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ABSTRACT 

The study of uncertainties in satellite aerosol products is essential to aerosol 

data assimilation and modeling efforts. In this study, with the assistance of ground-

based observations, uncertainties in Moderate Resolution Imaging Spectroradiometer 

(MODIS) collection 5 Deep Blue (DB), Multi-Angle Imaging Spectroradiometer 

(MISR) version 22 aerosol products, and the newly released collection 6 Dark Target 

over-ocean and DB products were evaluated. For each product, systematic biases 

were analyzed against observing conditions. Empirical correction procedures and data 

filtering steps were generated to develop noise and bias reduced DA-quality aerosol 

products for modeling related applications. 

Special attention was also directed at the potential low bias in satellite aerosol 

optical depth (AOD) climatology due to misclassification of aerosols as clouds over 

Asia. A heavy aerosol identifying system (HAIS) was developed through the 

combined use of the Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP) products for detecting heavy smoke aerosol 

plumes. Upon extensive evaluation, HAIS was applied to one year of collocated OMI, 

CALIOP, and MODIS data to study the misclassifications related low bias. This study 

suggests that the misclassification of heavy smoke aerosol plumes by MODIS is 

rather infrequent and thus introduces an insignificant low bias to its AOD climatology. 

Still, this study confirms that misclassification happens in both active- and passive-

based satellite aerosol products and needs to be studied for forecasting these events. 
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CHAPTER I    

INTRODUCTION 

Atmospheric aerosols, which are small particles in air, can affect atmospheric 

radiation in the short-wave and long-wave spectrums (Kaufman et al., 2002).  As of 

which, the study of atmospheric aerosol properties and their spatial and temporal 

distributions is of an interest to both the climate and visibility forecasting 

communities.  Aerosols take a multitude of forms, from mostly naturally generated 

aerosols such as sea salt, desert dust, and microbial particles to anthropogenic 

aerosols such as sulfate aerosols and smoke from agriculture burning and fossil fuel 

consumption.  Aerosol particles, based on their formation, can also be separated into 

primary aerosol particles, which are emitted directly into the atmosphere, and 

secondary aerosol particles, which undergo gas to particle formation.  The global 

distribution of aerosol particles depends highly on their source region due to their 

relatively short lifetime ranging from one to several days (Blifford et al., 1952; 

Haxeland Schumann, 1955; Balkanski et al., 1993; Rodhe 1999; Giorgi and 

Chameides, 1986; Williams et al., 2002).  However, studies have shown that aerosol 

particles can be transported a long distance such as from Asia to North America 

(VanCuren and Cahill, 2002; Husar et al., 2001; Jaffe et al., 1999; Duce et al., 1980).  

Volcanic aerosols are a significant exception, however. Once the volcanic aerosol 

particles get inserted into the stratosphere, it can take up to four years for the aerosol 

concentrations in the stratosphere to return to their background value (Minnis et al., 
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1993; McCormicket al., 1995).  Thus, currently, satellite remote sensing is the only 

means that can provide contemporary global aerosol observation with good spatial 

and temporal data coverage.  

In the past, spatial distributions of atmospheric aerosol particles have been 

studied using both passive-based and active-based satellite observations such as those 

from the Advanced Very High Resolution Radiometer (AVHRR), the Geostationary 

Operational Environmental Satellite system (GOES), the Total Ozone Mapping 

Spectrometer (TOMS), the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), the 

Moderate Resolution Imaging Spectraradiometer (MODIS), the Multi-angle Imaging 

Spectralradiometer (MISR), the Ozone Monitoring Instrument (OMI), the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the 

newly launched Visible Infrared Imaging Radiometer Suite (VIIRS).  Among these 

sensors, three satellite aerosol products from MODIS and MISR are widely used 

among the community, including the MODIS Dark Target (DT), MODIS Deep Blue 

(DB), and the MISR aerosol products, due to their consistent data quality and their 

ability to provide global data coverage on a daily to weekly basis.  

Using aerosol products from MODIS and MISR, various researchers have 

attempted to investigate aerosol direct and indirect climate effects.  For example, 

utilizing collocated broadband observations from the Clouds and the Earth's Radiant 

Energy System (CERES) and/or MODIS DT aerosol products, clear sky aerosol 

direct radiative effects (DRE) have been studied over global oceans (e.g. Loeb and 

Manalo-Smith, 2005; Zhang et al., 2005a, b; Bellouin et al., 2005; Zhang and 

Christopher, 2003).  Studies have also been conducted in which both satellite 
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observations and model simulations are used to estimate direct aerosol forcing (e.g. 

Yu et al., 2006).  Some researchers have extended satellite-based aerosol forcing 

studies to estimate the anthropogenic portion of aerosol radiative effects (e.g. 

Kaufman et al., 2005; Christopher et al., 2006).  Satellite aerosol data have also been 

used to study aerosol indirect effects, which involve changing cloud properties due to 

aerosol particle interactions (e.g. Quaas et al., 2008; Quaas et al., 2006; Lohmann and 

Feichter, 2005; Sekiguchi et al., 2003). 

Using near real time satellite aerosol data, and especially aerosol products 

from MODIS and MISR, efforts have also been directed at assimilating these data 

into numerical models to improve atmospheric aerosol forecasts through either 

variation-based or ensemble-based methods.  For example, schemes/methods have 

been developed for directly assimilating satellite aerosol optical depth (AOD, τ) (e.g., 

Zhang et al., 2008a; Yu et al., 2003); aerosol vertical profiles from lidar instruments 

(e.g., Uno et al., 2008; Sekiyama et al., 2010; Zhang et al., 2011), and multi-

wavelength corrected top of atmosphere radiances into these models (Weaver et al., 

2007).  In particular, due to their relative simplicity in application, level 2 aerosol 

products have been used widely in operational centers for aerosol forecasts (e.g. 

Zhang et al., 2008a; Benedetti et al., 2009).  Still, these level 2 satellite aerosol 

products do have errors. Kahn et al. (2010) and Shi et al. (2011a) show that large 

discrepancies exist between collection 5 (c5) DT and MISR version 22 (v22) 

operational aerosol products, which, as mentioned before, are the two most popular 

satellite aerosol products.  
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Efforts have been directed at exploring differences between the MISR and 

MODIS aerosol products (e.g. Kahn et al, 2009; Shi et al., 2011b) and further 

understanding uncertainties associated within each product.  Zhang and Reid (2006) 

first explored uncertainties within the collection 4 (c4) DT over-ocean products as 

functions of observational conditions.  Extending the effort from Zhang and Reid 

(2006), this author evaluated the level-2 c5 DT over-ocean aerosol product, and 

developed a data-assimilation quality (DA-quality) c5 DT level 3 over-ocean product.  

This product has been used operationally in the Navy’s aerosol forecasting system 

(Shi et al., 2011a).  Hyer et al. (2011) studied the c5 DT over-land product and found 

that complex surface features and regional biases in aerosol microphysical properties 

are the main sources of uncertainties for the operational DT aerosol products, whereas 

uncertainties due to viewing geometry and snow contamination are also noticeable.  

Kahn et al. (2009 and 2010) determined that biases and uncertainties in MISR v22 

AOD values are associated with cloud contamination, lower boundary conditions in 

some locations, and lack of an aerosol model to represent the regions where dust and 

smoke mixtures are present.  

While previous research efforts have focused on understanding major bias in 

MODIS c4 and c5 DT aerosol products, efforts are also needed to evaluate MODIS 

DB and MISR aerosol products for their applications in aerosol data assimilation.  

Also, the collection 6 (c6) DT and DB aerosol products were released recently with 

new changes applied.  Thus, it is also necessary to revisit the DT/DB product-based 

analysis.  This effort focuses on critically evaluating uncertainties within the MODIS 

and MISR satellite aerosol products and generating bias-reduced and further quality 
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controlled aerosol products for applications that require high quality aerosol satellite 

data.  In sequence, the collection 5.1 (referred to c5 DB afterwards) and c6 DB over 

land product and the MISR aerosol products were studied.  As an overview, the 

problematic regions were identified through the inter-comparisons between MODIS 

and MISR products within and outside of ground truth sites.  For each product, 

potential uncertainty sources were then analyzed against observational conditions in 

order to discover systematic biases.  Based on these analyses, empirical correction 

procedures and several noisy-data filters were generated in order to develop the 

corresponding Data Assimilation (DA)-quality aerosol products.  At last, these data 

were aggregated into a level-3 product for modeling applications.  These products, 

although aimed for aerosol DA uses, are suitable for other aerosol related studies that 

require quality-assured data.  After generating the individual global level-3 aerosol 

products, as the last part of this study an investigation of heavily polluted regions 

such as Asia was performed.  This was conducted to estimate the under-sampling of 

heavy aerosol events using combined active and passive observations.  

A total of eight chapters are included in this dissertation. Chapter II introduces 

datasets that are used in this study.  Chapter III highlights issues in MODIS and 

MISR aerosol products through inter-comparisons of collocated MODIS and MISR 

aerosol products.  Chapters IV through VI provide detailed analyses of c5.1 and c6 

DB, and v22 MISR aerosol products.  In Chapter VII, the impact of misclassification 

of aerosol plumes as clouds is evaluated over Asia.  The results are summarized in 

Chapter VIII. 
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CHAPTER II    

DATASET 

This section contains detailed discussions of the data that are used in this 

study.  The operational level 2 MODIS and MISR aerosol products that were studied 

and analyzed include MODIS c5 and c6 Dark Target over ocean and over land, 

MODIS c5 and c6 Deep Blue, and MISR v22 over land and ocean.  To assist the 

analysis, additional datasets are also used, which include the AERONET aerosol 

product, MODIS cloud mask products, OMIUV aerosol index data, CALIOP level 1B 

data and aerosol profile products, and NOGAPS modeled wind speed data.  

 

2.1 MODIS Aerosol Products 

Both Aqua and Terra satellites carry the MODIS instrument.  With a total of 

36 spectral channels that have spatial resolutions ranging from 250 m to 1 km, 

observations from MODIS can be used for studying aerosols and clouds.  Currently 

there are two operational MODIS aerosol products (DT and DB) available for climate 

and modeling applications.  The DT algorithm is applicable over visibly dark surfaces 

such as oceans, and low albedo land surfaces.  The original DB algorithm, by taking 

advantage of relatively dark surface reflectivity at the blue channel, provides 

retrievals over bright surfaces such as desert regions.  Both MODIS level 2.0 DT and 

DB aerosol products have a spatial resolution of 10 kilometers.  In this study, only 
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DT over-ocean and DB over-land products were evaluated.  The evaluation of over-

land DT products was performed by a separate study (Hyer et al., 2011).  

In 2000, the first version of the DT aerosol product was released for public 

access, after which improvements to the retrieval algorithms have been made 

continually (Kaufman et al., 1997; Tanré et al., 1997).  MODIS c5 DT and DB 

products were released in 2007 (Remer et al., 2005) and possibly are the most widely 

used versions to date.  A portion of MODIS c6 DT and DB products were released in 

late 2014 and the remaining portions were released early this year (Levy et al., 2013).  

Thus, both c5 and c6 MODIS DT and DB data were used in this study. 

2.1.1 MODIS DT Over-ocean Aerosol Products  

The DT over ocean aerosol retrieval algorithm is applied when all 

observations within a 10 × 10 km grid are marked as ocean pixels.  Pixels that are not 

suitable for retrievals are removed, including those flagged as cloudy, or within glint 

regions (within 40° glint angle) (Levy et al., 2003).  To exclude cloudy pixels, the 

MODIS cloud mask product (Platnick et al., 2003; Gao et al., 2002) is used with 

additional spatial variability based cloud screening steps (Remer et al., 2005).  After 

excluding cloudy pixels and those within glint regions, the top and bottom 25% of 

pixels based on brightness at 0.86 µm are removed.  If there are at least 10 pixels left 

within a 10 × 10 km grid after the filtering steps, then inversion is performed based 

on the look-up table (LUT) method using radiance observations from six wavelengths 

ranging from 0.47 to 2.13 µm.  The LUT was generated by tabulating simulated 

satellite radiances as functions of aerosol microphysical properties, such as aerosol 

effective radius, single scattering albedo, asymmetry factor, phase function and AOD, 
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and observing conditions, such as viewing geometries.  The retrieval process is then 

performed by choosing the best fit of the calculated LUT radiances with those 

observed at top of atmosphere (TOA).  

There are nine standardized aerosol models used in the c5 over-ocean retrieval 

algorithm: four fine modes and five coarse modes (Remer et al., 2005).  One fine and 

one coarse model are selected during the retrieval process when the minimum 

difference between LUT and observed radiances is achieved.  This approach is based 

on the assumption that aerosol particles are in a bi-model distribution.  Uncertainties 

occur when inaccurate representations of aerosol microphysical properties are used 

following this assumption.  There are other assumptions that can introduce 

uncertainties within the aerosol products.  For example, in the c5 DT over-ocean 

algorithm, all radiances within the LUT are calculated using a 6 m s-1 near-surface 

wind speed (Remer et al., 2005).  The wind speed alters the ocean surface reflectance, 

which ultimately influences the estimation of the radiance contribution from aerosols.  

One major update in the c6 DT over-ocean aerosol product is that the wind 

dependency of surface reflectance is taken into account (Levy et al., 2010).  

Incremental adjustments are also made to thresholds and formulas for cloud screening 

in the c6 DT algorithm.  Adjustments in selecting the clear sky pixels have been 

implemented in the c6 MODIS cloud mask product (Personal communication with Dr. 

Levy, 2013).  Thus, corresponding adjustments are made in the DT aerosol retrieval 

algorithm to mediate this change in the c6 MODIS cloud mask product.  

Corrections were applied to level 1B Terra MODIS data to account for 

calibration drift, especially for the blue and red bands (Sayer et al., 2015).  The 
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changes in upstream radiance data will inevitably affect aerosol retrievals.  For 

example, Levy et al. (2013) reported an increase in over-land AOD of 0.02 and an 

increase of 0.004 for over-ocean AODs due to this change in radiance calibration.  

The ultimate output parameters from the inversion are AODs (at 7 

wavelengths, including the commonly used AOD at 0.55 µm) and the fine mode 

fraction (η), which denotes the percentage of contribution from retrieved fine and 

coarse mode aerosols.  The reported uncertainties of the DT AOD data are 0.03 ± 

0.05 × τ over ocean and 0.05 ± 0.15 × τ over land for both c5 and c6 DT products 

when validated against AERONET (Remer et al., 2005; Levy et al., 2013).  

Other than AOD, MODIS DT aerosol products also contain ancillary variables 

including observation conditions and a quality control (QC) flag.  The QC flag 

provides information regarding retrieval confidence and can be used to identify data 

that are retrieved under not-so-favorable conditions (Levy et al., 2003; Tanré et al., 

1997).  Other parameters that could be used in QA/QC steps include "Average Cloud 

Distance Land Ocean," which measures the distance of a retrieval from the nearest 

cloudy region and could be used in detecting cloud contaminated retrievals.  

2.1.2 MODIS DB Aerosol Products  

The DB algorithm is used to retrieve AOD and other ancillary parameters over 

visibly bright surfaces, utilizing the facts that surface albedo is relatively dark at blue 

channels (0.412, 0.47 µm) and dust absorption is weak at the red channel (0.65 µm) 

(Hsu et al., 2004).  In the c5 DB algorithm, a pre-calculated clear sky surface albedo 

database for arid and semi-arid areas is used in the retrieval process (Hsu et al., 2006).  

These surface albedo data, combined with a set of models describing aerosols with 
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different optical properties, are used as inputs to a radiative transfer simulation to 

generate LUT entries, which tabulate the simulated satellite radiances at 0.412, 0.47, 

and 0.65 µm as functions of AOD (at 0.55 µm), aerosol type, and surface albedo.  

Using a maximum likelihood method, the optimal combination of aerosol models is 

selected by matching the observed radiances at 1 km resolution with the LUT values.  

For pure dust aerosol cases, AOD and single scattering albedo are reported at 

0.412 and 0.47 µm, while for mixed aerosol cases, AOD and Angström exponent 

values are reported (Hsu et al., 2004).  The DB algorithm is applied to 1 km cloud-

free MODIS pixels, which are then aggregated into 10 km resolution data (Hsu et al., 

2004).  This is different from the standard MODIS products, where radiances are 

aggregated to a 10 × 10 km spatial resolution first, and then the retrieving processes 

are applied.  In the c5 DB algorithm, basic cloud screening is accomplished using the 

MODIS cloud mask product.  To further reduce cloud contamination, spatial 

variances of TOA reflectance (at 0.412 µm) are computed for every 3 × 3 pixels and 

are used to remove potential cloud-contaminated pixels.  The DB absorbing aerosol 

index AI is also used to retain pixels with thick dust loading that are misidentified as 

cloudy pixels by the MODIS cloud masks (Hsu et al., 2004).  The DB absorbing 

aerosol index AI detects changes in wavelength-dependent reflectance from Rayleigh 

scattering due to aerosol absorption (Hsu et al., 2004), and thus can be used to 

discriminate heavy UV-absorbing aerosol plumes from clouds.  

The DB data includes a three-category quality assurance (QA) flag: “none,” 

“good,” and “very good.”  Also included are other ancillary parameters such as 
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viewing/scattering angles, solar zenith and azimuth angles, surface albedo, and the 

number of pixels used, all of which are used for evaluation purposes.  

The spatial coverage of c5 DB data includes North Africa, the Arabian 

Peninsula, parts of Central Asia, India, Australia, the Western US, and the Andes 

Mountains.  The spatial resolution of the data is 10 km at nadir and the revisit time is 

about one to two days.  Compared to MISR, which is also used to retrieve aerosol 

properties over bright surfaces, DB has a much wider spatial coverage and a more 

frequent revisiting time.  The uncertainties in DB AOD retrievals are listed as ±0.03 ± 

20 % × τAERONET for c5 and ±0.03 ± 20 % × τDB for c6 (Hsu et al., 2006; Sayer et al., 

2013).  

A climatological surface albedo database is used in the c5 DB retrieval 

algorithm, which, as discussed in CHAPTER I, introduces retrieval uncertainties and 

limits the usage of the DB algorithm to vegetated surfaces.  A hybrid method of 

estimating surface reflectance, which uses seasonal surface reflectance data and the 

normalized difference vegetation index (NDVI) products, is applied in the c6 DB 

algorithm.  The new c6 DB surface reflectance database extends the data coverage to 

all "cloud-free and snow free" land masses (Hsu et al., 2013).  A more sophisticated 

global surface reflectance database was generated using seven years of data and is 

built as a function of NDVI.  This is used for retrieving aerosols over arid and semi-

arid regions.  Surface reflectance of naturally vegetated regions is calculated using 

linear relations between surface reflectance at 0.47 and 0.65 µm and the TOA 

reflectance at 2.1 µm (Hsu et al., 2013).  For urban and agricultural regions, a hybrid 
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method that takes into account the effects of the bidirectional reflectance distribution 

function (BRDF) is used (Hsu et al., 2013). 

Another major change in the c6 DB algorithm is in the cloud screening 

procedures.  In the c5 DB algorithm, the spatial homogeneity of TOA reflectance at 

0.412 µm is used as the primary cloud-screening check, and 1.38 µm data are used for 

detecting cirrus contamination.  This approach masks out both regions with "highly 

variable" surface characteristics and masks out non-existent cirrus clouds over arid 

areas due to the high sensitivity of 1.38 µm to water vapor (Hsu et al., 2013).  The 

updated cloud masking procedures include tests using brightness temperature (BT) at 

11 µm, BT differences between 11 µm and 12 µm, and total precipitable water, which 

results in more cloud-free pixels that are suitable for aerosol retrievals (Hsu et al., 

2013).  

 

2.2 MISR Aerosol Products 

On board the Terra satellite, MISR measures radiances at 4 spectral channels 

(446.4 nm, 557.5 nm, 671.7 nm, and 866.4 nm) and at nine different viewing angles 

(nadir, ±26.1, ±45.6, ±60.0, and ±70.5 degrees) with a swath of 360 km.  Derived 

from MISR TOA radiances measured in 1.1 km sub-regions, the MISR level 2 

aerosol products have a spatial resolution of 17.6 × 17.6 km (Martonchik et al., 1998, 

2002, 2009).  Two separate retrieval systems were applied over dark water and 

heterogeneous land surface (a 3-stage retrieval process).  Stage one involves pre-

processing, which includes radiance calibration, ozone and water vapor corrections, 

and removal of radiances that are not suitable for retrievals.  During this stage, pixels 
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that are influenced by cloud, glint, complex terrain, and low solar zenith are filtered 

out. Stage two determines the surface type of a scene, including dark water and 

heterogeneous land.  For over-land retrievals, an empirical orthogonal function 

analysis is used to separate the surface contribution of TOA radiances from that from 

the atmosphere (Martonchik et al., 1998).  Stage three is the inversion step.  During 

this step, the averaged reflectance of the red and near-infrared band is used primarily 

for dark-water retrievals when AOD is smaller than 0.5 at 0.558 µm.  The core 

retrieval strategy is based on an LUT method similar to that previously described.  

Instead of using coarse and fine mode aerosol models, five natural aerosol types are 

used, including sea salt, pollution, dust, biogenic particles and urban soot.  The 

physical and chemical properties of the five aerosol species are obtained from 

previous field campaigns (Diner et al., 1998; Diner et al., 2001).  

To exclude cloudy pixels, the MISR cloud team has developed three 

independent cloud detection methods: Radiometric Camera-by-Camera Cloud Mask 

(RCCM), Stereoscopically Derived Cloud Mask (SDCM), and Angular Signature 

Cloud Mask (ASCM) (Diner et al., 1998; Martonchik et al., 2009).  RCCM is based 

on a radiance threshold technique and produces cloud masks for each of the nine 

camera angles at a 1.1 km spatial resolution.  The SDCM method is designed to 

retrieve the reflecting layer height and is used in combination with the RCCM method 

to indicate the confidence level regarding clouds presence near or above a surface.  

The ASCM method utilizes differences in angular-dependent Rayleigh scattering in 

the blue and red or near-IR channels at forward-scattering directions between high 

clouds and the surface.  It is designed for detecting high clouds and clouds over icy 
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and snowy surfaces.  Over land, ASCM is currently only applied over the icy and 

snowy surfaces with static thresholds.  A sensitivity study showed that the ASCM 

method is not sensitive to cirrus clouds that have optical depths less than 0.5 (Di 

Girolamo and Davies, 1994).  Besides these three primary cloud detection methods, 

two additional data-filtering procedures including angle-to-angle smoothness and 

correlation evaluation along with a brightness test, are also used to remove possible 

contaminated observations for aerosol retrievals by the MISR aerosol team (Diner et 

al., 2001; Martonchik et al., 2002).  Both methods are designed to eliminate pixels 

with large radiance variations within each camera angle and among the nine angles. 

Kahn et al. (2005, 2010) showed that approximately one standard deviation of 

uncertainty in MISR-retrieved AOD is on the order of 0.05 or 0.2 × τ, whichever is 

larger.  Biases and uncertainties in MISR AOD values are associated with cloud 

contamination and lower boundary conditions in some locations (Kahn et al., 2010).  

Uncertainties are also present over regions that have mixtures of dust and smoke, as 

only a limited number of aerosol models are used in the retrieval process.  Specific 

biases have been identified for retrievals with AOD values lower than 0.025 or higher 

than 0.5 (Kahn et al., 2010).  Besides AOD, the MISR aerosol product also reports 

constraints on particle shape, size, and absorption.  

 

2.3 Aerosol Robotic NETwork (AERONET) Observations 

AERONET is a global aerosol-monitoring network that contains more than 

200 sun photometers.  Each photometer is designed to measure attenuated solar 

energy at eight spectral bands from 0.34 µm – 1.64 µm that can be used to derive 
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aerosol optical properties (Holben et al., 1998).  The sun photometers measure 

attenuated solar energy through two scanning modes: direct sun measurement and sky 

measurement (Holben et al., 1998).  For the direct sun measurement mode, a 

photometer points directly at the sun and measures solar radiation every 15 minutes.  

The Rayleigh and gas-absorption-adjusted radiance measurements are used to 

calculate the spectral AODs following Beer-Bouguer’s Law.  Sky measurements are 

used to derive aerosol inversion products, which include aerosol microphysical 

properties such as particle size distribution and phase function (Dubovik et al., 2000).  

There are two types of sky measurements: the “almucantar plane” and the “principal 

plane" modes.  Both include series of measurements that point away from the sun 

following sequences of azimuth or scattering angles (Holben et al., 1998). 

Level 2.0 aerosol AOD products include extensive cloud masking and quality 

assurance procedures (Smirnov et al., 2000).  Two temporal variation tests are 

performed to remove potential cloud contamination within the aerosol products.  First, 

triplet measurements of AOD collected in 1 minute intervals need to be smaller than 

0.02 for AOD smaller than 0.67.  If AOD is greater than 0.67, then the threshold of 

the triplet test is set to 0.03 × τ.  The continuity test is a spike filter that is applied to 

the second order time-series derivative of spectral AODs.  Other quality assurance 

steps include exclusion of specific channels with large calibration changes, exclusion 

of AOD retrieved at 1.02 µm when temperature measurements are unreliable, and 

exclusion of data anomalies that are obvious artifacts.  Besides spectral AODs, the 

aerosol size parameter, called the Angström Exponent, is derived for AOD values 
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ranging from 0.44 to 0.87 µm (O'Neil et al., 2003).  Lastly, the reported uncertainty in 

spectral AODs is on the order of ~0.01–0.02 (Eck et al., 1999). 

 

2.4 MODIS Cloud Mask Product 

In this study, attempts have been made to use the MODIS cloud mask for 

cloud clearing of the MISR aerosol product.  With additional channels centered at IR 

and the 1.375-µm channel, MODIS, in comparison with MISR, has an enhanced 

capability of detecting clouds, especially thin cirrus (Ackerman et al., 1998).  The 

MODIS cloud mask products provide levels of confidence regarding how 

unobstructed the satellite field of view is at the pixel level.  A combination of 19 

visible and infrared spectral bands is used to perform a series of threshold and 

consistency tests to detect clouds.  The MODIS MOD35 cloud mask indicates cloud 

status with one of four values at a 1 km resolution: “cloudy” (CD), “uncertain clear” 

(UC), “probably clear” (PC), and “confidently clear” (CC) (Frey et al., 2008).  The 

MODIS cloud mask products also include other ancillary information regarding items 

such as thin cirrus and high clouds, surface shadow, cloud adjacency, sea ice, snow, 

and sun glint.  In this study, the 1 km resolution cloud screening flags from the 

MODIS cloud mask are used for cloud clearing of MISR scene-AOD after collocated 

with the MISR aerosol products.  The thin cirrus cloud flag, derived primarily from 

the 1.375-µm water vapor sensitive band (Gao et al., 2002; Gao and Kaufman, 2003), 

is also used in this study for detecting thin cirrus clouds. Ackerman et al. (2008) 

showed that cloudy/clear areas from the MODIS cloud mask agree with lidar data 

about 85% of the time with a cloud optical depth sensitivity of 0.4.  Uncertainties in 
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the MODIS cloud mask products, as well as the complicated nature of near-cloud 

aerosols, contribute to the complexity of the cloud clearing issue.  For example, 

particle hydration (Tackett and Di Girolamo, 2009) and/or cloud particle detrainment 

might occur near clouds, which infuses ambiguity into discriminating clouds and 

aerosols.  

 

2.5 OMI AI Product 

 The Ozone Monitoring Instrument (OMI), installed on the Aura satellite, has a 

broad swath of 2600 km with a spectral coverage from ultraviolet (UV) to visible 

(0.264 to 0.504 µm) and a spatial resolution of 13 × 24 km at nadir (Levelt et al., 

2006).  Due to the curvature of the Earth, a pixel size at the extreme edge of the swath 

can be as large as 28 × 150 km (Levelt et al., 2006).  Aura is a part of the Aqua 

constellation with an Equator crossing time of 13:45, 15 minutes behind Aqua.  In 

this study, the aerosol index (AI) from the OMI OMAERUV product is used. The 

OMI AI is defined as 

  (1) 

where  is the observed radiance at 0.354 µm,  is the calculated radiance 

assuming a “pure Rayleigh atmosphere” (Torres et al., 2007), and  is the Lambert 

equivalent reflectivity that is derived from LER at 0.388 µm using a climatological 

database (Torres et al., 2007).  Near-zero AI values indicates clouds.  Positive AI 

values represent UV-absorbing aerosols including black carbon, mineral dust, and 

volcanic ash.  Non UV-absorbing small aerosol particles such as sulfate aerosols 
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result in small negative values, but the signal is often too weak to be distinguished 

from the noise.  Thus, in this study, AI is used to identify heavy biomass 

burning/smoke and dust plumes.  

 

2.6 CALIOP Products 

NASA’s Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor, 

on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

(CALIPSO) satellite, is a multi-wavelength (0.532 and 1.064 µm) polarization-

sensitive elastic backscatter lidar (Stephens et al., 2002; Winker et al., 2007; Hunt et 

al., 2009).  As part of the A-Train constellation, the passing time of CALIPSO is only 

around one minute different than that of Aqua MODIS.  CALIOP measures the 

vertical structure of aerosols and clouds in the atmosphere with a much more narrow 

swath of ~90m (Winker et al., 2007).  

2.6.1 CALIOP Level 1B Data 

The CALIOP level 1B data product provides lidar profiles of calibrated 

attenuated backscatter at 532 nm and 1064 nm and depolarization ratio at 532 nm.  

The vertical resolution of the attenuation profile is altitude dependent. The resolution 

from the surface to 8.3 km, where aerosol plumes are mostly located, is 30 m 

vertically for 532 nm, 60 m vertically for 1064 nm, and 1/3 km horizontally.  The 

total attenuated backscattering at 532 nm, the depolarization ratio at 532 nm, and the 

color ratio, which is attenuated backscattering at 1064 nm over that of 532 nm, are 

used in this study.  Other than the backscattering profiles, CALIOP level 1B data also 
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contains ancillary data, such as geolocation information and viewing geometries, as 

well as diagnostic parameters, such as observation uncertainties and QC flags. 

