

# University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

January 2015

# The Stratigraphy And Depositional History Of The Deadwood Formation, With A Focus On Early Paleozoic Subsidence In The Williston Basin

Anthony Henry Sarnoski

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

#### **Recommended Citation**

Sarnoski, Anthony Henry, "The Stratigraphy And Depositional History Of The Deadwood Formation, With A Focus On Early Paleozoic Subsidence In The Williston Basin" (2015). *Theses and Dissertations*. 1957. https://commons.und.edu/theses/1957

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

# THE STRATIGRAPHY AND DEPOSITIONAL HISTORY OF THE DEADWOOD FORMATION, WITH A FOCUS ON EARLY PALEOZOIC SUBSIDENCE IN THE WILLISTON BASIN

by

Anthony H. Sarnoski, Jr. Bachelor of Science in Geology, Richard Stockton College of New Jersey, 2011

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota December 2015 This thesis, submitted by Anthony H. Sarnoski, Jr in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Richard D. LeFever, Ph.D., Chairperson

Nels F. Forsman, Ph.D., Committee Member

William D. Gosnold, Ph.D., Committee Member

This thesis is being submitted by the appointed advisory committee as having met all of the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.

Wayne Swisher

Dean of the School of Graduate Studies

ecemba 2, 2015

Date

#### **PERMISSION**

Title The Stratigraphy and Depositional History of the Deadwood Formation,

With a Focus on Early Paleozoic Subsidence in the Williston Basin

Department Geology

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copy for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication use shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the university of North Dakota in any scholarly use which may be made of any material in my thesis.

Anthony H. Sarnoski, Jr.

December 20, 2015

## TABLE OF CONTENTS

| LIST OF FIG | GURES                                                 | vi  |
|-------------|-------------------------------------------------------|-----|
| LIST OF TA  | BLES                                                  | X   |
| ACKNOWL     | EDGEMENTS                                             | xi  |
| ABSTRACT    |                                                       | xii |
| CHAPTER     |                                                       |     |
| I.          | INTRODUCTION                                          | 1   |
|             | Study Area                                            | 1   |
|             | Geological Setting                                    | 2   |
|             | Purpose                                               | 9   |
|             | Previous Works                                        | 10  |
|             | Methods                                               | 17  |
| II.         | DESCRIPTION OF THE DEADWOOD FORMATION                 | 29  |
|             | General Surface Stratigraphy                          | 29  |
|             | General Subsurface Stratigraphy                       | 32  |
|             | Stratigraphy of the Members of the Deadwood Formation | 33  |
|             | Member A                                              | 33  |
|             | Member B                                              | 38  |
|             | Member C                                              | 43  |
|             | Member D                                              | 50  |

|      |        |        | Member E                                     | 55  |
|------|--------|--------|----------------------------------------------|-----|
|      |        |        | Member F                                     | 59  |
|      | III.   | RESU   | LTS                                          | 66  |
|      |        |        | Isopach Maps                                 | 66  |
|      |        |        | Basin Subsidence                             | 67  |
|      | IV.    | INTE   | RPRETATIONS                                  | 87  |
|      |        |        | Deposition                                   | 87  |
|      |        |        | Basin Subsidence                             | 97  |
|      | V.     | CONC   | CLUSIONS                                     | 100 |
| APPE | NDIX   |        |                                              | 102 |
|      | Appen  | dix A. | General Well Information                     | 103 |
|      | Appen  | dix B. | Formation Tops                               | 114 |
|      | Appen  | dix C. | Formation Thickness                          | 135 |
|      | Appen  | dix D. | Core and Thin Section Descriptions           | 155 |
|      | Appen  | dix E. | General Information for the Novva® Software  | 224 |
|      | Appen  | dix F. | Specific Information for the Novva® Software | 227 |
| DEEE | DENICE | .C     |                                              | 251 |

## LIST OF FIGURES

| rigure rigure                                                                                                                          | Page     |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1. Map displaying the study area                                                                                                       | 2        |
| 2. Example of the gamma ray signature used to correlate the wells in this study                                                        | 3        |
| 3. Stratigraphic column for the Early Paleozoic section of the Williston Basin in North Dakota                                         |          |
| 4. A map displaying the general outline of the Williston Basin                                                                         | 5        |
| 5. A map displaying the major structural features found within the Williston Basin and the surrounding areas                           | 6        |
| 6. A map displaying the Precambrian basement rocks underlying the Williston Basin and the surrounding areas                            | 8        |
| 7. A map showing all seven wells used in the basin subsidence study are how they are orientated in the cross section                   |          |
| 8. A cross section of all seven wells used in the basin subsidence study display their relationship to each other                      |          |
| 9. Geologic map of the South Dakota region of the Black Hills                                                                          | 30       |
| 10. Description of the type section of the Deadwood Formation as described by Nelson Darton and Sidney Paige in 1925                   | 31       |
| 11. A photograph of core from NDGS #7087 at a depth of 11,669'. Disp glauconitic quartz arenite found in the upper section of Member A |          |
| 12. A photograph of core from NDGS #7087 from a depth of 11,663'. Displaying the transformation of glauconite grains to hematite       | 36       |
| 13. A photograph of core from NDGS #6624 at a depth of 9,308'.  Displaying a basal conglomerate directly overlying the Precambrian     | gneiss36 |

| 14. | A photograph of core from NDGS #6624 at a depth of 9,302°. Displaying a conglomerate from above the contact with the Precambrian gneiss. It is dominated by glauconitic quartz arenite                    | 7 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 15. | A photograph of core from NDGS #6624 at a depth of 9,238'. Displaying planar laminated glauconitic siltstone, with minor cross beds4                                                                      | 0 |
| 16. | A photograph of core from NDGS #291 at a depth of 13,322'. Characteristic light gray, packstone to grainstone limestone occurring in Member C4                                                            | 8 |
| 17. | A photograph of core from NDGS #291 at a depth of 13,286'. An example of the burrow-mottled limestone found in Member C, contain siliciclastic mudstone laminae and intraclastic wackestone and packstone | 0 |
| 18. | A photograph of core from NDGS #291 at a depth of 13,233'. An example of the burrow-mottled, silty, calcareous mudstone at the base of Member D5                                                          | 2 |
| 19. | A photograph of core from NDGS #291 at a depth of 13,193'. An example of the gradation upwards to a fine-grained, siliciclastic burrow-mottled mudstone5                                                  |   |
| 20. | A photograph of core from NDGS #291 at a depth of 13,171'. An example of the siltstone and sandstone overlying the mudstone                                                                               | 4 |
| 21. | A photograph of core from NDGS #291 at a depth of 13,124'. Example of the interbedded siltstone and sandstone occurring at the top of Member D5                                                           | 6 |
| 22. | A photograph of core from NDGS #3268 at a depth of 12,797'. Crossbedded quartz arenite which occurs at the base of Member E                                                                               | 8 |
| 23. | A photograph of core from NDGS #3268 at a depth of 12,643'. An example of the fossiliferous limestone lithotype which occurs at the top of Member E                                                       | 0 |
| 24. | A photograph of core from NDGS #13405 at a depth of 14,329. Displaying hydrogen sulfide staining                                                                                                          | 2 |
| 25. | A photograph of core from NDGS #13405 at a depth of 14,330'. Displaying intense horizontal and vertical burrows                                                                                           | 3 |
| 26. | A photograph of core from NDGS #13405 at a depth of 14,301'. Displaying interlayered carbonaceous shale with fossiliferous zones                                                                          | 5 |
| 27. | Isopach map for Member AB of the Deadwood Formation, displaying change in unit thickness                                                                                                                  | 8 |

| 28. | Isopach map for Member A of the Deadwood Formation, displaying change in unit thickness  | 69 |
|-----|------------------------------------------------------------------------------------------|----|
| 29. | Isopach map for Member B of the Deadwood Formation, displaying change in unit thickness  | 70 |
| 30. | Isopach map for Member C of the Deadwood Formation, displaying change in unit thickness  | 71 |
| 31. | Isopach map for Member D of the Deadwood Formation, displaying change in unit thickness  | 72 |
| 32. | Isopach map for Member E of the Deadwood Formation, displaying change in unit thickness  | 73 |
| 33. | Isopach map for Member F of the Deadwood Formation, displaying change in unit thickness. | 74 |
| 34. | Burial history plot of NDGS #1385                                                        | 76 |
| 35. | Tectonic subsidence curve of NDGS #6228                                                  | 77 |
| 36. | Tectonic subsidence curve of NDGS #1385                                                  | 78 |
| 37. | Tectonic subsidence curve of NDGS #2373                                                  | 79 |
| 38. | Tectonic subsidence curve of NDGS #3844                                                  | 80 |
| 39. | Tectonic subsidence curve of NDGS #4321                                                  | 81 |
| 40. | Tectonic subsidence curve of NDGS #7340                                                  | 82 |
| 41. | Tectonic subsidence curve of NDGS #8169                                                  | 83 |
| 42. | A map displaying the shoreline and general basin outline during the Late Cambrian period | 88 |
| 43. | A map displaying the shoreline during the Precambrian Era                                | 89 |
| 44. | A map displaying the shoreline and basin outline during the Early Ordovician period      | 91 |
| 45. | Simplified description of the progradational succession occurring in members C through F | 92 |

| 46. | Model of the depositional environment for members C through F                                                                                                                           | 93 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 47. | Diagram of the deposition of members C through F of the Deadwood Formation                                                                                                              | 94 |
| 48. | Illustration of an example of rarefaction-induced fragmentation resulting in the conglomerate and soft sediment deformation occurring in cores outside of the Newporte impact structure | 96 |
| 49. | Example of conglomerate of sedimentary fragments, as well as intense soft sediment deformation                                                                                          | 96 |
| 50. | Sea-level changes throughout the Cambrian and Ordovician                                                                                                                                | 98 |

## LIST OF TABLES

| Table |                                                                                                                                      | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Raw Tectonic Subsidence Data From NDGS #1385. The ~ Symbol Represents an Unconformity                                                | 84   |
| 2.    | Results From the 7 Central Wells. Total Tectonic Subsidence Values, in Feet, for Member F Through Member A of the Deadwood Formation | 85   |
| 3.    | Average Tectonic Subsidence Values, in Feet, Per Million Year for                                                                    | 0.=  |
|       | Member F Through Member A of the Deadwood Formation                                                                                  | 85   |

#### **ACKNOWLEDGEMENTS**

I would like to thank my advisor, Dr. Richard D. LeFever, and my committee members, Dr. Nels F. Forsman, and Dr. William D. Gosnold, for their helpful suggestions and critical review of the manuscript. I would like to specially thank Dr. Richard D. LeFever for his help and guidance during my thesis work, and for suggesting the topic to me.

I would like to express my gratitude to the staff at the Wilson M. Laird Core and Sample Library and the Saskatchewan Subsurface Geological Laboratory for providing easy access to their cores, thin-sections, and logs. Also a special thank you to Dr. Doug Waples and Dr. Doug Neese of Sirius Exploration Geochemistry for allowing me complete access to their Novva® software.

I would like to thank all of my friends and family from New Jersey who continued to love and support me regardless of how long I was away for and all of the friends I have made in North Dakota who always made me feel at home.

Most of all I want to thank my parents and my sister for their unyielding love and support every day.

#### **ABSTRACT**

The Deadwood Formation is an assemblage of siliciclastic, carbonate, and evaporite sedimentary rocks in North Dakota, South Dakota, Montana, Wyoming, Manitoba, and Saskatchewan. The majority of the lateral extent of the Deadwood Formation is in the subsurface of the Williston Basin, where it is the basal lithostratigraphic unit. Deposition began roughly 501 million years ago, as the Sauk sequence reached the exposed Precambrian igneous and metamorphic rock of the North American Craton.

Six identifiable and widespread gamma ray markers occur in the well logs, dividing the formation into six informal units, label members A through F in ascending order. The initial deposits on the craton were conglomerates and sandstones of the Cambrian Member A. These sediments were overlain by glauconite rich, siltstones and fine-grained sandstones of the Cambrian and Ordovician Member B. After the deposition of Member B, three regressive-transgressive sequences took place, depositing a succession of sandstones, limestones, dolomudstones, siliciclastic mudstones, and calcareous siltstones. These deposits represent the Ordovician members, C, D, E and F.

Using the thickness, depositional environments, age of each member, and other well information, tectonic subsidence values were determined using backstripping analysis. This analysis was completed by inputting all of the information into Novva®, a 1D geological modeling software released by Sirius Exploration Geochemistry Inc. Data

collected from well logs and core, other data researched by the author, and information from previous works was combined with information and calculations supplied by Novva®. The results produce an accurate computation of the depositional history for the seven wells that penetrated all six members of the Deadwood Formation and the Precambrian basement.

Prior to and at the start of Deadwood deposition the Williston Basin did not exist. Evidence from isopach maps created for each member of the Deadwood Formation and the results from Novva® concluded that subsidence in the area, now known as the Williston Basin, did not begin until Member C was being deposited. This places the initiation of the Williston Basin to be roughly 485 to 482 million years ago.

#### **CHAPTER I**

#### INTRODUCTION

#### **Study Area**

The Deadwood Formation and its chronostratigraphic equivalents occur throughout much of the Midwest of the United States. Due to hydrocarbon production in the area, wells are abundant in areas with oil plays and lacking in areas without oil. This has limited the study area to most of North Dakota, a large majority of South Dakota, eastern Montana, southeastern Saskatchewan, and the extreme southwestern corner of Manitoba (Figure 1). Members A and B of the Deadwood Formation occur outside of the study area, especially to the west and north in Canada and in the northwestern corner of Wyoming. The study area covers most of the Williston Basin.

The overall area of the study area is quite large but the area of data is very small (Figure 1). The densest cluster of wells is near the Nesson Anticline in western North Dakota, the northern border of Montana and North Dakota, and right above the border in Saskatchewan. The Deadwood Formation is the basal lithostratigraphic unit where it occurs, with only the Precambrian basement rock below it. The Precambrian consists of igneous and metamorphic rocks which are much more difficult to drill through than sedimentary rock. Along with currently low interest in oil and gas production from the Deadwood Formation and increased costs of deep wells, most wells have only drilled the upper portion of the Deadwood Formation, especially towards the center of the basin.

This area in western North Dakota is the most important to the study; the thickest and most complete sections of the Deadwood Formation are preserved here.

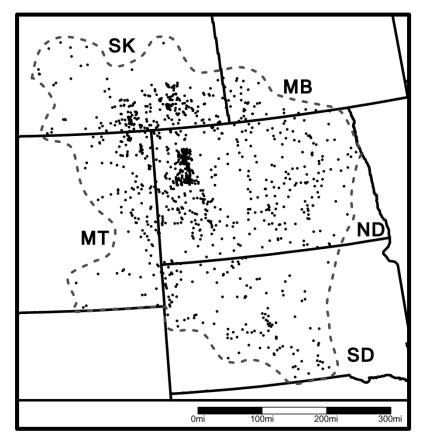



Figure 1. Map displaying the study area. The boundary is represented by the hashed line, the points represent wells used in this study.

#### **Geological Setting**

The Deadwood Formation occurs almost entirely in the subsurface. The only outcrop exposures occur in limited areas of the Black Hills of South Dakota and Wyoming. It is a heterogeneous combination of numerous different lithologies, including varying amounts and combinations of sandstones, siltstones, shales, limestones, and evaporites. The division of the formation into six members (Figure 3) is determined by distinctive and widely traceable gamma ray signatures (Figure 2). These markers relate to changes in lithology but similar lithologies are found in multiple members.

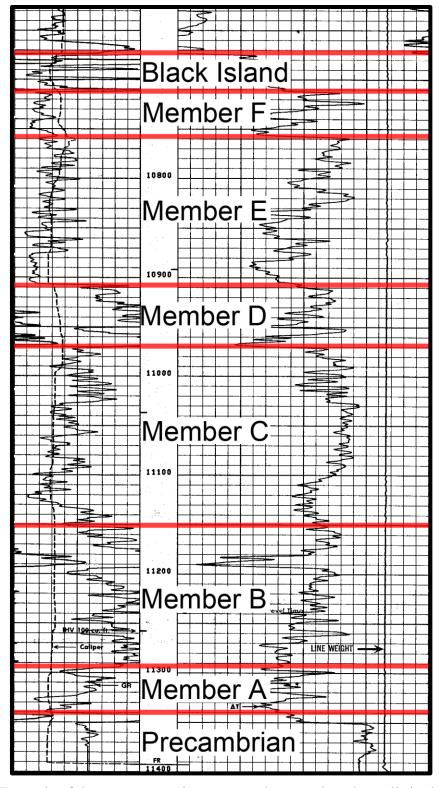



Figure 2. Example of the gamma ray signature used to correlate the wells in this study. Example is a borehole compensated sonic log from NDGS #7340.

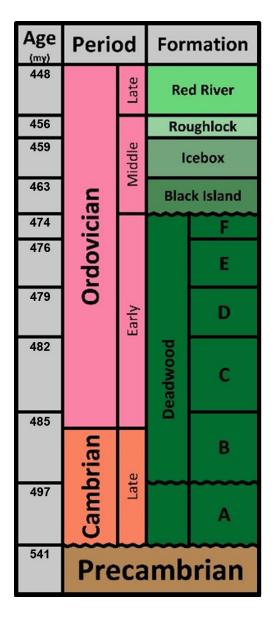



Figure 3. Stratigraphic column for the Early Paleozoic section of the Williston Basin in North Dakota. (Modified from Murphy et al., 2009; Cohen et al., 2013).

The isopach map of the Deadwood Formation closely resembles the general structure of the basin. The Williston Basin is northwest-southeast trending and has a roughly oval shape with various structures (Figure 4). It has a maximum thickness slightly greater than 16,000 feet and its oblong shape has an area of roughly 150,000 square miles. It is located in the western three-fourths of North Dakota, northwestern

South Dakota, eastern Montana, southeastern Saskatchewan, and the extreme southwest corner of Manitoba. The major features that affect Deadwood deposition are the Nesson and Cedar Creek anticlines and the Newporte impact structure (Figure 5). The Williston Basin is not tectonically active and the Nesson and Cedar Creek anticlines are believed to be caused by preexisting fault systems in the Precambrian basement rocks underneath the basin. Early oil exploration was focused on these and other smaller scale structures throughout the basin.



Figure 4. A map displaying the general outline of the Williston Basin. (Modified from Pitman et al., 2001).

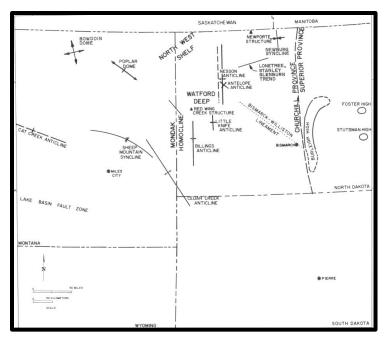



Figure 5. A map displaying the major structural features found within the Williston Basin and the surrounding areas. (Modified from Gerhard et al., 1982).

The Newporte structure is a three kilometer wide impact structure located in Renville County, North Dakota, near the border with Saskatchewan (Clement and Mayhew, 1979). The impact either occurred during the deposition of Member B or at the beginning of deposition of Member C of Deadwood Formation. Stratigraphic analysis of the Deadwood in Renville County is difficult because all of the cored intervals of the Deadwood Formation in Renville County were drilled in the impact structure. There are not any other cored intervals nearby to correlate with. A lot of attention was spent in this area in the 1970's because oil was produced from the Deadwood within the impact structure. These cores display an intense breccia of metamorphosed early Deadwood deposits and Precambrian basement rock, intermixed with unaltered siltstones and sandstones. The brecciated texture of the rock allows for an increase in porosity and permeability, creating a good reservoir unit. This is similar to the Red Wing Creek impact structure located in McKenzie County, North Dakota (Barton et al., 2010),

although the Red Wing Creek impact affects Mississippian through Triassic strata (Brenan et al., 1975).

Resting nonconformably above the Precambrian basement rock is the first evidence of deposition in the Phanerozoic Eon. These rocks represent the Upper Cambrian to Lower Ordovician Deadwood Formation. The Deadwood Formation was deposited as global sea level began to rise, slowly submerging the craton with a shallow sea. This rise in sea level is referred to as the Sauk sequence, one of the six major depositional sequence during the Phanerozoic Eon (Sloss, 1963).

At the top of Deadwood Formation there is a major unconformity, representing the end of the Sauk sequence and characterized by extensive erosion and non-deposition. Overlying this unconformity is the Middle Ordovician Winnipeg Group, in ascending order, the Black Island, Icebox, and Roughlock Formations. The Deadwood Formation extends wider than the depositional limits of Winnipeg Group in central Montana and Saskatchewan, in those areas the Deadwood Formation is unconformably overlain by the Ordovician Red River Formation or its lithostratigraphic equivalent, the Bighorn Dolomite (Anderson, 1988).

Wells that reach the underlying Precambrian basement rocks are scattered throughout the study area but most of these wells are located near the edge of Williston Basin, where the Precambrian is much shallower. The composition of the basement rock underneath the Williston Basin is not continuous throughout the entire basin, with a major transition underneath the deepest area (Figure 6).

The Precambrian basement consists of two Archean cratons, the Wyoming Craton to the west and the Superior Craton to the east, which are separated by Proterozoic

oceanic sediments of the Trans-Hudson Orogenic Belt (Green et al., 1985). The Wyoming Craton underlies Wyoming, Montana, western Saskatchewan, the western one-fourth of South Dakota, and the extreme southwestern corner of North Dakota. The Wyoming Craton is composed of middle Archean gneisses (Mueller et al., 1993). The Superior Craton occurs beneath eastern North Dakota, eastern South Dakota, and central and eastern Manitoba. The Superior Craton is the same age as the Wyoming Craton and consists of granites and granulite facies gneiss (Card, 1986). Dividing these two cratons is the Trans-Hudson Orogenic Belt which runs nearly north-south at about -102° longitude (Figure 6). This belt crosses through western North Dakota and South Dakota and along the border of Saskatchewan and Manitoba.

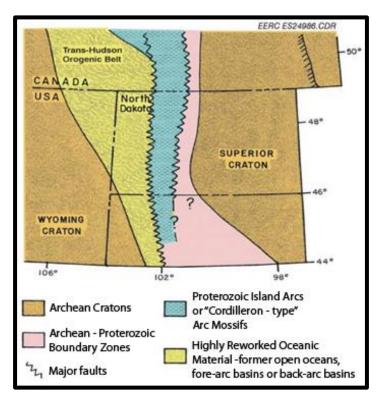



Figure 6. A map displaying the Precambrian basement rocks underlying the Williston Basin and the surrounding areas. (Modified from Fischer et al., 2005; after Green et al., 1985).

The deepest well to reach the Precambrian, NDGS #6228, is located in the northeastern corner of Billings County. The top of the Precambrian is at a depth of 15,265 feet. This well also penetrates the maximum thickness of the Deadwood Formation, 906 feet. The top of the Precambrian is estimated to be even deeper than this. NDGS #6228 is not at the center of the basin, but there are no wells closer to the center that penetrate the Precambrian. NDGS #8626 is located 47 miles closer to the center, in north-central McKenzie County, and the top of the Black Island Formation is at 15,188 feet, with a total depth of 15,300 feet. The top of the Black Island Formation is 906 feet deeper than it is in NDGS #6228, unfortunately this well does not reach the Deadwood Formation nor the Precambrian. Using the slope of the basin near the center of the basin, the Precambrian would be reached at a depth of around 16,170 feet, this is an estimate.

#### **Purpose**

In the past studies of the Deadwood Formation have been quite rare (Carlson, 1960; Lochman-Balk and Wilson, 1967; Anderson, 1988; Greggs, 2000). The two more recent studies were regional, with Anderson (1988) focusing on North Dakota and Greggs (2000) focusing on Western Canada. With the increase in drilling and exploration in the Williston Basin and surrounding areas an abundance of new information has become available, mostly due to the wireline logs associated with these new wells allowing for more accurate correlations across larger areas. There are also five new cored intervals that were not previously available. Cored intervals produce the most useful information; unfortunately they are very uncommon; only about 10% of the wells drilled to the Deadwood have cored intervals available and none capture the entire Deadwood Formation.

The growth of technology has also played an immense part in making this study more informative. In the nearly 30 years since Anderson's study, internet databases have allowed for a more expansive study to be performed and the growth of computing power has allowed for programs, such as Petra®, Surfer®, and Novva®, to offer much more accurate results.

#### **Previous Works**

#### **Surface Stratigraphy**

Discussions of the Lower Paleozoic rocks in the Williston Basin and the northern Black Hills have been challenged by many authors. The stratigraphy has been described and reassessed numerous times and with the classification and age of these units debated heavily. Early studies lack of subsurface data, missing fossiliferous intervals, and a lack of continuous outcrop data were the main reasons for differing opinions. With the addition of new wells and information these early hypothesis' are being confirmed or proven wrong and the Deadwood Formation is being understood even better.

The first mention of the Cambrian and Ordovician rocks in the study area was by Newton and Jenney (Newton, 1879). They went to the Black Hills on a United States Geological Survey scientific expedition to map the Black Hills and to confirm claims of gold in the region. In their geologic assessment they grouped all of the Lower Paleozoic units together and determined that they were correlative to the Potsdam sandstone and placed in the Potsdam Period, which is Silurian in age.

In 1901 Thomas Jaggar (Jaggar and Howe, 1901) came to the Black Hills to map the underlying igneous intrusions of South Dakota and Wyoming. He did not apply a name to the strata overlying the intrusions but he noted that along the west side of Whitewood Creek outside of Deadwood, South Dakota, was the type locality for the strata. The units that make up the outcrop along Whitewood Creek were officially named by Darton, 1901, the same year as Jaggar's publication. In this publication Darton labeled the Ordovician units as the Whitewood Limestone and the Cambrian units as the Deadwood Formation. His publication in 1904 makes a minor change by stating that the top of the Deadwood was overlain by a twenty-five foot section of siltstone, which was directly overlain by the Whitewood Dolomite (Darton, 1904). He compared fossils found throughout the unit with ages produced by Charles Walcott and labeled the Deadwood Formation as Middle Cambrian. In 1925 Darton, along with Sidney Paige, reevaluated the outcrops in the Black Hills and determined that the siltstone was a part of the Deadwood Formation and also determined that the unit was Late Cambrian instead of Middle Cambrian (Darton and Paige, 1925).

The first major difference in opinion came in 1936 when William Furnish, Edward Barragy, and Arthur Miller published a paper on fossils they found in the type section of the Deadwood Formation. They discovered that the fossils in the upper siltstone and gray shale beds were of Ordovician age (Furnish et al., 1936). These fossiliferous beds are between the Whitewood Dolomite and the *Skolithos*-burrowed sandstone. They noted that no diagnostic fossils occur in the *Skolithos*-burrowed sandstone; therefore the age is unknown. They still decided to combine it with the underlying strata and refer to it as part of the Deadwood Formation. During the same time Harold Meyerhoff and Christina Lochman also studied the fossils in the Black Hills as well. They published three abstracts reporting that they only found Upper Cambrian fossils in the Deadwood rocks of the Black Hills. They suggested that the thinning of the

formation was due to erosion of the younger Deadwood deposits (Meyerhoff and Lochman, 1935). In 1950 Lochman published another paper with Donald Duncan; they discovered Early Ordovician fossils in the sandstone of Crook County, Wyoming and in Spearfish Canyon, South Dakota, which are located in the Black Hills. They believed that these sandstone units were correlative to the *Skolithos*-burrowed sandstone at the Deadwood type section. They suggested that sedimentation was continuous from the Late Cambrian through the Early Ordovician (Lochman and Duncan, 1950).

The next major change came in 1952 when Melville McCoy published a paper on the Ordovician sediments in the Black Hills. In this publication he removes the Skolithos-burrowed sandstone from the Deadwood Formation and names it the Aladdin sandstone (McCoy, 1952). The shale above that was given the name Ice Box shale and the Roughlock siltstone refers to the siltstone beds in between the shale and Whitewood Dolomite. With this separation of the Deadwood Formation and the other overlying units, work was now focused on classifying the different lithologies of the Deadwood. In 1955 Robert Butler, Raymond Battin, Robert Plank, and George Winston published a paper attempting to correlate Middle and Lower Paleozoic rocks throughout the southern Williston Basin and the northern Black Hills. With these correlations they were the first to divide the Deadwood Formation into three members; a basal conglomerate, middle shale and limestone, and upper glauconitic quartz sandstone (Butler et al., 1955). This report did not agree with McCoy's classification and only separated the Lower Paleozoic beds into the Deadwood Formation and the Whitewood Formation. He included the Skolithos-burrowed sandstone and the underlying limestone conglomerate in with the Whitewood. He divided the Whitewood into five members, where the Whitewood,

Roughlock, Icebox, Aladdin, and the top of the Deadwood are equivalent to members E, D, C, B, and A, respectively.

The confusion continued with the first paper presented by Clarence Carlson in 1958 where he bases his stratigraphy on McCoy, 1952. Carlson kept the Whitewood Formation unchanged and changed the Roughlock and Icebox Formations into the Roughlock and Icebox members of the Winnipeg Formation. He also added the Aladdin Formation and members B and A (Butler et al, 1955) back into the Deadwood Formation.

The first comprehensive study of the paleogeography and paleoecology of the Deadwood Formation in the Black Hills was by Joseph Kulik in 1965. In his thesis he divided the rock units in a similar fashion to Furnish et al. (1936). He separated the Whitewood and Winnipeg Formations from the Deadwood Formation (Kulik, 1965), with the Winnipeg Formation containing the beds that make up the Roughlock and Icebox Formations (McCoy, 1952). He then divided the Deadwood Formation into three members. An upper sandstone, limestone, and minor conglomerate, which included the *Skolithos*-burrowed sandstone, a middle interbedded shale and limestone, and a basal sandstone, limestone and limestone pebble conglomerate. He concluded that three members comprised of 25 sedimentary facies that he interpreted to have been deposited in various near shore, tidal-flat, lagoonal, and deltaic environments during three transgressive-regressive sequences.

In 1972 Ladle finished an unpublished thesis of a detailed description of the rocks and sedimentation in the Deadwood Formation in the Black Hills. He placed the boundary of the Cambrian and Ordovician at the base of the *Skolithos*-burrowed sandstone. He then divided the portion of the Deadwood underneath this sandstone into

five members (Ladle, 1972). Similarly to Kulik, he interpreted through his petrographic study that the Deadwood was deposited in nearshore, deltaic, tidal-flat, off-shore-bar, lagoonal, and bay environments and that the different facies changes were due to multiple transgressive-regressive sequences.

A more detail paleoecological and paleoenvironmental study was completed by Stanley, 1984. He used ichnofossils of the Deadwood in the Black Hills to separate the Deadwood into six lithologic units. He used *Skolithos* and *Cruziana* ichnofacies and determined that they represented deposition in upper and lower intertidal sand flats, shallow near shore settings, and localized carbonate flats and restricted subtidal lagoons (Stanley, 1984).

#### **Subsurface Stratigraphy**

As stated earlier, the Deadwood Formation occurs almost completely in the subsurface. The first mention of the Deadwood Formation in the subsurface was by Wilson Laird, referring to strata encountered in shallow wells of eastern North Dakota, the majority of these were water wells (Laird, 1941). Interbedded sandstones and shales of NDGS #8 were classified by Virginia Kline as Cambrian and assigned to the Deadwood Formation. NDGS #8 had a total depth of 3,884' while more recent surrounding wells did not reach the top of the Deadwood Formation until at least 5,000'. Seager and others decided that the strata mention above was more likely Ordovician and not Cambrian (Seager, 1942).

In North Dakota the first well to reach the Ordovician section of the Deadwood Formation was NDGS #15 in 1942. This well, located in Oliver County in central North Dakota, allowed for new information that was previously unattainable. Descriptions of

the Deadwood were no longer restricted to surface outcrops in the Black Hills. At a total depth of 8,850', NDGS #15 reached the Precambrian and encountered all members of the Deadwood Formation except Member F. Core was not taken from the Deadwood, but drill cuttings recovered provided information about the stratigraphy and lithology.

Oil exploration was just beginning in North Dakota in the 1950s and wells reaching the Deadwood Formation were uncommon. Interest in the stratigraphy of the Cambrian and Ordovician units was not discussed until the mid-1950s. By 1960 more than 85 wells reached the Deadwood Formation in North Dakota.

Early stratigraphic studies were completed by Ross (1957) on five wells in eastern Montana. The study focused on brachiopods and corals from the Late Ordovician and trilobites from the Early Ordovician. He stated that lithologic features in the cores closely resembled the upper Deadwood strata found in the northern Black Hills and were assigned to the formation (Ross, 1957). With no significant separation between Ordovician and Cambrian strata, the boundary is located based on fossil evidence.

Wire-line logs were useful in describing the Winnipeg and Deadwood Formations by Carlson (Carlson, 1958; 1960), he noted three distinct units found within the pre-Winnipeg strata, a lower sandstone unit, a middle carbonate and shale unit, and an upper sandstone unit. Well control was too poor to conclude anything about these divisions and he kept the Deadwood Formation undivided. He also included the <u>Skolithos</u> burrowed sandstones within the Deadwood Formation.

Based on the work by LeFever, Thompson, and Anderson (LeFever et al., 1987).

Anderson (1988) master's thesis was a detailed stratigraphic report from 363 wells throughout North Dakota, South Dakota, Montana, Wyoming, Saskatchewan, and

Manitoba. Using primarily gamma ray response signatures, the Deadwood Formation was divided into six informal members; in vertical succession A-F. More detail of the six members was later provided by LeFever (LeFever, 1992; LeFever, 1996), similar work was completed for the Canadian section of the Deadwood Formation by Greggs (2000).

#### **Basin Subsidence**

The location of the initiation of the Williston Basin has been discussed by various authors, (Ross, 1957; Carlson, 1960; Carlson and Anderson, 1965; Lochman-Balk and Wilson, 1967). These early reports relied on well data and descriptions from cored intervals of the Precambrian basement rock and Lower Paleozoic units to determine that downwarping occurred around the center of the basin. These reports were very limited, due to poor well control, however they introduced several questions and ideas that could be answered and expanded on when more well data was recovered.

Sleep, (1971) was the first author to factor in isostasy and to correct for sediment loading, this technique is referred to as backstripping. It is crucial in understanding basin subsidence. Sleep's study did not focus on the Williston Basin but his methods can be used in basins across the world. The results from these new calculations allowed the tectonic effects on subsidence to be isolated. A few authors improved on this equation by adding variables to the equations to make them more accurate (Watts and Ryan, 1976; Steckler and Watts, 1978).

There are two main ideas for subsidence throughout the basin, both of which have been studied by numerous authors: continuous subsidence throughout the basin's history (Ahern and Mrkvicka, 1984; Fowler and Nisbet, 1985, Sleep, 1971; Klein and Hsui, 1987) or episodic subsidence (DeRito et al., 1983; Bond and Kominz, 1991; Gerhard et

al, 1982; Kent, 1987). These models have proposed various basin origin mechanisms including thermal contraction of the lithosphere, phase change of the lithosphere, and crustal warping related to shear zones. In the Williston Basin there is no evidence of orogenic deformation or peripheral tectonic distortion.

Basin subsidence in the Williston Basin was not well understood until LeFever et al. (1987) used backstripping methods developed by Sleep (1971). Previous reports relied on analyzing depositional trends and theoretical models. From there more detailed discussions were developed by Anderson (1988), LeFever (1996), and this report.

#### **Methods**

#### **Isopach Maps**

Isopach maps are an important tool to understanding how the rock units of the subsurface are oriented. They are constructed by determining the thickness of the unit for numerous wells and then filling in areas of poor well control through geostatistical analysis. The maps are produced by displaying thickness as contour lines of equal thickness of an area. For this study the unknown values were interpolated using the Kriging method, which gives the best linear unbiased prediction for the unknown values. Variograms were used to ensure that results of the Kriging were tailored to each unique data set. The variogram describes how the thickness values change between two points (Cressie, 1991). A linear variogram model was produced for each member. When combined, the resulting model produces the most accurate estimation of thickness trends in the Deadwood Formation and presents them as an isopach map. The rock units of the Williston Basin have an average regional dip ranging from 1% to 3% (Sandberg, 1962), all of the wells that reach the Deadwood Formation have only vertical wellbores and

therefore calculations were not needed to convert stratigraphic thickness to true vertical thickness.

The tops of overlying formations and the members of the Deadwood Formation were picked in LogSleuth® and Petra®. Early work was performed in LogSleuth® and then the whole project was imported into Petra® and was completed using only Petra®. The data collected in Petra® are easily exported as a text file. The text file includes an American Petroleum Institute number (API) for any well in the United States or Unique Well Identifier (UWI) number for Canadian wells. Wells in North Dakota,

Saskatchewan, and Manitoba also have shorter well labels. Also included in the text file for each well are latitude and longitude coordinates, Kelly Bushing elevations, and the top of each formation or member, from the Red River Formation to the Precambrian basement rock. The text file can be imported into Microsoft Excel® where all of the data are easily visible and available to manipulate if needed. The main use of this Excel data sheet is to calculate the thickness of each formation or member when possible. To calculate unit thickness the depth of the top of the member is subtracted from the depth of the top of the underlying member.

To create isopach maps the thicknesses calculated are imported into Surfer®, a contour mapping program developed by Golden Software. An issue that is encountered when mapping the wells is that the coordinates provided in Petra® are in latitude and longitude. Latitude and longitude are good for referencing wells in relation to one another but produce a flat, not realistic map. For this study the coordinates were converted to UTM, using the Lambert Conformal Conic Projection. Conic projections are the best for displaying large areas in the middle latitudes, with the central latitude at

45° N and the central longitude at 110° W. The large majority of wells in this study fall between the latitudes of 46° N and 50° N and the longitudes of 97° and 105° W. The study area is fairly large and using a more localized projection would have caused too much distortion.

As mentioned earlier, to the east and north Member B becomes increasingly sandier. Near the erosional limits of the member the gamma-ray response becomes very similar to the underlying Member A. This makes it difficult to accurately pick the top of Member A. In this area the two members are combined and referred to as Member AB. When looking at the whole study area it is important to be able to map members A and B separately but it would not be useful to map Member AB by itself since it would just show a very thin map on the edge of Member B. To include as much data as possible Member A, Member B, and Member AB are combined, whenever the Precambrian was reached, to produce the isopach map for Member AB. This map is displaying the thickness between the top of Member B and the top of the Precambrian basement rock.

#### **Basin Subsidence**

The wells for this part of the study were chosen based on their completeness of the stratigraphic column. An important factor was that the well reached the Precambrian basement rock below the basin. This allowed for analysis of the entire Deadwood section available in that area. There are 253 available wells in the study area that reach the Precambrian. These wells span the entire study area; the completeness of the stratigraphic column varies due to pre-Winnipeg erosion. The amount of information available varies greatly well to well. For example some wells only include basic electrical logs, where others include many different types of porosity and lithological

logs. The NDIC website was also very helpful in getting information from well files that was more difficult or even impossible to obtain from the other states and provinces. The most beneficial wells were determined after reviewing information from the oil and gas websites for the respective states and provinces, in addition to well data made available by the North Dakota Geological Society.

Seven wells penetrated all of the members of the Deadwood Formation and the Precambrian basement rock below; NDGS #1385, #2373, #3844, #4321, #6228, #7340, and #8169. A cross section was produced to show their relation to each other (Figure 7 and 8). These are the most important wells for this study not only because these wells offer the most complete package of data but also because they are located near the center of the basin, where subsidence initially began. Subsidence rates will be calculated from sedimentation which is more accurate that trying to calculate sedimentation rates from areas where erosion or possible nondeposition took place.

In this study understanding the subsidence history of the basin is approached in two ways; reviewing isopach maps and utilizing 1-D basin subsidence modeling software.

Reviewing isopach maps was the first method used to begin to understand the subsidence history of the Early Paleozoic of the Williston Basin. These were the same isopach maps used in the stratigraphy section of this paper and the methods are described above. Isopach illustrate thickness variations across entire units and variations in thickness of a unit can be due to a change in deposition. There are many different factors that can influence a shift in deposition, one of them being the onset of subsidence. In an

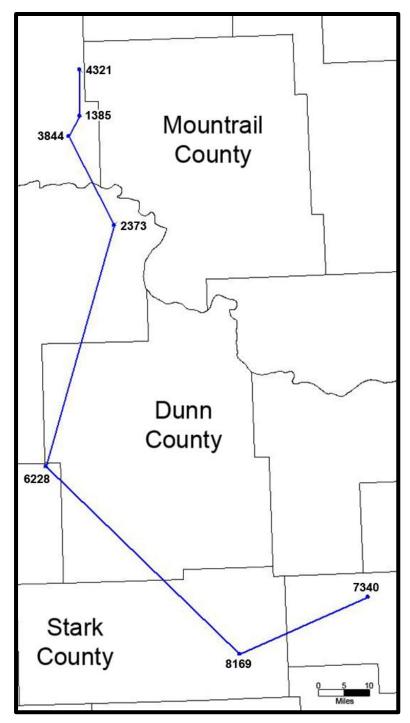



Figure 7. A map showing all seven wells used in the basin subsidence study and how they are orientated in the cross section. The numbers correspond to NDGS well labels.



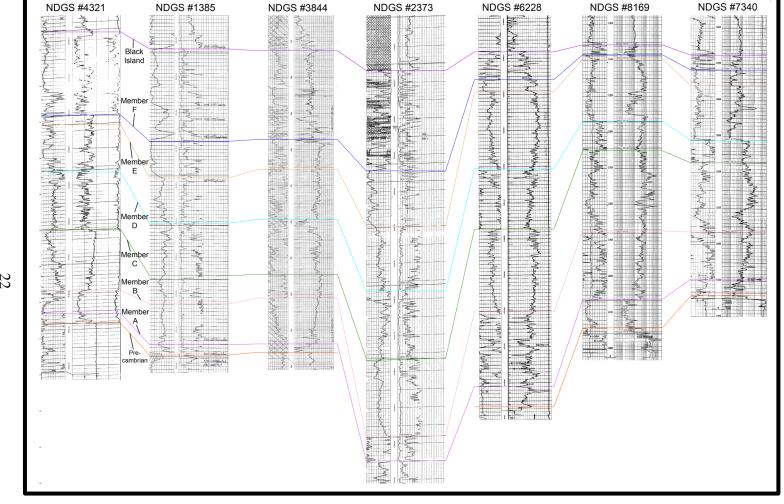



Figure 8. A cross section of all seven wells used in the basin subsidence study, display their relationship to each other. The labels represent the tops of each unit. The numbers correspond to NDGS well labels.

isopach map the onset of subsidence would be represented as a localized increase in unit thickness. This area in the focal point of subsidence and unit thickness would increase at the focal point of subsidence because this area would develop the most accommodation space, allowing for the most deposition.

The second method for analyzing basin subsidence is using basin subsidence modeling software. This study utilizes Novva®, a 1-D geologic modeling software released by Sirius Exploration Geochemistry. This software combines numerous variables, including unit thickness; porosity; temperature; depositional environments; and others, with calculations, including original depositional thickness; subsurface porosity; and bottom hole temperature, to develop a detailed understanding of the burial history of the study area. The variables and calculations used were discovered by the author's research, displayed on well logs, presented by other researchers, or supplied by the software itself.

To get the most out of this software it is important to ask what variables are needed, why are they important, and how are they found? Understanding which calculations are used and why is also important. Novva® is set up as an assortment of steps, each one needs to be filled out before you can move on to the next step. This makes sure that all variables are completed and that each model can be compared to other wells because they use the same variables. The beginning steps are for basic well information, latitude and longitude, ground elevations, kelly bushing elevation, and total depth of the well. This information is on the well's scout ticket and is used as a datum for all of the geologic data. It is also important to enter the basin type and basin forming events, which have been identified by previous authors. The Williston Basin is also

known as an interior sag basin, as it is referred to in Novva® (Einsele, 2000), which is formed due to continental sagging.

Geologic data for each well are entered after the basic well information. The top of thirty four units were added, these units completed the entire stratigraphic column of the Williston Basin. The author picked the top of the Red River Formation, Roughlock Formation, Icebox Formation, and Black Island Formations, the six members of the Deadwood Formation, and the Precambrian. The tops of the units above the Red River Formation were collected from the NDIC Oil and Gas Division's scout ticket website. Not all of the formations are recorded but there are enough there to represent the overburden as a heterogeneous mixture of lithologies. Using this data, present day thicknesses for each unit was calculated.

When dealing with subsidence modeling age is an important variable. This is stressed even more with this study because deposition of the Deadwood Formation only lasted about twenty-five million years. The division of the formation into six members results in very short timespans for each member. Age combined with the thicknesses allows us to estimate the rate of deposition for each unit. Since these are small time frames the addition or subtraction of one to two million years can greatly affect the subsidence rate. For the formations above the Deadwood the ages were derived from the USGS National Geologic Names Lexicon (USGS, 2015). These ages are used as general guidelines, so the results should only be interpreted for the Early Paleozoic history. Ages of the members of the Deadwood Formation are based on fossil research completed by Lochman (Lochman, 1964a; 1964b; 1966; Lochman-Balk and Wilson, 1967). Their results from Montana and North Dakota were compared with the data available to this

study to get the best estimates for time intervals. The Cambrian-Ordovician boundary is placed in the upper portion of Member B.

The point of this study was not to model the entire stratigraphic section of the study area, therefore only three unconformities are incorporated into the model. There are six major unconformities throughout the basin, representing the six major stratigraphic sequences (Sloss, 1984). This study is focused on the Early Paleozoic history, which is only influenced by three unconformities; the minor disconformity between members A and B of the Deadwood Formation, the major unconformity between the top of the Deadwood Formation and the Winnipeg Group, and the major nonconformity between base of the Deadwood Formation and the underlying Precambrian metamorphic and igneous rock (Figure 3). In order to get an accurate model of the entire history of the basin more recent unconformities should be added. The ages and erosion rates for these unconformities are estimated through known sedimentation rates of the units involved.

Lithologies of the units above the Deadwood Formation were found on the NDGS's North Dakota Stratigraphic Column and detailed lithologies for the Deadwood Formation were determined through detailed core and thin section descriptions by the author. Nearly all general lithologies, in addition to numerous variations, are built into Novva®. These can be combined together to specifically mimic the lithology seen in core. The lithologies that are found in Novva® already have many variables built into them including general porosity and permeability, compaction coefficients, and depositional characteristics. Understanding the detailed lithologies allows for

paleobathymetry, paleoelevation, and original depositional environments to be interpreted.

Present porosity data was obtained through either borehole compensated sonic or compensated neutron density logs, depending on available log types. Calculations were used to correct for changes in lithology. For porosity at a subsurface depth a few different equations are used depending on lithology, these equations are built into the software. When dealing with sandstones a modified equation from (Scherer, 1987) is used (Equation 1). This equation considers porosity ( $\phi_z$ ) to be a function of five factors; quartz content (Q), the Trask sorting coefficient (S<sub>o</sub>), maximum burial depth of the rock, in meters, (Z), age of the rock, in millions of years (A), and the overpressure, in psi, (OP).

$$\phi_z = 0.186 + 0.0473*ln(Q) + 0.1737 / S_o - 0.000038*Z - 0.0465*ln(A) + 0.019*OP / 1000*In(A) + 0.01$$

For siltstones, dolomites, conglomerates, and other mixed lithologies the equation from (Athy, 1930) is used (Equation 2). This equation considers porosity  $(\phi_z)$  to reduce exponentially, from the depositional porosity  $(\phi_0)$ , as maximum burial depth (Z) increases. A constant (b) is used depending on the depth of the unit.

$$\phi_{\rm z} = \phi_{\rm o} * e^{(-bZ)}$$

When calculating the subsurface porosity  $(\phi_z)$  for shales an equation from Baldwin and Butler (1985) is used. As maximum burial depth (Z) increases porosity of the rock is reduced as an exponential function.

$$\phi_z = 1 - (Z/6020)^{(1/6.35)}$$

The last equation that was used is to determine the subsurface porosity of limestones. Three different equations were determined empirically by Sirius Exploration Geochemistry, for their Novva® software, to better fit the measured porosities at different burial depths than one equation could. The first equation is used for very shallow units and derived from Athy (1930) (Equation 2). The wells used in this study were deeper than 500 meters, so only Equation 4 and 5 were needed. At depths between 0.1 and 3.5 kilometers the subsurface porosity ( $\phi_z$ ) is determined by a third-order polynomial using maximum burial depth (Z) and a constant ( $b_n$ ).

*Under 3.5km* 
$$\phi_z = b_3 * Z^3 + b_2 * Z^2 + b_1 * Z + b_0$$

(E.5)

*Over 3.5km* 
$$\phi_z = 0.02$$

Temperature is another important aspect of basin development because temperature influences the rate of chemical reactions, most notably cementation rates (Dotsey and Deighton, 2012). The majority of temperature readings are recorded on well logs as bottom hole temperature readings (BHTs). Temperature readings can also be found on drill stem tests and specific temperature logs, although these types of logs are not run for every well. Bottom hole temperatures are recorded at the completion of the well, after the drillstring is removed and the logging tools are lowered into the well. The well is

filled with a mixture of drilling fluid and formation fluid. The drilling fluid is cooler than the original formation fluid so the temperature recorded at the bottom is not representative of the actual temperature of the formation and a correction needs to be applied. Novva® has a default temperature correction built into the software, referred to as the MX-DX-EX, which is a combination the Denmark, Malaysia, and Mexico correction methods, determined by Doug Waples and others. The results from this correction are similar to the values received by using the Kehle correction. The MX-DX-EX correction is an unpublished method that has the following equation:

$$T_{corr} = (1 + 0.71938*e^{\text{-}000378*Z})*(T_{meas} - T_{surf}) + T_{surf} + 0.002481*Z - 0.7061*TSC + 3.955$$

$$2\sigma = -0.00000021972 * Z^2 + 0.0020112 * TSC^2 + 0.2702*TSC + 10.6397$$

Where Z is true vertical depth of the measurement, TSC (time since circulation) is the time it takes to stop drilling until the first measurement on the log takes place,  $T_{meas}$  is the measured temperature in °C, and  $T_{surf}$  is the surface temperature in °C calculated by Novva®'s proprietary equations for surface temperature as a function of latitude, global climate, and elevation. This equation is similar to Barker's (2000) equation, where L is latitude in degrees:

(E.8)

Temperature (C) = 
$$27.6 - 0.0414*L - 0.00599*L^2$$

#### **CHAPTER II**

## DESCRIPTION OF THE DEADWOOD FORMATION

# **General Surface Stratigraphy**

The only outcrops of the Deadwood Formation are in the Black Hills of South Dakota and they were not directly observed by the author. Photographs and detailed descriptions by previous authors were used to gain an understanding of the outcrops and how they correlate to the units studied in the subsurface. The Black Hills region is an irregular anticline formed by a localized uplift of the underlying Precambrian basement rocks. Subsequent erosion has exposed the Deadwood Formation as a relatively thin ring around the exposed metamorphic and igneous Precambrian (Figure 9). Figure 9 is modified from a map produced by Newton in 1879. The Deadwood Formation is presented as the light brown color outlining the light gray Precambrian rocks in the center. In the explanation of colors it is referred to as Potsdam. This map was created prior to the naming of the Deadwood Formation and Potsdam refers to the Late Cambrian to Early Ordovician Potsdam Sandstone found in New York. The Deadwood Formation and the Potsdam Sandstone are chronostratigraphic equivalents.

The exposures of the Deadwood Formation range from about 500 feet thick in the northern area to less than 50 feet thick toward the south and continue to thin out to the southeast (Darton and Paige, 1925). The exposed Deadwood Formation has been divided into three members (Figure 10); an upper sandstone, limestone, and minor conglomerate

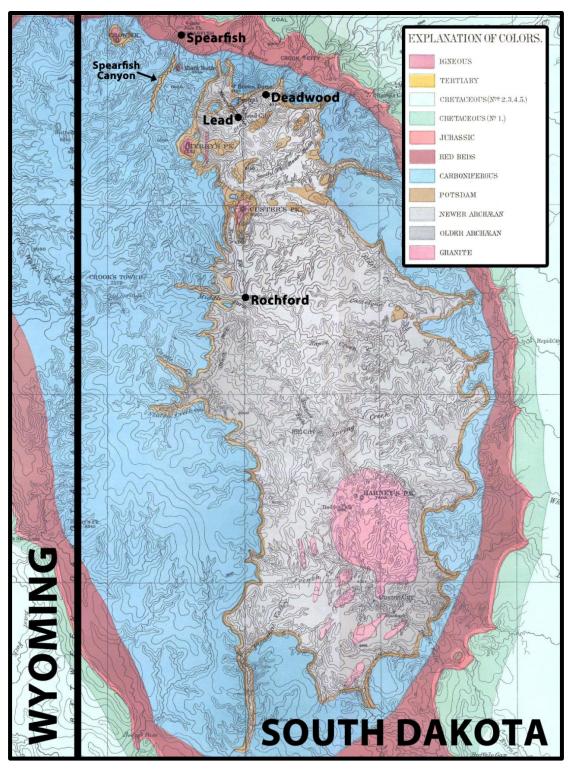



Figure 9. Geologic map of the South Dakota region of the Black Hills. Deadwood Formation outcrops are represented by the dull orange color dividing the blue Carboniferous deposits from the gray Precambrian rocks. It is labeled as Potsdam on the explanation of colors. (Modified from Newton, 1879).

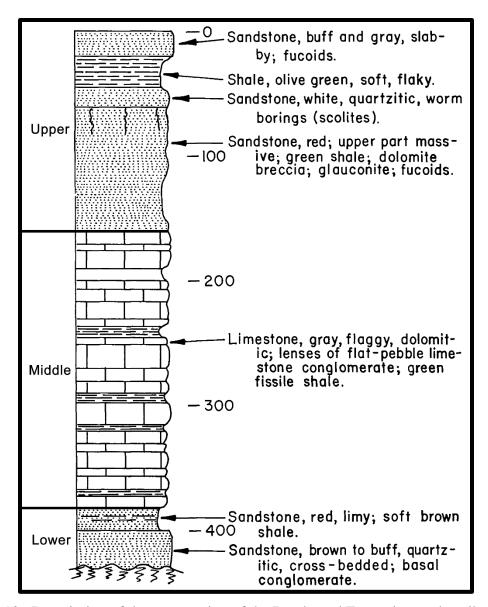



Figure 10. Description of the type section of the Deadwood Formation as described by Nelson Darton and Sidney Paige in 1925 (Modified from Steece, 1978).

member; a middle interbedded shale and limestone member; and a lower sandstone, limestone, and limestone-pebble conglomerate (Kulik, 1965). The upper member consists of brown to buff sandstone, containing commonly Skolithos borings and plant fossils, mostly fucoids (Steece, 1978). Towards the south it is overlain by greenish papery shale and in some places the shale is overlain by a thin bed of sandstone (Darton

and Paige, 1925). Comparing it to the subsurface the upper member of the Deadwood Formation at the type section can be correlated to Member C.

The middle member is mostly gray shale, containing considerable reddish-brown to tan sandstone and limestone, limestone conglomerate, and limestone breccia (Darton and Paige, 1925). This shale was correlated to the shale resulting in the high gamma values of Member B in the subsurface.

The lower member of the exposed Deadwood Formation is mostly quartzitic sandstone with abundant conglomerates. It ranges from 5 to 40 feet thick with an average thickness of 25 feet. The conglomerates consist of rounded pebbles, 4 to 6 inches in diameter, of white quartz and varying proportions of angular fragments of schist in a quartzitic, sandy brown matrix. The conglomerate merges upwards and laterally into reddish-brown sandstone and quartzite (Darton and Paige, 1925). This same lithology is found in the subsurface of Member A.

# **General Subsurface Stratigraphy**

Using gamma ray signatures from well logs the Deadwood Formation is separated into six members. The members are separated by significant changes in the gamma ray response. The changes relate to changes in lithology but minor changes in lithology are common throughout. During the deposition of the Deadwood small scale transgressions and regressions were common. Depositional environments correspond to sea level, as the sea transgressed environments shifted towards the center of the craton and as the sea regressed the environments shifted away from the center. Due to this similar lethargies repeat throughout the entire stratigraphic column of the Deadwood Formation

## Stratigraphy of the Members of the Deadwood Formation

### Member A

Member A was cored in seven wells throughout North Dakota; NDGS #3268 (14') in Billings County; NDGS #6401 (53'), NDGS #6473 (67'), NDGS #6624 (10'), NDGS #6684 (25'), NDGS #14725 (36') and NDGS #17467 (16') in Renville County. It was also cored in three wells throughout Saskatchewan; 58I075 (20'), 78L010 (31') and 97I438 (22'), and 98E189 (19').

Member A is the oldest member in the Deadwood Formation and is the basal sedimentary unit of the Williston Basin. It was previously described in the subsurface as the thin basal sandstone by Carlson (1960) and at the type section in South Dakota it was described at the lower member of the Deadwood Formation by Kulik (1965). It was deposited on top of the exposed Precambrian igneous and metamorphic basement rock, creating a nonconformity. For the most part this contact is easily recognizable by a sharp increase in gamma ray response and a sharp decline in resistivity. There are occurrences where the contact is masked by either in situ weathered Precambrian rock or Precambrian breccia that may have been deposited.

The contact between Member A and the overlying Member B has been challenged in previous studies. Evidence from the surrounding region (Lochman-Balk and Wilson, 1967) and evidence of hematite precipitation (Anderson, 1988), suggests that a very brief interval of subaerial exposure and possible erosion took place prior to the deposition of Member B. This created a disconformity between the two members. Towards the east and north Member B becomes sandier, making the log signature similar to Member A causing the contact between the two members difficult to identify.

Member A was reached in 150 wells and in five cores in North Dakota and four cores in Saskatchewan. Three dominant lithotypes are seen throughout this member: quartz arenite with varying degrees of calcite and glauconite; conglomerate; and granite breccia. This member is traced through well logs by having a clean, low gamma ray response, compared to Member B and the Precambrian.

Quartz arenite. The dominant lithology within core of Member A is quartz arenite. The arenite is commonly a very clean, white to light gray, fine to coarse grained, well sorted, rounded to well rounded, silica cemented sandstone. These characteristics give the member its identifiable low gamma ray response in logs.

Faint cross bedding is visible in some cored intervals but overall quite rare. The opposite is true in outcrops of the Black Hills, where cross beds are apparent in the exposed surfaces (Anderson, 1988). This can be due to a slight difference in mineral composition between the outcrop and subsurface, but more likely is due to differential weathering of the exposed unit, emphasizing the cross beds.

Fossil debris is very uncommon in the cored intervals, this is again different from the exposed outcrop sections. The type section contains abundant thin layers of phosphatic shell fragments (Anderson, 1988). Lochman (1964a) described thin intervals of interbedded shales and dolomites containing fossil fragments of hyoliths and brachiopods.

Towards the top of the member there is a shift from clean, quartz arenite to a calcareous, glauconitic arenite, with up to 40% glauconite grains (Figure 11). This becomes apparent in northern North Dakota and Canada. At the top of the member the



Figure 11. A photograph of core from NDGS #7087 at a depth of 11,669'. Displaying the glauconitic quartz arenite found in the upper section of Member A.

iron in the glauconite grains has been oxidized and produced hematite, resulting in a reddish brown, rust colored appearance (Figure 12).

Conglomerate. In some areas a basal conglomerate occurs and overlies the Precambrian basement (Figure 13). It consists of yellowish tan to brown, moderately poor to poorly sorted conglomerate, which contains subangular to rounded, limonite-stained pebbles and granules of metamorphic and sedimentary rocks. Unidentifiable fossil debris also occurs throughout the conglomerate. Further from the bottom, the conglomerate changes to grayish green in color and contain larger clasts of glauconitic quartz arenite (Figure 14). Very thin glauconitic and hematitic shale is found interbedded with the conglomerate.

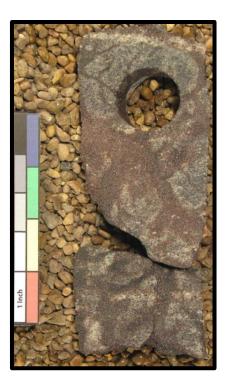



Figure 12. A photograph of core from NDGS #7087 from a depth of 11,663'. Displaying the transformation of glauconite grains to hematite.

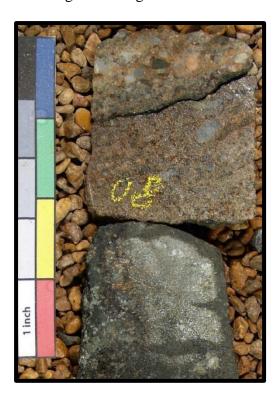



Figure 13. A photograph of core from NDGS #6624 at a depth of 9,308'. Displaying a basal conglomerate directly overlying the Precambrian gneiss.



