On. 2006, .

[2] W. Fink, J. M. Dohm, M. A. Tarbell, T. M. Hare, V. R. Baker, D. Schulze-Makuch,

R. Furfaro, A. G. Fairén, T. Ferre and H. Miyamoto. Tier-scalable reconnaissance

missions for the autonomous exploration of planetary bodies. Presented at

Aerospace Conference, 2007 IEEE. 2007, .

[3] K. Durga Prasad and S. Murty. Wireless sensor Networks–A potential tool to probe

for water on moon. Advances in Space Research 48(3), pp. 601-612. 2011.

[4] E. Vassev, M. Hinchey and J. Paquet. Towards an ASSL specification model for

NASA swarm-based exploration missions. Presented at Proceedings of the 2008

ACM Symposium on Applied Computing. 2008, .

[5] J. Straub. Spatial computing in an orbital environment: An exploration of the unique

constraints of this special case to other spatial computing environments. Presented

at Proceedings of the 2013 Spatial Computing Workshop at the Autonomous

Agents and Multi-Agent Systems (AAMAS) 2013 Conference. 2013, .

[6] P. Brownell. The motivational impact of management-by-exception in a budgetary

context. Journal of Accounting Research 21(2), pp. 456-472. 1983.

[7] S. W. Dekker and D. D. Woods. To intervene or not to intervene: The dilemma of

management by exception. Cognition, Technology & Work 1(2), pp. 86-96. 1999.

[8] J. Straub. Model based data transmission: Analysis of link budget requirement

reduction. Communications and Network 4(4), pp. 278-287. 2012.

[9] P. Troutman, D. D. Mazanek, F. Stillwagen, J. Antol, T. R. Sarver-Verhey, D. J.

Chato, R. J. Saucillo, D. R. Blue, D. Carey and S. A. Krizan. Orbital aggregation

and space infrastructure systems (OASIS). Presented at 53rd International

Astronautical Congress–World Space Congress, Houston, TX. 2002, .

119

[10] R. Castano, M. Judd, T. Estlin, R. C. Anderson, D. Gaines, A. Castaño, B. Bornstein,

T. Stough and K. Wagstaff. Current results from a rover science data analysis

system. Presented at Aerospace Conference, 2005 IEEE. 2005, .

[11] C. Tsatsoulis. Sensor webs as multiagent, negotiating systems. Presented at NASA

Earth Science Technology Conference. 2008, .

[12] A. Talukder, A. V. Panangadan, N. Georgas, T. Herrington and A. F. Blumberg.

Integrated operational control of unattended distributed coastal sensor web

systems with mobile autonomous robots. Selected Topics in Applied Earth

Observations and Remote Sensing, IEEE Journal Of 3(4), pp. 442-450. 2010.

[13] W. Z. Song, B. Shirazi, S. Kedar, S. Chien, F. Webb, D. Tran, A. Davis, D. Pieri, R.

LaHusen and J. Pallister. Optimized autonomous space in-situ sensor-web for

volcano monitoring. Presented at Aerospace Conference, 2008 IEEE. 2008, .

[14] S. Chien, D. Tran, J. Doubleday, A. Davies, S. Kedar, F. Webb, G. Rabideau, D.

Mandl, S. Frye and W. Song. A multi-agent space, in-situ volcano sensorweb.

Presented at International Symposium on Space Artificial Intelligence, Robotics,

and Automation for Space (i-SAIRAS 2010). Sapporo, Japan. 2010, .

[15] C. Zhong and S. A. DeLoach. Runtime models for automatic reorganization of

multi-robot systems. Presented at Proceedings of the 6th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems. 2011, .

[16] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordinated

control of groups. Presented at Decision and Control, 2001. Proceedings of the

40th IEEE Conference On. 2001, .

[17] P. Dasgupta. "Multi-robot task allocation for performing cooperative foraging tasks

in an initially unknown environment," in Innovations in Defence Support Systems-

2Anonymous 2011, .

[18] M. Al-Khawaldah, O. Badran and I. Al-Adwan. Exploration algorithm technique for

multi-robot collaboration. Jordan Journal of Mechanical and Industrial

Engineering pp. 177-184. 2011.

[19] H. Chen, X. Wang and Y. Li. A survey of autonomous control for UAV. Presented

at Artificial Intelligence and Computational Intelligence, 2009. AICI'09.

International Conference On. 2009, .

[20] H. Oh, D. Won, S. Huh, D. H. Shim, M. Tahk and A. Tsourdos. Indoor UAV control

using multi-camera visual feedback. Journal of Intelligent & Robotic Systems

61(1-4), pp. 57-84. 2011.