2.6.2 CALIOP Level 3 Cloud and Aerosol Profile 

CALIOP level 3 cloud and aerosol profile data are derived from the CALIOP 

level 1B data as well as the level 2 vertical feature mask product.  The vertical feature 

mask reports the vertical distribution of cloud and aerosol layers along the CALIPSO 

track based on Feature Classification Flags (FCF).  It also contains sub-types for 

aerosols and clouds.  CALIOP cloud and aerosol products contain information 

regarding extinction and backscatter and other particle optical properties that are 

derived from these basic parameters.  Only the CALIOP aerosol profile is used in this 

study.  This product has a horizontal resolution of 5 km, with the vertical resolution 

dependent upon altitude.  In the troposphere from 20 km to 0.5 km below the surface, 

the vertical resolution is 60 meter.  In the stratosphere from 30 km to 20 km, the 

vertical resolution is 180 meters.  Ancillary data, such as geolocation data, time, and 

data quality flags, are also included.  One parameter that is used in this study is the 

Atmospheric Volume Description, which is a profile descriptive flag containing the 

FCF associated with each 5 km × 60 m (or 5 km × 180 m) range bin in the Profile 

Products.  The FCF categorizes the atmospheric particles into cloud, aerosol, or 

stratospheric features.  For cloud and aerosol, further identification of feature subtype 

is made.  For example, an identified aerosol feature can be either dust, polluted dust, 

clean continental, polluted continental, smoke, clean marine, or other.  The minimum 

horizontal averaging that is required for successful layer detection is also listed in the 

FCF. 
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2.7 NOGAPS Wind Speed Data 

Near surface wind speed data that are used in evaluating the uncertainties 

within MODIS DT over-ocean products are from the Navy Operational Global 

Analysis and Prediction System (NOGAPS) weather forecast model (Hogan and 

Rosmond, 1991).  The near surface wind speed is modeled with the assimilation of 

satellite-retrieved wind speed data and is reported four times per day on a 1° × 1° 

Lat/Lon grid (Zhang and Reid, 2006).  
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CHAPTER III    

A CRITICAL EXAMINATION OF SPATIAL BIASES BETWEEN MODIS 
AND MISR AEROSOL PRODUCTS 

 

3.1 Introduction 

The AERONET, a global scale sun photometer network, has been providing 

robust aerosol optical property measurements for nearly two decades. As such, it is 

often used as the primary standard for validating satellite aerosol products (e.g, 

Holben et al., 1998; Kahn et al., 2010; Levy, et al., 2010; Hsu et al., 2006).  

AERONET has included 443 sites globally at various times.  Only 11 sites have data 

records that are longer than 7 years, and 39 sites have data records that are longer 

than 5 years. Field campaigns, in which extensively measurements of the 

environment were collected in support of verification, have targeted specific areas of 

interest, but are sporadic and short lived. This ephemeral nature of observations 

suitable for satellite product characterization leads to fundamental questions about the 

representativeness of available validation data sets. For example, is the distribution of 

AERONET sites sufficient to cover the spatial and temporal variations of the aerosol 

state globally?  Are there any surface-observation-data-poor regions that clearly 

require future deployments of sun photometer instruments and/or in situ 

measurements, especially for the purpose of validating satellite observations? 
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Complicating matters further is the spatial correlation of bias. Typically, 

retrievals are underdetermined and some assumptions must be made, most typically 

through the lower boundary condition model, the assumed particle microphysics, or 

optical properties. As land features and particle properties have spatial coherence, one 

would expect satellite retrievals of aerosol products to share similar patterns in their 

biases.  

Recently Shi et al. (2011a), Hyer et al. (2011) and Levy et al. (2010) 

published evaluations of over-water and -land MODIS DT c5 aerosol products. Over 

water, low and high biases are quite apparent for fine and coarse mode aerosol 

particles, respectively. Wind and cloud related biases are visible as well. 

Uncertainties are also present over coastal regions, where runoff and/or biological 

activity create issues for the surface boundary conditions (e.g. Kahn et al., 2010). 

Biases in the over-water AOD product were found to be largely correctable through 

alterations of model data and information contained in the retrieval (e.g., Zhang and 

Reid, 2006). The over-land problem, however, is much more complicated. The lower 

boundary condition for MODIS DT is empirical and cannot cope with all land forms 

everywhere. The more complicated land surface also reduces the degrees of freedom 

in available microphysical models that can be utilized by the retrievals. As a 

consequence, Hyer et al. (2011) reported many cases where correlations between 

satellite and AERONET AOD are good within regions, but slopes are vastly different. 

Such regionally correlated biases are particularly problematic for higher-level 

investigations that require consistent data over large areas, such as inverse modeling 

or lifecycle studies. Also, Kahn et al. (2010) identified MISR and MODIS DT AOD 
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differences over India, Eastern China, and Southeastern Asia that they attributed, in 

part, to dark particles absent from the current algorithm particle climatologies.  They 

noted that a lack of mixtures containing dust and smoke optical analogs in the 

algorithms create AOD discrepancies over Sub-Saharan Africa and several other 

locations (also see Eck et al. (2010) regarding mixtures). 

One way to approach spatially correlated bias is through cross-comparisons 

between satellite aerosol products, not only over the AERONET sites, but also over 

regions that may lack ground-based observations. Such methods do not specifically 

resolve global issues related to quantitative error characterization, but are beneficial 

in determining the overall scientific uncertainty of aerosol properties. Indeed, in 

regions with large differences among products, the data need to be understood and the 

causes of the discrepancies should be identified. This need motivates the current 

study, which aims to help direct future deployments of surface measurements to 

support refinement of future generations of algorithms. 

Three satellite aerosol products were selected for this study: the Terra 

operational Moderate Resolution Imaging Spectroradiometer (MODIS) c5.1 Dark 

Target (DT) aerosol product, the Terra MODIS c5.1 Deep Blue (DB) aerosol product, 

which retrieves aerosol properties, especially but not limited to, over-bright surfaces, 

and the Multiangle Imaging SpectroRadiometer (MISR) version 22 aerosol product. 

Note that these three products were chosen because they are widely used by the 

community for various applications ranging from climate to air quality to real-time 

operational forecasts (Zhang et al., 2001; Zhang et al., 2008a,b; Kaufman et al., 2002; 

Remer et al., 2009; Kahn et al., 2009; Reid et al., 2009; Hsu et al., 2006; Zhang and 
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Reid, 2006). All three products were spatially and temporally collocated, and were 

used for evaluating the existing aerosol observation system. This is concluded with a 

discussion of regions showing clear heterogeneity between sensor retrieval results and, 

thus, with proposed areas that have an urgent need for additional, suborbital 

measurements.  

 

3.2 Methodology 

Three satellite products that are used in this study are MODIS c5.1 DT DB 

and MISR aerosol optical depth products. MODIS and MISR sensors have different 

spatial coverage and overpass times. For fair comparisons, pairs of observations from 

different instruments need to be collocated spatially and temporally. Since both MISR 

and MODIS are onboard the Terra satellite, it is possible to have near simultaneous 

observations overlapping the same location from both instruments. However, the two 

aerosol products have different spatial resolutions (10km for MODIS DT and DB, 

and 17.6 km for MISR). Therefore, to spatially collocate the MODIS DT (MODIS 

DB) products with MISR, all three products were averaged into 0.5° × 0.5° (Lat/Lon) 

gridded products for every six hours.  In the second step, the 6 hr gridded aerosol 

products were collocated in both space and time, and pairs of data points with valid 

AOD values from both MODIS DT (or MODIS DB) and MISR aerosol products 

were chosen for the tests described in the following section. Two comparison datasets 

were used in this study: (1) spatially and temporally collocated Terra c5.1 MODIS 

DT and MISR Version 22 aerosol products from 2005-2007 and (2) spatially and 
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temporally collocated Terra c5 MODIS DB and MISR Version 22 aerosol products 

from 2005-2007. AERONET AOD data are also used as well.  

 

3.3 Results  

First, example regressions of satellite AODto AERONET from eight 

important geographical regions are presented. Then, to understand the size of the bias 

features, the ratio of MODIS retrievals to MISR aerosol optical depth retrievals are 

computed and spatial patterns of different products are studied through spatially and 

temporally collocated comparisons. From these results, the original eight comparisons 

are considered and limitations in spatial coverage of the current ground-based 

observations for the identified problematic regions are discussed.  

3.3.1 Example AERONET Comparisons 

Eight AERONET sites that provide at least five-years of data and that provide 

representative observations for the aerosol state of a given region, were selected: Alta 

Floresta (for South America), Banizoumbou (for North Africa), GSFC (for the 

Eastern U.S.), Maricopa (for the Western U.S.), Kanpur (for India), Mongu (for South 

Africa), Solar Village (for Saudi Arabia) and Shirahama (for East Asia). AERONET 

direct sun measurements of AOD are highly accurate, with uncertainties on the order 

of ~0.01 in the visible and near-infrared wavelengths for the level 2 product (Eck et 

al., 1999). Using the standard Angstrom (linear) fit, AERONET observations from 

the 0.50 and 0.67μm wavelengths were used to estimate AOD values at the 0.55 (for 

MODIS) and 0.558 (for MISR)μm wavelength (Shi et al., 2011). Within a 30 min 

temporal window and 0.1 degree spatial difference, one-to-one collocated operational 
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MODIS/MISR and AERONET AOD were used for the comparisons.  Regressions are 

shown in Figure 1, with regression line parameters and r2 values presented in Table 1.  

Because the behavior of satellite retrievals can change when AOD values are large, 

scores are provided for all data and also for τ < 0.5.  

 

Table 1. Regression coefficients for Figure 1with all AOD and satellite AOD smaller than 0.5 in 
parentheses. 

Site Satellite Slope Intercept r2 

Alta Floresta 
MISR 0.48(0.81) 0.09(0.00) 0.77(0.82) 

MODIS DT 1.33(1.01) 0.1(0.05) 0.92(0.82) 

Shirahama 
MISR 0.67(0.66) 0.03(0.03) 0.90(0.84) 

MODIS DT 1.01(0.85) 0.05(0.02) 0.83(0.79) 

Kanpur 
MISR 0.61(0.47) 0.11(0.13) 0.70(0.54) 

MODIS DT 1.06(0.54) 0.05(0.21) 0.79(0.43) 
MODIS DB 0.98(0.28) 0.04(0.19) 0.60(0.11) 

Mongu 
MISR 0.82(0.74) 0.03(0.04) 0.88(0.75) 

MODIS DT 0.76(0.67) 0.04(0.05) 0.83(0.71) 
MODIS DB 1.02(0.54) 0.17(0.04) 0.60(0.34) 

Banizoumbou 
MISR 0.51(0.33) 0.20(0.19) 0.61(0.34) 

MODIS DT 1.14(0.78) 0.13(0.01) 0.95(0.81) 
MODIS DB 0.63(0.49) 0.32(0.21) 0.81(0.50) 

GSFC 
MISR 0.72(0.80) 0.03(0.02) 0.87(0.90) 

MODIS DT 1.1(1.06) 0.01(0.01) 0.94(0.84) 

Maricopa 
MISR 0.8(0.77) 0.06(0.06) 0.35(0.39) 

MODIS DT 0.96(0.99) 0.25(0.24) 0.12(0.15) 
MODIS DB 0.82(0.82) 0.07(0.07) 0.94(0.94) 

Sollar Village 
MISR 0.9(0.68) 0.09(0.13) 0.74(0.66) 

MODIS DB 0.53(0.29) 0.19(0.21) 0.35(0.12) 
 

Figure 1 shows that in most regions (the Eastern US, South America, North 

Africa, South Africa, East Asia and India), retrievals from the operational MODIS 

DT (MODIS DB) and MISR aerosol products show reasonable correlations with the 

collocated AERONET data.  Even so, slope differences are clearly noticeable for 

areas dominated by different aerosol species, indicating that aerosol microphysical 

properties are among the sources of uncertainties in these aerosol products. 
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Figure 1. One to one comparisons between MODIS Dark Target (MODIS Deep Blue)/MISR and 
AERONET AOD at seven sites for year 2000–2008. (a) Alta Floresta, (b) Shirahama, (c) Kanpur, (d) 
Mongu, (e) Banizoumbou, (f) GSFC, (g) Maricopa, (h) Solar Village. 
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Also, although an underestimation is observed for high MISR AOD values (AOD> 

0.5), in almost all regions, except Mongu (as previously reported in Kahn et al., 2010), 

the influence of lower boundary conditions (generally manifested in the intercept of 

the regressions) is less evident in MISR-AERONET than the MODIS-AERONET 

comparisons. For example, over the Western US, where AERONET reported AOD 

values are mostly smaller than 0.2, collocated AOD values from the operational 

MODIS DT aerosol products show a much higher AOD range up to 0.6. Note that the 

black regression line for MODIS is not provided from the Maricopa plot due to an 

insufficient number of data points.  Also, large intercept values are observed for the 

comparisons between the MODIS DB and AERONET AOD values at the Kanpur and 

Mongu sites, showing that uncertainties can exist for the MODIS DB products over 

low surface albedo regions. In contrast, observations from the Banizoumbou and 

Solar Village sites suggest that both the MODIS DB and MISR can retrieve aerosols 

characteristics over bright surfaces.  

However, point comparisons are not sufficient and may not fully represent the 

performance of satellite AOD retrievals. For example, spatial comparisons between 

MISR and MODIS over South Africa (see later Figure 4) indicate larger differences 

than what the point comparisons show at the AERONET site.  This is an issue that is 

present in multiple locations, as similar trends are also present over the Arabian 

Peninsula.  Comparisons between satellite AOD products are therefore provided 

globally henceforth.  
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3.3.2 Global Ratios 

The regressions shown in the previous section reveal a common observation: 

satellite products often correlate well, but suffer from slope or Y-intercept biases. 

Hyer et al. (2011) reported highly variable regression slopes for different sites in the 

same region. The question is, then: Over what area do these regressions hold?  As a 

first step to answering this, an examination of overall AOD for simultaneous MODIS 

and MISR retrievals for the 2005-2007 timeframe is provided in Figure 2.  Also, as 

part of the supplemental materials, Figure 2 is repeated seasonally (DJF, MAM, JJA, 

SON). 

 

 

Figure 2. Average spatial distribution of MISR (0.558 µm) for 2005–2007. The MISR and operational 
MODIS DT/MODIS DB AOD data were first collocated both in space and time, and only collocated 
MISR and MODIS retrievals were used in generating this plot. Data were gridded every 0.5° × 0.5° 
(Lat/Lon). (a) MISR AOD that corresponds with operational MODIS DT, (b) Operational MODIS DT 
AOD, (c) MISR AOD that correspond with MODIS DB, and (d) MODIS DB AOD. 

 



 

 30 

Figure 2 shows three-year averaged spatial plots of AOD from MISR and 

MODIS c5.1 retrievals. The plots were calculated pair wise; only MISR aerosol 

retrievals with collocated MODIS AOD retrievals (and vice versa) were used to 

calculate the averages. Therefore, the sampling biases in Figure 2a could be different 

from the three-year averaged MISR AOD plot that used all available MISR data. 

Shown in Figure 2a, the commonly acknowledged continental scale aerosol features 

are visible. Heavy smoke aerosol plumes are found over regions of South America, 

South Africa and Indonesia; dust aerosol plumes are visible over North Africa, and 

the Middle East (e.g., Husar et al., 1997). Aerosol plumes that originate from multiple 

aerosol sources of dust, smoke and pollutant are observable over East and South Asia 

(Reid et al., 2009; Eck et al., 2005). Long-range aerosol transports are shown. Asian 

dust plumes cross the Pacific Ocean and reach the West Coast of the US; North 

African dust plumes cross the Atlantic Ocean and reach the Caribbean. A high AOD 

band is also noticeable over high latitude southern oceans. However, this feature is 

probably produced by cloud artifacts (e.g. Zhang et al., 2005; Shi et al., 2011, Kahn et 

al., 2010; Smirnov et al., 2011).  

Figure 2b shows the corresponding operational MODIS DT AOD 

distributions. Because only pairs of MODIS and MISR data that possess valid AOD 

values were used in creating Figure 2, the differences between Figure 2a and b are 

mostly related to the uncertainties in the retrieval processes, and sampling biases 

between the two products are minimized. High AOD features over the Western US, 

the Andes mountains, and the Namibian Desert from Figure 2b are not present in the 

spatially and temporally collocated MISR AOD plot in Figure 2a. Also, MODIS DT 
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AOD values are higher than the collocated MISR AOD values over regions such as 

East and Central Asia, India, Indonesia, South Africa, and South America. Note that 

the differences seem significant, yet could mostly be explained by the known 

limitations of each product. For example, for the MODIS DT aerosol product, 

overestimation of AOD values that are greater than 0.5 and are over sparsely 

vegetated land (e.g., the Andes Mountains, the Namibian Desert, and the Western 

US) could be due to the uncertainties in surface characteristics, which were deviating 

from the surface reflectance model used in the operational MODIS product. In 

another case, higher MODIS DT AOD values over South America, South Africa, and 

Central Asia could be related to the underestimation of the MISR aerosol product for 

high AOD (Kahn et al., 2009; Kahn et al., 2010; Personal communication with Dr. 

Olga Kalashnikova). This effect is present in the Alta Foresta data (Figure 1) for 

which the MISR retrieval underestimates aerosols generated through biomass-burning. 

Figure 2c and d are structured the same as Figure 2a and b, but they show the 

comparison of MODIS DB and MISR aerosol products. Figure 2c shows the three-

year (2005-2007) averaged spatial plot of MISR AOD (collocated with the MODIS 

DB product). Heavy aerosol loadings are found for dust over North Africa and the 

Arabian Peninsula, for smoke over South Africa, and for pollutant mixed dust over 

Northern India and East Asia. Figure 2d shows the corresponding MODIS DB AOD 

distributions. For South America, Northern India (e.g. the Kanpur site), and East Asia, 

higher AOD values are shown for the MODIS DB product. Conversely, Deep Blue 

has much lower AOD in central Africa and parts of the Arabian Peninsula. Over 
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desert regions, such as North Africa and the Middle East, the AOD values from the 

two products are consistent to a reasonable degree. 

To better illustrate differences, Figure 3a and b show the spatial plots of the 

AOD ratio of the MODIS DT (MODIS DB) AOD divided by MISR AOD.  Red 

colors represent regions in which MODIS retrieves higher AOD than MISR, and blue 

colors show the opposite. For Figure 3a, ratios larger than 1.3 are found over Western 

and Northeast Canada, the Western US, the Andes mountains, most of the Amazon, 

and Central and East Asia, indicating that the MODIS DB AOD values are much 

higher than the MISR AOD values over these regions.  Ratios smaller than 0.75 are 

present over the Central US, the east coasts of South America and South Africa, and 

North-Central Asia. Also, even over regions like South Africa and South America, 

where one expects both sensors to perform better due to relatively low surface 

reflectivity, ratio values of 1.1−1.5 are present. Some of this behavior also appears in 

the sensor-AERONET comparisons for the Alta Floresta site in Figure 1. Figure 3b 

shows that over the Western US, Southern South America, North Africa, Central Asia, 

Northern India, and Eastern Australia, the ratios between MODIS DB and MISR 

AOD are greater than 1.3. Regions where MISR retrievals are much greater than 

those from MODIS DB are South Africa, the middle of the Arabian Peninsula, Mid-

India, and part of Central Asia. However, the ratio plots from Figure 3a and b can be  
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Figure 3. (a) The ratio of operational MODIS DT over MISR AOD in green channel for year 2005–
2007. (b) Similar to (a) but for MODIS DB. (c) The differences between operational MODIS DT and 
MISR AOD in green channel for year 2005–2007, and (d) Similar to (c) but for MODIS DB. Note the 
color scales are different between the top and the bottom panels. 

 

misleading, because high ratio values over regions with small AOD values can skew 

the picture. Therefore, the AOD differences between MODIS DT (MODIS DB) and 

MISR AOD at the green channel are also shown in Figure 3c and d.  

The main patterns of Figure 3c and d are very similar to that of Figure 3a and b. 

However, regions with low AOD values and very high ratio values, such as the 

Western US, have AOD differences on the order of 0.1−0.3. Conversely, over Central 

Africa, where the ratio plot does not show a large inconsistency, Figure 3c and d 

highlight the regions with AOD differences larger than 0.1.  

Note that Figure 3 reflects, in part, the fact that the version 22 MISR-retrieved 

AOD values tend to have a low bias in the high AOD regime (Kahn et al., 2010), 
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combined with the tendency for MODIS DT AOD values to be overestimated over 

bright surfaces. The uncertainties in Figure 3 due to ratios from small values of AOD 

are discussed in Sect. 3.4. Further, uncertainties in the microphysical models used in 

these retrievals are amplified when aerosol loadings reach multiple scattering regimes.  

Thus, as shown in Figure 4, we performed regressions between MISR and MODIS 

DT (MODIS DB) AOD values using collocated MODIS and MISR data that have 

MISR AOD values between 0 and 0.5 (MODIS = MISR × slope + interception).  

Figure 4a, c, and e show spatial distributions of correlation, slope, and intercept 

values, respectively, for the regression analysis using the collocated operational 

MODIS DT and MISR AOD data. Like Figure 2, seasonal regressions are included in 

the supplementary material. Similar to the studies of Kahn et al. (2009), correlation 

values greater than 0.8 are found over global oceans and most land regions.  Regions 

with correlation values less than 0.7 are found over the Western US, the Andes 

Mountains, the Namibian desert, and parts of the Middle East, Central Asia, and 

Northern Australia. Most of the regions showing poor correlations are highlighted in 

intercept plot of Figure 4e as well. Regions with high intercept values are most likely 

attributed to surface characteristics, because all of these regions are semiarid and have 

relatively high surface reflectance. Also, although the correlations between MISR and 

MODIS DT AOD data are above 0.8 over the Amazon region, slope values of 1.2 and 

above are found (Figure 4c).  Similar slope and correlations patterns can also be 

found over the middle of South Africa and Southeast Asia, suggesting potential 

aerosol microphysical biases over these regions. Field campaigns can help improve 

satellite retrievals over regions where better aerosol property information is needed. 
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Also, for both satellite products, high correlations of 0.8 or greater were found 

compared with ground-based sun photometer observations on a global basis (Shi et al., 

2011a, Hyer et al., 2011), showing that:  

1. There are still regions that have no or few sites that would assist in refining 

assumed aerosol properties for satellite retrievals.  

2. Additional AERONET sites are desired for some of the regions with large 

MODIS/MISR ratio values, especially for regions where it is suspected that aerosol 

optical property assumptions have large uncertainties in satellite retrievals.  

3. For regions where satellite products need better aerosol property 

information to constrain assumptions, field measurements can play an important role.  

Figure 4b, d, and f show similar spatial distributions of correlation, slope, and 

intercept values for the regression analysis using the collocated MODIS DB and 

MISR AOD data. Compared with the analyses from the collocated operational 

MODIS and MISR data, lower correlation, larger intercept values and lower slope 

values were found. However, most regions shown in Figure 4b, d, and f are either 

desert regions or areas with complex surface features, and therefore, lower 

correlations between two aerosol products are understandable due to lower sensitivity 

to aerosol properties over bright surfaces. Still, detailed analyses of the uncertainties 

for the two aerosol products over these regions, similar to the studies conducted for 

the MODIS DT aerosol products (e.g. Shi et al., 2011; Hyer et al., 2011), are 

necessary.  

In summation, the areas with large disagreements between satellite retrievals 

can be divided into three categories:  
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Figure 4.The regression and correlations between MISR and operational MODIS DT (right panel) / 
MODIS DB (left panel) for year 2005–2007 (MODIS = MISR × slope + intercept). Only collocated 
MODIS and MISR data that have MISR AOD values between 0–0.5 were used. (a) and(b) Correlation, 
(c) and (d) Slope, (e) and (f) Intercept, (g) and (h) upper boundary of the 95% confidence interval for 
correlation coefficient in (a) and (b), and (i) and (j) Similar to (g) and (h) but for lower boundary. 
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1. Complicated surface conditions: transition areas from bare land to areas 

with dense or sparse vegetation cover. 

2. Complicated aerosol type: inaccurate representations of aerosol 

microphysics in the retrieval processes over the dark vegetation areas or dark surfaces. 

3. Desert regions with very bright surfaces.  

Most problematic areas belong in the first category. These regions include: the 

Somalia region (0-20° N, 35-50° E), the North Coast of Africa (20-35° N), the Sahel 

zone (~12° N across Africa), the West Coast of Africa (15-25° S), the East Coast of 

Africa and Madagascar (10-20° S), the East Coast of Brazil, the Andes Mountains, 

the East Coast of Australia, Kazakhstan, and Mongolia. The Yellow Sea region near 

coastal China also has a surface-type problem, as it is a region with turbid waters. 

Regions that fall into the second category (complicated aerosol types) include: 5° 

N−5° S and 10°−30° E of Africa, 20°−35° N and 100°−115° E of China and Korea, 

the south and north end of Japan, Malaysia, Indonesia, and the Philippines. Better 

agreements for aerosol retrievals among sensors are expected for the regions with low 

surface reflectivity at the visible spectrum. However, the AOD differences between 

the two products are still relatively large. This indicates that the complicated aerosol 

type is one of the uncertainty sources. For example, some places are known to have 

dark particles or mixtures of smoke or pollution and dust. Regions that fall into the 

third category include: Northwestern India (70° E and 35° N), Iran and Afghanistan 

(45°−60° E and 25°−35° N), Tibet, the East Coast of the Arabian Peninsula (45°−60° 

E, 10°−30° N), and high latitude areas. Also, differences in MISR and MODIS 

retrievals do not always point to a lack of understanding of the basic aerosol 
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properties in the region. Rather, they sometimes indicate satellite algorithm issues for 

one or both instruments. For example, regions, such as 5°−10° S and 60°−70° W of 

South America, where numerous field campaigns have been conducted (e.g. Reid et 

al, 1998, 2005, SCAR-B and SMOCC campaigns) and many AERONET data are 

available, may also reveal the difficulty of fully understanding aerosol properties and 

their spatial/temporal variations from limited ground and in situ observations.  

 

3.4. Discussion: Relationship to spatial distribution of AERONET sites 

Most of the problem areas listed in Sect. 3.3 are very remote and under-

developed. Hence, this increases the difficulty in establishing long-term AERONET 

sites, which would be useful for validating the satellite aerosol retrievals over those 

regions. Conversely, regions with the best agreement often have the highest density of 

AERONET sites, even though the surrounding areas might have large inconsistencies. 

This is partially because the aerosol climatology used by the MODIS DT over-land 

algorithm is based on AERONET data (Levy et al., 2010). Also, this may, in part, be 

related to the concentration of sites in more developed “darker” regions where the 

vegetation cover is greater. The distribution of sites results in a sampling bias. The 

use of global statistics to measure product efficacy biases verification statistics in 

favor of satellite retrievals. Long-term AERONET observations greatly improve the 

satellite retrievals regionally by providing developers with valuable verification data 

that is coupled with some aerosol optical property information from sun-sky retrievals.  

However, several issues were raised with the previous analysis. First, some 

significant differences occur in regions with existing AERONET sites, and the 
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differences between MISR and MODIS are due largely to the assumed aerosol 

properties in the satellite algorithms and/or limitations in the algorithm, such as high 

AOD for MISR (this is seen in Figure 1 in Amazon region with dark surfaces) or high 

surface reflectance for MODIS. Second, the ratio of AOD retrievals between two 

sensors/algorithms in regions of low AOD is not necessarily a good measure of 

whether errors are significant. Third, even if there are AERONET sites in high 

surface reflectance areas, the main issue in satellite retrievals is often the poor surface 

reflectance characterization, and more AERONET sites will not necessarily improve 

that situation. 

In response to these questions, a gradient map of AOD differences (ΔAOD, 

MODIS DT / MODIS DB minus MISR AOD at the green wavelength) between 

satellite aerosol products was computed, as shown in Figure 5. Over-plotted in Figure 

5 are the frequency indexes of available AERONET data. To create the gradient map 

of AOD bias (Δτ), only regions with both satellite AOD values larger than 0.1 were 

used. The gradient is computed based on Equation 2,  
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whereδx and δy (δx and δy are evaluated at half degrees Lat/Lon) represent spatial 

distances in west-east and south-north directions, respectively. The magnitude of the 

ΔAOD gradient shows the spatial variation of uncertainties in satellite aerosol 

products. Regions with small ΔAOD gradient values are shown in dark blue, 

indicating that a few AERONET sites would be sufficient to validate retrievals for the 
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whole region. Regions with large ΔAOD gradient values are shown in lighter colors 

(such as white). These regions have large spatial variance in ΔAOD, and denser  

 

Figure 5. The spatial distribution of the gradient of AOD differences (∆AOD) between the MODIS and 
MISR aerosol products. The ∆AOD was computed by subtracting MODIS DT/MODIS DB (0.55 μm) 
AOD from MISR AOD (0.558 μm). Only land regions that have reported AOD larger than 0.1 from 
both products were used for computing the gradient. Over-plotted on top of the gradient map is the 
AERONET density map. For AERONET observation density, for every one by one degree grid, one 
AERONET site that has observation for a month during the 1993–2009 periods is counted as one. 
Regions that have index of 0–12, 12–60, and above 60 are considered poorly, normal, well-observed 
area for red, yellow and green, respectively. Oceans are plotted in grey. (a) for MODIS DT and (b) for 
MODIS DB. 
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distributions of AERONET sites are needed for future validation efforts, for example: 

North India and western South America.  