Figure 14. A photograph of core from NDGS #6624 at a depth of 9,302'. Displaying a conglomerate from above the contact with the Precambrian gneiss. It is dominated by glauconitic quartz arenite.

Separating the conglomeratic intervals are fine grained, well sorted glauconitic arenite to horizontally bedded wacke. The conglomerate is also found in outcrop exposures at the type section, where clasts up to boulder size were found (Anderson, 1988).

**Granite breccia.** Member A is present over all of the areal extent of Deadwood in the study area and is underlain by the Precambrian basement rock. It some cores a weathered breccia of these metamorphic and igneous rocks occurs and in previous works

was labeled as a granite wash. This is different from the previously mentioned conglomerate. This section is described in core as large clasts of slightly weathered gneiss. These clasts have random orientations and are bonded together by a fine grained quartz matrix, with an abundant amount of glauconite.

### Member B

Member B was cored in seven wells throughout North Dakota; NDGS #6401 (131'), NDGS #6473 (100'), NDGS #6624 (104'), NDGS #6684 (47'), NDGS #14725 (110'), NDGS #17317 (32') and NDGS #17467 (43') in Renville County. It was also cored in six wells throughout Saskatchewan; 54F047 (2'), 57G023 (41'), 78L010 (38'), 94G082 (80'), 97I438 (80'), and 98E189 (19').

Member B lays unconformably on top of Member A and in some rare instances the Precambrian basement and conformably underlies Member C with a gradational contact. Outside of the erosional limit of Member C, it is overlain by the Ordovician Winnipeg Group. Deposition of this member is still largely influenced by Precambrian topography.

The majority of this member is glauconitic siltstone to very fine-grained sandstones and minor amounts of claystones. The abundant amounts of clay and glauconite in the member yield the characteristically high gamma ray response found on well logs. To the east and north of the center of the basin the member becomes increasingly sandy and near the edge of its extent it becomes difficult to differentiate Member B from Member A in well logs. In areas where this occurs, the unit is labeled as Member AB.

In exposures in the Black Hills, this member is equivalent to what Kulik (1965) described as the middle and upper members, representing most of the Deadwood type section. It is also equivalent to what Carlson (1960) describes as the shale and carbonate unit.

The source of the sediment supply for Member B was erosion of the granites that make up the Superior Craton to the east. The sediment was transported westward into the sea. A lateral transition in grains size occurred as the sediment began to drop out of suspension, resulting in the transformation of the sandstone in the east to the siltstone in the west.

**Siltstone.** This lithology was found in three cores, NDGS #7087, #6401, and #6624. This lithology is described as a gray to green, glauconitic to quartzose siltstone that grades to a mudstone due to an increase in clay matrix. The grains range from coarse silt to a fine grained sand and are subrounded to rounded. Glauconite grains comprise between 5 to 60% of the siltstone. The glauconite does not appear to be compacted and is occasionally associated with pyrite. In areas that have been oxidized to hematite, this oxidation is what forms the thin reddish brown layers throughout the member. The dominant cement in this facies is calcite but there are minor amounts of silica cement and rare anhydrite cement in Renville County.

Commonly the siltstones have planar laminations and minor cross beds (Figure 15). The laminations are commonly visible due to alternating quartz and glauconite grains. Within these alternations are occasional laminae composed of finely crystalline calcite. Soft-sediment deformation and bioturbation have disrupted the majority of these laminations. There are also very thin (less than 2mm) wispy clayshale laminae and less

common thicker clayshale laminae. Since claystones tend to degrade easily, these thicker claystones are harder to recover in core but can range up to two meters thick. Claystones contain minor amounts of scattered coarse quartz grains, very fine sand-sized glauconite grains, unidentifiable fossil debris, and occasionally bedding planes are outlined in very dark gray to black, argillaceous material.



Figure 15. A photograph of core from NDGS #6624 at a depth of 9,238'. Displaying planar laminated glauconitic siltstone, with minor cross beds.

Sandstone in the western part of North Dakota is less common but still present. The sandstones are very fine to medium grained, subrounded to well-rounded green to gray, glauconitic quartz arenites to wackes. The sandstones are predominantly quartz with minor amounts of feldspars. The glauconite content of the sandstones tends to be less than in the siltstones, but can still reach up to 40%. Similar interbedded glauconitic siltstones and sandstones were described by (McCabe, 1978). There is some evidence of compaction and also evidence of oxidation of glauconite grains, staining the surrounding sandstone reddish brown. There are also minor thin beds of green to gray glauconitic dolostone grading to dolomitic quartz arenite in Renville County. In some areas alteration is severe giving the entire layer a reddish brown color. In thin section phosphatic shell fragments are present. Various structures occur throughout the sandstone, including soft-sediment deformation, distinct water escape structures, abundant wispy clayshale laminae, and bioturbation. The clayshale laminae separate the alternating quartz and glauconite layers.

Cements found with the sandstone vary throughout, containing quartz overgrowths, calcite, and minor amounts of anhydrite. They are most commonly consistent throughout layers but occasionally will be interfingered with each other.

Member B is limited in Saskatchewan and is restricted to only this lithotype. It is fine to medium grained and is minor to heavily bioturbated. Glauconite grains vary and reach 75%.

**Sandstone.** As the member extends eastward from the center of the basin the dominant lithology changes from siltstone to sandstone. The problem with the eastern part of North Dakota is well control, especially cored wells. The majority of geologic

data comes from core chips, not whole cores. Due to core chips being broken up and not labeled at specific depths, they are not as accurate as cored intervals but still allow for examination of the rock at the general depth in question. The sandstones found in the east are fine to medium grained, well-sorted, rounded to well-rounded, greenish gray to red, glauconitic quartz arenites to moderately sorted wackes. Another disadvantage of core chips is that structures are not easily preserved.

In some sandstone the feldspar content can be up to 30% and glauconite can range from 5 to 60%. The color of the glauconite ranges from green to brown depending on if it has been altered to hematite. There are also minor amounts of phosphatic shell debris.

The eastern part of Member B is unconformably overlain by the Winnipeg Group. The upper part of the member displays evidence of being subaerially exposed prior to the deposition of the Winnipeg Group. The sandstone in this area has a dominant grayish-red color and has common oversized pores and vugs, lined with crystalline dolomite rhombs. These alterations can be the result of expansion of the grain boundary due to cement crystallization and dissolution of glauconite, feldspar, and calcite. In this area hematite is not only seen as a replacement of glauconite but does mark multiple growth stages of rhombic dolomite cement.

This facies is correlated to the burrowed to laminated, calcite-cemented, glauconitic siltstone and sandstone, limestone, and interbedded limestone-pebble conglomerate and green shale that occurs at outcrops. High glauconite content is present in all lithotypes. As with the siltstone, the clayshale laminae separate the alternating quartz and glauconite layers. Glauconite grains have the same alterations as in the siltstone facies.

An equivalent lithostratigraphic interval is described in Montana as a glauconitic green shale and limestone, siltstone, and fine grained sandstone by Lochman (1964a).

### Member C

Member C was encountered in 185 wells throughout the study area, including 5 cored interval; NDGS #291 (85') in Billings County; NDGS #6264 (53') in Burleigh County; NDGS #6624 (56') and #6684 (32') in Renville County; and NDGS #7146 (10') in Emmons County.

Throughout much of areal extent of Member C the contact between the underlying Member B and overlying Member D is conformable and gradational. Farther to the east and south a possible unconformity develops between the two members. In the west this unconformity is lower in the member between the mixed sandstone-limestone lithotype and the quartz arenite. Beyond the erosional boundary of member D it is unconformably overlain by the Winnipeg Group.

Lithologies throughout the basin vary to minor degrees. Near the center of the basin in western North Dakota Member C consists of three main lithotypes. A basal quartz arenite; a mixed quartz sandstone-limestone; and an upper limestone. The upper limestone lithotype is comprised of three secondary lithotypes, containing differing amounts of mudstones, wackestones, packstones, and grainstones. Along the border of North Dakota and Montana, and into Montana, the entire section is composed of nearly all limestone. In southern and central North Dakota Member C consists of a basal quartz arenite that is overlain by a quartz wacke and a silty, laminated dolomudstone. Wells from South Dakota only contain the basal quartz arenite.

Log characteristics of sandstone and limestone and the lack of abundant amounts of glauconite and clay give this member its distinctive low gamma-ray signature, especially when compared to the much higher readings of members B and D. This member also has low resistivity reading which is due to an increase in porosity as the arenite lithotype increases in thickness. A moderate increase in gamma-ray response occurs in the member from west to east due to a change from limestone in the west to dolomudstone in the east and south. In areas to the southeast the log signature can closely resemble the signature of the overlying Member D.

The first evidence of a depositional trend not directly controlled by the transgression onto the Precambrian topography occurs within this member. Depositional thinning towards the craton is no longer the only process controlling the thickness of Member C. Subsidence in western North Dakota is increasing accommodation space allowing for an increase in deposition near the center of the basin. Preserved thicknesses of Member C are controlled by Middle Ordovician erosion.

Quartz arenite. In the Black Hills of South Dakota the basal quartz lithotype is almost entirely composed of quartz arenite and conglomerate, with minor amounts of shale (Carlson and Thompson, 1987). In eastern Montana and western North Dakota Lochman, (1966) correlated the interval equivalent to Member C to the shelly faunal zones A through D from the previous work of (Ross, 1951), which were determined to be from the Lower Ordovician Tremadocian Series. It is described as <u>Skolithos</u>-bored, white, very fine to medium grained, well sorted, round to well-rounded quartz arenite (Anderson, 1988). There are minor amounts of glauconite and feldspar grains

throughout. This lithology is typically described as massive with vertical burrows with occasional faint cross beds present (Kulik, 1965).

The basal quartz arenite has been cored in multiple wells and is preserved in well cuttings and core chips. It consists of a very fine to coarse grained quartz arenite, with occasional interbeds of quartz wacke. Quartz and minor amounts of feldspar grains are very fine to coarse grained, rounded to well rounded, and show good sorting. Unlike at the type section <a href="Skolithos">Skolithos</a> burrows are less prevalent and sedimentary structures that include planar laminations and cross beds are present. Massive, structureless sandstone and highly bioturbated sandstones, which approach quartz wacke in composition, are common. Well cuttings are not a very accurate way of determining lithologies and are not used to make any concluding statements, but they contain unconsolidated, well rounded, well sorted, fine to coarse-grained sand. This is the same characteristics present in the arenite lithology.

The arenites range from porous and friable to well cemented. The cements that were found consist of calcite, dolomite, quartz, and minor amounts of anhydrite. These cements appear to have replaced anhydrite cement, which typically only occurs as a remnant (Anderson, 1988). Quartz overgrowths do not display a trend and are found throughout to a varying degree. Medium to coarsely crystalline dolomite and calcite cements generally increase upward in section. These cements have resulted in the corrosion of quartz and feldspar grains. Glauconite also occurs through this lithology at about 15% and has been partially compacted and oxidized.

In Saskatchewan Member C was recovered in one core, SK #57G023 just across the Canadian border. This shows the erosional limit of Member C. Late Ordovician

erosion has left only the lower quartz arenite unit of the member. It is very similar to the arenite found in wells in the United States, with heavily bioturbated zones corresponding to the <u>Skolithos</u> burrow occurring in equivalent units. The majority of what is present in Saskatchewan is very light to light tan sandstone and siltstone, with minor amounts of shale.

Quartz wacke. Quartz wackes are interbedded with and overlie the quartz arenite. The increase in clay content in the wacke leads to a gradual increase in the gamma-ray response. This lithology consists of a very fine to coarse-grained, poorly to moderately sorted, subrounded to well rounded, gray to yellow quartz wacke with abundant clayshale laminae and a few interbedded quartz arenites. Bioturbation is prevalent and most of the original bedding has been disrupted by burrows and soft sediment deformation. Skolithos burrows only occur within the interbedded arenites.

Fossil debris is abundant within the wacke, including echinoderm, trilobite, and brachiopod fragments. With this increase in fossil debris there is also an increase in carbonate cement. This increase is generally associated with a decrease in clay amount and a gradation to an arenite. As the carbonate content increases the wacke and arenite may grade into a sandy grainstone with areas of coarse quartz grains supported by a crystalline dolomite or calcite cement.

Mixed Sandstone-Limestone Lithotype. In Billings County a sandstone-limestone transitional lithotype has been described in core. It consists of bioturbated, quartz sand bearing limestone that grade to a less common fossiliferous quartz arenite. The limestone ranges from packstone to grainstone. This lithology contains varying

amounts of quartz sand, carbonate fossil allochems, and occasionally some glauconite.

These clasts are cemented by very finely to medium crystalline calcite.

Fossil debris is most commonly <u>Nuia</u>, which is restricted to the Lower and Middle Ordovician (Wray, 1977; Ruppel and Walker, 1982), and lesser amounts of trilobites, echinoderms, and phosphatic shell debris. The fossil <u>Nuia</u>, is described as straight to curved calcareous tubes with a radial, hyaline wall-structure and a dark central core, assigned to the codiacean algae (Wray, 1977).

There is a subordinate lithotype interbedded within that consists of an intraclastic, fossiliferous, quartz wackestone to packstone. The texture is very similar to the mixed sandstone-limestone lithotype but contains more carbonate mud, less quartz and silt, and fewer fossil fragments. Intraclasts of mudstone and wackestone, up to pebble size, occur throughout. These intraclasts also contain glauconite grains, minor amounts of peloids, and trilobite, brachiopod, and echinoderm fossil debris. They are all cemented by finely to very coarsely crystalline calcite, which appears in some places to be replaced by micrite. The quartz content decreases gradually towards the top in these lithotypes, gradually transitioning into the overlying limestone lithotype.

Packstone to grainstone. The most dominant limestone secondary lithotype consists of a light to medium gray, packstone to grainstone, containing abundant trilobite, brachiopod, and echinoderm fossil debris (Figure 16). This lithotype also contains varying amounts of micritic intraclasts, quartz silt and sand grains, and minor amounts of glauconite. The micritic intraclasts range up to pebble size and are often rimmed with glauconite and pyrite.



Figure 16. A photograph of core from NDGS #291 at a depth of 13,322'. Characteristic light gray, packstone to grainstone limestone occurring in Member C.

The limestone also commonly contain medium sized crystalline dolomite rhombs. There are small, elongate, finely crystalline calcite fragments that have been interpreted as possible algal material (Anderson, 1988). These allochems are cemented by medium to coarsely crystalline calcite. The relationship with the cement and preexisting calcite makes the echinoderm fragments difficult to distinguish; the only remaining characteristic is their radially bored rims. In the packstones micrite acts as the matrix between allochems, most commonly gastropods. This lithotype is susceptible to pressure solution and has both horizontal and vertical low amplitude stylolites. Along the stylolite seams are concentrations of dolomite, terrigenous clay, and quartz silt; giving the stylolites a dark color.

Burrow-mottled limestone. The burrow-mottled limestone is the second most common lithotype in the limestone unit. This lithotype has a very variable texture and composition, commonly comprising of wispy siliciclastic mudstone laminations (Figure 17). The unit is very thinly bedded, with alternating layers, only centimeters thick, of dark gray, siliciclastic mudstone to clayshale and a lighter gray, intraclastic wackestone to packstone. As with the other lithotypes, trilobite, brachiopod, and echinoderm debris is common, although echinoderms are less abundant and trilobites are the dominant fossil type. Small micrite intraclasts and peloids allochems also occur. These allochems are supported in carbonate mud and crystalline calcite cement. The siliciclastic mudstone and clayshale layers contain varying amounts of clay, silt-sized quartz grains and micritic peloids.

Mudstone to wackestone. This third lithotype in the upper limestone unit is the light bluish-gray mudstone to wackestone. This lithotype generally occurs as thin nodular beds. It is seen at the bottom of Figure 17. It is also occurs in very minor amounts in the underlying sandstone to limestone transition zone and is most likely the source of the intraclasts found within. The majority of this lithotype consists of carbonate mud and micrite but in some areas contains up to 10% allochems and grades into wackestone. The allochems found within this lithotype include fragments of trilobites and echinoderms with occasional radially-bored rims, possible algal material, rare phosphatic debris, and trace amounts of quartz silt. This lithotype is susceptible to pressure solution, the compaction of the grains has resulted has formed created abundant nodules, as well as highly dolomitic stylolites. In some areas the mudstone to



Figure 17. A photograph of core from NDGS #291 at a depth of 13,286'. An example of the burrow-mottled limestone found in Member C, contain siliciclastic mudstone laminae and intraclastic wackestone and packstone.

wackestone lithotype occurs in a sharp lateral contact with the grainstone to packstone lithotype. The contact typically has a dark green glauconitic coating; similar coatings on micrite intraclasts were reported by Sepkoski (1982) in the Cambrian of Montana.

## Member D

Member D was cored in two wells in North Dakota; NDGS #291 (108') and #3268 (71') in Billings County.

Member D exhibits a gradual transition from a basal siliciclastic mudstone to a fine-grained siltstone and sandstone near the top of the member. This transition demonstrates an increase in grain size and a decrease in bioturbation. The fine-grained siltstones and mudstones contain abundant amounts of clay, which result in a characteristically high gamma-ray response. The response is not as high as Member B,

even though they have similar clay contents. Gamma ray response is slightly lower in Member D due to glauconite being less common along with occasional layers of interbedded sandstone. This unit is correlated to faunal zone E, of the Tremadocian series, in eastern Montana (Lochman, 1966).

In western North Dakota Member D conformably overlies Member C, when Member C consists of limestone. As the formation moves eastward and southward Member C becomes more dolomitic and sandier, possibly suggesting a minor unconformity between the two members. While within the erosional limit of Member E the contact above is conformable and gradational; outside of this area the contact with the overlying Winnipeg Group is a significant disconformity.

Similarly to Member C, the isopach pattern of Member D conforms to the shape of the basin, deepest near the center of the basin and thinning outward in every direction. Deposition is no longer influenced significantly by the Precambrian topography. Due to Middle Ordovician erosion this member is restricted towards the center of the basin and only found in the subsurface.

The base of Member D contains both calcareous and siliciclastic mudstone and wackestone. The lower most part of the member is burrow-mottled silty calcareous mudstone and wackestone (Figure 18) and grades slightly up to siliciclastic mudstone (Figure 19). The unit contains abundant clay and silt and is extensively burrowed. The abundance of burrows has destroyed nearly all of the sedimentary features. As the grain size of Member D increases the calcareous and siliciclastic mudstones transition into calcareous siltstones and very fine-grained sandstones (Figure 20).



Figure 18. A photograph of core from NDGS #291 at a depth of 13,233'. An example of the burrow-mottled, silty, calcareous mudstone at the base of Member D. The ruler is in inches.



Figure 19. A photograph of core from NDGS #291 at a depth of 13,193'. An example of the gradation upwards to a fine-grained, siliciclastic burrow-mottled mudstone. The ruler is in inches.



Figure 20. A photograph of core from NDGS #291 at a depth of 13,171'. An example of the siltstone and sandstone overlying the mudstone. The ruler is in inches.

Above the mudstone is a calcareous siltstone to very fine-grained sandstone. As with the underlying lithotype most of the sedimentary structures have been destroyed due to intense bioturbation and soft sediment deformation. A minor amount of fossil debris is present with calcite cement.

The top of the member consists of interbedded siltstone and very fine to medium-grained sandstone (Figure 21). The sandstone is dominantly clean arenite with minor amounts of bioturbated quartz wackes. Bioturbation is not as prevalent as it is in the underlying lithotypes and is dominated by horizontal bedding planes, with minor amounts of cross beds. Where bioturbation occurs it is a mixture of burrowing, soft sediment deformation, and water escape structures. In areas the deformation is so intense that some of the laminated beds are separated and look very similar to a conglomerate, where the clasts are laminated siltstones and sandstones in a sand and silt matrix with calcite cement (Lowe, 1975).

Throughout the member thin packstone to grainstone layers occurs. The allochems within the packstones and grainstones are glauconite grains and fossil debris which are cemented with crystalline calcite. Fossil debris is commonly trilobites, echinoderms, and brachiopods. The glauconite occurs either unaltered or with minor degradation.

### Member E

Member E was cored in eight wells throughout North Dakota; NDGS #291 (130'), #3268 (146'), and #6228 (11') in Billings County; NDGS #9257 (37') in Stark County; NDGS #1385 (11'), #1403 (133'), #12831 (60'), and #1636 (33') in Williams County.



Figure 21. A photograph of core from NDGS #291 at a depth of 13,124'. Example of the interbedded siltstone and sandstone occurring at the top of Member D. The contact with the overlying Member E is also visible, at the 30 inch mark on the ruler. The ruler is in inches.

The log characteristics of Member E are very similar to Member C, very low and clean gamma ray response. Not surprisingly the lithologies are quite similar in the two members. Member E consists of quartz arenite, mixed sandstone and limestone, limestone, and siliciclastic mudstone lithotypes and in some areas dolomudstones.

Member E conformably overlies Member D over its entire extent and is conformably overlain by Member F, within Member F's erosional limit. Outside of the erosional limits of Member F, Member E is disconformably overlain by the Middle Ordovician, Black Island Formation. The maximum thickness in well logs is 255 feet in southern Dunn County, North Dakota.

The base of the member consists of quartz arenite and minor amounts of quartz wacke (Figure 22). In core samples it is similar to the quartz arenite found in Member C. The sandstone ranges from very fine to coarse grained and well sorted and rounded. The contact with the underlying Member D is gradational and the coarsening upward trend continues through the arenite.

Both massive, structureless sandstones and horizontally or cross bedded laminations are common. Minor amounts of quartz wackes are present, most likely the result of thin silt and clay laminations being mixed with the arenites, either due to soft sediment deformation or bioturbation. There are also clear bioturbated zones where sedimentary structures have been destroyed. In these zones cements are commonly calcite or dolomite.

Above the arenite is a transition zone containing a mixture of sandstone and limestone. This lithotype is present in NDGS #291. As with the arenite, a similar



Figure 22. A photograph of core from NDGS #3268 at a depth of 12,797'. Cross-bedded quartz arenite which occurs at the base of Member E.

lithotype occur in Member C. Fossil debris is the dominant grain in the lithotype, making up roughly of 50% to 80% of the grains, with the remaining amounts being quartz.

Following the transition zone is the limestone lithotype, again very similar to Member C (Figure 23). The limestone ranges from wackestone to grainstone, with allochems containing fossil debris of echinoderms, brachiopods, and trilobites.

Intraclastic packstones and grainstones are also found throughout the lithotype. These intraclasts are composed of micrite and most likely derived from the mudstone lithotype.

In some areas, towards the east and south, a dolomudstone occurs above the limestone lithotype. In other areas the limestone is overlain by a burrowed siltstone to sandstone. The dolomudstone is also present at the top of Member C. It consists of alternating laminations of dolomite and quartz silt.

### Member F

Due to pre-Winnipeg erosion, Member F is restricted to west central North

Dakota and has the smallest areal extent of all of the members of the Deadwood

Formation; it occurs around the center of the basin. It is thickest in Williams County,

ranging up to 51 meters (168 feet) and occurs in a couple of counties to the south. Since

Member F is the youngest member in the Deadwood it is unconformably overlain by the

Black Island Formation of the Winnipeg Group and conformably overlies Member E over

its entire extent.

The dominant lithology is a quartz arenite to wacke, with very minor amounts of siltstones, shales, and carbonates. The large majority of the member is composed of clean quartz sandstone, so the gamma-ray signature is very low. It is the lowest in the Deadwood Formation. Member F was cored in thirteen wells throughout North Dakota; NDGS #6228 (15') in Billings County; NDGS #6148 in Dunn County; NDGS #2373 (116'), #8090 (20'), and #13405 (116'), in McKenzie County; NDGS #8088 (50'), #8169 (7'), and #9257 (20') in Stark County; NDGS #1385 (81'), #1403 (41'), #1514 (45'), #1636 (46'), and #18631 (23') in Williams County. The age of this member was



Figure 23. A photograph of core from NDGS #3268 at a depth of 12,643'. An example of the fossiliferous limestone lithotype which occurs at the top of Member E.

determined by Lochman (1964b) who correlated Member F to the shelly faunal zone G2, which was dated to be Arenigian (478.6 $\pm$  1.7 Ma to 471.8  $\pm$  1.6 Ma).

One of the wells with the thickest Member F is NDGS #13405, located in McKenzie County. A little more than 111 feet of Member F was cored in this well. In this particular well Member F was 144 feet thick. The majority of the member was cored, except the top 5 feet and the bottom 28 feet. The issue with this core is that the contacts with the overlying or underlying units were not preserved, which would have allowed for a better understanding of how the Member E transitioned to Member F and any evidence of erosion or nondeposition prior to the deposition of the Black Island Formation.

In NDGS #13405, Member F is a light to medium gray quartz arenite to wacke, with occasional mild to severe hydrogen sulfide staining. Zones of hydrogen sulfide staining are common in areas of very little bioturbation (Figure 24). It is most commonly medium grained with occasional zones of fine to very fine grain, which are subrounded to rounded. The grains are commonly well sorted with minor areas of moderate to poor sorting. Member F has zones of no bioturbation with very faint to distinct, near horizontal to horizontal beds, wavy beds, and cross beds and grades to very intense bioturbation. The majority of this bioturbation is vertical burrows of Skolithos and wavy horizontal burrows (Figure 25), although there are minor amounts of escape structures and soft sediment deformation. These burrows are most commonly outlined in very fine dark argillaceous material. The cement is most commonly silica but there are areas of carbonate cement and large fractures filled with crystalline calcite.



Figure 24. A photograph of core from NDGS #13405 at a depth of 14,329. Displaying hydrogen sulfide staining.



Figure 25. A photograph of core from NDGS #13405 at a depth of 14,330'. Displaying intense horizontal and vertical burrows.

Interlayered with the sandstone are zones of thinly bedded, very fine grained, dark gray to black carbonaceous shale (Figure 26). Between the layers of shale are thin, highly fossiliferous zones that pinch out on both sides. The fossiliferous zones contain fragments of echinoderms, trilobites, and brachiopods. The contact between the medium grained sandstone and the very fine grained shale is very sharp and displays soft sediment deformation, most likely load casts. In some areas of minimal bioturbation there are what appear to be clasts of horizontally bedded sandstone and siltstone. These are not clasts but appear to be originally bedded areas that are displaced by water escape structures. The abundance of escape structures and soft sediment deformation causes the brecciated look.

In well NDGS #18631, which is located 20 miles northwest of NDGS well 13405 in Williams County, lithologies are very similar. The contact with the overlying Black Island Formation of the Winnipeg Group is clearly visible in core. Member F only has 24 feet of core in this well. Member F as a whole is much thinner in this well, as it is farther from the center of the basin.

Only the quartz arenite to quartz wacke lithotype was present in this core. The very fine grained dark shales were not present in this core. Near the bottom of the core the lithology slightly grades to wacke.



Figure 26. A photograph of core from NDGS #13405 at a depth of 14,301'. Displaying interlayered carbonaceous shale with fossiliferous zones.

#### **CHAPTER III**

#### **RESULTS**

## **Isopach Maps**

Unit thickness was determined for all of the members of Deadwood Formation where it was possible. The limitation for unit thickness determination is that the top of the underlying member needs to be present. Unit thicknesses were calculated for at least one member of Deadwood Formation in 333 wells, roughly half of the wells where the Deadwood is present. With 53 for Member F (Figure 33), 83 for Member E (Figure 32), 82 for Member D (Figure 31), 119 for Member C (Figure 30), 173 for Member B (Figure 29), 151 for Member A (Figure 28), and 210 for the combination of members B and A (Figure 27). Of these 333 wells only 7 included thicknesses for all 6 members.

Without prior knowledge of the units in focus it can be seen from isopach maps that a severe change occurred during the deposition of Member C of the Deadwood Formation. Prior to the deposition of Member A the igneous and metamorphic rocks of the Precambrian were exposed to erosion for hundreds of millions of years. This left the landscape irregular and as the sea began to transgress onto the craton, the rise in sea-level increased accommodation space allowing for the sediments of Member A to deposit onto the exposed craton and in some areas in the topographical lows of the irregular surfaces. This is evident on the isopach map of Member A (Figure 28); the only depositional trend that can be seen is a weak east to west thickening trend. This trend continues on the

isopach map of Member B (Figure 29) where the sea has transgressed completely onto the craton. Most of the topographic highs and lows have been covered making the map smoother. The east to west depositional trend is also more evident. The large shift in depositional trend is seen in the isopach map for Member C (Figure 30). There is significant thickening to a depocenter in western North Dakota and eastern Montana. The thickening trend is bowl-shaped, characteristic of point load subsidence. Point load subsidence is the isostatic response to sediment accumulation in an area. Over periods of tens to hundreds of thousands of years the upper part of the mantle begins to act elastically in response to continuous accumulation of sediment. This results in the crust slow sinking into the upper part of the mantle, producing a basin. This is seen on the isopach maps of members D (Figure 31), Member E (Figure 32), and Member F (Figure 33). The depositional center of the basin shifts slightly with each member but all three are near the present day center of the basin.

## **Basin Subsidence**

The results from Novva® can be analyzed in three ways; tectonic subsidence, subsidence caused by loading, and total subsidence. This study will focus on tectonic subsidence, defined as the sinking of the Earth's crust caused by the tectonic forces driving basin formation, which eliminates the effects of nontectonic processes. The major nontectonic process that needs to be eliminated is sediment loading and this is done by backstripping (Lindsay et al., 1987). The most common mechanisms behind tectonic subsidence are crustal stretching, thermal contraction of the lithosphere, thermal contraction of an intrusive body in the lithosphere, or a phase change and metamorphic reaction in part of the lithosphere (Sleep et al., 1980). The effects of loading are

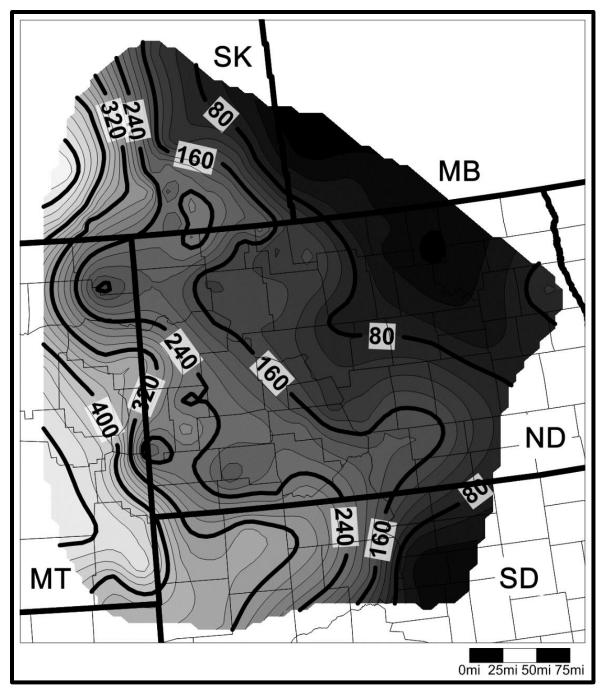



Figure 27. Isopach map for Member AB of the Deadwood Formation, displaying change in unit thickness. The contour interval is 20 feet. The shades of gray get lighter as the member becomes thicker.

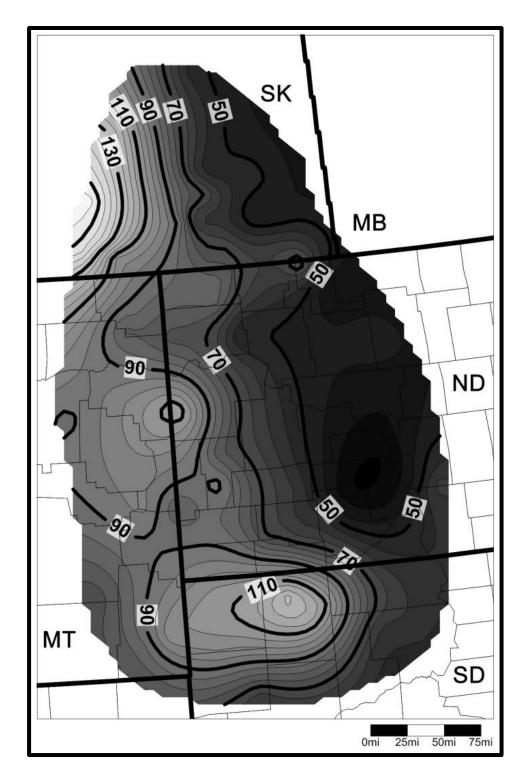



Figure 28. Isopach map for Member A of the Deadwood Formation, displaying change in unit thickness. The contour interval is 5 feet. The shades of gray get lighter as the member becomes thicker.

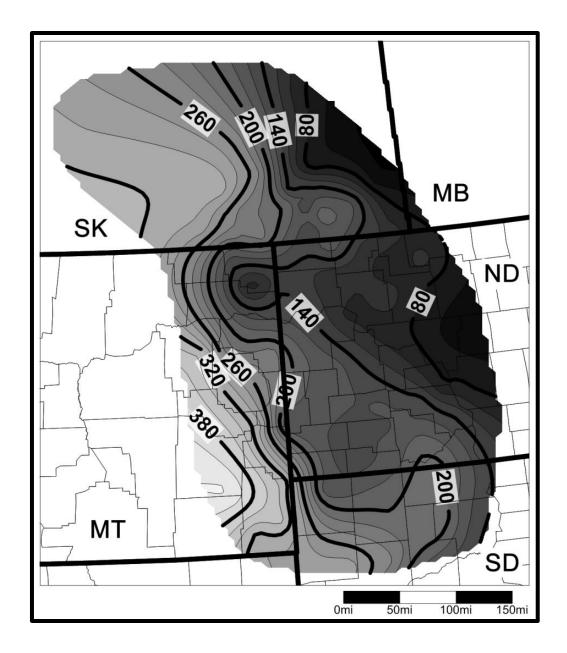



Figure 29. Isopach map for Member B of the Deadwood Formation, displaying change in unit thickness. The contour interval is 20 feet. The shades of gray get lighter as the member becomes thicker.

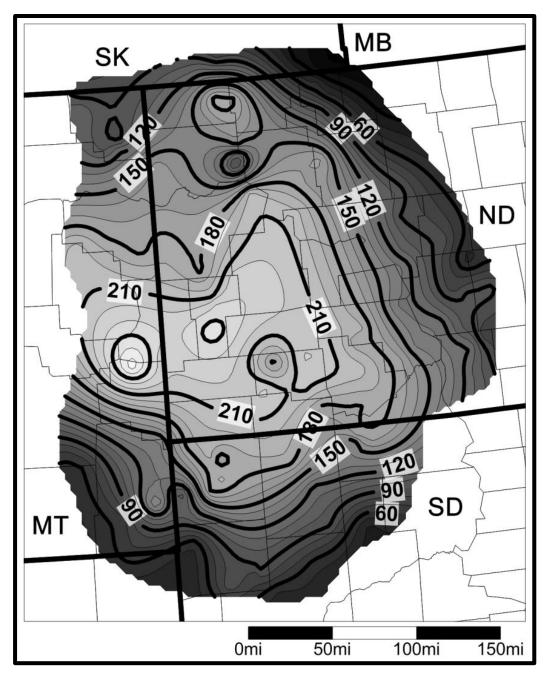



Figure 30. Isopach map for Member C of the Deadwood Formation, displaying change in unit thickness. The contour interval is 10 feet. The shades of gray get lighter as the member becomes thicker.

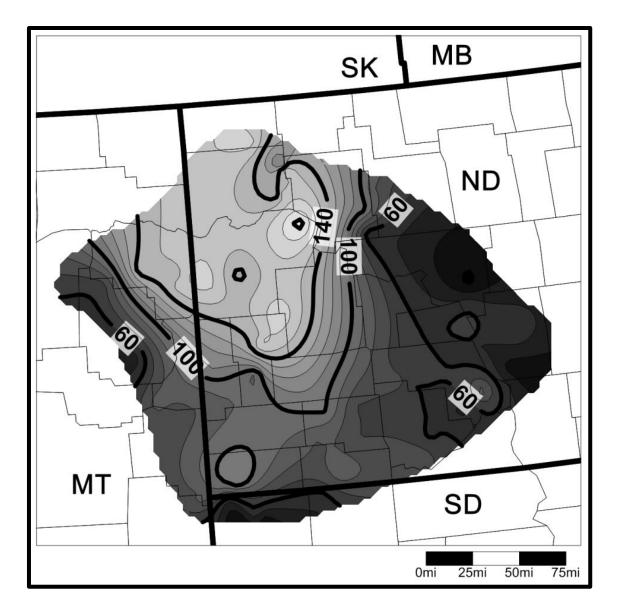



Figure 31. Isopach map for Member D of the Deadwood Formation, displaying change in unit thickness. The contour interval is 10 feet. The shades of gray get lighter as the member becomes thicker.

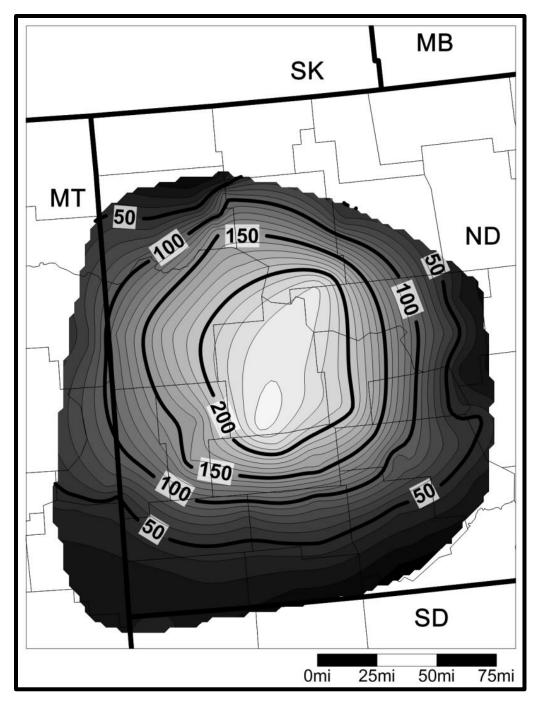



Figure 32. Isopach map for Member E of the Deadwood Formation, displaying change in unit thickness. The contour interval is 10 feet. The shades of gray get lighter as the member becomes thicker.

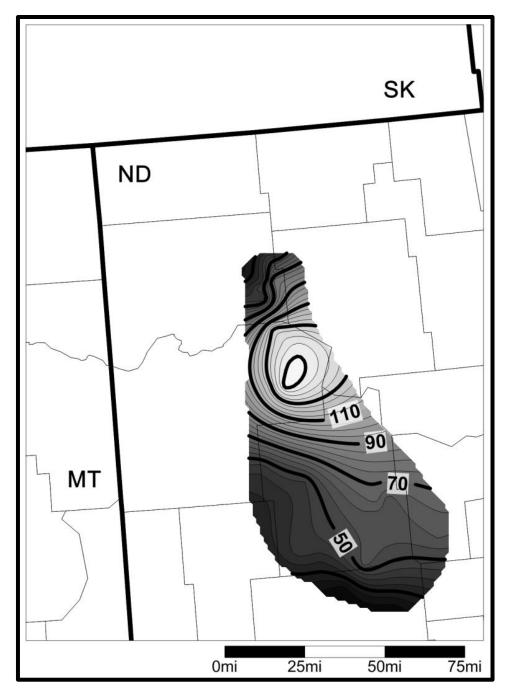



Figure 33. Isopach map for Member F of the Deadwood Formation, displaying change in unit thickness. The contour interval is 5 feet. The shades of gray get lighter as the member becomes thicker.

separated from this because their effects are not significant until after the onset of subsidence.

For each well a burial history diagram is produced (Figure 34). This diagram incorporates all of the information imported into Novva® and displays how each unit in the stratigraphic section responded to erosion and sedimentation throughout the development of the Williston Basin. The response is displayed in relation to the paleowater surface or the paleo-ground surface. Again this study only focused on the Early Paleozoic history of the Williston Basin and the incorporation of more recent unconformities would need to be added to obtain a burial history diagram for the entire history of the basin.

The data used to determine the early subsidence history of the Williston Basin was collected from the tectonic subsidence (Figure 35 through Figure 41). Tectonic subsidence diagrams display the changes in tectonic subsidence throughout time and the data can then be imported into Microsoft Excel, as tectonic subsidence in feet at specific dates in time (Chart 1). The important data points are the tectonic subsidence values at the top and bottom of each geologic unit. With these time constraints the total tectonic subsidence for the unit can be calculated and with the addition of an age range for each unit the average tectonic subsidence per million years can be computed (Chart 2).



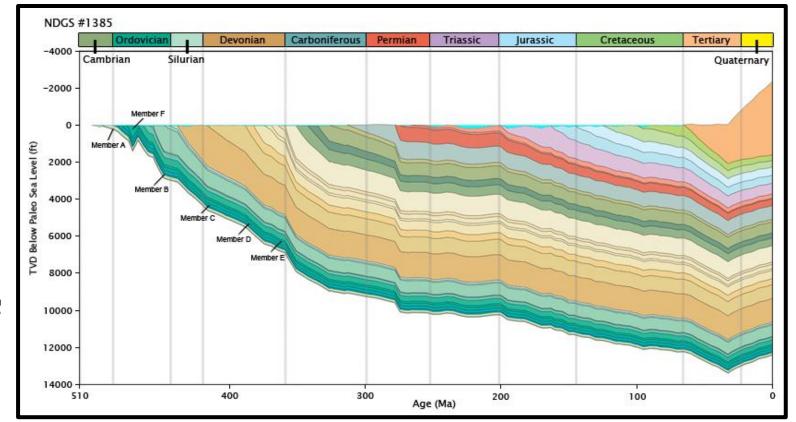



Figure 34. Burial history plot from NDGS# 1385. The x-axis is time in millions of years and the y-axis is depth below the paleo sea level in feet. The large dip near Member F represents the deposition of Member F and then the exposure and subaerial erosion at the end of the Sauk sequence.

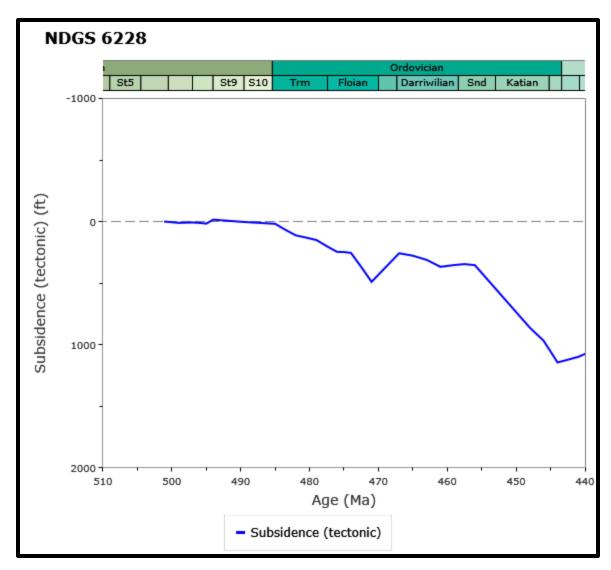



Figure 35. Tectonic subsidence curves for NDGS #6228. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

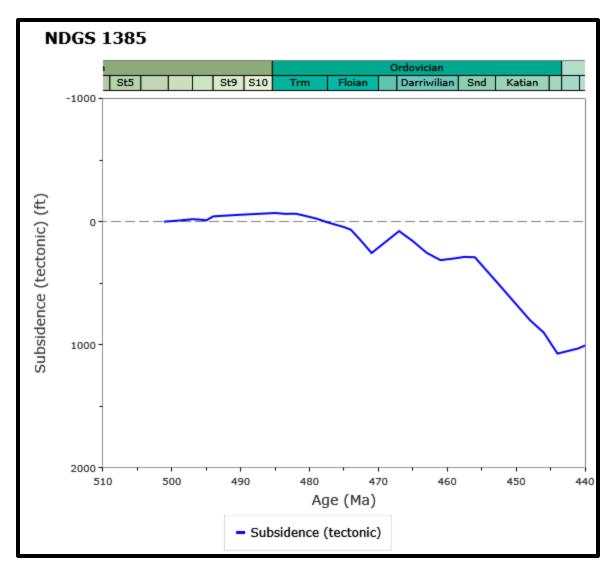



Figure 36. Tectonic subsidence curves for NDGS #1385. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

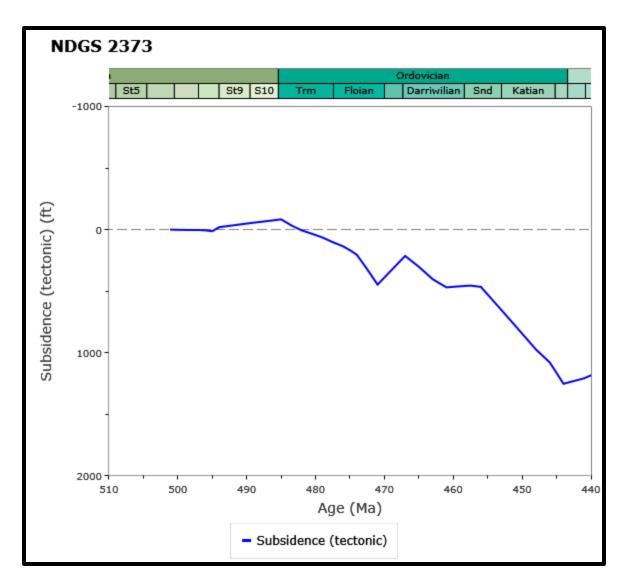



Figure 37. Tectonic subsidence curves for NDGS #2373. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

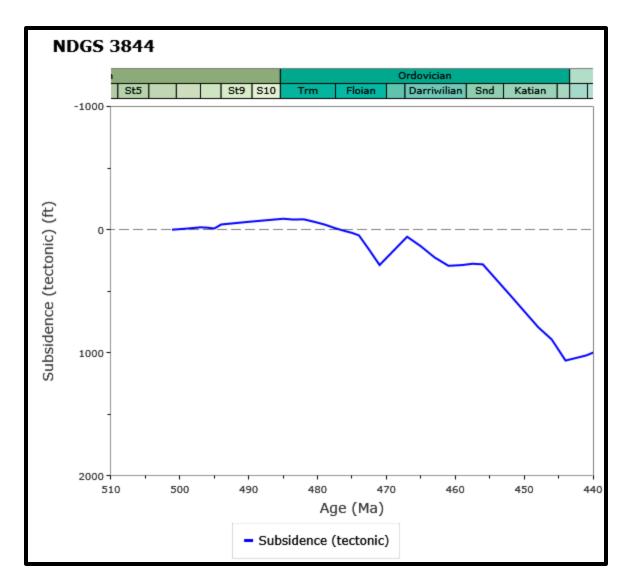



Figure 38: Tectonic subsidence curves for NDGS #3844. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

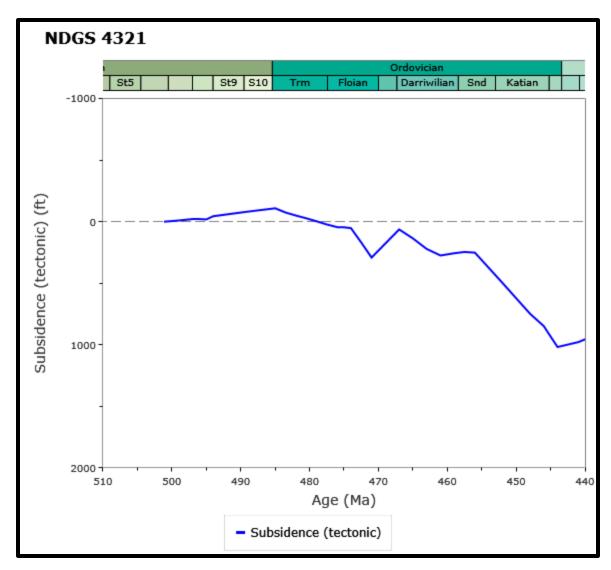



Figure 39. Tectonic subsidence curves for NDGS #4321. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

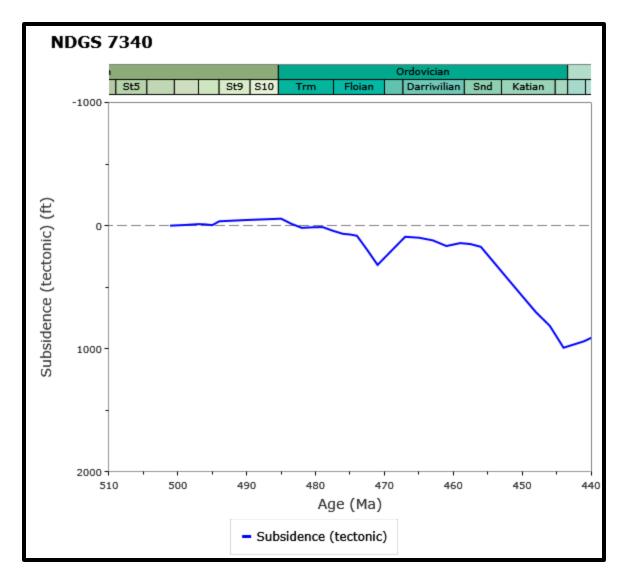



Figure 40. Tectonic subsidence curves for NDGS #7340. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

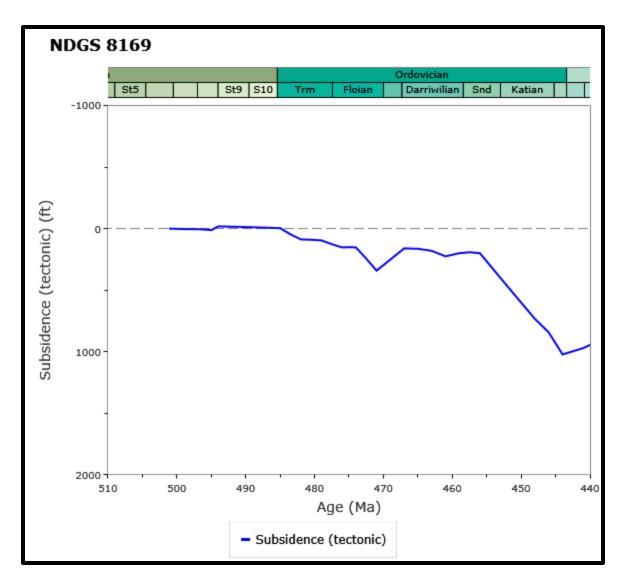



Figure 41: Tectonic subsidence curves for NDGS #8169. The x-axis is age, millions of years ago and the y-axis is feet of tectonic subsidence.

Table 1. Raw Tectonic Subsidence Data From NDGS #1385. The  $\sim$  Symbol Represents an Unconformity.

| Formation |              | 1385     |                          |  |
|-----------|--------------|----------|--------------------------|--|
|           | Pormation    | Age (Ma) | Tectonic Subsidence (ft) |  |
|           |              | 448      | 789.87                   |  |
|           |              | 450      | 661.39                   |  |
|           | Red River    | 452      | 532.91                   |  |
|           |              | 455      | 342.57                   |  |
|           |              | 456      | 279.12                   |  |
|           |              | 457.5    | 276.07                   |  |
|           | Roughlock    | 459      | 288.96                   |  |
| Icebox    |              | 460      | 295.72                   |  |
|           |              | 461      | 302.49                   |  |
|           |              | 463      | 243.01                   |  |
| D1 1 1 1  |              | 465      | 148.64                   |  |
|           | Black Island | 467      | 66.83                    |  |
|           |              | 470      | 200.32                   |  |
|           |              | 471      | 244.81                   |  |
| 1         | ~~~~~~~      | 472.5    | 146.99                   |  |
|           |              | 474      | 55.86                    |  |
|           | E            | 475      | 34.3                     |  |
|           | F            | 475      | 18.09                    |  |
|           | Е            | 477.5    | -6.04                    |  |
|           | E            | 479      | -34.36                   |  |
|           |              | 480      | -48.32                   |  |
| q         | D            | 480.5    | -55.3                    |  |
| 0         |              | 482      | -74.73                   |  |
| 0         | С            | 483.5    | -73.23                   |  |
|           |              | 485      | -80.3                    |  |
| þ         |              | 489.5    | -67.92                   |  |
| g         | В            | 490      | -66.27                   |  |
| Deadwood  |              | 494      | -53.04                   |  |
|           |              | 495      | -20.82                   |  |
|           | ~~~~~        | 496      | -27.11                   |  |
|           |              | 497      | -30.1                    |  |
|           |              | 499      | -19.09                   |  |
|           | A            | 500      | -9.54                    |  |
|           |              | 501      | 0                        |  |

Table 2. Results From the 7 Central Wells. Total Tectonic Subsidence Values, in Feet, for Member F Through Member A of the Deadwood Formation.

| Member | 1385   | 2373   | 3844   | 4321   | 6228  | 7340   | 8169  |
|--------|--------|--------|--------|--------|-------|--------|-------|
|        |        |        |        |        |       |        |       |
| F      | 37.78  | 69.00  | 34.60  | 7.65   | 8.30  | 15.25  | 0.21  |
| E      | 52.45  | 72.05  | 53.56  | 47.89  | 95.99 | 55.32  | 57.12 |
| D      | 40.37  | 57.19  | 42.12  | 46.89  | 37.92 | -6.38  | 8.40  |
| C      | 5.57   | 89.95  | 4.59   | 58.66  | 93.95 | 74.44  | 90.97 |
| В      | -27.26 | -63.32 | -46.46 | -64.52 | 33.86 | -21.18 | 14.81 |
| A      | -30.10 | -7.21  | -29.01 | -31.10 | -3.28 | -22.40 | -5.81 |
|        |        |        |        |        |       |        |       |

Table 3. Average Tectonic Subsidence Values, in Feet, Per Million Year for Member F Through Member A of the Deadwood Formation.

| Member | 1385  | 2373  | 3844  | 4321  | 6228  | 7340  | 8169  |
|--------|-------|-------|-------|-------|-------|-------|-------|
| Г      | 10.00 | 24.50 | 17.20 | 2.02  | 4.15  | 7.62  | 0.11  |
| F      | 18.89 | 34.50 | 17.30 | 3.82  | 4.15  | 7.63  | 0.11  |
| E      | 17.48 | 24.02 | 17.85 | 15.96 | 32.00 | 18.44 | 19.04 |
| D      | 13.46 | 19.06 | 14.04 | 15.63 | 12.64 | -2.13 | 2.80  |
| C      | 1.86  | 29.98 | 1.53  | 19.55 | 31.32 | 24.81 | 30.32 |
| В      | -3.03 | -7.04 | -5.16 | -7.17 | 3.76  | -2.35 | 1.65  |
| A      | -7.52 | -1.80 | -7.25 | -7.77 | -0.82 | -5.60 | -1.45 |

In all seven of the wells near the center of the basin a distinguishable pattern is evident. For members A and B the tectonic subsidence per million years averaged was - 4.6 feet per million years and -2.8 feet per million years respectively. A large change occurs in Member C, where the subsidence rate increase significant to an average of 19.9 feet per million years over the seven wells. The subsidence rates continue to be positive throughout the remainder of Deadwood deposition. The rate decreases in Member F, to

an average of 12.3 feet per million years, mostly likely due to the unconformity between Member F and the overlying Black Island Formation. As stated earlier the two most important variables to getting accurate basin subsidence results are age and unit thickness. Since the unconformity between the top of the Deadwood Formation and the bottom of the Winnipeg Group represents a period of erosion or non-deposition, it is difficult to accurately determine the exact length of Deadwood deposition and the exact duration of Middle Ordovician erosion. After deposition of Member F, and prior to the deposition of the Winnipeg Group, there were two more transgressive-regressive cycles in North America (Barnes, 1984). The evidence of these events in the Williston Basin was erased by Middle Ordovician erosion. Approximately 295 feet of sediment was deposited by the previous transgressive and regressive cycles. Which means that up to 590 feet of Deadwood Formation may have been removed from the center of the basin prior to the deposition of the Winnipeg Group (Anderson, 1988). This model used an average thickness of 400 feet to represent the sediments that were removed due to Middle Ordovician erosion.

### **CHAPTER IV**

## **INTERPRETATIONS**

# **Deposition**

Data recovered from well log, core, and thin section analysis has allowed for an accurate model of the depositional history and depositional environments of the Deadwood Formation throughout the study area. The deposition of the Deadwood Formation is a representation of the very end of the Sauk subsequence II and the entirety of the Sauk subsequence III (Sloss, 1962).

The transgression onto the craton began towards the end of the Precambrian, but it did not reach the middle of the craton, where the study area is, until the end of the unnamed 3<sup>rd</sup> Epoch (501 Ma) of the Middle Cambrian Period (Gradstein et al., 2012).

Member A of the Deadwood Formation is the first preserved record of a transgression onto the craton in the Phanerozoic Eon.

As the shallow sea began to submerge the craton (Figure 42), minor fluctuations in sea level and sedimentation rates influenced deposition and restricted the Deadwood Formation to middle carbonate and inner detrital settings (Palmer, 1960). During the Cambrian, North America was divided by the equator and the study area was located adjacent to the equator.

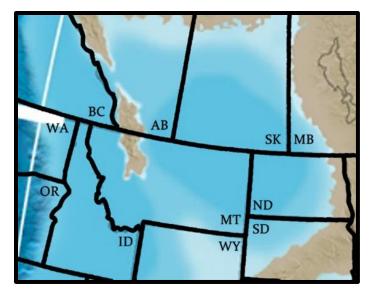



Figure 42. A map displaying the shoreline and general basin outline during the Late Cambrian period. (Modified from R. Blakely, 2013)

The first deposits were the conglomerates of the Member A. In some wells conglomerates consist of reworked Precambrian material. Prior to the transgression the entire surface of the craton was subaerially exposed (Figure 43) and subjected to the tropical to temperate climate of the Cambrian with no land plants for protection. This environment promoted chemical and mechanical weathering and the surface was extensively eroded, leaving it irregular.

These conglomerates represent alluvial deposits in low spots of the eroded surface. This is similar to the cobble and gravel conglomerates found in the Illinois Basin that were believed to be distal alluvial fan deposits, shed from the adjacent Precambrian uplands. In the Illinois Basin the conglomerates are overlain by sandstones with interbedded shales representing a transition to braided fluvial streams and other marginal marine environments (Bowen et al., 2011). Interbeds of sandstone and siltstone are most likely the result of storm surges. Pyrite occurs in small zones and is surrounded by shale beds; this is characteristic of the anoxic environment found in poorly circulated marginal

marine lagoons (Bowen et al., 2011). <u>Skolithos</u> burrows and fossil debris are characteristic of marine foreshore and shoreface environments (Driese et al., 1981).

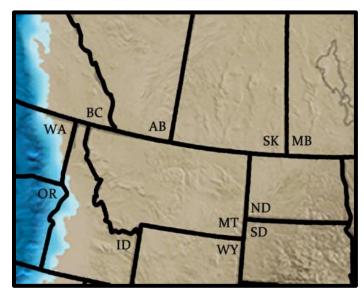



Figure 43. A map displaying the shoreline during the Precambrian Era. (Modified from R. Blakely, 2013).

Unlike in the Illinois Basin the conglomerates of Member A contain grains of glauconite. Glauconite is commonly considered a diagnostic mineral and is deposited in shallow marine environments along the continental shelf with slow rates of accumulation. In near shore environments detrital deposition inhibits glauconite (Odin and Matter, 1981), suggesting that these conglomerates have been reworked into a marine environment. Zones of glauconite are also found in the overlying quartz arenite. These grains were most likely transported shoreward from an open marine environment (Anderson, 1988). Glauconite is more prevalent near the top of Member A and right at the contact with the overlying Member B it is heavily oxidized and the precipitation of hematite has occurred. This is the result of a brief but widespread unconformity between the two members.

Overlying Member A is the glauconite-rich siltstone and sandstone Member B. This member is easily identified on well logs due to its high gamma ray response, caused by the abundance of potassium rich, glauconite grains found within the sandstones and siltstones of the member and occasional shale beds. As stated above, glauconite is a great indicator mineral because it is only formed in a specific range of environmental conditions. Glauconite is most commonly found in low energy environments of shallow marine sands. It is formed by replacing dead organic matter in a reducing environment, usually organisms within a shell or fecal matter. The abundance of the mineral suggests that the depositional environment for Member B shares a similar environment, unlike Member A which includes reworked glauconite grains.