120

[21] T. Hester and P. Stone. Negative information and line observations for monte carlo

localization. Presented at Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference On. 2008, .

[22] T. Bailey, M. Bryson, H. Mu, J. Vial, L. McCalman and H. Durrant-Whyte.

Decentralised cooperative localisation for heterogeneous teams of mobile robots.

Presented at Robotics and Automation (ICRA), 2011 IEEE International

Conference On. 2011, .

[23] W. Zhu and S. Choi. An auction-based approach with closed-loop bid adjustment to

dynamic task allocation in robot teams. Presented at Proceedings of the World

Congress on Engineering. 2011, .

[24] E. M. Hinman and D. M. Bushman. Soviet automated rendezvous and docking

system overview. Presented at Automated Rendezvous and Capture Review.

Executive Summary. 1991, .

[25] K. Young, "US Achieves Autonomous Docking In Space," New Scientist, May 8

2007, 2007.

[26] S. Chien, R. Doyle, A. G. Davies, A. Jonsson and R. Lorenz. The future of ai in

space. Intelligent Systems, IEEE 21(4), pp. 64-69. 2006.

[27] (November 1 2009). Autonomous Sciencecraft Experiment. Available:

http://ase.jpl.nasa.gov/.

[28] (November 23 2009). How does Remote Agent work?. Available:

http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/zoom-

how.html.

[29] (October 6 2004). NASA Software Enables Satellites to Troubleshoot in Space.

Available:

http://www.nasa.gov/vision/earth/lookingatearth/software_eo1_prt.htm.

[30] D. Bernard, R. Doyle, E. Riedel, N. Rouquette, J. Wyatt, M. Lowry and P. Nayak.

Autonomy and software technology on NASA's deep space one. Intelligent

Systems and their Applications, IEEE 14(3), pp. 10-15. 1999.

[31] (November 23 2009). Hayabusa

[http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2003-019A].

[32] P. Davies and J. Barrington-Cook. The impact of autonomy on the onboard software

for the rosetta mission. Presented at Data Systems in Aerospace-DASIA 97. 1997,

.

http://ase.jpl.nasa.gov/
http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/zoom-how.html
http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/zoom-how.html
http://www.nasa.gov/vision/earth/lookingatearth/software_eo1_prt.htm
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2003-019A

121

[33] (2005). Deep Impact: The First Look inside a Comet. Available:

http://www2.ifa.hawaii.edu/newsletters/article.cfm?a=200&n=1.

[34] D. G. Kubitschek. Impactor spacecraft encounter sequence design for the deep

impact mission. 2005.

[35] (November 23 2009). What are the advantages of remote agents. Available:

http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/1-

advantages.html.

[36] (November 7 2009). Autonomous Remote Agent

[http://nmp.nasa.gov/ds1/tech/autora.html].

[37] J. Schlecht, K. Altenburg, B. M. Ahmed and K. E. Nygard. Decentralized search by

unmanned air vehicles using local communication. Presented at Proceedings of

the International Conference on Artificial Intelligence. 2003, .

[38] C. A. Lua, K. Altenburg and K. E. Nygard. Synchronized multi-point attack by

autonomous reactive vehicles with simple local communication. Presented at

Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE.

2003, .

[39] D. Schesvold, J. Tang, B. M. Ahmed, K. Altenburg and K. E. Nygard. POMDP

planning for high level UAV decisions: Search vs. strike. Presented at In

Proceedings of the 16th International Conference on Computer Applications in

Industry and Engineering. 2003, .

[40] N. Michael, E. Stump and K. Mohta. Persistent surveillance with a team of mavs.

Presented at Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International

Conference On. 2011, .

[41] G. Punzo, G. Dobie, D. J. Bennet, J. Jamieson and M. Macdonald. Low-cost, multi-

agent systems for planetary surface exploration. Presented at Proceedings of the

63rd International Astronautical Congress. 2012, .

[42] M. Herbert, E. Krotkov and T. Kanade, "A perception system for a planetary

explorer," in Proceedings of the 28th Conference on Decision and Control,

Tampa, FL, 1989, pp. 1151-1156.

[43] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons and W.

Whittaker. Ambler: An autonomous rover for planetary exploration. Computer

22(6), pp. 18-26. 1989.