For the AERONET density index, seventeen years of the AERONET level 2.0 

data were used (1993-2009). A frequency index of 1 is defined as one AERONET site 

within a 1° × 1° latitude and longitude region, having at least one measurement 

during one month of the time series. If there are two AERONET sites, and each has at 

least one observation during any one month, the index number is set to 2. We 

increment the index value for a given region even if only a fraction of a month has 

sun photometer data. For one AERONET site that provides continuous observations 

for a year, the index for the Lat/Lon grid that the AERONET site locations is set to 12. 

Regions with indexes of 0−12, 12−60, and above 60 (for the Seventeen year period) 

are defined as poorly observed (red), normal (yellow), and well-observed (green) 

regions respectively. Figure 5 includes four by four (4x4) degree averages, which 

were developed from the one by one (1x1) degree averages, by picking the largest 

index value of any 1x1 degree box inside the 4x4 degree grid to highlight the signal. 

Since only regions with AOD values larger than 0.1 from both satellite products were 

used in creating Figure 5, it is necessary to compare Figure 5 with the AOD 

ratio/difference plot (Figure 3) that includes all scenarios. Two regions that are not 

included in Figure 5, but are highlighted in Figure 3, are the Andes Mountains and the 

West Coast of the US. Again, both regions have complex surface characteristics that 

could introduce a problem to space-borne satellite aerosol retrievals.  

Figure 5 shows that Europe and the West and East Coasts of US are well 

covered with sun photometer observations. However, it is still useful to identify 
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regions for future AERONET sites for three scenarios: (1) type A region: regions 

where it is suspected that aerosol optical property assumptions are poor in satellite 

retrievals; (2) type B region: regions with moderate to high AOD and lack of 

AERONET sites; (3) type C region: any sites in large regions of the earth that have no 

or few sites. Based on Figure 5, type A regions include Central Africa and 

Northwestern South America. Type B regions include the Middle East, the high 

latitude Asian part of Russia, Central Asia, Western India, and especially the 

Malaysia–Indonesia region. The type C regions include Australia and Greenland. All 

of the previously discussed regions are highlighted with red boxes in Figure 5. 

Lastly, based on the discussions from this section, we identified regions that 

require better surface boundary conditions: 1) Central Asia; 2) Malaysia–Indonesia 3) 

Central Africa, near Zaire; 4) the Central Sahara; 5) the Eastern Arabian Peninsula; 6) 

Greenland and Australia, where no long-term monitoring effort is present for a large 

area. The Malaysia–Indonesia region is also highlighted in this study, yet we expect 

new sites to be established for the 7-SEAS and SEAC4RS field campaigns; some of 

these sites will likely remain as long-term sites. The AERONET has data from the 

UAE that helps address the Eastern Arabian Peninsula. Also, large discrepancies are 

found over the high-latitude southern ocean that invite further experiments in order to 

understand the cause of the high AOD band over this area. This question has been at 

least partially addressed by the ship based sun photometer measurements from the 

Maritime Aerosol Network (MAN network) (Smirnov et al., 2011). The measured 

AOD in this region is very low.  
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For topographically complex regions that introduce high AOD biases, such as 

the Western US, the Andes Mountains, and the Namibian desert, it would be useful 

for long-term AERONET sites to be established for satellite validation. Notice that 

most of the issues with satellite retrievals over these sites relate to surface reflectance 

characterization and not assumed aerosol optical properties.  

 

3.5. Discussion: Community effort 

The purpose of this study is not simply to point to areas of diverging AOD 

products, but rather to inform the larger scientific community that there are likely 

regions where local measurements can be made to maximize the benefit for retrieval 

development. Our regressions show that spatially correlated biases in AOD retrievals 

are robust. Regional measurements of aerosol or lower boundary condition properties, 

even over short field studies, are likely to have significant value when measurements 

are made in poorly observed regions. 

 

3.6. Summary and Conclusions 

Using spatially and temporally collocated MODIS and MISR aerosol optical 

depth retrievals, we examined the spatial difference between the operational MODIS 

and MISR aerosol products. Differences are indicative of the spatially correlated bias, 

which are highly detrimental to higher order data analysis methods such as data 

assimilation and inverse modeling. The spatial comparisons of the two collocated 

aerosol products reveal regions that need further improvements in future satellite 

studies. For the first time, our analysis identified the regions that would most benefit 
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from long-term point measurements and field campaigns for future satellite aerosol 

studies. The key results from our study are: 

1.   Comparisons of spatially and temporally collocated MODIS and MISR 

aerosol optical depth data revealed that the ratio of MODIS to MISR 

AOD is much larger than 1 for the Western US, South America, East 

and Central Asia, and Indonesia. Regions where the ratio is 

significantly less than 1 were found over the East Coast of South 

Africa, the East Coast of South America, and Western Australia. Note 

that the ratio in regions of low AOD is not necessarily a good measure 

of whether errors are significant, as indicated by the AOD difference 

plot from Figure 8c and d. 

2.   A closer look of the comparisons between MODIS DT and MISR data 

shows that over the Western US, the Andes Mountains, and Russia, 

high AOD “features,” which are only visible from the MODIS DT 

aerosol product, are possibly due to the surface-reflectivity-introduced 

bias. Also, over South America, China, and the Indonesia regions, 

MODIS DT tends to overestimate, and MISR tends to underestimate 

AOD values, due, in part, to differences in the aerosol optical 

properties used in the MODIS DT and MISR AOD retrievals. Some of 

these observations support the results of previous studies in which 

some of the causes are identified (Kahn et al., 2009; Kahn et al., 2010; 

Levy et al., 2010). 
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3.   This study also identifies the locations where additional ground based 

and in situ measurements would have the greatest impact on improving 

satellite aerosol retrievals. 
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CHAPTER IV    

CRITICAL EVALUATION OF THE MODIS DEEP BLUE AEROSOL 
OPTICAL DEPTH PRODUCT FOR DATA ASSIMILATION OVER NORTH 

AFRICA 
 

4.1 Introduction 

Numerical weather prediction of aerosol phenomena has been implemented 

for air quality and visibility (Lelieveld et al., 2002; Park et al., 2003; Reid et al., 2004; 

2009; Al-Saadi, et al., 2005; Hollingsworth et al., 2008). Recent studies have shown 

that satellite aerosol retrievals can be effectively used, through data assimilation, to 

improve accuracies of aerosol analysis and forecasts (e.g. Zhang et al., 2008; 

Benedetti et al., 2009; Sekiyama et al., 2010; Campbell et al., 2010, Zhang et al., 

2011). The operational MODIS Dark Target (DT) products in particular are attractive 

for assimilation, as they provide aerosol retrievals over global oceans and most land 

areas with near daily coverage. However, due to the high surface reflectance, 

traditional DT retrievals fail over bright surfaces such as the Saharan and Gobi 

deserts (Remer et al., 2005). This leaves large spatial gaps in the AOD record in 

desert regions, some of which host some of the largest aerosol loadings in the world. 

While other sensors such as the Multi Angle Imaging Spectroradiometer (MISR) and 

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation(CALIPSO; 

Winker et al., 2009) can retrieve over bright surfaces, their limited swath and delayed 

data processing reduces efficacy in aerosol forecasting applications. 
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Because arid regions tend to have lower surface reflectance at shorter 

wavelengths, traditional DT method can often be successfully applied in blue 

wavelengths. The Deep Blue algorithm takes advantage of this surface 

phenomenology, performing aerosol retrievals at blue wavelengths (such as the 0.47 

μm spectral channel in MODIS) and utilizing the selected aerosol model in the 

inversion to generate AOD (Hsu et al., 2004; 2006). The DB methodology has been 

successfully applied to both MODIS instruments and SeaWiFS to allow for large 

swath coverage for aerosol retrievals over and around desert regions (Hsu et al., 2004, 

2006). DB has shown that aerosol optical depth can be retrieved with tolerable 

uncertainties, even over deserts and semi-arid regions, where traditional DT methods 

applied to mid-visible and red wavelengths have difficulties (Shi et al., 2011b; Li et 

al., 2012). This has allowed DB to be applied to such sensitive applications as source 

function development (e.g., Ginoux et al., 2010). 

While filling a significant data gap, the use of DB specifically in data 

assimilation applications requires the development of a prognostic error model. That 

is, a realistic and scene dependent uncertainty needs to be assigned to every retrieval. 

Such errors are not commonly reported by aerosol retrieval developers. Instead, bulk 

global uncertainties are given, often expressed as an error range and a fraction of 

retrievals falling within that range (e.g. MODIS Dark Target (DT) over-land AOD 

has an expected error range of ±0.05 ± 0.15 × τ, and roughly two-thirds of MODIS 

DT collection 5.1 (c5.1) AOD fall within that error range (Levy et al., 2005). Given 

that uncertainty is well known to be related to spatially correlated features such as 

land surface albedo and aerosol microphysical properties, the use of a single 
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uncertainty value can result in large errors in models during assimilation. The 

inclusion of data from a region with poorly constrained lower boundary conditions 

could, for example, result in a fictitious “aerosol plume” in a model forecast. Hence, 

one necessary and unavoidable step before applying a satellite aerosol product to 

aerosol data assimilation is an independent evaluation of uncertainties of the product, 

including an assessment of both random and systematic errors (e.g. Zhang and Reid 

2006; Kahn et al., 2009; Hyer et al., 2011; Shi et al., 2011a, Zhang et al., 2010). Data-

assimilation (DA) oriented products with reduced bias and more realistic descriptions 

of uncertainty have been generated from several different aerosol products through 

detailed analysis of retrieval uncertainties. For example, the data assimilation quality 

(DA-quality) operational MODIS c5.1 products over both land and ocean are used for 

operational aerosol forecasting (Zhang and Reid, 2006; Shi, et al., 2011a; Hyer, et al., 

2011). NASA GMAO performs their own retrievals based on machine learning as 

standard products were of insufficient quality for assimilation (Arlindo daSilva, 

personal communication, 2011). ECMWF similarly has a series of quality control 

processes. To date, however, arid region retrievals are not operationally assimilated.  

As part of the evaluation of satellite aerosol products, the DB aerosol products 

were evaluated and their uncertainty sources were investigated with a focus over 

North Africa and the Arabian Peninsula – the world’s largest contiguous dust belt. 

Following Zhang and Reid (2006) and Hyer et al. (2011), this study applied a series 

of procedures to remove outliers and reduce systematic bias in DB aerosol products. 

The uncertainties of data were examined as functions of their main sources, such as 

boundary conditions, observation conditions, and aerosol microphysics. Empirical 



 

 49 

studies and quality control procedures were applied to create quality assured DB level 

3 aerosol products suitable for data assimilation.  

 

4.2. Methodology 

This study is based on the comparisons of MODIS DB c5.1 and AERONET 

AOD, coupled with a contextual analysis of retrieved aerosol features. The quality 

assured level 2.0 Aerosol Robotic Network (AERONET) AOD data with a stated 

uncertainty of 0.015 were used as the “ground truth” (Holben et al., 1998). Eight 

years of AERONET AOD data were collocated in space and time with Aqua DB 

(2002-2009) and Terra DB (2000-2007), following the method mentioned in Shi et al. 

(2011a). To minimize the spatial and temporal difference between these data, pairs of 

AERONET sun photometer data and MODIS aerosol retrievals were matched if the 

spatial distance between two observations was within 0.3° (Lat/Lon) and the 

difference in observation times was within 30 minutes. 

AERONET data that are within ±30minutes of satellite overpasses were 

averaged. However, the satellite observations are not averaged spatially. The 

averaging process of surface observations reduces the sample biases, but could also 

filter out real signal peaks. For example, if a small-scale smoke plume passes through 

a sun-photometer site, the averaged AERONET AOD value could be lower than the 

AOD value retrieved via a satellite. Also, it is possible that one AERONET 

observation could be paired with more than one satellite retrievals. 

Many studies, different from this study, used averaged satellite and sun 

photometer data to blur the spatial and temporal differences between the two data sets 
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(Remer et al., 2005; Kahn et al., in press; Hsu et al., 2006). This approach is 

understandable considering the spatial and temporal differences between the 

observations.  

Sun photometer provides point observations at a given time whereas a satellite 

retrieval is a two dimensional spatial observation at a given time. Because of the 

difference in sampling methods, differences between the two types of observations 

can exist. However, in this study, in order to study the uncertainties in the satellite 

retrievals due to observing conditions at the pixel level, satellite data were not 

averaged. Note that only over-ocean retrievals were used, which implies that only 

AERONET data from coastal or island sites were selected. 

AERONET and satellite data are collocated at three wavelengths: 0.55 µm for 

MODIS and 0.558 µm for MISR, 0.67 and 0.87 µm. Note that the AERONET data do 

not include observations at λ = 0.55 µm and, therefore, the AERONET observations 

from 0.50 and 0.67 µm were used to interpolate and match MODIS results at λ=0.55 

µm. This interpolation is based on the assumption that the Angström Exponent (α—

further discussed in the microphysical properties section) derived from two 

wavelengths is consistent throughout all wavelengths (O'Neill, et al., 2003), with the 

relationship 
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where, τ550 and τ670 are AOD at 0.55 µm, 0.5 µm and 0.67 µm bands, respectively. 

Note that 0.44 µm is used when retrievals at 0.5 µm are not available. Due to MODIS 
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c5.1 DB only retrieves over the bright surfaces, the spatial coverage of the data 

includes North Africa, the Arabian Peninsula, part of Central Asia, India, Australia, 

the western US, and Andes Mountains.  

 

4.3 Evaluations  

In this section, the general performance of DB is described, along with the 

sources of uncertainties in the DB products with respect to observing conditions and 

Quality Assurance (QA) flags provided by the DB products. Details of the evaluation 

procedures are illustrated in  

. Four main steps include (1) evaluating the performance of the DB products 

with respect to QA flags included in the datasets, (2) studying the uncertainties of the 

DB products as functions of observation conditions, (3) assessing the uncertainties of 

the DB products in relation to the spatial variations of AOD and surface albedo, and 

(4) developing empirical correction procedures. In the second step, the performance 

of the AODDB data was analyzed as functions of various parameters including lower 

boundary conditions, viewing geometry, cloud contamination, aerosol microphysical 

properties, and other observing conditions. After applying the empirical correction 

steps, both ¼ degrees and 1 degree (Lat/Lon) DA-quality AODDB products were 

generated, and the ¼ degrees products were generated for evaluation purposes only. 

All analyses were conducted for both Terra and Aqua DB products, however, in most 

cases, only analyses from Aqua DB data are shown, as similar structures are found for 

the Terra DB product. The analyses for the Terra DB product are provided in the 

supplemental materials unless specifically mentioned.  
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Figure 6. Flow chart of the production process for the level 3 DB DA quality aerosol product. 

 

4.3.1 Overall nature of the Deep Blue Product 

This section starts with the simple global evaluation of the DB product, and 

then describes the selection of areas with sufficient collocated AERONET and DB 

data for further evaluation. Figure 7 shows the global comparisons of the collocated 

Aqua DB and AERONET AOD with respect to different QA flag settings. The 

fractional data density is shown in Figure 7 for every 0.5 increments of AOD for both 

AERONET and DB. This figure displays the traditional method of evaluating satellite 

data against AERONET, which is used to diagnose the uncertainties in the data set. 

The regression equation τDB= b + a× τAERONET is diagnostic and describes the quality 

of the retrieval against a more accurate reference dataset (in our case, τAERONET). By 

contrast, the regression equation τAERONET = b + a × τDB is prognostic and describes 

the linear transformation that will produce values that are closest to the reference data. 

In this study, diagnostic regression is used to capture data characteristics, and 
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prognostic regressions are used to develop correction factors and uncertainty 

estimation models. 

 

Figure 7. Comparisons between Aqua DB and AERONET AOD 2002-2009 for diagnostic purpose for 
(a) all data, (b) data with very good QA quality globally. The red line is the linear fit line and the blue 
lines are the 95% confident interval lines. The color contour shows the fractional data density.  
 
 

This study makes extensive use of root meet square errors (RMSE), which are 

calculated using Equation 4  

 ( )∑ −=
n

DBAERONETn
RMSE 21

ττ  (4) 

and represent the bias of the evaluated data sets towards the ground truth. The 

uncertainty estimation model, following Zhang and Reid 2006, is based on a 

prognostic equation to estimate RMSE as a function of AODDB. Development of this 

uncertainty estimate is discussed in Sect. 5.5.  

As Figure 7 shows, AODDB values have a RMSE of 0.234 with respect to 

AODAERONET globally, an r2 value of 0.52, and a slope of 0.87 for all available data. 

Note that this RMSE is probably a reflection of the data from the highest AOD range. 
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A total of 42.8% (14023) of AODDB data points fell outside the reported uncertainty 

range, defined by ±0.05 ± 20% × τAERONET (Hsu et al., 2008). When only data with a 

QA of “Very Good” are used, the RMSE drops to 0.207, r2 increases to 0.75, the 

slope changes to 0.83, and the fraction of outliers drops to 31.7% (1038). Although 

the regression slopes in Figure 7 are not dependent on QA flags, the 11.5% decrement 

in RMSE and 11.1% decrement in outliers from QA flags equal to “None” to “Very  

 

Figure 8. Regional comparisons between AODDB and AODAERONET 2002-2009 with only QA equal to 
“Very Good” for (a) Northwest America, (b) Northeast America, (c) South America, (d) Europe, (e) 
North Africa, (f) South Africa, (g) East Asia, (h) Australia, and (i) West Asia. The blue line is the 
linear fit line and the black lines are the 95% confident interval of the linear fit line. 
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Figure 9. The domains for areas that are shown in Figure 8.Western North America is shown in indigo, 
Eastern North America is shown in dark slate blue, South America is shown in blue, Europe is shown 
in sky blue, North Africa is shown in spring green, South Africa is shown in lemon green, Australia is 
shown in orange, West Asia is shown in white, East Asia is shown in yellow, and other region is 
shown in black. 

 

Good” show that higher quality data are selected when using the “Very Good” QA 

flag. However, in addition to an improved performance, an 84.3% data loss is found. 

The performance of the AODDB retrievals, however, shows a regional 

dependence, particularly in regard to slope. This is suggestive of microphysical bias, 

but since the DB algorithm utilizes a recalculated surface reflectance database that is 

based on a minimum reflectivity technique (Hsu et al., 2004), it is possible that the 

regional dependence of the DB retrieval performance could also be a function of 

surface albedo as suggested from this study as well. Using all available data with the 

“Very Good” QA flag, regional comparisons between Aqua DB and AERONET for 
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Figure 10. The RMSE of AODDB against AODAERONET for a. data with “Very Good” QA flag over 
Europe (black), North Africa (blue), East Asia (green), and West Asia (red) in Figure 8 as a function of 
AODAERONET, (b) similar to(a) but as a function of AODDB, (c) all data over North Africa as a function 
of AODAERONET and (d) similar to(c) but with data with QA equals to “Very Good” and “Good.” 

 

nine selected regions were conducted as shown in Figure 8, with Figure 9 showing 

the domain of each area in a different color. As indicated from Figure 8, only four 

regions, namely North Africa, Europe, East Asia, and West Asia, have more than 400 

collocated data points that are sufficient for an evaluation study with respect to 

various observing conditions. The remaining regions, Western North America, 

Eastern North America, South America, southern Africa/Sub-Saharan Africa, and 
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Australasia, either have small number of collocated Aqua MODIS and AERONET 

data points or have larger scattering of data distribution. Of the nine selected regions, 

the best performance of DB data is found over North Africa, with a slope of 1.16, an 

r2 value of 0.81, and an AOD RMSE of 0.19 between DB and AERONET. However, 

high bias occurs when AOD is greater than one, which could be caused by multiple 

scattering. Contrary to the overestimation of AOD values over the North Africa 

region, an underestimation of AOD values is found for DB retrievals over Asia, with 

a much higher RMSE of 0.21 for West Asia and 0.29 for East Asia. Regions other 

than North Africa either have very few collocated DB and AERONET data points, or 

have a much larger scatter between satellite and AERONET AOD values. The 

diagnostic and prognostic RMSE models were built for regions in Figure 8 with more 

than 400 data points, namely Europe, North Africa, East Asia and West Asia (Figure 

10a and b). The RMSE models were created using the same binning method for all of 

the components within each panel. The corresponding mean AODAERONET for all the 

data points in each bin was plotted as the bin’s X-axis value. Europe, shown in black 

in Figure 10a and b, has low RMSE at low AODAERONET, but higher RMSE at low 

AODDB. This can be explained if DB is systematically underestimating AOD in this 

region, a possibility we will examine later in this section. Because of limited data 

volume and range of retrieved AODDB in the matched datasets, only the North Africa 

and Arabian Peninsula regions (namely “the study region” from now on) were used to 

construct the DA-quality DB products. These regions will be the main focus of 

discussion in this study.  
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Focusing on the study region, the diagnostic RMSE analysis as a function of 

AODAERONET was performed for all data and data with QA flag values of “Good” and 

“Very Good” (Figure 9c and d). For all available data and data with “Good” QA flags, 

the RMSE values from Aqua and Terra are very similar in both magnitude and pattern. 

When AODAERONET values are smaller than 0.8, the RMSE values from both sensors 

remain relatively constant. Above this value, the RMSE increases as AODAERONET 

increases. With a strict QA flag filtering, the RMSE values of AODDB reduce to 

approximately 0.1 for AODAERONET below about 0.4, with a larger reduction of RMSE 

shown in Aqua data.  

Shown in Figure 7 and Figure 8, the QA flag is necessary for highlighting 

retrievals that are the most “trustworthy” (Hsu et al., 2004). However, there are 

limitations in using data with only “Very Good” QA flags. For example, using the 

QA flag also introduces artifacts in AOD spatial distribution. Figure 11 shows the 

daily spatial distribution of AODDB over the study region for 1, 2, and 3 May, 2006, 

with all available data on the left panel, and data with only QA flags of “Very Good” 

on the right panel. For all three days, two patterns can be observed consistently from 

the right panel: 1) retrievals in the center of the swaths are removed which are due to 

the large scattering angles (personal communication with Christina Hsu 2012); 2) the 

number of retrievals is largely reduced south of 13 °N, and a significant portion of 

low AOD retrievals are excluded by the “Very Good” QA flags. When averaged over 

a one-year period (Figure 12), the second pattern shows up as a near-linear feature, 

indicated by much higher AOD values for “Very Good” data below 13 °N (Figure 

12a and b). This pattern is introduced by a significant reduction in the number of 
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retrievals, especially low AOD retrievals as shown in Figure 11, when applying the 

“Very Good” QA filters (Figure 12c). This reduction in data samples was caused by 

artificial thresholds in the DB retrieval algorithm, considering the number of pixels 

used in the retrieving process. Despite the disadvantage of applying “Very Good” QA 

flags, only DB data with the “Very Good” QA flags were used hereafter, because of 

reduced error in these data, and because of systematic bias in AOD values with other 

QA flags (see Sect. 5.3.2.1). 

4.3.2 Detailed analysis for DB over North Africa and Southwest Asia 

Series of analyses were performed to investigate the sources of uncertainty in 

AODDB product, including angular dependence, aerosol microphysics, surface 

reflectance, and other observing conditions. Aerosol layer height and surface 

elevation are possible uncertainty source for retrieving aerosol using shorter 

wavelengths. For example, Hsu et al., 2004 mentioned that a ±2 km variation in 

aerosol plume height could introduce a 25% uncertainty in AOD at 412 nm and 5% at 

490 nm. “Very Good” quality data were used to conduct most of the analyses except 

that of angular influences, due to the change of behaviors between all available data 

and data with “Very Good” quality. Although most discussions are focus on the study 

region only, global analysis is performed for the aerosol microphysics studies (Sect. 

5.3.2.2), as insufficient numbers of fine mode aerosol retrievals are available at the 

study region. 
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Figure 11. Quarter degrees spatial average of satellite aerosol observation over the study region for 
AODDB for three days.  The first, second and third rows correspond to DB data at May 1st, 2nd, and 3rd, 
2006. The left column is all available DB data and the right column is DB data with QA equal to “Very 
Good” only. 

 

4.3.2.1 Angular Dependence 

An interesting discrepancy between the AODDB with and without QA flag 

filtering was discovered for angular dependency in AOD bias. For data with QA flag 

equals to “Very Good”, no systematic bias (τAERONET - τDB, symbol as ΔτA-M) is found 

as functions of viewing zenith angle (θ). However, with all data, there is a strong 
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Figure 12. Spatial distributions of DB for 2006 (a) AODDB before the QA filtering, (b) only AODDB 
with “Very Good” QA, and (c).Number of retrievals available after the QA filtering.  Red dots in (a) 
represent the AERONET sites. 

 

relation between increasing viewing zenith angle and increasing ΔτA-M. Figure 13 

shows the average difference between AODDB and AODAERONET at 0.55 μm as a 

function of θ over the study region. As θ values increase the ∆τA-M changes from -

0.07 to about zero, indicating a smaller bias for a larger θ value. However, this 

relationship between ΔτA-M and θ is non-existent when the “Very Good” QA flag  
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Figure 13. The differences in AOD between Aqua AERONET and DB as a function of viewing angle 
over North Africa for (a) total AODDB without QA filter, and (b) AODDB with “Very Good” QA. Data 
were averaged for every 10 degrees viewing zenith angle and one standard deviation bars were shown.  

 

Figure 14. Comparisons between Aqua AODDB and AODAERONET globally during 2002-2009 under 
cloud free conditions for (a) fine mode fraction smaller than 0.5 and (b) fine mode fraction greater than 
0.5. The blue dots represent the averaged AODDB for each AODAERONET bin. The thicker black line is 
the linear fit line and the thin black line is the 95% confidence interval. The red dashed line is the 1 to 
1 line. 

 

filtering is applied (Figure 13b). Similar patterns were found for scattering angle, but 

not shown here. The influence of the viewing angle was then decoupled with albedo 

at 0.412 μm. It is shown that, when the surface is relatively bright (albedo between 

5% and 11%), the influence from the viewing angle is minimized. When the surface 
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is dark (albedo smaller than 5%), the bias of AOD varies with viewing angle for all 

available data. 

4.3.2.2 Aerosol Microphysics 

Four aerosol microphysical parameters were evaluated for their impacts to the 

retrieval bias under cloud free conditions. The four parameters were Angström 

Exponent and Single Scattering Albedo (ω) from the DB product, fine mode fraction 

(η) calculated from AERONET data using a spectral convoluted method from O’Neil 

et al. (2003), and the aerosol type flag included in the DB QA flag. Among all the 

parameters, investigations showed that the AODDB errors are most sensitive to η. 

Only one third of the aerosol retrievals over the study region have η > 0.5 and all data 

from the matched dataset with η < 0.5 are from the study region. Figure 14 shows the 

scatter plot of AODDB vs. AODAERONET for two η ranges: η < 0.5 (Figure 14a) and η > 

0.5 (Figure 14b). Underestimation of AODDB is found for coarse particles with η < 

0.5, and an overestimation is found for fine particles with η > 0.5 globally. Consistent 

relationships are also found over the study region. Since nearly two-thirds of DB 

aerosol retrievals in the matched dataset over the study region have η < 0.5, it is likely 

that AODDB over the study region as a whole is underestimated.  

Although convincing trends are found with respect to η, a parameter that is 

included in the DB products needs to be selected and used for empirical corrections 

mentioned in a later section. Thus, other microphysical parameters, including 

Angström Exponent and ω, were also examined, site by site, and seasonally. However, 

no significant trends are found for these two parameters. A comparison was made 

between the retrieved Angström Exponent and AERONET derived η, no relation 
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between the two parameters was found. Note that the DB Angström Exponent is 

predefined by the aerosol models contained in the look up table. Therefore, the DB 

Angström Exponent will not necessarily relate to the AERONET derived η. At last, 

instead of using external calculated η from AERONET, the aerosol type flag, a 

parameter that is included in the DB products, was used to represent the aerosol 

microphysics in the empirical correction step (see Sect. 4.4). 

4.3.2.3 Surface Reflectance 

The DB algorithm utilize a pre-calculated surface reflectance database that 

following minimum reflectivity technique (Hsu et al., 2004). Therefore, it is 

necessary to evaluate the influence of the static albedo on AOD retrievals. Also, as 

mentioned in Sect. 4.3.2.2, ΔτA-M can be affected by inaccurate assumptions of aerosol 

microphysical properties in the retrieval process. To decouple the effects of aerosol 

microphysics and surface albedo on ΔτA-M, the surface albedo related AODDB bias was 

investigated as a function of aerosol type and fine/coarse aerosol modes. Again, 

global data were used to observe the fine mode aerosol performances and the coarse 

mode particle analyses are the same for the study region.  

For all analyses, the collocated DB and AERONET AOD data were separated 

into four groups based on DB surface albedo (α) at a wavelength of 0.412 μm. The 

four albedo ranges are 0−5%, 5%−8%, 8%−11% and above 11%.  Figure 15 shows 

the spatial distribution of the selected albedo ranges over the study area. Illustrated in 

Figure 15, areas with albedo values higher than 11% are located over the white sand 

deserts, and regions with albedo values lower than 5% are located over semi-

vegetated areas. The influences of surface albedo as well as η to AODDB data are 
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shown in Figure 16. Here again, all collocated DB and AERONET data are included 

as there are insufficient fine mode AOD retrievals over the study area. Left panels of 

Figure 16 show that for η < 0.5 (coarse mode), when α is less than 11%, an 

underestimation in satellite AOD is observed, and a strong non-linear trend is found. 

The magnitude of the underestimation is reduced when α increases from 5% to 11%. 

For η > 0.5 (fine mode), however, an overestimation is found for low albedo ranges, 

but not for the 8-11% albedo range (Figure 16 right panels). In general, for coarse 

mode aerosols, a higher albedo results in a smaller underestimation, and for fine 

mode aerosols, an opposite pattern is observed. Also illustrated in Figure 16, large 

scatter is found between DB and AERONET AOD when surface albedo (0.412 μm) 

values are greater than 11% for both η > 0.5 (fine mode) and η < 0.5 (coarse mode) 

cases. Figure 16 highlights the necessity of decoupling the surface and aerosol 

microphysical factors for empirical corrections. 