Grain sizes in Member B increase eastward, this represents the larger sediments dropping out of bedload as the sediment travels westward into the deeper and calmer waters. The source is the exposed craton to the east and north. Glauconite formation would not be likely near the shoreline, glauconite grains in the coarser grained sandstones near the fringe are thought to be due to shoreward transport of these grains, similarly to Member A (Anderson, 1988). Since the glauconite is being transported, not generated, glauconite is less prevalent in the coarser grained sandstones. The combination of coarser grains and less glauconite cause the gamma ray response signature of Member B to closely resemble Member A in well logs, making the distinction between the two difficult. In this study the two members are combined and referred to as Member AB in the distant east and northeast edges of the study area. The boundary between the Cambrian and Ordovician is located near the top of Member B.

Due to continental drift the craton is continuously moving and by the start of deposition of Member C it had drifted about five degrees south. At this time the craton was also rotated a little more than 90 degrees counter-clockwise, putting the equator in western Montana and the eastern border of the study area at a latitude of about 10 degrees south (Ross, 1976). An increase in sea level was forced by northeasterly winds driving water over the shelf in Montana and Wyoming (Anderson, 1988), as well as increased rainfall and low evaporation due to the tropical climate (Ross, 1976). These factors prompted a change in depositional environments between members A and B and the remaining four members.

Sedimentation was mostly continuous for the remainder of Deadwood deposition (Figure 44), with Members C through F being deposited in three repeating vertical successions (Figure 45). Referencing well logs, this trend is documented with low gamma ray response in Member C, followed by a high gamma ray response in Member D and then a low gamma ray response, similar to Member C, in Member E and F.

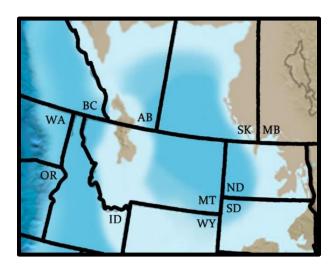



Figure 44. A map displaying the shoreline and basin outline during the Early Ordovician period. (Modified from Blakey, 2013)

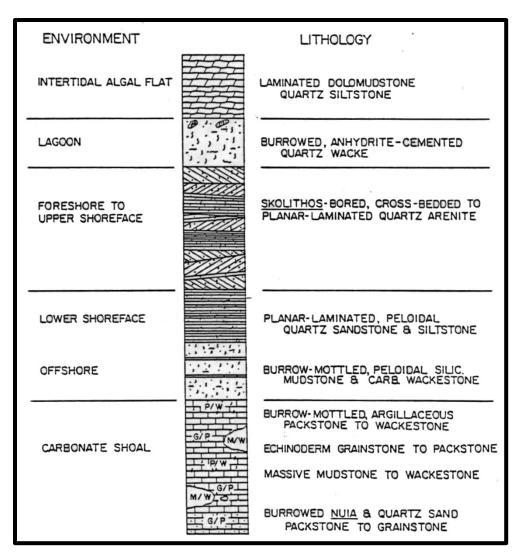



Figure 45. Simplified description of the progradational succession seen in member C through F. (Modified from Anderson, 1988).

The successions represent a progradation of a siliciclastic shoreline and back-barrier setting over a shallow shelf and a distal limestone shoal (Figure 46) (Anderson, 1988). All three are similar and begin with the progradation of the shoreline, advancing as far west as eastern Montana (LeFever, 1996). The progradation deposited well-sorted quartz arenites and wackes across the entire area (Figure 47a). These sandstone lithotypes are found at the bottom of Member C, Member E, and Member F.

Sea levels began to rise, transgressing eastward onto the craton, eroding some of the underlying deposits and depositing the foreshore to upper shoreface mixed sandstone-limestone and limestone lithotypes of Member C and E (Figure 47b). As sea level continues to rise lower shoreface to offshore limestones are deposited. The succession is finally capped by laminated dolomudstones and siliciclastic mudstones and calcareous siltstones that occur on carbonate shoals (Figure 47c). Pre-Winnipeg erosion limits the lateral extent of these deposits (Figure 47d).

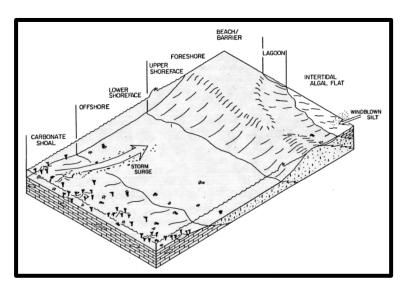



Figure 46. Model of the depositional environment for members C through F. Features in the model are not to scale. (Modified from Anderson, 1988).

Member F is the final member in the succession, it has be hypothesized that up to 590 feet of Member F sediments were eroded at the end of the Sauk Sequence (Anderson, 1988). This means that numerous Member F lithotypes were most likely lost with the erosion. Similarly to Member E, Member F includes siliciclastic mudstones to calcareous siltstones and quartz arenite. Deposition of the Deadwood Formation lasted until the end of the Early Ordovician, with the conclusion of deposition of Member F and the completion of the Sauk Sequence.

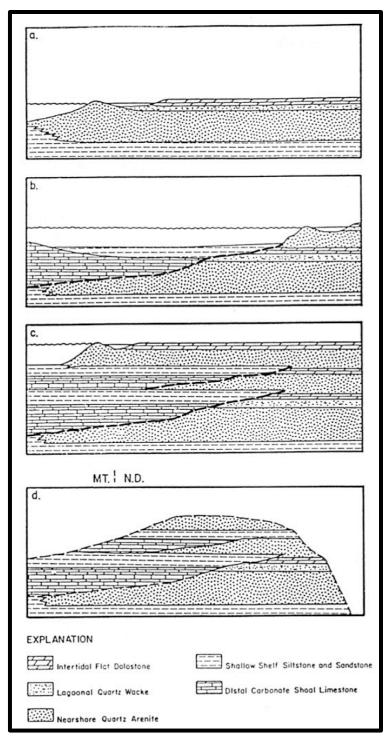



Figure 47. Diagram of the deposition of members C through F of the Deadwood Formation. Starting with the progradation of the shoreline (a), followed by the transgression of the sea onto the craton (b). The transgression deposits a succession of sandstones, limestones, dolomudstones, and siliciclastic mudstones (c). Erosion limits the lateral extent of the members. (Modified from LeFever, 1996).

The cores recovered from wells in Renville County, North Dakota do not fit this interpretation. This area represents a meteorite impact structure (Gerlach, 1994) that occurred near the end of the deposition of Member B. The impact instantaneously disrupted all previous deposits of the Deadwood Formation and the upper part of the Precambrian metaphoric rocks below.

There are seven wells that have recovered core from the Newporte structure. With four wells being drilled on the rim of the crater and the remaining three slightly outside of the crater; there are no wells inside of the crater. There are five main lithologies that are characteristic of impact structures; post-impact breccia; coarse conglomerate; conglomeratic sandstone; sandstone; and interbedded fine sandstones, siltstones, and shales (Kalleson et al., 2007).

The impact resulted in vast amounts of the Deadwood deposits and Precambrian basement rock to be ejected out of the crater. The material that was ejected into the air is deposited back down over the entire area as fallback breccia. The fallback breccia occurs in core as sandstone and siltstone clasts mixed with angular Precambrian gneiss clasts.

Further outside of crater rim, intense shockwaves induce rarefaction, sand liquefaction, and sand fluidization (Horton et al., 2008). These processes produce considerable deformation in the rocks. The increase in density due to rarefaction fragments preexisting deposits (Figure 48), producing the conglomerate seen in many wells (Figure 49). Intense folds and slumping due to liquefaction and fluidization also occurs in these wells.

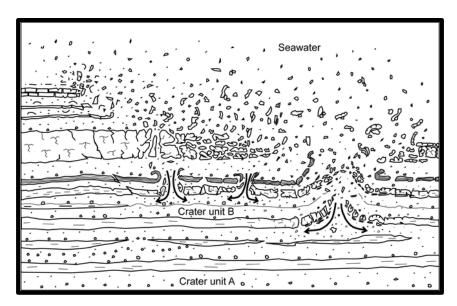



Figure 48. Illustration of an example of rarefaction-induced fragmentation and the ejection of these fragments and sediments that can produce the conglomerate and soft sediment deformation seen in cores around the Newporte structure. (Modified from Horton et al., 2008).



Figure 49. Example of conglomerate of sedimentary fragments, as well as intense soft sediment deformation. Taken from NDGS #6473 at a depth of 9,549'.

### **Basin Subsidence**

The timeline for this model began 501 million years ago at the beginning of the Late Cambrian, when the first sediments were deposited in the study area. At this time the study area was near sea level and the depositional environments of members A and B of the Deadwood Formation ranged from marginal marine to nearshore. Isopach maps for members A and B show a weak westward thickening depositional trend (Figure 28 and Figure 29). This trend represents the eastward advance of the sea onto the exposed craton, with the shoreline moving eastward to eastern North Dakota.

Through the Upper Cambrian sea level continued to rise, increasing accommodation space which resulted in the deposition and preservation of these units. Since the accommodation space was the result of only a rise in sea level and not due to subsidence of the basement the tectonic subsidence values are negative.

Towards the end of Cambrian Period there was a short term significant drop in sea level (Figure 50). This drop briefly subaerially exposed the recently deposited Member A and resulted in minor erosion of the top of Member A and brief period of nondeposition. The unconformity is visible in cores due to oxidation near the contact of the overlying Member B. The data output for the time frame of the unconformity shows eight feet of tectonic subsidence. This is due to the removal of part of Member A as it was subaerially exposed.

The results from Novva for Member B are very similar to what was seen in Member A. From all seven wells there was an average tectonic subsidence of -2.8 feet per million year. After the brief drop in sea level that ended the deposition of Member A sea level began to slowly rise again and increased accommodation space allowing for

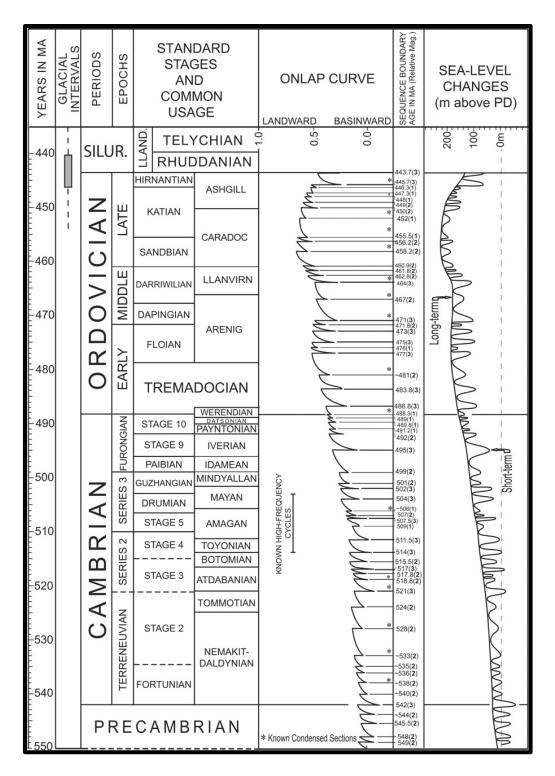
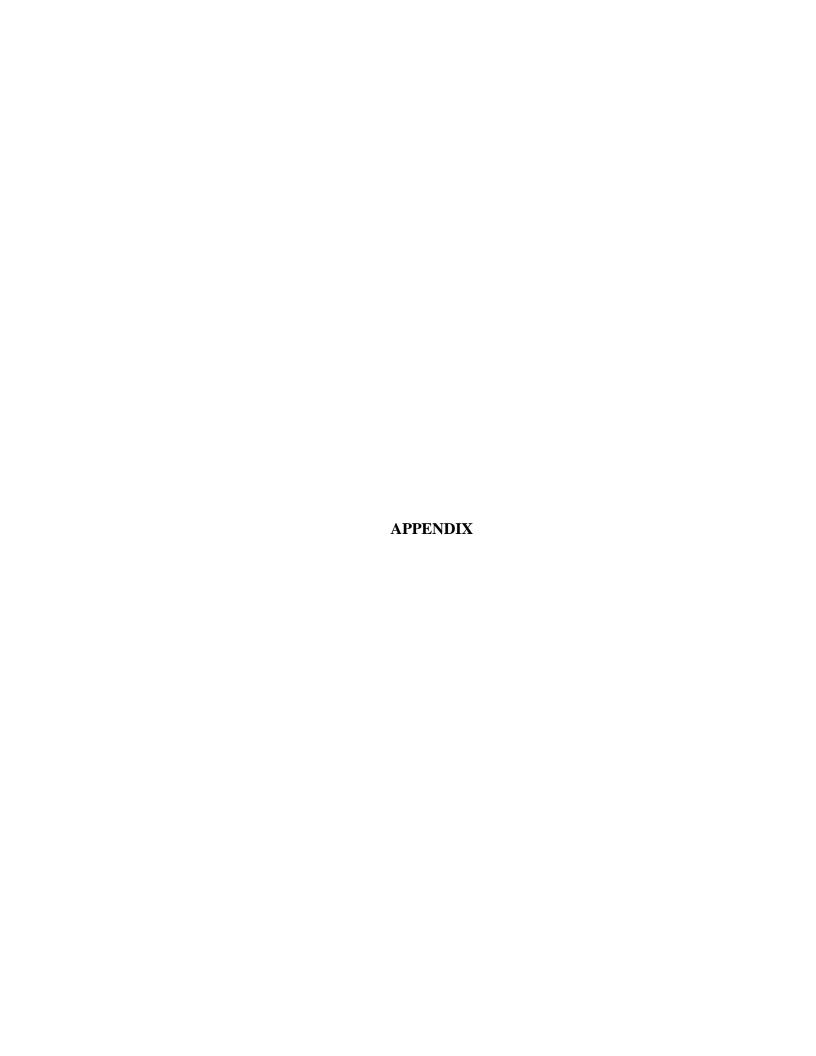



Figure 50. Sea-level changes throughout the Cambrian and Ordovician. These are modeled after the work (Gradstein et al., 2004) and (Ogg et al., 2008). Significant short term drop in sea level is visible at roughly 495 mill years ago. (Modified from (Haq and Schutter, 2008).

deposition of Member B. There was no subsidence so this increase in thickness results in negative tectonic subsidence values. There are two wells that show positive tectonic values, NDGS #6228 and #8169. The positive values are low, 3.8 and 1.8 feet per million year respectively. The thickness of Member B in these wells in much greater than in the other wells in the study. Variations in thickness is interpreted to be the result of the irregular surface of the underlying basement rock and not due to an early onset of subsidence.

The isopach for Member C displays an apparent basin shaped thickening trend in western North Dakota (Figure 30). A complete bowl shape is not fully seen, with a slight opening out westward into Montana. The center of the depression is near the current center of the Williston Basin. A significant change in tectonic subsidence values is occurs within Member C. Deposition for Member C occurred between 485 to 482 million years ago. Tectonic subsidence values average 19.9 feet per million years. This transformation from negative to positive tectonic subsidence verifies that subsidence has begun in the Williston Basin.

Results from the subsidence analysis are still negative up until the end of Member E for most of the wells but this does not represent a lack of negative subsidence. The change in tectonic subsidence for all of the wells is positive. This is compensating for up to 118 feet of deposition accumulated through at the end of Member B deposition.


Deadwood deposition continued and sea level remained relatively steady with minor fluctuations throughout the Early Ordovician Period. As subsidence continues to progress tectonic values remain positive during the deposition of members D, E, and F.

#### **CHAPTER V**

## **CONCLUSIONS**

- Distinct and traceable changes in the gamma ray response throughout the Deadwood
  Formation allows the formation to be divided into six members, A-F in ascending
  order.
- 2. Deadwood deposition is the result of the Sauk cratonic sequence, the first large scaled transgressive-regressive cycle to occur in the North America. The Williston Basin is found near the center of the craton, which means that deposition only represents the later stages of the Sauk sequence. Within this sequence six smaller transgressive-regressive events took place. These cycles produced changes in lithologies being deposited through time, allowing for differentiation of the six members of the Deadwood Formation. The first cycle depositing Member A, the next two cycles resulting in Member B, and the final three cycles being responsible for members C through F.
- 3. Three important unconformities exist in relation to the Deadwood Formation.
  - a. The major nonconformity between the base of the formation and the underlying igneous and metamorphic rocks of the Precambrian. This represents the first evidence of deposition during the Phanerozoic Eon.
  - b. The major disconformity between the top of the Deadwood Formation and the overlying Ordovician sediments (most commonly the Winnipeg Group). This

- occurred due to the complete withdrawal of the sea from the craton, exposing the recently deposited Deadwood Formation subjecting it to immense erosion. This represents the end of the Sauk cratonic sequence.
- c. The minor disconformity between members A and B. Evidence for this is a widespread zone of oxidized glauconite grains and the presence of hematite near the contact between the two members. Other unconformities occur throughout the Deadwood but they are commonly localized.
- 4. Prior to and early in the deposition of, the Deadwood Formation the Williston Basin did not exist. A significant visible shift occurs in the isopach maps. The deposition of Member A and Member B are the result of an eastward transgressing shoreline at the end of Member B. The trend shifts in Member C corresponding to a localized thickening in western North Dakota, which continues through the remainder of Deadwood deposition. Tectonic subsidence per year values were derived in Novva®. Average values for members A and B are negative, which is associated with tectonic uplift. Uplift can be attributed to accumulation of sediments with no subsidence, due to a rising sea level. Average tectonic subsidence values for members C, D, E and F are all positive, identifying that subsidence occurred in those members. The shift that occurs represents the initiation of subsidence in the Williston Basin and puts the age of the basin to be roughly 482 to 485 million years old.



## Appendix A General Well Information

Wells are listed by state or providence. Wells are also sorted by county in the United States or by location in Canada. The unique well identifier or American Petroleum Institute number, as well as the well label are used to identify the wells.

| No                                    | North Dakota                |                              |                  |                 |
|---------------------------------------|-----------------------------|------------------------------|------------------|-----------------|
| Genera                                | l Well                      | Infor                        | nation           |                 |
| American Petroleum Institute Number   | <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |
|                                       | Adams                       | County                       |                  |                 |
| 3300100006                            | 6322                        | 2,453                        | -102.1142        | 46.0961         |
| 3300100000                            | 7642                        | 2,804                        | -102.5668        | 46.0519         |
|                                       |                             | County                       |                  | , ,,            |
| 3300300004                            | 4640                        | 1,440                        | -98.1357         | 46.9521         |
| , , , , , , , , , , , , , , , , , , , |                             | County                       | , ,,,            | , ,,            |
| 3300500004                            | 632                         | 1,637                        | -99.7046         | 48.1134         |
| <i>35</i> 7 1                         |                             | County                       | <i>,,,</i> ,,    | 1 21            |
| 3300700001                            | 291                         | 2,774                        | -103.3022        | 46.8742         |
| 3300700054                            | 3268                        | 2,540                        | -103.4129        | 46.8665         |
| 3300700221                            | 6228                        | 2,532                        | -103.0931        | 47.3187         |
| 3300700230                            | 6303                        | 2,642                        | -103.3846        | 47.1731         |
| 3300700323                            | 6913                        |                              | -103.2368        | 47.2216         |
| 3300700433                            |                             | 2,747<br>2,772               | -103.2037        |                 |
|                                       | 7307                        |                              | -103.2037        | 47.1931         |
| 3300700505                            | 7520                        | 2,730                        |                  | 47.1955         |
| 3300700590                            | 7934                        | 2,726                        | -103.3258        | 47.1055         |
| 3300700642                            | 8226                        | 2,724                        | -103.3439        | 47.1715         |
| 3300700693                            | 8487                        | 2,344                        | -103.5444        | 47.1986         |
| 3300700715                            | 8603                        | 2,615                        | -103.1461        | 47.0691         |
| 3300700769                            | 9070                        | 2,731                        | -103.2762        | 46.9849         |
| 3300701042                            | 11335                       | 2,495                        | -103.5118        | 46.8701         |
| 3300701391                            | 14763                       | 2,658                        | -103.2500        | 46.9493         |
| I                                     | _                           | u County                     |                  |                 |
| 3300900002                            | 38                          | 1,526                        | -101.1768        | 48.6333         |
| 3300900003                            | 64                          | 1,520                        | -100.7055        | 48.9463         |
| 3300900004                            | 110                         | 2,205                        | -100.3560        | 48.9343         |
| 3300900418                            | 2219                        | 1,494                        | -100.9636        | 48.7939         |
| 3300901010                            | 4655                        | 1,486                        | -100.8321        | 48.8082         |
| 3300901034                            | 4790                        | 1,517                        | -101.1492        | 48.5762         |
| 3300901045                            | 4846                        | 1,518                        | -101.2039        | 48.9640         |
| 3300901087                            | 5184                        | 1,552                        | -100.6018        | 48.8585         |
| 3300901554                            | 9522                        | 1,474                        | -100.6613        | 48.7570         |
|                                       | Bowmar                      | County                       |                  |                 |
| 3301100042                            | 485                         | 3,212                        | -103.6985        | 46.0013         |
| 3301100045                            | 1575                        | 2,953                        | -103.9489        | 46.0081         |
| 3301100382                            | 9656                        | 2,945                        | -103.2315        | 46.2039         |
| 3301100387                            | 9805                        | 3,122                        | -103.7143        | 46.0371         |
| 3301100905                            | 14851                       | 2,954                        | -103.5465        | 45.9634         |
|                                       |                             | County                       |                  |                 |
| 3301300869                            | 8893                        | 1,950                        | -102.2588        | 48.8671         |
| 3301301316                            | 15137                       | 2,089                        | -102.8881        | 48.8460         |

| North Dakota                           |                          |                                       |                  |                 |  |  |
|----------------------------------------|--------------------------|---------------------------------------|------------------|-----------------|--|--|
| Genera                                 | General Well Information |                                       |                  |                 |  |  |
| American Petroleum<br>Institute Number | Well<br>Label            | Kelly<br>Bushing<br>Elevation<br>(ft) | <u>Longitude</u> | <u>Latitude</u> |  |  |
|                                        | Burleigh                 | County                                |                  |                 |  |  |
| 3301500001                             | 19                       | 1,909                                 | -100.4529        | 46.9684         |  |  |
| 3301500002                             | 145                      | 1,869                                 | -100.3105        | 46.6476         |  |  |
| 3301500003                             | 151                      | 1,922                                 | -100.8286        | 46.9415         |  |  |
| 3301500004                             | 155                      | 1,912                                 | -100.1411        | 46.9649         |  |  |
| 3301500005                             | 174                      | 1,981                                 | -100.3885        | 46.9801         |  |  |
| 3301500006                             | 701                      | 2,023                                 | -100.1159        | 47.2553         |  |  |
| 3301500008                             | 756                      | 1,891                                 | -100.4196        | 46.6361         |  |  |
| 3301500009                             | 763                      | 1,947                                 | -100.3915        | 47.2889         |  |  |
| 3301500010                             | 765                      | 2,027                                 | -100.3652        | 47.0711         |  |  |
| 3301500011                             | 772                      | 2,007                                 | -100.6205        | 46.9373         |  |  |
| 3301500014                             | 1409                     | 2,019                                 | -100.3574        | 46.9587         |  |  |
| 3301500032                             | 6264                     | 1,938                                 | -100.2692        | 46.8786         |  |  |
| 3301500042                             | 7010                     | 1,752                                 | -100.5656        | 46.7343         |  |  |
| 3301500043                             | 8674                     | 1,874                                 | -100.3443        | 47.0273         |  |  |
| 3301500046                             | 12057                    | 1,874                                 | -100.6880        | 47.2745         |  |  |
|                                        |                          | County                                |                  | ., , ,,         |  |  |
| 3301900001                             | 27                       | 1,562                                 | -99              | 48.5719         |  |  |
|                                        |                          | County                                |                  | 1 2/ 2          |  |  |
| 3302100003                             | 682                      | 1,461                                 | -98.5498         | 46.0264         |  |  |
| 3302100005                             | 1394                     | 2,196                                 | -98.9402         | 45.9811         |  |  |
|                                        |                          | County                                | , , ,            | 13.7            |  |  |
| 3302300024                             | 2010                     | 2,206                                 | -103.9775        | 48.9655         |  |  |
| 3302300167                             | 6798                     | 2,141                                 | -103.1382        | 48.8567         |  |  |
| 3302300171                             | 7087                     | 1,918                                 | -103.0616        | 48.9396         |  |  |
| 3302300181                             | 794 <del>2</del>         | 2,349                                 | -103.2623        | 48.6679         |  |  |
| 3302300210                             | 9398                     | 2,260                                 | -103.7964        | 48.9403         |  |  |
| 3302300211                             | 9413                     | 2,072                                 | -103.4013        | 48.9401         |  |  |
| 3302300221                             | 9622                     | 1,983                                 | -103.3962        | 48.9650         |  |  |
| 3302300224                             | 9677                     | 1,980                                 | -103.4128        | 48.9831         |  |  |
|                                        |                          | County                                |                  |                 |  |  |
| 3302500069                             | 6086                     | 2,327                                 | -102.6973        | 47.3992         |  |  |
| 3302500079                             | 6148                     | 2,615                                 | -102.8172        | 47.0550         |  |  |
| 3302500120                             | 6530                     | 2,595                                 | -102.7595        | 47.0334         |  |  |
| 3302500155                             | 7402                     | 2,010                                 | -102,2161        | 47.3087         |  |  |
| 3302500156                             | 7412                     | 2,218                                 | -102.5847        | 47.3808         |  |  |
| 3302500164                             | 7584                     | 2,322                                 | -102.8139        | 47.3991         |  |  |
| 3302500178                             | 8077                     | 2,417                                 | -102.9003        | 47.5647         |  |  |
| 3302500179                             | 8095                     | 2,330                                 | -102.6173        | 47.7260         |  |  |
| 3302500195                             | 8313                     | 2,151                                 | -102.5208        | 47.3633         |  |  |
| 3302500211                             | 8491                     | 2,635                                 | -102.8978        | 47.0870         |  |  |
| 3302500227                             | 8613                     | 2,412                                 | -102.5019        | 47.2721         |  |  |
| 3302500232                             | 8709                     | 2,283                                 | -102.5580        | 47.5644         |  |  |

| No                                     | North Dakota  |                              |                  |                 |  |
|----------------------------------------|---------------|------------------------------|------------------|-----------------|--|
| Genera                                 | l Well        | Infori                       | nation           |                 |  |
| American Petroleum<br>Institute Number | Well<br>Label | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |  |
| 3302500267                             | 9027          | 2,204                        | -102.3894        | 47.2435         |  |
| 3302500269                             | 9044          | 2,270                        | -102.4944        | 47.4834         |  |
| 3302500274                             | 9080          | 2,221                        | -102.3478        | 47.2940         |  |
| 3302500310                             | 9397          | 2,334                        | -102.4670        | 47.4326         |  |
| 3302500325                             | 9527          | 2,492                        | -103.0956        | 47.4843         |  |
| 3302500358                             | 10072         | 2,238                        | -102.4858        | 47.5593         |  |
| 3302500387                             | 10606         | 2,146                        | -102.4586        | 47.1243         |  |
| 3302500388                             | 10627         | 2,263                        | -102.4757        | 47.0157         |  |
| 3302500408                             | 11363         | 2,203                        | -102.2669        | 47.2875         |  |
| 3302500438                             | 12400         | 2,476                        | -102.9760        | 47.1300         |  |
| 3302500514                             | 14636         | 2,246                        | -102.4059        | 47.0918         |  |
|                                        | Eddy (        | County                       |                  |                 |  |
| 3302700001                             | 437           | 1,478                        | -99.2512         | 47.8163         |  |
| 3302700002                             | 768           | 1,561                        | -98.9993         | 47.8305         |  |
| 3302700005                             | 1274          | 1,584                        | -98.5667         | 47.6469         |  |
| 3302700009                             | 7271          | 1,530                        | -98.9657         | 47.6511         |  |
|                                        | Emmon         | s County                     |                  |                 |  |
| 3302900001                             | 16            | 2,026                        | -100.0821        | 46.2889         |  |
| 3302900002                             | 23            | 2,012                        | -100.1909        | 46.2899         |  |
| 3302900003                             | 43            | 1,820                        | -100.4629        | 46.2667         |  |
| 3302900018                             | 7101          | 1,887                        | -100.1884        | 46.2629         |  |
| 3302900019                             | 7146          | 1,908                        | -100.0919        | 46.6021         |  |
| 3302900021                             | 7936          | 1,925                        | -100.0603        | 46.6020         |  |
| 3302900027                             | 10173         | 1,956                        | -100.2078        | 46.5042         |  |
|                                        | Foster        | County                       |                  |                 |  |
| 3303100002                             | 287           | 1,518                        | -98.6460         | 47.4696         |  |
| 3303100003                             | 295           | 1,496                        | -98.5283         | 47.3501         |  |
| 3303100004                             | 334           | 1,547                        | -98.7575         | 47.3610         |  |
| 3303100008                             | 1105          | 1,533                        | -98.9819         | 47.4735         |  |
| 3303100009                             | 1112          | 1,536                        | -99.0341         | 47-4553         |  |
| 3303100013                             | 1227          | 1,463                        | -98.7580         | 47.5278         |  |
| Go                                     | lden Va       | lley Cour                    | ıty              |                 |  |
| 3303300001                             | 410           | 2,513                        | -103.6798        | 47.1875         |  |
| 3303300002                             | 470           | 2,867                        | -103.9046        | 46.9391         |  |
| 3303300044                             | 6272          | 3,034                        | -104.0412        | 46.6701         |  |
| 3303300050                             | 6513          | 2,841                        | -103.9014        | 46.9924         |  |
| 3303300053                             | 6563          | 2,744                        | -103.9317        | 46.8888         |  |
| 3303300085                             | 7969          | 2,692                        | -104.0117        | 47.0720         |  |
| 3303300102                             | 8590          | 2,260                        | -103.7440        | 47.2648         |  |
| 3303300120                             | 9148          | 2,836                        | -103.9260        | 46.8593         |  |
| 3303300129                             | 9540          | 2,820                        | -103.8214        | 46.8949         |  |

| North Dakota                        |                                         |                              |           |                 |  |  |  |
|-------------------------------------|-----------------------------------------|------------------------------|-----------|-----------------|--|--|--|
| General Well Information            |                                         |                              |           |                 |  |  |  |
| American Petroleum Institute Number | Well<br>Label                           | Kelly Bushing Elevation (ft) | Longitude | <u>Latitude</u> |  |  |  |
| G                                   | rand For                                | ks Count                     | ty        |                 |  |  |  |
| 3303500002                          | 580                                     | 940                          | -97.4102  | 47.9022         |  |  |  |
| 3303500005                          | 3191                                    | 841                          | -97.3604  | 48.0984         |  |  |  |
| 3303500006                          | 3204                                    | 837                          | -97.2148  | 47.9896         |  |  |  |
| 3303500014                          | 15343                                   | 1,084                        | -97.5683  | 47.6741         |  |  |  |
|                                     | Grant                                   | County                       |           |                 |  |  |  |
| 3303700020                          | 3303700020 5572 2,172 -101.4296 46.2318 |                              |           |                 |  |  |  |
| 3303700021                          | 6420                                    | 2,285                        | -101.4973 | 46.2639         |  |  |  |
| 3303700022                          | 6586                                    | 2,456                        | -102.0127 | 46.4272         |  |  |  |
| 3303700023                          | 7020                                    | 2,342                        | -101.8051 | 46.7124         |  |  |  |
| 3303700024                          | 8549                                    | 2,293                        | -101.6140 | 46.4173         |  |  |  |
| 3303700025                          | 868o                                    | 2,498                        | -101.6587 | 46.1308         |  |  |  |
|                                     | Griggs                                  | County                       |           | •               |  |  |  |
| 3303900004                          | 4719                                    | 1,471                        | -98.4649  | 47.4914         |  |  |  |
| 3303900008                          | 9659                                    | 1,568                        | -98.3877  | 47.6663         |  |  |  |
| I                                   | Hettinge                                | er County                    | 7         | •               |  |  |  |
| 3304100011                          | 5783                                    | 2,548                        | -102.3254 | 46.5575         |  |  |  |
| 3304100015                          | 7075                                    | 2,517                        | -102.3254 | 46.3005         |  |  |  |
| 3304100020                          | 7453                                    | 2,669                        | -102.8126 | 46.3123         |  |  |  |
| 3304100027                          | 8312                                    | 2,544                        | -102.7154 | 46.4621         |  |  |  |
| 3304100032                          | 10522                                   | 2,620                        | -102.6685 | 46.5451         |  |  |  |
|                                     | Kidder                                  | County                       |           | •               |  |  |  |
| 3304300003                          | 24                                      | 1,968                        | -99.8640  | 46.9902         |  |  |  |
| 3304300004                          | 230                                     | 1,889                        | -99.6745  | 47.2028         |  |  |  |
| 3304300005                          | 748                                     | 1,848                        | -100.0803 | 47.0814         |  |  |  |
|                                     | Logan                                   | County                       | •         | •               |  |  |  |
| 3304700002                          | 590                                     | 2,011                        | -99.9021  | 46.6194         |  |  |  |
| 3304700004                          | 1347                                    | 1,917                        | -99.5561  | 46.5718         |  |  |  |
| 3304700020                          | 5523                                    | 2,117                        | -99.8922  | 46.4847         |  |  |  |
| ]                                   | McHenr                                  | y County                     | 7         |                 |  |  |  |
| 3304900001                          | 39                                      | 1,480                        | -100.7248 | 48.4493         |  |  |  |
| 3304900002                          | 61                                      | 1,570                        | -100.5906 | 48.0711         |  |  |  |
| 3304900125                          | 8307                                    | 1,516                        | -100.6172 | 48.2088         |  |  |  |
| 3304900127                          | 8803                                    | 1,915                        | -100.8882 | 47.8899         |  |  |  |
| 3304900151                          | 11922                                   | 1,466                        | -100.8549 | 48.5983         |  |  |  |
|                                     | McIntos                                 | h County                     | 7         |                 |  |  |  |
| 3305100001                          | 89                                      | 2,176                        | -99.7967  | 46.1711         |  |  |  |
| 3305100003                          | 620                                     | 2,042                        | -99.2560  | 46.0759         |  |  |  |
| 3305100004                          | 621                                     | 2,056                        | -99.3755  | 46.0689         |  |  |  |
| 3305100005                          | 622                                     | 2,143                        | -99.3545  | 46.1667         |  |  |  |
|                                     | McKenzi                                 | e County                     | 7         |                 |  |  |  |
| 3305300410                          | 2373                                    | 2,117                        | -102.7747 | 48.0121         |  |  |  |
| 3305300688                          | 6112                                    | 2,378                        | -102.8627 | 48.0621         |  |  |  |

| North Dakota                              |          |             |                 |  |
|-------------------------------------------|----------|-------------|-----------------|--|
| General W                                 | ell Info | rmation     |                 |  |
|                                           | Kelly    | -           |                 |  |
| American Petroleum Weinstitute Number Lab | _        | Longitude   | <u>Latitude</u> |  |
| Institute Number Lab                      | (ft)     | 011         |                 |  |
| 3305300734 638                            | 37 2,32  | 1 -103.9754 | 47.6642         |  |
| 3305300739 641                            | 4 2,334  | 4 -103.9600 | 47.6609         |  |
| 3305301055 757                            | 2,48     | 6 -102.8848 | 47.8565         |  |
| 3305301056 757                            | 2,41     | 7 -102.8740 | 47.8491         |  |
| 3305300734 638                            | 37 2,32  | 1 -103.9754 | 47.6642         |  |
| 3305300739 641                            | 4 2,334  | 4 -103.9600 | 47.6609         |  |
| 3305301055 757                            | 71 2,48  | 6 -102.8848 | 47.8565         |  |
| 3305301056 757                            | 2,41     | 7 -102.8740 | 47.8491         |  |
| 3305301066 760                            | 1,95     | 1 -102.8978 | 48.1119         |  |
| 3305301071 765                            | 31 2,137 | 7 -103.3498 | 47.8611         |  |
| 3305301140 787                            |          | 1 -103.3396 | 47.8065         |  |
| 3305301167 798                            | 1,99     | 9 -102.9316 | 48.1000         |  |
| 3305301177 802                            | 3 2,24   | 2 -102.7554 | 47.9688         |  |
| 3305301187 808                            | 3 2,38   | 1 -102.8841 | 47.8285         |  |
| 3305301190 809                            | 0 2,33   | 1 -102.8782 | 48.0122         |  |
| 3305301202 813                            | 2,39     | 8 -103.3444 | 47.9078         |  |
| 3305301211 816                            | 5 2,05   | 0 -103.5647 | 47.8862         |  |
| 3305301220 818                            | 7 2,44   | 4 -103.5306 | 47.6586         |  |
| 3305301221 819                            | 3 2,18   | 5 -103.6637 | 47.4969         |  |
| 3305301256 831                            | 4 2,22   | 1 -103.8239 | 47.5698         |  |
| 3305301294 846                            | 2,35     | 7 -103.5258 | 47.4382         |  |
| 3305301311 854                            | .6 1,917 | 7 -104.0192 | 47.8462         |  |
| 3305301341 866                            | 2,36     | 0 -103.1039 | 47.5252         |  |
| 3305301358 873                            | 7 2,335  | -103.6810   | 47.5792         |  |
| 3305301416 900                            | 2,329    | 9 -103.4570 | 47.8248         |  |
| 3305301417 900                            | 2,36     | 1 -103.4238 | 47.3606         |  |
| 3305301454 921                            | 7 2,39   | 0 -102.9544 | 47.7553         |  |
| 3305301623 99                             | 2,439    | 9 -103.7435 | 47.6157         |  |
| 3305301937 1111                           | 0 2,40   | 2 -102.8685 | 47.9727         |  |
| 3305302077 1163                           | 2,36     | 6 -103.4782 | 47.3848         |  |
| 3305302224 1234                           | 2,514    | 4 -102.9103 | 47.7877         |  |
| 3305302267 1258                           | 39 2,26  | 9 -102.8205 | 48.0430         |  |
| 3305302293 1269                           | 99 2,28  | 7 -103.4565 | 47.6533         |  |
| 3305302397 1340                           | 2,16     | 5 -102.7763 | 48.0186         |  |
| 3305302459 136.                           | 17 2,27  | 4 -102.7893 | 48.0278         |  |
| 3305302492 1439                           | 9 2,39   | 6 -102.8842 | 47.8436         |  |
| 3305302508 1472                           | 24 2,00  | 1 -102.9415 | 48.1063         |  |
| 3305302669 159                            | 2,43     |             | 47.8495         |  |
| 3305302757 1637                           | 76 2,49  | 9 -102.8681 | 47.9455         |  |
| 3305302778 165                            | 23 2,312 | 2 -102.8832 | 48.0176         |  |
| McL                                       | ean Coun | ty          | -               |  |
| 3305500002 22                             |          |             | 47.4838         |  |
| 3305500003 49                             | 2,100    | -100.9264   |                 |  |

| North Dakota                           |               |                               |                  |                 |  |
|----------------------------------------|---------------|-------------------------------|------------------|-----------------|--|
| General Well Information               |               |                               |                  |                 |  |
| American Petroleum<br>Institute Number | Well<br>Label | Kelly<br>Bushing<br>Elevation | <u>Longitude</u> | <u>Latitude</u> |  |
|                                        |               | <u>(ft)</u>                   |                  | 0.0             |  |
| 3305500024                             | 7783          | 2,212                         | -102.1426        | 47.8418         |  |
| 3305500025                             | 806o          | 2,109                         | -102.0650        | 47.6552         |  |
| 3305500034                             | 8711          | 1,900                         | -100.9100        | 47.4166         |  |
| 3305500035                             | 8720          | 1,815                         | -100.9207        | 47.2567         |  |
| 3305500038                             | 8993          | 1,995                         | -100.8774        | 47.6905         |  |
|                                        |               | County                        |                  |                 |  |
| 3305700001                             | 21            | 2,287                         | -101.9620        | 47.0952         |  |
| 3305700025                             | 8712          | 2,167                         | -102.1808        | 47-3443         |  |
|                                        |               | County                        | 0                |                 |  |
| 3305900002                             | 26            | 2,005                         | -100.8947        | 46.5722         |  |
| 3305900007                             | 1620          | 2,426                         | -102.0255        | 46.8245         |  |
| 3305900009                             | 3859          | 2,124                         | -101.0927        | 46.4675         |  |
| 3305900026                             | 7340          | 2,230                         | -101.7463        | 46.9111         |  |
| 3305900027                             | 7691          | 2,094                         | -101.4604        | 46.7558         |  |
| 3305900029                             | 7797          | 2,281                         | -101.6158        | 46.6765         |  |
| 3305900031                             | 7937          | 1,965                         | -101.5761        | 46.7592         |  |
| 3305900032                             | 8158          | 1,792                         | -101.0772        | 46.7941         |  |
| 3305900034                             | 8553          | 1,994                         | -101.0633        | 46.9444         |  |
| N                                      | Mountra       | il County                     | У                |                 |  |
| 3306100218                             | 678o          | 2,133                         | -102.0024        | 47.8857         |  |
| 3306100220                             | 6872          | 2,108                         | -101.9891        | 48.0716         |  |
| 3306100282                             | 9326          | 2,266                         | -102.4584        | 48.3650         |  |
| 3306100378                             | 12597         | 2,474                         | -102.8781        | 48.4547         |  |
| 3306100471                             | 14815         | 2,110                         | -102.0314        | 47.8784         |  |
| 3306100660                             | 17058         | 2,112                         | -102.1420        | 48.0093         |  |
|                                        | Nelson        | County                        |                  |                 |  |
| 3306300010                             | 4664          | 1,473                         | -98.5015         | 47.8517         |  |
| 3306300015                             | 4785          | 1,496                         | -98.3780         | 47.9317         |  |
| 3306300025                             | 9143          | 1,471                         | -98.1471         | 47.6896         |  |
|                                        |               | County                        | <i>y</i>         | ., ,            |  |
| 3306500001                             | 15            | 2,037                         | -100.9836        | 47.0278         |  |
| 3306500014                             | 8144          | 1,973                         | -101.0476        | 47.0279         |  |
| '                                      |               | County                        | .,               | ,,              |  |
| 3306900004                             | 435           | 1,589                         | -99.5008         | 48.5249         |  |
| 3306900010                             | 706           | 1,652                         | -99.6472         | 48.4015         |  |
| 3306900022                             | 3920          | 1,605                         | -100.0927        | 47.9644         |  |
| 3306900031                             | 5576          | 1,579                         | -100.0024        | 47.9362         |  |
| 3306900043                             | 12125         | 1,622                         | -99.8876         | 48.5391         |  |
| 3300 300043                            |               | County                        | 99.50/5          | -t~.739+        |  |
| 2207100001                             | 20            |                               | -98.6665         | 48.4830         |  |
| 3307100001                             | 196           | 1,544                         |                  | 48.1640         |  |
| 3307100002                             | 190           | 1,487                         | -99.0079         | 40.1040         |  |

| North Dakota            |              |                   |           |          |
|-------------------------|--------------|-------------------|-----------|----------|
| Genera                  | l Well       | Infor             | nation    |          |
| American Petroleum      | Well         | Kelly<br>Bushing  | T 1       | T 1      |
| <u>Institute Number</u> | <u>Label</u> | Elevation<br>(ft) | Longitude | Latitude |
| 3307100004              | 383          | 1,556             | -98.6849  | 48.5130  |
| 3307100005              | 407          | 1,487             | -98.6943  | 48.0699  |
| 3307100007              | 411          | 1,557             | -98.7391  | 48.5166  |
| 3307100008              | 422          | 1,534             | -98.6575  | 48.4623  |
|                         | Renville     | County            |           |          |
| 3307500718              | 6296         | 1,807             | -101.9692 | 48.9566  |
| 3307500730              | 6349         | 1,636             | -101.9520 | 48.9819  |
| 3307500737              | 6401         | 1,703             | -101.9463 | 48.9570  |
| 3307500744              | 6436         | 1,822             | -101.9816 | 48.9707  |
| 3307500750              | 6466         | 1,734             | -101.9391 | 48.9767  |
| 3307500752              | 6473         | 1,809             | -101.9598 | 48.9498  |
| 3307500753              | 6504         | 1,716             | -101.8977 | 48.8881  |
| 3307500763              | 6624         | 1,715             | -101.6418 | 48.8029  |
| 3307500766              | 6684         | 1,713             | -101.6622 | 48.8050  |
| 3307500769              | 6749         | 1,645             | -101.9415 | 48.9705  |
| 3307500798              | 7577         | 1,842             | -101.7741 | 48.6857  |
| 3307501300              | 14429        | 1,773             | -101.7836 | 48.9211  |
| 3307501312              | 14725        | 1,811             | -101.9704 | 48.9558  |
| 3307501314              | 14758        | 1,823             | -101.9824 | 48.9701  |
| 3307501325              | 14970        | 1,558             | -101.1554 | 48.4961  |
| 3307501397              | 17317        | 1,646             | -101.9443 | 48.9625  |
| 3307501398              | 17467        | 1,826             | -101.9804 | 48.9716  |
| 22                      |              | County            |           |          |
| 3307900001              | 83           | 1,627             | -100.0867 | 48.7569  |
| 3307900002              | 316          | 1,691             | -99.6642  | 48.6666  |
| 3307900051              | 13586        | 1,603             | -99.9091  | 48.6156  |
| 3307900057              | 16095        | 1,721             | -99.9168  | 48.7892  |
|                         |              | County            |           |          |
| 3308300002              | 665          | 1,792             | -100.3335 | 47.6446  |
| 3308300003              | 684          | 1,849             | -100.1632 | 47.5870  |
| 3308300004              | 693          | 1,984             | -100.4137 | 47.4453  |
| 3308300005              | 735          | 1,994             | -100.1152 | 47.4597  |
| 3308300014              | 9343         | 2,007             | -100.3930 | 47.4422  |
| 35 5 1                  | -            | County            | 373       | 17 11    |
| 3308500001              | 631          | 1,731             | -100.7238 | 46.1371  |
|                         |              | County            | , ,       | , 5,     |
| 3308700104              | 8629         | 2,656             | -102.9698 | 46.5496  |
| 3308700108              | 9244         | 2,780             | -102.9546 | 46.6218  |
| 3308700120              | 11484        | 2,733             | -102.9390 | 46.4951  |
| <i>JJ</i> -             |              | County            | .939      | 1 - 199* |
| 3308900215              | 6447         | 2,496             | -102.9548 | 46.8715  |
| 3308900242              | 8088         | 2,165             | -102.4696 | 47.0085  |
| 3308900242              | 8169         | 2,372             | -102.2985 | 46.7590  |
| 2200900240              | 5109         | -,5/-             | 102.2905  | 40.7390  |

| North Dakota                        |                             |                              |                  |                 |
|-------------------------------------|-----------------------------|------------------------------|------------------|-----------------|
| Genera                              | l Well                      | Infor                        | nation           |                 |
| American Petroleum Institute Number | <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |
| 3308900249                          | 8342                        | 2,418                        | -102.6190        | 46.9018         |
| 3308900253                          | 8665                        | 2,339                        | -102.2983        | 46.7084         |
| 3308900254                          | 8837                        | 2,678                        | -102.6929        | 46.6751         |
| 3308900256                          | 9056                        | 2,436                        | -102.3614        | 46.8420         |
| 3308900259                          | 9135                        | 2,361                        | -102.1623        | 46.7427         |
| 3308900261                          | 9256                        | 2,458                        | -102.3768        | 46.8530         |
| 3308900262                          | 9257                        | 2,451                        | -102.3404        | 46.8380         |
| 3308900264                          | 9322                        | 2,633                        | -102.8135        | 46.8196         |
| 3308900266                          | 9348                        | 2,425                        | -102.3332        | 46.8224         |
| 3308900270                          | 9407                        | 2,391                        | -102.3217        | 46.8084         |
| 3308900274                          | 9475                        | 2,320                        | -102.4800        | 46.9308         |
| 3308900279                          | 9684                        | 2,755                        | -102.9065        | 46.7294         |
| 3308900306                          | 10430                       | 2,379                        | -102.2358        | 46.6435         |
| 3308900313                          | 10570                       | 2,534                        | -102.7316        | 46.7930         |
| 3308900397                          | 13447                       | 2,514                        | -102.8288        | 46.8987         |
| 3308900537                          | 14652                       | 2,719                        | -102.7089        | 46.6609         |
|                                     | Steele                      | County                       |                  |                 |
| 3309100002                          | 8027                        | 1,398                        | -97.8063         | 47.6246         |
| 3309100007                          | 9922                        | 1,303                        | -97.7883         | 47.2636         |
|                                     | Stutsma                     | n County                     |                  |                 |
| 3309300001                          | 40                          | 1,870                        | -99.1401         | 47.0501         |
| 3309300003                          | 120                         | 1,493                        | -98.6707         | 47.1043         |
| 3309300004                          | 134                         | 1,552                        | -98.8978         | 47.1191         |
| 3309300005                          | 370                         | 1,673                        | -98.9023         | 46.9335         |
| 3309300006                          | 406                         | 1,576                        | -98.9063         | 46.9342         |
| 3309300008                          | 644                         | 1,945                        | -99.2811         | 46.8795         |
| 3309300009                          | 668                         | 1,907                        | -99.0836         | 46.6468         |
| 3309300010                          | 669                         | 1,880                        | -99.2292         | 46.8067         |
| 3309300012                          | 671                         | 1,900                        | -99.0855         | 46.9551         |
| 3309300013                          | 672                         | 1,867                        | -99.0867         | 46.8753         |
| 3309300021                          | 7415                        | 2,001                        | -99.1360         | 46.6578         |
| 3309300022                          | 9776                        | 1,545                        | -98.6868         | 47.2131         |
|                                     |                             | County                       |                  |                 |
| 3309500002                          | 171                         | 1,597                        | -99.1179         | 48.9480         |
| 3309500003                          | 194                         | 1,499                        | -99.0656         | 48.4157         |
| 3309500004                          | 227                         | 1,465                        | -99.2240         | 48.4594         |
|                                     |                             | County                       | -                |                 |
| 3310100004                          | 47                          | 1,595                        | -101.0494        | 48.2272         |
| 3310100235                          | 7612                        | 2,219                        | -101.8486        | 48.2417         |
| 3310100319                          | 11055                       | 1,612                        | -101.1354        | 48.3253         |
|                                     |                             | County                       |                  |                 |
| 3310300001                          | 207                         | 1,933                        | -99.9499         | 47.4305         |
| 3310300006                          | 609                         | 1,612                        | -99.6793         | 47.6331         |
|                                     |                             |                              |                  |                 |

| No                                  | North Dakota  |                              |           |                                 |
|-------------------------------------|---------------|------------------------------|-----------|---------------------------------|
| Genera                              | l Well        | Infor                        | nation    |                                 |
| American Petroleum Institute Number | Well<br>Label | Kelly Bushing Elevation (ft) | Longitude | <u>Latitude</u>                 |
| 3310300008                          | 642           | 1,599                        | -99.6480  | 47 7727                         |
| 3310300000                          | 689           | 1,702                        | -99.7591  | 47.77 <sup>2</sup> 7<br>47.5138 |
| 3310300010                          | 1211          | 1,608                        | -99.3539  | 47.4848                         |
| 3310300023                          | 11599         | 1,857                        | -99.5901  | 47.3521                         |
| 3310300024                          | 11653         | 1,609                        | -99.5488  | 47.5993                         |
| 3310300025                          | 11654         | 1,620                        | -99.5710  | 47.7136                         |
|                                     |               | s County                     |           | 77.7230                         |
| 3310500495                          | 1231          | 2,316                        | -102.9836 | 48.2802                         |
| 3310500518                          | 1385          | 2,360                        | -102.9087 | 48.3309                         |
| 3310500519                          | 1403          | 2,165                        | -103.0072 | 48.2505                         |
| 3310500529                          | 1514          | 2,286                        | -103.0050 | 48.2946                         |
| 3310500529                          | 1636          | 2,401                        | -102.9307 | 48.3311                         |
| 3310500655                          | 3844          | 2,370                        | -102.9605 | 48.2714                         |
| 3310500665                          |               |                              | -102.9043 | 48.4649                         |
| 3310500666                          | 4321          | 2,457<br>2,460               | -102.9043 | 48.4790                         |
| 3310500682                          | 4323<br>4618  |                              | -103.9634 | 48.3409                         |
| 3310500082                          | 4716          | 2,413                        | -103.9034 | 48.2660                         |
| 3310500696                          |               | 2,294                        | -102.9940 | 48.2949                         |
|                                     | 5069<br>6098  | 2,345                        | -102.9730 | 48.1920                         |
| 3310500753                          |               | 2,022                        |           | · ·                             |
| 3310500768                          | 6478          | 1,910                        | -103.5803 | 48.2719                         |
| 3310500798                          | 7005          | 2,333                        | -102.9619 | 48.2373                         |
| 3310500853                          | 7848          | 2,140                        | -103.5657 | 48.5372                         |
| 3310500901                          | 8316          | 2,157                        | -103.9146 | 48.5919                         |
| 3310500934                          | 8692          | 2,074                        | -103.5229 | 48.5705                         |
| 3310500975                          | 9100          | 2,119                        | -103.5778 | 48.6114                         |
| 3310501044                          | 9800          | 2,277                        | -103.1977 | 48.4795                         |
| 3310501114                          | 10772         | 2,475                        | -102.9662 | 48.5070                         |
| 3310501291                          | 12119         | 2,373                        | -102.9038 | 48.5228                         |
| 3310501321                          | 12270         | 2,369                        | -102.8997 | 48.5295                         |
| 3310501324                          | 12305         | 2,399                        | -102.9593 | 48.3395                         |
| 3310501340                          | 12363         | 2,365                        | -102.9204 | 48.4250                         |
| 3310501346                          | 12432         | 2,354                        | -102.9804 | 48.2705                         |
| 3310501369                          | 12592         | 2,349                        | -102.9508 | 48.3329                         |
| 3310501389                          | 12831         | 2,352                        | -103.0049 | 48.3163                         |
| 3310501397                          | 12971         | 2,417                        | -102.9333 | 48.3184                         |
| 3310501411                          | 13395         | 2,327                        | -102.9821 | 48.2777                         |
| 3310501423                          | 13682         | 2,341                        | -102.9898 | 48.3074                         |
| 3310501429                          | 13893         | 2,011                        | -103.0189 | 48.2086                         |
| 3310501629                          | 16629         | 2,291                        | -103.1159 | 48.3674                         |
| 3310501691                          | 17488         | 2,356                        | -103.1408 | 48.3997                         |
| 3310501787                          | 18631         | 2,197                        | -103.0059 | 48.2518                         |
| 3310501794                          | 1868o         | 2,390                        | -102.9735 | 48.2563                         |

|                                        | Mon                      | tana                         |                                         |                 |  |  |
|----------------------------------------|--------------------------|------------------------------|-----------------------------------------|-----------------|--|--|
|                                        |                          |                              |                                         |                 |  |  |
| Genera                                 | General Well Information |                              |                                         |                 |  |  |
| American Petroleum<br>Institute Number | Well<br>Label            | Kelly Bushing Elevation (ft) | Longitude                               | <u>Latitude</u> |  |  |
|                                        | Carter                   | County                       |                                         |                 |  |  |
| 2501105004                             | MTı                      | 3,557                        | -104.6379                               | 45.0177         |  |  |
| 2501105009                             | MT2                      | 3,559                        | -104.2688                               | 45.0497         |  |  |
| 2501105064                             | MT3                      | 3,708                        | -104.7403                               | 45.3029         |  |  |
| 2501105065                             | MT <sub>4</sub>          | 3,684                        | -104.6420                               | 45.3038         |  |  |
| 2501105082                             | MT <sub>5</sub>          | 3,365                        | -104.0808                               | 45.7900         |  |  |
| 2501105091                             | MT6                      | 3,160                        | -104.1787                               | 45.9669         |  |  |
| 2501121279                             | MT <sub>7</sub>          | 3,149                        | -104.1530                               | 45.9308         |  |  |
| 2501121323                             | MT8                      | 3,375                        | -104.2699                               | 45.4236         |  |  |
|                                        | Custer                   | County                       |                                         |                 |  |  |
| 2501705018                             | МТ9                      | 3,017                        | -105.3243                               | 45.8771         |  |  |
|                                        | Daniels                  | County                       |                                         |                 |  |  |
| 2501921127                             | MT10                     | 2,986                        | -105.8607                               | 48.8117         |  |  |
|                                        | Dawson                   | County                       |                                         |                 |  |  |
| 2502105101                             | MT11                     | 2,258                        | -104.8076                               | 47.0590         |  |  |
| 2502105124                             | MT12                     | 2,390                        | -104.8983                               | 47.1282         |  |  |
| 2502121057                             | MT13                     | 2,579                        | -105.0721                               | 47.6616         |  |  |
| 2502121059                             | MT14                     | 2,245                        | -105.3235                               | 47.6401         |  |  |
| 2502121082                             | MT15                     | 2,725                        | -104.6305                               | 47.6097         |  |  |
|                                        |                          | County                       |                                         | T               |  |  |
| 2502505326                             | MT16                     | 2,999                        | -104.3187                               | 46.4312         |  |  |
| 2502505543                             | MT17                     | 2,743                        | -104.4524                               | 46.6250         |  |  |
|                                        |                          | County                       |                                         |                 |  |  |
| 2505505019                             | MT18                     | 2,499                        | -105.5640                               | 47.6253         |  |  |
|                                        |                          | ver Coun                     |                                         |                 |  |  |
| 2507522030                             | MT19                     | 2,937                        | -105.1127                               | 45.7858         |  |  |
|                                        |                          | d County                     |                                         | 0 0             |  |  |
| 2508305016                             | MT20                     | 2,337                        | -104.7137                               | 47.8798         |  |  |
| 2508321201                             | MT21                     | 1,909                        | -104.0908                               | 47.7381         |  |  |
| 2508321244                             | MT22<br>MT23             | 1,953                        | -104.2425                               | 47.6036         |  |  |
| 2508321320                             |                          | 2,466                        | -104.6604                               | 47.7485         |  |  |
| 2508321516<br>2508321866               | MT24<br>MT25             | 2,244                        | -104.2418<br>-104.8468                  | 47.7057         |  |  |
|                                        |                          | 2,495<br>t County            |                                         | 47.7380         |  |  |
| 2508521406                             | MT26                     |                              | -104.2324                               | 48.1469         |  |  |
| 2508521400                             | MT27                     | 1,975<br>2,058               | -104.2324                               | 48.1840         |  |  |
|                                        |                          | County                       |                                         | 40.1040         |  |  |
| 2509105059                             | MT28                     | 2,530                        | -104.9644                               | 48.7205         |  |  |
| 2509105095                             | MT29                     | 2,442                        | -104.8773                               | 48.8291         |  |  |
| 2509105098                             | MT30                     | 2,324                        | -104.7964                               | 48.8327         |  |  |
| 2509103090                             | MT31                     | 2,140                        | -104.4309                               | 48.5819         |  |  |
| 2509121222                             | MT32                     | 2,052                        | -104.4237                               | 48.5079         |  |  |
| 2509121247                             | MT33                     | 2,089                        | -104.4133                               | 48.5155         |  |  |
|                                        | رر                       | , -,                         | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 1 7 77          |  |  |

| South Dakota                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l Well                      | Infor                        | nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Latitude</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| on Homi                     |                              | tv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.8803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.8803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              | 71.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             |                              | -103.4551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.6674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.7482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.7612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SD6                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.8124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SD <sub>7</sub>             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SD8                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.1492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SDo                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.2053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.9991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.6612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              | 59-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                              | -101.7303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.8834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.9365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.9363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.8173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.7482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.8712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.7885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.4850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                              | -101.4640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.0428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | , ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.4314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.4347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.1517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.1461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.1487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.0413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.0316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.1811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              | J-7-T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                              | -99,5336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.0268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              | 77.JJJ°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                              | -99,4181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.3262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.2287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | Well   Label                 | Net   Section   Section | Nell   Relly   Elevation   Clip   C |

| Montana                                |                             |                              |           |                 |
|----------------------------------------|-----------------------------|------------------------------|-----------|-----------------|
| Genera                                 | l Well                      | Infor                        | nation    |                 |
| American Petroleum<br>Institute Number | <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | Longitude | <u>Latitude</u> |
| 2509121250                             | MT34                        | 2,018                        | -104.4242 | 48.5024         |
| 2509121386                             | MT35                        | 1,982                        | -104.4632 | 48.5708         |
| 2509121597                             | MT36                        | 2,125                        | -104.6306 | 48.4781         |
| 2509121748                             | MT37                        | 2,341                        | -104.8883 | 48.9803         |
|                                        | Valley                      | County                       |           |                 |
| 2510521396                             | MT38                        | 2,278                        | -106.3855 | 48.2467         |
|                                        | Wibaux                      | County                       |           |                 |
| 2510905125                             | MT39                        | 3,132                        | -104.1532 | 46.7522         |
| 2510921024                             | MT40                        | 3,172                        | -104.0841 | 46.7085         |
| 2510921027                             | MT41                        | 3,179                        | -104.0789 | 46.6731         |
| 2510921039                             | MT42                        | 2,848                        | -104.1396 | 46.9338         |
| 2510921047                             | MT43                        | 2,348                        | -104.2748 | 47.2424         |
| 2510921053                             | MT44                        | 2,556                        | -104.2533 | 47.2843         |
| 2510921058                             | MT45                        | 2,663                        | -104.5264 | 46.6905         |
| 2510921083                             | MT46                        | 2,967                        | -104.2992 | 46.8435         |