[44] R. T. Newton and Y. Xu. Neural network control of a space manipulator. Control

Systems, IEEE 13(6), pp. 14-22. 1993.

http://www2.ifa.hawaii.edu/newsletters/article.cfm?a=200&n=1
http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/1-advantages.html
http://www.qrg.northwestern.edu/projects/vss/docs/Remote-agent/1-advantages.html
http://nmp.nasa.gov/ds1/tech/autora.html

122

[45] C. Thorpe, D. Wettergreen and R. Whittaker, "Dante's expedition to mount erebus,"

in Robotics Research ReviewsAnonymous School of Computer Science, Carnegie

Mellon University, 1992, .

[46] D. Wettergreen and C. Thorpe. Developing planning and reactive control for a

hexapod robot. Presented at Robotics and Automation, 1996. Proceedings., 1996

IEEE International Conference On. 1996, .

[47] (2009). Dante II. Available:

http://www.ri.cmu.edu/research_project_detail.html?project_id=163&menu_id=2

61.

[48] S. Hayati, R. Volpe, P. Backes, J. Balaram, R. Welch, R. Ivlev, G. Tharp, S. Peters,

T. Ohm and R. Petras. The rocky 7 rover: A mars sciencecraft prototype.

Presented at Robotics and Automation, 1997. Proceedings., 1997 IEEE

International Conference On. 1997, .

[49] (2009). Lunar Rover Navigation 1997. Available:

http://www.cs.cmu.edu/~lri/nav97.html.

[50] S. Moorehead, G. Simmons, D. Apostolopolous and W. Whittaker. Autonomous

navigation field results of a planetary analog robot in antarctica. Presented at

Artificial Intelligence, Robotics and Automation in Space. 1999, .

[51] P. Tompkins, A. Stentz and W. Whittaker. Automated surface mission planning

considering terrain, shadows, resources and time. Presented at Proceedings of i-

SAIRAS 2001. 2001, .

[52] D. Wettergreen, B. Dias, B. Shamah, J. Teza, P. Tompkins, C. Urmson, M. Wagner

and W. Whittaker. First experiment in sun-synchronous exploration. Presented at

Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International

Conference On. 2002, .

[53] Carnegie Mellon Robotics Institute, "Field report april 27, 2003," Carnegie Mellon

Robotics Institute, Pittsburgh, PA, April 27 2003. 2003.

[54] Carnegie Mellon Robotics Institute, "Field report august 31, 2004," Carnegie Mellon

Robotics Institute, Pittsburgh, PA, August 31 2004. 2004.

[55] D. Wettergreen, M. Wagner, D. Jonak, V. Baskaran, M. Deans, S. Heys, D. Pane, T.

Smith, J. Teza and D. Thompson. Long-distance autonomous survey and mapping

in the robotic investigation of life in the atacama desert. Presented at International

Symposium on Artificial Intelligence, Robotics and Automation in Space

(iSAIRAS). 2008, .

http://www.ri.cmu.edu/research_project_detail.html?project_id=163&menu_id=261
http://www.ri.cmu.edu/research_project_detail.html?project_id=163&menu_id=261
http://www.cs.cmu.edu/~lri/nav97.html

123

[56] D. Wettergreen, D. Jonak, D. Kohanbash, S. Moreland, S. Spiker, J. Teza and W.

Whittaker. Design and experimentation of a rover concept for lunar crater

resource survey. Presented at 47th AIAA Aerospace Sciences Meeting Including

the New Horizons Forum and Aerospace Exposition. 2009, .

[57] (December 26 2009). Space Topics: Mars Missions to Mars

[http://www.planetary.org/explore/topics/mars/missions.html].

[58] H. Stone, "Mars pathfinder microrover A small, low-cost, low-power spacecraft," in

Proceedings of the 1996 AIAA Forum on Advanced Developments in Space

Robotics, 1996, .

[59] (January 23 2009). In-situ Exploration and Sample Return: Autonomous Planetary

Mobility. Available:

http://marsrovers.jpl.nasa.gov/technology/is_autonomous_mobility.html.

[60] (February 13 2007). Feb. 13: Carnegie Mellon Software Steers NASA's Mars Rover

[http://www.cmu.edu/news/archive/2007/February/feb13_rovers.shtml].

[61] J. L. Bresina and P. H. Morris. Mixed-initiative planning in space mission

operations. AI Magazine 28(2), pp. 75. 2007.

[62] (2009). ASPEN. Available: http://aspen.jpl.nasa.gov.

[63] G. Rabideau, R. Knight, S. Chien, A. Fukunaga and A. Govindjee. Iterative repair

planning for spacecraft operations using the aspen system. Presented at Artificial

Intelligence, Robotics and Automation in Space. 1999, .