 

Figure 15. Spatial distribution of surface reflectance at 0.412 µm.  The four albedo ranges are 0-5% 
(blue), 5%-8% (green), 8%-11% (yellow) and above 11% (orange). The highlighted red dots show the 
locations of AERONET sites used in this analysis. 
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4.3.2.4 Observing Conditions 

Cloud contamination is one of the potential sources of uncertainties for 

satellite aerosol products. However, 93% of retrievals with “Very Good” QA are free 

of MODIS-detected cloud. The error statistics of the remaining 7% do not show 

significant differences, and do not demonstrate the systematic offset in AOD shown 

in the MODIS dark-target over-land product (Hyer et al., 2011).  

Surface elevation is another potential source of uncertainties when using the 

blue wavelength for retrieving. The relationship between ΔτA-M and the surface 

elevation of the AERONET stations was studied as a function of AERONET AOD. 

However, no significant trend was found between surface elevation and ΔτA-M. Yet 

such a study may be biased, as only a limited number of AERONET sites are located 

at high elevation. 

DB products also contain a parameter that records the number of 1-km level1b 

MODIS reflectance pixels used in creating the 10 km resolution AOD retrievals. The 

quality of the DB retrievals was checked with respect to this parameter, and a 

noticeable high bias in ΔτA-M of 0.11 was found when all of the 1-km pixels are used 

in the retrieval process, as shown in Figure 17. The DB data has a low bias over most 

of the scenarios except when the number of pixels used is around 60−80. The pattern 

of ΔτA-M increasing when 100 pixels were used is also found in Terra. However, for 

the rest of the scenarios, there is no systematic low bias found. 
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Figure 16. Comparisons between coarse and fine mode Aqua AODDB and AODAERONET at 0.55 µm 
globally 2002-2009 with albedo at 0.412 µm. Each row represents data from a range of albedo: (a) and 
(b) are for albedo less than 0.05, (c) and (d) albedo ranges between 0.05 and 0.08, (e) and (f) albedo 
ranges between 0.08 and 0.11, and (g) and (h) are for albedo greater than 0.11. The left panel shows 
the coarse mode with the fine mode fraction less than 0.5, the right panel shows the fine mode with the 
fine mode fraction greater than 0.5. The blue line is the linear regression line, and the red line is the 
polynomial regression line. 
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Figure 17. AOD bias (ΔτA-M) as a function of the number of pixels used for retrieving Aqua DB over 
the study region. The error bars indicate one standard deviation above and below the mean. 

 

4.3.3 Statistical Analysis for Spatial Variations 

In Sect. 4.3.2, sources of physical-based uncertainties of the AODDB have been 

identified. The DB aerosol data are reported at a spatial resolution of 10 km, and, 

therefore, the regional variations of surface albedo and aerosol optical properties 

within the 10 km domain could also affect the accuracy of the AODDB values, as 

illustrated by Equation 5. Equation 5 shows the relationship between the uncertainties 

in AODDB values and three main contributors: 1) regional variations of AODDB 

(STEAOD), 2) regional variations of surface albedo (STEsfc), 3) physical based 

uncertainties as described in Sect. 4.3 (physical parameters, or PP).  

 dPP
PP

dSTE
STE

dSTE
STE AOD

AOD
sfc

sfc ∂

∂τ

∂

∂τ

∂
∂τ

τ ++=Δ  (5) 

Here, STEx represents the spatial variance of parameter x and is defined as the 

standard error of component x that is calculated using: 
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N is sample size, xi is each sample value, µ is the expected value, and σ is standard 

deviation. The standard error is calculated using a 3 by 3 (approximately 30 km × 30 

km) moving window around a given aerosol retrieval. 

The goal of this study is to evaluate potential sources of uncertainties in the 

DB aerosol products, and to develop quality assurance steps and empirical methods to 

minimize bias and noise. Therefore, the first two terms from the right hand side 

(RHS) of Equation 5 need to be studied and removed for the further development of 

empirical correction methods. It is difficult to completely decouple the three terms 

listed in the RHS of Equation 5. However, it is possible to identify scenarios that 

minimize the first two terms, as shown in Figure 18. Figure 18 shows the analyses of 

normalized ΔτA-M (ΔτA-Mover DB AOD) as a function of STEsfc with respect to surface 

reflectance, AODDB, and aerosol type. Figure 18a shows that for darker surfaces 

(albedo smaller than 8%), the variation of SDEsfc is low. Higher SDEsfc values are 

found over regions with brighter surfaces (e.g. 8% < albedo < 11%), especially when 

normalized aerosol bias becomes negative.  Figure 18b suggests that larger STEsfc 

values correspond to regions with low AOD values. When normalized aerosol bias 

reaches -1.0, the largest mean values of STEsfc correspond to AOD values smaller than 

0.25. When separating the STEsfc based on aerosol type, the STEsfc of smoke particles 

oscillates around 0.0015, while those of “mixed” and “dust” particles fluctuate at 
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much larger values and reach 0.003. This indicates both “mixed” and “dust” aerosol 

retrievals contain data that are largely biased by STEsfc. The variations of STEAOD 

were tested against aerosol type, surface albedo and AOD value as well. Significant 

trend of STDAOD were found only against AOD.  

 

Figure 18. Normalized ΔτA-M (ΔτA-M over Aqua AODDB) varies with STEsfc as a function of (a) surface 
reflectance at 0.412 µm, (b) AODDB, and (c) aerosol type. The error bars indicate one standard 
deviation above and below the mean. 

 

Similar analyses were conducted for STDAOD as functions of surface 

reflectance and aerosol type. However, no significant trend was found. Figure 18b 

was introduced to show the STDAOD as a function of AOD. Although globally an 

increasing trend is found between STDAOD and AOD (Figure 18a), over the study 
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region the STDAOD is nearly invariant with respect to AOD other than when AOD is 

smaller than 0.1 (Figure 18b). STDAOD cutoff has been used as a method to exclude 

cloud contaminated pixels (e.g., Shi et al., 2010a and Zhang and Reid, 2006).  Figure 

18b suggests a flat STDAOD cutoff can be applied to the study region, which is applied 

in the next section. Sect. 4.0 describes how scenarios with significant contributions 

from STEsfc and/or STEAOD were identified and removed as part of the QC procedures.  

 

Figure 19. Scatter plot of standard error threshold of Aqua AODDB versus AODDB at 0.55 µm. Dots 
represent the averaged Standard Error (blue) of AODDB and the 1.5 standard deviation (red) for 
AODDB increments of 0.1 for AODDB < 0.5 and increments of 0.3 for AODDB > 0.5. The blue lines and 
red lines show the linear fit of corresponding dots. (a)for AODDB globally. (b)for AODDB over the 
study region. 

 

4.4 Development of QA/QC Procedures for DA-quality DB over North Africa 
and Southwest Asia 
 

Based on discussions from section 3, Level 3 DA-quality DB data over the 

study region were constructed in two steps. Initially, noisy data were removed using 

various filters, including QA flags, standard error check, and buddy checks over the 

study region. Table 2 shows all the filtering standards with corresponding data loss. 
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Next, empirical corrections were applied based on each of the aerosol microphysical 

properties and surface conditions. 

Table 2. Filters and thresholds that are used in QA procedures with corresponding data loss for 
generating DA-quality Aqua AODDB, with data concerning Terra DB were presented in prentices. The 
percentage of data loss for all procedures after the QA filtering were calculated based on the number of 
retrievals that had QA equal to “Very Good.” 

 

 QA Flag Decoupled STDsfc and 
STDAOD  Cloud Fraction (Fcld) 

Thresholds “Very Good” STEsfc < 0.004 and 
STEAOD < 0.03  Fcld < 60% 

Data Loss 84.3% (82.6%) 20.8% (33.1%)  0.7% (0.5%) 
 

During the standard error check, scenarios with significant contributions from 

STEsfc and STEAOD were identified. Among nine cases for three STEsfc ranges (0.00-

0.001, 0.001-0.002, and 0.002-0.004) and three STEAOD ranges (0.0-0.01, 0.01-0.03 

and 0.03-0.05), large scatter is found for STEAOD ranging from 0.03-0.05. Therefore, 

to filter out data with large spatial variations in either AOD or surface albedo, only 

data with STEsfc less than 0.004 and STEAOD less than 0.03 were used to construct DA-

quality AODDB data.  

Following the STEAOD filtering, buddy check was performed, which is a test 

that searches for the adjacent retrievals, where retrievals without any adjacent 

retrieved AODDB are rejected. It is designed to detect isolated retrievals and is aimed 

at removing retrievals that occur in between clouds and are subject to cloud 

contamination. Also, retrievals within the geographical range of 10° S to 13° N and 

12° W to 25° E were excluded due to the spatial AOD bias related to the QA flag as 

discussed in Sect. 3.1.  
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As mentioned in Sect. 5.3.2.2, aerosol type was decoupled with the surface 

albedo for empirical correction purpose. Four aerosol species, defined by the aerosol 

type flag, are: “mixed,” “dust,” “smoke,” and “sulfur.”  Over the study region, no 

retrieval labeled as “sulfur” was found for the collocated dataset. Therefore, only 

retrievals with the aerosol type reported as “mixed,” “dust,” or “smoke” were 

discussed. Figure 20 to Figure 22 show the comparisons between DB and AERONET 

AOD with decoupled aerosol type and albedo range (similar setting as Figure 16). 

Empirical correction steps were established, based on Figure 20 to Figure 22 but use 

AODDB as the independent variable, for a total of nine scenarios. Three types of 

aerosols (mixed, dust and smoke) for three ranges of albedo (low: 0-5%, median: 5-

8%, and high: 8-11%) were considered. Coefficients (slopes and offsets) for the linear 

empirical correction equations are listed in Table 3 and Table 4 for Aqua and Terra 

respectively. Figure 20 to Figure 22 show that both linear and nonlinear patterns exist 

between DB and AERONET AOD values. Linear corrections were, therefore, applied 

to the identified scenarios that showed linear relationships between satellite and  

AODAERONET. For low albedo regions with mixed aerosol types (Figure 20a), a non-

linear relationship is found between DB and AERONET AOD. Therefore, two linear 

corrections were made for the AOD ranges of 0.0 to 0.25 and 0.25 and above. 

Similarly, for dusty regions (as identified by the DB product) with surface albedo 

(412 nm) range of 5-8% (Figure 21b), linear corrections were made for AOD ranges 

of 0.0 to 1.0 and 1.0 and above for Aqua (ranges of 0.0 to 0.9 and above 0.9 for 

Terra). These corrections were based on linear regressions in prognostic analyses, 

which used  AODDB as the x-axis. When slopes from prognostic analyses are 
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inversely proportional to slopes from diagnostic analyses, slope corrections were 

applied. In three cases, prognostic and diagnostic slopes are inconsistent, and no 

corrections were made for those scenarios: Aqua data over mixed aerosol and dust 

regions with albedo between 8% and 11% and Terra data over mixed aerosol regions 

with the same albedo range. As mentioned before, the coarse mode aerosol is the 

dominant aerosol mode over the study region, and there are an insufficient number of 

collocated pairs of Aqua DB and AERONET data for smoke aerosol types. Therefore, 

one linear correction was applied to retrievals with DB smoke aerosol type. We also 

excluded smoke aerosol retrievals for regions with DB retrieved surface albedo 

values greater than 0.08. 

 
Table 3. Coefficients used in the empirical corrections for Aqua DB data. 

Aerosol 
Type Parameters 

Range of surface albedo (α) at 0.412 μm 
0.0-0.05 0.05-0.08 0.08-0.11 

Mixed 
offset 0.00697  

(0.0; AOD < 0.25) -0.0134 0.0 

slope 1.201  
(0.887; AOD < 0.25) 1.149 1.0 

Dust 
offset 0.0 0.0 

(0.0; AOD < 1.0) -0.0285 

slope 1.3 1.3 
(1.0; AOD < 1.0) 1.038 

Smoke 
offset 0.0 

No data were 
taken in this range 

slope 1.3 

 
 

Finally, slope corrections are restrained to 1.3 for both Aqua and Terra DB 

data, respectively. These slope thresholds are rather arbitrary and were applied to 

avoid significant corrections to the AODDB. Details of the steps and parameters for 
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the corrections mentioned above are included in Table 3 and Table 4.  Table 5 shows 

the sensitivity study concerning the arbitrary limitation of the slope corrections.  For 

 
Table 4. Coefficients used in the empirical corrections for Terra DB data 

Aerosol 
Type Parameters Range of surface albedo (α) at 0.412 μm 

0.0-0.05 0.05-0.08 0.08-0.11 

Mixed 
offset -0.0107 0.0261 

No change 
slope 1.264 1.056 

Dust 
offset 0.0 0.0 

(0.0869; AOD < 0.9) -0.0502 

slope 1.3 1.3 
(0.705 AOD < 0.9) 1.145 

Smoke 
offset 0.0 

No data were 
taken in this range 

slope 1.3 

 
 

 

Figure 20. Comparisons between Aqua AODDB and AODAERONET over the study region from 2002-2009, 
grouped by albedo (0.412 µm) ranges for the mixed aerosol type, (a) albedo less than 0.05, (b) albedo 
ranging between 0.05 and 0.08, (c) albedo ranging between 0.08 and 0.11, and (d) albedo greater than 
0.11. The blue line is the linear fit line. 
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the selected slope limits of 1.1, 1.2, and 1.3, the smallest RMSE occurs when the 

slope correction limit is restrained at 1.3.  Again, the main concern for restraining the 

slope correction is to avoid potential discontinuities in the data that are created by the 

application of large corrections. 

 

4.5 Estimation of Prognostic Uncertainty for DA-Quality DB AOD 

Using the data screening steps and empirical correction procedures mentioned 

in the previous section, the DA-quality AODDB data were generated. In this section, 

the accuracy of the newly generated data was evaluated through inter-comparison 

with ground observations and through the prognostic and diagnostic models of the 

RMSE.  

 

 

Figure 21. Similar to Figure 20 but for dust type aerosol. 
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Figure 22. Similar to Figure 20 but for smoke type aerosol. 

 

Table 5. Statistical analyses of different slope limitations for the empirical correction procedures for 
Aqua DB data when validating against AODAERONET. 

Slope limitation 1.2 1.3 1.4 No limit 

RMSE (all data) 0.160 0.157 0.159 0.149 
RMSE (data > 0.5) 0.252 0.242 0.244 0.224 
RMSE (data > 1.0) 0.391 0.367 0.367 0.332 

r2 0.87 0.87 0.87 0.89 
slope 1.05 0.99 0.95 0.98 
 

The comparison of DB and AERONET AOD before and after the quality 

assurance and empirical corrections steps are shown in Figure 23 for Aqua and Terra 

over the study region in order to estimate the prognostic uncertainty. Reductions in 

both bias and noise are clearly visible for both DA-quality Terra and Aqua AODDB 

data. The slopes of AERONET and the newly generated AODDB are 0.88 and 0.87 for 
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Aqua and Terra respectively.  The non-linear features for both Aqua and Terra are 

weakened, but not eliminated, due to the restriction in empirical corrections that the 

multipliers cannot exceed 1.3. The RMSE values were checked for three AOD 

ranges: total AOD, AOD greater than 0.5 and AOD greater than 1.0. The 

corresponding RMSE are from 0.19 to 0.16 with 18.1% error reduction, from 0.33 to 

0.24 with 26.3% reduction, and from 0.54 to 0.37 with 32.3% reduction for Aqua 

after applying the QA steps and empirical corrections. Similarly, for Terra, the 

corresponding RMSE are from 0.24 to 0.17 with 18.2% error reduction, from 0.35 to 

0.27 with 22.9% reduction, and from 0.55 to 0.35 with 36.4% error reduction. The 

total data losses, calculated against the total number of retrievals with “Very Good” 

QA flags, are 28.5% for Aqua and 44.5% for Terra.  

Figure 24 shows the RMSE of the new product as a function of DB AOD 

before and after all processes. The upper panels are for total AOD, while the lower 

panels are separate dust and mixed aerosol types. Smoke aerosol particles were not 

included due to insufficient data samples. In Figure 24 the same binning methods 

were used for the original data and the corresponding DA-quality data. However, the 

methods of binning vary for different data sets (e.g. dust vs. mixed aerosol) due to 

their respective data distributions. Figure 24a shows two lines of noise floors. The 

noise floor is defined as the RMSE value when RMSE is invariant to AOD variations. 

The noise floor represents the basic RMSE introduced by the system. As Figure 24a 

show, RMSE values are reduced for all AOD ranges after the correction processes. 

For total AOD less than 0.4, the noise floors of RMSE of original and newly 

generated data are 0.113 and 0.104, respectively. Different trends are found for 
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different aerosol types. For example, the RMSE values show an increasing pattern as 

AODDB increases for mixed-type aerosol particles. However, for dust particles, the 

minimum RMSE appears around AODDB value of 0.3. This V-shaped RMSE 

distribution indicates a larger retrieval uncertainty for dust AOD values smaller than 

0.3. Figure 24b and d show a similar analysis to Figure 24a and c, but use Terra DB 

data. One distinct difference from Aqua to Terra is that no noise floor of RMSE is 

found for Terra data. In the prognostic analyses, a sudden increase of RMSE values is 

found at AOD value around 0.5 (black dots in Figure 24d). This sudden increase in 

RMSE values is due to outliers from the mixed type of aerosol particles in the high 

surface albedo case. Generally, the RMSE analyses show that the newly generated 

DA-quality data has smaller RMSE values when compared to the original data for 

both Aqua and Terra.  The level 3 quality-assured data were generated over the study 

region by spatially averaging the AOD data in a one-degree or a quarter-degree 

latitude and longitude resolution. 

 Figure 25 shows the spatial plots of the original DB data, the “Very Good” 

QA quality DB data, and the newly generated data for Terra and Aqua separately for 

2007. The main features are similar before and after the empirical corrections and QA 

procedures. When compared with DB data that has the “Very Good” QA flag, high 

AOD noise was reduced, and general AOD values were increased due to the 

correction of the non-linear features. All data with surface albedo values exceeding 

11% were removed. Also, data for regions below 13° N were not included due to the  
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Figure 23. Scatter plot of AODDB and AODAERONET level 2.0 AOD at 0.55 µm over the study region. 
The blue line is the linear regression line for all data (except in 18c, is for data smaller than 1.5) and 
the black lines are the 1.0 standard deviation lines of the data. (a)for the original Aqua DB aerosol 
products, (b) for the DA-quality Aqua DB aerosol products, (c) and (d) are similar to (a) and (b) but for 
Terra DB. 

 

Figure 24. RMSE of AODDB compared to AODAERONET as a function of AODDB for all data and for mixed and 
dust aerosol types over the study region – (a) and (c) for Aqua, and (b) and (d) for Terra. The RMSE of original 
and DA-quality mixed and dust aerosols are indicated by the different colors of dots. 
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QA-filtering issue mentioned in Sect. 4.3.1. It is shown in Figure 25 that Terra AOD 

have higher values, approximately 0.1, than Aqua AOD. Knowing that dust aerosols 

have a diurnal feature, the difference in local passing time for the two satellites may 

cause this problem.  Also Terra AOD have a larger bias, as shown in Figure 10d and 

Figure 24b, which can also contribute to this problem.  

 

Figure 25. Spatial distribution of c5.1 AODDB at 0.55 µm from the DB aerosol products for 2007.The 
black color represents regions with no data, the blue color represents areas with low AOD loadings, 
and the pink color indicates locations with extremely high AOD values. Rows 1, 2, and 3 represent the 
original data, data with “Very Good” QA flags, and the DA-quality data respectively. The left column 
is Terra DB data and the right column is Aqua DB data. 

As an independent study, we have also evaluated the newly generated level 3 

Aqua DB AOD data for 2010 and 2011 that are not included in the analyses as 

mentioned in Sect. 4.2 to 4.4. AERONET level 1.5 data were used instead of 
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AERONET level 2.0 data, since level 2.0 AERONET data were not available from all 

sites over the study region for 2010 and 2011 when the study was conducted. Again, 

with the empirical correction and quality assurance steps, both bias and noise are 

reduced. The RMSE for newly generated data is reduced 11% from 0.227 to 0.202, 

and the r2 changes from 0.74 to 0.77 for prognostic purpose (Figure 26). Noted that 

there were four outliers that showed in blue dots from Figure 26, which were 

manually removed from the analyses for both original and DA-quality DB data. 

 

4.6 Conclusions 

A thorough analysis with an emphasis on North Africa and Southwest Asia 

was conducted to evaluate the DB c5.1 aerosol products through the use of ground-

based AERONET data. Retrieval biases and uncertainties were analyzed as functions 

 

Figure 26. Scatter plot of Aqua DB versus AERONET level 2.0 AOD at 0.55 µm from 2010 to 2011 
for an independent study. The blue line is the polynomial / linear regression line for all of the data. (a) 
for the original Aqua DB aerosol products, (b) for the DA-quality Aqua DB aerosol products 

of sampling and observation-related factors such as surface conditions, observation 

geometry, aerosol microphysics, cloud contamination, and other parameters that are 

used in the retrieval process. Updated quality assurance procedures, filtering 

processes, and empirical correction steps were developed for constructing new 
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quality-assured DB products. Prognostic models were built for evaluating the newly 

developed data product against AERONET observations. Our findings include: 

1.   QA flags can be used to improve the quality of the AODDB data. An 

important systematic bias in AODDB as a function of viewing angle is 

eliminated by the use of the “Very Good” QA flag. However, both the 

data density and the geographic distribution of DB data are affected by 

the QA flag, and users of the product should be aware of this.  

2.   Particle size and surface albedo were identified to be significant to 

retrieval accuracies, and were highlighted and decoupled from the 

remaining parameters. For coarse mode aerosols, the higher the 

surface albedo is, the lower the underestimation of AODDB. For fine 

mode aerosols, however, the higher the albedo is, the lower the 

overestimation of AODDB. 

3.   The new QA and empirical correction procedures were constructed, 

and new level 3 DB c5.1 product was created for future implication in 

data assimilation. Reductions in RMSE, which were calculated using 

ground-based AOD from AERONET as truth, of 18.1% and 18.2%, 

were found for the quality-assured products when compared to the 

original DB products for Aqua and Terra DB products, respectively.  

4.   An independent validation of DB c5.1 data over 2010 and 2011 was 

also conducted and improvements to the new data set were found as 

well. The newly developed level 3 products will be used in aerosol 

data assimilation and aerosol climate studies. 



 

 84 

CHAPTER V   

CRITICAL EVALUATION OF CLOUD CONTAMINATION IN THE MISR 
AEROSOL PRODUCTS USING MODIS CLOUD MASK PRODUCTS 

 

5.1 Introduction 

The MISR instrument has been successfully applied to observe and study 

atmospheric aerosols for over a decade (e.g., Kahn et al., 2005). Featuring nine 

unique camera angles, MISR observations have been used to retrieve aerosol optical 

properties over most surface types, including bright surfaces, which thwart many 

other passive sensors (Diner et al., 1998; Kahn et al., 2010). One of the known issues 

for satellite aerosol products, including the MISR aerosol products, is cloud 

contamination (e.g., Zhang et al., 2005; Kahn et al., 2010). Extensive research efforts 

been attempted to study but the impacts of cloud artifacts and cloud contamination to 

aerosol retrievals from other sensors, such as MODIS (Zhang et al., 2005; Hyer et al., 

2011; Shi et al., 2011b; Toth et al., 2013) and Advanced Very High Resolution 

Radiometer (AVHRR) (Zhao et al., 2013), the impacts of cloud contamination on 

MISR aerosol products have not been fully explored or quantified. We do know that 

over-ocean AOD from standard operational MODIS and MISR products have 

positive biases as large as 0.025–0.04, or roughly one-third of mean background 

AOD values (Zhang and Reid, 2010; Kahn et al., 2010). This is in stark contrast to the 
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accuracy requirement commonly professed by climate scientists of 0.01 (CCSP, 

2009) and may impact estimates of long-term aerosol trends (Zhao et al., 2013). 

As suggested from previous studies, effective cloud screening for aerosol 

retrieval requires sophisticated algorithms and multispectral visible and infrared 

radiance data (e.g., Remer et al., 2005). However, MISR lacks channels in the near- 

and far-infrared region where cirrus clouds are most easily detected. The operational 

cloud-screening algorithm for AODMISR products is based on cloud-induced 

perturbations in either spectral radiance or angular-dependent radiance values with 

the assistance of a reflected layer height technique (e.g., Kahn et al., 2007). Note that 

the operational MISR cloud screening method does not fully exploit the MISR data 

for aerosol-related applications. For example, Pierce et al. (2010) show, with their 

research algorithm, that MISR can retrieve thin cirrus with optical depth below ∼ 0.3 

under favorable conditions. A recent study by Witek et al. (2013) has extended the 

cloud screening effort by requiring 60% clear pixels for every AODMISR retrieval 

using a 1.1 km resolution clear flag that is included in the MISR aerosol products. 

Using the Witek et al. (2013) method, AODMISR are reduced by 0.04 with an 85% 

data loss rate, and the averaged AODMISR are in line with the Navy MODIS data 

assimilation grade product. However, cloud detection may be incomplete with the use 

of only visible and near-IR channels, especially for thin clouds over bright surfaces. 

On board the same satellite platform as MISR, MODIS has a total of 36 spectral 

channels, including cirrus cloud- sensitive channels as well as infrared channels, 

which provide an enhanced capability of detecting the presence of clouds in an 

observed scene (e.g., Ackerman et al., 1998). Previously published study of cloud 
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contamination in the MISR retrieved AOD have not yet taken advantage of collocated 

Terra-MODIS cloud masking data. In this study, level 2 cloud mask products from 

Terra MODIS were used to evaluate the cloud contamination in the Terra MISR 

aerosol products and evaluate different methods for eliminating cloud contamination 

from MISR aerosol products. 

 

5.2 Methodology 

Three data sets are used in this study. They are MISR AOD product, MODIS 

cloud mask product, and AERONET AOD. During this study, the baseline quality 

assessment steps (referred as “self-QAed” hereafter) for AODMISR are based on data 

included in the MISR aerosol products (Kahn et al., 2009; Bull et al., 2010). The 

following filters are used for the “Self-QAed” data sets: 

– The Retrieval Applicability Mask flag (= 0) is used to identify pixels free of 

cloud, glint, and other factors. 

– The Regional Classification Indicator (= 0) is used for selecting retrievals 

above clear background region. 

– The Aerosol Retrieval Success Flag (=7) is used to identify successful 

retrievals. 

– The Regional Surface Type Indicator is used to separate over-land from 

over-water retrievals; and also to exclude potential problematic regions such as 

shallow/coastal waters and Polar regions. 

Note that within the MISR aerosol product, a retrieval applicability mask is 

available at a 1.1 km resolution, for nine camera angles and four spectral bands. Only 
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the red and near-IR bands are used for over-water aerosol retrievals (Martonchik et al., 

1998). This mask is in a much finer resolution than the 17.6 km AOD retrievals and 

includes environmental conditions such as “clear,” “glitter-contaminated,” “cloudy” 

and “topographically obscured.” Using the clear indicator in the retrieval applicability 

mask, a clear flag fraction (CFF) can be calculated for each of the MISR AOD 

retrievals by taking the ratio of clear versus total flags for a total of 16×16×9 flags (9 

angles, 16×16 MISR pixels at 1.1 km). Witek et al. (2013) discussed the possibility of 

using the MISR CFF (use CFF > 60%) as a means of removing cloud-contaminated 

MISR AOD retrievals. The MODIS-based MISR cloud screening method developed 

from this study was compared to the method included in Witek et al. (2013). The 

results are shown in Sect. 3.0. 

The impacts of cloud contamination on the MISR aerosol product were 

evaluated using 7years (2001–2007) of collocated AERONET, MODIS and MISR 

data sets. One year of collocated MODIS and MISR products (2007) were also used 

for evaluating various cloud masking methods spatially. MISR aerosol scenes were 

collocated with AERONET data following the method presented in Zhang and Reid 

(2006). Pairs of observations were recorded when the spatial distance between the 

MISR and AERONET data is within 0.3° (Lat/Lon), and the temporal difference is 

within ±30min. The collocated MISR and AERONET data were further collocated 

with MODIS cloud mask data for the cloud-clearing analysis for the MISR aerosol 

products (see Sect. 2.4). 

The spatial resolution of the MODIS cloud masking data is 1 km. However, 

the geo-location data in the Terra MODIS cloud mask products have a spatial 
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resolution of 5 km. Therefore, to speed up the processing time, the cloud mask data 

were first averaged to a 5 km × 5 km resolution, providing occurrence ratio for each 

cloud status. The 5 km × 5 km Terra MODIS cloud masking data were then 

collocated with the Terra MISR aerosol products, with the spatial and temporal 

differences between the two products set to 6km and 30min, respectively. The spatial 

resolution for the Terra MISR aerosol retrievals is ∼ 17.6 km, thus one MISR aerosol 

retrieval can be collocated with multiple MODIS cloud masking values. The 

occurrence ratios from the 5 km averages were further averaged to compute a total of 

four parameters for one MISR AOD retrieval: cloudy fraction (Fcd), uncertain clear 

fraction (Fuc ), probably clear fraction (Fpc ), and confidently clear fraction (Fcc). The 

collocated thin cirrus cloud flag was processed the same way to construct an 

additional parameter that represents the fraction of the thin cirrus cloud-free regions 

at the MISR AOD resolution (Fcirrus_free). 

Lastly, 7 years (2001–2007) of collocated MISR and AERONET aerosol, as 

well as MODIS cloud mask products, were used to evaluate the impacts of various 

cloud screening methods on the AODMISR. One year of collocated Terra MISR 

aerosol and MODIS cloud mask products were used to investigate the impacts 

spatially. 