| So                                     | uth l             | Dako                         | ta        |                 |  |  |
|----------------------------------------|-------------------|------------------------------|-----------|-----------------|--|--|
| Genera                                 | l Well            | Infor                        | nation    |                 |  |  |
| American Petroleum<br>Institute Number | Well<br>Label     | Kelly Bushing Elevation (ft) | Longitude | <u>Latitude</u> |  |  |
|                                        | Haakon            | County                       |           |                 |  |  |
| 4005505000                             | SD <sub>37</sub>  | 2,632                        | -101.8448 | 44.1704         |  |  |
| 4005505001                             | SD <sub>3</sub> 8 | 2,466                        | -101.5004 | 44.2498         |  |  |
| 4005505053                             | SD39              | 2,238                        | -101.3645 | 44.2425         |  |  |
| 4005505054                             | SD40              | 2,213                        | -101.2701 | 44.2681         |  |  |
| 4005520001                             | SD41              | 2,158                        | -101.5255 | 44-4355         |  |  |
| 4005520002                             | SD42              | 2,381                        | -101.6451 | 44.3286         |  |  |
|                                        | Harding           | County                       |           |                 |  |  |
| 4006305001                             | SD <sub>43</sub>  | 3,332                        | -103.8976 | 45.2152         |  |  |
| 4006305007                             | SD <sub>44</sub>  | 3,948                        | -103.9373 | 45.4174         |  |  |
| 4006305008                             | SD <sub>45</sub>  | 3,135                        | -103.6415 | 45.4380         |  |  |
| 4006305009                             | SD46              | 3,442                        | -103.9529 | 45.4604         |  |  |
| 4006305010                             | SD <sub>47</sub>  | 3,277                        | -103.9633 | 45.4825         |  |  |
| 4006305012                             | SD <sub>4</sub> 8 | 3,038                        | -103.5989 | 45.4857         |  |  |
| 4006305013                             | SD49              | 3,040                        | -103.0966 | 45.5147         |  |  |
| 4006305014                             | SD50              | 3,174                        | -103.9686 | 45.5151         |  |  |
| 4006305026                             | SD <sub>51</sub>  | 3,247                        | -103.7276 | 45.7280         |  |  |
| 4006305033                             | SD52              | 3,220                        | -103.7510 | 45.7604         |  |  |
| 4006305034                             | SD53              | 3,175                        | -104.0144 | 45.7606         |  |  |
| 4006305067                             | SD <sub>54</sub>  | 3,047                        | -103.8331 | 45.8907         |  |  |
| 4006320083                             | SD <sub>55</sub>  | 3,067                        | -103.7649 | 45.2550         |  |  |
| 4006320103                             | SD <sub>5</sub> 6 | 2,950                        | -103.4313 | 45.9435         |  |  |
| 4006320155                             | SD <sub>57</sub>  | 2,995                        | -103.5701 | 45.7926         |  |  |
| 4006320183                             | SD <sub>5</sub> 8 | 2,855                        | -103.4551 | 45.5835         |  |  |
| 4006320211                             | SD59              | 2,881                        | -103.4399 | 45.7634         |  |  |
| 4006320213                             | SD60              | 3,103                        | -103.9536 | 45.6407         |  |  |
|                                        |                   | County                       | 1         |                 |  |  |
| 4006505002                             | SD61              | 1,718                        | -99.9494  | 44.4818         |  |  |
|                                        |                   | County                       | Т         |                 |  |  |
| 4006905000                             | SD62              | 1,870                        | -99.6709  | 44.8180         |  |  |
| 4006905002                             | SD6 <sub>3</sub>  | 1,889                        | -99.5605  | 44.8469         |  |  |
|                                        |                   | County                       | Τ         |                 |  |  |
| 4007105001                             | SD64              | 2,332                        | -101.1575 | 43.8705         |  |  |
| 4007120001                             | SD65              | 2,407                        | -101.8325 | 43.8121         |  |  |
|                                        |                   | County                       | <u> </u>  |                 |  |  |
| 4007505000                             | SD66              | 2,080                        | -100.6285 | 43.7794         |  |  |
| 4007505003                             | SD67              | 1,920                        | -101.0146 | 44.1448         |  |  |
| 4007505054                             | SD68              | 2,071                        | -100.6134 | 44.0543         |  |  |
| 4007505056                             | SD69              | 2,132                        | -100.4449 | 43.8482         |  |  |
| 4007505057                             | SD <sub>7</sub> o | 2,012                        | -100.5448 | 43.8193         |  |  |
| _                                      |                   | e County                     |           |                 |  |  |
| 4008105000                             | SD71              | 3,690                        | -103.6778 | 44.5349         |  |  |

| So                                  | uth l                                  | Dako     | ta                     |                 |
|-------------------------------------|----------------------------------------|----------|------------------------|-----------------|
| Genera                              | l Well                                 | Infori   | nation                 |                 |
| American Petroleum Institute Number | Well Bushing Label Elevation (ft)      |          | <u>Longitude</u>       | <u>Latitude</u> |
|                                     | Lyman                                  | County   |                        |                 |
| 4008520001                          | SD <sub>72</sub>                       | 1,840    | -99.9964               | 43.7156         |
| 4008520002                          | SD <sub>72</sub>                       | 1,850    | -99.3927               |                 |
| 4000320002                          |                                        | County   | 99.3927                | 43.5404         |
| 4009305032                          | SD <sub>74</sub>                       | 2,788    | -102.5241              | 44.5230         |
| 4009320020                          | SD <sub>75</sub>                       | 2,630    | -102.3939              | 44.7939         |
| 4009320025                          | SD <sub>7</sub> 6                      | 2,592    | -102.8707              | 44.5670         |
| 1 //                                |                                        | County   | /                      | 119 7           |
| 4009505000                          | SD <sub>77</sub>                       | 1,828    | -100.7448              | 43.7058         |
| 4009505051                          | SD <sub>7</sub> 8                      | 1,932    | -100.7380              | 43.6826         |
|                                     | Miner                                  | County   |                        |                 |
| 4009705000                          | SD79                                   | 1,547    | -97.6115               | 44.1359         |
| Pe                                  | enningto                               | on Count | y                      |                 |
| 4010320006                          | SD8o                                   | 2,458    | -102.1810              | 43.7142         |
| 4010320012                          | SD81                                   | 2,677    | -102.1395              | 44.1731         |
| 4010320015                          | SD82                                   | 2,620    | -102.0255              | 44.1522         |
|                                     | Perkins                                | County   |                        |                 |
| 4010505001                          | SD8 <sub>3</sub>                       | 2,570    | -102.1789              | 45.1097         |
| 4010505003                          | SD84                                   | 2,670    | -102.3161              | 45.4455         |
| 4010505004                          | SD85                                   | 2,558    | -102.0736              | 45.6230         |
| 4010505005                          | SD86                                   | 2,766    | -102.5880              | 45.6954         |
| 4010505006                          | SD8 <sub>7</sub>                       | 2,628    | -102.3449              | 45.7595         |
| 4010505066                          | SD88                                   | 2,690    | -102.7845              | 45.8832         |
| 4010520016                          | SD89                                   | 2,571    | -102.0895              | 45.6011         |
|                                     |                                        | County   |                        |                 |
| 4010705000                          | SD90                                   | 1,867    | -100.2332              | 44.9978         |
| 4010705001                          | SD91                                   | 1,899    | -100.2435              | 45.0992         |
|                                     |                                        | hannon)  |                        |                 |
| 4011320004                          | SD92                                   | 3,401    | -102.9359              | 43.0587         |
|                                     | _                                      | County   | 0 (                    |                 |
| 4011505001                          | SD93                                   | 1,285    | -98.4136               | 44.9123         |
|                                     |                                        | County   | 0.6                    |                 |
| 4011705000                          | SD94                                   | 2,035    | -101.0846              | 44.2099         |
| 4011705001                          | SD <sub>95</sub>                       | 1,862    | -100.8011              | 44.3493         |
| 4011705002                          | SD96                                   | 1,990    | -100.6941              | 44.3627         |
| 4011705003                          | SD <sub>9</sub> 7                      | 1,814    | -100.5695              | 44.3989         |
| 4011705006                          | SD <sub>9</sub> 8<br>SD <sub>9</sub> 9 | 2,186    | -100.8707<br>-100.8341 | 44.4862         |
| 4011705063<br>4011705064            | SD100                                  | 1,816    |                        | 44.2358         |
| . , ,                               | SD100<br>SD101                         | 1,848    | -100.7442              | 44.3254         |
| 4011705065                          | SD101<br>SD102                         | 1,700    | -100.9663              | 44.6417         |
| 4011720018                          | 3D102                                  | 1,977    | -100.7651              | 44.4065         |

| South Dakota                        |               |                              |                  |                 |  |  |  |  |  |  |  |
|-------------------------------------|---------------|------------------------------|------------------|-----------------|--|--|--|--|--|--|--|
| General Well Information            |               |                              |                  |                 |  |  |  |  |  |  |  |
| American Petroleum Institute Number | Well<br>Label | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |  |  |  |  |  |  |  |
| Tripp County                        |               |                              |                  |                 |  |  |  |  |  |  |  |
| 4012305000                          | SD103         | 2,365                        | -99.9512         | 43.0026         |  |  |  |  |  |  |  |
| 4012305001                          | SD104         | 2,289                        | -99.7478         | 43.1636         |  |  |  |  |  |  |  |
| 4012305002                          | SD105         | 2,335                        | -100.0497        | 43.2933         |  |  |  |  |  |  |  |
| 4012305003                          | SD106         | 2,165                        | -100.1295        | 43.3629         |  |  |  |  |  |  |  |
| I                                   | Walwort       | h County                     | Y                |                 |  |  |  |  |  |  |  |
| 4012905000                          | SD107         | 1,881                        | -100.1181        | 45.3026         |  |  |  |  |  |  |  |
| 4012905002                          | SD108         | 2,064                        | -99.9571         | 45.4258         |  |  |  |  |  |  |  |
|                                     | Ziebach       | County                       |                  |                 |  |  |  |  |  |  |  |
| 4013705004                          | SD109         | 2,546                        | -101.7032        | 45.0765         |  |  |  |  |  |  |  |

| ]                                       | Mani                              | itoba  |           |                 |
|-----------------------------------------|-----------------------------------|--------|-----------|-----------------|
| Gener                                   | ral Well                          | Inform | ation     |                 |
| <u>Unique Well</u><br><u>Identifier</u> | Well Bushin Label Elevation  (ft) |        | Longitude | <u>Latitude</u> |
| 100161600127W100                        | 486                               | 1,497  | -101.0295 | 49.0422         |
| 100081500220W100                        | 1537                              | 1,914  | -100.0638 | 49.1234         |
| 100022001124W100                        | 1563                              | 1,503  | -100.7218 | 49.9329         |
| 100093500525W100                        | 1666                              | 1,425  | -100.7395 | 49.4378         |
| 100163400629W100                        | 2523                              | 1,667  | -101.3050 | 49.5301         |
| 100162901229W100                        | 2532                              | 1,721  | -101.4048 | 50.0471         |
| 100112900125W100                        | 2543                              | 1,555  | -100.7925 | 49.0681         |
| 100063400524W100                        | 2593                              | 1,442  | -100.6351 | 49.4353         |
| 100090600226W100                        | 2610                              | 1,440  | -100.9393 | 49.0976         |
| 100012800524W100                        | 2612                              | 1,450  | -100.6511 | 49.4179         |
| 100021700425W100                        | 2683                              | 1,492  | -100.8119 | 49.2974         |
| 100042500626W100                        | 2695                              | 1,431  | -100.8692 | 49.5043         |
| 100081300529W100                        | 2696                              | 1,604  | -101.2588 | 49.3900         |
| 100043200325W100                        | 2700                              | 1,521  | -100.8243 | 49.2541         |
| 100083100223W100                        | 2706                              | 1,648  | -100.5341 | 49.1681         |
| 100151101226W100                        | 2741                              | 1,490  | -100.9284 | 50.0030         |
| 100052400226W100                        | 2766                              | 1,551  | -100.8435 | 49.1384         |
| 100053300727W100                        | 3183                              | 1,482  | -101.0955 | 49.6123         |
| 100011800825W100                        | 3530                              | 1,429  | -100.8513 | 49.6525         |
| 102093200925W100                        | 4495                              | 1,441  | -100.8277 | 49.7930         |
| 102083100223W100                        | 4845                              | 1,649  | -100.5357 | 49.1683         |
| 100012500423W100                        | 4859                              | 1,646  | -100.4457 | 49.3275         |
| 102161000928W100                        | 5956                              | 1,596  | -101.1935 | 49.7366         |

| Sa                                      | skato         | chewa                        | an               |                 |  |
|-----------------------------------------|---------------|------------------------------|------------------|-----------------|--|
| Genera                                  | l Well        | Infori                       | nation           |                 |  |
| <u>Unique Well</u><br><u>Identifier</u> | Well<br>Label | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |  |
| 131111400710W200                        | 00C037        | 1,980                        | -103.2646        | 49.5615         |  |
| 131070401109W200                        | 00D072        | 2,128                        | -103.1757        | 49.8794         |  |
| 121122800519W200                        | ooF396        | 2,392                        | -104.5147        | 49.4142         |  |
| 121152300923W200                        | 00J189        | 2,388                        | -105.0188        | 49.7523         |  |
| 141031101016W200                        | 01A024        | 1,887                        | -104.0728        | 49.8023         |  |
| 131060200321W200                        | 01H069        | 2,532                        | -104.7318        | 49.1795         |  |
| 111070400507W200                        | 01J006        | 1,964                        | -102.8864        | 49.3528         |  |
| 121120400421W200                        | 01L133        | 2,470                        | -104.7828        | 49.2690         |  |
| 142112400910W200                        | 02A161        | 2,018                        | -103.2373        | 49.7510         |  |
| 111030100425W200                        | 02B012        | 2,307                        | -105.2458        | 49.2624         |  |
| 132021300711W200                        | 02I016        | 1,997                        | -103.3699        | 49.5540         |  |
| 123091300711W200                        | 02K012        | 1,997                        | -103.3643        | 49.5599         |  |
| 121150500507W200                        | 03K283        | 1,966                        | -102.9114        | 49.3596         |  |
| 131151700716W200                        | 03L284        | 2,025                        | -104.1385        | 49.5654         |  |
| 121150800507W200                        | 04B015        | 1,968                        | -102.9122        | 49.3748         |  |
| 121120300320W200                        | 05F018        | 2,406                        | -104.6271        | 49.1813         |  |
| 131151500709W200                        | o6Eo87        | 2,013                        | -103.1453        | 49.5678         |  |
| 121090401011W200                        | 07I073        | 2,021                        | -103.4341        | 49.7933         |  |
| 101043100601W200                        | o8H567        | 1,972                        | -102.1377        | 49.5100         |  |
| 101130402508W300                        | 50l013        | 2,166                        | -107.0713        | 51.1089         |  |
| 101050701410W300                        | 51C004        | 2,654                        | -107.3670        | 50.1552         |  |
| 101151200321W200                        | 51E001        | 2,520                        | -104.7044        | 49.2005         |  |
| 101103201803W300                        | 51L011        | 2,217                        | -106.3800        | 50.5664         |  |
| 101133600112W300                        | 51L083        | 2,686                        | -107.4944        | 49.0851         |  |
| 101160400332W100                        | 52A006        | 1,690                        | -101.7336        | 49.1908         |  |
| 121150602310W200                        | 52G001        | 2,206                        | -103.3960        | 50.9581         |  |
| 101163400706W200                        | 53J044        | 2,012                        | -102.7313        | 49.6080         |  |
| 101053002301W300                        | 54F047        | 1,917                        | -106.1409        | 50.9852         |  |
| 101012902311W300                        | 54J036        | 2,411                        | -107.4957        | 50.9817         |  |
| 101122900202W200                        | 55A052        | 1,722                        | -102.2490        | 49.1556         |  |
| 101053100211W300                        | 55E024        | 2,735                        | -107.4723        | 49.1654         |  |
| 101102600113W300                        | 55F097        | 2,692                        | -107.6391        | 49.0671         |  |
| 101031800332W100                        | 55J059        | 1,733                        | -101.7900        | 49.2095         |  |
| 101150700308W200                        | 56B004        | 1,923                        | -103.0681        | 49.2006         |  |
| 101120600503W200                        | 56C013        | 1,938                        | -102.4068        | 49-3573         |  |
| 101092701410W300                        | 56E085        | 2,591                        | -107.2817        | 50.2026         |  |
| 101032700808W200                        | 56G008        | 2,058                        | -103.0135        | 49.6701         |  |
| 101061300219W200                        | 57G023        | 2,459                        | -104.4235        | 49.1215         |  |
| 101012800326W200                        | 57H002        | 2,749                        | -105.4376        | 49.2336         |  |
| 131093400304W200                        | 57K043        | 1,935                        | -102.4577        | 49.2559         |  |
| 101043100127W200                        | 58B029        | 2,734                        | -105.6087        | 49.0743         |  |
| 101021101526W200                        | 58Io75        |                              | -105.4748        | 50.2383         |  |
| 101061500922W200                        | 58L009        | 2,429                        | -104.9105        | 49.7320         |  |

| Sa                                      | skato                       | chewa                        | an               |                 |
|-----------------------------------------|-----------------------------|------------------------------|------------------|-----------------|
| Genera                                  | ıl Well                     | Infor                        | nation           |                 |
| <u>Unique Well</u><br><u>Identifier</u> | <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |
| 101120601901W300                        | 59B006                      | 1,962                        | -106.1401        | 50.5812         |
| 101062701506W300                        | 59G074                      |                              | -106.7524        | 50.2863         |
| 101121000508W300                        | 59L036                      | 2,839                        | -107.0120        | 49.3725         |
| 101100300508w300                        | 61I046                      |                              | -107.0016        | 49.3585         |
| 101121201014W200                        | 62B005                      | 1,990                        | -103.7870        | 49.8084         |
| 101031001714W300                        | 62H013                      | 2,393                        | -107.8523        | 50.4137         |
| 141020700508W300                        | 64K049                      | 2,729                        | -107.0673        | 49.3662         |
| 101081701814W300                        | 65Co83                      |                              | -107.8867        | 50.5193         |
| 101123300523W200                        | 65F053                      | 2,330                        | -105.0519        | 49.4301         |
| 101083000833W100                        | 65Ko31                      | 2,121                        | -101.9430        | 49.6833         |
| 101122800730W100                        | 66Ao88                      | 1,868                        | -101.5053        | 49.6009         |
| 101010600204W200                        | 66F117                      | 1,866                        | -102.5238        | 49.0898         |
| 101060500822W200                        | 66I002                      | 2,341                        | -104.9551        | 49.6161         |
| 101042201033W100                        | 66J002                      | 2,092                        | -101.8918        | 49.8429         |
| 101090500328W200                        | 68B016                      | 2,631                        | -105.7296        | 49.1829         |
| 101020400411W200                        | 68F041                      | 1,862                        | -103.4269        | 49.2626         |
| 121070901714W300                        | 72I017                      | 2,385                        | -107.8695        | 50.4173         |
| 101061100421W200                        | 72K044                      | 2,540                        | -104.7320        | 49.2804         |
| 101093500517W200                        | 77H008                      | 2,067                        | -104.1836        | 49.4299         |
| 101060300119W200                        | 77J053                      | 2,343                        | -104.4678        | 49.0052         |
| 101132400203W200                        | 77J057                      | 1,872                        | -102.2935        | 49.1441         |
| 101043200220W200                        | 77L016                      | 2,399                        | -104.6513        | 49.1611         |
| 141093100408W200                        | 78Boo8                      | 1,961                        | -103.0616        | 49.3432         |
| 101110800603W200                        | 78C001                      | 1,955                        | -102.3783        | 49.4592         |
| 111080200616W200                        | 78H158                      | 2,054                        | -104.0472        | 49.4398         |
| 131030801719W200                        | 78L010                      | 1,906                        | -104.5866        | 50.4132         |
| 141161900132W100                        | 8oBoo6                      | 1,702                        | -101.7446        | 49.0569         |
| 101163600118W200                        | 80F005                      | 2,371                        | -104.2795        | 49.0854         |
| 121020700131W100                        | 80G001                      | 1,655                        | -101.6172        | 49.0148         |
| 101101800519W200                        | 8oI101                      | 2,385                        | -104.5481        | 49.3860         |
| 101091100530W100                        | 81H036                      | 1,699                        | -101.4177        | 49.3792         |
| 101023400132W100                        | 82D001                      | 1,681                        | -101.6840        | 49.0747         |
| 101031600210W200                        | 82Io8o                      | 1,918                        | -103.2882        | 49.1175         |
| 121121301231W100                        | 85B130                      | 1,898                        | -101.6050        | 50.0139         |
| 141030800111W200                        | 85B212                      | 1,975                        | -103.4426        | 49.0160         |
| 111092900606W200                        | 87G102                      | 1,981                        | -102.7699        | 49.5021         |
| 111152900606W200                        | 87L059                      | 1,979                        | -102.7758        | 49.5059         |
| 101030600606W200                        | 88D019                      | 1,971                        | -102.8045        | 49.4371         |
| 101072800404W200                        | 88Ko71                      | 1,944                        | -102.4858        | 49.3247         |
| 121021400505W200                        | 88Lo62                      | 1,953                        | -102.5768        | 49.3782         |
| 101082001117W200                        | 93D103                      | 1,894                        | -104.2837        | 49.9214         |
| 141043500611W200                        | 96B159                      | 1,999                        | -103.3924        | 49.5109         |
| 121132100611W200                        | 96E028                      | 1,975                        | -103.4394        | 49.4916         |

| Sa                                      | skato         | chewa                        | an        |                 |
|-----------------------------------------|---------------|------------------------------|-----------|-----------------|
| Genera                                  | l Well        | Infor                        | nation    |                 |
| <u>Unique Well</u><br><u>Identifier</u> | Well<br>Label | Kelly Bushing Elevation (ft) | Longitude | <u>Latitude</u> |
| 111153400611W200                        | 96E124        | 2,008                        | -103.4022 | 49.5205         |
| 191151200611W200                        | 96E258        | 1,985                        | -103.3602 | 49.4659         |
| 101120200711W200                        | 96F283        | 2,009                        | -103.4036 | 49.5312         |
| 131012900611W200                        | 96G281        | 1,985                        | -103.4454 | 49.4970         |
| 131113500611W200                        | 96G312        | 1,999                        | -103.3884 | 49.5174         |
| 131113400611W200                        | 96Io68        | 2,017                        | -103.4124 | 49.5191         |
| 141102900611W200                        | 96I131        | 1,987                        | -103.4490 | 49.5044         |
| 111070300711W200                        | 96I227        | 2,006                        | -103.4134 | 49.5274         |
| 121072900611W200                        | 96Joo8        | 1,984                        | -103.4509 | 49.4988         |
| 121070200711W200                        | 96J367        | 1,999                        | -103.3922 | 49.5269         |
| 141021000711W200                        | 96K164        | 2,000                        | -103.4122 | 49.5402         |
| 111152000711W200                        | 96L066        | 2,018                        | -103.4590 | 49.5779         |
| 111092800611W200                        | 96L309        | 1,997                        | -103.4202 | 49.5027         |
| 121132400505W200                        | 97A128        | 1,961                        | -102.5649 | 49.4033         |
| 111091800711W200                        | 97B227        | 2,026                        | -103.4750 | 49.5605         |
| 141070100934W100                        | 97C251        | 2,166                        | -101.9689 | 49.7134         |
| 132113200611W200                        | 97C300        | 1,993                        | -103.4572 | 49.5180         |
| 121101400911W200                        | 97E002        | 2,010                        | -103.3942 | 49.7341         |
| 131142900509W200                        | 97E046        | 1,969                        | -103.1860 | 49.4195         |
| 111122100711W200                        | 97E081        | 2,016                        | -103.4464 | 49.5739         |
| 131071500611W200                        | 97E085        | 1,960                        | -103.4027 | 49.4700         |
| 111111600707W200                        | 97E213        | 2,003                        | -102.9000 | 49.5601         |
| 131081400407W200                        | 97F067        | 1,947                        | -102.8393 | 49.2964         |
| 131083400611W200                        | 97F120        | 2,003                        | -103.4011 | 49.5125         |
| 141012200419W200                        | 97F182        | 2,479                        | -104.4734 | 49.3073         |
| 141053401208W200                        | 97F195        | 2,192                        | -103.0239 | 50.0395         |
| 191070201009W200                        | 97F392        | 2,051                        | -103.1226 | 49.7924         |
| 101080300711W200                        | 97G199        | 2,016                        | -103.4093 | 49.5285         |
| 101141600711W200                        | 97G315        | 2,017                        | -103.4427 | 49.5647         |
| 141043500705W200                        | 97G432        | 1,982                        | -102.5883 | 49.5973         |
| 141041600613W200                        | 97G483        | 1,906                        | -103.7066 | 49.4676         |
| 131023200810W200                        | 97H295        | 2,018                        | -103.3252 | 49.6850         |
| 121160900711W200                        | 97I354        | 2,014                        | -103.4333 | 49.5497         |
| 131032700132W100                        | 97I431        | 1,649                        | -101.6906 | 49.0604         |
| 111162300201W200                        | 97I438        | 1,830                        | -102.0303 | 49.1439         |
| 191051600910W200                        | 97J331        | 2,029                        | -103.3132 | 49.7320         |
| 101012800810W200                        | 97K205        | 2,021                        | -103.2953 | 49.6700         |
| 131040100913W200                        | 97L095        | 2,017                        | -103.6518 | 49.7000         |
| 141070200913W200                        | 97L298        | 2,010                        | -103.6612 | 49.7039         |
| 131121101209W200                        | 97L301        | 2,125                        | -103.1414 | 49.9840         |
| 121052300813W200                        | 97L305        | 1,979                        | -103.6746 | 49.6583         |
| 101010500619W200                        | 97L327        | 2,429                        | -104.5201 | 49.4376         |
| 111150400710W200                        | 97L361        | 1,996                        | -103.2990 | 49.5339         |

| Sa                                      | skato                       | chewa                        | an               |                 |
|-----------------------------------------|-----------------------------|------------------------------|------------------|-----------------|
| Genera                                  | ıl Well                     | Infor                        | nation           |                 |
| <u>Unique Well</u><br><u>Identifier</u> | <u>Well</u><br><u>Label</u> | Kelly Bushing Elevation (ft) | <u>Longitude</u> | <u>Latitude</u> |
| 141081700910W200                        | 98A033                      | 2,022                        | -103.3178        | 49.7334         |
| 141030700901W200                        | 98A073                      | 2,254                        | -102.1322        | 49.7146         |
| 101152400902W200                        | 98Ao81                      | 2,372                        | -102.1505        | 49.7537         |
| 141143200909W200                        | 98A149                      | 2,079                        | -103.1938        | 49.7830         |
| 111140600606W200                        | 98A228                      | 1,966                        | -102.8033        | 49-4474         |
| 111040401208W200                        | 98B015                      | 2,164                        | -103.0465        | 49.9610         |
| 121082200407W200                        | 98B191                      | 1,950                        | -102.8630        | 49.3082         |
| 132133600909W200                        | 98B210                      | 2,055                        | -103.1108        | 49.7836         |
| 132070201009W200                        | 98C138                      | 2,062                        | -103.1218        | 49.7913         |
| 111042400717W200                        | 98C155                      | 2,091                        | -104.1923        | 49.5681         |
| 111041401105W200                        | 98C263                      | 2,479                        | -102.5923        | 49.9028         |
| 131021800621W200                        | 98C298                      | 2,502                        | -104.8181        | 49.4670         |
| 101031800901W200                        | 98D041                      | 2,297                        | -102.1335        | 49.7285         |
| 142111200620W200                        | 98E160                      | 2,323                        | -104.5743        | 49.4591         |
| 142120101009W200                        | 98E189                      | 2,063                        | -103.1068        | 49.7944         |
| 121011901210W200                        | 98G073                      | 2,137                        | -103.3515        | 50.0049         |
| 121163201110W200                        | 98G075                      | 2,228                        | -103.3304        | 49.9571         |
| 101032701109W200                        | 98G108                      | 2,077                        | -103.1566        | 49.9322         |
| 111081201211W200                        | 98G193                      | 2,221                        | -103.3728        | 49.9787         |
| 101093401211W200                        | 98G201                      | 2,165                        | -103.4186        | 50.0421         |
| 121051101114W200                        | 98H036                      | 1,983                        | -103.8240        | 49.8914         |
| 101162301211W200                        | 98H069                      | 2,165                        | -103.3962        | 50.0163         |
| 141101800520W200                        | 98Ko67                      | 2,513                        | -104.6819        | 49.3879         |
| 111050800619W200                        | 98K107                      | 2,404                        | -104.5347        | 49.4548         |
| 111110200913W200                        | 99A081                      | 2,013                        | -103.6676        | 49.7058         |
| 101150200621W200                        | 99C003                      | 2,499                        | -104.7267        | 49.4484         |
| 102092600602W200                        | 99C054                      | 1,978                        | -102.1658        | 49.5022         |
| 131012701114W200                        | 99E132                      | 1,987                        | -103.8297        | 49.9339         |
| 141081400606W200                        | 99E245                      | 1,972                        | -102.7030        | 49.4705         |
| 141072400809W200                        | 99F392                      | 2,024                        | -103.0968        | 49.6597         |
| 111163300813W200                        | 99G151                      | 1,980                        | -103.7020        | 49.6945         |
| 121032400707W200                        | 99I286                      | 1,994                        | -102.8338        | 49.5689         |
| 121091300222W200                        | 99J213                      | 2,498                        | -104.8158        | 49.1246         |
| 121041501208W200                        | 99K055                      | 2,195                        | -103.0275        | 49.9903         |
| 133030600521W200                        | 99K079                      | 2,459                        | -104.8220        | 49.3511         |
| 141103000421W200                        | 99L128                      | 2,464                        | -104.8156        | 49.3285         |

# **Appendix B Formation Tops**

The formation tops were picked when possible for the Red River Formation, Roughlock Formation, Icebox Formation, Black Island Formation, and Members F through A of the Deadwood Formation, as well as the Precambrian basement rock.

|                    |                            |                |               |                 | Nor                | th Da              | kota        |                    |                    |                    |                    |                         |
|--------------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|-------------|--------------------|--------------------|--------------------|--------------------|-------------------------|
|                    |                            |                |               | For             | mation             | Tops               | (Depths i   | n Feet)            |                    |                    |                    |                         |
|                    |                            | Win            | nipeg Gı      | roup            |                    |                    | Deadw       | ood For            | mation             |                    |                    | _                       |
| Well<br>Label      | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB       | <u>Pre-</u><br>cambriar |
|                    |                            |                |               |                 | Ac                 | lams Cou           | inty        |                    |                    |                    |                    |                         |
| 6322               | 8,268.8                    | 8,816.3        | 8,878.1       |                 |                    | 8,991.0            | 9,014.3     | 9,092.7            | 9,258.0            | 9,399.4            |                    | 9,463.7                 |
| 7642               | 9,075.4                    | 9,626.7        | 9,660.8       |                 |                    | 9,778.4            | 9,798.5     | 9,886.0            |                    |                    |                    |                         |
|                    |                            |                |               |                 | Ba                 | rnes Cou           | inty        |                    |                    |                    |                    |                         |
| 4640               | 1,495.0                    | 1,691.6        | 1,775.8       | 1,914.6         |                    |                    |             |                    |                    |                    | 1,928.5            |                         |
|                    |                            |                |               |                 | Be                 | nson Co            | unty        |                    |                    |                    |                    |                         |
| 632                | 4,300.9                    | 4,840.9        | 4,916.0       | 5,042.6         |                    |                    |             |                    |                    |                    | 5,091.2            | 5,142.0                 |
|                    |                            |                |               |                 | Bil                | lings Co           | unty        |                    |                    |                    |                    |                         |
| 291                | 12,220.5                   | 12,780.2       | 12,814.0      | 12,925.4        |                    | 12,959.3           | 13,122.0    | 13,240.0           |                    |                    |                    |                         |
| 3268               |                            |                | 12,485.5      |                 |                    |                    | 12,805.0    | 12,892.0           | 13,144.0           | 13,352.0           |                    | 13,509.0                |
| 6228               | 13,476.7                   | 14,110.4       | 14,150.7      | 14,282.0        | 14,359.0           | 14,393.0           | 14,605.3    | 14,773.0           | 15,002.0           | 15,208.4           |                    | 15,265.0                |
| 6303               | 12,781.9                   | 13,372.0       | 13,396.0      | 13,512.8        |                    | 13,566.4           | 13,729.7    | 13,873.7           | 14,072.0           | 14,224.6           |                    | 14,257.4                |
| 6913               | 13,451.4                   | 14,053.5       | 14,093.8      | 14,215.6        |                    | 14,272.1           |             |                    |                    |                    |                    |                         |
| 7307               |                            | 14,070.2       | 14,110.3      | 14,226.2        | 14,277.5           | . ,                |             |                    |                    |                    |                    |                         |
| 7520               | 13,417.5                   | 14,034.7       | 14,066.6      | 14,182.6        |                    | 14,244.5           |             |                    |                    |                    |                    |                         |
| 7934               | 12,817.4                   | 13,412.8       | 13,442.8      | 13,553.9        |                    | 13,603.0           | 13,752,1    | 13,915.8           | 14,152.0           | 14,314.0           |                    | 14,389.0                |
| 8226               |                            | 13,539.9       | 13,573.0      | 13,687.6        |                    | 13,740.8           | 2.12        | 2.7 2              | 17.7               | 1/5 1              |                    | 1/2 /                   |
| 8487               | _                          | 13,029.7       | 13,059.6      | -               |                    | 13,225.3           |             |                    |                    |                    |                    |                         |
| 8603               |                            | 13,405.4       | 13,440.5      |                 |                    | 13,598.0           |             |                    |                    |                    |                    |                         |
| 9070               |                            | 13,216.9       | 13,251.2      | 13,358.0        |                    | 13,400.0           |             |                    |                    |                    |                    |                         |
| 11335              |                            | 12,254.2       | 12,272.0      | 12,375.7        |                    | 12,412.0           | 12,543.0    |                    |                    |                    |                    |                         |
| 14763              |                            | 13,064.5       | 13,102.4      | 13,203.5        |                    | 13,244.5           | 12,545.0    |                    |                    |                    |                    |                         |
| 1 <del>1</del> 7°) | 12,500.2                   | 13,004.7       | 13,102.7      | 1),20,7         | Bot                | tineau Co          | ninty       |                    |                    | l                  |                    |                         |
| 38                 | 7,239.0                    | 7,767.9        | 7,846.6       | 7,966.3         | Bot                | inredu e           |             |                    | 8,046.8            | 8,193.7            |                    | 8,226.0                 |
| 64                 | 5,608.3                    | 6,115.0        | 6,189.6       | 6,282.5         |                    |                    |             |                    | 0,040.0            | 0,193.7            | 6,337.0            | 6,407.0                 |
| 110                | 5,654.3                    | 6,166.2        | 6,216.8       | 6,338.0         |                    |                    |             |                    |                    |                    | 6,382.0            | 6,423.6                 |
| 2219               | 6,371.8                    | 6,918.5        | 6,963.0       | 7,085.1         |                    |                    |             |                    |                    |                    | 7,138.0            | 7,258.0                 |
| 4655               | 5,948.0                    | 6,408.1        | 6,467.0       | 6,588.9         |                    |                    |             |                    |                    |                    | 7,230.0            | 6,602.0                 |
| 4790               | 7,321.4                    | 7,857.5        | 7,915.4       | 8,042.4         |                    |                    |             | 8,119.9            |                    |                    |                    | 3,302.0                 |
| 4846               | 6,659.5                    | 7,178.7        | 7,219.9       | 7,350.7         |                    |                    |             | 5,119.9            |                    |                    | 7.424.4            | 7.552.0                 |
| 5184               |                            |                |               | 6,239.3         |                    |                    |             |                    |                    |                    | 7,424.4<br>6,305.0 | 7,553.9<br>6,360.0      |
| 9522               | 5,556.9                    | 6,296.8        |               | 6,465.8         |                    |                    |             |                    |                    |                    | 6,510.0            | 6,604.0                 |
| 9544               | 3,/3/.1                    | 0,290.0        | 0,339.9       | 0,405.0         | Roy                | wman Co            | untv        |                    |                    | l                  | 0,510.0            | 0,004.0                 |
| 485                | 0.157.8                    | 9,678.0        | 9,712.2       |                 | DO                 |                    | 9,826.0     | 9,918.0            |                    |                    |                    |                         |
|                    | 8,198.5                    | 8,663.0        |               |                 |                    | 8,839.0            |             | 8,949.0            |                    |                    |                    |                         |
| 1575<br>9656       | 10,130.5                   | 10,651.7       |               |                 |                    | 10,797.0           |             | 3,949.0            |                    |                    |                    |                         |
|                    |                            | 9,662.7        |               |                 |                    |                    |             | 0.008.0            |                    |                    |                    |                         |
| 9805               | 9,147.2<br>8,931.8         |                | 9,689.7       |                 |                    | 9,703.0            | 9,797.0     |                    |                    |                    |                    |                         |
| 14851              | 0,931.0                    | 9,444.2        | 9,469.3       | <u> </u>        | D.                 | urke Cou           |             | 9,639.8            |                    | l                  |                    | <b>.</b>                |
| 8800               | 0.854.0                    | 10.30= 6       | 10 435 :      | 10.516.5        | Б                  | urke Cou           | iity        |                    | 10 772 6           | 10 8 4 4 7         |                    | 10 000                  |
| 8893               | 1                          | 10,385.9       |               |                 |                    |                    |             | 12.006 6           |                    | 10,844.5           |                    | 10,880.5                |
| 15137              | 11,213.4                   | 11,729.6       | 11,759.5      | 11,886.0        |                    |                    |             | 12,030.2           | 12,224.6           | 12,420.0           |                    | 12,470.6                |

|               |            |          |               |          | Nor      | th Da     | kota      |          |          |          |         |                         |
|---------------|------------|----------|---------------|----------|----------|-----------|-----------|----------|----------|----------|---------|-------------------------|
|               |            |          |               | For      | matior   | Tops      | (Depths i | n Feet)  |          |          |         |                         |
|               |            | Win      | nipeg Gi      |          |          | r         |           | ood For  | mation   |          |         |                         |
| Well<br>Labal | <u>Red</u> | Rough-   |               | Black    | Member   | Member    | Member    |          | Member   | Member   | Member  | <u>Pre-</u><br>cambrian |
| <u>Label</u>  | River      | lock     | <u>Icebox</u> | Island   | <u>F</u> | <u>E</u>  | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | AB      | Cambrian                |
|               |            | •        | •             |          | Bui      | rleigh Co | unty      | •        | •        | •        |         |                         |
| 19            | 5,851.6    | 6,453.6  | 6,536.7       | 6,665.4  |          |           | 6,686.7   | 6,743.3  | 6,831.7  | 6,894.7  |         | 6,950.0                 |
| 145           | 5,023.7    | 5,589.1  | 5,679.5       | 5,800.1  |          |           | 5,828.4   | 5,861.8  | 5,962.0  | 6,050.0  |         | 6,170.0                 |
| 151           | 6,898.5    | 7,529.8  | 7,595.4       | 7,717.6  |          | 7,715.0   | 7,776.9   | 7,826.0  | 7,944.9  | 8,061.0  |         | 8,092.0                 |
| 155           | 5,080.9    | 5,603.1  | 5,732.0       | 5,860.3  |          |           |           | 5,883.5  |          |          | 5,981.6 | 6,144.0                 |
| 174           | 5,776.8    | 6,320.5  | 6,399.7       | 6,575.9  |          |           |           | 6,642.7  | 6,727.2  |          |         |                         |
| 701           | 5,401.8    | 5,932.8  | 6,019.6       | 6,201.8  |          |           |           | 6,219.5  |          |          | 6,256.6 |                         |
| 756           | 5,314.5    | 5,858.1  | 5,913.5       | 6,105.2  |          |           |           | 6,131.0  |          |          |         |                         |
| 763           | 6,049.2    | 6,611.0  | 6,699.0       | 6,866.2  |          |           |           | 6,875.8  |          |          |         |                         |
| 765           | 5,876.9    | 6,435.7  | 6,510.5       | 6,675.7  |          |           |           | 6,710.1  |          |          |         |                         |
| 772           | 6,361.9    | 6,964.7  | 7,009.9       | 7,179.0  |          |           | 7,205.7   |          |          |          |         |                         |
| 1409          | 5,709.0    | 6,282.5  | 6,330.7       | 6,504.5  |          |           |           | 6,559.7  |          |          |         |                         |
| 6264          | 5,271.1    | 5,841.6  | 5,902.8       | 6,068.3  |          |           |           | 6,113.8  |          |          | 6,204.7 |                         |
| 7010          | 5,669.5    | 6,280.0  | 6,336.8       | 6,465.2  |          |           | 6,481.1   | 6,517.0  | 6,649.1  | 6,739.0  |         | 6,758.9                 |
| 8674          | 5,623.9    | 6,250.4  | 6,297.8       | 6,421.5  |          |           | 6,444.8   | 6,500.4  | 6,569.6  | 6,646.7  |         | 6,698.9                 |
| 12057         | 6,872.4    | 7,494.4  | 7,574.1       | 7,697.5  |          |           |           | 7,769.0  |          |          |         |                         |
|               |            |          |               |          | Ca       | valier Co | unty      | •        | •        | •        |         |                         |
| 27            | 2,680.0    | 3,203.7  | 3,267.5       | 3,393.3  |          |           |           |          |          |          |         | 3,406.6                 |
|               |            | •        | •             |          | Di       | ckey Cou  | inty      | •        | •        | •        |         |                         |
| 682           | 1,255.8    | 1,623.2  | 1,718.0       | 1,807.8  |          |           |           |          |          |          | 1,879.4 |                         |
| 1394          | 2,460.6    | 2,833.1  | 2,918.3       | 3,003.3  |          |           |           |          |          |          | 3,060.0 | 3,147.0                 |
|               |            |          |               |          | Di       | ivide Cou | inty      |          |          |          |         |                         |
| 2010          | 10,388.8   | 10,788.9 | 10,823.8      | 10,900.0 |          |           |           | 11,036.5 |          |          |         |                         |
| 6798          | 11,113.0   | 11,630.3 | 11,662.8      | 11,779.5 |          |           |           | 11,908.0 | 12,104.0 | 12,251.0 |         | 12,350.0                |
| 7087          | 10,546.9   | 11,028.5 | 11,062.2      | 11,177.6 |          |           |           | 11,300.0 | 11,460.0 | 11,671.0 |         | 11,783.3                |
| 7942          | 12,227.9   | 12,742.8 | 12,771.0      | 12,901.0 |          |           | 13,062.0  | 13,150.4 | 13,380.0 | 13,480.0 |         | 13,616.0                |
| 9398          | 10,745.1   | 11,196.1 | 11,218.6      | 11,284.5 |          |           |           | 11,423.9 |          |          |         |                         |
| 9413          | 10,673.2   | 11,146.8 | 11,181.5      | 11,248.6 |          |           |           | 11,393.4 |          |          |         |                         |
| 9622          | 10,537.8   | 11,012.0 | 11,042.4      | 11,108.9 |          |           |           | 11,258.0 |          |          |         |                         |
| 9677          | 10,437.0   | 10,902.1 | 10,926.7      | 10,993.2 |          |           |           | 11,138.0 |          |          |         |                         |
|               |            |          |               |          | D        | unn Cou   | nty       |          |          |          |         |                         |
| 6086          | 13,250.0   | 13,868.9 | 13,929.7      | 14,036.1 | 14,185.0 |           |           |          |          |          |         |                         |
| 6148          | 12,610.1   | 13,229.7 | 13,276.2      | 13,392.2 | 13,440.0 | 13,480.0  |           |          |          |          |         |                         |
| 6530          | 12,440.1   | 13,059.8 | 13,108.5      | 13,228.9 | 13,280.0 | 13,312.0  | 13,567.0  |          |          |          |         |                         |
| 7402          | 11,876.6   | 12,524.1 | 12,576.3      | 12,703.3 | 12,823.1 | 12,888.5  | 13,107.3  |          |          |          |         |                         |
| 7412          | 12,982.6   | 13,644.8 | 13,677.4      | 13,798.2 | 13,921.3 |           |           |          |          |          |         |                         |
| 7584          |            |          |               |          | 14,426.0 | 14,465.0  |           |          |          |          |         |                         |
| 8077          | 13,898.8   | 14,564.1 | 14,597.2      | 14,735.9 | 14,904.7 |           |           |          |          |          |         |                         |
| 8095          | 13,969.0   | 14,647.0 | 14,680.0      | 14,822.0 | 15,040.0 |           |           |          |          |          |         |                         |
| 8313          | 12,848.5   | 13,493.2 | 13,542.9      | 13,666.8 | 13,824.0 |           |           |          |          |          |         |                         |
| 8491          | 12,800.7   | 13,424.0 | 13,464.7      | 13,586.6 | 13,634.8 | 13,681.9  |           |          |          |          |         |                         |
| 8613          | 12,857.1   | 13,499.3 | 13,547.5      | 13,673.0 | 13,796.0 |           |           |          |          |          |         |                         |
| 8709          |            | 14,065.3 |               |          | 14,377.0 |           |           |          |          |          |         |                         |

|               |                            |                |          |                 | Nor                | th Da              | kota        |                 |                    |          |              |                                |
|---------------|----------------------------|----------------|----------|-----------------|--------------------|--------------------|-------------|-----------------|--------------------|----------|--------------|--------------------------------|
|               |                            |                |          | For             | mation             | 1 Tops             | (Depths i   | n Feet)         |                    |          |              |                                |
|               |                            | Win            | nipeg Gı |                 |                    |                    |             | ood For         | mation             |          |              |                                |
| Well<br>Label | <u>Red</u><br><u>River</u> | Rough-<br>lock | Icebox   | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member <u>C</u> | Member<br><u>B</u> | Member A | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |
| 9027          | 12,347.9                   | 12,986.8       | 13,036.9 | 13,170.7        | 13,278.5           | 13,337.3           |             |                 |                    |          |              |                                |
| 9044          | 13,128.7                   | 13,773.8       | 13,823.0 | 13,953.5        | 14,071.0           |                    |             |                 |                    |          |              |                                |
| 9080          | 12,465.0                   | 13,112.1       | 13,160.6 | 13,291.1        | 13,416.4           | 13,491.7           |             |                 |                    |          |              |                                |
| 9397          | 13,165.7                   | 13,814.9       | 13,866.3 | 13,997.3        | 14,103.0           |                    |             |                 |                    |          |              |                                |
| 9527          | 13,784.2                   | 14,409.3       | 14,458.2 | 14,590.7        | 14,703.1           | 14,740.4           |             |                 |                    |          |              |                                |
| 10072         | 13,421.6                   | 14,073.8       | 14,124.4 | 14,259.3        | 14,383.0           |                    |             |                 |                    |          |              |                                |
| 10606         | 12,107.1                   | 12,764.8       | 12,803.3 | 12,930.2        | 13,002.0           |                    |             |                 |                    |          |              |                                |
| 10627         | 11,651.9                   | 12,282.1       | 12,326.9 | 12,447.7        | 12,498.0           | 12,550.0           |             |                 |                    |          |              |                                |
| 11363         | 12,287.0                   | 12,937.7       | 12,995.0 | 13,116.4        | 13,237.3           | 13,283.0           |             |                 |                    |          |              |                                |
| 12400         | 12,731.5                   | 13,349.3       | 13,387.9 |                 | 13,561.9           |                    |             |                 |                    |          |              |                                |
| 14636         | 11,883.1                   | 12,520.9       | 12,564.1 | 12,689.4        | 12,748.7           |                    |             |                 |                    |          |              |                                |
| Eddy County   |                            |                |          |                 |                    |                    |             |                 |                    |          |              |                                |
| 437           | 3,333.8                    | 3,888.9        | 3,964.6  | 4,102.0         |                    |                    |             |                 |                    |          | 4,128.9      |                                |
| 768           | 2,999.8                    | 3,551.8        | 3,618.3  | 3,751.0         |                    |                    |             |                 |                    |          | 3,784.1      |                                |
| 1274          | 2,273.7                    | 2,784.0        | 2,891.8  | 3,032.2         |                    |                    |             |                 |                    |          | 3,040.7      | 3,085.8                        |
| 7271          | 2,855.1                    | 3,408.3        | 3,479.7  | 3,611.6         |                    |                    |             |                 |                    |          | 3,668.1      | 3,710.8                        |
|               | _                          |                |          |                 | Em                 | mons Co            | unty        |                 |                    |          |              |                                |
| 16            | 4,289.9                    | 4,849.7        | 4,911.0  |                 |                    |                    |             | 5,063.3         |                    |          | 5,161.4      |                                |
| 23            | 4,482.3                    | 5,036.3        | 5,111.3  | 5,223.4         |                    |                    |             | 5,241.5         |                    |          | 5,342.7      |                                |
| 43            | 4,742.4                    | 5,324.3        | 5,399.5  | 5,530.2         |                    |                    |             | 5,546.3         |                    |          | 5,678.2      |                                |
| 7101          | 4,320.5                    | 4,870.4        | 4,900.0  | 5,067.1         |                    |                    |             | 5,082.2         |                    |          | 5,194.2      |                                |
| 7146          | 4,513.1                    | 5,094.7        | 5,173.6  | 5,299.0         |                    |                    |             | 5,317.2         |                    |          | 5,422.3      | 5,591.8                        |
| 7936          | 4,477.5                    | 5,063.8        | 5,143.1  | 5,269.3         |                    |                    |             | 5,283.5         |                    |          | 5,334.6      |                                |
| 10173         | 4,739.8                    | 5,282.8        | 5,324.3  | 5,524.7         |                    |                    |             | 5,537.1         |                    |          | 5,665.4      |                                |
|               |                            |                |          |                 | Fo                 | oster Cou          | ınty        |                 |                    |          |              |                                |
| 287           | 2,290.8                    | 2,802.9        | 2,902.8  | 3,042.2         |                    |                    |             |                 |                    |          | 3,054.0      | 3,106.0                        |
| 295           | 2,033.1                    | 2,572.5        | 2,654.0  | 2,790.3         |                    |                    |             |                 |                    |          | 2,803.0      | 2,862.0                        |
| 334           | 2,458.8                    | 2,978.4        | 3,058.3  | 3,194.2         |                    |                    |             |                 |                    |          | 3,212.9      |                                |
| 1105          | 2,770.8                    | 3,289.6        | 3,386.8  | 3,515.3         |                    |                    |             |                 |                    |          | 3,523.0      |                                |
| 1112          | 2,930.8                    | 3,524.3        | 3,565.9  | 3,699.8         |                    |                    |             |                 |                    |          | 3,711.0      |                                |
| 1227          | 2,477.5                    | 2,927.3        | 3,034.6  | 3,185.7         |                    |                    |             |                 |                    |          | 3,202.8      |                                |
|               |                            |                |          |                 | Golde              | n Valley           | County      |                 |                    |          |              |                                |
| 410           | 12,404.0                   | 12,943.5       | 13,002.6 | 13,118.5        |                    | 13,161.4           | 13,305.4    |                 |                    |          |              |                                |
| 470           | 11,707.2                   | 12,216.7       | 12,270.2 | 12,377.2        |                    | 12,414.0           | 12,520.0    | 12,630.0        |                    |          |              |                                |
| 6272          | 10,453.0                   | 10,922.4       | 10,972.0 | 11,065.9        |                    | 11,080.5           | 11,131.1    | 11,212.5        | 11,427.6           | 11,483.1 |              | 11,502.8                       |
| 6513          | 11,813.8                   | 12,328.3       | 12,379.1 | 12,480.6        |                    | 12,520.0           |             |                 |                    |          |              |                                |
| 6563          | 11,424.2                   | 11,946.8       | 11,985.1 | 12,084.1        |                    | 12,118.0           |             |                 |                    |          |              |                                |
| 7969          | 11,580.6                   | 12,064.1       | 12,115.9 | 12,246.5        |                    | 12,282.4           |             |                 |                    |          |              |                                |
| 8590          | 12,227.8                   | 12,779.9       | 12,826.9 | 12,931.5        |                    | 12,967.5           |             |                 |                    |          |              |                                |
| 9148          | 11,343.2                   | 11,838.0       | 11,903.5 | 12,007.1        |                    | 12,038.0           |             |                 |                    |          |              |                                |
| 9540          | 11,722.5                   | 12,215.0       | 12,295.8 | 12,399.3        |                    | 12,432.9           |             |                 |                    |          |              |                                |

|              |          |                |               |                        | Nor         | th Da       | kota        |          |             |                    |              |             |
|--------------|----------|----------------|---------------|------------------------|-------------|-------------|-------------|----------|-------------|--------------------|--------------|-------------|
|              |          |                |               | For                    | mation      | Tops        | (Depths i   | n Feet)  |             |                    |              |             |
|              |          | Win            | nipeg Gı      |                        |             |             |             | ood For  | mation      |                    |              |             |
| Well         | Red      |                | inpeg di      |                        | M 1         | M 1         |             |          |             | M 1                | M 1          | <u>Pre-</u> |
| <u>Label</u> | River    | Rough-<br>lock | <u>Icebox</u> | <u>Black</u><br>Island | Member<br>F | Member<br>E | Member<br>D | <u>C</u> | Member<br>B | Member<br><u>A</u> | Member<br>AB | cambrian    |
|              |          |                |               |                        | _           | d Forks (   |             | _        | _           | _                  | _            |             |
| 58o          | 484.6    | 640.6          | 670.4         | 728.1                  | Gran        | u i oiks (  | ounty       |          |             |                    | 760.6        | 892.0       |
| 3191         | 267.2    | 553.1          | 654.5         | 766.8                  |             |             |             |          |             |                    | 794.5        | 092.0       |
| 3204         | 251.0    | 320.6          | 358.6         | 413.9                  |             |             |             |          |             |                    | 467.9        |             |
| 15343        | 722.8    | 842.9          | 911.7         | 958.1                  |             |             |             |          |             |                    | 1,087.0      | 1,157.4     |
| -3343        | 7        | 94-19          | 97            | 950.2                  | G           | rant Cou    | ntv         |          |             | ļ                  | 2,207.1      | -5-571-4    |
| 5572         | 7,101.0  | 7,739.0        | 7,796.7       | 7,862.3                |             | 7,902.0     | 7,914.0     | 7,980.0  | 8,170.0     |                    |              |             |
| 6420         | 7,396.2  | 7,990.7        | 8,061.0       | ,                      |             | 8,190.0     | 8,220.0     | 8,276.0  | . ,         |                    |              |             |
| 6586         | 9,046.0  | 9,627.5        | 9,680.8       | 9,818.8                |             | 9,851.0     | 9,910.3     | 9,977.0  | 10,193.2    | 10,347.5           |              | 10,424.0    |
| 7020         | 9,515.7  | 10,140.9       | 10,188.1      | 10,316.5               |             | 10,358.7    |             | 10,550.7 | 10,752.5    | 10,930.8           |              | 10,956.5    |
| 8549         | 8,116.1  | 8,709.1        | 8,751.8       | 8,893.7                |             | 8,919.0     | 8,953.3     | 9,015.8  | 9,224.9     | 9,415.0            |              | 9,439.8     |
| 868o         | 7,503.3  | 8,089.4        | 8,129.3       | 8,272.5                |             | 8,280.8     | 8,289.6     | 8,364.5  | 8,540.0     | 8,752.3            |              | 8,815.8     |
|              |          |                |               |                        | Gı          | riggs Cou   | inty        |          |             |                    | l l          |             |
| 4719         | 1,959.8  | 2,503.3        | 2,571.5       | 2,633.8                |             |             |             |          |             |                    | 2,722.0      | 2,773.0     |
| 9659         | 1,939.0  | 2,478.2        | 2,504.0       | 2,605.7                |             |             |             |          |             |                    | 2,627.9      |             |
|              | _        | •              | •             |                        | Het         | tinger Co   | ounty       |          |             | •                  |              |             |
| 5783         | 10,280.7 | 10,889.2       | 10,940.2      | 11,041.2               |             | 11,109.1    | 11,193.8    | 11,263.8 | 11,488.5    | 11,620.3           |              | 11,676.0    |
| 7075         | 9,416.6  | 9,974.2        | 10,032.8      | 10,155.6               |             | 10,167.9    | 10,220.5    | 10,290.5 | 10,505.8    | 10,693.9           |              | 10,725.1    |
| 7453         | 9,991.0  | 10,549.3       | 10,584.6      | 10,693.0               |             | 10,705.4    | 10,751.7    | 10,831.0 | 11,059.0    | 11,171.0           |              | 11,194.3    |
| 8312         | 10,386.5 | 10,975.0       | 11,020.0      | 11,133.6               |             | 11,148.4    |             |          |             |                    |              |             |
| 10522        | 10,663.2 | 11,253.6       | 11,287.9      | 11,416.2               |             | 11,434.9    | 11,530.8    | 11,632.1 | 11,793.0    |                    |              |             |
|              |          |                |               |                        | Ki          | dder Cou    | ınty        |          |             |                    |              |             |
| 24           | 4,582.2  | 5,151.3        | 5,226.2       | 5,360.7                |             |             |             | 5,371.4  |             |                    | 5,471.5      |             |
| 230          | 4,234.7  | 4,798.0        | 4,880.7       | 5,011.1                |             |             |             |          |             |                    | 5,076.4      |             |
| 748          | 5,025.6  | 5,544.7        | 5,621.7       | 5,804.5                |             |             |             | 5,825.5  |             |                    |              |             |
|              | _        |                |               |                        | Lo          | ogan Cou    | nty         |          |             |                    |              |             |
| 590          | 4,310.9  | 4,842.5        | 4,890.7       | 5,083.4                |             |             |             | 5,095.3  |             |                    |              |             |
| 1347         | 3,569.3  | 4,121.9        | 4,171.7       | 4,335.7                |             |             |             |          |             |                    | 4,352.0      | 4,551.7     |
| 5523         | 4,239.9  | 4,807.3        | 4,865.7       | 5,001.6                |             |             |             | 5,011.2  |             |                    | 5,088.3      | 5,276.4     |
|              | <b>-</b> |                | 1             | 1                      | Mc          | Henry Co    | ounty       |          | 1           |                    | 1            | 1           |
|              | 6,276.0  |                |               | 7,023.0                |             |             |             |          |             |                    | 7,097.8      | 7,210.0     |
| 61           | 6,339.2  | 6,875.5        |               | 7,094.5                |             |             |             |          |             |                    | 7,169.0      |             |
| 8307         | 6,312.0  | 6,868.2        | 6,933.1       | 7,049.5                |             |             |             | _        |             |                    | 7,109.9      |             |
| 8803         | 7,684.3  | 8,310.0        | 8,349.4       | 8,470.0                |             |             |             | 8,543.7  |             |                    | 8,645.3      | 8,689.6     |
| 11922        | 6,364.0  | 6,921.4        | 6,974.7       |                        |             |             |             | 7,095.2  |             |                    |              |             |
|              | 0.0.1    |                | Π             |                        | Mcl         | Intosh Co   | ounty       |          | 1           |                    |              |             |
| 89           | 3,818.6  | 4,373.3        | 4,423.0       | 4,547.8                |             |             |             |          |             |                    | 4,560.0      |             |
| 620          | 2,738.2  | 3,245.8        |               | 3,449.5                |             |             |             |          |             |                    | 3,460.0      |             |
| 621          | 2,939.9  | 3,452.0        | 3,495.0       | 3,642.0                |             |             |             |          |             |                    | 3,650.9      |             |
| 622          | 3,005.8  | 3,564.1        | 3,628.9       | 3,754.8                | N 4 1       | / om =: - C |             |          |             |                    | 3,767.0      |             |
|              | 40.455   |                | 10 9:- (      | 12.0((                 |             | Kenzie C    |             | /-       | 112-0       |                    |              |             |
| 2373         |          |                |               |                        | 14,243.9    | 14,397.0    | 14,577.0    | 14,763.0 | 14,978.0    | 15,047.0           |              | 15,120.0    |
| 6112         | 13,511.6 | 14,176.4       | 14,216.2      | 14,350.5               | 14,610.0    |             |             |          |             | ı                  |              |             |