[64] T. Smith, R. Simmons, S. Singh and D. Hershberger. Future directions in multi-robot

autonomy and planetary surface construction. Presented at Proceedings of the

2001 Space Studies Institute Conference. 2001, .

[65] (2009). CASPER. Available: http://casper.jpl.nasa.gov.

[66] T. Estlin, G. Rabideau, D. Mutz and S. Chien. Using continuous planning techniques

to coordinate multiple rovers. Electronic Transactions on Artificial Intelligence

4(45-57), pp. 2000. 2000.

[67] S. Chien, B. Engelhardt, R. Knight, G. Rabideau and R. Sherwood. Onboard

autonomy on the three corner sat mission. Presented at 6th International

Symposium on Artifical Intelligence, Robotics and Automation in Space. 2001, .

[68] F. Fisher, T. Estlin, D. Gaines, S. Schaffer, C. Chouinard and R. Knight. CLEaR:

Closed loop execution and recovery-a framework for unified planning and

execution. 2002. Available: http://hdl.handle.net/2014/10168.

http://www.planetary.org/explore/topics/mars/missions.html
http://marsrovers.jpl.nasa.gov/technology/is_autonomous_mobility.html
http://www.cmu.edu/news/archive/2007/February/feb13_rovers.shtml
http://aspen.jpl.nasa.gov/
http://casper.jpl.nasa.gov/
http://hdl.handle.net/2014/10168

124

[69] (2009). Onboard Autonomous Science Investigation System. Available:

http://oasis.jpl.nasa.gov/index.html.

[70] B. D. Smith, B. E. Engelhardt, D. H. Mutz and J. P. Crawford. Automated planning

for the modified antarctic mapping mission. Presented at Aerospace Conference,

2001, IEEE Proceedings. 2001, .

[71] K. D. Mullins, E. B. Pacis, S. B. Stancliff, A. B. Burmeister, T. A. Denewiler, M. H.

Bruch and H. R. Everett, "An automated UAV mission system," United States

Navy, 2003.

[72] K. L. Wagstaff, D. Mazzoni and S. Sain. HARVIST: A system for agricultural and

weather studies using advanced statistical methods. 2005.

[73] R. Sherwood and S. Chien. Sensor web technologies: A new paradigm for

operations. Presented at International Symposium on Reducing the Cost of

Spacecraft Ground Systems and Operations (RCSGSO 2007). 2007, .

[74] R. Sherwood, S. Chien, D. Tran, B. Cichy, R. Castano, A. Davies and G. Rabideau.

Autonomous science agents and sensor webs: EO-1 and beyond. Presented at

Aerospace Conference, 2006 IEEE. 2006, .

[75] S. Chien, D. Tran, A. Davies, M. Johnston, J. Doubleday, R. Castano, L.

Scharenbroich, G. Rabideau, B. Cichy and S. Kedar. Lights out autonomous

operation of an earth observing sensorweb. Presented at Int. Symposium on

Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO

2007). 2007, .

[76] B. Hayes-Roth. A blackboard architecture for control. Artif. Intell. 26(3), pp. 251-

321. 1985.

[77] L. D. Erman, F. Hayes-Roth, V. R. Lesser and D. R. Reddy. The hearsay-II speech-

understanding system: Integrating knowledge to resolve uncertainty. ACM

Computing Surveys (CSUR) 12(2), pp. 213-253. 1980.

[78] E. A. Feigenbaum, B. G. Buchanan and J. Lederberg. On generality and problem

solving: A case study using the DENDRAL program. 1970.

[79] E. H. Shortliffe, R. Davis, S. G. Axline, B. G. Buchanan, C. C. Green and S. N.

Cohen. Computer-based consultations in clinical therapeutics: Explanation and

rule acquisition capabilities of the MYCIN system. Computers and Biomedical

Research 8(4), pp. 303-320. 1975.

[80] M. V. Johnson Jr and B. Hayes-Roth. Integrating diverse reasoning methods in the

BBP blackboard control Architecture1. Presented at Proceedings of the AAAI.

1987, .

http://oasis.jpl.nasa.gov/index.html

125

[81] M. P. Georgeff and F. F. Ingrand. Monitoring and control of spacecraft systems

using procedural reasoning. Presented at Proceedings of the Space Operations

Automation and Robotics Workshop. 1989, .

[82] J. P. Rice. Poligon: A systems for parallel problem solving. Knowledge Systems

Laboratory, Stanford University. Stanford, CA. 1986.