 

5.3 Results: a case study 

An example of potential cloud contamination in the MISR aerosol products is 

shown in Figure 27, over remote southern oceans (∼44° to 52 °S and 124° to 136 °W, 
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Figure 27. A case study on January 3rd 2007, over the remote oceans (44° to 52° S and 124° to 136° W), 
(a) RGB image created using the MISR Near IR, green and blue bands, (b) MISR AOD over the case 
study region, (c) Overlay of (a) on (b) where the intensity of red is correlated with the magnitude of the 
aerosol, (d) MODIS brightness temperature (BT), (e) MODIS cloud mask, (f) collocated MODIS thin 
cirrus free cloud fraction (Fcirrus_free) in MISR AOD domain, (g) similar to (f) but for the collocated 
MODIS probably clear fraction (Fpc), (h) AODMISR after passing the MODIS cloudy fraction (Fcd) < 
10% and the MODIS uncertainty clear fraction (Fuc) < 20% cloud filters, (i) AODMISR after passing the 
MODIS confident clear fraction (Fcc) > 20% cloud filter, (j) MISR clear flag fraction (CFF), and (k)  
AODMISR after passing the MISR CFF > 60% filtering. 
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on 3 January 2007), where a pristine marine environment is expected. Figure 27a 

shows the RGB image constructed using nadir- viewing MISR near-IR, green and 

blue bands. Cloudy and clear regions are observed in the bottom and upper parts of 

Figure 27a, respectively. Figure 27b is the corresponding MISR self-QAed AODMISR 

plot with AODMISR values ranging from near zero to over one. The nearly 

homogeneous low AODMISR of less than 0.1 are found from cloud-free oceans. Near 

cloud edges and within cloudy regions, AODMISR of 0.2–0.3 are more typically found. 

To better illustrate the relative location between cloud edges and the retrieved 

AODMISR, Figure 27c was created by overlaying Figure 27a (in aqua color) and 

Figure 27b (in red color) in a false-color composite. Bright red colors indicate high 

AODMISR. Most of the highest AODMISR (τMISR>0.3) are located within cloudy regions 

and higher AODMISR of around 0.2 to 0.3 are found near the edge of clouds. Figure 

27d shows the MODIS brightness temperature (BT) at a 5 km resolution. Retrievals 

that have AODMISR values above 0.8 are found within regions that have BT values 

lower than 255 K, a clear indication of cloud contamination. Figure 27e shows the 

MODIS cloud mask data at a 1 km resolution with each pixel flagged as one of the 

four cloudy conditions: CD, UC, PC, and CC. Regions with high AODMISR values are 

mostly associated with pixels that have PC, UC, or CD cloud flags. This concept is 

further demonstrated in Figure 27f–i. Figure 27f shows the fraction of MODIS cloud 

mask data that are free from thin cirrus cloud contamination (Fcirrus_free = 100%), 

averaged in the AODMISR resolution. Most thin cirrus cloud-free regions (Fcirrus_free = 

100%) are associated with low AODMISR of ∼ 0.15 or less. Figure 27g is similar to 

Figure 27f, but was created using the PC flag. High AODMISR of 0.2–0.3 are still 
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observed when Fpc is set to above 0.8, suggesting that the PC flag may not be a good 

cloud-free sky indicator. Using stringent threshold values of Fcd and Fuc (Fcd < 10% 

and Fuc < 20%), Figure 27h shows that most of the AODMISR larger than 0.3 are 

removed, although there are still some AODMISR around 0.3 located between clouds 

in the bottom right of the image. Figure 27i shows the cloud clearing with the use of 

the Fcc filter (Fcc> 20%), most high AODMISR are removed, showing that the Fcc filter 

can be effectively used for cloud screening of MISR data. Attempts were also made 

to filter out cloud contamination in the AODMISR using the MISR CFF data (Figure 

27j and k). The fraction of the clear flag within the scene is shown in Figure 27j. 

Figure 27k shows the MISR AOD retrievals after applying the MISR CFF filter (CFF 

> 60%) as used in Witek et al. (2013). Shown in Figure 27k, high AODMISR at the 

bottom right of the image are removed, including a significant portion of cloud-free 

AODMISR as identified by MODIS, causing a 75% data loss. More importantly, some 

of the high AODMISR, located within the totally cloudy regions as seen from Figure 

27c, passed the MISR CFF filter. This case study suggests that the MISR CFF method 

can be used to remove cloud-contaminated AODMISR, but may not be as effective as 

the MODIS-based method, and incurs a cost of significant data loss. Thus, MODIS 

Fcc is the primary parameter used in the remainder of this study for cloud-clearing of 

the AODMISR retrievals. Shown from this case study, cloud contamination exists in 

MISR aerosol products, and MODIS cloud mask data can be used, effectively, to 

exclude most of the cloud contaminated AODMISR, especially with the use of the 

MODIS Fcc filter. Still readers should be aware that there are uncertainties in cloud 



 

 92 

masking itself and such issues are discussed later in the Recommendations and 

Conclusions section. 

5.3.1 Cloud screening using the MODIS cloud mask products 

A statistical analysis was conducted to explore the relationships between the 

four fractional parameters derived from the MODIS cloud mask products (Fcd, Fuc, Fpc, 

and Fcc) and AODMISR. Shown in Figure 28 are the means, medians, and data 

distributions of AODMISR as functions of Fcd, Fuc, Fpc, and Fcc for both the over-water 

(Figure 28a to d) and over-land (Figure 28e to h) cases using collocated AODMISR and 

MODIS cloud mask data for 2007, with the fractional data density illustrated in color 

contours for every 10% of a given fraction. The fractional data density is the contour 

of the number of pixels for every 0.02 AODMISR and every 10% cloud fraction over 

the total number of pixels within the corresponding 10% cloud fraction. Notice that 

fractional values of Fcd, Fuc, Fpc, and Fcc indicate the probability of occurrence. For 

example, an increase of Fcd from 0 to 100% indicates a change from an unknown 

cloudy or clear scene to a 100% high confident cloudy scene (or low confident cloudy 

in case of Fuc), while an increase of Fcc from 0 to 100% means a change from an 

unknown scene to a 100% high confident clear scene (or low confident clear in case 

of Fpc). In Figure 28a, the mean and median MISR AOD show a decreasing trend as 

Fcc (e.g., percentage of clear regions) increases. In comparison, Figure 28d shows an 

increasing trend in AODMISR as Fcd (confident cloudy fraction) increases. Both Figure 

28a and d show a similar feature as that found in the MODIS AODDB, a feature 

identified by Zhang et al. (2005) as cloud contamination in the MODIS DT aerosol 

products. Mixed information is shown in Figure 28b (Fpc) and Figure 28c (Fuc) when 
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the detection of cloud and clear scenes is less certain, indicating that PC and UC flags 

are not good for use in cloud masking of MISR data. Figure 28e–h show a similar 

analysis as Figure 28a–d but for the over-land case. Again, decreasing/increasing 

trends are found for the Fcc/Fcd cases. Comparing the over-land mean AODMISR at a 

confident clear sky (Fcc = 100%, Figure 28e) with the similar scenario for the over-

water case (Figure 28a), a higher mean AOD value of 0.18 is found for the over-land 

case. In comparison, increasing Fuc and Fcd percentages to 100% raises the over-land 

AODMISR to values over 0.3 and 0.4, a clear indication of cloud contamination in the 

AODMISR. Suggested from Figure 28, it is feasible to use Fcc for cloud filtering of the 

MISR aerosol products. 

 

Figure 28. AODMISR as functions of the percentage of occurrences of the cloud flags from the MODIS 
cloud mask products: (a), (e) confident clear fraction (Fcc), (b), (f) probably clear fraction (Fpc), (c), (g) 
uncertainty clear fraction (Fuc) and (d), (h) cloudy fraction (Fcd). Figure 28a–d are for the over-water 
data and Figure 28e–h are for the over-land data. The color contour represents the fractional data 
density for every 10% cloud fraction. The red and black dots represent the mean and median AODMISR 
values within a 10% cloud fraction bin, respectively. 

 



 

 94 

Using 7 years of collocated MODIS, MISR and AERONET data (2001–2007), 

a sensitivity study was conducted to investigate different cloud filtering methods 

using Fcd, Fuc, Fpc, and Fcc. Table 6 and Table 7 show the root mean square errors 

(RMSEs), the mean absolute error (MAE) of AODMISR (validated against AERONET 

data), and the fraction of data within the expected uncertainty range (0.05 or 0.2 × 

τAERONET) (e.g., Kahn et al., 2010) for 12 cloud-filtering steps for over-ocean and 

over-land cases, respectively. 

 

Table 6 The RMSE, the fraction of data within the expected error (0.05 or 20% of AODAERONET), and 
the data loss rates (both for the MISR AOD data that are collocated with AERONET data and for all 
MISR AOD data) under nine conditions over oceans. Fcd is the cloudy fraction, Fuc is the uncertainty 
clear fraction, and Fcc is the confident clear fraction. The thin cirrus cloud filter refers to thin cirrus 
cloud free (set Fcirrus_free = 100%) as detected by MODIS. 

 RMSE MAE % within the 
expected error 

Data loss and 
number of cases 
(collocated with 

AERONET) 

Data Loss 
(All MISR 
AOD data) 

Self-QAed 0.082 0.059 59% 0% (2091) 

 
Fcd< 50% 0.080 0.056 60% 7% (155) 
Fcd> 50% 0.137 0.107 40% 93% (1936) 
Fuc< 50%, 0.084 0.059 60% 1% (2070) 
Fuc> 50%, 0.096 0.081 43% 99% (21) 
Fcc> 20% 0.073 0.053 61% 27% (1527) 35% 
Fcc> 50% 0.068 0.050 63% 37% (1312) 46% 
Fcc> 80% 0.063 0.047 65% 51% (1019) 65% 

Fcc> 20%+ thin 
cirrus cloud filter 0.070 0.050 63% 36% (1328) 45% 

Fcc> 50% + thin 
cirrus cloud filter 0.065 0.048 65% 44% (1177) 53% 

Fcc> 80% + thin 
cirrus cloud filter 0.060 0.046 66% 54% (952) 67% 

Thin cirrus cloud 
filter 0.076 0.054 62% 22% (1636) 21% 

 

The 12 scenarios are self-QAed, Fcd< 50%, Fcd> 50%, Fuc<50%, Fuc>50%, 

Fcc>20%, Fcc>50%, Fcc> 80%, three Fcc cloud-filtering steps combined with the 

cirrus cloud filter (Fcirrus_free= 100%), and cirrus cloud free (Fcirrus_free = 100%). There 
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are two types of data loss rates presented. One is calculated based on the collocated 

MISR and AERONET data and another is recorded using all available AODMISR data 

in 2007.  The data loss rates are not reported for Fuc and Fcd cases simply because Fuc 

and Fcd are not used for cloud clearing of the MISR aerosol products.  

 

Table 7 Similar to Table 6 but for the over-land case. 

 RMSE MAE % within the 
expected error 

Data loss and number 
of cases 

(collocated with 
AERONET) 

Data Loss 
(All MISR AOD 

data) 

Self-QAed 0.143 0.072 61% 0% (9326) 

 
Fcd< 50% 0.136 0.136 62% 3% (9016) 
Fcd> 50% 0.262 0.144 42% 97% (310) 
Fuc< 50%, 0.136 0.069 62% 1% (9219) 
Fuc> 50%, 0.400 0.189 47% 99% (107) 
Fcc> 20% 0.123 0.067 62% 13% (8160) 6.5% 
Fcc> 50% 0.121 0.065 63% 18% (7639) 11% 
Fcc> 80% 0.113 0.061 65% 32% (6352) 21% 

Fcc> 20% + thin 
cirrus cloud filter 0.120 0.066 63% 25% (7039) 15% 

Fcc> 50% + thin 
cirrus cloud filter 0.118 0.064 64% 28% (6706) 18% 

Fcc> 80% + thin 
cirrus cloud filter 0.109 0.060 65% 38% (5765) 27% 

Thin cirrus cloud 
filter	
   0.143 0.070 62% 20% (7432) 10% 

 

Using the Fcd> 50% filter, an increase of more than 60% in RMSE is found for 

AODMISR retrievals over both land and ocean with 20% less data that fall within the 

expected error range. Even for the Fuc> 50% filter, a 20% increase in RMSE is shown 

globally, indicating that cloud contamination is physically identifiable in the 

AODMISR data, causing a high bias to the AOD retrievals (also discussed later in the 

text). Note that AERONET data may also be impacted by the thin cirrus 

contamination (Chew et al., 2011). 
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For the over-ocean case, when increasing the Fcc filtering values from 20% to 

80% with the cirrus-free filter, a reduction in RMSE (compared to the self-QAed 

case) from 15% to 27% is found along with an increase in the fraction of data that 

falls within the expected error range. An approximately 0.006 decrease in bias 

(validated against AERONET) is observed with a 30% data loss. A larger bias 

reduction is expected in cloudy regions, which is critical to aerosol modeling studies. 

For aerosol forcing studies, a 0.006 decrease in bias is welcomed, as the required 

accuracy of AOD for aerosol forcing studies is 0.01 (CCSP, 2009). Over global land, 

increasing the Fcc filtering values from 20% to 80% with the cirrus-free filter 

introduces an increase in RMSE reduction from 16% to 24%, but with an increasing 

data loss rate from 15 to 27% for all AODMISR. Negligible effects are found over land 

for increasing Fcc from 20 to 50%. This may be caused by less data available within 

this Fcc range. Also, the RMSE and MAE values have insignificant changes after 

using the thin cirrus filter for the over land case. It may be possible that the MODIS 

cirrus cloud mask is not sensitive to cirrus clouds under certain circumstances (for 

example, COD < 0.3) (Sassen and Cho, 1992).  

Figure 29 shows the spatial distributions of AODMISR for year 2007 at a half-

degree Lat/Lon resolution, using the self-QAed MISR data (Figure 29a) and the 

AODMISR after applying the 20% and 80%Fcc cloud filters combined with the thin 

cirrus cloud filter (Fcirrus_free = 100%) (Figure 29b and c). Although the overall 

patterns are similar, differences are also visible (Figure 29e and f). For example, the 

aerosol belt over the high-latitude southern oceans from Figure 29b and c is much 

reduced. Indeed, a similar aerosol belt is also observed from the original MODIS 
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aerosol data and can be reduced with stringent cloud screening and quality assurance 

steps (Shi et al., 2011a). Although other factors could also contribute (Toth et al., 

2013), cloud contamination is one of the sources for causing the elevated AOD over 

southern oceans (Shi et al., 2011a). The decrease in mean AODMISR is more 

pronounced with the Fcc cloud filter at Fcc > 80% compared with Fcc > 20%. Similar 

suppression in AOD is also found in high latitude northern oceans, which could be 

partially related to the broad regions of winter storm tracks. Over the west coast of 

North Africa, the AOD values are reduced in Figure 29b and c compared with Figure 

29a (also seen from Figure 29e and f, which were created to represent the differences 

between the self-QAed and the cloud-filtered AODMISR). Thick aerosol plumes could 

be labeled as cloudy pixels and excluded from the cloud-filtered data sets. To further 

investigate if the reduction in AOD values over the regions mentioned above is 

caused by the thin cirrus cloud screening, the analysis was repeated using only the 

self-QAed MISR data that passed the cirrus cloud filter (Fcirrus_free = 100%) for 2007. 

Figure 29d shows that after the thin cirrus filter, the aerosol loadings over the focus 

area (west coast of North Africa) remain at a similar magnitude as Figure 29a. Thus, 

the weakened aerosol features over the west coast of North Africa could be caused by 

applying the confident clear cloud filtering.  Over the North African region, positive 

biases are found. The positive biases are introduced for two reasons: (1) the averaged 

AODMISR values are high over the region, and (2) some of the retrievals with 

AODMISR values less than 0.2 are removed by the MODIS cloud mask filtering, thus 

increasing the averaged AODMISR values. Also, a discontinuity is found between the 

over-ocean and over-land aerosol features along the west coast of North Africa (e.g., 
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Figure 29c). This discontinuity may be caused by the differences in the over-ocean 

versus over-land cloud screening algorithms from the MODIS cloud mask products. 

 

 

Figure 29 Spatial distribution of AODMISR for the 2007 dataset using the half degree (Lat/Lon) gridded 
level 3 AODMISR. (a) for self-QAed MISR data, (b) for MISR data after applying the Fcc > 20% and 
Fcirrus_free = 100% cloud filters, (c) for MISR data after applying the Fcc > 80% and Fcirrus_free = 100% 
cloud filters, (d) for MISR data that passed the thin cirrus cloud filter (Fcirrus_free = 100%), (e) AODMISR 
plot of (b) minus (a), and (f) AODMISR plot of (c) minus (a). Color contours progressing from cold to 
warm represent increasing AODMISR values with the black color representing regions with no data. 

 

5.3.2 A longer-term study of cloud contamination in the AODMISR using Fcc data 
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The monthly and zonal differences were evaluated between the MISR self-

QAed AODMISR data and AODMISR sets with three different cloud screening methods 

for 2007. Figure 30 shows the monthly and zonal mean deviations from the self-

QAed MISR AODMISR data for three data sets: (1–2) AODMISR after applying the Fcc> 

20% and 80% filters combined with the thin cirrus cloud filter and (3) AODMISR after 

applying the thin cirrus cloud filter(Fcirrus_free = 100%). Figure 30a shows the monthly 

mean of AODMISR minus the self-QAed AODMISR over global oceans. When 

compared to the self-QAed AODMISR, the cirrus-free (Fcirrus_free = 100%) data have 

mean AODMISR values that are consistently 0.01 to 0.015 lower throughout the year. 

Although uncertainties exist in the MODIS 1.375 µm cirrus detection method (Gao et 

al., 2002; Pierce et al., 2010), it is possible that thin cirrus cloud contamination is 

present in the AODMISR that could introduce a high bias of ∼0.01 over global oceans. 

The thin cirrus related bias could reach 0.015–0.02 over oceans at mid to high 

latitudes. Although not shown here, a higher bias of ∼0.02 was also found over 

Southeast Asia (15° S to 25° N, 90° E to 160° E). The Fcc cloud screening method 

combined with the thin cirrus cloud filter introduces a year-round reduction in 

AODMISR of 0.02 to 0.06 depending on the thresholds, especially during May, June 

and July. Figure 30b is similar to Figure 30a but for the over-land case. When 

compared with self-QAed AODMISR, the thin cirrus cloud filter introduces a ∼0.005 

reduction in the averaged AODMISR from February to August. The reduction is found 

to be around 0.005 to 0.015 when the Fcc filters are applied. Figure 30c and d show 

similar plots as Figure 30a and b but for the differences in zonal mean AODMISR 

averaged every 5° latitude bin.  Over global oceans, the Fcc filters introduce larger 
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Figure 30. AODMISR monthly and zonal mean deviations from the self-QAed AODMISR for 2007 (minus 
self-QAed). (a) the over-water monthly mean, (b) the over-land monthly mean, (c) the over-water 
zonal mean, and (d) the over-land zonal mean. Four data sets are plotted representing the data that 
passed the thin cirrus cloud filter (Fcirrus_free = 100%) in red, data that passed Fcc> 20% and Fcirrus_free = 
100% filters in blue, and data that passed Fcc> 80% and Fcirrus_free = 100% filters in green. 
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reductions in AODMISR occurring from 0° to 20° N and beyond 50° S with the largest 

reductions reaching 0.05 and 0.07 for 20% and 80%Fcc cut off, respectively. After 

applying the Fcc filtering method, there is almost no MISR data available beyond 

55 °S. Over-land, while compared with the self-QAed MISR zonal mean AODMISR 

values, reductions in AODMISR are also found globally after applying the Fcc 

screening method. 

 

5.4 Recommendations and conclusions 

This study used collocated MODIS cloud mask products to evaluate potential 

cloud contamination in the MISR aerosol products. Major findings include: 

1.   Cloud contamination exists in the AODMISR data. Especially, thin 

cirrus cloud contamination introduces a possible mean AODMISR high 

bias of ~0.01 over global oceans and 0.015–0.02 over the mid to high 

latitudes and Southeast Asia. This study suggests that additional cloud 

screening methods may be needed for using MISR aerosol products for 

future studies. 

2.   New MISR cloud screening methods such as the MISR CFF method 

(Witek et al., 2013) have been developed to reduce cloud 

contamination in the MISR aerosol retrievals. However, with the use 

of only visible and near- IR channels from MISR, such methods may 

still have difficulty in identifying thin cirrus clouds, even while 

excluding a substantial fraction of the observations. The MODIS cloud 

masking data can be effectively used for reducing cloud contamination 
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in the MISR aerosol retrievals, and is more effective in removing thin 

cirrus-cloud-contaminated cloudy MISR aerosol retrievals in 

comparison with cloud screening methods using only MISR 

observations. 

3.   Cloud masking using MODIS data introduces some potential problems. 

For example, it is possible that some of the high AOD are 

misidentified as cloudy pixels and are removed by the MODIS-based 

cloud filtering methods when stringent thresholds are used. The 

misidentification of thick dust and smoke scenes as cloud scenes by 

the MODIS cloud mask products, however, has a lesser effect on 

operational MODIS aerosol retrievals. For example, Levy et al. (2013) 

discussed an approach to restore thick dust and smoke scenes that are 

misidentified as clouds by the MODIS cloud screening method. A 

regional-based cloud screening method, such as a spatial variability 

test, may be needed for rescuing these misidentified heavy aerosol 

polluted scenes, through the combined used of MODIS and MISR data 

at the radiance level. 

4.   A closer look into the distance between the aerosol retrievals and 

cloud edge (Levy et al., 2013) may help users to choose the thresholds 

of the Fcc cloud filter for their applications. For example, MODIS c6 

DT aerosol products include a parameter called “Average Cloud 

Distance Land Ocean” that is helpful in solving this problem. It may 

also facilitate further investigation over the cloud contamination due to 
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cloud 3D effects, aerosol hydration over the high humidity 

environment, and the twilight zone issue. 

5.   This project demonstrated that data from one sensor (MODIS) can be 

applied to another (MISR) for the development of an improved 

product. Sensors that lack near-IR bands should consider this 

procedure when developing an aerosol product, for example Ocean 

and Land Colour Instrument (OLCI) on Sentinel-3. The far-sighted 

developers of systems such as on Terra and within the A-train were 

correct in that the sensor combinations can result in improvements 

over any single sensor algorithm. This will pave the way for future 

algorithms, or even systems (such as NPP, Korean COMS, and 

EarthCARE), which require multiple sensors feeding single algorithms. 
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CHAPTER VI    

REVISE C5-BASED ANALYSES USING THE NEWLY RELEASED C6 
MODIS DATA, A PRELIMINARY STUDY 

 

6.1 Introduction 

A new version of Aqua MODIS DB and DT aerosol products, the collection 6 

products, were released in 2014.  Early in 2015, the c6 Terra MODIS DT and DB 

products have also become available to the public. New changes and updates, as 

described in details below, have been implemented to both c6 MODIS DT and DB 

aerosol products. It is anticipated that the c5 MODIS aerosol product will be fully 

replaced by the c6 MODIS aerosol products which provide nearly real time data 

stream.  Thus, DA-quality c6 MODIS aerosol products need to be constructed for 

data assimilation applications that require near real time MODIS aerosol products (e.g. 

Zhang et al., 2008a).  

In this chapter, new changes to MODIS c6 DT and DB products are 

investigated and the paired comparisons between MISR and MODIS c6 data are 

studied. Updates are also made to c5-based analysis to construct DA-quality c6 Aqua 

DT over-ocean and DB aerosol products. No DA-quality Terra DT and DB data are 

constructed as the dataset has only been recently released (April of 2015). 
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6.2. Paired-comparisons of Terra c6 MODIS DT/DB and MISR AOD products 

Following CHAPTER I, a paired comparison in between MODIS and MISR AOD 

data has been conducted using c6 MODIS DT and DB products. Figure 31a and b are 

the reconstructions of Figure 3a and b from CHAPTER I, but using c6 MODIS DT 

and DB data.  Compared Figure 31a with Figure 3a, a major difference can be 

observed over global oceans.  While the ratios of the c5 DT versus MISR AOD are 

near one.  For the c6 MODIS DT and MISR comparison, these ratios are much 

reduced, especially over high latitude southern oceans.  The differences are not 

unexpected for c5 over water DT algorithm because a fixed near ocean wind speed 

was used.  For c6 over water DT algorithm, ocean surface characteristics are modified, 

which is dependent upon near surface wind speeds (Levy et al., 2013). Another 

noticeable difference is that over regions with complicated land surface features no c6 

DT data are available, such as the Andes Mountains, southwest US, central Asia, 

where ratios of c5 DT to MISR AODs are greater than 1.6 (Figure 3a),.  This is 

partially due to the change in aerosol models in the algorithm and partially due to a 

bug fix in the operational codes (Levy et al., 2013).  Increased ratios are found over 

South America, central Africa, East Asia, East US and Europe, indicating an increase 

in AODs from c6 Terra MODIS DT data over these regions.  

Compared with Figure 3b (c5 DB/MISR), Figure 31b (c6 DB/MISR) shows a 

much-improved spatial coverage for c6 DB products. As shown in Figure 31b, most 

of the ratios are around unity. Yet ratios of above 1.4 are found over South America, 

East Canada, Central Africa, and South East Asia and ratios of less than 0.6 are found 

over the western US, the Andes Mountains, the southern part of South Africa, the 
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Middle East, Central Asia, and Australia. Clearly, these regions need to have further 

investigations performed. 

 

 

Figure 31. (a) The ratios of operational MODIS c6 DT (0.55µm) over MISR AOD (0.558µm) during 
the period 2005–2007. b) Similar to (a) except for MODIS DB to MISR AOD. 

 

6.3. Extending c5 based analysis into c6 Aqua MODIS DT over ocean 

Three major sources of uncertainties were identified in c5 DT over-ocean 

products from Shi et al. (2011a): (a) lower boundary conditions, such as near surface 

wind-related white cap contamination; (b) cloud contamination and artifacts, and (c) 

uncertainties related to aerosol microphysical property retrievals.  Following Zhang 

and Reid (2006) and Shi et al. (2011a), similar analyses were performed for MODIS 

c6 DT over-ocean aerosol products.  

Compared with c5 DT products, improvements in c6 DT products are obvious. 

For example, in c5 analysis, the differences (AOD at 0.55 µm) between c5 DT and 

AERONET AOD can be quantified as a function of NOGAPS near-surface-wind-

spend.  A 0.04 change in ∆AOD is found for wind speed increasing from 0 to 14m/s. 

In comparison, a much smaller increase in ∆AOD of 0.015 is found for c6 DT AOD 
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data. Clearly, with the newly implemented changes in c6 DT MODIS AOD data, the 

near-surface-wind-speed related bias is reduced.  

Similarly, in c5 analysis, Shi et al. (2011a) found an overestimation in DT 

AOD for fine aerosols (η < 0.45) and an underestimation for coarse aerosols (η > 0.7). 

For c6 DT data, similar overestimation is found for fine mode aerosols, yet an 

insignificant underestimation is found for coarse aerosols.  

Cloud contamination still exists in MODIS c6 aerosol products and introduces 

an overestimation in c6 DT AOD. However, the magnitude of the cloud-

contamination-induced overestimation is reduced compared to c5-based analysis. 

Also, in addition to the evaluation procedures mentioned in Shi et al. (2011a), a few 

new parameters are included in c6 DT data, such as the 

“Average_Cloud_Pixel_Distance_Land_Ocean” parameter, which can be used for 

further evaluating cloud contamination related bias.  This parameter records the 

averaged distance in term of number of pixels between the retrieved aerosol pixel to 

the closest cloud pixel (short as “averaged distance to clouds”, ADC). Figure 32 

shows the differences between Aqua DT and AERONET AOD (∆AOD) as a function 

of ADC where ∆AOD decrease with increasing ADC.  For example, the ∆AOD is 

around 0.4 with ADC = 1, when the retrieved aerosol pixel is very close to clouds 

while the ∆AOD is much reduced to 0.01 with ADC = 12. It is obviously that ADC 

can be used as a new data filter to screening potential cloud contaminated data for 

aerosol retrievals.  
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Figure 32. MODIS c6 Aqua DT and AERONET AOD as a function of the averaged distance between 
an aerosol retrieval and the closest nearby cloudy pixel (measured by number of pixels in distance). 
Red filled circles represent AERONET AOD and black filled circles represent over-ocean c6 Aqua 
MODIS AODDT. 

 

As mentioned in Shi et al. (2011a), biases and uncertainties in satellite 

reported AOD values are dependent of observing conditions, and can be corrected 

using empirically methods.  For low aerosol loading cases (AOD < 0.2), the empirical 

correction step is described as Equation 8,  

 τnew = τold + A − B × u − C × Fcld (8) 

where u is near surface ocean wind speed, Fcld is cloud fraction, and τold and τnew are c6 

DT AODs before and after empirically adjusted.  As mentioned in Shi et al. (2011a), 

Equation 8 should also be stratified as a function of glint angle (ψ). In this study, we 

adopted the same empirical correction steps, but updated the coefficients (A, B and 

C) based on c6 DT AOD data as shown in Table 8. No empirical correction steps are 

applied to retrievals with AOD > 0.2, due to a reduced uncertainty/bias in both cloud 

contamination and aerosol microphysical property related bias.  
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Table 8 Coefficients for parameters A, B and C that are included in Equation 8 as a function of Glint 
Angle (ψ). All coefficients are estimated for c6 Aqua DT AOD data. 

 
Ψ range A B C 

30° < ψ < 60° 0.00186 0.0025 0.00025 
60° < ψ < 80° 0.00328 0.0015 0.00025 

80° < ψ -0.00250 0.00078 0.00023 
 
 

Also, a further data filter step is applied to remove data samples that have 

cloud fractions larger than 80% or ADC ≤ 2. Both requirements are aimed for 

removing potential cloud contaminated data. 