|                     |                            |                |               |                 | Nor                | th Da              | kota        |                    |             |                    |              |                                |
|---------------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|-------------|--------------------|-------------|--------------------|--------------|--------------------------------|
|                     |                            |                |               | For             | matior             | 1 Tops             | (Depths i   | n Feet)            |             |                    |              |                                |
| XA7 II              | p. 1                       | Win            | nipeg Gı      | roup            |                    |                    | Deadw       | ood For            | mation      |                    |              | n                              |
| Well<br>Label       | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member<br><u>C</u> | Member<br>B | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |
| 6387                | 12,754.7                   | 13,246.3       | 13,321.0      | 13,454.3        |                    | 13,505.0           | 13,631.6    | 13,800.5           | 13,988.5    | 14,186.7           |              | 14,360.0                       |
| 6414                | 12,786.1                   | 13,284.5       | 13,365.7      | 13,475.0        |                    | 13,550.0           |             |                    |             |                    |              |                                |
| 7571                | 13,766.8                   | 14,408.3       | 14,463.3      | 14,611.7        | 14,848.0           |                    |             |                    |             |                    |              |                                |
| 757 <sup>2</sup>    | 13,704.0                   | 14,341.9       | 14,394.3      | 14,540.2        | 14,779.7           |                    |             |                    |             |                    |              |                                |
| 6387                | 12,754.7                   | 13,246.3       | 13,321.0      | 13,454.3        |                    | 13,505.0           | 13,631.6    | 13,800.5           | 13,988.5    | 14,186.7           |              | 14,360.0                       |
| 6414                | 12,786.1                   | 13,284.5       | 13,365.7      | 13,475.0        |                    | 13,550.0           |             |                    |             |                    |              |                                |
| 7571                | 13,766.8                   | 14,408.3       | 14,463.3      | 14,611.7        | 14,848.0           |                    |             |                    |             |                    |              |                                |
| 7572                | 13,704.0                   | 14,341.9       | 14,394.3      | 14,540.2        | 14,779.7           |                    |             |                    |             |                    |              |                                |
| 7607                | 12,932.6                   | 13,588.3       | 13,620.9      | 13,768.2        | 14,034.1           | 14,166.7           |             |                    |             |                    |              |                                |
| 7631                | 13,817.9                   | 14,379.9       | 14,423.9      | 14,535.1        |                    | 14,652.0           |             |                    |             |                    |              |                                |
| 7873                | 13,957.0                   | 14,554.5       | 14,593.5      | 14,736.3        |                    | 14,864.1           |             |                    |             |                    |              |                                |
| 7988                | 12,956.1                   | 13,585.7       | 13,614.4      | 13,758.6        | 14,012.8           |                    |             |                    |             |                    |              |                                |
| 8023                | 13,539.7                   | 14,220.6       | 14,252.7      | 14,406.5        | 14,667.1           |                    |             |                    |             |                    |              |                                |
| 8083                | 13,728.0                   | 14,381.8       | 14,418.2      | 14,564.4        | 14,804.0           |                    |             |                    |             |                    |              |                                |
| 8090                | 13,533.2                   | 14,179.4       | 14,205.2      | 14,357.6        | 14,622.7           |                    |             |                    |             |                    |              |                                |
| 8131                | 14,299.0                   | 14,857.2       | 14,946.5      | 15,077.6        |                    | 15,227.9           |             |                    |             |                    |              |                                |
| 8165                | 13,432.3                   | 13,957.9       | 14,022.9      | 14,145.8        |                    | 14,243.2           |             |                    |             |                    |              |                                |
| 8187                | 13,637.1                   | 14,194.9       | 14,227.0      | 14,357.2        |                    | 14,443.5           | 14,621.7    | 14,756.9           | 14,928.0    |                    |              |                                |
| 8193                | 12,845.2                   | 13,399.6       | 13,447.7      | 13,557.8        |                    | 13,630.5           |             |                    |             |                    |              |                                |
| 8314                | 12,790.0                   | 13,300.5       | 13,337.9      | 13,488.7        |                    | 13,561.4           | 13,701.4    | 13,860.9           | 14,050.5    | 14,241.8           |              | 14,385.4                       |
| 8468                | 13,023.6                   | 13,599.0       | 13,648.7      | 13,762.6        |                    | 13,836.7           |             |                    |             |                    |              |                                |
| 8546                | 12,544.8                   | 13,068.1       | 13,115.2      | 13,228.9        |                    | 13,320.5           |             |                    |             |                    |              |                                |
| 8663                | 13,684.2                   | 14,304.2       | 14,350.2      | 14,489.7        | 14,613.1           |                    |             |                    |             |                    |              |                                |
| 8737                | 13,144.1                   | 13,697.3       | 13,750.9      | 13,864.5        |                    | 13,946.0           |             |                    |             |                    |              |                                |
| 9004                | 13,937.0                   | 14,488.8       | 14,568.5      | 14,695.0        |                    | 14,798.7           |             |                    |             |                    |              |                                |
| 9005                | 13,090.1                   | 13,691.9       | 13,724.4      | 13,841.5        |                    | 13,911.5           |             |                    |             |                    |              |                                |
| 9217                | 14,000.0                   | 14,649.2       |               | 14,835.2        | 15,032.0           |                    |             |                    |             |                    |              |                                |
| 9901                | 13,180.3                   | 13,723.0       | 13,774.5      | 13,886.8        |                    | 13,967.7           |             |                    |             |                    |              |                                |
| 11110               | 13,688.0                   |                |               | 14,517.7        | 14,783.2           |                    |             |                    |             |                    |              |                                |
| 11619               | 12,906.1                   | 13,494.1       |               | 13,643.4        |                    | 13,714.3           | 13,888.8    | 14,037.1           | 14,209.0    |                    |              |                                |
| 12345               |                            |                | 14,741.3      |                 | 15,107.7           |                    |             |                    |             |                    |              |                                |
| 12589               | 13,415.0                   |                | 14,124.6      |                 |                    |                    |             |                    |             |                    |              |                                |
| 12699               |                            |                | 14,246.2      |                 |                    | 14,433.6           |             |                    |             |                    |              |                                |
| 13405               |                            |                |               |                 | 14,255.5           |                    |             |                    |             |                    |              |                                |
| 13647               |                            |                |               |                 | 14,342.6           |                    |             |                    |             |                    |              |                                |
| 14399               |                            |                | 14,364.7      |                 |                    | 14,919.5           |             |                    |             |                    |              |                                |
| 14724               |                            |                | 13,609.1      |                 |                    |                    |             |                    |             |                    |              |                                |
| 15915               |                            |                | 14,616.6      |                 |                    | 15,086.5           |             |                    |             |                    |              |                                |
| 16376               |                            | 14,473.9       |               | 14,651.3        |                    | 15,058.6           |             |                    |             |                    |              |                                |
| 16523               | 13,494.5                   | 14,150.0       | 14,175.3      | 14,319.9        |                    |                    |             |                    |             |                    |              |                                |
| <i>J</i> - <i>J</i> | <i>ン</i> ・12 T・2           | 1/ )           | 1/17/3        | 1,2-3-3         |                    | Lean Co            | unty        | l .                | l .         | 1                  | l .          |                                |
| 22                  | 8,084.5                    | 8,701.3        | 8,747.7       | 8,896.2         |                    | 8,943.5            | 9,014.4     |                    |             |                    |              |                                |
| 49                  | 8,010.4                    | 8,589.1        | 8,639.0       |                 |                    | 8,821.5            | 8,865.0     |                    |             |                    |              |                                |

|              |               |                    |               |                    | Nor      | th Da     | kota      |          |          |          |           |                    |
|--------------|---------------|--------------------|---------------|--------------------|----------|-----------|-----------|----------|----------|----------|-----------|--------------------|
|              |               |                    |               | For                | matior   | 1 Tops    | (Depths i | n Feet)  |          |          |           |                    |
|              |               | Win                | nipeg Gı      | oup                |          |           | Deadw     | ood For  | mation   |          |           |                    |
| <u>Well</u>  | <u>Red</u>    | Rough-             |               | Black              | Member   | Member    |           | l        | Member   | Member   | Member    | <u>Pre-</u>        |
| <u>Label</u> | <u>River</u>  | lock               | <u>Icebox</u> | Island             | <u>F</u> | <u>E</u>  | <u>D</u>  | C        | <u>B</u> | <u>A</u> | AB        | <u>cambrian</u>    |
| 7783         | 12,572.9      | 13,219.6           | 13,268.0      | 13,406.9           |          | 13,576.7  | 13,819.2  | 13,899.8 | 14,101.4 | 14,174.4 |           |                    |
| 806o         | 12,206.0      | 12,852.3           |               | 13,041.2           |          | 13,189.8  |           | 2. 22    |          |          |           |                    |
| 8711         | 7,724.9       | 8,340.4            | 8,413.1       | 8,530.8            |          | 8,573.4   | 8,619.3   | 8,646.0  | 8,749.0  | 8,809.8  |           | 8,843.0            |
| 8720         | 7,490.3       | 8,114.8            | 8,198.0       | 8,309.3            |          | 8,340.0   | 8,354.9   | 8,412.0  | 8,545.3  | 8,617.0  |           | 8,659.9            |
| 8993         | 7,732.7       | 8,338.3            | 8,406.1       | 8,519.2            |          | 8,552.4   | 8,574.7   | 8,610.0  | 8,694.2  | 8,740.2  |           | 8,784.0            |
|              | _             |                    |               |                    | M        | ercer Cou | ınty      |          |          |          |           |                    |
| 21           | 11,160.1      | 11,848.2           | 11,895.4      | 12,010.7           | 12,067.0 | 12,130.0  | 12,343.0  |          |          |          |           |                    |
| 8712         | 12,119.7      | 12,764.4           | 12,819.4      | 12,948.2           |          | 13,070.2  |           |          |          |          |           |                    |
|              |               |                    |               |                    | Mo       | orton Co  | unty      |          |          |          |           |                    |
| 26           | 6,494.5       | 7,117.4            | 7,169.3       | 7,303.4            |          | 7,328.3   | 7,354.0   | 7,440.0  | 7,574.0  | 7,724.0  |           | 7,758.0            |
| 1620         | 10,342.4      | 10,983.9           | 11,021.4      | 11,163.5           | 11,192.0 |           |           |          |          |          |           |                    |
| 3859         | 6,922.7       | 7,555.0            | 7,614.5       | 7,733.9            |          | 7,751.1   | 7,784.1   | 7,830.0  | 8,004.9  | 8,164.0  |           | 8,195.7            |
| 7340         | 9,860.1       | 10,495.8           | 10,540.2      | 10,674.5           | 10,716.1 | 10,758.9  | 10,910.8  | 10,972.8 | 11,164.6 | 11,295.1 |           | 11,341.1           |
| 7691         | 8,494.8       | 9,145.4            | 9,194.8       | 9,310.6            |          | 9,344.4   | 9,446.7   | 9,509.6  | 9,693.1  | 9,851.8  |           | 9,867.0            |
| 7797         | 8,927.8       | 9,558.9            | 9,615.4       | 9,733.5            |          | 9,761.0   | 9,852.4   | 9,912.0  | 10,081.3 | 10,172.0 |           |                    |
| 7937         | 8,574.4       | 9,170.8            | 9,229.2       | 9,331.5            |          | 9,353.7   | 9,420.3   | 9,485.6  | 9,690.1  | 9,918.0  |           | 9,955.4            |
| 8158         | 7,157.4       | 7,777.0            | 7,819.0       | 7,959.1            |          | 7,972.0   | 8,040.0   | 8,100.0  |          |          |           |                    |
| 8553         | 7,744.8       | 8,349.3            | 8,391.7       | 8,523.9            |          | 8,557.4   | 8,611.8   | 8,664.3  | 8,788.2  | 8,829.0  |           | 8,856.7            |
|              |               |                    | 1             | 1                  | Mot      | ıntrail C | ounty     | 1        | ı        | 1        | 1         |                    |
| 678o         |               | 12,570.0           |               |                    |          | 12,899.6  | 13,111.4  | 13,165.5 | 13,343.7 | 13,407.8 |           | 13,454.0           |
| 6872         |               | 12,242.4           |               | 12,428.9           |          | 12,584.0  | 12,722.7  | 12,823.0 | 12,982.7 | 13,130.0 |           | 13,177.0           |
| 9326         | 12,890.3      | 13,485.4           |               | 13,674.1           |          | 13,879.3  |           |          |          |          |           |                    |
| 12597        | 12,836.8      |                    |               | 13,604.1           | 13,840.4 | 13,862.6  |           |          |          |          |           |                    |
| 14815        | 12,033.1      | 12,668.9           |               | 12,856.5           |          | 13,005.2  |           |          |          |          |           |                    |
| 17058        | 12,347.0      | 12,979.5           | 13,037.9      | 13,169.4           |          | 13,339.1  |           |          |          |          |           |                    |
|              | 1             |                    |               |                    | Ne       | elson Cou | ınty      | Π        | Π        | I        |           |                    |
| 4664         | 2,323.2       | 2,661.2            | 2,729.6       | 2,861.5            |          |           |           |          |          |          | 2,882.9   |                    |
| 4785         | 1,965.0       | 2,511.5            | 2,588.5       | 2,707.9            |          |           |           |          |          |          | 2,746.2   |                    |
| 9143         | 1,586.0       | 2,078.0            | 2,096.0       | 2,205.0            |          | 1: 6      |           |          |          |          | 2,237.7   |                    |
|              |               | 0                  | 0             | 0 0                |          | liver Cou |           | 0.6      | 0        | 0.0      |           | 0.0                |
|              | 7,654.2       |                    |               | 8,458.7            |          |           |           | 8,600.2  | 8,732.3  | 8,802.2  |           | 8,835.0            |
| 8144         | 7,702.0       | 8,365.7            | 8,409.1       |                    | D.       |           | 8,630.3   |          |          |          |           |                    |
| 4            | 28:25         | 12:22              |               | 4 5 6 9 5          | Pi       | ierce Cou | iity      | 1        | I        | l        | 4 == 0 (  |                    |
| 435          | 3,840.0       | 4,343.0            |               | 4,538.7            |          |           |           |          |          |          | 4,578.6   | 100:5              |
| 706          | 4,191.5       | 4,721.6<br>5,683.4 |               | 4,912.6<br>5,886.2 |          |           |           |          |          |          | 4,958.8   | 4,994.0            |
| 3920         | 5,123.6       |                    |               |                    |          |           |           |          |          |          | 5,935.6   |                    |
| 5576         |               | 5,533.5            | 5,593.2       | 5,722.2            |          |           |           |          |          |          | 5,770.6   | E 286 C            |
| 12125        | 4,672.3       | 5,178.4            | 5,236.5       | 5,324.0            | Pa       | msey Cou  | ıntv      | ļ        | ļ        | l        | 5,359.6   | 5,386.0            |
| 20           | 2,487.0       | 3,010.4            | 3,091.7       | 3,210.0            | Na       | 1113Cy CO | лиу       |          |          |          |           | 2 210 0            |
| 196          |               | 3,474.6            |               | 3,688.4            |          |           |           |          |          |          | 3,706.0   | 3,219.0<br>3,728.0 |
| 190          | <b>■</b> ~,>) | 1 2)4/4.0          | _ ⊃, , ) ∀.∠  | 3,000.4            |          |           |           |          |          |          | 1 3,700.0 | 3,740.0            |

|              |          |                |               |          | Nor      | th Da     | kota      |          |          |          |           |                 |
|--------------|----------|----------------|---------------|----------|----------|-----------|-----------|----------|----------|----------|-----------|-----------------|
|              |          |                |               | For      | mation   | Tops      | (Depths i | n Feet)  |          |          |           |                 |
|              |          | Win            | nipeg Gı      |          |          |           |           | ood For  | mation   |          |           |                 |
| <u>Well</u>  | Red      |                | F -8 -        | Black    | Member   | Member    |           | 1        | Member   | Member   | Member    | Pre-            |
| <u>Label</u> | River    | Rough-<br>lock | <u>Icebox</u> | Island   | <u>F</u> | <u>E</u>  | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | <u>AB</u> | <u>cambrian</u> |
| 383          | 2,536.0  | 3,052.3        | 3,135.4       | 3,246.5  |          |           |           |          |          |          |           | 3,264.5         |
| 407          | 2,463.6  | 3,004.3        | 3,073.2       | 3,206.7  |          |           |           |          |          |          | 3,226.7   |                 |
| 411          | 2,604.8  | 3,122.6        | 3,203.3       | 3,318.2  |          |           |           |          |          |          | ,         | 3,339.0         |
| 422          | 2,456.5  | 2,991.4        | 3,057.4       | 3,185.8  |          |           |           |          |          |          |           | 3,194.8         |
|              |          |                |               |          | Rei      | nville Co | unty      | •        |          |          |           |                 |
| 6296         | 8,749.0  | 9,254.0        | 9,289.0       | 9,415.8  |          |           |           |          | 9,452.3  | 9,553.9  |           | 9,650.7         |
| 6349         | 8,435.0  | 8,918.0        | 8,959.1       | 9,036.8  |          |           |           |          | 9,050.9  |          |           |                 |
| 6401         | 8,592.0  | 9,117.2        | 9,159.9       | 9,273.3  |          |           |           |          | 9,289.0  | 9,432.1  |           | 9,528.9         |
| 6436         | 8,709.0  | 9,219.0        | 9,256.7       | 9,385.0  |          |           |           |          | 9,408.5  | 9,513.4  |           |                 |
| 6466         | 8,505.0  | 8,997.0        | 9,031.9       | 9,143.0  |          |           |           |          | 9,198.6  |          |           |                 |
| 6473         | 8,757.3  | 9,281.4        | 9,328.0       | 9,432.8  |          |           |           |          | 9,466.4  | 9,621.7  |           | 9,690.7         |
| 6504         | 8,780.0  | 9,314.0        | 9,361.4       | 9,478.0  |          |           |           | 9,576.4  | 9,630.0  | 9,763.3  |           | 9,827.0         |
| 6624         | 8,340.0  | 8,876.o        | 8,927.0       | 9,037.6  |          |           |           | 9,131.0  | 9,187.0  | 9,298.5  |           | 9,308.0         |
| 6684         | 8,365.0  | 8,894.0        | 8,938.7       | 9,050.2  |          |           |           | 9,144.0  | 9,186.0  | 9,233.0  |           | 9,258.0         |
| 6749         | 8,440.0  | 8,912.0        | 8,952.2       | 9,049.1  |          |           |           |          | 9,096.1  | 9,255.6  |           | 9,381.2         |
| 7577         | 9,161.0  | 9,702.0        | 9,759.2       | 9,874.0  |          |           |           | 9,984.6  | 10,079.7 | 10,135.9 |           | 10,166.0        |
| 14429        | 8,331.5  | 8,868.6        | 8,908.6       | 9,024.6  |          |           |           | 9,111.8  | 9,167.1  | 9,279.4  |           | 9,355.0         |
| 14725        | 8,739.5  | 9,261.7        | 9,297.7       | 9,414.0  |          |           |           |          | 9,444.7  | 9,551.1  |           | 9,601.0         |
| 14758        | 8,727.9  | 9,233.3        | 9,267.2       | 9,364.5  |          |           |           |          | 9,381.4  | 9,469.6  |           | 9,559.7         |
| 14970        | 7,507.6  | 8,079.4        | 8,134.8       | 8,250.2  |          |           |           | 8,324.2  |          |          | 8,363.8   |                 |
| 17317        | 8,485.0  | 8,991.0        | 9,030.0       | 9,150.0  |          |           |           |          | 9,189.0  | 9,334.7  |           | 9,428.8         |
| 17467        | 8,697.9  | 9,221.4        | 9,243.5       | 9,356.3  |          |           |           |          | 9,384.5  | 9,478.9  |           | 9,583.0         |
|              |          |                |               |          | Ro       | lette Co  | ınty      | •        |          |          |           |                 |
| 83           | 4,769.4  | 5,298.0        | 5,343.1       | 5,464.0  |          |           | _         |          |          |          | 5,485.0   | 5,503.0         |
| 316          | 4,182.6  | 4,705.8        | 4,768.4       | 4,897.1  |          |           |           |          |          |          | 4,922.0   | 4,942.0         |
| 13586        | 4,526.0  | 5,066.0        | 5,123.8       | 5,246.2  |          |           |           |          |          |          | 5,270.7   |                 |
| 16095        | 4,672.0  | 5,242.0        | 5,260.2       | 5,422.0  |          |           |           |          |          |          | 5,608.0   | 5,686.0         |
|              |          |                |               |          | She      | eridan Co | unty      |          |          |          |           |                 |
| 665          | 5,956.8  | 6,537.7        | 6,612.2       | 6,732.1  |          |           |           | 6,760.8  |          |          |           |                 |
| 684          | 5,545.3  | 6,093.9        | 6,165.4       | 6,324.1  |          |           |           |          |          |          | 6,345.5   |                 |
| 693          |          | 6,871.9        |               |          |          |           |           | 7,114.8  |          |          |           |                 |
| 735          | 5,501.5  | 6,073.3        |               | 6,286.8  |          |           |           |          |          |          | 6,309.7   |                 |
| 9343         | 6,216.3  |                | 6,896.7       | 7,018.6  |          |           |           | 7,043.3  |          |          | 7,134.4   | 7,234.0         |
|              |          |                |               |          | S        | ioux Cou  | nty       |          |          |          |           |                 |
| 631          | 5,048.3  | 5,607.3        | 5,655.1       | 5,824.6  |          |           |           | 5,836.6  |          |          |           |                 |
|              |          |                |               |          | S        | lope Cou  | nty       |          |          |          |           |                 |
| 8629         | 11,006.4 | 11,592.5       | 11,628.0      | 11,733.2 |          | 11,755.9  |           |          |          |          |           |                 |
| 9244         | 11,383.6 | 11,964.8       | 12,001.0      | 12,107.3 |          | 12,135.2  |           |          |          |          |           |                 |
| 11484        | 10,842.7 | 11,429.1       | 11,464.3      | 11,572.5 |          | 11,594.8  | 11,656.5  |          |          |          |           |                 |
|              |          |                |               |          | S        | tark Cou  | nty       |          |          |          |           |                 |
| 6447         | 11,859.5 | 12,459.0       | 12,497.5      | 12,610.1 |          | 12,645.3  |           |          |          |          |           |                 |
| 8088         | 11,550.5 | 12,190.8       | 12,226.4      | 12,341.5 | 12,393.0 | 12,465.6  |           |          |          |          |           |                 |
| 8169         | 10,571.0 | 11,203.6       | 11,248.3      | 11,356.9 | 11,384.0 | 11,395.8  | 11,568.0  | 11,650.0 | 11,872.0 | 12,062.0 |           | 12,140.9        |

|              |            |          |               |          | Nor      | th Da     | kota      |          |          |          |         |                 |
|--------------|------------|----------|---------------|----------|----------|-----------|-----------|----------|----------|----------|---------|-----------------|
|              |            |          |               | For      | matior   | 1 Tops    | (Depths i | n Feet)  |          |          |         |                 |
|              |            | Win      | nipeg Gı      |          |          |           |           | ood For  | mation   |          |         |                 |
| <u>Well</u>  | <u>Red</u> | Rough-   |               | Black    | Member   | Member    | Member    |          | Member   | Member   | Member  | Pre-            |
| <u>Label</u> | River      | lock     | <u>Icebox</u> | Island   | <u>F</u> | <u>E</u>  | <u>D</u>  | C        | <u>B</u> | <u>A</u> | AB      | <u>cambrian</u> |
| 8342         | 11,889.3   | 12,515.3 | 12,557.6      | 12,668.1 | 12,712.3 | 12,722.0  | 12,943.4  |          |          |          |         |                 |
| 8665         | 10,344.5   | 10,968.2 | 11,020.4      | 11,125.0 |          | 11,151.2  |           |          |          |          |         |                 |
| 8837         | 11,203.2   | 11,821.9 | 11,850.8      | 11,936.2 |          | 11,960.0  |           |          |          |          |         |                 |
| 9056         | 10,971.6   | 11,606.8 | 11,658.2      | 11,769.0 | 11,808.3 | 11,833.5  |           |          |          |          |         |                 |
| 9135         | 10,423.4   | 11,061.1 | 11,117.3      | 11,230.9 |          | 11,265.3  |           |          |          |          |         |                 |
| 9256         | 11,110.6   | 11,747.2 | 11,793.5      | 11,908.0 | 11,945.6 | 11,972.3  |           |          |          |          |         |                 |
| 9257         | 10,969.1   | 11,606.5 | 11,657.4      | 11,768.3 | 11,810.2 | 11,829.9  |           |          |          |          |         |                 |
| 9322         | 11,829.8   | 12,444.5 | 12,482.6      | 12,598.7 |          | 12,630.7  |           |          |          |          |         |                 |
| 9348         | 10,877.5   | 11,509.1 | 11,557.3      | 11,668.5 | 11,704.2 | 11,730.6  | 11,887.7  |          |          |          |         |                 |
| 9407         |            | 11,432.8 |               |          | 11,630.5 | 11,646.0  |           |          |          |          |         |                 |
| 9475         | 11,695.6   | 12,324.9 | 12,366.7      | 12,482.0 | 12,530.6 | 12,570.0  |           |          |          |          |         |                 |
| 9684         |            | 12,334.7 |               |          |          | 12,507.8  |           |          |          |          |         |                 |
| 10430        |            | 10,750.2 |               |          |          | 10,937.5  |           |          |          |          |         |                 |
| 10570        | 11,606.9   |          | 12,255.9      |          |          | 12,410.9  |           |          |          |          |         |                 |
| 13447        | 12,009.7   | 12,623.8 |               |          |          | 12,814.2  |           |          |          |          |         |                 |
| 14652        |            | 11,854.6 |               |          |          | 12,027.3  |           |          |          |          |         |                 |
|              |            |          |               | .,,,     | St       | eele Cou  | nty       | ı        |          |          | ı       |                 |
| 8027         | 1,204.0    | 1,584.0  | 1,611.6       | 1,728.0  |          |           |           |          |          |          |         | 1,736.0         |
| 9922         | 1,046.8    | 1,162.9  | 1,180.9       | 1,258.1  |          |           |           |          |          |          | 1,316.0 |                 |
|              |            |          | •             |          | Stu      | tsman Co  | ounty     | •        |          | •        | -       |                 |
| 40           | 3,221.4    | 3,783.8  | 3,851.9       | 3,987.0  |          |           |           |          |          |          | 3,994.1 |                 |
| 120          | 2,106.6    | 2,638.3  | 2,715.5       | 2,846.9  |          |           |           |          |          |          | 2,865.8 |                 |
| 134          | 2,552.3    | 3,098.5  | 3,175.9       | 3,316.8  |          |           |           |          |          |          | 3,333.0 |                 |
| 370          | 2,445.7    | 2,998.0  | 3,072.0       | 3,202.8  |          |           |           |          |          |          | 3,222.8 |                 |
| 406          | 2,457.0    | 3,013.7  | 3,086.5       | 3,218.0  |          |           |           |          |          |          | 3,236.1 |                 |
| 644          | 3,378.3    | 3,948.6  | 4,018.0       | 4,154.5  |          |           |           |          |          |          | 4,178.1 |                 |
| 668          | 2,711.0    | 3,370.3  | 3,433.7       | 3,587.7  |          |           |           |          |          |          | 3,592.8 |                 |
| 669          | 3,173.6    | 3,742.7  | 3,813.3       | 3,953.0  |          |           |           |          |          |          | 3,961.0 |                 |
| 671          | 3,057.0    | 3,627.7  | 3,699.0       | 3,829.2  |          |           |           |          |          |          | 3,834.0 |                 |
| 672          | 3,003.0    | 3,561.4  | 3,631.9       |          |          |           |           |          |          |          | 3,764.0 |                 |
| 7415         |            | 3,546.3  |               | 3,767.2  |          |           |           |          |          |          | 3,775.9 |                 |
| 9776         | 2,249.5    | 2,799.5  | 2,876.7       | 3,007.9  |          |           |           |          |          |          | 3,025.9 |                 |
|              | ,,,        |          |               |          | То       | wner Co   | unty      |          |          | •        | 22      |                 |
| 171          | 3,067.6    | 3,578.4  | 3,635.4       | 3,765.8  |          |           | ,         |          |          |          |         | 3,787.0         |
| 194          | 3,023.2    | 3,547.4  | 3,616.5       | 3,745.0  |          |           |           |          |          |          |         | 3,761.0         |
| 227          | 3,274.3    | 3,800.0  | 3,857.1       | 3,996.4  |          |           |           |          |          |          | 4,022.6 | 4,030.0         |
| ,            |            |          |               |          | V        | Vard Cou  | nty       |          |          | •        |         |                 |
| 47           | 7,561.4    | 8,168.9  | 8,206.5       | 8,325.7  |          |           |           | 8,420.7  | 8,490.1  | 8,550.5  |         | 8,618.3         |
| 7612         | 10,914.2   | 11,524.2 | 11,580.1      |          |          | 11,842.0  | 11,893.0  | 11,972.0 | 12,155.0 | 12,270.0 |         | 12,317.0        |
| 11055        | 7,775.7    | 8,375.0  | 8,419.9       | 8,537.9  |          |           |           | 8,633.6  |          | <u> </u> |         | - 1             |
| - //         |            |          |               |          | V        | Vells Cou | nty       |          |          | •        |         |                 |
| 207          | 5,032.3    | 5,601.6  | 5,671.4       | 5,808.7  |          |           | <u> </u>  |          |          |          | 5,827.5 |                 |
| 609          | 4,221.4    | 4,810.8  | 4,870.4       | 5,001.5  |          |           |           |          |          | 1        | 5,023.3 |                 |

|                |                            |                |               |                 | Nor                  | th Da              | kota        |             |                    |                    |              |                                |
|----------------|----------------------------|----------------|---------------|-----------------|----------------------|--------------------|-------------|-------------|--------------------|--------------------|--------------|--------------------------------|
|                |                            |                |               | For             | matior               | 1 Tops             | (Depths i   | n Feet)     |                    |                    |              |                                |
|                |                            | Win            | nipeg Gı      | roup            |                      |                    | Deadw       | ood For     | mation             |                    |              |                                |
| Well<br>Label  | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u>   | Member<br><u>E</u> | Member<br>D | Member<br>C | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |
| 642            | 4,191.8                    | 4,788.6        | 4,841.0       | 4,974.0         |                      |                    |             |             |                    |                    | 5,007.3      |                                |
| 689            | 4,406.4                    | 4,963.9        | 5,022.6       | 5,186.2         |                      |                    |             |             |                    |                    | 5,206.7      |                                |
| 1211           | 3,508.5                    | 4,101.3        | 4,157.8       | 4,289.0         |                      |                    |             |             |                    |                    | 4,303.3      | 4,391.0                        |
| 11599          | 4,167.5                    | 4,755.6        | 4,819.5       | 4,960.1         |                      |                    |             |             |                    |                    | 4,978.3      |                                |
| 11653          | 3,950.3                    | 4,541.5        | 4,601.6       | 4,734.2         |                      |                    |             |             |                    |                    | 4,764.1      |                                |
| 11654          | 4,049.7                    | 4,631.7        | 4,687.4       | 4,821.5         |                      |                    |             |             |                    |                    | 4,852.4      |                                |
|                |                            | 1              | ı             | 1               | Wi                   | lliams Co          | unty        | ı           | ı                  | 1                  | ı            |                                |
| 1231           | 12,676.7                   | 13,211.7       | 13,250.3      | 13,384.1        | 13,613.5             |                    |             |             |                    |                    |              |                                |
| 1385           | 13,125.0                   | 13,749.3       | 13,780.8      | 13,922.2        | 14,177.9             | 14,280.0           | 14,405.0    | 14,550.0    | 14,628.1           | 14,741.5           |              | 14,769.8                       |
| 1403           |                            | 13,229.0       | 13,267.9      |                 | 13,669.0             | 13,710.0           | 13,882.0    | 14,017.0    |                    |                    |              |                                |
| 1514           |                            | 13,495.5       | 13,541.0      |                 | 13,928.0             | 14,022.0           | 14,157.0    | 14,295.0    | 14,409.6           |                    |              |                                |
| 1636           |                            | 13,597.3       |               |                 | 14,014.6             | 14,061.2           |             | _           |                    | _                  |              | _                              |
| 3844           | 12,923.8                   | 13,537.9       | 13,573.8      | 13,725.8        | 13,971.5             |                    | 14,193.0    | 14,345.8    | 14,411.0           | 14,538.1           |              | 14,561.0                       |
| 4321           | 12,725.9                   | 13,314.7       | 13,351.0      | 13,476.0        | 13,706.6             | 13,733.0           | 13,864.0    | 14,023.0    | 14,191.3           | 14,256.0           |              | 14,282.9                       |
| 4323           | 12,590.2                   |                | 13,185.1      | 13,317.6        |                      | 13,543.2           | 13,632.8    | 13,735.1    |                    |                    |              |                                |
| 4618           | 12,767.0                   | 13,260.7       | 13,299.5      | 13,373.1        |                      | 13,532.0           | 13,593.0    | 13,750.0    | 13,918.0           | 14,088.0           |              | 14,125.0                       |
| 4716           | 12,724.7                   | 13,300.3       | 13,339.2      | 13,489.7        | 13,710.0             | 13,749.3           |             |             |                    |                    |              |                                |
| 5069           |                            | 13,462.3       |               |                 | 13,900.6             |                    |             |             |                    |                    |              |                                |
| 6098           |                            | 13,945.8       |               |                 | 14,380.6             |                    | _           |             |                    |                    |              |                                |
| 6478           |                            | 13,796.7       | 13,838.1      | 13,971.6        |                      |                    | 14,178.0    |             |                    |                    |              |                                |
| 7005           |                            | 13,560.3       | 13,611.7      | 13,758.3        | 14,025.0             |                    |             |             |                    |                    |              |                                |
| 7848           |                            | 13,066.0       | 13,101.5      | 13,171.9        |                      | 13,311.6           |             |             |                    |                    |              |                                |
| 8316           | 11,851.0                   | 12,308.4       | 12,340.0      | 12,401.3        |                      | 12,572.2           |             |             |                    |                    |              |                                |
| 8692           | 12,283.7                   | 12,801.0       | 12,832.1      | 12,900.0        |                      | 13,043.5           |             |             |                    |                    |              |                                |
| 9100           | 12,068.6                   | -/ /           |               | 12,665.6        |                      | 12,798.2           |             |             |                    |                    |              |                                |
| 9800           | 13,275.9                   | 13,855.3       | 13,884.1      | 14,019.8        |                      |                    | 14,204.2    |             |                    |                    |              |                                |
| 10772          | 12,585.0                   |                | 13,151.3      | 13,285.9        |                      |                    | 13,499.4    |             |                    |                    |              |                                |
| 12119          | 12,558.5                   | 13,086.5       | 13,127.8      | 13,249.2        |                      | 13,430.5           |             |             |                    |                    |              |                                |
| 12270          | 12,560.3                   | 13,111.7       | 13,137.4      | 13,250.5        | -                    | 13,444.4           |             |             |                    |                    |              |                                |
| 12305          | 13,013.7                   | 13,590.0       |               | 13,745.9        |                      | 13,958.8           | 14,027.5    |             |                    |                    |              |                                |
|                | 12,701.0                   |                |               |                 | 13,689.1             |                    |             |             |                    |                    |              |                                |
| 12432          |                            | 13,262.4       |               |                 | 13,639.6             |                    |             |             |                    |                    |              |                                |
| 12592          | 12,919.2                   |                |               |                 | 13,826.4             |                    | 14.022.0    |             |                    |                    |              |                                |
| 12831          |                            |                |               |                 | 13,894.9             |                    | 14,023.8    |             |                    |                    |              |                                |
| 12971          |                            |                |               |                 | 14,160.1<br>13,685.1 |                    | 12 802 0    |             |                    |                    |              |                                |
| 13395          | 12,897.0                   |                |               |                 |                      |                    |             |             |                    |                    |              |                                |
| 13682          |                            | 13,301.0       |               |                 | 13,746.8             |                    | 13,095.1    |             |                    |                    |              |                                |
| 13893<br>16629 |                            | 13,843.2       |               |                 | 13,726.3             |                    | 14 200 0    |             |                    |                    |              |                                |
| 17488          |                            |                |               |                 | 14,231.0             | 14,252.0           | 14,300.0    |             |                    |                    |              |                                |
| 18631          |                            | 13,959.2       |               |                 | 13,703.0             | 14,335.5           | 12.880.1    |             |                    |                    |              |                                |
| 18680          |                            |                |               |                 | 13,934.7             |                    |             |             |                    |                    |              |                                |

|                 |          |                |               |                 | M                  | lonta              | na        |          |          |          |        |                 |
|-----------------|----------|----------------|---------------|-----------------|--------------------|--------------------|-----------|----------|----------|----------|--------|-----------------|
|                 |          |                |               | For             | mation             | 1 Tops             | (Depths i | n Feet)  |          |          |        |                 |
|                 |          | Win            | nipeg Gı      |                 |                    | -                  |           | ood For  | mation   |          |        |                 |
| Well            | Red      |                | inpeg di      |                 | M h                | M h                | Member    |          | Member   | Member   | Member | Pre-            |
| <u>Label</u>    | River    | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | <u>E</u>           | <u>D</u>  | C        | <u>B</u> | <u>A</u> | AB     | <u>cambrian</u> |
|                 |          | <u> </u>       |               |                 |                    | arter Cou          |           |          | _        |          |        |                 |
| MT1             | 3,591.3  | 4,038.5        | 4,066.0       |                 |                    |                    | ,         | 4,142.3  | 4,309.0  | 4,640.4  |        | 4,829.2         |
| MT2             | 4,461.3  | 4,933.4        | 4,957.8       | 5,034.2         |                    |                    |           | 5,089.2  | 1/2 2    | 1/ 1 -1  |        | 1/- 2-          |
| MT <sub>3</sub> | 5,942.2  | 6,405.1        | 6,428.8       | 6,505.1         |                    |                    |           | 6,626.0  | 6,689.4  | 6,959.9  |        | 7,040.7         |
| MT4             | 5,900.8  | 6,371.6        | 6,395.9       | 6,441.0         |                    |                    |           | 6,516.8  | 6,583.3  | 6,912.5  |        | 6,980.9         |
| MT <sub>5</sub> | 8,554.1  | 9,039.4        | 9,069.3       | 9,152.0         |                    |                    |           | 9,319.9  |          |          |        |                 |
| MT6             | 9,016.0  | 9,508.8        | 9,542.2       | 9,625.7         |                    |                    | 9,685.9   | 9,764.5  | 9,901.8  |          |        |                 |
| MT <sub>7</sub> | 8,903.8  | 9,392.2        | 9,435.2       | 9,516.2         |                    | 9,536.7            | 9,564.2   | 9,649.0  | 9,787.9  | 10,171.2 |        | 10,262.4        |
| MT8             | 6,950.2  | 7,415.5        | 7,458.2       |                 |                    |                    |           | 7,529.3  | 7,699.5  | 8,101.0  |        | 8,255.3         |
|                 | _        | •              | •             | •               | Cı                 | ıster Cou          | nty       | •        | •        | •        |        |                 |
| MT9             | 8,595.0  | 9,005.0        | 9,040.0       | 9,133.7         |                    |                    |           | 9,153.3  | 9,341.0  | 9,730.0  |        | 9,782.0         |
|                 |          | 1              | 1             | ı               | Da                 | miels Co           | unty      | 1        | 1        | 1        |        |                 |
| MT10            | 8,259.8  | 8,704.9        | 8,833.8       | 9,004.8         |                    |                    |           | 9,062.2  | 9,372.6  |          |        |                 |
|                 |          |                | I -           |                 | Da                 | wson Co            |           | ı        |          | ı        |        |                 |
| MT11            | 9,395.4  | 9,822.8        | 7. 7,         |                 |                    |                    | 9,988.0   | 10,030.0 |          |          |        |                 |
| MT12            | 9,533.0  | 9,947.4        | 9,984.9       | 10,089.0        |                    |                    | 10,160.4  |          | -        |          |        |                 |
| MT13            |          | 10,984.1       |               | 11,152.0        |                    |                    | 11,202.0  | 11,270.0 | 11,480.0 | 11,654.8 |        |                 |
| MT14            | 9,792.9  |                | 10,159.6      | 10,273.8        |                    |                    | 10,315.1  | 10,377.7 |          |          |        |                 |
| MT15            | 11,824.0 | 12,243.0       | 12,299.2      | 12,411.7        |                    | 11                 | 12,455.6  |          |          |          |        |                 |
| MT              | 0        | 0              | l             | l               | Fa                 | llon Cou           |           | l        |          | 0        |        |                 |
| MT16<br>MT17    | 8,599.5  | 9,037.8        | 9,110.0       | 9,219.0         |                    | . =0               | 9,257.0   | 9,322.0  | 9,597.0  | 9,819.0  |        | 9,916.9         |
| W1117           | 8,954.3  | 9,412.4        | 9,478.6       | 9,554.1         | Mc                 | 9,583.1<br>Cone Co | 9,620.7   | 9,690.8  | 9,971.1  | 10,201.6 |        | 10,298.3        |
| MT18            | 9,598.0  | 9,906.2        | 9,953.1       | 10,025.9        | IVIC               | Cone Co            | 10,102.0  | 10,165.0 | 10,342.0 | 10.726.0 |        | 10,801.7        |
| WITIO           | 9,590.0  | 9,900.2        | 9,953.1       | 10,025.9        | Powd               | ler River          |           | 10,105.0 | 10,342.0 | 10,730.0 |        | 10,001.7        |
| MT19            | 8,237.8  | 8,694.4        | 8,710.2       | 8,798.7         | 1000               | ici idvei          | Country   | 8,812.7  | 8,995.4  | 9,386.7  |        | 9,454.1         |
| miig            | 0,237.0  | 0,094.4        | 0,710.2       | 0,790.7         | Ric                | hland Co           | untv      | 0,012.7  | 0,997.4  | 9,500.7  |        | 9,4,14.1        |
| MT20            | 11.458.0 | 11.850.0       | 11,905.6      | 12,049.0        | 140                |                    | 12,119.0  |          |          |          |        |                 |
| MT21            |          | 12,625.5       |               | 12,810.9        |                    | 12,886.2           | , - 3     |          |          |          |        |                 |
| MT22            |          |                | 12,360.8      |                 |                    |                    | 12,596.0  | 12,749.0 | 12,922.0 | 13,198.8 |        | 13,308.7        |
| MT23            |          |                | 12,130.0      |                 |                    |                    |           | 12,478.8 |          |          |        | 12,953.0        |
| MT24            |          |                | 12,769.5      |                 |                    |                    | 13,023.5  |          |          |          |        |                 |
| MT25            |          | 11,556.3       |               | 11,715.0        |                    |                    | 11,770.6  |          |          |          |        |                 |
|                 |          | •              | •             | •               | Roc                | sevelt Co          | unty      | •        |          | •        |        |                 |
| MT26            | 12,114.9 | 12,606.8       | 12,624.9      | 12,710.0        |                    | 12,751.0           |           |          |          |          |        |                 |
| MT27            | 12,148.6 | 12,612.5       | 12,651.5      | 12,784.1        |                    |                    | 12,869.7  |          |          |          |        | _               |
|                 |          |                |               |                 | She                | eridan Co          | unty      |          |          |          |        |                 |
| MT28            |          |                | 10,378.7      |                 |                    |                    | 10,561.3  |          |          |          |        |                 |
| MT29            |          | 10,076.0       | 10,104.4      |                 |                    |                    | 10,304.8  | 10,601.5 | 10,720.9 | 10,813.0 |        |                 |
| МТ30            | 9,799.7  | 10,111.0       | 10,133.8      | 10,252.9        |                    |                    | 10,316.1  | 10,729.0 | 10,828.9 | 11,015.7 |        |                 |
| MT31            |          | 11,375.0       | 11,411.8      | 11,537.0        |                    |                    | 11,621.0  | 11,951.7 | 12,026.9 | 12,150.1 |        | 12,257.0        |
| MT32            | 11,060.5 | 11,461.4       |               |                 |                    |                    | 11,684.5  |          |          |          |        |                 |
| MT33            | 11,183.2 | 11,579.4       | 11,606.3      | 11,734.2        |                    |                    | 11,806.7  | 12,134.6 | 12,224.5 | 12,261.2 |        | 12,343.1        |

|                                 |                                                                                       |                |               |                 | M                         | lonta              | na                 |                    |                    |                    |              |                         |  |
|---------------------------------|---------------------------------------------------------------------------------------|----------------|---------------|-----------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------------------------|--|
| Formation Tops (Depths in Feet) |                                                                                       |                |               |                 |                           |                    |                    |                    |                    |                    |              |                         |  |
| XA7-11                          | Winnipeg Group Deadwood Formation                                                     |                |               |                 |                           |                    |                    |                    |                    |                    |              | Desc                    |  |
| <u>Well</u><br><u>Label</u>     | <u>River</u>                                                                          | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | <u>Member</u><br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br>cambrian |  |
| MT34                            | 10,986.0                                                                              | 11,376.0       | 11,412.4      | 11,528.0        |                           |                    | 11,603.8           | 11,831.0           | 11,966.0           |                    |              |                         |  |
| MT35                            | 10,749.5                                                                              | 11,141.9       | 11,171.8      | 11,301.8        |                           |                    | 11,379.4           |                    |                    |                    |              |                         |  |
| MT36                            | 10,818.0                                                                              | 11,187.6       | 11,231.3      | 11,358.2        |                           |                    | 11,438.3           | 11,762.0           | 11,856.1           | 11,906.7           |              | 11,930.2                |  |
| MT37                            | MT <sub>37</sub> 9,447.5 9,769.4 9,782.6 9,928.8 9,983.8 10,346.0 10,426.7 10,551.1 1 |                |               |                 |                           |                    |                    |                    |                    |                    |              |                         |  |
| Valley County                   |                                                                                       |                |               |                 |                           |                    |                    |                    |                    |                    |              |                         |  |
| MT38                            | 7,242.2                                                                               | 7,547.8        | 7,553.2       | 7,659.6         |                           |                    |                    |                    |                    |                    |              | 7,740.1                 |  |
|                                 |                                                                                       |                |               |                 | W                         | ibaux Co           | unty               |                    |                    |                    |              |                         |  |
| MT39                            | 10,624.0                                                                              | 11,108.0       | 11,151.5      | 11,260.1        |                           | 11,285.4           | 11,366.3           |                    |                    |                    |              |                         |  |
| MT40                            | 10,634.0                                                                              | 11,112.0       | 11,164.1      | 11,271.0        |                           | 11,290.6           |                    |                    |                    |                    |              |                         |  |
| MT41                            | 10,523.2                                                                              | 10,999.0       | 11,046.9      | 11,152.2        |                           | 11,167.7           | 11,206.4           |                    |                    |                    |              |                         |  |
| MT42                            | 10,964.0                                                                              | 11,415.0       | 11,476.4      | 11,586.0        |                           | 11,612.7           |                    |                    |                    |                    |              |                         |  |
| MT43                            | 11,162.0                                                                              | 11,597.0       | 11,659.3      | 11,761.0        |                           | 11,800.0           |                    |                    |                    |                    |              |                         |  |
| MT44                            | 11,604.0                                                                              | 12,051.0       | 12,127.3      | 12,212.0        |                           | 12,271.1           |                    |                    |                    |                    |              |                         |  |
| MT45                            | 8,860.4                                                                               |                |               |                 |                           | 9,480.0            | 9,529.0            | 9,618.0            | 9,873.0            | 10,262.0           |              | 10,390.0                |  |
| MT46                            | 10,326.3                                                                              | 10,811.6       | 10,848.2      | 10,945.7        |                           | 10,979.0           |                    |                    |                    |                    |              |                         |  |

|                      |                     |         |               |         | Sou      | th Da      | kota      |          |          |          |         |                         |
|----------------------|---------------------|---------|---------------|---------|----------|------------|-----------|----------|----------|----------|---------|-------------------------|
|                      |                     |         |               | For     | matio    | ı Tops     | (Depths i | n Feet)  |          |          |         |                         |
|                      |                     | Win     | nipeg Gı      |         |          |            |           | ood For  | mation   |          |         |                         |
| <u>Well</u><br>Label | <u>Red</u><br>River | Rough-  |               | Black   | Member   | Member     | Member    | Member   | Member   | Member   | Member  | <u>Pre-</u><br>cambrian |
| Laber                | KIVEL               | lock    | <u>Icebox</u> | Island  | <u>F</u> | <u>E</u>   | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | AB      | Cambrian                |
|                      |                     | •       | •             | •       | Bon      | Homme (    | County    | •        | •        | •        |         |                         |
| SD1                  |                     |         |               |         |          |            |           |          |          |          |         | 852.0                   |
| SD <sub>2</sub>      |                     |         |               |         |          |            |           |          |          |          |         | 842.0                   |
|                      |                     |         |               |         | В        | utte Cou   | nty       |          |          |          |         |                         |
| SD <sub>3</sub>      | 4,970.0             | 5,283.3 | 5,323.7       | 5,407.6 |          |            |           | 5,517.1  | 5,611.3  |          |         |                         |
| SD <sub>4</sub>      | 5,356.2             | 5,738.6 | 5,761.2       |         |          |            |           | 5,850.3  | 5,940.0  | 6,271.1  |         | 6,315.0                 |
| SD <sub>5</sub>      | 6,058.6             | 6,522.9 | 6,542.1       |         |          |            |           | 6,627.4  | 6,724.6  | 7,051.7  |         | 7,089.7                 |
| SD6                  | 4,010.5             | 4,337.6 | 4,370.0       |         |          |            |           | 4,453.4  | 4,491.0  |          |         |                         |
| SD <sub>7</sub>      | 5,975.0             | 6,397.5 | 6,425.9       |         |          |            |           | 6,489.7  | 6,544.0  |          |         |                         |
| SD8                  | 6,389.1             | 6,826.3 | 6,829.0       |         |          |            |           | 6,937.0  |          |          |         |                         |
| SD9                  | 6,750.0             | 7,190.5 | 7,224.9       |         |          |            |           | 7,316.0  | 7,416.0  | 7,666.7  |         | 7,777.1                 |
| SD10                 | 5,694.5             | 6,098.0 | 6,121.5       |         |          |            |           | 6,211.4  | 6,256.0  |          |         |                         |
| SD11                 | 6,295.0             | 6,738.1 | 6,750.0       |         |          |            |           | 6,866.0  | 6,922.0  |          |         |                         |
| SD12                 | 3,331.0             | 3,560.0 | 3,601.5       | 3,666.3 |          |            |           | 3,731.8  |          |          |         |                         |
|                      |                     |         |               |         | Co       | orson Cou  | ınty      |          |          |          |         |                         |
| SD13                 | 7,165.8             | 7,725.9 | 7,760.8       | 7,911.2 |          |            |           | 7,944.1  | 8,129.9  | 8,335.1  |         | 8,425.4                 |
| SD14                 | 6,641.1             | 7,199.5 | 7,246.1       | 7,347.3 |          |            |           | 7,399.5  |          |          |         |                         |
| SD15                 | 6,437.4             | 7,011.4 | 7,028.1       | 7,140.2 |          |            |           | 7,173.1  | 7,352.4  | 7,577.0  |         | 7,623.7                 |
| SD16                 | 6,300.2             | 6,877.1 | 6,893.2       | 6,976.1 |          |            |           | 7,035.8  | 7,213.1  |          |         |                         |
| SD17                 | 6,731.0             | 7,284.7 | 7,336.5       |         |          |            |           | 7,446.6  | 7,607.2  |          |         |                         |
| SD18                 | 6,503.4             | 7,062.4 | 7,088.3       | 7,217.2 |          |            |           | 7,250.1  | 7,428.4  | 7,648.6  |         | 7,722.6                 |
| SD19                 | 6,911.6             | 7,464.6 | 7,489.3       | 7,624.2 |          |            |           | 7,696.7  | 7,814.9  |          |         |                         |
| SD20                 | 5,965.8             | 6,507.0 | 6,520.4       |         |          |            |           |          | 6,705.2  | 6,925.7  |         | 7,018.8                 |
|                      |                     |         |               |         | D        | ewey Cou   | ınty      |          |          |          |         |                         |
| SD21                 | 5,032.2             | 5,571.9 | 5,595.2       |         |          |            |           |          | 5,692.5  | 5,907.3  |         | 5,944.8                 |
| SD22                 | 5,012.1             | 5,557.9 | 5,569.5       |         |          |            |           |          | 5,690.1  |          |         |                         |
| SD23                 | 5,305.6             | 5,860.4 | 5,882.2       | 5,976.1 |          |            |           |          | 6,030.0  | 6,283.0  |         | 6,303.0                 |
| SD24                 | 4,180.5             | 4,667.5 | 4,691.2       | 4,782.0 |          |            |           |          | 4,830.1  | 4,970.6  |         | 5,032.0                 |
| SD25                 | 4,983.7             | 5,511.9 | 5,529.3       |         |          | ļ          | ļ         |          | 5,651.3  |          |         |                         |
| SD <sub>2</sub> 6    | 4,893.7             | 5,443.9 | 5,474.9       |         |          |            |           |          | 5,619.7  | 5,781.5  |         | 5,850.7                 |
| SD27                 | 4,734.3             | 5,282.9 | 5,313.5       |         |          |            |           |          | 5,440.7  | 5,607.2  |         | 5,668.8                 |
|                      |                     | 1       | 1             | 1       | Fal      | l River Co | ounty     | 1        | 1        | 1        |         |                         |
| SD <sub>2</sub> 8    |                     |         |               |         |          |            |           |          |          |          |         | 4,048.0                 |
| SD29                 |                     |         |               |         |          |            |           |          |          |          |         | 4,120.0                 |
| SD <sub>3</sub> o    |                     |         |               |         |          |            |           |          |          |          |         | 3,808.0                 |
| SD <sub>3</sub> 1    |                     |         |               |         |          |            |           |          |          |          |         | 4,060.0                 |
| SD32                 | 4,147.0             | 4,532.3 | 4,545.9       |         |          |            |           |          |          |          |         | 4,594.0                 |
| SD <sub>33</sub>     |                     |         |               |         |          | <u> </u>   | <u> </u>  |          |          |          |         | 2,532.3                 |
|                      |                     | 1       |               |         | F        | aulk Cou   | nty       | 1        | 1        | 1        | 1       | 1                       |
| SD <sub>34</sub>     | 2,400.0             |         | 2,618.1       | 2,697.4 |          | <u> </u>   | <u> </u>  |          |          |          | 2,718.2 | 2,744.0                 |
|                      |                     | ı       |               | П       | Gr       | egory Co   | unty      | ı        | ı        | ı        |         |                         |
| SD <sub>35</sub>     | 2,019.2             | 2,133.0 | 2,148.8       |         |          |            |           |          |          |          |         | 2,199.2                 |
| SD36                 | 2,140.7             | 2,181.5 | 2,192.8       |         |          |            |           |          |          |          |         | 2,221.2                 |

|                   |                    |         |                     |                | Sou      | th Da    | kota                                             |                                                  |          |                                                  |                    |                 |
|-------------------|--------------------|---------|---------------------|----------------|----------|----------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|--------------------|-----------------|
|                   |                    |         |                     | For            | matior   | ı Tops   | (Depths i                                        | n Feet)                                          |          |                                                  |                    |                 |
|                   |                    | Win     | nipeg G             |                |          |          |                                                  | ood For                                          | mation   |                                                  |                    |                 |
| Well              | <u>Red</u>         | Rough-  | <b>F</b> - <b>B</b> | Black          | Member   | Member   |                                                  |                                                  |          | Member                                           | Member             | Pre-            |
| <u>Label</u>      | <u>River</u>       | lock    | <u>Icebox</u>       | Island         | <u>F</u> | <u>E</u> | <u>D</u>                                         | <u>C</u>                                         | <u>B</u> | <u>A</u>                                         | AB                 | <u>cambrian</u> |
|                   |                    | l       | Į.                  | ļ              | На       | akon Co  | untv                                             |                                                  | l        |                                                  | ļ                  |                 |
| SD <sub>37</sub>  | 4,888.7            | 5,151.2 | 5,175.3             | 5,245.3        |          |          |                                                  |                                                  | 5,338.1  | 5,376.9                                          |                    | 5,418.9         |
| SD <sub>3</sub> 8 | 4,173.6            | 4,328.9 | 4,334.3             | J. 133         |          |          |                                                  |                                                  | 4,470.0  | 2.21                                             |                    | 2/1 2           |
| SD39              | 4,180.6            | 4,396.0 | 4,400.0             | 4,438.8        |          |          |                                                  |                                                  |          |                                                  |                    | 4,470.0         |
| SD40              | 3,651.5            | 3,794.1 | 3,809.8             | 3,834.4        |          |          |                                                  |                                                  |          |                                                  |                    | 3,862.3         |
| SD <sub>41</sub>  | 4,261.1            | 4,668.7 | 4,676.1             |                |          |          |                                                  |                                                  |          |                                                  |                    | 4,755.0         |
| SD <sub>42</sub>  | 4,594.5            | 4,912.0 | 4,923.7             | 4,996.8        |          |          |                                                  |                                                  |          |                                                  |                    | 5,005.9         |
|                   |                    |         |                     |                | Ha       | rding Co | unty                                             |                                                  |          |                                                  |                    |                 |
| SD <sub>43</sub>  | 6,650.0            |         | 6,940.0             |                |          |          |                                                  | 6,990.0                                          |          |                                                  |                    |                 |
| SD <sub>44</sub>  | 7,714.5            | 8,195.4 | 8,210.0             |                |          |          |                                                  | 8,290.6                                          |          |                                                  |                    |                 |
| SD <sub>45</sub>  | 7,536.7            | 8,010.3 | 8,053.3             |                |          |          |                                                  | 8,132.2                                          |          |                                                  |                    |                 |
| SD46              | 6,786.1            |         | 7,296.0             |                |          |          |                                                  | 7,374.8                                          |          |                                                  |                    |                 |
| SD <sub>47</sub>  | 7,250.0            |         | 7,740.0             |                |          |          |                                                  | 7,835.4                                          | 7,909.4  |                                                  |                    |                 |
| SD48              | 7,520.5            | 7,996.6 | 8,037.8             |                |          |          |                                                  | 8,117.0                                          | 8,305.7  | 8,522.8                                          |                    | 8,630.3         |
| SD49              | 8,155.3            | 8,651.4 | 8,703.1             |                |          |          |                                                  | 8,791.1                                          |          |                                                  |                    |                 |
| SD50              | 7,247.3            | 7,720.6 | 7,751.3             |                |          |          |                                                  | 7,834.1                                          |          |                                                  |                    |                 |
| SD <sub>5</sub> 1 | 8,355.3            | 8,851.0 | 8,886.o             | 8,948.8        |          |          |                                                  | 8,976.2                                          |          |                                                  |                    |                 |
| SD52              | 8,284.9            | 8,761.1 | 8,810.8             |                |          |          | 8,904.9                                          | 8,934.5                                          |          |                                                  |                    |                 |
| SD53              | 8,242.8            | 8,694.4 | 8,727.3             |                |          |          | 8,808.0                                          | 8,862.7                                          |          |                                                  |                    |                 |
| SD <sub>54</sub>  | 8,398.7            | 8,898.0 | 8,926.5             |                |          | 9,013.4  | 9,059.8                                          | 9,103.0                                          | 9,289.4  |                                                  |                    |                 |
| SD55              | 6,604.8            | 7,059.5 | 7,099.9             |                |          |          |                                                  | 7,176.4                                          | 7,291.0  |                                                  |                    |                 |
| SD <sub>5</sub> 6 | 8,920.3            | 9,409.0 | 9,437.0             |                |          |          | 9,526.0                                          |                                                  |          |                                                  |                    |                 |
| SD <sub>57</sub>  | 8,556.2            | 9,075.7 | 9,099.5             |                |          |          | 9,190.0                                          | 9,247.0                                          | 9,447.5  | 9,629.6                                          |                    | 9,748.0         |
| SD <sub>5</sub> 8 | 7,863.0            | 8,357.0 | 8,392.2             |                |          |          |                                                  | 8,474.3                                          | 8,673.2  |                                                  |                    |                 |
| SD59              | 8,448.3            | 8,945.9 | 8,981.1             |                |          |          | 9,062.7                                          | 9,101.5                                          | 9,262.0  | 9,381.6                                          |                    |                 |
| SD60              | 7,830.9            | 8,308.3 | 8,337.5             |                |          | 1 0      |                                                  | 8,422.5                                          |          |                                                  |                    |                 |
| CDC               |                    |         |                     | 1              | Hu       | ighes Co | unty                                             |                                                  | ı        |                                                  |                    | -               |
| SD61              | 2,112.0            | 2,429.4 | 2,455.3             | 2,541.1        |          | I1. C    |                                                  |                                                  |          |                                                  |                    | 2,560.0         |
| CD6-              | 2 200 5            | 2.562.5 | 2                   | 26-1           | F        | Iyde Cou | iity<br>I                                        |                                                  | l        |                                                  | 26-11              | 3.860.4         |
| SD62              | 2,300.0            |         | 2,575.0             |                |          |          |                                                  |                                                  |          |                                                  | 2,674.4<br>2,538.9 | 2,700.0         |
| SD63              | 2,270.0            | 2,428.2 | 2,432.0             | 2,510.0        | Inc      | lucam Ca |                                                  |                                                  |          |                                                  | 2,538.9            | 2,569.0         |
| SD64              | 20480              |         | 41045               | 4,165.8        | jac      | ckson Co | unty<br>I                                        |                                                  | 4,180.1  |                                                  |                    |                 |
| SD64              | 3,948.0<br>3,773.0 |         | 4,104.7<br>3,985.0  | 4,105.0        | -        |          | <del>                                     </del> | <del>                                     </del> | 4,100.1  | <del>                                     </del> |                    | 4,120.0         |
| 5505              | <i>3</i> ,773.0    |         | 2,903.0             | l .            | L        | nes Cou  | ntv                                              | 1                                                | <u> </u> | 1                                                | I                  | 4,120.0         |
| SD66              | 2,951.0            | 3,155.3 | 3,164.0             |                | JC       | nies Cou |                                                  |                                                  |          |                                                  | 3,235.6            |                 |
| SD67              | 3,715.0            | シェンフ・シ  | 3,877.0             | 3,924.0        |          |          | <del>                                     </del> | <del>                                     </del> |          | <del>                                     </del> | >,2>>.∪            | 3,952.0         |
| SD68              | 2,350.0            |         | ال ال               | <i>プラー</i> サ・3 |          |          |                                                  |                                                  |          | <del>                                     </del> |                    | 3,010.3         |
| SD69              | 2,100.0            |         |                     |                |          |          |                                                  |                                                  |          |                                                  |                    | 2,873.7         |
| SD <sub>7</sub> o | 2,600.0            |         |                     |                |          |          |                                                  |                                                  |          |                                                  |                    | 2,367.9         |
| <del></del>       |                    | ı       | ı                   | I .            | Law      | rence Co | ounty                                            | 1                                                | 1        |                                                  | 1                  | 11.7            |
| SD71              | 2,700.0            | 2,858.9 | 2,900.7             | 2,968.0        |          |          | <u> </u>                                         | 3,033.5                                          | 3,085.6  |                                                  |                    |                 |