[83] D. D. Corkill, K. Q. Gallagher and P. M. Johnson. Achieving flexibility, efficiency,

and generality in blackboard architectures. Presented at Proceedings of the

National Conference on Artificial Intelligence. 1987, .

[84] J. Le Mentec and S. Brunessaux. Improving reactivity in a blackboard architecture

with parallelism and interruptions. Presented at Proceedings of the 10th European

Conference on Artificial Intelligence. 1992, .

[85] M. Hewett and R. Hewett. A language and architecture for efficient blackboard

systems. Presented at Artificial Intelligence for Applications, 1993. Proceedings.,

Ninth Conference On. 1993, .

[86] G. Brzykcy, J. Martinek, A. Meissner and P. Skrzypczynski. Multi-agent blackboard

architecture for a mobile robot. Presented at Intelligent Robots and Systems,

2001. Proceedings. 2001 IEEE/RSJ International Conference On. 2001, .

[87] Y. Yang, Y. Tian and H. Mei. Cooperative Q learning based on blackboard

architecture. Presented at International Conference on Computational Intelligence

and Security Workshops, 2007. 2007, .

[88] R. E. Fayek, R. Liscano and G. M. Karam. A system architecture for a mobile robot

based on activities and a blackboard control unit. Presented at Robotics and

Automation, 1993. Proceedings., 1993 IEEE International Conference On. 1993, .

[89] A. M. de Campos and M. Monteiro de Macedo. A blackboard architecture for

perception planning in autonomous vehicles. Presented at Industrial Electronics,

Control, Instrumentation, and Automation, 1992. Power Electronics and Motion

Control., Proceedings of the 1992 International Conference On. 1992, .

[90] S. Carroll, J. E. Boyd and J. Denzinger. Data-centered control of cooperating UAVs:

Flying airplanes with a multimedia database. 2008.

[91] E. Shahbazian, J. Duquet and P. Valin. A blackboard architecture for incremental

implementation of data fusion applications. Presented at Fusion. 1998, .

[92] D. Goldin and A. M. Chesnokov. Features of informational control complex of

autonomous spacecraft. Presented at Proceedings of IFAC Workshop on

Aerospace Guidance, Navigation and Flight Control Systems. 2011, .

126

[93] S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood, D.

Mandl, S. Frye and S. Shulman. An autonomous earth-observing sensorweb.

Intelligent Systems, IEEE 20(3), pp. 16-24. 2005.

[94] R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement

learning agents. Mach. Learning 33(2-3), pp. 235-262. 1998.

[95] W. Fink, J. M. Dohm, M. A. Tarbell, T. M. Hare and V. R. Baker. Next-generation

robotic planetary reconnaissance missions: A paradigm shift. Planet. Space Sci.

53(14), pp. 1419-1426. 2005.

[96] J. Han, M. Li and L. Guo. Soft control on collective behavior of a group of

autonomous agents by a shill agent. Journal of Systems Science and Complexity

19(1), pp. 54-62. 2006.

[97] K. Windt and M. Hülsmann. "Changing paradigms in logistics—understanding the

shift from conventional control to autonomous cooperation and control," in

Understanding Autonomous Cooperation and Control in LogisticsAnonymous

2007, .

[98] (). Mars, Water and Life. Available: http://mars.jpl.nasa.gov/msp98/why.html.

[99] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner and P.

R. Young. Computing as a discipline. Commun ACM 32(1), pp. 9-23. 1989.

[100] J. Straub, "Comparing the Effect of Pruning on a Best-Path and Naive-Approach

Blackboard Solver," International Journal of Automation and Computing, In

Press.

[101] (). TimeSpan.Ticks Property.

[102] S. L. Star. This is not a boundary object: Reflections on the origin of a concept.

Science, Technology & Human Values 35(5), pp. 601-617. 2010.

[103] M. Weiss and F. Stetter. A hierarchical blackboard architecture for distributed AI

systems. Presented at Software Engineering and Knowledge Engineering, 1992.

Proceedings., Fourth International Conference On. 1992, .

[104] J. Straub and H. Reza. The use of the blackboard architecture for a decision making

system for the control of craft with various actuator and movement capabilities.

Presented at Proceedings of the International Conference on Information

Technology: New Generations. 2014, .

http://mars.jpl.nasa.gov/msp98/why.html

	A Localized Autonomous Control Algorithm For Robots With Heterogeneous Capabilities In A Multi-Tier Architecture
	Recommended Citation

	_