Lastly, the empirical corrections and data filter steps are validated with the use 

of AERONET data. Figure 33 shows the AOD comparisons between MODIS c6 DT 

and AERONET for operational and the DA-quality c6 Aqua DT products (dataset 

after applying the empirical corrections and filtering steps). Compared with the  

 

Figure 33. Scatterplot of c6 Aqua MODIS DT AODversus Level 2.0 AERONET AOD (0.55 µm) for 
2002–2009. (a) Operational over-ocean DT AOD data and (b) DA-quality AOD data. The red line is 
the linear regression line for all data and the blue lines are the 1.0 standard deviation lines of the data. 
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operational c6 DT AOD, RMSE of the DA-quality c6 DT AOD is reduced about 17% 

from 0.084 to 0.070. The r2 value is increased from 0.8 to 0.85 with a data loss of 

36%.  

Figure 34 shows the seasonal distribution of over-water AOD for c5 

operational product, c6 operational and c6 DA-quality products during year 2006. 

One noticeable feature is that the elevated AOD features over high latitudes of both  

 

 

Figure 34. Spatial distributions of Aqua MODIS AODDT (0.55 µm) for 2006.  The black color 
represents regions with no data. The left column shows the data from December to May, and the right 
column shows the data from June to November. The top row is for the operational c5 Aqua MODIS 
AODDT. The middle row is for the operational c6 Aqua MODIS AODDT, and the bottom row is for the 
newly developed DA-quality c6 Aqua MODIS AOD. 
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northern and southern hemispheres are much reduced from c5 to c6 AOD products. 

As a result of a more stringent cloud-screening step, the averaged operational and 

DA-quality c6 DT AOD values are reduced compared to those from c5.  

 

6.4. Extending the c5 based analysis into c6 Aqua MODIS DB aerosol product 

6.4.1 Collocation Method 

Methods shown in CHAPTER IV are adopted here to construct DA-quality c6 

Aqua DB data. To assist the analysis, 11 years (2002–2013) of AERONET AOD data 

were collocated in space and time with c6 Aqua DB data, following the method 

mentioned in Shi et al. (2011a). The collocation thresholds for the spatial and 

temporal differences of the two observations are set to 0.3° (Lat/Lon) and 30 minutes 

respectively.  Mentioned in CHAPTER IV, a one-to-one matched dataset (only the 

closest DB retrieval is paired with a given AERONET data point) was constructed 

and used. In this study, besides constructing a one-to-one dataset, a one-to-many 

dataset was also constructed to increase data samples, including all DB retrievals that 

satisfy the collocation criteria for a given AERONET data point.  The one-to-one 

dataset is used to evaluate c6 MODIS DB retrievals, and the one-to-many dataset is 

used to study uncertainties in DB retrievals as functions of observing conditions.  

6.4.2 Evaluation 

In this section, similar evaluation steps as mentioned in CHAPTER IV are 

adopted as well. For brevity, only results that derivate from what have been shown in 

CHAPTER IV are discussed in this section.  Similar to the evaluation steps applied to 

c5 DB data, the general performances of c6 DB products are studied with respect to 
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QA flags, the uncertainties of DB products are evaluated as functions of observation 

conditions, the empirical correction procedures are developed along with several data 

filters, and as the final step, the ¼ degree (Lat/Lon) DA-quality level 3 product is 

generated. 

6.4.2.1 Overall nature of the Deep Blue Product 

Figure 35 shows the comparisons of collocated c5 and c6 Aqua DB and 

AERONET AOD with respect to MODIS retrievals. The one-to-one datasets from 

2002–2009 are used and only DB retrievals with “very good” QA flag settings are 

selected. The fractional data density is shown in Figure 35 for every 0.5 increments of 

AOD for both AERONET and DB AOD values. As illustrated in Figure 35, the 

number of collocated AERONET and MODIS DB data pairs has increased 78 times 

from c5 to c6.  Also shown in Figure 35, a consistent underestimation in c6 AODDB 

can be found when compared to AERONET data.  For retrievals with τDB < 0.5, a 

near one to one relationship is observed between AERONET and DB AOD values, 

with a slight underestimation in AODDB can be found.  For retrievals with τDB > 2.0, 

stripped feature of AODDB are presented, suggesting that there are some issues and 

uncertainties in the c6 DB AOD retrievals over this AOD regime. Similar to c5, 

uncertainties in c6 AODDB retrievals are regional dependent. Using the one-to-one 

dataset and selecting the c6 DB data having the QA flag of “Very Good” during the 

period 2002–2013, regional comparisons between Aqua DB and AERONET AOD 

values for nine selected regions were conducted as shown in Figure 36 (similar as 

Figure 8 for c5 MODIS DB data).   
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Figure 35. Comparisons between Aqua DB and AERONET AOD from 2002–2009 for (a) c5.1 DB 
AOD. Only “very good” retrievals as indicated by the QA flag are used, (b) similar to (a) but for c6 
DB AOD data. The red line is the linear fit line and the blue lines are the 95% confident interval lines. 
The color contour shows the fractional data density. 

 

The definitions of the nine selected regions are the same as illustrated from Figure 9.  

Figure 36 shows that a consistent underestimation in c6 AODDB values is found for all 

other eight regions except for Northwest America. The magnitudes of the 

underestimation vary from region to region. Of all nine regions, lower uncertainties in 

c6 AODDB are found over North Africa, Southern Africa/sub-Saharan Africa, East and 

West Asia. For example, slopes of 0.8–0.9 are found in between c6 DB and 

AERONET AOD with a RMSE of around ~0.15 for the regions with the presence of 

heavy aerosol loading cases. Comparing with c5 MODIS DB products (e.g. Figure 8), 

improvements in c6 Aqua DB products are clearly visible, especially for regions such 

as North and South Africa, East and West Asia where reduced RMSE values are 

observed. For example, the RMSE value for AODDB has reduced from ~0.2 (c5) to 
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~0.1 (c6) over East and West Asia.  Still, outliers and low bias are clearly visible in 

Figure 36b, c, and d, possibly due to the lack of ability of retrieving highly absorbing 

fine mode aerosols by the DB aerosol retrieval algorithm (personal communication 

with Dr. Jeffrey Reid, 2015).  

6.4.2.2 Uncertainty analysis  

Similar to the analyses applied to c5 MODIS DB products, series of analyses 

were performed to investigate the sources of uncertainty in c6 AODDB product, 

including angular dependence, aerosol microphysics, surface reflectance, and other 

observing conditions. In addition, a new snow contamination test, which utilizes the 

MODIS 16-day albedo products, has also been implemented.  

Figure 37 shows the scatter plots of AODDB vs. AODAERONET for three fine 

mode fraction (η) ranges: η ≤ 0.4,0.4 < η < 0.8, and η ≥ 0.8. Here η is computed from 

the collocated AERONET data using a method as described in O’Neil et al. (2003). 

As indicated from Figure 37, an increase in η from 0.4 to 0.8 only introduces a minor 

change in the slopes between AODDB and AODAERONET (from 0.82 to 0.88). Clearly, 

compared with the c5 DB data-based analysis, the effect of η to c6 AODDB is much 

reduced.  As mentioned above, one of the major updates in c6 Aqua MODIS DB 

products is the use of a pre-calculated the surface reflectance database that is built as 

a function of NDVI.  Thus, as the next step, the effect of surface characteristics on c6 

AODDB is studied. Table 9 shows the error statistics of c6 AODDB, including Absolute 

Error (AE), RMSE, RMSE at τDB > 1.5, r2, slope, and offset as approximated  
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Figure 36. Regional comparisons between Aqua c6 DB and AERONET AOD for 2002–2009. Again, 
only “very good “retrievals, as indicated by the QA flag are used. (a) Northwest America, (b) 
Northeast America, (c) South America, (d) Europe, (e) North Africa, (f) South Africa, (g) East Asia, 
(h) Australia, and (i) West Asia. The blue line is the linear fit line and the black lines are the 95% 
confident interval of the linear fit lines. 

 

using AODAERONET, as a function of surface reflectance at the 0.412 µm (R412) spectral 

channel. Shown in Table 9, an increase in R412 from 5 to 10% introduces an 

observable increase in AE and RMSE values and a decrease in r2 and slope values. 

This indicates that uncertainties related to surface albedo still exist in c6 AODDB data.   
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Figure 37.Comparisons between Aqua AODDB and AODAERONET (0.55 µm) for 2002–2013. (a) for 
AERONET derived η < 0.4, (b) for 0.4 < η < 0.8, (c) for η > 0.8. The thick black line is the linear 
regression line 

 

Table 9 Error statistics as a function of surface reflectance (at 0.412 µm) for c6 DB AOD data.  

R412 Range Absolute 
Error RMSE RMSE 

(τDB>1.5) R2 Slope Offset 

< 0.05 0.048 0.080 0.72 0.84 0.90 0.006 
0.05–0.065 0.069 0.112 0.55 0.83 0.86 0.005 
0.065–0.09 0.088 0.143 0.59 0.74 0.80 0.000 

0.09–0.1 0.081 0.12 0.52 0.70 0.73 0.073 
0.1–0.12 0.140 0.186 0.72 0.42 0.50 0.176 
> 0.12 0.148 0.197 0.20 0.21 0.51 0.130 

 

In addition, snow contamination is studied and the snow fraction percentage 

from MODIS 16-day albedo product is used to represent snow coverage within each 

10 by 10 kilometer scene. Figure 38 shows the c6 AODDB bias as a function of snow 

coverage. While a less than 0.01 difference is found between AODAERONET and c6 

AODDB (ΔAODAERONET-DB) over snow free region, the magnitude of the ΔAODAERONET-

DB increases as a function of the increasing snow coverage and reach -0.07 for the 

average snow cover of 70%. Clearly, snow contamination is present in c6 Aqua DB 

products and needs to be accounted for when constructing DA-quality products. 
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Figure 38. AOD bias (ΔτA-M) as a function of the snow coverage percentage (from MODIS 16day 
albedo product). The error bars indicate one standard deviation above and below the mean. 

 

The DB products contain a parameter that records the number of 1-km 

MODIS level1b reflectance pixels used in creating the 10 km resolution AODDB 

retrievals (refer to Number of Pixel Used or NPU). As shown in CHAPTER IV, a 

noticeable high bias in ΔAOD of 0.11 was found for the c5 AODDB values when all of 

the 1-km pixels are used in the retrieval process. This high bias is reduced to 0.02 for 

the c6 AODDB retrievals. To further investigate the relations of NPU and the data 

uncertainties, the percentage of DB c6 data that fall outside of the reported 

uncertainty envelope, which is ±0.03 ± 20% × τDB (defined as percentage of outliers) 

is analyzed. Figure 39 suggests that AOD retrieval with smaller NPU values normally 

has a higher chance to fall outside of the reported uncertainty envelope, or a higher 

chance to be a noisy retrieval. Thus, based on Figure 39 and Table 9, the criteria to 

filter out noisy retrievals was developed and parameterized as functions of R412 and 

NPU values.  
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Figure 39. Percentage of DB data that are outside the uncertainty envelope (0.03 ± 20% × τ) (% 
outliers) as functions of number of pixels used (black) and the number of data within each bin of 
number of pixels used (red). 

 

6.4.3 Development of QA/QC Procedures for DA-qualityc6 DB level 3 data 

Updates to the QA/QC procedures as implemented for c5 DB data are made. 

In particular, based on Sect. 6.4, no significant systematic bias is found in c6 DB 

AOD as a function of aerosol microphysical properties, and thus, no empirical 

correction is applied. Still, as suggested in Sect. 6.4.2, it is necessary to set up the 

criteria to filter out noisy retrievals, which excludes snow and cloud contaminated 

pixels. Thus, AOD retrievals with cloud fraction greater than 40% and snow coverage 

above 0% are excluded from the study. Also, for AOD retrievals within regions that 

have surface reflectance less than 10% (at λ = 412nm), only retrievals with NPU 

greater than 60 are selected.  
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Figure 40. Scatter plots of AODDB versus AODAERONET (0.55 µm) for Aqua c6 DB AOD data for 2002–
2013. (a) is for operational MODIS Aqua DB AOD data and (b) is for DA-quality data. The red line is 
the linear regression line and the blue lines are the 1.0 standard deviation lines. 

 

Figure 41. The RMSE of AODDB against AODAERONET for (a) diagnostic error analysis and (b) 
prognostic error analysis. Black filled circles are for operational c6 DB retrievals and red filled circles 
are for DA-quality DB AOD data. 

 

Figure 40 shows the comparisons between operational c6 AODDB and 

AODAERONET during the period 2002–2013 with the c6 DB AOD data went through 
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the filtering steps. Figure 40 demonstrates that the underestimation in AODDB is 

reduced and RMSE is reduced about 10% after filtering out noisy data. Marginal 

improvements in RMSE are also observed, both for prognostic and diagnostic 

estimates, throughout the entire AOD regime (Figure 41).  

 

6.5 Conclusions 

MODIS c6 DT and DB aerosol products were recently released. As a 

preliminary study, significant efforts are conducted on evaluating MODIS c6 DT 

(over water) and DB AOD products for aerosol modeling-related applications. Paired-

comparisons of MODIS c6 Terra DT and DB with MISR v22 aerosol products were 

conducted for highlighting new changes in c6 DT and DB aerosol products. A 

preliminary analysis was conducted to evaluate c6 Aqua DT over-ocean and c6 Aqua 

DB aerosol products through the use of ground-based AERONET data. Retrieval 

biases and uncertainties were analyzed as functions of sampling and observation-

related factors Updated quality assurance procedures, filtering processes, and 

empirical correction steps were developed for constructing new quality-assured DT 

and DB products. Our findings include: 

1.   When compared with c5 Terra MODIS DT and MISR data, a 

reduction in over-ocean AOD retrievals is observable for c6 DT AOD 

data. Also, problematic regions such as the Andes Mountains, west US, 

and central Asia, where large difference in c5 Terra DT and MISR 

AOD are found in CHAPTER I, are excluded from c6 DT retrievals.  
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2.   Evaluated with the use of AERONET data, systematic biases that 

related to the near surface wind speed and aerosol microphysical 

properties are much reduced in c6 Aqua DT over-ocean products. Also, 

the impact of cloud contaminations on AOD retrievals is minimized. 

In particular, elevated aerosol features over high latitude ocean are 

much reduced in c6 DT product when compared with that of c5 

AODDT.  

3.   Empirical correction steps and extra data filtering are applied to 

generate the DA-quality c6 Aqua DT over-ocean product. A 17% 

reduction in RMSE is found for the newly developed DA-quality Aqua 

AODDT.  In general, the overall performance of c6 Aqua AODDB is 

improved compared with c5 Aqua MODIS DB products, especially 

over regions of North Africa, East and West Asia. A much larger 

spatial coverage is also observed.  

4.   While uncertainties related to aerosol microphysical bias are much 

reduced, uncertainties related to snow and cloud contamination, as 

well as other surface characteristics still exist in c6 Aqua AODDB. 

Preliminary attempts are applied to construct QA/QC steps for c6 DB 

AOD data. A 10% reduction in RMSE (τDB > 0.5) is found for the 

quality-assured Aqua c6 DB products when compared to the 

operational c6 DB products. 
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CHAPTER VII    

AN INVESTIGATION OF THE POTENTIAL LOW BIAS IN THE MODIS 
AEROSOL PRODUCTS OVER ASIA 

 

7.1 Introduction 

One of the least explored biases in satellite aerosol products is the low aerosol 

optical thickness bias due to the misclassification of aerosol plumes as clouds.  For 

example, MODIS DT aerosol retrievals are performed over cloud free regions (Remer 

et al., 2005; Levy et al., 2013; Hsu et al., 2013).  To identify and exclude cloudy 

pixels, multiple cloud screening steps, including a visible reflectance threshold test, 

are implemented (Ackerman et al., 1998; Ackerman et al., 2008).  Very thick aerosol 

plumes could be misclassified as clouds due to their high reflectivity.  Clearly, by 

excluding optically thick aerosol events, this misclassification may introduce a low 

bias in aerosol optical thickness climatology, especially over regions such as east 

Asia, where a higher frequency of heavy aerosol plumes is expected (Sun et al., 2004; 

Chan et al., 2008; Logan et al., 2010).  This low bias in satellite aerosol products is of 

a particular interest to aerosol data assimilation and modeling efforts because 

significant aerosol events are important for air quality and visibility forecasts and 

could be miss-predicted due to the exclusion of such events in the assimilated satellite 

aerosol data.  Knowing the limitations, data producers have attempted to mediate this 
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misclassification-related low bias.  For example, an adjustment is included in the c6 

DT retrieval algorithm to “recover” some heavy aerosol retrievals (Levy et al., 2013). 

Still, this low bias remains as an issue in both c6 DT and DB products, and is not well 

quantified.  

In this study, with the synergistic use of satellite observations from MODIS, 

OMI, and CALIOP, the under-sampling of the heavy aerosol plumes in DT and DB 

aerosol products is studied globally with a focus over Asia.  A new Heavy Aerosol 

Identification System (HAIS) was developed for detecting very optically thick aerosol 

plumes in CALIOP observations by coupling OMI AI values with CALIOP level 1B 

as well as cloud and aerosol profile data.  Collocated CALIOP, MODIS, and OMI 

data were then used to further investigate the potential low bias in the DT and DB 

aerosol products, in an attempt to quantify the magnitude of this under-sampling in 

regional DT and DB retrievals.  This study attempts to answer the following 

questions: 

1. Does this misclassification-induced low bias also exist in CALIOP aerosol 

products?  Can CALIOP observations be applied to study this low bias in c6 DT and 

DB products? 

2. Can this low bias from c6 DT and DB products be quantified over Asia 

using the combined OMI, CALIOP, and MODIS data? 

3. Under what conditions do c6 DT and DB algorithms misclassify thick 

aerosol plumes as clouds? 

This chapter is organized in such that in Sect. 7.2, a heavy smoke aerosol case 

is presented.  In Sect. 7.3, a heavy aerosol identifying system (HAIS), designed for 
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discriminating heavy smoke aerosol plumes from clouds using CALIOP observations, 

is described.  In Sect. 7.4, with the assist of HAIS, the potential low biases in 

CALIOP aerosol and cloud products and c6 DT and DB products are estimated over 

Asia.  

 
Figure 42. A case study of a wild forest fire over Siberia that occurred on 24 July, 2006.  (a) MODIS 
RGB image, (b) MODIS c6 DT AOD retrieval, (c) MODIS c6 DB AOD retrieval, (d) OMI AI.  
CALIOP tracks are shown on both Figure 42b and d.  The aqua color boxes/dots indicate CALIOP 
detected cloud scenes (from atmospheric composition flags).  The pink color boxes/dots indicate 
CALIOP cloud-free aerosol scenes. The calculated CALIOP AODs are also color coded within the 
boxes in Figure 42b. 

 

 



 

 125 

7.2 Case study: An extreme wild fire heavy smoke case over Siberia 

The potential low bias in satellite aerosol retrievals can be illustrated by a 

Siberia smoke aerosol event that occurred on 24 July, 2006.  Figure 42a shows the 

Aqua MODIS RGB image over 59° to 65° N and 90° to 105° E.  Significant smoke 

aerosol plumes, in dark grey color, can be observed across the image and are clearly 

distinguishable with the white clouds observed at the far left side of the image.  

Figure 42b and c show the corresponding AOD retrievals from c6 Aqua MODIS DT 

and DB aerosol products and Figure 42d shows the OMI AI values.  Over aerosol-

polluted regions where OMI AI values exceed 3.0, however, aerosol retrievals are 

partially or mostly missing from the MODIS DT aerosol products.  The collocated 

CALIOP observations are mapped on Figure 42b, c, and d are. The aqua color 

boxes/dots are cloudy CALIOP overpasses, as identified with CALIOP cloud and 

aerosol products.  The pink color boxes/dots are cloud-free CALIOP overpasses.  In 

Figure 42b, filled colors within the boxes represent the column integrated CALIOP 

AODs.  Figure 42 suggests that the misclassification of aerosol features as clouds 

does exist in both DT aerosol products (97 °E and 64 °N).  Also, CALIOP reported 

AODs are mostly less than 0.2, indicating that the similar low bias may also influence 

CALIOP retrievals. 

This case study demonstrates that both passive- and active-based observations 

may have difficulty in separating heavy aerosol plumes from clouds.  In comparison, 

OMI AI can be effectively used to detect optically thick UV-absorbing aerosol 

plumes that may be misclassified as clouds by CALIOP and MODIS aerosol products.  
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Thus, it is feasible to study the low bias over Asia with the use of collocated OMI AI, 

CALIOP, and Aqua MODIS data.  

 

7.3 Methodology 

7.3.1 Theoretical background for HAIS  

Ideally, active-based observations (such as CALIOP data) have a better cloud-

clearing capability relative to passive-based aerosol and cloud measurements, 

especially for optically thin clouds and over mixed cloud and aerosol scenes (Winker 

et al., 2009).  Thus, measurements from active-sensors such as CALIOP can be used 

to study the misclassification-induced low bias in passive-based aerosol retrievals.  

However, as suggested from the previous section, this misclassification may also 

exist in CALOP data and needs to be further explored. 

The misclassification of aerosol plumes as clouds is not unexpected for 

CALIOP retrievals.  To distinguish clouds from aerosol plumes, a machine learning 

technique (Winker et al., 2013) is applied to three measured quantities, the total 

attenuation at 532 nm (TAB532), the depolarization ratio (DPR, ratio of cross-

polarization component and the total attenuated backscattering at 532 nm), and the 

color ratio (CR, ratio of attenuated backscattering at 1064 nm and 532 nm).  Optically 

thick clouds can be easily identified because of their larger TAB532 values.  Optically 

thick aerosol plumes, however, may have the comparable TAB532 values as clouds 

and thus can be misclassified as clouds. 

Still, correction steps can be applied to the CALIOP cloud detection method 

to “rescue” heavy aerosol plumes as illustrated in Figure 43, which shows the curtain  
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Figure 43. CALIOP curtain plots for the case study shown in Figure 42.  (a) Total attenuation at 532 
nm, (b) Depolarization ratio, and (c) Color ratio. 
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plots of CALIOP TAB532, DPR, and CR for the case study.  As shown in Figure 43a, 

cloud layers with TAB532 values of near 0.3 are found at or above 6 km altitude 

around 65º–70º N and 86º–92º E.  Smoke plumes with TAB532 values of 0.002–0.02 

are visible at altitudes of 2–4 km. Aerosol particles such as smoke and polluted 

aerosol particles are generally smaller than liquid-phase cloud particles.  Thus, lower 

DPR values of less than 0.2 are expected for a smoke/polluted aerosol plume, while 

larger DPR values are expected for water clouds (Figure 43b, personal 

communication with David Winker, 2014).  Also, optically thick smoke plumes 

generally have slightly lower TAB532 values of around 0.01–0.02 (Figure 43a, 

personal communication with David Winker, 2014) than clouds.  Lastly, shown in 

Figure 43c, a significant vertical gradient in CR values is present in the smoke plume.  

The sharp vertical change in the vertical gradient of CR values from the top to the 

bottom of the smoke layer (from 0.2 to 1.0) is understandable, as larger attenuations 

in radiation are expected at the 532 nm spectral channel relative to the 1064 nm 

spectral channel for aerosol particles.  Clearly, with the combined use of OMI AI and 

CALIOP TAB532, DPR, and CR data, it is possible to develop a scheme to better 

detect heavy smoke aerosol plumes in CALIOP data.  

7.3.2 The HAIS algorithm 

HAIS that is developed in this study, is designed to detect thick UV-absorbing 

aerosol plumes that are within 0–6 km altitude, because it is assumed that typical 

smoke aerosol plume heights are lower than 6 km (Johnson et al., 1991; Tosca et al., 

2011; Vadrevu et al., 2012; Personal communication with Dr. Winker, 2014).  Also, 
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CALIOP level 1B data are rather noisy (e.g. Figure 43), especially during day time, 

and thus various averaging schemes are applied as discussed later.   

As the first step, over regions with OMI AI values larger than 2 (or with the 

presence of heavy UV-absorbing aerosol particles), every two vertical columns of 

CALIOP profiles are averaged, and a recursive feature detection scheme is applied to 

detect the top and the bottom layers of resolvable features such as cloud and aerosol 

layers.  It is assumed that the horizontally averaged TAB532 values of a feature should 

be greater than 0.0025 for cloud or heavy aerosol features.  Once the vertical 

boundaries of a feature are identified, as the second step, the feature type is estimated 

with a series of threshold tests based on the averaged TAB532, DPR, and CR values as 

illustrated in Figure 44.   

 

Figure 44. The flowchart of HAIS.  The section colored in blue is for confirmation tests. 

 



 

 130 

Optically thick clouds typically have large TAB532 values, which can be used 

to distinguish from aerosol plumes.  The average layer TAB532 value is required to be 

in the range 0.002−0.01 for a layer to be considered as an aerosol plume.  Although 

individual TAB532 values from heavy smoke plumes can reach as high as 0.02 on an 

individual basis, the layer average is usually lower.  Other than the layer mean 

threshold, a vertical-continuity-test is also conducted to further separate clouds from 

aerosol plumes.  Smoke aerosol TAB532 signals are typically smaller and nosier than 

those of clouds.  Thus, to exclude potential clouds that are embedded in an aerosol 

layer, the averaged TAB532 values for four continuous pixels (or a vertical distance of 

120 m) are required to be smaller than 0.017.  However, optically thin clouds may 

have the similar TAB532 values as thick aerosol plumes.  Thus, DPR values are also 

used to separate optically thin clouds from aerosol plumes.  Initially, a layer averaged 

DPR value of 0.2 is used as the threshold to distinguish aerosol plumes from optically 

thin clouds.  However, due to significant noises in DPR fields, the layer mean and 

median values of a feature may easily exceed this number.  Therefore, instead of 

using DPR values to identify aerosol layers, DPR values are used to exclude potential 

clouds that are within an aerosol layer.  Again, the collocated AI and the TAB532 tests 

should have already confirmed the existence of an aerosol layer.  Clouds usually have 

a much smoother DPR field with continuous horizontal signals in DPR values.  Such 

a characteristic is not found for an aerosol layer.  Thus, a continuous-horizontal-DPR 

test is used to identify clouds within an aerosol plume.  If a feature with 20 

contiguous horizontal pixels (or 6.6 km in distance horizontally) has DPR values 

within the range 0.1−1.0, then the feature is identified as a cloud layer.  In 
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comparison, the mean DPR value for an identified smoke layer is typically less than 

0.1.  The DPR test is designed to remove relatively uniform clouds that are within or 

underneath an aerosol plume.  Still, the 20-pixel threshold is rather arbitrary.  

Sensitivity tests show that lowering the 20-pixel threshold results in unwanted 

misidentifications when an aerosol plume is close to the ground.   

Although theoretically all three parameters (TAB532, DPR, and CR) can be 

used to distinguish heavy aerosol features from clouds, CR is the noisiest parameter 

among all three parameters.  Attempts have been made to horizontally and/or 

vertically average the CR signals.  However, regardless of these attempts, it is found 

that CR values are too noisy to be implemented for distinguishing aerosol plumes 

from clouds.  Thus, CR values are used to aid in validation of HAIS through visual 

inspection only.   

7.3.3 Collocation of MODIS, OMI and CALIOP data 

To implement HAIS developed in this study, MODIS, CALIOP, and OMI 

data need to be spatially and temporally collocated.  In this study, one year (2007) of 

CALIOP level 1B data and level 3 cloud and aerosol profile products, OMI AI 

product, and c6 DT and DB products were collocated.  To collocate CALIOP and 

MODIS data, a spatial difference equal to or less than 0.2° Lat/Lon is required 

between a CALIOP data point and the center of a MODIS data point.  The temporal 

threshold between CALIOP and MODIS overpass times is set to 30 minutes.   

The outputs of the collocated data include atmospheric composition flags 

(ACF) from the CALIOP level 3 clouds and aerosol profile products, which 

categorize a pixel into aerosol, cloud, or a mixed type.  In order to use ACF 



 

 132 

efficiently, layer-mean feature types were estimated for three selected vertical layers 

(above 10 km, between 5–10 km, and between the surface and 5 km).  Above 10 km 

in altitude, where thin cirrus clouds are frequently present, a cloud flag was assigned 

to a layer when two vertically adjacent pixels are identified as clouds.  For the 

remaining layers, a cloud or a mixed flag was assigned to the whole layer if an ACF 

flag reports a cloud pixel.  Also included in the collocated CALIOP and MODIS 

dataset are the aerosol optical depth values that are computed through integration of 

total extinction from CALIOP (Campbell et al., 2012), aerosol top and bottom layer 

heights, as well as aerosol sub-types reported from the CALIOP level 3 cloud and 

aerosol profile products.  The collocated CALIOP and MODIS data pairs were then 

collocated with OMI AI data with a spatial difference requirement of 0.3° Lat/Lon 

and a temporal difference requirement of 50 minutes.  The thresholds used for 

collocating OMI and the paired CALIOP and MODIS data are larger than those that 

are used to construct the paired data, as OMI has a large footprint.  Also, it is found 

that one collocated CALIOP–MODIS pair may correspond to more than one OMI AI 

values over the tropics and, thus, both the mean and the closest OMI AI values were 

used. 

7.3.4 Evaluation of the HAIS system through case studies 

7.3.4.1 Two selected case studies 

The performance of HAIS was hand-checked with two case studies.  The first 

case is over 58°–66° N, 80°–90° E from 24 July 2006.  The second case is over 75°–

77° N and 13°– 48° E from the same day.   In both cases, as shown in Figure 45, 

heavy UV-absorbing aerosol plumes are identified with OMI AI data, yet are 
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misclassified as clouds by CALIOP aerosol and cloud profile products.  Figure 45 

shows the averaged TAB532 for both cases over-plotted with HAIS detected aerosol 

plumes.  Figure 45a shows that HAIS is able to detect the top and bottom of aerosol 

layers and is able to detect the presence of heavy aerosol plumes.  Also, as suggested 

in Figure 45a, HAIS could identify clouds that are lower than 6 km (around 66° N).  