|                      |                            |                |                    |                    | Sou                | th Da                                            | kota                                             |         |          |          |              |                                |
|----------------------|----------------------------|----------------|--------------------|--------------------|--------------------|--------------------------------------------------|--------------------------------------------------|---------|----------|----------|--------------|--------------------------------|
|                      |                            |                |                    | For                |                    |                                                  | (Depths i                                        |         |          |          |              |                                |
|                      |                            | Win            | nipeg Gı           |                    |                    | 1 10 ро                                          |                                                  | ood For | mation   |          |              |                                |
| Well<br><u>Label</u> | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u>      | Black<br>Island    | Member<br><u>F</u> | Member<br><u>E</u>                               | Member D                                         |         |          | Member A | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |
|                      |                            |                |                    |                    | Ly                 | man Cou                                          | inty                                             |         |          |          |              |                                |
| SD72                 | 2,290.0                    |                | 2,345.0            |                    |                    |                                                  |                                                  |         |          |          |              | 2,410.0                        |
| SD <sub>73</sub>     |                            |                |                    |                    |                    |                                                  |                                                  |         |          |          |              | 2,380.0                        |
|                      | _                          |                |                    |                    | M                  | Ieade Cou                                        | ınty                                             |         |          |          |              |                                |
| SD <sub>74</sub>     | 5,667.7                    | 6,157.9        | 6,177.1            |                    |                    |                                                  |                                                  | 6,267.8 | 6,423.1  |          |              |                                |
| SD <sub>75</sub>     | 5,910.1                    | 6,382.3        | 6,401.5            |                    |                    |                                                  |                                                  | 6,606.2 | 6,790.0  |          |              |                                |
| SD <sub>7</sub> 6    | 5,264.6                    | 5,673.5        | 5,689.1            |                    |                    |                                                  |                                                  | 5,782.5 | 5,937.3  |          |              |                                |
|                      | •                          |                |                    | •                  | Me                 | ellette Co                                       | unty                                             |         | •        | •        |              |                                |
| SD <sub>77</sub>     | 3,022.0                    |                | 3,098.7            |                    |                    |                                                  |                                                  |         |          |          | 3,144.7      | 3,172.8                        |
| SD <sub>7</sub> 8    | 3,111.3                    | 3,180.1        | 3,185.9            | 3,210.6            |                    |                                                  |                                                  |         |          |          | 3,234.9      | 3,270.0                        |
|                      | -                          |                |                    | ı                  | N                  | Ainer Cou                                        | nty                                              |         | ı        | ı        |              | -                              |
| SD <sub>79</sub>     |                            |                |                    |                    |                    |                                                  |                                                  |         |          |          |              | 2,580.0                        |
|                      |                            |                |                    | 1                  | Penr               | nington (                                        | County                                           |         | 1        | 1        |              |                                |
| SD8o                 | 4,082.7                    | 4,280.0        | 4,292.3            |                    |                    |                                                  |                                                  |         | 4,380.9  | 4,557.9  |              | 4,593.0                        |
| SD81                 | 4,975.0                    |                | 5,360.0            | 5,397.7            |                    |                                                  |                                                  |         | 5,450.0  |          |              |                                |
| SD82                 | 4,977.6                    | 5,237.6        | 5,242.8            | 5,326.7            |                    | <u> </u>                                         |                                                  |         | 5,385.9  |          |              |                                |
|                      |                            | 1              | 1                  | 1                  | Pe                 | rkins Co                                         | unty                                             | 1       | 1        | 1        | 1            | 1                              |
| SD8 <sub>3</sub>     | 6,273.0                    | 6,786.2        | 6,807.5            |                    |                    |                                                  |                                                  | 6,936.3 | 7,031.9  | 7,238.5  |              | _                              |
| SD84                 | 7,124.6                    | 7,637.0        | 7,656.0            |                    |                    |                                                  |                                                  | 7,787.8 | 7,899.7  | 8,086.0  |              | 8,229.7                        |
| SD85                 | 7,114.4                    | 7,670.8        | 7,709.9            |                    |                    |                                                  |                                                  | 7,805.3 |          |          |              |                                |
| SD86                 | 8,043.2                    | 8,561.9        | 8,597.2            |                    |                    | -                                                |                                                  | 8,736.8 | 8,927.2  | 9,118.4  |              | 9,321.9                        |
| SD87                 | 7,841.3                    | 8,380.0        | 8,411.3            |                    |                    |                                                  |                                                  | 8,535.3 |          |          |              |                                |
| SD88                 | 8,669.8                    | 9,192.0        | 9,227.8            |                    |                    | -                                                | 9,348.0                                          | 9,404.3 |          | 0        |              | 0.066                          |
| SD89                 | 7,113.1                    | 7,648.0        | 7,665.4            |                    |                    |                                                  |                                                  | 7,797.5 | 7,937.9  | 8,134.3  |              | 8,286.6                        |
| GD.                  | 1                          | ı              | ı                  | 1                  | Po                 | otter Cou                                        | ınty                                             | ı       | 1        | 1        |              |                                |
| SD90                 | 3,000.0                    | 3,409.3        | 3,457.1            | 3,537.7            |                    |                                                  |                                                  |         |          |          | 3,563.9      | 3,602.7                        |
| SD91                 | 3,215.0                    | 3,546.6        | 3,584.0            | 3,655.2            | 1171               | . (61                                            | \                                                |         |          |          | 3,683.8      | 3,715.0                        |
| CD                   | 1                          | 1              |                    | `                  | glala Lako         | ota (Shar                                        | non) Co                                          | unty    |          |          | ı            |                                |
| SD92                 | 3,294.0                    | 3,432.0        | 3,437.8            | 3,498.0            |                    | 'ninly Cou                                       |                                                  |         |          |          |              | 3,540.0                        |
| SD93                 | 1                          | l              | l                  | l                  | 1                  | Spink Cou                                        | iity<br>T                                        | l       |          |          |              | 26.00                          |
| 2D93                 | <u> </u>                   |                |                    | <u> </u>           | C+                 | anley Co                                         | l Intv                                           |         |          |          | <u> </u>     | 2,640.0                        |
| SD <sub>94</sub>     | 2575.0                     | I              | 2 8== 0            | 20216              | 50                 | arriey Coi                                       | unty<br>I                                        | I       | I        | I        |              | 2.052.6                        |
| SD94<br>SD95         | 3,715.0<br>2,201.7         |                | 3,877.0<br>2,569.7 | 3,924.0<br>2,609.6 | -                  |                                                  |                                                  |         |          |          |              | 3,952.0<br>2,695.0             |
| SD95                 | 2,201.7                    |                | 2,509./            | 2,009.0            | 1                  | 1                                                | <del>                                     </del> |         |          |          |              |                                |
| SD90                 | 3,086.5                    | 2 172 2        | 3,185.1            | 3,242.0            |                    |                                                  | <del>                                     </del> |         |          |          |              | 2,793.0<br>3,308.0             |
| SD97                 | 3,815.0                    | 3,172.2        | 3,103.1            | 3,242.0            |                    | 1                                                | <del>                                     </del> |         |          |          |              | 2,950.0                        |
| SD99                 | 2,450.0                    |                |                    |                    |                    |                                                  | <del>                                     </del> |         |          |          |              | 3,358.0                        |
| SD100                | 2,666.9                    |                |                    |                    |                    | <del>                                     </del> | <del>                                     </del> |         |          |          |              | 2,930.7                        |
| SD100                | 3,479.2                    | 3,806.7        | 3,846.5            |                    |                    | -                                                | -                                                |         |          |          |              | 3,940.6                        |
| SD101                | 2,821.0                    | 3,000./        |                    | 3,164.3            |                    | -                                                |                                                  |         |          |          |              | 3,203.5                        |
| UD 102               | 4,041.0                    |                | 3,153.2            | 2,104.3            |                    | <u> </u>                                         |                                                  |         | <u> </u> | <u> </u> |              | ე,⊿∪ე.ე                        |

| South Dakota                      |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              |                         |  |
|-----------------------------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------------------------|--|
| Formation Tops (Depths in Feet)   |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              |                         |  |
| Winnipeg Group Deadwood Formation |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              |                         |  |
| <u>Label</u>                      | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br>cambrian |  |
| Tripp County                      |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              |                         |  |
| SD103                             | 2,800.0                    |                | 2,857.0       |                 |                    |                    |                    |                    |                    |                    |              | 2,873.0                 |  |
| SD104                             | 2,564.0                    |                | 2,690.0       |                 |                    |                    |                    |                    |                    |                    |              | 2,722.0                 |  |
| SD105                             |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              | 2,970.0                 |  |
| SD106                             |                            |                |               |                 |                    |                    |                    |                    |                    |                    |              | 3,209.4                 |  |
|                                   |                            |                |               |                 | Wa                 | lworth Co          | ounty              |                    |                    |                    |              |                         |  |
| SD107                             | 3,210.0                    | 3,572.3        | 3,616.3       | 3,733.8         |                    |                    |                    |                    |                    |                    | 3,774.6      | 3,807.5                 |  |
| SD108                             | 3,251.0                    | 3,634.9        | 3,690.0       | 3,819.5         |                    |                    |                    |                    |                    |                    | 3,862.7      | 3,910.0                 |  |
|                                   |                            |                |               |                 | Zie                | ebach Co           | unty               |                    |                    |                    |              |                         |  |
| SD109                             | 5,598.2                    | 6,100.3        | 6,120.0       |                 |                    |                    |                    | 6,220.0            | 6,242.0            |                    |              |                         |  |

|               |                            |                |               |                 | M                  | anito              | ba                 |                    |                    |                    |              |                         |
|---------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------------------------|
|               |                            |                |               | For             | matior             | 1 Tops             | (Depths i          | n Feet)            |                    |                    |              |                         |
| V. V. 11      | ъ.                         | Win            | nipeg Gı      | roup            |                    |                    | Deadw              | ood For            | mation             |                    |              |                         |
| Well<br>Label | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br>cambrian |
| 486           | 6,069.0                    | 6,585.6        | 6,613.0       | 6,743.0         |                    |                    |                    |                    |                    |                    | 6,800.0      |                         |
| 1537          | 4,655.0                    | 5,170.1        | 5,195.8       | 5,295.9         |                    |                    |                    |                    |                    |                    | 5,355.0      |                         |
| 1563          | 3,942.0                    | 4,421.7        | 4,422.0       | 4,537.4         |                    |                    |                    |                    |                    |                    | 4,552.8      | 4,565.0                 |
| 1666          | 4,682.0                    | 5,161.1        | 5,170.0       | 5,308.0         |                    |                    |                    |                    |                    |                    | 5,337.5      | 5,378.0                 |
| 2523          | 5,679.3                    | 6,150.5        | 6,180.1       | 6,288.7         |                    |                    |                    |                    |                    |                    | 6,343.0      | 6,401.0                 |
| 2532          | 4,815.9                    | 5,245.5        | 5,270.1       | 5,392.0         |                    |                    |                    |                    |                    |                    | 5,408.5      | 5,420.9                 |
| 2543          | 5,590.7                    | 6,127.2        | 6,148.1       | 6,249.4         |                    |                    |                    |                    |                    |                    | 6,315.6      | 6,372.0                 |
| 2593          | 4,356.6                    | 4,912.2        | 4,927.8       | 5,042.2         |                    |                    |                    |                    |                    |                    | 5,074.8      | 5,088.0                 |
| 2610          | 5,690.6                    | 6,211.1        | 6,240.0       | 6,359.9         |                    |                    |                    |                    |                    |                    | 6,417.0      | 6,486.o                 |
| 2612          | 4,490.4                    | 4,856.0        | 4,870.8       | 4,980.6         |                    |                    |                    |                    |                    |                    | 5,043.7      | 5,101.2                 |
| 2683          | 5,134.0                    | 5,622.9        | 5,654.3       | 5,743.8         |                    |                    |                    |                    |                    |                    | 5,807.4      | 5,866.1                 |
| 2695          | 4,795.1                    | 5,279.8        | 5,299.1       | 5,413.0         |                    |                    |                    |                    |                    |                    | 5,435.4      | 5,463.0                 |
| 2696          | 5,849.7                    | 6,334.5        | 6,367.9       | 6,476.5         |                    |                    |                    |                    |                    |                    | 6,535.2      | 6,581.0                 |
| 2700          | 5,301.1                    | 5,794.6        | 5,810.0       | 5,904.0         |                    |                    |                    |                    |                    |                    | 5,999.2      | 6,024.0                 |
| 2706          | 5,081.0                    | 5,581.2        | 5,603.3       | 5,700.6         |                    |                    |                    |                    |                    |                    | 5,770.2      |                         |
| 2741          | 4,064.6                    | 4,500.8        | 4,527.9       | 4,657.4         |                    |                    |                    |                    |                    |                    |              | 4,688.0                 |
| 2766          | 5,563.1                    | 6,086.8        | 6,106.0       | 6,207.5         |                    |                    |                    |                    |                    |                    | 6,273.0      | 6,355.0                 |
| 3183          | 5,017.6                    | 5,486.2        | 5,500.7       | 5,609.0         |                    |                    |                    |                    |                    |                    | 5,624.5      | 5,650.0                 |
| 3530          | 4,514.7                    | 4,981.2        | 4,992.9       | 5,115.0         |                    |                    |                    |                    |                    |                    | 5,137.1      | 5,154.0                 |
| 4495          | 4,223.7                    | 4,668.1        | 4,696.5       | 4,809.5         |                    |                    |                    |                    |                    |                    |              | 4,859.0                 |
| 4845          | 5,068.7                    | 5,586.7        | 5,605.2       | 5,715.4         |                    |                    |                    |                    |                    |                    | 5,766.5      |                         |
| 4859          | 4,673.7                    | 5,172.8        | 5,198.0       | 5,293.3         |                    |                    |                    |                    |                    |                    | 5,348.8      | 5,416.6                 |
| 5956          | 4,990.8                    | 5,469.6        | 5,489.8       | 5,602.3         |                    |                    |                    |                    |                    |                    | 5,629.0      | 5,638.0                 |

|                  |                            |                |               |                 | Sask               | atch               | ewan        |          |                    |                       |              |                                |
|------------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|-------------|----------|--------------------|-----------------------|--------------|--------------------------------|
|                  |                            |                |               | For             | mation             | Tops               | (Depths i   | n Feet)  |                    |                       |              |                                |
|                  |                            | Win            | nipeg Gı      | roup            |                    |                    | Deadw       | ood For  | mation             |                       |              |                                |
| Well<br>Label    | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member C | Member<br><u>B</u> | Member A              | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |
| ooCo37           | 8,114.0                    | 8,508.7        | 8,532.2       | 8,579.8         |                    |                    |             |          | 8,699.0            |                       |              |                                |
| 00D072           | 7,313.6                    | 7,703.1        | 7,738.8       | 7,775.3         |                    |                    |             |          | 7,899.6            |                       |              |                                |
| ooF396           | 8,840.0                    | 9,168.0        | 9,187.6       | 9,248.1         |                    |                    |             |          | 9,382.0            | 9,600.0               |              | 9,731.0                        |
| 00J189           | 7,999.9                    | 8,245.9        | 8,253.9       | 8,307.6         |                    |                    |             |          | 8,432.0            | 8,786.4               |              | 8,984.9                        |
| 01A024           | 7,641.0                    | 7,954.5        | 7,995.6       | 8,045.0         |                    |                    |             |          | 8,181.0            |                       |              |                                |
| 01H069           | 9,296.0                    | 9,624.2        | 9,648.4       | 9,713.2         |                    |                    |             |          | 9,851.7            | 9,952.8               |              | 9,989.9                        |
| 01J006           | 8,646.1                    | 9,078.4        | 9,095.6       | 9,145.5         |                    |                    |             |          | 9,271.0            |                       |              |                                |
| 01L133           | 9,136.8                    | 9,333.5        | 9,352.5       | 9,401.4         |                    |                    |             |          | 9,554.0            | 9,809.7               |              | 9,902.0                        |
| 02A161           | 7,654.0                    | 8,063.5        | 8,092.6       | 8,140.2         |                    |                    |             |          | 8,274.0            | 8,408.5               |              | 8,512.0                        |
| 02B012           | 8,615.4                    | 8,808.4        | 8,816.0       |                 |                    |                    |             |          | 8,992.0            | 9,272.1               |              | 9,463.4                        |
| 02/016           | 8,318.0                    | 8,702.4        | 8,706.0       | 8,778.0         |                    |                    |             |          | 8,902.0            |                       |              |                                |
| 02K012           | 8,292.0                    | 8,681.3        | 8,684.0       | 8,760.0         |                    |                    |             |          | 8,894.0            |                       |              |                                |
| 03K283           | 8,635.4                    | 9,078.2        | 9,098.2       | 9,147.6         |                    |                    |             |          | 9,273.7            |                       |              |                                |
| 03L284           | 8,439.4                    | 8,658.6        | 8,696.9       | 8,747.2         |                    |                    |             |          | 8,883.4            |                       |              |                                |
| 04B015           | 8,638.9                    | 9,079.6        | 9,107.4       | 9,166.4         |                    |                    |             |          | 9,282.7            |                       |              |                                |
| 05F018           | 9,325.0                    | 9,615.2        | 9,630.4       | 9,696.9         |                    |                    |             |          | 9,829.3            |                       |              |                                |
| o6Eo87           | 8,186.7                    | 8,603.5        | 8,622.4       | 8,672.6         |                    |                    |             |          | 8,805.9            |                       |              |                                |
| o7Io73           | 7,658.0                    | 8,015.5        | 8,044.0       | 8,087.9         |                    |                    |             |          | 8,209.7            | 8,340.5               |              |                                |
| o8H567           | 7,316.9                    | 7,798.3        | 7,824.4       | 7,893.1         |                    |                    |             |          | 8,010.7            | ₹,5 <del>1</del> -1,5 |              |                                |
| 50l013           | 5,834.0                    | 1,790.5        | 7,024.4       | 7,093.1         |                    |                    |             |          | 6,066.3            |                       |              |                                |
| 51C004           | 6,705.0                    |                |               |                 |                    |                    |             |          | 6,884.7            |                       |              |                                |
| 51E001           | 9,394.0                    | 9,678.7        | 9,716.0       | 9,768.4         |                    |                    |             |          | 9,913.0            |                       |              |                                |
| 51L011           | 6,434.0                    | 9,070.7        | 9,710.0       | 6,630.0         |                    |                    |             |          | 6,636.0            |                       |              |                                |
| 51Lo83           | 6,635.8                    |                |               | 0,0 )0.0        |                    |                    |             |          | 6,881.3            |                       |              |                                |
| 52A006           | 7,406.5                    | 7,904.5        | 7,940.7       | 8,045.5         |                    |                    |             | 8,114.0  | 8,132.1            | 8,220.0               |              | 8,272.7                        |
| 52G001           | 5,344.0                    | 7,304.3        | 5,657.0       | 5,710.0         |                    |                    |             | 0,114.0  | 5,800.0            | 5,881.2               |              | 5,903.4                        |
| 53J044           | 7,717.9                    | 8,140.0        | 8,171.6       | 8,237.9         |                    |                    |             |          | 8,366.0            | 8,519.2               |              | 8,560.0                        |
| 54F047           | 5,765.0                    | 5,937.0        | 5,955.0       | 0,237.9         |                    |                    |             |          | 5,969.0            | 0,519.2               |              | 0,500.0                        |
| 54J036           | 6,084.0                    | 3,937.0        | اربورز        |                 |                    |                    |             |          | 6,378.7            |                       |              |                                |
| 55A052           | 8,458.3                    | 8,959.8        | 8,987.0       | 9,101.0         |                    |                    |             | 9,176.0  | 9,230.0            | 9,366.0               |              |                                |
|                  | 6,755.4                    | 0,979.0        | 0,907.0       | 9,101.0         |                    |                    |             | 9,170.0  | 6,977.9            |                       |              |                                |
| 55F097           | 6,175.3                    |                |               |                 |                    |                    |             |          | 6,701.2            | 7,617.1               |              | 7,730.6                        |
| 55J059           | 7,480.1                    | 7,974.6        | 8,021.7       | 8,129.4         |                    |                    |             | 8,190.0  | 8,211.7            | 8,297.0               |              | 8,353.0                        |
| 56B004           | 9,346.7                    | 9,806.6        | 9,823.6       | 9,898.0         |                    |                    |             |          | 10,103.0           | 10,296.0              |              | 10,400.0                       |
| 56Co13           | 8,125.0                    | 8,585.0        | 8,601.5       | 8,676.0         |                    |                    |             | 10,030.0 | 8,802.1            | 10,290.0              |              | 10,400.0                       |
|                  |                            | 0,505.0        | 0,001.5       | 8,070.0         |                    |                    |             |          |                    |                       |              |                                |
| 56E085<br>56G008 | 6,752.0                    | Q 220 P        | 8 2 47 5      | 8,308.7         |                    |                    |             |          | 6,947.1            | 85015                 |              | 8,671.0                        |
| _                | 7,797.7                    | 8,230.8        | 8,247.3       |                 |                    |                    |             |          | 8,432.9            | 8,594.2               |              | 0,0/1.0                        |
| 57G023           | 9,764.0                    | 10,102.8       |               | 10,189.0        |                    |                    |             |          | 10,328.6           | 0.455                 |              |                                |
| 57H002           | 8,824.0                    | 9,072.4        | 9,078.0       | 0.000           |                    |                    |             |          | 9,109.7            | 9,421.4               |              |                                |
| 57K043           | 8,511.3                    | 8,993.9        | 9,014.0       | 9,098.0         |                    |                    |             |          | 9,218.0            |                       |              |                                |
| 58B029           | 8,746.0                    | 60-0           | 8,990.0       | 9,037.0         |                    |                    |             |          | 9,156.0            |                       |              | - (0:                          |
| 58Io75           | 6,619.0                    | 6,823.8        | 6,849.7       | 6,875.6         |                    |                    |             |          | 6,968.0            | 7,490.4               |              | 7,683.0                        |
| 58L009           | 8,096.0                    | 8,348.2        | 8,363.0       | 8,428.0         |                    |                    | 1           | I        | 8,472.8            | 1                     |              |                                |

|               | Saskatchewan               |                |               |                 |                    |                    |                    |                 |                    |                    |              |                                |  |  |
|---------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|--------------------|-----------------|--------------------|--------------------|--------------|--------------------------------|--|--|
|               |                            |                |               | For             | mation             | Tops               | (Depths i          | n Feet)         |                    |                    |              |                                |  |  |
| Y47 II        | D 1                        | Win            | nipeg Gı      | roup            |                    | _                  | Deadw              | ood For         | mation             |                    |              |                                |  |  |
| Well<br>Label | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member <u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br><u>cambrian</u> |  |  |
| 59B006        | 6,154.0                    | 6,350.4        |               | 6,380.0         |                    |                    |                    |                 | 6,395.0            |                    |              |                                |  |  |
| 59G074        | 6,775.0                    |                |               |                 |                    |                    |                    |                 | 6,965.9            | 7,499.1            |              | 7,695.8                        |  |  |
| 59L036        | 7,483.3                    | 7,724.0        |               |                 |                    |                    |                    |                 | 7,734.7            | 8,420.8            |              |                                |  |  |
| 61I046        | 7,463.3                    | 7,682.6        |               |                 |                    |                    |                    |                 | 7,710.9            | 8,390.0            |              |                                |  |  |
| 62B005        | 7,660.0                    | 8,003.1        | 8,018.0       | 8,082.0         |                    |                    |                    |                 | 8,198.0            |                    |              |                                |  |  |
| 62H013        | 6,146.0                    |                |               |                 |                    |                    |                    |                 | 6,311.7            | 6,613.1            |              |                                |  |  |
| 64K049        | 7,382.1                    | 7,604.4        |               |                 |                    |                    |                    |                 | 7,621.8            | 8,359.1            |              |                                |  |  |
| 65Co83        | 6,122.0                    |                |               |                 |                    |                    |                    |                 | 6,607.4            | 7,491.0            |              | 7,557.3                        |  |  |
| 65F053        | 8,372.8                    |                | 8,766.o       | 8,813.0         |                    |                    |                    |                 | 8,948.0            | 9,193.5            |              |                                |  |  |
| 65Ko31        | 6,713.0                    | 7,159.3        | 7,182.0       | 7,259.0         |                    |                    |                    |                 | 7,367.0            | 7,400.0            |              | 7,443.0                        |  |  |
| 66Ao88        | 6,056.0                    | 6,523.1        | 6,547.2       | 6,607.0         |                    |                    |                    |                 |                    |                    | 6,720.0      | 6,760.0                        |  |  |
| 66F117        | 9,271.0                    | 9,747.7        | 9,768.0       | 9,854.0         |                    |                    |                    | 9,989.7         |                    |                    |              |                                |  |  |
| 66I002        | 8,214.6                    |                | 8,490.6       | 8,552.0         |                    |                    |                    |                 | 8,676.0            |                    |              |                                |  |  |
| 66J002        | 6,216.0                    | 6,644.9        | 6,664.4       | 6,744.0         |                    |                    |                    |                 | 6,853.0            | 6,887.8            |              | 6,923.3                        |  |  |
| 68Bo16        | 8,398.0                    |                | 8,631.1       | 8,688.o         |                    |                    |                    |                 | 8,796.0            |                    |              |                                |  |  |
| 68Fo41        | 9,200.0                    | 9,614.2        | 9,628.0       | 9,700.0         |                    |                    |                    |                 | 9,825.0            |                    |              |                                |  |  |
| 72I017        | 6,122.0                    |                |               |                 |                    |                    |                    |                 | 6,283.6            |                    |              |                                |  |  |
| 72K044        | 9,225.4                    | 9,431.9        | 9,448.9       | 9,499.1         |                    |                    |                    |                 | 9,652.0            | 9,905.5            |              | 10,055.0                       |  |  |
| 77H008        | 8,736.0                    | 9,066.7        | 9,088.4       | 9,159.0         |                    |                    |                    |                 | 9,290.3            |                    |              |                                |  |  |
| 77J053        | 9,939.0                    | 10,292.1       | 10,300.0      | 10,374.0        |                    |                    |                    |                 | 10,512.0           |                    |              |                                |  |  |
| 77J057        | 8,738.2                    | 9,221.8        | 9,253.6       | 9,368.6         |                    |                    |                    | 9,449.7         | 9,499.7            | 9,638.7            |              | 9,714.0                        |  |  |
| 77L016        | 9,401.6                    | 9,672.3        | 9,690.8       | 9,744.7         |                    |                    |                    |                 | 9,888.0            | 10,167.8           |              | 10,231.0                       |  |  |
| 78Boo8        | 8,804.1                    | 9,259.8        | 9,286.9       | 9,341.8         |                    |                    |                    |                 | 9,476.0            | 9,744.0            |              | 9,811.9                        |  |  |
| 78C001        | 7,730.3                    | 8,203.2        | 8,232.0       | 8,301.8         |                    |                    |                    |                 | 8,416.0            | 8,590.1            |              | 8,624.0                        |  |  |
| 78H158        | 8,694.0                    | 9,028.2        | 9,054.8       | 9,125.0         |                    |                    |                    |                 | 9,252.3            |                    |              |                                |  |  |
| 78L010        | 6,393.0                    | 6,642.1        | 6,673.0       | 6,709.0         |                    |                    |                    |                 | 6,834.0            | 7,087.5            |              | 7,247.0                        |  |  |
| 8oBoo6        | 7,820.0                    | 8,330.5        | 8,367.1       | 8,480.3         |                    |                    |                    | 8,551.5         | 8,560.0            | 8,669.9            |              | 8,725.7                        |  |  |
| 8oF005        | 9,902.0                    | 10,252.9       | 10,273.0      | 10,348.0        |                    |                    |                    |                 | 10,478.0           | 10,769.1           |              |                                |  |  |
| 80G001        | 7,597.8                    | 8,124.3        | 8,157.2       | 8,267.7         |                    |                    |                    | 8,343.6         | 8,356.0            | 8,471.9            |              | 8,520.0                        |  |  |
| 8oI101        | 8,944.0                    | 9,250.0        | 9,269.0       | 9,332.5         |                    |                    |                    |                 | 9,465.0            |                    |              |                                |  |  |
| 81H036        | 6,253.0                    | 6,728.5        | 6,759.0       | 6,874.0         |                    |                    |                    |                 |                    |                    | 6,927.0      | 6,975.0                        |  |  |
| 82Doo1        | 7,533.7                    | 8,035.9        | 8,051.6       | 8,137.7         |                    |                    |                    |                 | 8,142.3            |                    |              |                                |  |  |
| 821080        | 9,839.0                    | 10,275.0       | 10,292.0      | 10,361.0        |                    |                    |                    | 10,502.0        | 10,614.7           | 10,678.4           |              | 10,718.7                       |  |  |
| 85B130        | 5,278.0                    | 5,736.0        | 5,755.0       | 5,842.0         |                    |                    |                    |                 |                    |                    |              | 5,905.0                        |  |  |
| 85B212        | 10,295.0                   | 10,733.3       | 10,747.0      | 10,822.0        |                    |                    |                    | 10,969.0        | 11,088.3           |                    |              |                                |  |  |
| 87G102        | 7,995.2                    | 8,430.5        | 8,458.4       | 8,511.7         |                    |                    |                    |                 | 8,633.8            |                    |              |                                |  |  |
| 87L059        | 8,066.3                    | 8,528.1        | 8,555.7       | 8,612.2         |                    |                    |                    |                 | 8,742.0            |                    |              |                                |  |  |
| 88D019        | 8,321.2                    | 8,766.8        | 8,785.5       | 8,839.4         |                    |                    |                    |                 | 8,947.6            | 9,102.7            |              | 9,134.9                        |  |  |
| 88Ko71        | 8,352.3                    | 8,821.9        | 8,841.0       | 8,922.0         |                    |                    |                    |                 | 9,047.0            |                    |              |                                |  |  |
| 88Lo62        | 8,311.7                    | 8,792.1        | 8,800.0       | 8,878.0         |                    |                    |                    |                 | 8,998.0            |                    |              |                                |  |  |
| 93D103        | 7,228.0                    | 7,651.0        | 7,674.1       | 7,721.6         |                    |                    |                    |                 | 7,856.0            | 8,151.2            |              | 8,256.7                        |  |  |
| 96B159        | 8,318.3                    | 8,715.1        | 8,734.2       | 8,781.0         |                    |                    |                    |                 | 8,912.6            |                    |              |                                |  |  |
| 96E028        | 8,362.1                    | 8,759.3        | 8,765.0       | 8,833.0         |                    |                    |                    |                 | 8,955.0            |                    |              |                                |  |  |

|                              |                            |                |               |                      | Sask               | catch              | ewan               |                 |                    |          |              |                         |
|------------------------------|----------------------------|----------------|---------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------------|----------|--------------|-------------------------|
|                              |                            |                |               | For                  | matior             | Tops               | (Depths i          | n Feet)         |                    |          |              |                         |
|                              |                            | Win            | nipeg G1      | oup                  |                    |                    | Deadw              | ood For         | mation             |          |              | _                       |
| Well<br>Label                | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island      | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member <u>C</u> | Member<br><u>B</u> | Member A | Member<br>AB | <u>Pre-</u><br>cambrian |
| 96E124                       | 8,350.0                    | 8,726.9        | 8,744.1       | 8,808.0              |                    |                    |                    |                 | 8,924.0            |          |              |                         |
| 96E258                       | 8,586.1                    | 9,023.5        | 9,025.0       | 9,099.0              |                    |                    |                    |                 | 9,223.1            | 9,337.9  |              | 9,369.1                 |
| 96F283                       | 8,336.0                    | 8,711.1        | 8,736.8       | 8,791.0              |                    |                    |                    |                 | 8,907.0            |          |              |                         |
| 96G281                       | 8,382.2                    | 8,787.9        | 8,810.7       | 8,863.0              |                    |                    |                    |                 | 8,983.0            |          |              |                         |
| 96G312                       | 8,373.0                    | 8,749.0        | 8,773.0       | 8,826.0              |                    |                    |                    |                 | 8,944.0            |          |              |                         |
| 96I068                       | 8,410.0                    | 8,788.6        | 8,796.0       | 8,8 <sub>75</sub> .0 |                    |                    |                    |                 | 8,999.0            | 9,148.4  |              | 9,251.6                 |
| 96I131                       | 8,410.9                    | 8,816.3        | 8,837.1       | 8,883.4              |                    |                    |                    |                 | 9,005.9            | 9,162.8  |              | 9,175.2                 |
| 961227                       | 8,338.0                    | 8,707.9        | 8,722.9       | 8,779.0              |                    |                    |                    |                 | 8,894.0            |          |              |                         |
| 96J008                       | 8,416.1                    | 8,816.1        | 8,842.9       | 8,886.7              |                    |                    |                    |                 | 9,009.0            | 9,112.3  |              | 9,143.8                 |
| 96J367                       | 8,359.2                    | 8,779.5        | 8,805.5       | 8,854.5              |                    |                    |                    |                 | 8,985.0            | 9,171.3  |              | 9,236.0                 |
| 96K164                       | 8,340.0                    | 8,716.6        | 8,727.2       | 8,787.0              |                    |                    |                    |                 | 8,897.0            |          |              |                         |
| 96L066                       | 8,230.3                    | 8,641.8        | 8,661.3       | 8,705.9              |                    |                    |                    |                 | 8,830.0            | 8,958.6  |              | 8,988.0                 |
| 96L309                       | 8,421.6                    | 8,833.3        | 8,861.7       | 8,904.5              |                    |                    |                    |                 | 9,028.0            | 9,161.2  |              | 9,186.0                 |
| 97A128                       | 8,175.0                    | 8,635.2        | 8,652.0       | 8,713.6              |                    |                    |                    |                 | 8,818.3            | 9,021.7  |              | 9,047.7                 |
| 97B227                       | 8,296.6                    | 8,715.2        | 8,741.4       | 8,789.8              |                    |                    |                    |                 | 8,920.0            | 9,086.6  |              | 9,113.0                 |
| 97C251                       | 6,732.0                    | 7,165.3        | 7,186.0       | 7,264.0              |                    |                    |                    |                 | 7,369.0            | 7,406.2  |              | 7,450.0                 |
| 97C300                       | 8,417.4                    | 8,836.3        | 8,855.2       | 8,910.3              |                    |                    |                    |                 | 9,032.7            | 9,193.4  |              | 9,251.3                 |
| 97E002                       | 7,721.5                    | 8,144.2        | 8,166.6       | 8,209.9              |                    |                    |                    |                 | 8,350.0            | 8,505.3  |              | 8,636.0                 |
| 97E046                       | 8,573.0                    | 9,016.5        | 9,033.0       | 9,105.0              |                    |                    |                    |                 | 9,232.0            |          |              |                         |
| 97E081                       | 8,281.0                    | 8,662.8        | 8,663.0       | 8,737.0              |                    |                    |                    |                 | 8,859.6            |          |              |                         |
| 97E085                       | 8,438.8                    | 8,850.3        | 8,865.9       | 8,926.1              |                    |                    |                    |                 | 9,060.0            | 9,149.1  |              | 9,195.0                 |
| 97E213                       | 7,960.2                    | 8,382.9        | 8,411.0       | 8,462.8              |                    |                    |                    |                 | 8,567.2            |          |              |                         |
| 97F067                       | 8,746.5                    | 9,181.5        | 9,203.3       | 9,274.8              |                    |                    |                    |                 | 9,399.4            |          |              |                         |
| 97F120                       | 8,392.0                    | 8,751.5        | 8,776.8       | 8,829.0              |                    |                    |                    |                 | 8,941.0            |          |              |                         |
| 97F182                       | 9,284.0                    | 9,599.5        | 9,618.0       | 9,688.0              |                    |                    |                    |                 | 9,816.0            |          |              |                         |
| 97F195                       | 6,849.1                    | 7,259.5        | 7,284.3       | 7,332.1              |                    |                    |                    |                 | 7,441.9            |          |              |                         |
| 97F392                       | 7,395.0                    | 7,794.6        | 7,813.1       | 7,864.0              |                    |                    |                    |                 | 7,957.1            |          |              |                         |
| 97G199                       | 8,382.0                    | 8,769.4        | 8,778.0       | 8,855.0              |                    |                    |                    |                 | 8,983.0            |          |              |                         |
| 97G315                       | 8,318.0                    | 8,702.9        | 8,705.0       | 8,780.0              |                    |                    |                    |                 | 8,902.0            |          |              |                         |
| 97G432                       | 7,535.3                    | 7,966.3        | 7,985.0       | 8,049.4              |                    |                    |                    |                 | 8,171.7            |          |              |                         |
| 97G483                       | 8,522.4                    | 8,893.6        | 8,931.1       | 8,993.1              |                    |                    |                    |                 | 9,136.0            | 9,397.9  |              | 9,570.0                 |
| -                            | 7,729.6                    |                | 8,155.0       | 8,213.6              |                    |                    |                    |                 | 8,350.0            | 2132117  |              | 2121                    |
| 97 <sup>I</sup> 354          | 8,347.1                    | 8,766.4        | 8,791.3       | 8,839.8              |                    |                    |                    |                 | 8,971.0            | 9,224.1  |              | 9,326.0                 |
| 97I431                       | 7,468.6                    | 7,937.5        | 7,964.9       | 8,021.8              |                    |                    |                    |                 | 8,058.9            | 2/ I     |              | 7,5                     |
| 97I438                       | 8,224.2                    | 8,736.2        | 8,767.0       | 8,880.3              |                    |                    |                    | 8,960.7         | 8,983.0            | 9,122.4  |              | 9,183.0                 |
| 97J331                       | 7,682.1                    | 8,105.6        | 8,080.0       | 8,153.0              |                    |                    |                    | -,,,,,,,,,,     | 8,284.4            | 9,       |              | 2,2,1-0                 |
| 97/33 <sup>1</sup><br>97K205 | 7,930.0                    | 8,311.4        | 8,337.5       | 8,392.3              |                    |                    |                    |                 | 8,520.0            |          |              |                         |
| 97L095                       | 7,897.2                    | 8,282.3        | 8,299.7       | 8,350.1              |                    |                    |                    |                 | 8,472.8            | 8,558.8  |              | 8,643.4                 |
| 97L298                       | 7,867.4                    | 8,253.6        | 8,270.3       | 8,320.3              |                    |                    |                    |                 | 8,439.4            |          |              | 8,620.9                 |
| 97L290<br>97L301             | 7,029.0                    | 7,441.5        | 7,468.0       | 7,508.5              |                    |                    |                    |                 |                    | 7,685.6  |              | 7,722.0                 |
| 97L305                       | 8,004.0                    | 8,356.2        | 8,360.0       | 8,422.0              |                    |                    |                    |                 | 8,541.0            | 7,005.0  |              | 7,722.0                 |
| 97L305                       | 8,810.9                    | 9,141.4        | 9,158.4       | 9,213.2              |                    |                    |                    |                 | 9,354.0            | 9,564.4  |              | 9,685.0                 |
|                              |                            |                | 8,680.1       |                      |                    |                    |                    |                 |                    | 9,004.4  |              | 9,005.0                 |
| 97L361                       | 8,245.6                    | 8,661.7        | 0,000.1       | 8,722.8              |                    |                    |                    |                 | 8,849.0            |          |              |                         |

|                             |                            |                |               |                 | Sask               | catch              | ewan               |             |                    |                    |              |                         |
|-----------------------------|----------------------------|----------------|---------------|-----------------|--------------------|--------------------|--------------------|-------------|--------------------|--------------------|--------------|-------------------------|
|                             |                            |                |               | For             | matior             | ı Tops             | (Depths i          | n Feet)     |                    |                    |              |                         |
|                             |                            | Win            | nipeg Gı      | oup             |                    | _                  | Deadw              | ood For     | mation             |                    |              |                         |
| <u>Well</u><br><u>Label</u> | <u>Red</u><br><u>River</u> | Rough-<br>lock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br>C | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB | <u>Pre-</u><br>cambrian |
| 98A033                      | 7,704.0                    | 8,122.6        | 8,138.3       | 8,188.2         |                    |                    |                    |             | 8,327.0            |                    |              |                         |
| 98A073                      | 6,946.3                    | 7,413.7        | 7,435.9       | 7,502.0         |                    |                    |                    |             | 7,617.1            |                    |              |                         |
| 98Ao81                      | 7,050.0                    | 7,490.4        | 7,511.1       | 7,581.4         |                    |                    |                    |             | 7,699.3            | 7,772.3            |              | 7,846.0                 |
| 98A149                      | 7,583.4                    | 8,000.7        | 8,017.7       | 8,062.4         |                    |                    |                    |             | 8,187.8            |                    |              |                         |
| 98A228                      | 8,250.8                    | 8,698.1        | 8,708.0       | 8,781.0         |                    |                    |                    |             | 8,905.8            |                    |              |                         |
| 98B015                      | 7,015.6                    | 7,417.7        | 7,437.1       | 7,489.5         |                    |                    |                    |             | 7,597.5            |                    |              |                         |
| 98B191                      | 8,795.5                    | 9,226.9        | 9,257.1       | 9,317.7         |                    |                    |                    |             | 9,436.0            |                    |              |                         |
| 98B210                      | 7,454.7                    | 7,855.7        | 7,869.8       | 7,913.4         |                    |                    |                    |             | 8,010.2            |                    |              |                         |
| 98C138                      | 7,411.7                    | 7,821.6        | 7,837.7       | 7,890.3         |                    |                    |                    |             | 8,018.5            |                    |              |                         |
| 98C155                      | 8,343.0                    | 8,669.0        | 8,691.0       | 8,758.0         |                    |                    |                    |             | 8,894.0            |                    |              |                         |
| 98C263                      | 7,205.7                    | 7,635.6        | 7,659.5       | 7,719.8         |                    |                    |                    |             | 7,844.3            | 7,914.9            |              | 7,991.0                 |
| 98C298                      | 8,658.5                    | 9,012.9        | 9,028.3       | 9,087.8         |                    |                    |                    |             | 9,220.0            |                    |              |                         |
| 98D041                      | 6,949.2                    | 7,415.5        | 7,436.4       | 7,502.8         |                    |                    |                    |             | 7,609.3            |                    |              |                         |
| 98E160                      | 8,716.0                    | 8,996.2        | 9,023.0       | 9,091.0         |                    |                    |                    |             | 9,219.0            | 9,423.2            |              |                         |
| 98E189                      | 7,420.0                    | 7,829.0        | 7,844.9       | 7,889.0         |                    |                    |                    |             | 8,015.1            |                    |              |                         |
| 98G073                      | 7,124.5                    | 7,521.7        | 7,541.2       | 7,586.9         |                    |                    |                    |             | 7,721.0            | 7,807.8            |              | 7,841.0                 |
| 98G075                      | 7,298.6                    | 7,688.2        | 7,707.7       | 7,747.1         |                    |                    |                    |             | 7,877.0            |                    |              |                         |
| 98G108                      | 7,125.7                    | 7,529.6        | 7,545.7       | 7,593.7         |                    |                    |                    |             | 7,723.0            | 7,787.6            |              | 7,818.0                 |
| 98G193                      | 7,261.1                    | 7,658.6        | 7,677.5       | 7,724.5         |                    |                    |                    |             | 7,849.0            | 7,910.6            |              | 7,943.0                 |
| 98G201                      | 7,078.1                    | 7,463.9        | 7,482.6       | 7,526.8         |                    |                    |                    |             | 7,648.8            | 7,728.9            |              |                         |
| 98H036                      | 7,419.6                    | 7,687.6        | 7,714.7       | 7,759.3         |                    |                    |                    |             | 7,891.2            |                    |              |                         |
| 98H069                      | 7,117.6                    | 7,518.2        | 7,539.2       | 7,580.0         |                    |                    |                    |             | 7,710.0            |                    |              |                         |
| 98Ko67                      | 8,869.5                    | 9,285.2        | 9,298.0       | 9,354.0         |                    |                    |                    |             | 9,488.0            | 9,707.2            |              |                         |
| 98K107                      | 8,782.0                    | 9,084.4        | 9,103.0       | 9,164.0         |                    |                    |                    |             | 9,296.0            |                    |              |                         |
| 99A081                      | 7,915.0                    | 8,264.7        | 8,265.0       | 8,327.0         |                    |                    |                    |             | 8,446.2            |                    |              |                         |
| 99C003                      | 8,627.5                    | 9,029.3        | 9,039.0       | 9,098.0         |                    |                    |                    |             | 9,229.0            |                    |              |                         |
| 99C054                      | 7,393.0                    | 7,847.3        | 7,865.0       | 7,944.0         |                    |                    |                    |             | 8,066.0            | 8,190.1            |              | 8,211.2                 |
| 99E132                      | 7,368.0                    | 7,695.5        | 7,713.0       | 7,772.0         |                    |                    |                    |             | 7,898.0            |                    |              |                         |
| 99E245                      | 8,056.2                    | 8,491.1        | 8,514.1       | 8,564.6         |                    |                    |                    |             | 8,679.6            |                    |              |                         |
| 99F392                      | 7,803.3                    | 8,218.5        | 8,227.0       | 8,298.0         |                    |                    |                    |             | 8,415.0            |                    |              |                         |
| 99G151                      | 7,875.0                    | 8,232.3        | 8,235.0       | 8,299.0         |                    |                    |                    |             | 8,419.0            |                    |              |                         |
| 991286                      | 7,992.0                    | 8,407.2        | 8,434.9       | 8,483.2         |                    |                    |                    |             | 8,587.2            |                    |              |                         |
| 99J213                      | 9,555.3                    | 9,755.5        | 9,776.5       | 9,848.6         |                    |                    |                    |             | 9,982.1            | 10,290.2           |              | 10,417.5                |
| 99K055                      | 6,971.5                    | 7,363.1        | 7,391.5       | 7,446.2         |                    |                    |                    |             | 7,544.9            |                    |              |                         |
| 99K079                      | 8,946.1                    | 9,141.8        | 9,164.5       | 9,216.6         |                    |                    |                    |             | 9,358.0            | 9,606.4            |              | 9,795.0                 |
| 99L128                      | 8,938.1                    | 9,148.7        | 9,153.9       | 9,201.3         |                    |                    |                    |             | 9,337.0            |                    |              |                         |

# Appendix C Formation Thickness

Thicknesses were calculated for all members of the Deadwood Formation when possible. This was done by subtracting the top of the formation from the top of the underlying formation. These results were used to produce isopach maps.

|                             |                            |              |               | N             | lorth    | Dak           | ota       |          |          |          |               |
|-----------------------------|----------------------------|--------------|---------------|---------------|----------|---------------|-----------|----------|----------|----------|---------------|
|                             |                            |              |               | Un            | it Thic  | kness         | (in Feet) |          |          |          |               |
|                             |                            | Winni        | peg Gro       | oup           |          |               | Deadw     | ood For  | mation   |          |               |
| <u>Well</u><br><u>Label</u> | <u>Red</u><br><u>River</u> | Roughlock    | Icebox        | Black         | Member   | Member        | Member    | Member   | Member   | Member   | Member        |
|                             |                            | Kougillock   | <u>ICEDOX</u> | <u>Island</u> | <u>F</u> | <u>E</u>      | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | <u>AB</u>     |
|                             | _                          |              | 1             |               | Adam     | s County      | /         |          |          | _        | _             |
| 6322                        | 547.5                      | 61.8         | 112.9         |               |          | 23.3          | 78.4      | 165.3    | 141.4    | 64.2     | 205.7         |
| 7642                        | 551.3                      | 34.1         | 117.6         |               |          | 20,1          | 87.5      |          |          |          |               |
|                             | ( (                        |              | 00            |               | Barne    | es County     | /<br>     | <u> </u> |          | <u> </u> |               |
| 4640                        | 196.6                      | 84.2         | 138.8         | 13.9          | Popas    | n Count       |           |          |          |          |               |
| 632                         | 540.0                      | 75.1         | 126.6         | 48.6          | benso    | Count         | y<br>I    |          |          |          | 50.8          |
| 032                         | 540.0                      | 75.1         | 120.0         | 40.0          | Billing  | gs Count      | l<br>v    | ļ        |          | ļ        | 30.0          |
| 291                         | 559.7                      | 33.8         | 111.4         | 33.9          | Diffili  | 162.7         | 118.0     |          |          |          |               |
| 3268                        | 568.2                      | 15.3         | 108.0         | 37.5          |          | 174.0         | 87.0      | 252.0    | 208.0    | 157.0    | 365.0         |
| 6228                        | 633.7                      | 40.3         | 131.3         | 77.0          | 34.0     | 212.3         | 167.7     | 229.0    | 206.4    | 56.6     | 263.0         |
| 6303                        | 590.1                      | 24.0         | 116.8         | 53.6          |          | 163.3         | 144.0     | 198.4    | 152.6    | 32.9     | 185.4         |
| 6913                        | 602.1                      | 40.3         | 121.8         | 56.4          |          |               |           |          |          |          |               |
| 7307                        | 607.1                      | 40.1         | 115.9         | 51.3          |          |               |           |          |          |          |               |
| 7520                        | 617.2                      | 31.9         | 116.0         | 61.9          |          |               |           |          |          |          |               |
| 7934                        | 595.4                      | 30.0         | 111.1         | 49.1          |          | 149.1         | 163.7     | 236.2    | 162.0    | 75.0     | 237.0         |
| 8226                        | 602.0                      | 33.1         | 114.6         | 53.3          |          |               |           |          |          |          |               |
| 8487                        | 581.2                      | 29.9         | 111.2         | 54.5          |          |               |           |          |          |          |               |
| 8603                        | 581.1                      | 35.1         | 112.4         | 45.1          |          |               |           |          |          |          |               |
| 9070                        | 562.6                      | 34.3         | 106.8         | 42.0          |          |               |           |          |          |          |               |
| 11335                       | 560.2                      | 17.8         | 103.7         | 36.3          |          | 131.0         |           |          |          |          |               |
| 14763                       | 558.3                      | 37.9         | 101,1         | 41.0          | Potting  | Coun          | <u> </u>  |          |          |          |               |
| 38                          | 528.9                      | 78.7         | 119.7         | 80.5          | DOLLING  | eau Coun<br>I | Ly<br>I   |          | 146.8    | 22.2     | 170.2         |
| 64                          | 506.7                      | 74.6         | 92.9          | 54.5          |          |               |           |          | 140.0    | 32.3     | 179.2<br>70.0 |
| 110                         | 511.9                      | 50.6         | 121.2         | 44.0          |          |               |           |          |          |          | 41.6          |
| 2219                        | 546.7                      | 44.5         | 122.1         | 52.9          |          |               |           |          |          |          | 120.0         |
| 4655                        | 460.1                      | 58.9         | 121.9         | 13.1          |          |               |           |          |          |          |               |
| 4790                        | 536.1                      | 57.9         | 127.0         | 77.5          |          |               |           |          |          |          |               |
| 4846                        | 519.2                      | 41.2         | 130.8         | 73.7          |          |               |           |          |          |          | 129.5         |
| 5184                        | 526.3                      | 44.7         | 111.4         | 65.7          |          |               |           |          |          |          | 55.0          |
| 9522                        | 539.7                      | 43.1         | 125.9         | 44.2          |          |               |           |          |          |          | 94.0          |
|                             |                            |              |               |               | Bowm     | an Count      | y         | T        |          | ı        | T             |
| 485                         | 520.2                      | 34.2         | 87.4          |               |          | 26.4          | 92.0      |          |          |          |               |
| 1575                        | 464.5                      | 78.5         | 97.5          |               |          | 18.1          | 91.9      |          |          |          |               |
| 9656                        | 521.2                      | 41.3         | 104.0         |               |          |               |           |          |          |          |               |
| 9805                        | 515.5                      | 27.0         | 93.3          |               |          | 14.0          | 111.9     |          |          |          |               |
| 14851                       | 512.4                      | 25.1         | 89.8          |               | D,1-     | Court         | 80.8      |          |          |          |               |
| 8893                        | 531.9                      | 20.5         | 91.1          | 257.1         | burk     | e County      | 1         |          | 70.9     | 36.0     | 106.9         |
| 15137                       | 516.2                      | 39.5<br>29.9 | 126.5         | 150.2         |          |               |           | 188.4    | 195.4    | 50.5     | 246.0         |
| ・ノ・フ/                       | ٣.٠٠                       | - ラ・ラ        |               |               |          |               | l         | 100.4    | - ^フノ・サ  | ر.در ا   |               |

| North Dakota             |                          |              |               |        |          |          |          |          |                |               |                   |  |  |  |  |
|--------------------------|--------------------------|--------------|---------------|--------|----------|----------|----------|----------|----------------|---------------|-------------------|--|--|--|--|
|                          | Unit Thickness (in Feet) |              |               |        |          |          |          |          |                |               |                   |  |  |  |  |
|                          |                          | Winnij       | peg Gro       | oup    |          |          | Deadw    | ood For  | mation         |               |                   |  |  |  |  |
| <u>Well</u><br>Label     | <u>Red</u><br>River      |              |               | Black  | Member   | Member   | Member   | Member   | Member         | Member        | Member            |  |  |  |  |
| Laber                    | KIVCI                    | Roughlock    | <u>Icebox</u> | Island | <u>F</u> | <u>E</u> | <u>D</u> | <u>C</u> | <u>B</u>       | <u>A</u>      | AB                |  |  |  |  |
|                          |                          |              | •             |        | Burleig  | gh Count | y        |          |                |               |                   |  |  |  |  |
| 19                       | 602.0                    | 83.1         | 128.7         | 21.3   |          |          | 56.6     | 88.4     | 63.0           | 55-3          | 118.3             |  |  |  |  |
| 145                      | 565.4                    | 90.4         | 120.6         | 28.3   |          |          | 33.4     | 100.2    | 88.o           | 120.0         | 208.0             |  |  |  |  |
| 151                      | 631.3                    | 65.6         | 122.2         | 5.0    |          | 61.9     | 49.1     | 118.9    | 116.1          | 31.0          | 147.1             |  |  |  |  |
| 155                      | 522.2                    | 128.9        | 128.3         | 23.2   |          |          |          | 98.1     |                |               | 162.4             |  |  |  |  |
| 174                      | 543.7                    | 79.2         | 176.2         | 66.8   |          |          |          | 84.5     |                |               |                   |  |  |  |  |
| 701                      | 531.0                    | 86.8         | 182.2         | 17.7   |          |          |          | 37.1     |                |               |                   |  |  |  |  |
| 756                      | 543.6                    | 55.4         | 191.7         | 25.8   |          |          |          |          |                |               |                   |  |  |  |  |
| 763                      | 561.8                    | 88.o         | 167.2         | 9.6    |          |          |          |          |                |               |                   |  |  |  |  |
| 765                      | 558.8                    | 74.8         | 165.2         | 34.4   |          |          |          |          |                |               |                   |  |  |  |  |
| 772                      | 602.8                    | 45.2         | 169.1         | 26.7   |          |          |          |          |                |               |                   |  |  |  |  |
| 1409                     | 573.5                    | 48.2         | 173.8         | 55.2   |          |          |          |          |                |               |                   |  |  |  |  |
| 6264                     | 570.5                    | 61.2         | 165.5         | 45.5   |          |          |          | 90.9     |                |               |                   |  |  |  |  |
| 7010                     | 610.5                    | 56.8         | 128.4         | 15.9   |          |          | 35.9     | 132.1    | 90.0           | 19.9          | 109.9             |  |  |  |  |
| 8674                     | 626.5                    | 47.4         | 123.7         | 23.3   |          |          | 55.7     | 69.2     | 77.1           | 52.2          | 129.3             |  |  |  |  |
| 12057                    | 622.0                    | 79.7         | 123.4         | 71.5   | G 11     |          |          |          |                |               |                   |  |  |  |  |
|                          |                          | 6.0          | 0             |        | Cavalı   | er Count | y<br>I   |          |                | I             |                   |  |  |  |  |
| 27                       | 523.7                    | 63.8         | 125.8         | 13.3   | D: 1     |          |          |          |                |               |                   |  |  |  |  |
| 60.                      |                          |              | 0.0           | - 6    | Dicke    | y County | <i>[</i> |          |                | 1             |                   |  |  |  |  |
| 682                      | 367.5                    | 94.7         | 89.8          | 71.6   |          |          |          |          |                |               | 9 <b>-</b> 0      |  |  |  |  |
| 1394                     | 372.5                    | 85.2         | 85.0          | 56.7   | Divid    | e County | <u> </u> |          |                |               | 8 <sub>7</sub> .0 |  |  |  |  |
| 2010                     | 400.1                    | 24.0         | 76.2          | 136.5  | Divid    | County   | ,<br>    |          |                |               |                   |  |  |  |  |
| 6798                     |                          | 34.9         | 116.7         | 128.5  |          |          |          | 196.0    | 147.0          | 00.0          | 246.0             |  |  |  |  |
| 7087                     | 517.3<br>481.6           | 32.5         |               | 120.5  |          |          |          | 160.0    | 147.0<br>211.0 | 99.0<br>112.3 |                   |  |  |  |  |
|                          | 514.9                    | 33.7<br>28.2 | 115.4         | 161.0  |          |          | 88.4     | 229.6    | 100.0          | 136.0         | 323.3<br>236.0    |  |  |  |  |
| 794 <del>2</del><br>9398 | 451.0                    | 22.5         | 65.9          | 139.3  |          |          | 55.4     | 229.0    | 100,0          | 150.0         | ∡ين.ن             |  |  |  |  |
| 9390                     | 473.6                    | 34.7         | 67.1          | 144.8  |          |          |          |          |                |               |                   |  |  |  |  |
| 9622                     | 474.2                    |              | 66.5          | 149.1  |          |          |          |          |                |               |                   |  |  |  |  |
| 9677                     | 465.1                    | 24.6         | 66.5          | 144.8  |          |          |          |          |                |               |                   |  |  |  |  |
| 7 11                     | 1 )                      | <u> </u>     | <u>. 9</u>    | 11.**  | Dunr     | ı County |          | 1        | 1              | 1             |                   |  |  |  |  |
| 6086                     | 618.9                    | 60.8         | 106.4         | 148.9  |          |          |          |          |                |               |                   |  |  |  |  |
| 6148                     | 619.6                    | 46.5         | 116.0         | 47.8   | 40.0     |          |          |          |                |               |                   |  |  |  |  |
| 6530                     | 619.7                    | 48.7         | 120.4         | 51.1   | 32.0     | 255.0    |          |          |                |               |                   |  |  |  |  |
| 7402                     | 647.5                    | 52.2         | 127.0         | 119.8  | 65.4     | 218.8    |          |          |                |               |                   |  |  |  |  |
| 7412                     | 662.2                    | 32.6         | 120.8         | 123.1  |          |          |          |          |                |               |                   |  |  |  |  |
| 7584                     | 651.0                    | 43.9         | 134.0         | 116.4  | 39.0     |          |          |          |                |               |                   |  |  |  |  |
| 8077                     | 665.3                    | 33.1         | 138.7         | 168.8  |          |          |          |          |                |               |                   |  |  |  |  |
| 8095                     | 678.o                    | 33.0         | 142.0         | 218.0  |          |          |          |          |                |               |                   |  |  |  |  |
| 8313                     | 644.7                    | 49.7         | 123.9         | 157.2  |          |          |          |          |                |               |                   |  |  |  |  |
| 8491                     | 623.3                    | 40.7         | 121.9         | 48.2   | 47.1     |          |          |          |                |               |                   |  |  |  |  |
| 8613                     | 642.2                    | 48.2         | 125.5         | 123.0  |          |          |          |          |                |               |                   |  |  |  |  |
| 8709                     | 659.9                    | 38.4         | 135.4         | 137.9  |          |          |          |          |                |               |                   |  |  |  |  |

#### North Dakota Unit Thickness (in Feet) Winnipeg Group **Deadwood Formation** Well Red Black Member Member Member | Member | Member | Member | Member | Label River Roughlock Icebox **Island** F D <u>C</u> AB 9027 638.9 50.1 133.8 107.8 58.8 9044 645.1 49.2 130.5 117.5 9080 48.5 647.1 130.5 125.3 75.3 9397 649.2 51.4 131.0 105.7 625.1 48.9 112.4 9527 132.5 37.3 50.6 652.2 10072 134.9 123.7 10606 126.9 71.8 657.7 38.5 10627 630.2 44.8 120.8 50.3 52.0 11363 650.7 121.4 120.9 57.3 45.7 38.6 617.8 119.4 54.6 12400 14636 637.8 43.2 125.3 59.3 54.9 **Eddy County** 26.9 437 555.1 75.7 137.4 768 552.0 66.5 132.7 33.1 1274 510.3 107.8 140.4 8.5 45.1 7271 553.2 71.4 131.9 56.5 42.7 **Emmons County** 559.8 16 61.3 152.3 98.1 554.0 75.0 112.1 18.1 101.2 581.9 16.1 75.2 130.7 131.9 43 29.6 167.1 7101 549.9 15.1 112.0 581.6 78.9 18.2 105.1 169.5 7146 125.4 586.3 7936 126.2 14.2 51.1 79.3 128.3 10173 543.0 41.5 200.4 12.4 Foster County 287 512.1 99.9 139.4 11.8 52.0 295 539.4 81.5 136.3 12.7 59.0 18.7 519.6 79.9 135.9 334 518.8 128.5 1105 97.2 7.7 1112 593.5 41.6 133.9 11.2 449.8 107.3 151.1 17.1 1227 Golden Valley County 115.9 144.0 410 539.5 59.1 42.9 36.8 509.5 107.0 106.0 110.0 470 53.5 14.6 6272 469.4 49.6 93.9 50.6 81.3 215.1 75.2 55.5 19.7 50.8 6513 514.5 101.5 39.4 6563 522.6 38.3 99.0 33.9 7969 483.5 51.8 130.6 35.9 8590 552.1 47.0 104.6 36.0 9148 494.8 65.5 103.6 30.9 9540 80.8 103.5 33.6

|                  | North Dakota    |              |                |              |          |            |           |          |          |          |        |  |  |  |
|------------------|-----------------|--------------|----------------|--------------|----------|------------|-----------|----------|----------|----------|--------|--|--|--|
|                  |                 |              |                | Un           | it Thic  | kness (    | (in Feet) |          |          |          |        |  |  |  |
|                  |                 | Winni        | peg Gro        |              |          |            | ,         | ood For  | mation   |          |        |  |  |  |
| Well<br>Labol    | Red             |              |                | Black        | Member   | Member     | Member    | Member   | Member   | Member   | Member |  |  |  |
| <u>Label</u>     | River           | Roughlock    | <u>Icebox</u>  | Island       | <u>F</u> | <u>E</u>   | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | AB     |  |  |  |
|                  |                 | l            | <u>l</u>       | l .          | Grand Fo | orks Cou   | nty       |          | I        | l        |        |  |  |  |
| 58o              | 156.0           | 29.8         | 57.7           | 32.5         |          |            |           |          |          |          | 131.4  |  |  |  |
| 3191             | 285.9           | 101.4        | 112.3          | 27.7         |          |            |           |          |          |          |        |  |  |  |
| 3204             | 69.6            | 38.o         | 55.3           | 54.0         |          |            |           |          |          |          |        |  |  |  |
| 15343            | 120,1           | 68.8         | 46.4           | 128.9        |          |            |           |          |          |          | 70.4   |  |  |  |
|                  |                 |              |                |              | Gran     | t County   |           |          |          |          |        |  |  |  |
| 557 <sup>2</sup> | 638.o           | 57.7         | 65.6           | 39.7         |          | 12.0       | 66.o      | 190.0    |          |          |        |  |  |  |
| 6420             | 594.5           | 70.3         | 129.0          |              |          | 30.0       | 56.0      |          |          |          |        |  |  |  |
| 6586             | 581.5           | 53.3         | 138.0          | 32.2         |          | 59.3       | 66.7      | 216.3    | 154.3    | 76.5     | 230.8  |  |  |  |
| 7020             | 625.2           | 47.2         | 128.4          | 42.2         |          | 119.6      | 72.4      | 201.8    | 178.3    | 25.7     | 204.0  |  |  |  |
| 8549             | 593.0           | 42.7         | 141.9          | 25.3         |          | 34.3       | 62.5      | 209.1    | 190.2    | 24.8     | 214.9  |  |  |  |
| 868o             | 586.1           | 39.9         | 143.2          | 8.3          |          | 8.8        | 74.9      | 175.5    | 212.3    | 63.5     | 275.8  |  |  |  |
|                  |                 |              | ı              |              | Grigg    | s County   | r         |          |          |          |        |  |  |  |
| 4719             | 543.5           | 68.2         | 62.3           | 88.2         |          |            |           |          |          |          | 51.0   |  |  |  |
| 9659             | 539.2           | 25.8         | 101.8          | 22.2         |          |            |           |          |          |          |        |  |  |  |
|                  |                 | 1            | 1              |              | Hetting  | ger Coun   | ty        |          | ı        | ı        |        |  |  |  |
| 5783             | 608.5           | 51.0         | 101.0          | 67.9         |          | 84.7       | 70.0      | 224.7    | 131.8    | 55.7     | 187.5  |  |  |  |
| 7075             | 557.6           | 58.6         | 122.8          | 12.4         |          | 52.6       | 69.9      | 215.4    | 188.1    | 31.2     | 219.3  |  |  |  |
| 7453             | 558.3           | 35.3         | 108.4          | 12.5         |          | 46.3       | 79.3      | 228.0    | 112.0    | 23.3     | 135.3  |  |  |  |
| 8312             | 588.5           | 45.0         | 113.6          | 14.8         |          |            |           |          |          |          |        |  |  |  |
| 10522            | 590.4           | 34.3         | 128.3          | 18.7         |          | 95.9       | 101.3     | 161.0    |          |          |        |  |  |  |
|                  |                 | 1            |                |              | Kidde    | er County  | <i>[</i>  |          |          | 1        |        |  |  |  |
| 24               | 569.1           | 74.9         | 134.5          | 10.7         |          |            |           | 100,1    |          |          |        |  |  |  |
| 230              | 563.3           | 82.7         | 130.4          | 65.3         |          |            |           |          |          |          |        |  |  |  |
| 748              | 519.1           | 77.0         | 182.8          | 21.0         |          |            |           |          |          |          |        |  |  |  |
|                  |                 |              |                | 1            | Logai    | n County   | ·<br>     |          |          | <u> </u> |        |  |  |  |
| 590              | 531.6           | 48.2         | 192.7          | 11.9         |          |            |           |          |          |          |        |  |  |  |
| 1347             | 552.6           | 49.8         | 164.0          | 16.3         |          |            |           |          |          |          | 199.7  |  |  |  |
| 5523             | 567.4           | 58.4         | 135.9          | 9.6          | Mallan   | Course     | <u> </u>  | 77.1     |          |          | 188.1  |  |  |  |
| 20               | 506.0           | 22.5         | 110 -          | 7.0          | wicher   | ry Count   | Ly<br>    |          | Γ        | Π        | 112.2  |  |  |  |
| 39<br>61         | 596.0<br>536.3  | 32.5<br>73.6 | 118.5          | 74.8         |          |            |           |          |          |          | 112.2  |  |  |  |
| 8307             | 556.2           | 64.9         | 145.4<br>116.4 | 74.5<br>60.4 |          |            |           |          |          |          |        |  |  |  |
| 8803             | 625.7           |              | 120.6          |              |          |            |           | 101.6    |          |          | 443    |  |  |  |
| 11922            | 557.4           | 39·4<br>53·3 | 120.5          | 73.7         |          |            |           | 101.0    |          |          | 44.3   |  |  |  |
| 11922            | JJ/·4           | 23.3         | 120.5          | <u> </u>     | McInto   | sh Coun    | tv        |          | L        | <u> </u> |        |  |  |  |
| 89               | 554.7           | 49.7         | 124.8          | 12.2         | .viciiit | ,sii Couii |           |          |          |          |        |  |  |  |
| 620              | 507.6           | 57.7         | 146.0          | 10.5         |          |            |           |          |          |          |        |  |  |  |
| 621              | 512.1           | 43.0         | 147.0          | 8.9          |          |            |           |          |          |          |        |  |  |  |
| 622              | 558.3           | 64.8         | 125.9          | 12.2         |          |            |           |          |          |          |        |  |  |  |
|                  | McKenzie County |              |                |              |          |            |           |          |          |          |        |  |  |  |
| 2373             | 653.1           | 48.4         | 155.4          | 277.9        | 153.2    | 180.0      | 186.o     | 215.0    | 69.0     | 73.0     | 142.0  |  |  |  |
| 6112             | 664.8           | 39.8         | 134.4          | 259.5        |          |            |           |          |          | ,,,      | •      |  |  |  |
|                  |                 |              | 1 211          | 111          |          |            |           |          |          |          |        |  |  |  |

| North Dakota   |                            |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |
|----------------|----------------------------|-----------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|
|                |                            |           |               | Un              | it Thic            | kness (            | (in Feet)          |                    |                    |                    |              |  |  |
| 347.11         | ъ 1                        | Winnij    | eg Gro        | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |
| Well<br>Label  | <u>Red</u><br><u>River</u> | Roughlock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |
| 6387           | 491.6                      | 74.7      | 133.3         | 50.7            |                    | 126.6              | 168.9              | 188.0              | 198.2              | 173.3              | 371.5        |  |  |
| 6414           | 498.4                      | 81.2      | 109.3         | 75.0            |                    |                    |                    |                    |                    |                    |              |  |  |
| 7571           | 641.5                      | 55.0      | 148.4         | 236.3           |                    |                    |                    |                    |                    |                    |              |  |  |
| 7572           | 637.9                      | 52.4      | 145.9         | 239.5           |                    |                    |                    |                    |                    |                    |              |  |  |
| 6387           | 491.6                      | 74.7      | 133.3         | 50.7            |                    | 126.6              | 168.9              | 188.0              | 198.2              | 173.3              | 371.5        |  |  |
| 6414           | 498.4                      | 81.2      | 109.3         | 75.0            |                    |                    |                    |                    |                    |                    |              |  |  |
| 7571           | 641.5                      | 55.0      | 148.4         | 236.3           |                    |                    |                    |                    |                    |                    |              |  |  |
| 757²           | 637.9                      | 52.4      | 145.9         | 239.5           |                    |                    |                    |                    |                    |                    |              |  |  |
| 7607           | 655.7                      | 32.6      | 147.3         | 265.9           | 132.6              |                    |                    |                    |                    |                    |              |  |  |
| 7631           | 562.0                      | 44.0      | 111.2         | 116.9           |                    |                    |                    |                    |                    |                    |              |  |  |
| 7873           | 597.5                      | 39.0      | 142.7         | 127.9           |                    |                    |                    |                    |                    |                    |              |  |  |
| 7988           | 629.6                      | 28.7      | 144.2         | 254.2           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8023           | 680.9                      | 32.1      | 153.8         | 260.6           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8083           | 653.8                      | 36.4      | 146.2         | 239.6           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8090           | 646.2                      | 25.9      | 152.4         | 265.1           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8131           | 558.2                      | 89.3      | 131.0         | 150.3           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8165           | 525.6                      | 65.0      | 122.9         | 97.4            |                    |                    |                    |                    |                    |                    |              |  |  |
| 8187           | 557.8                      | 32.1      | 130.2         | 86.3            |                    | 178.2              | 135.2              | 171.1              |                    |                    |              |  |  |
| 8193           | 554.4                      | 48.o      | 110.1         | 72.7            |                    |                    |                    |                    |                    |                    |              |  |  |
| 8314           | 510.5                      | 37.4      | 150.8         | 72.7            |                    | 140.0              | 159.5              | 189.6              | 191.3              | 143.6              | 334.9        |  |  |
| 8468           | 575.4                      | 49.7      | 113.9         | 74.1            |                    |                    |                    |                    |                    |                    |              |  |  |
| 8546           | 523.3                      | 47.1      | 113.7         | 91.6            |                    |                    |                    |                    |                    |                    |              |  |  |
| 8663           | 620.0                      | 46.0      | 139.5         | 123.3           |                    |                    |                    |                    |                    |                    |              |  |  |
| 8737           | 553.2                      | 53.6      | 113.6         | 81.5            |                    |                    |                    |                    |                    |                    |              |  |  |
| 9004           | 551.8                      | 79.7      | 126.5         | 103.7           |                    |                    |                    |                    |                    |                    |              |  |  |
| 9005           | 601.8                      | 32.5      | 117.1         | 70.0            |                    |                    |                    |                    |                    |                    |              |  |  |
| 9217           | 649.2                      | 49.0      | 137.0         | 196.8           |                    |                    |                    |                    |                    |                    |              |  |  |
| 9901           | 54 <del>2</del> .7         | 51.5      | 112.3         | 80.9            |                    |                    |                    |                    |                    |                    |              |  |  |
| 11110          | 659                        | 22.3      | 148.4         | 265.4           |                    |                    |                    |                    |                    |                    |              |  |  |
| 11619          | 588                        | 33.1      | 116.2         | 70.92           |                    | 174.47             | 148.3              | 171.86             |                    |                    |              |  |  |
| 12345          | 643.2                      | 49.1      | 137.9         | 228.5           |                    |                    |                    |                    |                    |                    |              |  |  |
| 12589          | 678.o                      | 31.6      | 146.7         | 290.6           |                    |                    |                    |                    |                    |                    |              |  |  |
| 12699          | 592.6                      | 39.4      | 118.4         | 69.0            |                    |                    |                    |                    |                    |                    |              |  |  |
| 13405          | 659.5                      | 39.9      | 138.9         | 277.2           | 143.6              |                    |                    |                    |                    |                    |              |  |  |
| <del>- 1</del> | 646.o                      | 53.0      | 145.2         | 273.0           | 145.4              |                    |                    |                    |                    |                    |              |  |  |
| 14399          | 651.2                      | 39.7      | 148.0         | 238.5           | 168.3              |                    |                    |                    |                    |                    |              |  |  |
| 14724          | 611.7                      | 49.9      | 149.5         | 250.3           | 146.7              |                    |                    |                    |                    |                    |              |  |  |
| 15915          | 658.8                      | 40.8      | 145.1         | 203.4           | 121.4              |                    |                    |                    |                    |                    |              |  |  |
|                | 653.4                      | 30.3      | 147.2         | 256.6           | 150.6              |                    |                    |                    |                    |                    |              |  |  |
| 16523          | 655.5                      | 25.3      | 144.6         | 260.9           | 138.8              |                    |                    |                    |                    |                    |              |  |  |
| •              |                            |           |               |                 | McLea              | n Count            | y                  |                    |                    |                    |              |  |  |
| 22             | 616.8                      | 46.4      | 148.5         | 47.3            |                    | 70.9               |                    |                    |                    |                    |              |  |  |
| 49             | 578.7                      | 49.9      | 135.9         | 46.6            |                    | 43.5               |                    |                    |                    |                    |              |  |  |

|                             |              |              |         | N               | lorth              | Dak                | ota         |             |             |             |              |
|-----------------------------|--------------|--------------|---------|-----------------|--------------------|--------------------|-------------|-------------|-------------|-------------|--------------|
|                             |              |              |         | Un              | it Thic            | kness (            | (in Feet)   |             |             |             |              |
|                             |              | Winni        | peg Gro | oup             |                    |                    | Deadw       | ood For     | mation      |             |              |
| <u>Well</u><br><u>Label</u> | Red<br>River | Roughlock    | Icebox  | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member<br>C | Member<br>B | Member<br>A | Member<br>AB |
| 7783                        | 646.7        | 48.4         | 138.9   | 169.8           |                    | 242.6              | 80.6        | 201.6       | 72.9        |             |              |
| 8060                        | 646.3        | 54.5         | 134.4   | 148.6           |                    |                    |             |             |             |             |              |
| 8711                        | 615.5        | 72.7         | 117.7   | 42.6            |                    | 45.9               | 26.7        | 103.0       | 60.8        | 33.2        | 94.0         |
| 8720                        | 624.5        | 83.2         | 111.3   | 30.7            |                    | 14.9               | 57.1        | 133.3       | 71.7        | 42.9        | 114.6        |
| 8993                        | 605.6        | 67.8         | 113.1   | 33.3            |                    | 22.3               | 35.3        | 84.2        | 46.0        | 43.8        | 89.8         |
|                             |              |              |         |                 | Merce              | er County          | Y           |             |             |             |              |
| 21                          | 688.1        | 47.2         | 115.3   | 56.3            | 63.0               | 213.0              |             |             |             |             |              |
| 8712                        | 644.7        | 55.0         | 128.8   | 121.9           |                    |                    |             |             |             |             |              |
|                             | _            |              |         |                 | Morto              | n Count            | У           |             |             |             |              |
| 26                          | 622.9        | 51.9         | 134.1   | 24.9            |                    | 25.7               | 86.o        | 134.0       | 150.0       | 34.0        | 184.0        |
| 1620                        | 641.5        | 37.5         | 142.1   | 28.5            |                    |                    |             |             |             |             |              |
| 3859                        | 632.3        | 59.5         | 119.4   | 17.2            |                    | 33.1               | 45.9        | 174.9       | 159.1       | 31.7        | 190.8        |
| 7340                        | 635.7        | 44.4         | 134.3   | 41.6            | 42.8               | 151.9              | 62.0        | 191.8       | 130.4       | 46.0        | 176.5        |
| 7691                        | 650.6        | 49.4         | 115.8   | 33.7            |                    | 102.3              | 62.8        | 183.6       | 158.7       | 15.2        | 173.9        |
| 7797                        | 631.1        | 56.5         | 118.1   | 27.5            |                    | 91.4               | 59.6        | 169.3       | 90.7        |             |              |
| 7937                        | 596.4        | 58.4         | 102.3   | 22.2            |                    | 66.6               | 65.3        | 204.5       | 227.9       | 37.4        | 265.3        |
| 8158                        | 619.6        | 42.0         | 140.1   | 12.9            |                    | 68.o               | 60.0        |             |             |             |              |
| 8553                        | 604.5        | 42.4         | 132.2   | 33.5            |                    | 54.3               | 52.6        | 123.9       | 40.9        | 27.6        | 68.5         |
|                             |              | ı            | 1       |                 | Mount              | rail Coun          | ty          | 1           | T           | I           | 1            |
| 6780                        | 620.0        | 47.8         | 134.8   | 146.9           |                    | 211.9              | 54.1        | 178.1       | 64.1        | 46.2        | 110.3        |
| 6872                        | 611.8        | 62.2         | 124.3   | 155.1           |                    | 138.7              | 100.3       | 159.7       | 147.3       | 47.0        | 194.3        |
| 9326                        | 595.1        | 53.9         | 134.8   | 205.2           |                    |                    |             |             |             |             |              |
| 12597                       | 579.5        | 48.1         | 139.7   | 236.3           | 22.2               |                    |             |             |             |             |              |
| 14815                       | 635.8        | 62.5         | 125.1   | 148.7           |                    |                    |             |             |             |             |              |
| 17058                       | 632.5        | 58.4         | 131.5   | 169.7           |                    |                    |             |             |             |             |              |
|                             |              |              | l       |                 | Nelso              | n County           | Y<br>1      | ı           | Ι           | 1           | I            |
| 4664                        | 338.0        | 68.4         | 131.9   | 21.4            |                    |                    |             |             |             |             |              |
| 4785                        | 546.5        |              | 119.4   | 38.3            |                    |                    |             |             |             |             |              |
| 9143                        | 492.0        | 18.0         | 109.0   | 32.7            | Ol:                | . C                |             |             |             |             |              |
|                             | 620 0        | 62.4         | 102.2   | 26.5            | Onve               | r County           |             | 100.1       | 60.0        | 22.9        | 102 =        |
| 15<br>8144                  | 638.8        | 62.4         | 103.3   | 36.5            |                    | 37.0               | 68.o        | 132.1       | 69.9        | 32.8        | 102.7        |
| 8144                        | 603.7        | 43.4         | 177.5   |                 | Pioro              | 43.6<br>e County   |             |             | <u> </u>    | l           | <u> </u>     |
| 125                         | 503.0        | 71.4         | 124.3   | 39.9            | 1 1610             | County             |             |             |             |             |              |
| 435<br>706                  | 530.1        | 64.9         | 124.3   | 46.1            |                    |                    |             |             |             |             | 25.2         |
| 3920                        | 559.8        |              | 127.8   | 49.4            |                    |                    |             |             |             |             | 35.2         |
| 5576                        | 568.9        |              | 127.0   | 48.4            |                    |                    |             |             |             | 1           |              |
| 12125                       | 506.1        | 59.7<br>58.1 | 87.5    | 35.6            |                    |                    |             |             |             |             | 26.4         |
| 12127                       | 500.1        | 1 ,0.1       | 9/.5    | ى.ر <u>ر</u>    | Ramer              | l<br>ey Count      | I           | <u> </u>    | <u> </u>    | <u> </u>    | 20.4         |
| 20,0                        | 523.4        | 81.3         | 118.3   | 9.0             | Rainst             | l Count            | у<br>       |             |             |             |              |
| 196                         | 522.5        | 84.6         | 129.2   | 17.6            | <u> </u>           |                    |             |             |             | 22.0        |              |
| 190                         | D44.D        | 1 04.0       | 129.2   | 17.0            | I                  |                    |             |             | I           | 22.0        | ı            |

|                             | North Dakota |           |         |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |
|-----------------------------|--------------|-----------|---------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|--|
|                             |              |           |         | Un              | it Thic            | kness (            | in Feet)           |                    |                    |                    |              |  |  |  |
|                             |              | Winnij    | peg Gro | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |  |
| <u>Well</u><br><u>Label</u> | Red<br>River | Roughlock | Icebox  | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |
| 383                         | 516.3        | 83.1      | 111.1   | 18.0            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 407                         | 540.7        | 68.9      | 133.5   | 20.0            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 411                         | 517.8        | 80.7      | 114.9   | 20.8            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 422                         | 534.9        | 66.o      | 128.4   | 9.0             |                    |                    |                    |                    |                    |                    |              |  |  |  |
|                             |              |           |         |                 | Renvil             | le Count           | у                  |                    |                    |                    |              |  |  |  |
| 6296                        | 505.0        | 35.0      | 126.8   | 36.5            |                    |                    |                    |                    | 101.6              | 96.8               | 198.4        |  |  |  |
| 6349                        | 483.0        | 41.1      | 77-7    | 14.1            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 6401                        | 525.2        | 42.7      | 113.4   | 15.7            |                    |                    |                    |                    | 143.0              | 96.8               | 239.8        |  |  |  |
| 6436                        | 510.0        | 37.7      | 128.3   | 23.5            |                    |                    |                    |                    | 104.9              |                    |              |  |  |  |
| 6466                        | 492.0        | 34.9      | 111.1   | 55.5            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 6473                        | 524.1        | 46.6      | 104.8   | 33.6            |                    |                    |                    |                    | 155.3              | 69.0               | 224.3        |  |  |  |
| 6504                        | 534.0        | 47.4      | 116.6   | 98.4            |                    |                    |                    | 53.6               | 133.3              | 63.7               | 197.0        |  |  |  |
| 6624                        | 536.0        | 51.0      | 110.6   | 93.4            |                    |                    |                    | 56.o               | 111.5              | 9.5                | 121.0        |  |  |  |
| 6684                        | 529.0        | 44.7      | 111.5   | 93.8            |                    |                    |                    | 42.0               | 47.0               | 25.0               | 72.0         |  |  |  |
| 6749                        | 472.0        | 40.2      | 96.9    | 47.0            |                    |                    |                    |                    | 159.6              | 125.6              | 285.2        |  |  |  |
| 7577                        | 541.0        | 57.2      | 114.8   | 110.6           |                    |                    |                    | 95.1               | 56.2               | 30.1               | 86.3         |  |  |  |
| 14429                       | 537.1        | 40.0      | 116.0   | 87.2            |                    |                    |                    | 55.3               | 112.3              | 75.5               | 187.9        |  |  |  |
| 14725                       | 522.2        | 36.0      | 116.3   | 30.7            |                    |                    |                    |                    | 106.4              | 49.8               | 156.3        |  |  |  |
| 14758                       | 505.4        | 33.9      | 97.3    | 16.9            |                    |                    |                    |                    | 88.2               | 90.1               | 178.3        |  |  |  |
| 14970                       | 571.8        | 55.4      | 115.4   | 74.0            |                    |                    |                    | 39.6               |                    |                    |              |  |  |  |
| 17317                       | 506.0        | 39.0      | 120.0   | 39.0            |                    |                    |                    |                    | 145.6              | 94.2               | 239.8        |  |  |  |
| 17467                       | 523.5        | 22.1      | 112.8   | 28.2            |                    |                    |                    |                    | 94.4               | 104.2              | 198.5        |  |  |  |
|                             |              |           |         |                 | Rolett             | e County           | I                  |                    |                    |                    |              |  |  |  |
| 83                          | 528.6        | 45.1      | 120.9   | 21.0            |                    |                    |                    |                    |                    |                    | 18.0         |  |  |  |
| 316                         | 523.2        | 62.6      | 128.7   | 24.9            |                    |                    |                    |                    |                    |                    | 20.0         |  |  |  |
| 13586                       | 540.0        | 57.8      | 122.4   | 24.5            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 16095                       | 570.0        | 18.2      | 161.8   | 186.o           |                    |                    |                    |                    |                    |                    | 78.o         |  |  |  |
|                             |              |           |         |                 | Sherid             | an Count           | у                  | •                  |                    | r                  |              |  |  |  |
|                             | 580.9        | 74.5      | 119.9   | 28.7            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 684                         | 548.6        | 71.5      | 158.7   | 21.4            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 693                         | 601.7        | 85.9      | 131.4   | 25.6            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 735                         | 571.8        | 82.8      | 130.7   | 22.9            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 9343                        | 629.5        | 50.9      | 121.9   | 24.7            |                    |                    |                    | 91.1               |                    |                    | 99.6         |  |  |  |
|                             |              | _         |         |                 | Siow               | County             |                    |                    |                    | 1                  | 1            |  |  |  |
| 631                         | 559.0        | 47.8      | 169.5   | 12.0            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 0.5                         | 0.5          | ı         |         |                 | Slope              | County             |                    |                    |                    | 1                  | 1            |  |  |  |
| 8629                        | 586.1        | 35.5      | 105.2   | 22.7            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 9244                        | 581.2        | 36.2      | 106.3   | 27.9            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 11484                       | 586.4        | 35.2      | 108.2   | 22.3            | C: 1               | 61.7               |                    |                    |                    |                    |              |  |  |  |
|                             |              | .0        |         |                 | Stark              | County             |                    |                    |                    | <u> </u>           | 1            |  |  |  |
| 6447                        | 599.5        | 38.5      | 112.6   | 35.2            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 8088                        | 640.3        | 35.6      | 115.1   | 51.5            | 72.6               |                    | 0                  |                    |                    |                    | 60           |  |  |  |
| 8169                        | 632.6        | 44.7      | 108.6   | 27.1            | 11.8               | 172.2              | 82.0               | 222.0              | 190.0              | 78.9               | 268.9        |  |  |  |

| North Dakota         |                     |           |               |               |          |          |          |          |          |          |           |  |  |
|----------------------|---------------------|-----------|---------------|---------------|----------|----------|----------|----------|----------|----------|-----------|--|--|
|                      |                     |           |               | Un            | it Thic  | kness (  | in Feet) |          |          |          |           |  |  |
|                      |                     | Winnij    | peg Gro       | oup           |          |          | Deadw    | ood For  | mation   |          |           |  |  |
| <u>Well</u><br>Label | <u>Red</u><br>River | Roughlock | Icebox        | Black         | Member    |  |  |
|                      |                     | Kouginock | <u>ICEDOX</u> | <u>Island</u> | <u>F</u> | <u>E</u> | <u>D</u> | <u>C</u> | <u>B</u> | <u>A</u> | <u>AB</u> |  |  |
| 8342                 | 626.0               | 42.3      | 110.5         | 44.2          | 9.7      | 221.4    |          |          |          |          |           |  |  |
| 8665                 | 623.7               | 52.2      | 104.6         | 26.1          |          |          |          |          |          |          |           |  |  |
| 8837                 | 618.7               | 28.9      | 85.4          | 23.8          |          |          |          |          |          |          |           |  |  |
| 9056                 | 635.2               | 51.4      | 110.8         | 39.3          | 25.2     |          |          |          |          |          |           |  |  |
| 9135                 | 637.7               | 56.2      | 113.6         | 34-4          |          |          |          |          |          |          |           |  |  |
| 9256                 | 636.6               | 46.3      | 114.5         | 37.6          | 26.7     |          |          |          |          |          |           |  |  |
| 9257                 | 637.4               | 50.9      | 110.9         | 41.9          | 19.7     |          |          |          |          |          |           |  |  |
| 9322                 | 614.7               | 38.1      | 116.1         | 32.0          |          |          |          |          |          |          |           |  |  |
| 9348                 | 631.6               | 48.2      | 111.2         | 35.7          | 26.4     | 157.1    |          |          |          |          |           |  |  |
| 9407                 | 634.8               | 52.2      | 113.8         | 31.7          | 15.5     |          |          |          |          |          |           |  |  |
| 9475                 | 629.3               | 41.8      | 115.3         | 48.6          | 39.4     |          |          |          |          |          |           |  |  |
| 9684                 | 588.5               | 38.9      | 106.1         | 28.1          |          |          |          |          |          |          |           |  |  |
| 10430                | 620.4               | 48.1      | 110.2         | 29.0          |          |          |          |          |          |          |           |  |  |
| 10570                | 613.2               | 35.8      | 115.1         | 39.9          |          |          |          |          |          |          |           |  |  |
| 13447                | 614.1               | 39.4      | 113.9         | 37.1          |          |          |          |          |          |          |           |  |  |
| 14652                | 596.4               | 39.7      | 103.9         | 29.1          |          |          |          |          |          |          |           |  |  |
|                      |                     |           |               |               | Steel    | e County |          |          |          |          |           |  |  |
| 8027                 | 380.0               | 27.6      | 116.5         | 8.o           |          |          |          |          |          |          |           |  |  |
| 9922                 | 116.1               | 18.0      | 77.2          | 57.9          |          |          |          |          |          |          |           |  |  |
|                      |                     |           |               |               | Stutsm   | an Coun  | ty       |          |          |          |           |  |  |
| 40                   | 562.4               | 68.1      | 135.1         | 7.1           |          |          |          |          |          |          |           |  |  |
| 120                  | 531.7               | 77.2      | 131.4         | 18.9          |          |          |          |          |          |          |           |  |  |
| 134                  | 546.2               | 77.4      | 140.9         | 16.2          |          |          |          |          |          |          |           |  |  |
| 370                  | 552.3               | 74.0      | 130.8         | 20.0          |          |          |          |          |          |          |           |  |  |
| 406                  | 556.7               | 72.8      | 131.5         | 18.1          |          |          |          |          |          |          |           |  |  |
| 644                  | 570.3               | 69.4      | 136.5         | 23.6          |          |          |          |          |          |          |           |  |  |
| 668                  | 659.3               | 63.4      | 154.0         | 5.1           |          |          |          |          |          |          |           |  |  |
| 669                  | 569.1               | 70.6      | 139.7         | 8.o           |          |          |          |          |          |          |           |  |  |
| 671                  | 570.7               | 71.3      | 130.2         | 4.8           |          |          |          |          |          |          |           |  |  |
| 672                  | 558.4               | 70.5      | 132.1         |               |          |          |          |          |          |          |           |  |  |
| 7415                 | 532.4               | 55.1      | 165.8         | 8.7           |          |          |          |          |          |          |           |  |  |
| 9776                 | 550.0               | 77.2      | 131.2         | 18.0          |          |          |          |          |          |          |           |  |  |
|                      |                     |           |               |               | Town     | er Count | у        |          |          |          |           |  |  |
| 171                  | 510.8               | 57.0      | 130.4         | 21.2          |          |          |          |          |          |          |           |  |  |
| 194                  | 524.2               | 69.1      | 128.5         | 16.0          |          |          |          |          |          |          |           |  |  |
| 227                  | 525.7               | 57.1      | 139.3         | 26.2          |          |          |          |          |          |          | 7.4       |  |  |
|                      |                     |           |               |               | Ward     | l County |          |          |          |          |           |  |  |
| 47                   | 607.5               | 37.6      | 119.2         | 95.0          |          |          |          | 69.4     | 60.4     | 67.8     | 128.2     |  |  |
| 7612                 | 610.0               | 55.9      | 119.4         | 142.5         |          | 51.0     | 79.0     | 183.0    | 115.0    | 47.0     | 162.0     |  |  |
| 11055                | 599.3               | 44.9      | 118.0         | 95.7          |          |          |          |          |          |          |           |  |  |
|                      |                     |           |               |               | Well     | s County |          |          |          |          |           |  |  |
| 207                  | 569.3               | 69.8      | 137.3         | 18.8          |          |          |          |          |          |          |           |  |  |
| 609                  | 589.4               | 59.6      | 131.1         | 21.8          |          |          |          |          |          |          |           |  |  |

|                      | North Dakota        |           |               |               |          |          |           |          |          |          |           |  |  |  |
|----------------------|---------------------|-----------|---------------|---------------|----------|----------|-----------|----------|----------|----------|-----------|--|--|--|
|                      |                     |           |               | Un            | it Thic  | kness (  | (in Feet) |          |          |          |           |  |  |  |
|                      |                     | Winni     | peg Gro       | oup           |          |          | Deadw     | ood For  | mation   |          |           |  |  |  |
| <u>Well</u><br>Label | <u>Red</u><br>River |           |               | Black         | Member   | Member   | Member    | Member   | Member   | Member   | Member    |  |  |  |
|                      |                     | Roughlock | <u>Icebox</u> | <u>Island</u> | <u>F</u> | <u>E</u> | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | <u>AB</u> |  |  |  |
| 642                  | 596.8               | 52.4      | 133.0         | 33.3          |          |          |           |          |          |          |           |  |  |  |
| 689                  | 557.5               | 58.7      | 163.6         | 20.4          |          |          |           |          |          |          |           |  |  |  |
| 1211                 | 592.8               | 56.5      | 131.2         | 14.3          |          |          |           |          |          |          | 87.7      |  |  |  |
| 11599                | 588.1               | 63.9      | 140.6         | 18.2          |          |          |           |          |          |          |           |  |  |  |
| 11653                | 591.2               | 60.1      | 132.6         | 29.9          |          |          |           |          |          |          |           |  |  |  |
| 11654                | 582.0               | 55.7      | 134.1         | 30.9          |          |          |           |          |          |          |           |  |  |  |
|                      |                     | T         | 1             |               | Willia   | ns Count | у         | Г        |          | T        |           |  |  |  |
| 1231                 | 535.0               | 38.6      | 133.8         | 229.4         |          |          |           |          |          |          |           |  |  |  |
| 1385                 | 624.3               | 31.5      | 141.4         | 255.7         | 102,1    | 125.0    | 145.0     | 78.1     | 113.4    | 28.3     | 141.7     |  |  |  |
| 1403                 | 586.7               | 38.9      | 148.9         | 252.2         | 41.0     | 172.0    | 135.0     |          |          |          |           |  |  |  |
| 1514                 | 600.8               | 45.5      | 149.7         | 237.3         | 94.0     | 135.0    | 138.0     | 114.6    |          |          |           |  |  |  |
| 1636                 | 603.1               | 32.0      | 147.0         | 238.4         | 46.6     |          |           |          |          |          |           |  |  |  |
| 3844                 | 614.1               | 35.9      | 152.0         | 245.7         | 82.9     | 138.6    | 152.8     | 65.2     | 127.1    | 22.9     | 150.0     |  |  |  |
| 4321                 | 588.8               | 36.3      | 125.0         | 230.6         | 26.4     | 131.0    | 159.0     | 168.3    | 64.7     | 26.9     | 91.6      |  |  |  |
| 43 <del>2</del> 3    | 549.5               | 45.4      | 132.5         | 225.6         |          | 89.6     | 102.3     |          |          |          |           |  |  |  |
| 4618                 | 493.7               | 38.8      | 73.6          | 158.9         |          | 61.0     | 157.0     | 168.0    | 170.0    | 37.0     | 207.0     |  |  |  |
| 4716                 | 575.6               | 38.9      | 150.5         | 220.3         | 39.3     |          |           |          |          |          |           |  |  |  |
| 5069                 | 583.9               | 45.5      | 148.6         | 244.2         |          |          |           |          |          |          |           |  |  |  |
| 6098                 | 641.5               | 41.0      | 142.2         | 251.6         |          |          |           |          |          |          |           |  |  |  |
| 6478                 | 560.4               | 41.4      | 133.5         | 148.4         |          | 58.o     |           |          |          |          |           |  |  |  |
| 7005                 | 616.9               | 51.4      | 146.6         | 266.7         | 34.7     |          |           |          |          |          |           |  |  |  |
| 7848                 | 507.0               | 35.5      | 70.4          | 139.7         |          |          |           |          |          |          |           |  |  |  |
| 8316                 | 457.4               | 31.6      | 61.3          | 170.9         |          |          |           |          |          |          |           |  |  |  |
| 8692                 | 517.3               | 31.1      | 67.9          | 143.5         |          |          |           |          |          |          |           |  |  |  |
| 9100                 | 499.0               | 29.4      | 68.6          | 132.6         |          |          |           |          |          |          |           |  |  |  |
| 9800                 | 579.4               | 28.8      | 135.7         | 162.8         |          | 21.7     |           |          |          |          |           |  |  |  |
| 10772                | 534.0               | 32.3      | 134.5         | 192.3         |          | 21.2     |           |          |          |          |           |  |  |  |
| 12119                | 528.0               | 41.3      | 121.4         | 181.3         |          | 22.7     |           |          |          |          |           |  |  |  |
| 12270                | 551.4               | 25.7      | 113.1         | 193.9         |          | 22.7     |           |          |          |          |           |  |  |  |
| 12305                | 576.3               | 23.6      | 132.3         | 180.1         | 32.8     | 68.7     |           |          |          |          |           |  |  |  |
| 12363                | 567.8               | 41.7      | 137.5         | 241.1         | 60.6     |          |           |          |          |          |           |  |  |  |
| 12432                | 554.0               | 39.8      | 128.7         | 208.7         | 23.3     |          |           |          |          |          |           |  |  |  |
| 12592                | 559.8               | 31.1      | 136.8         | 179.5         | 26.3     |          |           |          |          |          |           |  |  |  |
| 12831                | 554.9               | 42.1      | 134.3         | 196.4         | 25.0     | 103.9    |           |          |          |          |           |  |  |  |
| 12971                | 619.7               | 25.2      | 142.7         | 242.6         | 92.7     |          |           |          |          |          |           |  |  |  |
| 13395                | 565.6               | 43.4      | 146.5         | 232.6         | 36.3     | 82.5     |           |          |          |          |           |  |  |  |
| 13682                | 560.6               | 40.8      | 142.3         | 181.9         | 24.9     | 123.4    |           |          |          |          |           |  |  |  |
| 13893                | 603.6               | 38.5      | 150.4         | 266.0         | 47.9     |          |           |          |          |          |           |  |  |  |
| 16629                | 591.2               | 31.8      | 136.5         | 219.5         | 21.0     | 48.o     |           |          |          |          |           |  |  |  |
| 17488                | 588.o               | 32.0      | 136.1         | 208.3         |          |          |           |          |          |          |           |  |  |  |
| 18631                | 585.o               | 45.3      | 148.8         | 226.2         | 36.2     | 140.8    |           |          |          |          |           |  |  |  |
| 1868o                | 597.8               | 48.5      | 146.2         | 240.8         | 34.8     | 140.9    |           |          |          |          |           |  |  |  |

|                             | Montana             |              |                |              |          |           |              |          |               |          |           |  |  |  |
|-----------------------------|---------------------|--------------|----------------|--------------|----------|-----------|--------------|----------|---------------|----------|-----------|--|--|--|
|                             |                     |              |                | Un           | it Thic  | kness     | (in Feet)    |          |               |          |           |  |  |  |
|                             |                     | Winnip       | oeg Gro        | oup          |          |           | Deadw        | ood For  | mation        |          |           |  |  |  |
| <u>Well</u><br><u>Label</u> | <u>Red</u><br>River |              |                | Black        | Member   | Member    | Member       | Member   | Member        | Member   | Member    |  |  |  |
| Laber                       | KIVCI               | Roughlock    | <u>Icebox</u>  | Island       | <u>F</u> | <u>E</u>  | <u>D</u>     | <u>C</u> | <u>B</u>      | <u>A</u> | <u>AB</u> |  |  |  |
|                             |                     |              |                |              | Carte    | r County  | 7            |          |               |          |           |  |  |  |
| MTı                         | 447.2               | 27.5         | 76.3           |              |          |           |              | 166.7    | 331.4         | 188.8    | 520.2     |  |  |  |
| MT2                         | 472.1               | 24.4         | 76.4           | 55.0         |          |           |              |          |               |          |           |  |  |  |
| MT <sub>3</sub>             | 462.9               | 23.7         | 76.3           | 120.9        |          |           |              | 63.4     | 270.5         | 80.8     | 351.3     |  |  |  |
| MT4                         | 470.8               | 24.3         | 45.1           | 75.8         |          |           |              | 66.5     | 329.2         | 68.4     | 397.6     |  |  |  |
| MT <sub>5</sub>             | 485.3               | 29.9         | 82.7           | 167.9        |          |           |              |          |               |          |           |  |  |  |
| MT6                         | 492.8               | 33.4         | 83.5           | 60.2         |          |           | 78.7         | 137.2    |               |          |           |  |  |  |
| MT <sub>7</sub>             | 488.4               | 43.0         | 81.0           | 20.5         |          | 27.5      | 84.8         | 138.9    | 383.3         | 91.2     | 474.5     |  |  |  |
| MT8                         | 465.3               | 42.7         | 71.1           |              |          |           |              | 170.2    | 401.5         | 154.3    | 555.8     |  |  |  |
| N ATT                       |                     |              | l              | -            | Custe    | er County | /<br>I       |          |               | T        |           |  |  |  |
| MT9                         | 410.0               | 35.0         | 93.7           | 19.6         | Б :      | 1.6.      |              | 187.7    | 389.0         | 52.0     | 441.0     |  |  |  |
| MT                          |                     | 0 -          | l              | T            | Danie    | els Count | y<br>I       |          |               | ı        |           |  |  |  |
| МТ10                        | 445.1               | 128.9        | 171.0          | 57.5         | Davisor  | n Count   | <u> </u>     | 310.4    |               |          |           |  |  |  |
| MT11                        | 427.4               | 242          | 102 8          | 27.2         | Dawso    | on Count  | ŕ            |          |               | 1        |           |  |  |  |
| MT12                        | 427.4               | 34.2         | 103.8          | 27.2         |          |           | 42.0         |          |               |          |           |  |  |  |
| MT13                        | 414.4               | 37·4<br>61.4 | 104.1          | 71.4         |          |           | 68.o         | 210.0    | 174.8         |          |           |  |  |  |
| MT14                        | 345.1               |              |                | 50.0         |          |           | 62.7         | 210.0    | 1/4.0         |          |           |  |  |  |
| MT15                        | 324.7<br>419.0      | 42.0<br>56.2 | 114.2          | 41.3         |          |           | 02.7         |          |               |          |           |  |  |  |
| .,,,,,                      | 419.0               | Jo. <u>2</u> | 112.)          | 45.9         | Fallo    | n County  | <u> </u><br> |          |               |          |           |  |  |  |
| MT16                        | 438.3               | 72.2         | 109.0          | <b>38.</b> 0 | Tuno     |           | 65.0         | 275.0    | 222.0         | 97.9     | 319.9     |  |  |  |
| MT17                        | 458.1               | 66.3         | 75.5           | 29.0         |          | 37.7      | 70.1         | 280.3    | 230.5         | 96.7     | 327.2     |  |  |  |
| ,                           | .,,                 | ,            | ,,,,           |              | McCo:    | ne Count  |              |          |               | ,        | <i>,</i>  |  |  |  |
| MT18                        | 308.2               | 46.9         | 72.8           | 76.1         |          |           | 63.0         | 177.0    | 394.0         | 65.7     | 459.7     |  |  |  |
|                             |                     |              |                |              | Powder 1 | River Cou | inty         |          |               |          |           |  |  |  |
| MT19                        | 456.6               | 15.8         | 88.5           | 14.0         |          |           |              | 182.7    | 391.3         | 67.4     | 458.7     |  |  |  |
|                             |                     |              |                |              | Richla   | nd Coun   | ty           |          |               |          |           |  |  |  |
| MT20                        | 401.0               | 46.6         | 143.4          | 70.0         |          |           |              |          |               |          |           |  |  |  |
| MT21                        | 468.5               |              | 104.5          | 75.3         |          |           |              |          |               |          |           |  |  |  |
| MT22                        | 461.0               | 79.8         | 108.2          | 64.0         |          | 63.0      | 153.0        | 173.0    | 276.8         | 109.9    | 386.7     |  |  |  |
| MT23                        | 404.0               | 46.0         | 132.0          | 70.5         |          |           | 146.4        | 177.2    | 190.8         | 106.2    | 297.0     |  |  |  |
| MT24                        | 468.o               | 54.5         | 119.5          | 72.0         |          | 62.5      | 144.5        |          |               |          |           |  |  |  |
| MT25                        | 403.9               | 55.6         | 103.1          | 55.6         |          |           |              |          |               |          |           |  |  |  |
| \                           |                     |              |                | Ι            | Roosev   | elt Coun  | ty           |          | ı             | ı        |           |  |  |  |
| MT26                        | 491.9               | 18.1         | 85.1           | 41.0         |          |           |              |          |               |          |           |  |  |  |
| MT27                        | 463.9               | 39.0         | 132.6          | 85.6         | Cl · 1   |           | <u> </u>     |          |               |          |           |  |  |  |
| MT-0                        | 205 -               | .a -         | 10= -          | 45.5         | Sherid   | an Coun   | ty<br>I      |          |               | 1        |           |  |  |  |
| MT28                        | 302.0               | 43.7         | 137.3          | 45.3         |          |           | 206 -        | 110 :    | 63-           |          |           |  |  |  |
| MT29<br>MT30                | 313.0               | 28.4         | 156.6          | 43.8         |          |           | 296.7        | 119.4    | 92.1<br>186.7 |          |           |  |  |  |
| MT31                        | 311.3               | 36.8         | 119.1          | 63.2         |          |           | 413.0        | 99.9     | -             | 106.0    | 220.1     |  |  |  |
| MT32                        | 401.0<br>400.9      | 30.0<br>19.1 | 125.2<br>128.4 | 84.0         |          |           | 330.7        | 75.3     | 123.2         | 106.9    | 230.1     |  |  |  |
| MT33                        | 396.2               | 26.9         | <u> </u>       | 75·5         |          |           | 227 8        | 89.9     | 36.7          | 81.9     | 118.6     |  |  |  |
| 171 1 33                    | 390.2               | _ 20.9       | 127.9          | 72.5         |          | I         | 327.8        | 09.9     | 30./          | 01.9     | 110.0     |  |  |  |

|                                                                     | Montana |                  |               |                 |                    |                    |             |                    |                    |                    |              |  |  |  |
|---------------------------------------------------------------------|---------|------------------|---------------|-----------------|--------------------|--------------------|-------------|--------------------|--------------------|--------------------|--------------|--|--|--|
|                                                                     |         |                  |               | Un              | it Thic            | kness (            | (in Feet)   |                    |                    |                    |              |  |  |  |
| Well                                                                | Red     | Winnip           | eg Gro        | oup             |                    |                    | Deadw       | ood For            | mation             |                    |              |  |  |  |
| <u>Label</u>                                                        | River   | <u>Roughlock</u> | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br>D | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |
| MT <sub>34</sub>                                                    | 390.0   | 36.4             | 115.6         | 75.8            |                    |                    | 227.2       | 135.0              |                    |                    |              |  |  |  |
| MT35                                                                | 392.4   | 29.9             | 130.0         | 77.6            |                    |                    |             |                    |                    |                    |              |  |  |  |
| MT36                                                                | 369.6   | 43.7             | 126.9         | 80.1            |                    |                    | 323.7       | 94.1               | 50.6               | 23.5               | 74.0         |  |  |  |
| MT <sub>37</sub> 321.9 13.2 146.2 55.0 362.2 80.6 124.5 121.0 245.5 |         |                  |               |                 |                    |                    |             |                    |                    |                    |              |  |  |  |
|                                                                     |         |                  |               |                 | Valle              | y County           | r           |                    |                    |                    |              |  |  |  |
| MT38                                                                | 305.6   | 5.4              | 106.4         |                 |                    |                    |             |                    |                    |                    | 7,740.1      |  |  |  |
|                                                                     |         |                  |               |                 | Wibau              | ıx Count           | У           |                    |                    |                    |              |  |  |  |
| MT39                                                                | 484.0   | 43.5             | 108.5         | 25.3            |                    | 80.9               |             |                    |                    |                    |              |  |  |  |
| MT40                                                                | 478.o   | 52.1             | 106.9         | 19.6            |                    |                    |             |                    |                    |                    |              |  |  |  |
| MT41                                                                | 475.8   | 47.9             | 105.3         | 15.5            |                    | 38.8               |             |                    |                    |                    |              |  |  |  |
| MT42                                                                | 451.0   | 61.4             | 109.6         | 26.7            |                    |                    |             |                    |                    |                    |              |  |  |  |
| MT43                                                                | 435.0   | 62.3             | 101.7         | 39.0            |                    |                    |             |                    |                    |                    |              |  |  |  |
| MT44                                                                | 447.0   | 76.3             | 84.7          | 59.1            |                    |                    |             |                    |                    |                    |              |  |  |  |
| MT45                                                                |         |                  |               |                 |                    | 49.0               | 89.0        | 255.0              | 389.0              | 128.0              | 517.0        |  |  |  |
| MT46                                                                | 485.3   | 36.6             | 97.5          | 33.3            |                    |                    |             |                    |                    |                    |              |  |  |  |

| Winnipeg   Frame   Winnipeg   Frame   Winnipeg   Winn |          |       |           |          | S             | outh    | Dak      | ota       |          |            |          |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------|----------|---------------|---------|----------|-----------|----------|------------|----------|-----------|
| Well   Bed   River   Roughlock   Icebox   Black   Icebox   Black   Icebox   Black   Icebox   Black   Icebox   Black   Icebox   Bon Horme County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |           |          | Un            | it Thic | kness    | (in Feet) |          |            |          |           |
| Labe    River   Roughlock   Leebox   Salack   Salack   E   E   C   C   R   A   AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | Winni     | eg Gro   |               |         |          |           | ood For  | mation     |          |           |
| Signature   Sign |          |       | Roughlock | Icebox   | Black         |         |          | Member    | Member   | Member     | Member   | Member    |
| SD1   SD2   SD3   SD4   SD5   SD5  |          |       | Rouginoek | recoox   | <u>Island</u> |         |          |           | <u>C</u> | <u>B</u>   | <u>A</u> | <u>AB</u> |
| SD2   SD3   333   40.4   83.9   109.5   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94.2   94 | GD.      |       | 1         | I        | I             | Bon Hor | nme Cou  | nty       | 1        | 1          | 1        | 1         |
| Butte County   SD3   333   40.4   839   109.5     94.2     38.4   22.6   89.1     89.7   331.1   43.9   375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |           |          |               |         |          |           |          |            |          |           |
| SD3   333   40.4   83.9   109.5   94.2   94.2   SD4   382.4   22.6   89.1   97.2   327.2   38.0   365.1   SD6   327.1   32.4   83.4   83.4   83.5   97.2   327.2   38.0   365.1   SD7   422.5   28.4   63.8   54.3   100.0   250.7   110.4   361.1   SD10   403.5   23.4   90.0   44.6   44.6   SD10   403.5   23.4   90.0   44.5   64.8   65.5   SD12   229.0   41.5   64.8   65.5   SD14   558.4   46.6   101.2   52.2   SD15   574.0   16.7   112.1   32.8   179.3   224.6   46.7   271.3   SD16   559.0   25.9   128.9   32.9   177.3   SD10   559.0   24.7   134.9   72.5   SD10   559.0   22.9   24.7   134.9   72.5   SD20   54.2   13.4   184.8   220.5   93.1   313.6   SD22   348.6   30.6   127.2   SD23   558.2   17.4   122.0   SD23   558.2   17.4   122.0   SD24   487.0   23.7   90.8   481.1   SD25   572.2   SD26   550.2   31.0   144.8   SD25   572.2   SD26   550.2   31.0   144.8   SD25   572.3   SD27   548.6   30.6   127.2   SD27   548.6   30.6   127.2   SD28   SD29   533.0   SD31   SD32   SB3.3   31.6   481.1   T93.3   20.8   SD33   SD33   SD33   SD34   SD35   SD35   13.8   15.8   50.4   SD25   SD35   13.8   15.8   SD34   SD35   SD35   SD35   SD35   SD35   SD35   SD35   SD36   SD35   SD36   SD35   SD36   SD36   SD37   SD38   SD37   SD38   SD38   SD38   SD38   SD39   SD39 | SD2      |       |           |          |               | Desta   | Country  |           |          |            |          |           |
| SD4   382.4   22.6   89.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDa      | 212.2 | 40.4      | 82.0     | 100.5         | Dull    | County   |           | 043      |            | l        |           |
| SD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 1         |          | 109.5         |         |          |           |          | 221.1      | 42.0     | 275.0     |
| SD6   327.1   32.4   83.4       37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |           |          |               |         |          |           |          |            | -        |           |
| SD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>—</b> |       |           |          |               |         |          |           |          | 32/.2      | 50.0     | 50 ).1    |
| SDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |           |          |               |         |          |           |          |            |          |           |
| SD9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |           |          |               |         |          |           | 777      |            |          |           |
| SD10   493-5   234   90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |           |          |               |         |          |           | 100.0    | 250.7      | 110.4    | 361.1     |
| SD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |           |          |               |         |          |           |          | <i>J</i> 7 |          | <i></i>   |
| SD12   229.0   41.5   64.8   65.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD11     |       |           |          |               |         |          |           |          |            |          |           |
| SD13   560.1   34.9   150.4   32.9     185.8   205.2   90.3   295.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD12     |       |           | 64.8     | 65.5          |         |          |           |          |            |          |           |
| SD13   560.1   34.9   150.4   32.9     185.8   205.2   90.3   295.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |           | <u> </u> |               | Corso   | n Count  | y         | l        |            |          |           |
| SD15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD13     | 560.1 | 34.9      | 150.4    | 32.9          |         |          |           | 185.8    | 205.2      | 90.3     | 295.5     |
| SD15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD14     | 558.4 | 46.6      | 101.2    | 52.2          |         |          |           |          |            |          |           |
| SD17   553.7   51.8   110.1   160.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD15     | 574.0 | 16.7      | 112.1    | 32.8          |         |          |           | 179.3    | 224.6      | 46.7     | 271.3     |
| SD18       559.0       25.9       128.9       32.9       178.3       220.2       74.0       294.2         SD19       553.0       24.7       134.9       72.5       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       118.2       119.3       119.3       119.6       119.3       119.3       119.6       119.3       119.3       119.3       119.3       119.3       119.3       119.3       119.3       119.3 <td>SD16</td> <td>576.9</td> <td>16.1</td> <td>82.9</td> <td>59.7</td> <td></td> <td></td> <td></td> <td>177.3</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SD16     | 576.9 | 16.1      | 82.9     | 59.7          |         |          |           | 177.3    |            |          |           |
| SD19   553.0   24.7   134.9   72.5   118.2   220.5   93.1   313.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD17     | 553.7 | 51.8      | 110.1    |               |         |          |           | 160.6    |            |          |           |
| SD20   541.2   13.4   184.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD18     | 559.0 | 25.9      | 128.9    | 32.9          |         |          |           | 178.3    | 220.2      | 74.0     | 294.2     |
| Dewey County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SD19     | 553.0 | 24.7      | 134.9    | 72.5          |         |          |           | 118.2    |            |          |           |
| SD21       539.7       233       97.3       214.8       37.5       252.4         SD22       545.8       11.6       120.6       253.0       20.0       273.0         SD23       554.8       21.8       93.9       53.9       253.0       20.0       273.0         SD24       487.0       23.7       90.8       48.1       140.6       61.4       201.9         SD25       528.2       17.4       122.0       161.8       69.2       231.0         SD26       550.2       31.0       144.8       161.8       69.2       231.0         SD27       548.6       30.6       127.2       166.5       61.6       228.1         Fall River County         SD28       5030       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0       503.0 <td< td=""><td>SD20</td><td>541.2</td><td>13.4</td><td>184.8</td><td></td><td></td><td></td><td></td><td></td><td>220.5</td><td>93.1</td><td>313.6</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD20     | 541.2 | 13.4      | 184.8    |               |         |          |           |          | 220.5      | 93.1     | 313.6     |
| SD22   545.8   11.6   120.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |           | ı        |               | Dewe    | y County | /         | •        |            |          | ,         |
| SD23       554.8       21.8       93.9       53.9       253.0       20.0       273.0         SD24       487.0       23.7       90.8       48.1       140.6       61.4       201.9         SD25       528.2       17.4       122.0       161.8       69.2       231.0         SD26       550.2       31.0       144.8       161.8       69.2       231.0         SD27       548.6       30.6       127.2       166.5       61.6       228.1         Fall River County         SD28       SD29       SD3.0       SD3.0 <td></td> <td></td> <td>23.3</td> <td>97.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>214.8</td> <td>37.5</td> <td>252.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | 23.3      | 97.3     |               |         |          |           |          | 214.8      | 37.5     | 252.4     |
| SD24   487.0   23.7   90.8   48.1   140.6   61.4   201.9     SD25   528.2   17.4   122.0   161.8   69.2   231.0     SD26   550.2   31.0   144.8   161.8   69.2   231.0     SD27   548.6   30.6   127.2   166.5   61.6   228.1     SD28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       | 11.6      | 120,6    |               |         |          |           |          |            |          |           |
| SD25         528.2         17.4         122.0         161.8         69.2         231.0           SD26         550.2         31.0         144.8         161.8         69.2         231.0           SD27         548.6         30.6         127.2         166.5         61.6         228.1           Fall River County           SD28         SD29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 21.8      | 93.9     |               |         |          |           |          | 253.0      | 20,0     | 273.0     |
| SD26         550.2         31.0         144.8         161.8         69.2         231.0           SD27         548.6         30.6         127.2         166.5         61.6         228.1           Fall River County           SD28         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       | 23.7      | 90.8     | 48.1          |         |          |           |          | 140.6      | 61.4     | 201.9     |
| SD27         548.6         30.6         127.2         166.5         61.6         228.1           Fall River County           SD28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |           | -        |               |         |          |           |          |            |          |           |
| SD28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |           |          |               |         |          |           |          |            |          |           |
| SD28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD27     | 548.6 | 30.6      | 127.2    |               | F.11 P' |          |           |          | 166.5      | 61.6     | 228.1     |
| SD29         Image: square                               | CD-0     |       |           |          |               | Fall Ri | ver Coun | ty<br>I   |          |            | ı        |           |
| SD30         SD31         SD32         SD35         I3.6         48.1         I3.6         I3.6         48.1         I3.6         I3.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |           |          |               |         |          |           |          |            |          |           |
| SD31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |           |          |               |         |          |           |          |            |          |           |
| SD32     385.3     13.6     48.1             SD33     Faulk County       SD34     218.1     79.3     20.8           25.8       Gregory County       SD35     113.8     15.8     50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |       |           |          |               |         |          |           |          |            |          |           |
| SD33         Faulk County           Faulk County           SD34         218.1         79.3         20.8         25.8           Gregory County           SD35         113.8         15.8         50.4         Image: County of the county o                                                                                                                                                                                                                                                   |          | 285.2 | 12.6      | 481      |               |         |          |           |          |            |          |           |
| Faulk County       SD34     218.1     79.3     20.8     25.8       Gregory County       SD35     113.8     15.8     50.4     Image: South of the county of the                                                                                                                                                                                   |          | 202.3 | 15.0      | 40.1     |               |         |          |           |          |            |          |           |
| SD34     218.1     79.3     20.8     25.8       Gregory County       SD35     113.8     15.8     50.4     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8     113.8 <td>5033</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td>Faull</td> <td>County</td> <td>ļ</td> <td>ļ</td> <td>ļ</td> <td><u> </u></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5033     |       | <u> </u>  | <u> </u> |               | Faull   | County   | ļ         | ļ        | ļ          | <u> </u> |           |
| SD <sub>35</sub> 113.8 15.8 50.4 Gregory County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD34     | 218.1 |           | 79.3     | 20.8          | 1 ddii  | County   |           |          |            |          | 25.8      |
| SD <sub>35</sub> 113.8 15.8 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )+       |       | l         | 13.7     |               | Grego   | rv Count | v         | <u> </u> | <u> </u>   | I .      | = ,       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD35     | 113.8 | 15.8      | 50.4     |               |         | , 25411  | ĺ         |          |            |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |           |          |               |         |          |           |          |            |          |           |