Figure 45b also shows that HAIS could successfully identify clouds embedded within 

an aerosol plume.  Note that to identify cloud features above 6 km in altitude, 

CALIOP cloud and aerosol profiles products are used.  The two case studies show  

 

Figure 45. Implementation of HAIS for two selected case studies.  (a) a section from the study case as 
shown in Figure 42 and (b) a weaker aerosol loading case with clouds embedded in the aerosol plume.  
The thick white line at an altitude of 6 km indicates regions that are detected by HAIS as cloud-free 
heavy aerosol scenes. The thin white lines are the top and the bottom of the detected features. 
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that the HAIS system could be used to identify heavy aerosol plumes with or without 

the presence of clouds. 

7.3.4.2 Case studies over an extended study domain 

Encouraged by the success from the two case studies, similar hand checks 

were performed within the extended spatial and temporal domains.  To be specific, 

using collocated MODIS AOD, OMI AI, and CALIOP data from 2007, potential 

heavy aerosol scenes were generated over 70°–180° E and -15° S–80° N, for regions 

with OMI AI values larger than 3.0 that have no CALIOP detected clouds above 6 km 

altitude.  A higher OMI AI threshold of 3.0 was used to reduce the number of selected 

cases.  All selected scenes in January and June were checked along with some cases 

randomly picked from May and July.  Table 10 listed the dates, times, and the 

geolocations of all hand-checked cases. 

 

Table 10 Locations as well as satellite overpass times for the 81 selected cases. 

# 
cases 

MM/DD/Y
YYY 

Time HH-
MM-SS 

Latitude start 
(°E) 

Latitude end 
(°E) 

Longitude 
start (°N) 

Longitude end 
(°N) 

1 1/2/2007 T06-49-08 27.8266 27.8266 89.4129 89.4129 
2 1/3/2007 T09-11-17 18.9555 20.0327 56.0107 55.762 
3 1/6/2007 T06-24-31 37.9261 38.7264 92.8235 92.5797 
4 1/9/2007 T08-34-25 28.1979 28.3775 63.0711 63.0253 
5 1/14/2007 T07-14-16 29.3786 29.4235 82.8724 82.8608 
6 1/18/2007 T08-28-43 29.8831 32.0287 64.1969 63.6275 
7 1/19/2007 T09-12-01 18.7942 20.142 56.0778 55.7667 
8 1/20/2007 T06-37-39 28.6823 29.3535 92.3132 92.1405 
9 1/22/2007 T06-25-25 36.35 38.9331 93.3041 92.5285 

10 1/23/2007 T05-29-53 36.7548 36.8882 107.087 107.048 
11 1/24/2007 T06-13-16 26.4209 26.5109 99.0534 99.031 
12 1/26/2007 T04-22-12 37.6455 39.5594 123.809 123.222 
13 1/26/2007 T06-01-02 36.2909 36.9139 99.4901 99.3072 
14 1/26/2007 T09-18-53 18.4316 19.2389 54.595 54.4096 
15 1/29/2007 T06-32-17 40.4204 40.5535 90.4969 90.4543 
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16 1/30/2007 T03-57-49 48.6921 49.3523 126.157 125.887 
17 1/30/2007 T08-54-30 25.5651 25.9246 59.0744 58.9858 
18 1/31/2007 T06-20-03 35.7099 36.0212 95.0097 94.9198 
19 2/1/2007 T08-42-21 24.9487 25.1724 62.3107 62.2561 
20 2/3/2007 T03-33-32 46.9556 46.9556 133.009 133.009 
21 2/3/2007 T08-30-13 25.5531 28.6421 65.2486 64.4728 
22 2/4/2007 T09-13-31 19.2759 24.6566 55.9243 54.6506 
23 2/6/2007 T07-22-32 27.4356 27.5692 81.7715 81.7376 
24 2/6/2007 T09-01-22 25.8887 25.9783 57.4351 57.4128 
25 5/5/2007 T03-25-11 39.1522 39.3301 140.335 140.28 
26 5/7/2007 T03-13-00 54.7477 54.8787 137.322 137.255 
27 5/7/2007 T04-51-54 39.3628 39.452 118.641 118.613 
28 5/8/2007 T03-56-20 37.9047 39.4177 132.992 132.528 
29 5/9/2007 T03-00-45 35.8649 37.3805 147.5 147.055 
30 5/16/2007 T04-46-21 33.4413 37.0985 121.936 120.892 
31 5/25/2007 T04-40-44 33.4502 38.2207 123.461 122.083 
32 5/26/2007 T03-45-07 36.6478 36.6478 136.455 136.455 
33 6/1/2007 T06-26-05 41.4216 42.5759 94.804 94.4216 
34 6/1/2007 T09-43-51 22.2213 24.6872 50.5959 50.005 
35 6/2/2007 T05-30-28 45.4093 46.2056 107.336 107.043 
36 6/2/2007 T07-09-19 37.5736 41.445 85.1883 83.9799 
37 6/2/2007 T08-48-14 25.4905 25.803 63.7139 63.637 
38 6/3/2007 T02-56-00 51.9016 52.1204 143.331 143.232 
39 6/3/2007 T09-31-30 28.0684 28.7395 52.2547 52.0837 
40 6/5/2007 T07-40-19 25.8742 26.5465 80.6142 80.4479 
41 6/5/2007 T09-19-14 25.5877 30.3767 55.9627 54.7483 
42 6/6/2007 T06-44-40 40.6559 42.3431 90.4141 89.8618 
43 6/6/2007 T08-23-35 23.9775 24.1569 70.2604 70.2171 
44 6/7/2007 T05-49-04 41.8127 41.8569 103.943 103.928 
45 6/7/2007 T07-27-59 25.3709 25.8625 83.828 83.707 
46 6/8/2007 T03-14-39 50.7176 53.9679 139.22 137.719 
47 6/8/2007 T08-11-16 30.0578 32.0247 71.8281 71.3065 
48 6/9/2007 T07-15-39 40.4998 41.7438 82.738 82.335 
49 6/9/2007 T08-54-35 25.4791 30.4923 62.1692 60.8981 
50 6/10/2007 T04-41-12 37.4521 37.5858 122.303 122.263 
51 6/10/2007 T07-58-58 28.13 30.6355 75.4146 74.7671 
52 6/10/2007 T09-37-48 22.5137 30.7977 52.0689 50.0023 
53 6/11/2007 T07-03-21 37.3411 41.5233 86.8016 85.4987 
54 6/11/2007 T08-42-11 25.3909 32.459 65.2819 63.4643 
55 6/12/2007 T09-25-29 24.0831 24.5315 54.7838 54.6751 
56 6/13/2007 T05-12-06 35.6664 36.646 115.102 114.817 
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57 6/13/2007 T08-29-52 28.0807 29.6919 67.7022 67.2888 
58 6/14/2007 T09-13-05 25.9703 36.027 57.4142 54.739 
59 6/15/2007 T08-17-28 34.0341 37.1998 69.2125 68.3024 
60 6/16/2007 T07-21-51 38.9941 39.617 81.6667 81.4734 
61 6/16/2007 T09-00-46 37.8649 37.8649 57.2879 57.2879 
62 6/17/2007 T08-05-09 31.4103 31.4103 73.0191 73.0191 
63 6/17/2007 T09-43-59 16.1122 24.6805 52.0008 50.0068 
64 6/18/2007 T08-48-22 25.4566 30.1122 63.7239 62.5465 
65 6/19/2007 T09-31-40 24.0239 29.3081 53.2573 51.9403 
66 6/20/2007 T08-35-58 29.3709 32.8125 65.8311 64.9176 
67 6/21/2007 T07-40-21 37.6495 39.9639 77.4439 76.7331 
68 6/21/2007 T09-19-17 26.7322 30.0882 55.6852 54.8292 
69 6/22/2007 T08-23-35 36.8505 36.8505 66.8662 66.8662 
70 6/23/2007 T07-27-58 38.3854 40.4773 80.315 79.6636 
71 6/23/2007 T09-06-53 25.5014 34.7589 59.0822 56.655 
72 6/25/2007 T07-15-34 40.3275 40.6386 82.8043 82.705 
73 6/25/2007 T08-54-29 30.0961 30.1408 61.0128 61.0011 
74 6/26/2007 T09-37-42 20.7415 25.8981 52.4974 51.2629 
75 6/27/2007 T07-03-10 39.2917 40.7157 86.2215 85.7728 
76 6/27/2007 T08-42-00 44.7803 45.5775 59.6758 59.3878 
77 6/28/2007 T09-25-18 10.9408 26.515 57.7885 54.2028 
78 6/29/2007 T08-29-36 35.6154 36.7739 65.6889 65.3524 
79 6/30/2007 T07-33-59 37.3368 40.5415 79.0935 78.1061 
80 6/30/2007 T09-12-49 12.1499 18.8861 60.618 59.112 
81 7/3/2007 T08-04-43 35.6539 36.6791 71.8649 71.567 

 

A total of 81 potential heavy aerosol cases are identified.  Among the 81 cases, 

43 of them are optically thin dust/smoke events over elevated terrains (e.g., near the 

Himalayan and Tibeten plateaus) that have strong OMI AI signals due to high 

elevations.  Because HAIS is designed to detect heavy aerosol plumes, only the 

remaining 38 potential heavy aerosol cases are used for further evaluation.  

Of the 38 heavy dust and smoke aerosol cases, HAIS is able to successfully 

identify 27 of them, including 3 heavy aerosol cases (one dust aerosol and two smoke 

aerosol cases) that are misclassified by CALIOP as clouds.  Of the 11 heavy smoke 
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and dust aerosol cases that are misidentified by HAIS, 7 of them have aerosol plumes 

touching the ground.  When an aerosol layer is very close to the ground, strong 

ground signals can be misidentified as clouds by HAIS and this causes HAIS to fail.  

The remaining four cases are dust aerosol cases for which dust plumes are 

misidentified as clouds. 

Note that HAIS is designed to detect heavy smoke aerosol cases.  If we 

separate the 38 heavy aerosol cases into 8 smoke aerosol cases and 30 dust aerosol 

cases, HAIS could successfully detect 7 of the 8 cases.  The only failed case is due to 

ground contamination.  Those case studies suggest that HAIS is functioning well in 

detecting heavy smoke aerosol plumes, but it has a limitation in detecting heavy 

aerosol plumes that are near the ground.  

It is worth mentioning that although CALIOP data can be used to identify 

aerosol plumes with a relatively high successful rate (78 of 81 cases), CALIOP data 

cannot be used alone to detect heavy aerosol plumes for two reasons.  First, as 

indicated earlier, there are cases in which heavy smoke/dust aerosols plumes are 

misidentified as clouds by CALIOP.  Also, for a heavy aerosol scene, CALIOP-

measured backscattering values can be significantly attenuated by the aerosol layer.  

For example, as shown in Figure 42, very low CALIOP AODs of less than 0.2 are 

reported over heavy aerosol polluted regions.  Also, for the 38 heavy aerosol cases as 

identified in this section, the averaged CALIOP case-maximum AODs is 0.85, while 

a much higher averaged AOD of 2–4 is expected as discussed subsequently.  Thus, by 

simply evaluating CALIOP data, it is difficult to single out heavy aerosol cases from 

medium to low aerosol-loading cases due to the strong attenuation of CALIOP signals 
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by the heavy aerosol plumes.  Thus, HAIS is needed to identify and study heavy 

aerosol plumes.   

 

7.4 Results 

7.4.1 Investigation of the misclassification-induced low bias in DT and DB aerosol 

products 

In this section, the newly developed HAIS is applied to all collocated OMI, 

CALIOP and MODIS data pairs over Asia (70°–180° E and -15° S–80° N) for 2007.  

The number of heavy aerosol CALIOP scenes, as identified by HAIS, is obtained for 

regions with OMI AI > 2.   

Of a total of ~100,000 CALIOP detected aerosol pixels, only 1,213 potential 

clear-sky heavy-aerosol (PCSHA) pixels are identified by HAIS.  Thus, from a 

climatology perspective, the misclassification introduced low bias is statistically 

insignificant (1.6%).  However, those heavy aerosol events are important for aerosol 

modeling studies and thus need to be further evaluated. 

Among the 1,213 PCSHA cases (hereafter referred to all cases), 782 of them 

are CALIPSO identified non-dust cases.  Here non-dust cases include cases such as 

smoke and polluted continental aerosol contaminated scenes.  Only 40% (57%) of all 

(non-dust) HAIS identified heavy aerosol cases have valid MODIS DT retrievals and 

the corresponding numbers are 66% (59%) for MODIS DB retrievals.   

Note that for heavy aerosol polluted regions with no valid DT and/or DB 

retrievals, the above-mentioned misclassification is not the only cause.  For example, 

The MODIS DT retrievals are only applied to 10 × 10 km areas that have at least 10% 
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of the dark pixels (Levy et al., 2005).  No MODIS DT retrievals are available over 

bright surfaces such as desert regions (Levy et al., 2005; Levy et al., 2010).  Similarly, 

MODIS DB retrievals are not performed over complicated terrain surfaces (Hsu et al., 

2013).  To estimate the fractions of such cases, seasonally-based spatial distributions 

of retrieval density (number of retrievals) are constructed using one year of MODIS 

DT and DB data at a spatial resolution of 0.17° Lat/Lon (Figure 46).  Here we assume 

that surface characteristics remain constant within a season, and thus the 0.17° 

Lat/Lon bins that have more than two valid DT/DB retrievals are considered to be the 

regions that are suitable for DT/DB algorithms.   

Upon removing 0.17° Lat/Lon bins that have less than two DT/DB retrievals, 

for the remaining regions, we assume that the missing retrievals over heavy aerosol 

polluted regions, as indicated by HAIS, are from the misclassification of aerosol 

plumes as clouds.  It is estimated that around 34% (42%) of all (non-dust) heavy 

aerosol cases, as indicated by HAIS, are misclassified as clouds by MODIS DT 

retrievals, and corresponding numbers are 33% (40%) for MODIS DB data. 

Lastly, uncertainties exist in these estimates.  First of all, CALIOP and 

MODIS observations have different fields of views and pixel sizes, which could 

introduce a sampling related bias.  To exclude regions that are not suitable for 

MODIS DT/DB retrievals, seasonal-based retrieval density maps were constructed by 

assuming surface characteristics are rather invariant within a given season.  However, 

surface characteristics may vary within a given season due to issues such as regional 

snow events.  Still, this is the first time the misclassification-induced bias has been 

evaluated. 
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Figure 46. Seasonal distributions of retrieval density (number of retrievals) per 0.17 ° Lat/Lon for DT 
and DB from 2007. From the top to bottom, the four panels show retrieval densities for four seasons: 
spring, summer, autumn, and winter. The left column is for DT and the right column is for DB. 

 

7.4.2 Study observing conditions that trigger the misclassification  

As a follow-up question, it is important to study the observing conditions 

under which this misclassification occurs.  One direct way of assessing this problem 

is to use CALIOP AOD, which was computed by integrating total extinction through 
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a column.  However, as shown in Figure 47, a significant low bias is found in 

CALIOP AOD relative to MODIS DT and DB AOD.  This low bias is understandable 

and expected. This is because CALIOP signals can be attenuated by an aerosol or 

cloud layer.  Thus, when computing CALIOP AOD values, especially for optically 

thick aerosol plumes, this attenuation needs to be considered; however, it is not 

accounted for in this study.  

Attempts have also been made to estimate AODs from OMI AIs.  This was 

done by stratifying OMI AI as a function of AODDT or AODDB for various 

observation conditions as shown in Figure 48.  The estimated average AOD values 

from this AI-AOD based relationships are 2.05 (2.64) and 2.14 (2.39) for MODIS DT 

and DB products for the misclassified cases with values for non-dust cases in the 

parenthesis.  Still, converting OMI AI to AOD is a problem with large uncertainties 

because OMI AI is also sensitive to other atmospheric and surface properties such as 

the vertical distribution of an aerosol plume, surface reflectance, etc.  Thus, the 

numbers computed from the OMI AI-AOD relationship can only provide a very 

rough estimate.  

As an alternative approach, for an observed scene with aerosol plumes 

misclassified as clouds, the closest valid AOD retrievals may be used to estimate the 

AOD threshold that triggers the misclassification.  This approach was applied at the 

granule (observed scene) level.  By applying HAIS over Asia for 2007, a total of 61 

misclassified MODIS scenes were identified.  After excluding scenes that are either 

significantly contaminated by clouds or dusty cases, there are a total of seven 
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Figure 47. Comparisons between CALIOP AOD and c6 DT (a) and DB (b) AOD for 2007.  The red 
line indicates a linear fit with all data and the pink line indicates a linear fit using averaged CALIOP 
AOD within each MODIS AOD bins.  

 

Figure 48. Slopes and offsets from AOD versus AI comparisons as functions of aerosol types and 
aerosol layer top height from CALIOP cloud and aerosol products using collocated MODIS, OMI, and 
CALIOP products from 2007.  The left column is for slopes and the right column is for offsets.  The 
top row is for DT and the bottom row is for DB. 
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Scenes remained for further analysis.  Table 11 lists the dates and overpass times of 

these seven scenes.  Of the seven selected heavy smoke aerosol scenes, the 

misclassification is found in all cases for DT retrievals.  Misclassification also 

occurred for two of the seven scenes for DB retrievals.   

 

Table 11 Locations and satellite overpass times of seven identified misclassification (misidentified 
aerosol plumes as clouds) cases.  Also included are the causes for the misclassification, as well as the 
nearest available AOD retrievals. 

Julian day/Year 72/2007 79/2007 88/2007 92/2007 92/2007 93/2007 205/2006 
Time 0645 0655 0645 0620 0625 0705 0610 

Cause A DT 2.87  DT 2.07 DT 
1.99 

DT 
2.81 

DT 
2.43  

Cause B  DT 
3.20     DT 4.43 

Cloud 
contamination 

DB > 
3.0  DB (1.5–

3.0)     

 

For DT retrievals, the misidentification of aerosol plumes as clouds can be 

categorized into two scenarios: (1) high spatial variance in visible reflectance near 

emission source regions (cause A); (2) very optically thick homogenous aerosol 

plumes (cause B).  The first scenario is illustrated in Figure 49.  Similar as Figure 42, 

Figure 49 shows the MODIS RGB, AODDT, AODDB, and OMI AI (with CALIOP 

track over-plotted) over 93º–110º E and 18º–23º N for 6:20 UTC, April 2nd, 2007.  A 

smoke plume is visible with clouds present in the top right corner.  The OMI AI plot 

suggests that aerosol plumes are above a cloud deck around 102 ºE and 20 ºN.  Also, 

at the center of the image, smoke emission sources are visible.  Correspondingly, no 

AODDT retrievals are found near some of the emission sources, and a part of the 

reason is due to cloud contamination.  Still, for the region around 97 ºE and 21.5 ºN, 

where no clouds are apparent, no retrievals are reported from the DT products, 
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possibly due to high variability in visible reflectance over that region.  Besides the 2 

April, 2007 case, similar situations are found for other three scenes (13 March, 2007, 

29 March, 2007, and 3 April, 2007). The closest AOD retrievals to the missing-data 

region are found to be around 2.0–2.8 (0.55µm).   

Figure 42 shows a case where misclassification is caused by a very optical 

thick smoke plume.  As mentioned before, no retrieval is performed at the center of 

the plume for the DT products.  The largest reported AODDT near the bottom left 

branch of the smoke plume is 4.43.  A similar situation occurred on 20 March, 2007, 

when the closest available AOD retrieval is 3.2. 

Due to rather limited cases, it is unclear under what observing conditions 

misclassification occur for DB data, such as the case shown in Figure 49.  In Figure 

49, no DB retrievals are reported in the top right corner near 104º E and 21º N.   

However, the aerosol plume is rather homogeneous with the reported AODDT values 

of 2–3.  Still, there are two cases (13 Marc, 2007 and 29 Marc, 2007) for which above 

cloud aerosols are misclassified as cloud-free aerosol events.  Since OMI AI values 

are used to rescue heavy aerosol cases in the DB algorithm (Hsu et al., 2013), it is 

possible that some of the above cloud aerosol events, which have high OMI AI values, 

are misidentified as cloud-free aerosol cases (e.g. Figure 50).  Lastly, details of the 

seven selected cases, as well as the thresholds found, both for DB and DT products, 

are listed in Table 11. 
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Figure 49. Similar to Figure 42 but for 2 April, 2007 (092–0620) over 93 º–110 ºE and 18 º–23 ºN. 

 

7.5 Conclusion 

Both passive-based and active-based satellite studies may misclassify thick 

aerosol plumes as clouds and thus introduce a low bias in satellite AOD estimations.  

In this study, a heavy aerosol identifying system (HAIS) was developed with the use 

of CALIOP level 1B data, CALIOP cloud and aerosol product, and OMI AI to 

distinguish heavy aerosol plumes from clouds for CALIOP observations.  HAIS has 

been tested with case studies and extensive manual-checks.  These evaluation steps 
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Figure 50. Similar to Figure 42 but for 13 March, 2007 (072–0645) over 102º–108 ºE and 18º–22 ºN. 

 

suggest that HAIS is capable of distinguishing thick smoke aerosol plumes from 

clouds for CALIOP observations.  This study also suggests that due to strong 

attenuation, CALIOP data cannot be used alone to single out heavy smoke aerosol 

events.   

Applying the newly developed HAIS over Asia, this study suggests that heavy 

aerosol events are rather infrequent and the corresponding AOD low bias does not 

have a significant contribution to the regional AOT climatology over Asia.  However, 
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it is necessary to study the misclassification of heavy aerosol plumes as clouds for 

aerosol modeling efforts. 

This study also shows that of the HAIS identified PCSHA smoke cases, about 

42% (40%) are misclassified by DT (DB) retrievals as clouds.  The misclassified 

cases can be categorized into two scenarios: (1) inhomogeneous smoke plumes near 

emission-source regions and (2) very optically thick smoke plumes.  Correspondingly, 

the misclassification thresholds with respect to AOD (0.55µm) are found to be 2.0–

2.8 and 3.2–4.4 for DT respectively.  The misclassification rate is low for DB 

retrievals.  However, there are cases in which above cloud aerosol events are 

misidentified as cloud-free aerosol cases with erroneous high AOD values reported. 
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CHAPTER VIII   

CONCLUSIONS 

In an effort to construct quality-assured and bias-reduced datasets for aerosol 

analyses and forecasts, this study investigated uncertainties in MODIS DT, DB, and 

MISR aerosol products.  Beyond the M.S. study completed by this author, which 

focused on evaluating the c5 DT over-ocean aerosol products, this research effort 

emphasized c5 and c6 DB (Aqua only for c6) products and MISR v22 aerosol 

products, with the use of ground-based observations. In addition, inter-comparisons 

were conducted among products to evaluate performance of those products over 

regions with limited or none ground-based observations. Upon gaining an improved 

understanding of uncertainties and bias in each product, procedures were developed 

to construct DA-quality level 3 aerosol products with reduced noise and bias for 

potential use in satellite aerosol data assimilation. In addition, very optically thick 

aerosol plumes, which have high visible albedoes and may be misclassified as clouds 

by both active- and passive-based aerosol retrievals, could be excluded from the 

operational MODIS and MISR products. Being able to identify and predict such 

events are critical to modeling related studies. Thus, in the last section of the study, 

this misclassification-related low bias was studied.  

As a first step, three years of collocated c5 MODIS DT, DB, and version 22 

MISR aerosol products were spatially compared. While similar spatial distributions of 

major aerosol features are found from all satellite aerosol products, 
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large discrepancies are also observable in reported AOD values. In particular, 

significant differences in AODs are found between satellite aerosol products over 

China and Southeast Asia. Clearly, those are the regions that deserve further attention 

in later studies.  

Evaluations of selected products, starting with the MODIS c5 DB aerosol 

products were conducted.  Empirically correctable biases, such as uncertainties 

related to aerosol microphysical properties and surface characteristics, were identified. 

Observing conditions that led to large AOD uncertainties were also identified.  Both 

of these were used to develop procedures for constructing bias- and noise- reduced 

level 3 DA-quality AOD data over North Africa and the Arabian Peninsula for 

modeling applications. Last year, the new collection 6 Aqua MODIS DT and DB 

products were released, and thus, updates were also made to generate DA-quality c6 

DT over-ocean and DB aerosol products. 

Similar procedures were also applied on the MISR v22 AOD product, with a 

focus on developing a method for cloud clearing of MISR AOD data using MODIS 

observations. This is needed as MISR lacks thin cirrus cloud-sensitive channels. 

Onboard the same satellite platform, MODIS has the 1.38-µm channel that can be 

used to detect optically thin clouds. Thus, MODIS data can be used for further cloud 

clearing of MISR data. It is found that thin-cirrus cloud contamination exists in the 

MISR aerosol product and introduces an AOD bias of ~0.01 over global oceans, with 

a higher bias of ~0.015–0.02 over mid- to high- latitude oceans.  

In regions such as Asia, heavy aerosol plumes are rather frequent. However, 

those heavy aerosol features could be misidentified as clouds by satellite aerosol 
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retrieval algorithms, thus introducing a low bias in both passive- and active-based 

satellite AOD climatologies. To evaluate this issue, HAIS was developed to "rescue" 

misclassified aerosol features using OMI AI, CALIOP cloud and aerosol products and 

CALIOP level 1b data. Evaluated through case studies and extensive hand checks, it 

is found that although HAIS has difficulty in identifying near surface aerosol plumes, 

HAIS is capable of detecting elevated thick smoke aerosol plumes with a high 

successful rate, and is able to identify elevated smoke aerosol features that are 

misclassified as clouds by CALIOP. With the use of HAIS, the low bias that is related 

to the misclassification of smoke aerosol plumes as clouds was investigated using one 

year of collocated OMI, CALIOP, and MODIS data. This study suggests that the 

frequency of occurrence of such misclassified events is rather low, and thus 

introduces an insignificant low bias to the passive-based satellite AOD climatology 

over Asia.  However, these heavy aerosol events influence regional air quality and 

visibility, which further have impacts on public health and could introduce economic 

impacts.  These optically thick smoke events may also alter the regional 3-D radiation 

budget, which directly affect weather forecasts and possibly meso- and synoptic scale 

atmospheric circulations.  Thus, “rescuing” those misclassified aerosol features is 

critical for accurate aerosol forecasts of major aerosol events.  Thresholds that trigger 

misclassification events were estimated.  

Lastly, the c6 Terra MODIS DT and DB products were released early this 

year. Thus, as a part of a future study, research approaches and knowledge gained 

from this study will be applied to c6 Terra MODIS aerosol products. With the 

development of quality assured aerosol products from MODIS and MISR, it is 
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possible to construct a combined aerosol product for both climate and modeling 

applications. The developments of quality assured aerosol products from MODIS and 

MISR will also enable further study of true uncertainties and limitations in current 

satellite-data related aerosol climate studies.  



 

 152 

REFERENCES 

Al-Saadi, J., Szykman, J., Pierce, R. B., Kittaka, C., Neil, D., Chu, D. A., ... & 
Fishman, J. (2005). Improving national air quality forecasts with satellite 
aerosol observations. Bulletin of the American Meteorological Society, 86(9), 
1249-1261. 

 

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., & 
Gumley, L. E. (1998). Discriminating clear sky from clouds with MODIS. 
Journal of Geophysical Research: Atmospheres (1984–2012), 103(D24), 
32141-32157. 

 

Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., & McGill, M. 
(2008). Cloud detection with MODIS. Part II: validation. Journal of 
Atmospheric and Oceanic Technology, 25(7), 1073-1086. 

 

Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., & Turekian, K. K. 
(1993). Transport and residence times of tropospheric aerosols inferred from a 
global three-dimensional simulation of 210_Pb. 

 

Bellouin, N., O. Boucher, J. Haywood, and M. S. Reddy, (2005), Global Estimate of 
Aerosol Direct Radiative Forcing from Satellite Measurements, Nature Vol 
438|22/29 December 2005|DOI:10.1038/nature 04348. 

 

Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., ... 
& Suttie, M. (2009). Aerosol analysis and forecast in the European centre for 
medium-­‐‑range weather forecasts integrated forecast system: 2. Data 
assimilation. Journal of Geophysical Research: Atmospheres (1984–
2012),114(D13). 

 



 

 153 

Blifford, I. H., Lockhart, L. B., & Rosenstock, H. B. (1952). On the natural 
radioactivity in the air. Journal of Geophysical Research, 57(4), 499-509. 

 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. 
J., ... &Zender, C. S. (2013). Bounding the role of black carbon in the climate 
system: A scientific assessment. Journal of Geophysical Research: 
Atmospheres, 118(11), 5380-5552. 

 

Bull et al. (2010) MISR Data Products Specifications Document, JPL D-13963, 
Revision S. 

 

Campbell, J. R., Reid, J. S., Westphal, D. L., Zhang, J., Hyer, E. J., and Welton, E. J. 
(2010) CALIOP aerosol subset processing for global aerosol transport model 
data assimilation, IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, Volume: 3, Issue: 2, pp.203-214, 
10.1109/JSTARS.2010.2044868. 

 

Campbell, J. R., Tackett, J. L., Reid, J. S., Zhang, J., Curtis, C. A., Hyer, E. J., ... & 
Winker, D. M. (2012). Evaluating nighttime CALIOP 0.532 µm aerosol 
optical depth and extinction coefficient retrievals. Atmos. Meas. Tech. 
Discuss, 5(2), 2747-2794. 

 

CCSP, (2009). Atmospheric aerosol properties and climate impacts, A report by the 
U.S. Climate Change Science Program and the Subcommittee on Global 
Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz 
(eds.)]. National Aeronautics and Space Administration, Washington, D.C., 
USA, 128 pp. 

 

Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric 
environment, 42(1), 1-42. 

 

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., COAKLEY, J. J., Hansen, 
J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. 
Science, 255(5043), 423-430. 



 

 154 

 

Chew, B. N., Campbell, J. R., Reid, J. S., Giles, D. M., Welton, E. J., Salinas, S. V., 
& Liew, S. C. (2011). Tropical cirrus cloud contamination in sun photometer 
data. Atmospheric Environment, 45(37), 6724-6731. 

 

Christopher, S. A., Zhang, J., Kaufman, Y. J., & Remer, L. A. (2006). Satellite-­‐‑based 
assessment of top of atmosphere anthropogenic aerosol radiative forcing over 
cloud-­‐‑free oceans. Geophysical research letters, 33(15). 

 

Di Girolamo, Larry, and Davies, R. (1994). A Band-Differenced Angular Signature 
technique for cirrus cloud detection. Geoscience and Remote Sensing, IEEE 
Transactions on 32, no. 4: 890-896. 

 

Diner, D. J., Abdou, W. A., Bruegge, C. J., Conel, J. E., Crean, K. A., Gaitley, B. J., ... 
&Holben, B. N. (2001). MISR aerosol optical depth retrievals over southern 
Africa during the SAFARI‐2000 dry season campaign. Geophysical 
Research Letters, 28(16), 3127-3130. 

 

Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R., ... & 
Verstraete, M. M. (1998). Multi-angle Imaging SpectroRadiometer (MISR) 
instrument description and experiment overview. Geoscience and Remote 
Sensing, IEEE Transactions on, 36(4), 1072-1087.  

 

Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of 
aerosol optical properties from Sun and sky radiance measurements. Journal 
of Geophysical Research: Atmospheres (1984–2012), 105(D16), 20673-20696. 

 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., ... & 
Slutsker, I. (2002). Variability of absorption and optical properties of key 
aerosol types observed in worldwide locations. Journal of the atmospheric 
sciences, 59(3), 590-608. 

 



 

 155 

Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M., & Merrill, J. T. (1980). Long-
range atmospheric transport of soil dust from Asia to the tropical North 
Pacific: Temporal variability. Science, 209(4464), 1522-1524. 

 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'neill, N. T., ... & 
Kinne, S. (1999). Wavelength dependence of the optical depth of biomass 
burning, urban, and desert dust aerosols. Journal of Geophysical Research: 
Atmospheres (1984–2012), 104(D24), 31333-31349. 

 

Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., ... & 
Slutsker, I. (2005). Columnar aerosol optical properties at AERONET sites in 
central eastern Asia and aerosol transport to the tropical mid‐Pacific. Journal 
of Geophysical Research: Atmospheres (1984–2012), 110(D6). 

 

Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H., ... & Xia, 
X. (2010). Climatological aspects of the optical properties of fine/coarse mode 
aerosol mixtures. Journal of Geophysical Research: Atmospheres (1984–
2012), 115(D19). 

 

Frey, R. A., Acherman,S. A., Liu,Y.,Strabala, K. I., Zhang,H., Key, J. R., and Wang, 
X. (2008) Cloud detection with MODIS. Part I: Improvements in the MODIS 
cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25, 1057–1072. 

 

Gao, B. C., Yang, P., Han, W., Li, R. R., &Wiscombe, W. J. (2002). An algorithm 
using visible and 1.38-µm channels to retrieve cirrus cloud reflectances from 
aircraft and satellite data. Geoscience and Remote Sensing, IEEE Transactions 
on, 40(8), 1659-1668. 

 

Gao, B. C., & Kaufman, Y. J. (2003). Water vapor retrievals using Moderate 
Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels. 
Journal of Geophysical Research: Atmospheres (1984–2012), 108(D13). 

 



 

 156 

Gautam, R., Liu, Z., Singh, R. P., & Hsu, N. C. (2009). Two contrasting 
dust-­‐‑dominant periods over India observed from MODIS and CALIPSO data. 
Geophysical Research Letters, 36(6).  

 

Ginoux, P., Garbuzov, D., & Hsu, N. C. (2010). Identification of anthropogenic and 
natural dust sources using Moderate Resolution Imaging Spectroradiometer 
(MODIS) Deep Blue level 2 data. Journal of Geophysical Research: 
Atmospheres (1984–2012), 115(D5). 

 

Giorgi, F., &Chameides, W. L. (1986). Rainout lifetimes of highly soluble aerosols 
and gases as inferred from simulations with a general circulation model. 
Journal of Geophysical Research: Atmospheres (1984–2012), 91(D13), 
14367-14376. 

 

Haxel, O., & Schumann, G. (1955). Selbstreinigung der atmosphäre. Zeitschrift für 
Physik, 142(2), 127-132. 

 

Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative 
forcing due to tropospheric aerosols: A review. REVIEWS OF 
GEOPHYSICS-RICHMOND VIRGINIA THEN WASHINGTON-, 38(4), 
513-543.Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., 
COAKLEY, J. J., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by 
anthropogenic aerosols. Science, 255(5043), 423-430. 

 

Hogan, T. F., and Rosmond, T. E. (1991), The Description of the Navy Operational 
Global Atmospheric Prediction Systems Spectral Forecast Model, Mon. 
Weather Rev., 119(8), 1786-1815,DOI:10.1175/1520-0493(1991)119<1786: 
TDOTNO>2.0.CO:2. 

 

Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. 
Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. 
Smirnov, (1998), AERONET-A Federated Instrument Network and Data 
Archive for Aerosol Characterization Remote Sens. Environ. 66:1-16 PI1 
s003-4257(98)00031-5. 

 



 

 157 

Holben, B. N., Eck, T. F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer, J., ... & 
Dubovik, O. (2006, December). AERONET's version 2.0 quality assurance 
criteria. In Asia-Pacific Remote Sensing Symposium (pp. 64080Q-64080Q). 
International Society for Optics and Photonics. 

 

Hollingsworth, A., Engelen, R. J., Textor, C., Benedetti, A., Boucher, O., Chevallier, 
F., ... & Simmons, A. (2008). The Global Earth-system Monitoring using 
Satellite and in-situ data (GEMS) Project: Towards a monitoring and 
forecasting system for atmospheric composition. Am. Meteorol. Soc, 89(8), 
1147-1164. 

 

Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over 
bright-reflecting source regions. Geoscience and Remote Sensing, IEEE 
Transactions on, 42(3), 557-569. 

 

Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of 
Asian aerosol properties during ACE-Asia. Geoscience and Remote Sensing, 
IEEE Transactions on, 44(11), 3180-3195. 

 

Hsu, N. C., M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. 
Huang, and S.-C. Tsay (2013), Enhanced Deep Blue aerosol retrieval 
algorithm: The second generation, J. Geophys. Res. Atmos., 118, 9296–9315, 
doi:10.1002/jgrd.50712 Sayer, A. M., N. C. Hsu, C.  

 

Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., & 
Weimer, C. (2009). CALIPSO lidar description and performance assessment. 
Journal of Atmospheric and Oceanic Technology, 26(7), 1214-1228. 

 

Husar, R. B., Prospero, J. M., & Stowe, L. L. (1997). Characterization of tropospheric 
aerosols over the oceans with the NOAA advanced very high resolution 
radiometer optical thickness operational product. Journal of Geophysical 
Research: Atmospheres (1984–2012), 102(D14), 16889-16909. 

 



 

 158 

Husar, R. B., Tratt, D. M., Schichtel, B. A. B. A., Falke, S. R., Li, F., Jaffe, 
D., ...&Malm, W. C. (2001). Asian dust events of April 1998. Journal of 
Geophysical Research, 106(D16), 18317-18330. 

 

Hyer, E. J., Reid, J. S., & Zhang, J. (2011). An over-land aerosol optical depth data 
set for data assimilation by filtering, correction, and aggregation of MODIS 
Collection 5 optical depth retrievals. Atmospheric Measurement Techniques, 
4(3), 379-408. 

 

Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., ...& 
Uno, I. (1999).Transport of Asian air pollution to North America.Geophysical 
Research Letters, 26(6), 711-714. 

 

Johnson, D. W., Kilsby, C. G., McKenna, D. S., Saunders, R. W., Jenkins, G. J., 
Smith, F. B., & Foot, J. S. (1991). Airborne observations of the physical and 
chemical characteristics of the Kuwait oil smoke plume. Nature, 353(6345), 
617-621. 

 

Kahn, R. A., Gaitley, B., Martonchik, J., Diner, D., Crean, K., & Holben, B. (2005). 
MISR global aerosol optical depth validation based on 2years of coincident 
Aerosol Robotic Network (AERONET) observations. J. Geophys. Res, 110, 
D10S04. 

 

Kahn, R. A., Li, W.-H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbein, E. 
(2007), Aerosol source plume physical characteristics from space-based 
multiangle imaging, J. Geophys. Res., 112, D11205, 
doi:10.1029/2006JD007647. 

 

Kahn, R., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M., Diner, D. J., ... & Remer, 
L. (2009). MISR aerosol product attributes and statistical comparisons with 
MODIS. Geoscience and Remote Sensing, IEEE Transactions on, 47(12), 
4095-4114. 

 



 

 159 

Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., & 
Holben, B. N. (2010). Multiangle Imaging SpectroRadiometer global aerosol 
product assessment by comparison with the Aerosol Robotic Network. Journal 
of Geophysical Research: Atmospheres (1984–2012), 115(D23). 

 

Kaufman, Y. J., & Nakajima, T. (1993). Effect of Amazon smoke on cloud 
microphysics and albedo: Analysis from satellite imagery. 

 

Kaufman, Y. J., and R. S. Fraser, Control of the effect of smoke particles on clouds 
and climate by water vapor, Science, 277, 1636 –1639, 1997. 

 

Kaufman, Y. J., Boucher, O., Tanré, D., Chin, M., Remer, L. A., &Takemura, T. 
(2005). Aerosol anthropogenic component estimated from satellite data. 
Geophysical Research Letters, 32(17). 

 

Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the 
climate system.Nature, 419(6903), 215-223. 

 

Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, 
H., ... & Ziereis, H. (2002). Global air pollution crossroads over the 
Mediterranean. Science, 298(5594), 794-799. 

 

Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., J. van den Ooord, G. H., Bhartia, P. 
K., Taminnen, J., de Haan, J. F., and Veefkind J. P. (2006), Science objectives 
of the Ozone Monitoring Instrument, IEEE Trans. Geo. Remote Sens., 44(5), 
1093–1101. 

 

Levy, R. C., L. A. Remer, D. Tanré, Y. J. Kaufman, C. Ichoku, B. N. Holben, J. M. 
Livingston, P. B. Russell, and H. Maring  (2003), Evaluation of the Moderate-
Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol 
over the ocean during PRIDE, J.Geophys. Res., 108(D19), 8594, DOI: 
10.1029/2002JD002460. 

 



 

 160 

Levy, R. C., Remer, L. A., Martins, J. V., Kaufman, Y. J., Plana-Fattori, A., 
Redemann, J., & Wenny, B. (2005). Evaluation of the MODIS aerosol 
retrievals over ocean and land during CLAMS. Journal of the Atmospheric 
Sciences, 62(4), 974-992. 

 

Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, 
T. F. (2010), Global evaluation of the Collection 5 MODIS dark-target aerosol 
products over land. Atmospheric Chemistry and Physics, 10(21), 10399-
10420. 

 

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., & Hsu, N. C. 
(2013). The Collection 6 MODIS aerosol products over land and ocean. 
Atmos. Meas. Tech. Discuss, 6, 159-259. 

 

Li, Qian, Li, C., Mao, J,: Evaluation of Atmospheric Aerosol Optical Depth Products 
at Ultraviolet Bands Derived from MODIS Products. Aerosol Science and 
Technology 46:9, 1025-1034, 2012 

 

Loeb, N.G., and Manalo-Smith, N (2005), Top-of-Atmosphere Direct Radiative 
Effect of Aerosols over Global Oceans from Merged CERES and MODIS 
Observations, J. Climate, 18, 3506-3526, 2005. 

 

Lohmann, U., &Feichter, J. (2005). Global indirect aerosol effects: a review. 
Atmospheric Chemistry and Physics, 5(3), 715-737. 

 

Martonchik, J. V., D. J. Diner, B. Pinty, M. M. Verstraete, R. B. Myneni, Y. 
Knyazikhin, and H. R. Gordon, (1998), Determination of Land and Ocean 
Reflective, Radiative and Biophysical Properties Using Multi-angle Imaging, 
IEEE Trans. Geosci. Remote Sens., 36, 1266-1281, 1998. 

 

Martonchik, J. V., Diner, D. J., Crean, K., & Bull, M. (2002). Regional aerosol 
retrieval results from MISR. Geoscience and Remote Sensing, IEEE 
Transactions on, 40(7), 1520-1531. 



 

 161 

 

Martonchik, J. V., Diner, D. J., Kahn, R., Ackerman, T. P., Verstraete, M. M., Pinty, 
B., & Gordon, H. R. (1998). Techniques for the retrieval of aerosol properties 
over land and ocean using multiangle imaging.Geoscience and Remote 
Sensing, IEEE Transactions on, 36(4), 1212-1227. 

 

Martonchik, J. V., Kahn, R. A., & Diner, D. J. (2009). Retrieval of aerosol properties 
over land using MISR observations. In Satellite Aerosol Remote Sensing Over 
Land (pp. 267-293). Springer Berlin Heidelberg. 

 

McCormick, M. P., Thomason, L. W., &Trepte, C. R. (1995). Atmospheric effects of 
the Mt Pinatubo eruption. Nature, 373(6513), 399-404. 

 

Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G. G., Denn, F. M., Doelling, D. R., 
& Smith, W. L. (1993). Radiative climate forcing by the Mount Pinatubo 
eruption. Science, 259(5100), 1411-1415. 

 

Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – a federated 
instrument network and data archive for aerosol characterization, Remote 
Sens. En- viron. 66, 1–16, 1998. 

 

O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., & Thulasiraman, S. (2003). 
Spectral discrimination of coarse and fine mode optical depth. Journal of 
Geophysical Research: Atmospheres (1984–2012), 108(D17). 

 

Park, R. J., Jacob, D. J., Chin, M., & Martin, R. V. (2003). Sources of carbonaceous 
aerosols over the United States and implications for natural visibility. Journal 
of Geophysical Research: Atmospheres (1984–2012), 108(D12). 

 

Penner, J. E., Charlson, R. J., Schwartz, S. E., Hales, J. M., Laulainen, N. S., Travis, 
L., ... &Radke, L. F. (1994). Quantifying and minimizing uncertainty of 
climate forcing by anthropogenic aerosols. Bulletin of the American 
Meteorological Society, 75(3), 375-400. 



 

 162 

 

Pierce, J. R., Kahn, R. A., Davis, M. R., & Comstock, J. M. (2010). Detecting thin 
cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals. Journal of 
Geophysical Research: Atmospheres (1984–2012), 115(D8). 

 

Platnick, S., King, M. D., Ackerman, S., Menzel, W. P., Baum, B., Riédi, J. C., & 
Frey, R.(2003). The MODIS cloud products: Algorithms and examples from 
Terra. Geoscience and Remote Sensing, IEEE Transactions on, 41(2), 459-
473. 

 

Quaas, J., Boucher, O., &Lohmann, U. (2006).Constraining the total aerosol indirect 
effect in the LMDZ and ECHAM4 GCMs using MODIS satellite 
data.Atmospheric Chemistry and Physics, 6(4), 947-955. 

 

Quaas, J., Boucher, O., Bellouin, N., &Kinne, S. (2008).Satellite-­‐‑based estimate of 
the direct and indirect aerosol climate forcing.Journal of Geophysical 
Research: Atmospheres (1984–2012), 113(D5). 

 

Ramanathan, V., & Carmichael, G. (2008).Global and regional climate changes due 
to black carbon.Nature geoscience, 1(4), 221-227.reflecting source regions, 
IEEE T. Geosci. Remote, 42, 557–569, 2004. 

 

Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V., Dunlap, M. R., & 
Liousse, C. (1998). Physical, chemical, and optical properties of regional 
hazes dominated by smoke in Brazil. Journal of Geophysical Research: 
Atmospheres (1984–2012), 103(D24), 32059-32080.  

 

Reid, J. S., Prins, E. M., Westphal, D. L., Schmidt, C. C., Richardson, K. A., 
Christopher, S. A., ... & Hoffman, J. P. (2004). Real‐time monitoring of 
South American smoke particle emissions and transport using a coupled 
remote sensing/box‐model approach. Geophysical Research Letters, 31(6). 

 



 

 163 

Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. 
P., ... & Zhang, J. (2005). A review of biomass burning emissions part III: 
intensive optical properties of biomass burning particles. Atmospheric 
Chemistry and Physics, 5(3), 827-849. 

 

Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J., ... & 
Hoffman, J. P. (2009). Global monitoring and forecasting of biomass-burning 
smoke: Description of and lessons from the Fire Locating and Modeling of 
Burning Emissions (FLAMBE) program. Selected Topics in Applied Earth 
Observations and Remote Sensing, IEEE Journal of, 2(3), 144-162. 

 

Remer, L. A., Y. J. Kaufman, D. Tanré, S. Matoo, D. A. Chu, J. V. Martins, R.-R. Li, 
C. Ichoku, R. C. Levy, R. G. Kieidman, T. F. Eck, E. Vermote, and B. N. 
Holben, (2005), The MODIS Aerosol Algorithm, Products, and Validation, 
Journal of Atmospheric Sciences, vol. 62, Issue 4, pp.947-973 DOI: 
10.1175/JAS3385.1. 

 

Remer, L. A., Chin, M., DeCola, P., Feingold, G., Halthore, R., Kahn, R. A., Quinn, P. 
K., Rind, D., Schwartz, S. E., Streets, D., and Yu, H. (2009) Executive 
summary, atmospheric aerosol properties and climate impacts. A report by the 
U.S. climate change science program and the subcommittee on global change 
research, edited by: Chin, M., Kahn, R. A., and Schwartz, S. E., National 
Aeronautics and Space Administration, Washington, D.C., USA. 

 

Rodhe, H. (1999). Human impact on the atmospheric sulfur balance. Tellus A, 51(1), 
110-122. 

 

Saide, P. E., G. R. Carmichael, Z. Liu, C. S. Schwartz, H. C. Lin, A. M. da Silva, and 
E. Hyer (2013), Aerosol optical depth assimilation for a sizeresolved sectional 
model: Impacts of observationally constrained, multi-wavelength and fine 
mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 
13, 10,425–10,444, doi:10.5194/acp-13-10425-2013. 

 

Sassen, K., and Cho, B. S.: Subvisual-thin cirrus lidar dataset for satellite verification 
and climatological research, Journal of Applied Meteorology 31, no. 11 
(1992): 1275-1285. 



 

 164 

 

Sayer, A. M., Hsu, N. C., Bettenhausen, C., &Jeong, M. J. (2013). Validation and 
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. 
Journal of Geophysical Research: Atmospheres, 118(14), 7864-7872. 

 

Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M. J. & Meister, G. (2015), Effect 
of MODIS Terra radiometric calibration improvements on Collection 6 Deep 
Blue aerosol products: validation and Terra/Aqua consistency. Journal of 
Geophysical Research: Atmospheres, submitted. 

 

Schafer, J. S., Eck, T. F., Holben, B. N., Thornhill, K. L., Anderson, B. E., Sinyuk, A., 
Giles, D. M., Winstead, E. L., Ziemba, L. D., Beyersdorf, A. J., Kenny, P. R., 
Smirnov, A., and Slutsker, I.(2014), Intercomparison of aerosol single 
scattering albedo derived from AERONET surface radiometers and LARGE 
in-situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ 
experiments, J. Geophys. Res.-Atmos., 119, 7439–7452 

 

Sekiguchi, M. T., K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and 
S. Mukai (2003), A study of the direct and indirect effects of aerosols using 
global satellite data sets of aerosol and cloud parameters, J. Geophys. Res., 
108(D22), 4699, doi:10.1029/2002JD003359. 

 

Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., & Miyoshi, T. (2010). Data assimilation 
of CALIPSO aerosol observations. Atmospheric Chemistry and Physics, 10(1), 
39-49. 

 

Shi, Y., Zhang, J., Reid, J. S., Holben, B., Hyer, E. J., & Curtis, C. (2011a) An 
analysis of the collection 5 MODIS over-ocean aerosol optical depth product 
for its implication in aerosol assimilation. Atmospheric Chemistry and Physics, 
11(2), 557-565. 

 

Shi, Y., Zhang, J., Reid, J. S., Hyer, E. J., Eck, T. F., Holben, B. N., and Kahn, R. A. 
(2011b) A critical examination of spatial biases between MODIS and MISR 
aerosol products – application for potential AERONET deployment, Atmos. 
Meas. Tech., 4, 2823–2836, doi:10.5194/amt-4- 2823-2011. 



 

 165 

 

Smirnov, A., Holben, B. N., Giles, D. M., Slutsker, I., O'Neill, N. T., Eck, T. F., ... & 
Diehl, T. L. (2011). Maritime Aerosol Network as a component of 
AERONET-first results and comparison with global aerosol models and 
satellite retrievals. Atmospheric Measurement Techniques Discussion, 4, 1-32. 

Smirnov, A., Holben, B. N., T., Eck, Dubovik, O., Slutsker, I. (2000). Cloud-
Screening and Quality Control Algorithms for the AERONET Database. 
Remote Sensing of Environment. 09/2000; 73(3):337-349. DOI: 
10.1016/S0034-4257(00)00109-7 

 

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., et al. 
(2002), The CloudSat mission and the A-train,Bull. Am.Meteorol. Soc.,83, 
1771–1790. 

 

Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., ...&Hao, Z. (2004).The 
air-borne particulate pollution in Beijing—concentration, composition, 
distribution and sources.Atmospheric Environment, 38(35), 5991-6004. 

 

Tackett, J. L., & Di Girolamo, L. (2009). Enhanced aerosol backscatter adjacent to 
tropical trade wind clouds revealed by satellite‐based lidar. Geophysical 
Research Letters, 36(14). 

  

Tanré, D., Y.J. Kaufman, M. Herman, and S. Mattoo, (1997), Remote Sensing of 
Aerosol Properties Over Oceans Using the MODIS/EOS Spectral Radiances, J. 
Geophys. Res., VOL 102, No.D14, Page 16,971-16,988, July 27. 1997. 

 Technol.,26,1214–1228, 2009. 

 

Tie, Xuexi, and Junji Cao. "Aerosol pollution in China: Present and future impact on 
environment." Particuology 7, no. 6 (2009): 426-431. 

 

Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., &Holben, B. (2002). 
A long-term record of aerosol optical depth from TOMS observations and 



 

 166 

comparison to AERONET measurements. Journal of the atmospheric sciences, 
59(3), 398-413. 

 

Torres, O., Tanskanen, A., Veihelman, B., Ahn, C., Braak, R., Bhartia, P. 
K.,Veefkind, P., and Levelt, P.: Aerosols and surface UV products from 
Ozone Monitoring Instrument observations (2007), An overview, J. Geophys. 
Res., 112, D24S47, doi:10.1029/2007JD008809. 

 

Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., & Logan, J. 
A. (2011). Dynamics of fire plumes and smoke clouds associated with peat 
and deforestation fires in Indonesia. Journal of Geophysical Research: 
Atmospheres (1984–2012), 116(D8). 

 

Toth, T. D., Zhang, J., Campbell, J. R., Reid, J. S., Shi, Y., Johnson, R. S., Smirnov, 
A., Vaughan, M. A., and Winker, D. M. (2013). Investigating Enhanced Aqua 
MODIS Aerosol Optical Depth Retrievals over the Mid-­‐‑to-­‐‑High Latitude 
Southern Oceans through Intercomparison with Co-­‐‑Located CALIOP, MAN, 
and AERONET Datasets. J. Geophys. Res. Atmos., 118, 4700–4714, 
doi:10.1002/jgrd.50311. 

 

Uno, I., K. Yumimoto, A. Shimizu, Y. Hara, N. Sugimoto, Z. Wang, Z. Liu, and D. M. 
Winker (2008), 3D structure of Asian dust transport revealed by CALIPSO 
lidar and a 4DVAR dust model, Geophys. Res. Lett., 35, L06803, 
doi:10.1029/2007GL032329. 

 

Vadrevu, K. P., Ellicott, E., Giglio, L., Badarinath, K. V. S., Vermote, E., Justice, C., 
& Lau, W. K. (2012). Vegetation fires in the himalayan region–Aerosol load, 
black carbon emissions and smoke plume heights. Atmospheric 
Environment, 47, 241-251. 

 

Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & 
Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter 
concentrations from satellite-based aerosol optical depth: development and 
application. Environmental health perspectives, 118(6), 847-855. 

 



 

 167 

Van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., 
Chubarova, N. E., ... & Cohen, A. J. (2011). Satellite-based estimates of 
ground-level fine particulate matter during extreme events: A case study of 
the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225-6232. 

 

VanCuren, R. A., & Cahill, T. A. (2002). Asian aerosols in North America: 
Frequency and concentration of fine dust. Journal of Geophysical Research: 
Atmospheres (1984–2012), 107(D24), AAC-19. 

 

Wan, Z. (2008). New refinements and validation of the MODIS land-surface 
temperature/emissivity products. Remote Sensing of Environment, 112(1), 59-
74. 

 

Wang, J., Xu, X., Spurr, R., Wang, Y., & Drury, E. (2010). Improved algorithm for 
MODIS satellite retrievals of aerosol optical thickness over land in dusty 
atmosphere: Implications for air quality monitoring in China. Remote Sensing 
of Environment, 114(11), 2575-2583. 

 

Weaver, C., da Silva, A., Chin, M., Ginoux, P., Dubovik, O., Flittner, D., ...& Gregg, 
W. (2007). Direct insertion of MODIS radiances in a global aerosol transport 
model.Journal of the atmospheric sciences, 64(3), 808-827. 

 

Williams, J., Reus, M. D., Krejci, R., Fischer, H., &Ström, J. (2002). Application of 
the variability-size relationship to atmospheric aerosol studies: estimating 
aerosol lifetimes and ages. Atmospheric Chemistry and Physics,2(2), 133-145. 

 

Winker, D. M., Hunt, H. H., and McGill, M. J. (2007) Initial performance assessment 
of CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135. 

 

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., ... & 
Young, S. A. (2009). Overview of the CALIPSO mission and CALIOP data 
processing algorithms. Journal of Atmospheric and Oceanic Technology, 
26(11), 2310-2323. 



 

 168 

 

Witek, M. L., Garay, M. J., Diner, D. J., & Smirnov, A. (2013). Aerosol optical 
depths over oceans: A view from MISR retrievals and collocated MAN and 
AERONET in situ observations. Journal of Geophysical Research: 
Atmospheres, 118(22), 12-620. 

 

Witte, J. C., Douglass, A. R., da Silva, A., Torres, O., Levy, R., and Duncan, B. N.: 
NASA A-Train and Terra observations of the 2010 Russian wildfires, Atmos. 
Chem. Phys., 11, 9287–9301, doi:10.5194/acp-11-9287-2011, 2011. 

 

Yu, H., Dickinson, R. E., Chin, M., Kaufman, Y. J., Holben, B. N., Geogdzhayev, I. 
V., & Mishchenko, M. I. (2003). Annual cycle of global distributions of 
aerosol optical depth from integration of MODIS retrievals and GOCART 
model simulations. Journal of Geophysical Research: Atmospheres (1984–
2012), 108(D3). 

 

Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., ... & 
Zhou, M. (2006). A review of measurement-based assessments of the aerosol 
direct radiative effect and forcing. Atmospheric Chemistry and Physics,6(3), 
613-666. 

 

Zhang, J., Christopher, S. A., & Holben, B. N. (2001). Intercomparison of smoke 
aerosol optical thickness derived from GOES 8 imager and ground‐based 
Sun photometers. Journal of Geophysical Research: Atmospheres (1984–
2012), 106(D7), 7387-7397. 

 

Zhang, J., and Christopher, S. A. (2003). Longwaveradiative forcing of Saharan dust 
aerosols estimated from MODIS, MISR, and CERES observations on Terra. 
Geophysical Research Letters,30(23). 

 

Zhang, J., Reid, J. S., & Holben, B. N. (2005). An analysis of potential cloud artifacts 
in MODIS over ocean aerosol optical thickness products. Geophysical 
Research Letters, 32(15). 

 



 

 169 

Zhang, J., and J. S. Reid (2006), MODIS aerosol product analysis for data 
assimilation: Assessment of level 2 aerosol optical thickness retrievals, J. 
Geophys. Res., Vol.111, D22207, doi:10.1029/2005JD006898.  

 

Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., & Hyer, E. J. (2008a). A system 
for operational aerosol optical depth data assimilation over global oceans. 
Journal of Geophysical Research: Atmospheres (1984–2012), 113(D10).  

 

Zhang, J., Reid, J. S., Miller, S. D., & Turk, F. J. (2008b). Strategy for studying 
nocturnal aerosol optical depth using artificial lights. International Journal of 
Remote Sensing, 29(16), 4599-4613. 

 

Zhang, J., and J. S. Reid (2009), An analysis of clear sky and contextual biases using 
an operational over ocean MODIS aerosol product, Geophys. Res. Lett., 36, 
L15824, doi:10.1029/2009GL038723.  

 

Zhang, J., & Reid, J. S. (2010). A decadal regional and global trend analysis of the 
aerosol optical depth using a data-assimilation grade over-water MODIS and 
Level 2 MISR aerosol products. Atmospheric Chemistry and Physics, 10(22), 
10949-10963. 

 

Zhang, J., Campbell, J. R., Reid, J. S., Westphal, D. L., Baker, N. L., Campbell, W. F., 
& Hyer, E. J. (2011). Evaluating the impact of assimilating CALIOP‐derived 
aerosol extinction profiles on a global mass transport model. Geophysical 
Research Letters, 38(14). 

 

Zhao, T. X. P., Chan, P. K., & Heidinger, A. K. (2013). A global survey of the effect 
of cloud contamination on the aerosol optical thickness and its long‐term 
trend derived from operational AVHRR satellite observations. Journal of 
Geophysical Research: Atmospheres, 118(7), 2849-2857.  

 


	Critical Evaluations Of Modis And Misr Satellite Aerosol Products For Aerosol Modeling Applications
	Recommended Citation

	Microsoft Word - Dissertation_Shi_after_submission.doc