|                                      | South Dakota        |           |               |               |           |           |           |          |          |          |           |  |  |
|--------------------------------------|---------------------|-----------|---------------|---------------|-----------|-----------|-----------|----------|----------|----------|-----------|--|--|
|                                      |                     |           |               | Un            | it Thic   | kness     | (in Feet) |          |          |          |           |  |  |
|                                      |                     | Winni     | eg Gro        | oup           |           |           | Deadw     | ood For  | mation   |          |           |  |  |
| Well<br>Label                        | <u>Red</u><br>River | Doughlosk | Lachay        | Black         | Member    | Member    | Member    | Member   | Member   | Member   | Member    |  |  |
|                                      |                     | Roughlock | <u>Icebox</u> | <u>Island</u> | <u>F</u>  | <u>E</u>  | <u>D</u>  | <u>C</u> | <u>B</u> | <u>A</u> | <u>AB</u> |  |  |
|                                      |                     |           |               |               | Haako     | n Count   | у         |          |          |          |           |  |  |
| SD <sub>37</sub>                     | 262.5               | 24.1      | 70.0          | 92.8          |           |           |           |          | 38.8     | 41.9     | 80.7      |  |  |
| SD <sub>3</sub> 8                    | 155.3               | 5.4       | 135.7         |               |           |           |           |          |          |          |           |  |  |
| SD <sub>39</sub>                     | 215.4               | 4.0       | 38.8          | 31.2          |           |           |           |          |          |          |           |  |  |
| SD40                                 | 142.6               | 15.7      | 24.6          | 27.9          |           |           |           |          |          |          |           |  |  |
| SD41<br>SD42                         | 407.6               | 7.4       | 78.9          | 0.1           |           |           |           |          |          |          |           |  |  |
| 3D42                                 | 317.5               | 11.7      | 73.1          | 9.1           | Hardir    | ng Count  | W.        |          |          |          |           |  |  |
| SD43                                 | 290.0               |           | 50.0          |               | ı iai uli | ig Couiit | · y       |          |          |          |           |  |  |
| SD45                                 | 480.9               | 14.6      | 80.6          |               |           |           |           |          |          |          |           |  |  |
| SD45                                 | 473.6               | 43.0      | 78.9          |               |           |           |           |          |          |          |           |  |  |
| SD46                                 | 509.9               |           | 78.9          |               |           |           |           |          |          |          |           |  |  |
| SD47                                 | 490.0               |           | 95.4          |               |           |           |           | 74.0     |          |          |           |  |  |
| SD <sub>4</sub> 8                    | 476.1               | 41.2      | 79.2          |               |           |           |           | 188.7    | 217.2    | 107.5    | 324.7     |  |  |
| SD49                                 | 496.1               | 51.6      | 88.1          |               |           |           |           |          |          |          |           |  |  |
| SD50                                 | 473.3               | 30.7      | 82.8          |               |           |           |           |          |          |          |           |  |  |
| SD <sub>5</sub> 1                    | 495.7               | 35.0      | 62.8          | 27.4          |           |           |           |          |          |          |           |  |  |
| SD52                                 | 476.2               | 49.7      | 123.7         |               |           |           | 29.6      |          |          |          |           |  |  |
| SD <sub>53</sub>                     | 451.6               | 32.9      | 135.4         |               |           |           | 54.7      |          |          |          |           |  |  |
| SD <sub>54</sub>                     | 499.3               | 28.5      | 176.5         |               |           | 46.3      | 43.3      | 186.4    |          |          |           |  |  |
| SD <sub>55</sub>                     | 454.7               | 40.4      | 76.5          |               |           |           |           | 114.6    |          |          |           |  |  |
| SD <sub>5</sub> 6                    | 488.7               | 28.0      | 89.0          |               |           |           |           |          | 0        | 0        |           |  |  |
| SD <sub>57</sub>                     | 519.5               | 23.8      | 147.5         |               |           |           | 57.0      | 200.5    | 182.1    | 118.4    | 300.5     |  |  |
| SD58                                 | 494.0               | 35.2      | 82.1          |               |           |           | 20.0      | 198.9    | 110.6    |          |           |  |  |
| SD <sub>59</sub><br>SD <sub>60</sub> | 497.6               | 35.2      | 120.4<br>85.0 |               |           |           | 38.8      | 160.5    | 119.6    |          |           |  |  |
| 3000                                 | 477.4               | 29.2      | 05.0          |               | Hugh      | es Count  | V         |          |          |          |           |  |  |
| SD61                                 | 317.4               | 25.9      | 85.8          | 18.9          | Trugin    | es Court  | <u>у</u>  |          |          |          |           |  |  |
|                                      | <i>J-1-</i> 4       | -3.9      |               | -0.9          | Hvde      | County    |           |          |          |          |           |  |  |
| SD62                                 | 262.7               | 12.3      | 79.4          | 20.0          | ,         |           |           |          |          |          | 25.6      |  |  |
| SD63                                 | 158.2               | 3.8       | 84.6          | 22.3          |           |           |           |          |          |          | 30.0      |  |  |
|                                      |                     |           |               |               | Jackso    | n Count   | у         |          | <u> </u> | <u> </u> | <u> </u>  |  |  |
| SD64                                 | 156.7               |           | 61.1          | 14.3          |           |           |           |          |          |          |           |  |  |
| SD65                                 | 212.0               |           | 135.0         |               |           |           |           |          |          |          |           |  |  |
|                                      |                     |           |               |               | Jone      | s County  | 1         |          | 1        | 1        | 1         |  |  |
| SD66                                 | 204.3               | 8.7       | 71.6          |               |           |           |           |          |          |          |           |  |  |
| SD67                                 | 162.0               |           | 47.0          | 28.0          |           |           |           |          |          |          |           |  |  |
| SD68                                 |                     |           |               |               |           |           |           |          |          |          |           |  |  |
| SD69                                 |                     |           |               |               |           |           |           |          |          |          |           |  |  |
| SD70                                 |                     |           |               |               | T         | C:        | 4         |          |          |          |           |  |  |
| CD=:                                 | 150 0               | 47.0      | 6= -          | 6             | Lawrer    | rce Coun  | ty        | F2.1     | 1        | 1        | 1         |  |  |
| SD71                                 | 158.9               | 41.8      | 67.3          | 65.5          |           |           |           | 52.1     |          |          |           |  |  |

|                      |                     |              |               | S              | outh       | Dak       | ota                                          |                |          |          |           |
|----------------------|---------------------|--------------|---------------|----------------|------------|-----------|----------------------------------------------|----------------|----------|----------|-----------|
|                      |                     |              |               | Un             | it Thic    | kness     | (in Feet)                                    |                |          |          |           |
|                      |                     | Winnij       | oeg Gro       | oup            |            |           | Deadw                                        | ood For        | mation   |          |           |
| <u>Well</u><br>Label | <u>Red</u><br>River | Doughlosk    | Icebox        | Black          | Member     | Member    | Member                                       | Member         | Member   | Member   | Member    |
|                      |                     | Roughlock    | <u>ICEDOX</u> | <u>Island</u>  | <u>F</u>   | <u>E</u>  | <u>D</u>                                     | <u>C</u>       | <u>B</u> | <u>A</u> | <u>AB</u> |
|                      |                     | ı            | ı             |                | Lyma       | n County  | /                                            |                | ı        | 1        |           |
| SD72                 | 55.0                |              | 65.0          |                |            |           |                                              |                |          |          |           |
| SD <sub>73</sub>     |                     |              |               |                |            |           |                                              |                |          |          |           |
| SD <sub>74</sub>     | 490.2               | 10.2         | 007           |                | Mead       | e County  | /<br>                                        | 155.2          | Ī        | Ī        | <u> </u>  |
| SD74                 | 472.2               | 19.2<br>19.2 | 90.7<br>204.6 |                |            |           |                                              | 155.3<br>183.9 |          |          |           |
| SD76                 | 408.9               | 15.6         | 93.4          |                |            |           |                                              | 154.8          |          |          |           |
| - /                  | 1 7                 | <i>J</i> .   | 75.1          |                | Mellet     | te Count  | <u> </u>                                     | 21             |          | <u>l</u> |           |
| SD77                 | 76.7                |              | 46.0          |                |            |           | ĺ                                            |                |          |          | 28.1      |
| SD <sub>7</sub> 8    | 68.8                | 5.8          | 24.7          | 24.3           |            |           |                                              |                |          |          | 35.1      |
|                      |                     |              |               |                | Mine       | r County  | 7                                            |                |          |          |           |
| SD79                 |                     |              |               |                |            |           |                                              |                |          |          |           |
| _                    |                     | Т            | I             |                | Penning    | ton Cou   | nty                                          |                | T        | 1        | 1         |
| SD8o                 | 197.3               | 12.3         | 88.5          |                |            |           |                                              |                | 177.1    | 35.1     | 212.2     |
| SD81                 | 385.0               |              | 37.7          | 52.3           |            |           |                                              |                |          |          |           |
| SD82                 | 260.0               | 5.2          | 83.8          | 59.3           | Dorleit    | ns Count  | <u> </u>                                     |                |          |          |           |
| SD83                 | 513.2               | 21.3         | 128.7         |                | Perkii     | ls Count  | y<br>I                                       | 95.7           | 206.6    | 1        |           |
| SD84                 | 512.4               | 19.0         | 131.8         |                |            |           |                                              | 111.9          | 186.3    | 143.7    | 330.0     |
| SD85                 | 556.4               | 39.1         | 95.4          |                |            |           |                                              | 111.9          | 100.5    | 243.7    | 3,50.0    |
| SD86                 | 518.7               | 35.3         | 139.5         |                |            |           |                                              | 190.4          | 191.3    | 203.4    | 394.7     |
| SD87                 | 538.7               | 31.3         | 124.0         |                |            |           |                                              |                |          |          |           |
| SD88                 | 522.2               | 35.8         | 176.5         |                |            |           | 56.3                                         |                |          |          |           |
| SD89                 | 534.9               | 17.4         | 132.1         |                |            |           |                                              | 140.4          | 196.4    | 152.3    | 348.7     |
|                      | •                   | Г            | T             |                | Potte      | er County | 7                                            |                | T        | 1        | •         |
| SD90                 | 409.3               | 47.8         | 80.7          | 26.1           |            |           |                                              |                |          |          | 38.8      |
| SD91                 | 331.6               | 37.3         | 71.2          | 28.6           | T 1        | (61       | \ C                                          |                |          |          | 31.2      |
| SD92                 | 138.0               | 5.8          | 60.2          | Oglala<br>42.0 | ı Lakota ( | (Snannoi  | n) Count                                     | у              |          | I        |           |
| 31192                | 130.0               | 5.0          | 00,2          | 42.0           | Spin       | k County  | <u>.</u>                                     |                |          |          |           |
| SD93                 |                     |              |               |                | Брии       | County    |                                              |                |          |          |           |
| 7,5                  |                     | l .          | ļ.            |                | Stanle     | ey Count  | <u>.                                    </u> |                | !        |          | <u> </u>  |
| SD <sub>94</sub>     | 162.0               |              | 47.0          | 28.0           |            |           |                                              |                |          |          |           |
| SD95                 | 368.o               |              | 39.9          | 85.4           |            |           |                                              |                |          |          |           |
| SD96                 |                     |              |               |                |            |           |                                              |                |          |          |           |
| SD <sub>97</sub>     | 85.7                | 12.9         | 56.9          | 66.o           |            |           |                                              |                |          |          |           |
| SD98                 |                     |              |               |                |            |           |                                              |                |          |          |           |
| SD99                 |                     |              |               |                |            |           |                                              |                |          |          |           |
| SD100                |                     | 0            | _             |                |            |           |                                              |                |          |          |           |
| SD101                | 327.5               | 39.8         | 94.1          | 20.7           |            |           |                                              |                |          |          |           |
| SD102                | 332.2               |              | 11.1          | 39.1           |            |           |                                              |                |          |          |           |

|                             | South Dakota               |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
|-----------------------------|----------------------------|-----------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|--|--|
|                             | Unit Thickness (in Feet)   |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| XA7-11                      | D - J                      | Winnip    | oeg Gro       | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |  |  |
| <u>Well</u><br><u>Label</u> | <u>Red</u><br><u>River</u> | Roughlock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |  |
|                             |                            |           |               |                 | Tripp              | County             |                    |                    |                    |                    |              |  |  |  |  |
| SD103                       | 57.0                       |           | 16.0          |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| SD104                       | 126.0                      |           | 32.0          |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| SD105                       |                            |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| SD106                       |                            |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
|                             |                            | •         |               |                 | Walwo              | rth Coun           | ty                 |                    |                    |                    |              |  |  |  |  |
| SD107                       | 362.3                      | 44.1      | 117.5         | 40.8            |                    |                    |                    |                    |                    |                    | 32.8         |  |  |  |  |
| SD108                       | 383.9                      | 55.1      | 129.5         | 43.2            |                    |                    |                    |                    |                    |                    | 47.3         |  |  |  |  |
|                             | _                          | -         | -             |                 | Ziebac             | ch Count           | y                  | -                  | -                  | -                  |              |  |  |  |  |
| SD109                       | 502.1                      | 19.7      | 100.0         |                 |                    |                    |                    | 22.0               |                    |                    |              |  |  |  |  |

|                             | Manitoba     |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |
|-----------------------------|--------------|-----------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|--|
|                             |              |           |               | Un              | it Thic            | kness              | (in Feet)          |                    |                    |                    |              |  |  |  |
| 747 11                      | ъ 1          | Winnip    | eg Gro        | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |  |
| <u>Well</u><br><u>Label</u> | Red<br>River | Roughlock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |
| 486                         | 517          | 27.45     | 130           | 57              |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 1537                        | 515.1        | 25.7      | 100.1         | 59.1            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 1563                        | 479.7        | 0.3       | 115.4         | 15.4            |                    |                    |                    |                    |                    |                    | 12.17        |  |  |  |
| 1666                        | 479.1        | 8.9       | 138.0         | 29.4            |                    |                    |                    |                    |                    |                    | 40.55        |  |  |  |
| 2523                        | 471.2        | 29.6      | 108.6         | 54.3            |                    |                    |                    |                    |                    |                    | 58           |  |  |  |
| 2532                        | 429.6        | 24.6      | 121.9         | 16.5            |                    |                    |                    |                    |                    |                    | 12.4         |  |  |  |
| 2543                        | 536.5        | 20.9      | 101.3         | 66.3            |                    |                    |                    |                    |                    |                    | 56.39        |  |  |  |
| 2593                        | 555.6        | 15.6      | 114.4         | 32.6            |                    |                    |                    |                    |                    |                    | 13.17        |  |  |  |
| 2610                        | 520.5        | 28.9      | 119.9         | 57.1            |                    |                    |                    |                    |                    |                    | 69           |  |  |  |
| 2612                        | 365.7        | 14.8      | 109.8         | 63.0            |                    |                    |                    |                    |                    |                    | 57.57        |  |  |  |
| 2683                        | 488.9        | 31.4      | 89.5          | 63.6            |                    |                    |                    |                    |                    |                    | 58.77        |  |  |  |
| 2695                        | 484.7        | 19.3      | 113.9         | 22.4            |                    |                    |                    |                    |                    |                    | 27.63        |  |  |  |
| 2696                        | 484.8        | 33.4      | 108.6         | 58.7            |                    |                    |                    |                    |                    |                    | 45.82        |  |  |  |
| 2700                        | 493.5        | 15.4      | 94.0          | 95.2            |                    |                    |                    |                    |                    |                    | 24.79        |  |  |  |
| 2706                        | 500.2        | 22,1      | 97.3          | 69.6            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 2741                        | 436.2        | 27.1      | 129.5         | 30.6            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 2766                        | 523.7        | 19.2      | 101.5         | 65.5            |                    |                    |                    |                    |                    |                    | 82           |  |  |  |
| 3183                        | 468.6        | 14.5      | 108.3         | 15.5            |                    |                    |                    |                    |                    |                    | 25.5         |  |  |  |
| 3530                        | 466.5        | 11.7      | 122.1         | 22.1            |                    |                    |                    |                    |                    |                    | 16.9         |  |  |  |
| 4495                        | 444.4        | 28.4      | 113.0         | 49.5            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 4845                        | 518.0        | 18.5      | 110.2         | 51.1            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 4859                        | 499.1        | 25.2      | 95.3          | 55.6            |                    |                    |                    |                    |                    |                    | 67.72        |  |  |  |
| 5956                        | 478.8        | 20.3      | 112.5         | 26.8            |                    |                    |                    |                    |                    |                    | 8.92         |  |  |  |

|                      | Saskatchewan        |           |               |               |          |          |          |          |          |        |           |  |  |
|----------------------|---------------------|-----------|---------------|---------------|----------|----------|----------|----------|----------|--------|-----------|--|--|
|                      |                     |           |               | Un            | it Thic  | kness (  | in Feet) |          |          |        |           |  |  |
|                      |                     | Winni     | oeg Gro       |               |          |          |          | ood For  | mation   |        |           |  |  |
| <u>Well</u><br>Label | <u>Red</u><br>River |           |               | Black         | Member   | Member   | Member   | Member   | Member   | Member | Member    |  |  |
| <u> Euser</u>        | <u>raver</u>        | Roughlock | <u>Icebox</u> | <u>Island</u> | <u>F</u> | <u>E</u> | <u>D</u> | <u>C</u> | <u>B</u> | A      | <u>AB</u> |  |  |
| 00C037               | 395                 | 23.5      | 47.57         | 119           |          |          |          |          |          |        |           |  |  |
| 00D072               | 390                 | 35.7      | 36.5          | 124           |          |          |          |          |          |        |           |  |  |
| ooF396               | 328                 | 19.61     | 60.56         | 134           |          |          |          |          | 218      | 131    | 349       |  |  |
| ooJ189               | 246                 | 8         | 53.7          | 124           |          |          |          |          | 354.41   | 198.48 | 552.89    |  |  |
| 01A024               | 314                 | 41.09     | 49.37         | 136           |          |          |          |          |          |        |           |  |  |
| 01H069               | 328                 | 24.2      | 64.72         | 139           |          |          |          |          | 101,11   | 37.05  | 138.16    |  |  |
| 01J006               | 432                 | 17.25     | 49.84         | 126           |          |          |          |          |          |        |           |  |  |
| 01L133               | 197                 | 19.07     | 48.86         | 153           |          |          |          |          | 255.66   | 92.34  | 348       |  |  |
| 02A161               | 410                 | 29.1      | 47.6          | 134           |          |          |          |          | 134.5    | 103.5  | 238       |  |  |
| 02B012               | 193                 | 7.6       | 176           |               |          |          |          |          | 280.12   | 191.23 | 471.35    |  |  |
| 02 I 01 6            | 384                 | 3.63      | 72            | 124           |          |          |          |          |          |        |           |  |  |
| 02K012               | 389                 | 2.67      | 76            | 134           |          |          |          |          |          |        |           |  |  |
| 03K283               | 443                 | 20        | 49.36         | 126           |          |          |          |          |          |        |           |  |  |
| 03L284               | 219                 | 38.26     | 50.33         | 136           |          |          |          |          |          |        |           |  |  |
| 04B015               | 441                 | 27.8      | 59            | 116           |          |          |          |          |          |        |           |  |  |
| 05F018               | 290                 | 15.2      | 66.52         | 132           |          |          |          |          |          |        |           |  |  |
| 071073               | 358                 | 28.5      | 43.9          | 122           |          |          |          |          | 130.78   |        |           |  |  |
| o8H567               | 481                 | 26.1      | 68.7          | 118           |          |          |          |          |          |        |           |  |  |
| 50l013               | 232                 |           |               |               |          |          |          |          |          |        |           |  |  |
| 51C004               | 180                 |           |               |               |          |          |          |          |          |        |           |  |  |
| 51E001               | 285                 | 37.35     | 52.41         | 145           |          |          |          |          |          |        |           |  |  |
| 51L011               | 196                 |           |               | 6             |          |          |          |          |          |        |           |  |  |
| 51L083               | 245                 |           |               |               |          |          |          |          |          |        |           |  |  |
| 52A006               | 498                 | 36.2      | 104.8         | 68.5          |          |          |          | 18.05    | 87.95    | 52.68  | 140.63    |  |  |
| 52G001               | 313                 |           | 53            | 90            |          |          |          |          | 81.17    | 22.25  | 103.42    |  |  |
| 53J044               | 422                 | 31.66     | 66.27         | 128           |          |          |          |          | 153.16   | 40.83  | 193.99    |  |  |
| 54F047               | 172                 | 18.05     | 14            |               |          |          |          |          |          |        |           |  |  |
| 54Jo36               | 295                 |           |               |               |          |          |          |          |          |        |           |  |  |
| 55A052               | 502                 | 27.2      | 114           | 75            |          |          |          | 54       | 136      |        |           |  |  |
| 55E024               | 222                 |           |               |               |          |          |          |          | 972.85   |        |           |  |  |
| 55F097               | 526                 |           |               |               |          |          |          |          | 915.94   | 113.46 | 1029.4    |  |  |
| 55J059               | 495                 | 47.06     | 107.8         | 60.6          |          |          |          | 21.67    | 85.33    | 56     | 141.33    |  |  |
| 56B004               | 460                 | 16.95     | 74.41         | 132           |          |          |          | 73.07    | 192.96   | 104    | 296.96    |  |  |
| 56C013               | 460                 | 16.5      | 74.5          | 126           |          |          |          |          |          |        |           |  |  |
| 56Eo85               | 195                 |           |               |               |          |          |          |          |          |        |           |  |  |
| 56G008               | 433                 | 16.5      | 61.4          | 124           |          |          |          |          | 161.26   | 76.85  | 238.11    |  |  |
| 57G023               | 339                 | 25.58     | 60.62         | 140           |          |          |          |          |          |        |           |  |  |
| 57H002               | 248                 | 5.6       | 31.67         |               |          |          |          |          | 311.68   |        |           |  |  |
| 57K043               | 483                 | 20.1      | 84            | 120           |          |          |          |          |          |        |           |  |  |
| 58B029               | 244                 |           | 47            | 119           |          |          |          |          |          |        |           |  |  |
| 58Io75               | 205                 | 25.88     | 25.88         | 92.4          |          |          |          |          | 522.43   | 192.57 | 715       |  |  |
| 58L009               | 252                 | 14.8      | 65            | 44.8          |          |          |          |          |          |        | _         |  |  |
| 59B006               | 196                 |           |               | 15            |          |          |          |          |          |        |           |  |  |

|                             | Saskatchewan               |           |                   |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |
|-----------------------------|----------------------------|-----------|-------------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|--|
|                             |                            |           |                   | Un              | it Thic            | kness (            | in Feet)           |                    |                    |                    |              |  |  |  |
| 147 11                      | ъ 1                        | Winnip    | eg Gro            | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |  |
| <u>Well</u><br><u>Label</u> | <u>Red</u><br><u>River</u> | Roughlock | <u>Icebox</u>     | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |
| 59G074                      | 191                        |           |                   |                 |                    |                    |                    |                    | 533.24             | 196.68             | 729.92       |  |  |  |
| 59L036                      | 241                        |           |                   |                 |                    |                    |                    |                    | 686.12             |                    |              |  |  |  |
| 6oEo86                      | 417                        | 18.94     | 50.22             | 133             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 61Io46                      | 219                        |           |                   |                 |                    |                    |                    |                    | 679.13             |                    |              |  |  |  |
| 62B005                      | 343                        | 14.9      | 64                | 116             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 62H013                      | 166                        |           |                   |                 |                    |                    |                    |                    | 301.37             |                    |              |  |  |  |
| 64K049                      | 222                        |           |                   |                 |                    |                    |                    |                    | 737.24             |                    |              |  |  |  |
| 65Co83                      | 485                        |           |                   |                 |                    |                    |                    |                    | 883.63             | 66.28              | 949.91       |  |  |  |
| 65F053                      | 393                        |           | 47                | 135             |                    |                    |                    |                    | 245.52             |                    |              |  |  |  |
| 65Ko31                      | 446                        | 22.7      | 77                | 108             |                    |                    |                    |                    | 32.98              | 43.02              | 76           |  |  |  |
| 66Ao88                      | 467                        | 24.1      | 59.84             | 113             |                    |                    |                    |                    |                    |                    | 40           |  |  |  |
| 66F117                      | 477                        | 20.3      | 86                | 136             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 66I002                      | 276                        |           | 61.4              | 124             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 66J002                      | 429                        | 19.5      | 79.6              | 109             |                    |                    |                    |                    | 34.86              | 35.47              | 70.33        |  |  |  |
| 68B016                      | 233                        |           | 56.9              | 108             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 68F041                      | 414                        | 13.8      | 72                | 125             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 72 I017                     | 162                        |           |                   |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 72K044                      | 207                        | 16.95     | 50.18             | 153             |                    |                    |                    |                    | 253.46             | 149.54             | 403          |  |  |  |
| 77H008                      | 331                        | 21.68     | 70.58             | 131             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 77Jo53                      | 353                        | 7.9       | 74                | 138             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 77J057                      | 484                        | 31.8      | 114.9             | 81.2            |                    |                    |                    | 50.04              | 138.93             | 75.33              | 214.26       |  |  |  |
| 77L016                      | 271                        | 18.46     | 53.9              | 143             |                    |                    |                    |                    | 279.8              | 63.2               | 343          |  |  |  |
| 78Boo8                      | 456                        | 27.1      | 54.9              | 134             |                    |                    |                    |                    | 267.97             | 67.95              | 335.92       |  |  |  |
| 78C001                      | 473                        | 28.79     | 69.8              | 114             |                    |                    |                    |                    | 174.09             | 33.91              | 208          |  |  |  |
| 78H158                      | 334                        | 26.6      | 70.2              | 127             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 78L010                      | 249                        | 30.89     | 36                | 125             |                    |                    |                    |                    | 253.53             | 159.47             | 413          |  |  |  |
| 8oBoo6                      | 511                        | 36.6      | 113.2             | 71.2            |                    |                    |                    | 8.55               | 109.94             | 55.71              | 165.65       |  |  |  |
| 8oF005                      | 351                        | 20.11     | 75                | 130             |                    |                    |                    |                    | 291.14             |                    |              |  |  |  |
| 80G001                      | 527                        | 32.9      | 110.5             | 75.9            |                    |                    |                    | 12.44              | 115.91             | 48.09              | 164          |  |  |  |
| 8oI101                      | 306                        | 19        | 63.5              | 133             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 81H036                      | 476                        | 30.5      | 115               | 53              |                    |                    |                    |                    |                    |                    | 48           |  |  |  |
| 82Doo1                      | 502                        | 15.7      | 86.05             | 4.64            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 821080                      | 436                        | 17        | 69                | 141             |                    |                    |                    | 112.7              | 63.73              | 40.27              | 104          |  |  |  |
| 85B130                      | 458.o                      | 19.0      | 8 <sub>7</sub> .0 | 63.0            |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 85B212                      | 438                        | 13.7      | 75                | 147             |                    |                    |                    | 119.3              |                    |                    |              |  |  |  |
| 87G102                      | 435                        | 27.9      | 53.3              | 122             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 87L059                      | 462                        | 27.6      | 56.5              | 130             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 88D019                      | 446                        | 18.7      | 53.9              | 108             |                    |                    |                    |                    | 155.06             | 32.26              | 187.32       |  |  |  |
| 88Ko71                      | 470                        | 19.09     | 81                | 125             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 88Lo62                      | 48o                        | 7.9       | 78                | 120             |                    |                    |                    |                    |                    |                    |              |  |  |  |
| 93D103                      | 423                        | 23.1      | 47.48             | 134             |                    |                    |                    |                    | 295.21             | 105.47             | 400.68       |  |  |  |
| 96B159                      | 397                        | 19.1      | 46.8              | 132             |                    |                    |                    |                    |                    |                    | -            |  |  |  |
| 96E028                      | 397                        | 5.7       | 68                | 122             |                    |                    |                    |                    |                    |                    |              |  |  |  |

|                     | Saskatchewan               |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
|---------------------|----------------------------|-----------|---------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|--|--|--|--|
|                     | Unit Thickness (in Feet)   |           |               |                 |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| Well                | Dod                        | Winni     | eg Gro        | oup             |                    |                    | Deadw              | ood For            | mation             |                    |              |  |  |  |  |
| <u>Label</u>        | <u>Red</u><br><u>River</u> | Roughlock | <u>Icebox</u> | Black<br>Island | Member<br><u>F</u> | Member<br><u>E</u> | Member<br><u>D</u> | Member<br><u>C</u> | Member<br><u>B</u> | Member<br><u>A</u> | Member<br>AB |  |  |  |  |
| 96E124              | 377                        | 17.17     | 63.93         | 116             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96E258              | 437                        | 1.49      | 74            | 124             |                    |                    |                    |                    | 114.8              | 31.22              | 146.02       |  |  |  |  |
| 96F283              | 375                        | 25.72     | 54.18         | 116             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96G281              | 406                        | 22.8      | 52.3          | 120             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96G312              | 376                        | 23.99     | 53.01         | 118             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96Io68              | 379                        | 7.4       | 79            | 124             |                    |                    |                    |                    | 149.41             | 103.22             | 252.63       |  |  |  |  |
| 96I131              | 405                        | 20.8      | 46.3          | 122             |                    |                    |                    |                    | 156.88             | 12.46              | 169.34       |  |  |  |  |
| 96I227              | 370                        | 15.03     | 56.07         | 115             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96Joo8              | 400                        | 26.8      | 43.8          | 122             |                    |                    |                    |                    | 103.28             | 31.48              | 134.76       |  |  |  |  |
| 96J367              | 420                        | 26        | 49            | 131             |                    |                    |                    |                    | 186.34             | 64.66              | 251          |  |  |  |  |
| 96K164              | 377                        | 10.59     | 59.8          | 110             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 96L066              | 412                        | 19.5      | 44.6          | 124             |                    |                    |                    |                    | 128.63             | 29.37              | 158          |  |  |  |  |
| 96L309              | 412                        | 28.4      | 42.8          | 124             |                    |                    |                    |                    | 133.24             | 24.76              | 158          |  |  |  |  |
| 97A128              | 460                        | 16.8      | 61.6          | 105             |                    |                    |                    |                    | 203.38             | 25.95              | 229.33       |  |  |  |  |
| 97B227              | 419                        | 26.2      | 48.4          | 130             |                    |                    |                    |                    | 166.64             | 26.36              | 193          |  |  |  |  |
| 97C251              | 433                        | 20.7      | 78            | 105             |                    |                    |                    |                    | 37.23              | 43.77              | 81           |  |  |  |  |
| 97C300              | 419                        | 18.9      | 55.1          | 122             |                    |                    |                    |                    | 160.64             | 57.96              | 218.6        |  |  |  |  |
| 97E002              | <del>42</del> 3            | 22.4      | 43.3          | 140             |                    |                    |                    |                    | 155.31             | 130.69             | 286          |  |  |  |  |
| 97E046              | 444                        | 16.5      | 72            | 127             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97E081              | 382                        | 0.2       | 74            | 123             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97Eo85              | 412                        | 15.61     | 60,21         | 134             |                    |                    |                    |                    | 89.11              | 45.89              | 135          |  |  |  |  |
| 97E213              | 423                        | 28.1      | 51.82         | 104             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97F067              | 435                        | 21.79     | 71.52         | 125             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97F120              | 360                        | 25.25     | 52.24         | 112             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97F182              | 315                        | 18.55     | 70            | 128             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97F195              | 410                        | 24.79     | 47.8          | 110             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97F392              | 400                        | 18.46     | 50.95         | 93.1            |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97G199              | 387                        | 8.6       | 77            | 128             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97G315              | 385                        | 2.13      | 75            | 122             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97G432              | 431                        | 18.7      | 64.4          | 122             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97G483              | 371                        | 37.55     | 62.02         | 143             |                    |                    |                    |                    | 261.87             | 172.13             | 434          |  |  |  |  |
| 97H295              | 403                        | 22.21     | 58.56         | 136             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97 <sup>I</sup> 354 | 419                        | 24.9      | 48.5          | 131             |                    |                    |                    |                    | 253.1              | 101.9              | 355          |  |  |  |  |
| 97I431              | 469                        | 27.4      | 56.91         | 37.1            |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97I438              | 512                        | 30.8      | 113.3         | 80.4            |                    |                    |                    | 22.3               | 139.35             | 60.65              | 200          |  |  |  |  |
| 97J331              | 398                        |           | 73            | 131             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97K205              | 381                        | 26.01     | 54.82         | 128             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97L095              | 385                        | 17.4      | 50.37         | 123             |                    |                    |                    |                    | 86                 | 84.55              | 170.55       |  |  |  |  |
| 97L298              | 386                        | 16.7      | 50            | 119             |                    |                    |                    |                    | 107.14             | 74-35              | 181.49       |  |  |  |  |
| 97L301              | 413                        | 26.5      | 40.47         | 135             |                    |                    |                    |                    | 42.63              | 36.37              | 79           |  |  |  |  |
| 97L305              | 352                        | 3.82      | 62            | 119             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |
| 97L327              | 331                        | 17.05     | 54.72         | 141             |                    |                    |                    |                    | 210.39             | 120.61             | 331          |  |  |  |  |
| 97L361              | 416                        | 18.4      | 42.7          | 126             |                    |                    |                    |                    |                    |                    |              |  |  |  |  |

#### Saskatchewan Unit Thickness (in Feet) Winnipeg Group **Deadwood Formation** Red Well Member Member Member Member Member Member Member River Label Roughlock **Icebox Island** F E D <u>C</u> <u>B</u> <u>A</u> <u>AB</u> 98A033 419 15.7 49.9 139 98A073 467 22.2 66.1 115 98A081 118 73.66 146.67 440 20.7 70.32 73.01 98A149 125 417 17 44.7 98A228 125 9.9 447 73 98B015 402 19.45 52.4 108 98B191 60.64 118 431 30.22 43.6 98B210 401 14.1 96.8 98C138 16.1 128 410 52.57 98C155 326 67 136 22.05 98C263 60.3 124 70.63 76.09 146.72 430 23.9 98C298 354 15.4 59.5 132 66.<u>43</u> 98D041 466 20.9 107 98E160 280 26.78 68 128 204.2 98E189 126 409 15.9 44.05 98G073 86.75 397 45.7 120 19.5 134 33.25 98G075 390 19.5 39.4 130 98G108 16.1 48 64.62 30.38 404 129 95 98G193 398 18.9 47 125 61.55 32.45 94 98G201 386 18.7 44.2 122 80.12 98H036 268 27.11 44.61 132 98H069 40.8 401 21 130 98K067 12.8 416 56 134 219.2 18.61 98K107 61 132 99A081 62 119 350 0.3 99C003 402 9.7 59 131 99C054 122 454 17.7 79 124.1 21.14 145.24 99E132 126 328 17.5 59 99E245 435 23 50.5 115 99F392 415 8.5 71 117 99G151 2.71 64 357 27.68 99I286 48.31 104 415 99J213 200 21 308.06 127.36 72.1 134 435.42 -99K055 28.39 98.7 392 54.7 99K079 22.68 248.44 188.56 52.1 141 437 99L128 211 5.2 47.39 136

# **Appendix D Core and Thin Section Descriptions**

North Dakota drill core samples and thin sections were viewed at the Wilson M. Laird Core and Sample Library in Grand Forks, North Dakota. Drill core samples from Saskatchewan were viewed at the Subsurface Geological Laboratory in Regina, Saskatchewan. Cores are described with a minimum increment of half a foot and the depths were recorded from what was written on the core itself or the box that they are stored in.

**API Number:** 33-101-00006

Well Name: Walter & Ingeberg Waswick #1

Well Operator: Stanolind Oil & Gas Co.

Location: SWNE Sec2 T153N R85W. Ward County, ND.

**Cored Intervals:** 10,960' – 11,008'

Top of Deadwood Formation: Did not reach Deadwood

# Winnipeg Group

## **Black Island Formation**

#### **Ordovician**

TS 10,978' SANDSTONE. Medium grained, moderate to well sorted, subangular to subrounded, moderate clay matrix, minor anhydrite cement.

TS 10,989' SANDSTONE. Medium grained, moderate to well sorted, subangular to rounded, moderate clay matrix, minor compacted grains.

TS 11,001' SANDSTONE. Fine to medium grained, moderate to well sorted, subangular to rounded, quartz overgrowths, very low porosity, moderate compacted grains.

TS 11,005' SANDSTONE. Medium grained, well sorted, subrounded, minor glauconite, moderate pyrite, quartz overgrowths, moderate clay, minor compacted grains.

TS 11,007' SANDSTONE. Fine to medium grained, moderate to poorly sorted, angular to subrounded, quartz overgrowths, minor pyrite, occasional cement replaced with pyrite.

**API Number:** 33-007-00001

Well Name: Herman May U. #1

Well Operator: Amerada Petroleum Corp.

Location: NWNE Sec9 T139N R100W. Billings County, ND.

**Cored Intervals:** 12,992' – 13,172'

13,182' - 13,325'

**Top of Deadwood Formation: 12,959**'

## **Deadwood Formation**

## Member E

#### **Ordovician**

TS 12,995' LIMESTONE. Minor quartz grains, subrounded to rounded, moderately mostly calcite, minor dolomite, sorted, very low porosity, slightly increased porosity along fractures, fractures are filled with clay.

TS 12,998' SANDSTONE. Medium grained, well sorted, subrounded, dolomite cement, low amplitude stylolites.

TS 13,066' SANDSTONE. Fine to medium grained, moderately sorted, subrounded, low amplitude stylolites, minor calcite, abundant intergranular porosity.

TS 13,077' SANDSTONE. Fine to medium grained, moderate to poorly sorted, angular to subrounded, abundant intergranular porosity, low amplitude stylolite, minor anhydrite near stylolite.

TS 13,106' SANDSTONE. Medium grained, moderate to well sorted, subangular to rounded, minor calcite and anhydrite cement, abundant intergranular porosity.

SANDSTONE. Medium grained, moderate to well sorted, subrounded, low amplitude TS 13,115' stylolite, minor anhydrite.

# **Deadwood Formation**

# Member D

# Ordovician

TS 13,175 LIMESTONE. Mostly calcite, occasional dolomite rhombs, minor unidentifiable fossil debris, abundant glauconite, minor hematite.

**API Number:** 33-105-00519

Well Name: BOE-Olson #1

Well Operator: Amerada Petroleum Corp.

Location: SWNE Sec15 T155N R96W. Williams County, ND.

Cored Intervals: 13,586' – 13,843'
Top of Deadwood Formation: 13,669'

# **Deadwood Formation**

# Member F

# Ordovician

TS 13,686' SANDSTONE. Fine to medium grained, well sorted, subrounded to rounded, calcite cement, high porosity, minor quartz overgrowths.

# **Deadwood Formation**

## Member E

#### **Ordovician**

TS 13,786' LIMESTONE. Abundant fossil debris, gastropods, echinoderms, trilobite, mostly calcite, some fossils filled with dolomite, poorly sorted, no strong orientation.

TS 13,812' LIMESTONE. Abundant fossil debris, mostly calcite, minor dolomite, some dolomite rhombs.

**API Number:** 33-105-00529

Well Name: Ulven Unit #1

Well Operator: Amerada Petroleum Corp.

Location: CNE Sec34 T156N R96W. Williams County, ND.

**Cored Intervals:** 13,930' – 13,967'

14,016' - 14,022'

**Top of Deadwood Formation:** 13,928'

# **Deadwood Formation**

# Member F

# Ordovician

TS 13,965' SANDSTONE. Fine to medium grained, well sorted, subrounded to rounded, dolomite cement, occasional dolomite rhombs, minor calcite, minor clay laminae.

**API Number:** 33-053-00410

Well Name: Antelope Unit "A" 1

Well Operator: Amerada Petroleum Corp.

Location: NESE Sec1 T152N R95W. McKenzie County, ND.

**Cored Intervals:** 14,146' – 14,209'

14,221' - 14,222'

14,253' - 14,369'

15,113' - 14,135'

**Top of Deadwood Formation:** 14,244'

# Winnipeg Group

# **Black Island Formation**

#### **Ordovician**

TS 14,165' SANDSTONE. Medium grained, well sorted, subrounded, high porosity, highly fractured, most of the porosity in in the fractures, occasional dissolution porosity, minor clay.

# **Deadwood Formation**

# Member F

#### Ordovician

TS 14,253' SANDSTONE. Fine to medium grained, moderate to well sorted, subrounded to rounded, quartz overgrowths, moderate intergranular porosity, minor calcite and dolomite cement.

TS 14,302' SANDSTONE. Fine to medium grained, poorly sorted, subrounded to rounded, abundant calcite cement, moderate zoned dolomite rhombs, minor unidentifiable fossil debris, some grains are lined with dolomite, minor quartz overgrowths.

TS 14,348' SANDSTONE. Fine to medium grained, poorly sorted, angular to subrounded, calcite and micrite cement, some dolomite lined grains, abundant fossils, crinoid, brachiopod, trilobite, minor clay.

TS 14,357' SANDSTONE. Fine to medium grained, poorly sorted, subrounded, calcite and micrite cement, minor anhydrite and dolomite cement, occasional dolomite rhombs, moderate fractures, increased porosity due to fractures.

## **Deadwood Formation**

## Member A

## **Cambrian**

TS 15,116' SANDSTONE. Fine to medium grained, poorly sorted, subangular to subrounded, quartz overgrowths, some grains corroded, high porosity, minor dolomite cement.

API Number: 33-023-00171 Well Name: Svangstu #24-18

Well Operator: Shell Oil Co.

Location: SESW Sec18 T163N R95W. Divide County, ND.

**Cored Intervals:** 12,605' – 12,652'

12,677' - 12,739'

12,742' - 12,876'

13,363' - 13,373'

13,377' - 13,381'

**Top of Deadwood Formation: 12,631**'

# **Deadwood Formation**

## Member E

#### **Ordovician**

TS 12,627' SANDSTONE. Fine to medium grained, moderate to well sorted, subangular to subrounded, calcite cement.

TS 12,678' SANDSTONE. Very fine to medium grained, poorly sorted, subangular to subrounded, abundant clay laminae, minor dolomite cement.

TS 12,682' SANDSTONE. Medium grained, well sorted, subrounded, rare anhydrite, quartz overgrowths.

TS 12,700' SANDSTONE. Fine to medium grained, moderate to poorly sorted, subangular to subrounded, increase porosity due to voids, arenitic.

TS 12,702' SANDSTONE. Very fine to fine grained, very well sorted, angular to subrounded, minor calcite cement.

TS 12,707' SANDSTONE. Fine to medium grained, poorly sorted, angular to subrounded, calcite cement, rare fractured quartz grains, moderate clay laminae, occasional horizontal fractures, hematite stained.

TS 12,709' SANDSTONE. Fine to medium grained, moderate to well sorted, subangular to rounded, minor calcite cement.

TS 12,713' SANDSTONE. Medium grained, well sorted, subangular to rounded, minor calcite cement.

TS 12,722' SANDSTONE. Medium grained, well sorted, subangular to rounded, minor calcite cement, minor intergranular clay.

TS 12,724' SANDSTONE. Top half quart arenite similar to above. Stylolite goes through the middle. Bottom half is very fine to medium grained, poorly sorted, subangular to subrounded, dolomite cement, abundant dolomite rhombs, moderate glauconite grains.

TS 12,742' SANDSTONE. Fine to medium grained, well sorted, subangular to subrounded, minor calcite cement.

TS 12,749' SANDSTONE. Fine to medium grained, moderate to poorly sorted, subangular to subrounded, dolomite cement, abundant dolomite rhombs.

TS 12,752' SANDSTONE. Fine to medium grained, poorly sorted, subangular to rounded, dolomite cement, abundant dolomite rhombs.

TS 12,757' SANDSTONE. Fine to medium grained, moderately sorted, subangular to subrounded, rare calcite cement.

TS 12,759' SANDSTONE. Fine to medium grained, moderate to well sorted, angular to subrounded, significant stylolite through the middle, lithology remains consistent on both sides, besides minor anhydrite and minor dolomite cement and rhombs near the stylolite.

TS 12,768 SANDSTONE. Fine grained, well sorted, subangular to subrounded, dolomite cement, abundant dolomite rhombs.

TS 12,775' SANDSTONE. Medium grained, well sorted, subrounded, dolomite cement, abundant dolomite rhombs, minor clay laminations, increased dolomite near clay.

TS 12,783' SANDSTONE. Medium grained, well sorted, angular to subrounded, dolomite cement, abundant dolomite rhombs, moderate clay laminations, increased dolomite near clay, possible low amplitude stylolite.

TS 12,789' SANDSTONE. Medium grained, well sorted, subrounded, dolomite cement, minor anhydrite cement, increase dolomite near bottom.

TS 12,803' SANDSTONE. Fine to medium grained, well sorted, angular to subrounded, abundant dolomite cement, abundant dolomite rhombs, moderate clay laminations, increased dolomite near clay, low amplitude stylolite.

# **Deadwood Formation**

# Member D

# **Cambrian**

TS 12,827' SILTSTONE. Very fine to fine grained, well sorted, subrounded, very abundant dolomite cement, abundant calcite and dolomite rhombs, minor anhydrite.

TS 12,846' LIMESTONE. Minor fine quartz grains, subrounded, moderate unidentifiable fossil debris, some trilobite debris, abundant glauconite, abundant dolomite, moderate calcite, minor clay along fractures, minor low amplitude stylolite.

TS 12,875' LIMESTONE. Minor fine quartz grains, moderate to abundant glauconite, dolomite cement, occasional dolomite rhombs, moderate unidentifiable fossil debris, some echinoderm debris, possible burrow evidence, minor clay.

## **Deadwood Formation**

#### Member A

#### **Cambrian**

TS 13,365' SANDSTONE. Fine to medium grained, moderate to well sorted, subrounded, minor calcite cement, minor microcline.

TS 13,368' SANDSTONE. Fine grained, moderate to well sorted, subrounded, some grains are fractured, minor calcite cement, some cement replaced with pyrite, minor small scale horizontal fractures.

TS 13,369' SANDSTONE. Fine grained, moderate to well sorted, angular to subrounded, minor calcite cement.

TS 13,371' SANDSTONE. Fine to medium grained, moderate to well sorted, subangular to subrounded, minor calcite cement.

TS 13,378' SANDSTONE. Fine to medium grained, moderate to poorly sorted, subangular to subrounded, some grains are fractured, minor calcite cement.

**API Number:** 33-075-00744

Well Name: Duerre #43-5

Well Operator: Shell Oil Co.

Location: NESE Sec5 T163N R87W. Renville County, ND.

**Cored Intervals:** 9,418' – 9,444'

9,491' - 9,494'

9,550' - 9,596'

**Top of Deadwood Formation:** 9,444'

# **Winnipeg Group**

# **Black Island Formation**

# Ordovician

9,418' – 9,420.5' SILTSTONE. Light to medium gray, very fine to fine grained, mostly massive, shaly in part, interbedded with very thin to two inch sandstone beds, occasional zones where the cement has been replaced with pyrite, small horizontal fractures.

9,420.5' – 9,426' SILTSTONE. Medium to dark gray, very fine to fine grained, well sorted, horizontally laminated, some laminated are lined with pyrite and sometimes with fine to medium quartz grains, occasional zones where the cement has been replaced with pyrite, minor hematite staining, occasional thin zones of massive quartz sandstone.

9,426' – 9,426.5' SILTSTONE. Light to medium gray, very fine to fine grained, well sorted, mostly massive, shaly in part, interbedded with very thin to two inch sandstone beds, occasional zones where the cement has been replaced with pyrite, small horizontal fractures, some minor large white angular quartz clasts.

9,426.5' – 9,450' SILTSTONE. Medium gray, light brown, tan, very fine to fine grained, well sorted, horizontally laminated, some laminated are lined with pyrite and sometimes with fine to medium

quartz grains, moderate glauconite, occasional zones where the cement has been replaced with pyrite, minor hematite staining, occasional thin zones of massive quartz sandstone.

### **Deadwood Formation**

# Member B

### Ordovician/Cambrian

9,450' – 9,454' SANDSTONE. Light to medium tan, light green gray, fine to medium grained, slightly dolomitic cement, alternates between well sorted horizontally laminated sandstone and poorly sorted glauconitic breccia, clasts are slightly rounded, minor pyrite, moderate glauconitic throughout more in brecciated areas, minor thin clay laminae.

9,454' – 9,458' SANDSTONE. Light to medium tan, light gray, green gray, very fine to medium grained, poorly sorted, abundant glauconite throughout, intense deformation, mostly soft sediment deformation, a lot of rip up clasts, abundant Precambrian rip up clasts, size increases with depth, very minor dolomite cement.

9,458' – 9,482' BRECCIA. Light to medium tan, all clasts are Precambrian, most are pink, some are gray, very angular, very poorly sorted.

TS 9,461' SANDSTONE. Very fine to medium grained, poorly sorted, quartz grains, rare microcline, angular to subrounded, mostly calcite cement, minor anhydrite cement, minor quartz overgrowths, very minor biotite.

TS 9,466' SANDSONE. Fine to medium grained, moderate to poorly sorted, subangular to subrounded, quartz grains, abundant glauconite, calcite and anhydrite cement, some grains are rimmed with calcite.

TS 9,469' BRECCIA. Very fine to coarse grained, poorly sorted, highly fragment, sutured quartz grains, abundant microcline, calcite and anhydrite cement, occasional quartz overgrowths.

9,482 – 9,494' SILTSTONE. Light to medium gray, green gray, green in some areas, very fine to fine grained, well sorted, abundant glauconite, upper section is mostly massive, occasional horizontal fractures, minor dolomite cement, below has alternating zones of wavy horizontal laminations and intensive deformation, abundant burrows creating a mottled texture, small scale faulting, soft sediment deformation, occasional producing rounded clasts of horizontally laminated siltstone, very rare Precambrian rip up clasts.

9,494' – 9,550' No core.

### **Precambrian**

9,550' – 9,596' METAMORPHIC. Gneiss.

TS 9,550' METAMORPHIC. Abundant biotite, fractured quartz grains, low intergranular porosity.

**API Number:** 33-075-00750 **Well Name:** Mott #32X-3

Well Operator: Shell Oil Co.

Location: SWNE Sec3 T163N R87W. Renville County, ND.

Cored Intervals: 9,155' – 9,234'
Top of Deadwood Formation: 9,193'

# Winnipeg Group

# **Black Island Formation**

# **Ordovician**

TS 9,156' SANDSTONE. Medium grained, well sorted, subangular to subrounded, very low porosity, quartz overgrowth, rare clay.

# **Deadwood Formation**

# Member B

# Ordovician/Cambrian

TS 9,174' SANDSTONE. Very fine to medium grained, subangular to rounded, moderate to poorly sorted, some quartz overgrowths, occasional anhydrite cement, occasional calcite cement.

TS 9,191' SANDSTONE. Very fine to fine, poorly sorted, angular to subrounded, fragmented, anhydrite and calcite cement.

# **Precambrian**

TS 9,196' METAMORPHIC. Fine to medium grained, poorly sorted, angular to subrounded, fragmented, quartz overgrowths, anhydrite and calcite cement, minor microcline, possible fractured quartz grains.

TS 9,200' METAMORPHIC. Very fine to medium grained, poorly sorted, angular to subrounded, fragmented, minor biotite, abundant clay, anhydrite and calcite cement, less quartz grains.

TS 9,209' METAMORPHIC. Very fine to medium grained, poorly sorted, angular to subrounded, highly fragmented, silica cement, moderate anhydrite, muscovite, abundant clay.

TS 9,216' METAMORPHIC. Very fine to medium grained, poorly sorted, angular to subrounded, highly fragmented, calcite cement, fractures filled with calcite, minor anhydrite, muscovite, abundant microcline, moderate clay.

**API Number:** 33-075-00763

Well Name: Osterberg #22X-1

Well Operator: Shell Oil Co.

Location: SWNW Sec1 T161N R85W. Renville County, ND.

**Cored Intervals:** 9,114' – 9,323'

**Top of Deadwood Formation:** 9,131'

# Winnipeg Group

### **Black Island Formation**

### **Ordovician**

9,114' – 9,123' SANDSTONE. Light tan, off white, light gray, medium grained, mostly massive, with very few sedimentary structures visible, occasional well-defined <u>Skolithos</u> burrows, some zones of intense bioturbation resulting in a mottled texture, burrows are outlined in very dark gray to black clay, minor amounts of glauconite are present and in some areas altered to a hematite, hydrogen sulfide staining in prevalent throughout.

9,123' – 9,126.5' CLAYSTONE. Very light to dark gray, off white, very fine to medium grained, moderate to well sorted, intermixed and interbedded shale to claystone and sandstone, abundant soft sediment deformation, slumping and some water displacement structures, horizontal beds are still visible, minor burrows, glauconite up to 15%, occasional thicker zones of sandstones, arenite, minor deformation, mostly massive.

9,126.5' – 9,127.5' No core.

9,127.5' – 9,129.5' SANDSTONE. Light to medium gray, light tan, very fine to coarse grain, moderate to well sorted, soft sediment deformation due to slumping, producing some breccia texture,

minor dolomite cement, occasional voids filled with dolomite, minor glauconite, minor dark gray clay intermixed, thin layer of claystone similar to above.

### **Deadwood Formation**

# Member C

### Ordovician

9,129.5' – 9,141.5' SANDSTONE. Quartz wacke, light to medium gray, light tan, fine to medium grained, we sorted, subrounded, dolomitic cement, repeating intervals of extensively deformed and minor deformation, majority is soft sediment deformation due to slumping and loading, occasional horizontal burrows, zones of conglomerate containing subrounded to sub angular limestone and sandstone clasts, abundant glauconite in the conglomerate, occasional minor water escape structures, minor subvertical and subhorizontal fractures and voids filled with dolomite, occasional vertical Skolithos burrows found in less deformed areas, glauconite grains found throughout, some burrows and voids are filled with calcite.

9,141.5 – 9,160' SANDSTONE. Light to medium gray, fine to coarse grained, subrounded, well sorted, up to 20% glauconite, calcite and silica cement, alternating zones of planar laminations and extensive deformation, laminations have very minor deformation, minor faint cross beds, common soft sediment deformation due to slumping and loading, some zones of conglomerate and near breccia, minor well defined vertical <u>Skolithos</u> burrows, occasional horizontal burrows, abundant intermixed dark gray clay.

9,160' – 9,161.5' SANDSTONE. Gray, light tan, very fine to medium grained, well sorted, subrounded, mostly near horizontally bedded, minor soft sediment deformation between laminations, minor bioturbation, minor zone of intense deformation, nearly conglomeratic with very coarse angular grains, minor glauconite around 2% with up to 15% in bioturbated areas.

9,161.5' – 9,171.5' SANDSTONE. Quartz wacke, light to medium tan, green gray, light gray, fine grained, moderate to well sorted, subangular to subrounded, slightly calcareous, extensively bioturbated for the most part, abundant dark gray to black clay mixed with bioturbation outlining burrows, occasional zones of massive to faintly horizontal bedded with well-defined <u>Skolithos</u> burrows, minor cross beds, moderate glauconite between 5-10% overall with some areas up to 20%.

9,171.5' – 9,173.5' SANDSTONE. Quartz arenite, very light to medium tan, light gray, light brown, very fine to fine grained, well sorted, subrounded to rounded, mostly horizontally bedded, occasional cross beds, minor soft sediment deformation noticeable between laminations, massive zone near the bottom with well-defined <u>Skolithos</u> burrows, minor glauconite throughout, below 5% but some zones up to 15%.

9,173.5' – 9,179' SANDSTONE. Quartz wacke, light to medium tan, light gray, very fine to fine grained, subrounded to rounded, well cemented, slightly calcareous, extensively bioturbated, horizontal and vertical burrows producing a mottled texture, occasional massive areas with well-defined <u>Skolithos</u> burrows, abundant very dark gray to black clay mixed with bioturbated areas.

9,179' – 9,180.5' SANDSTONE. Quartz arenite, light to medium tan, light brown, light green gray, fine to medium grained, moderate to well sorted, subrounded, moderate glauconite 10%, mostly horizontally bedded, occasional cross beds, soft sediment deformation noticeable between laminations, some zones of extensive bioturbation, occasional small scale fractures.

9,180.5' – 9,187.5' SILTSTONE. Quartz wacke, light to medium gray, light tan, off white, very fine to fine grained, moderate to well sorted, subangular to subrounded, minor glauconite up to 10% in some areas, trace pyrite, slightly calcareous, heavily bioturbated, zones of bioturbation

9,187.5' – 9,190' SILTSTONE. Very light to light tan, light gray, fine grained, well sorted, subrounded, horizontally bedded, minor glauconite, very thin shale laminae between siltstone beds, minor soft sediment deformation, zones of heavy bioturbation, contain moderate amount of shale.

# **Deadwood Formation**

# Member B

### Ordovician/Cambrian

9,190' – 9,202.5' SILTSTONE. Quartz wacke, light to dark gray, light tan, very fine to medium grained, well sorted, subangular to subrounded, minor glauconite 5%, heavily bioturbated, occasional zones of wavy to horizontal bedded siltstone, bioturbated areas contain moderate amounts of shale.

9,202.5' – 9,203' CONGLOMERATE. Very light to medium gray, green gray, light tan, matrix is very fine to fine quartz, fine to medium grained glauconite, and shale, poorly sorted, subangular to rounded, clasts are elongated horizontal bedded siltstone, moderate unidentifiable fossil fragments, slightly calcareous, abundant glauconite, minor amounts of hematite.

9,203' – 9,210.5' SILTSTONE. Very light to medium tan, light brown, light gray, very fine to fine grained, well sorted, subangular to subrounded, calcareous, moderate unidentifiable fossil debris, horizontal to near horizontal beds, bioturbation and deformation are minor, cross beds are rare, glauconite is very minor at 5%, occasional zones of increased deformation, mostly soft sediment deformation, occasional minor fractures.

9,210.5' – 9,212.5' CONGLOMERATE. Very light to medium gray, green gray, light tan, matrix is very fine to fine quartz, fine to medium grained glauconite, and shale, poorly sorted, subangular to rounded, clasts are elongated horizontal bedded siltstone, orientation of clasts appears random, moderate unidentifiable fossil fragments, slightly calcareous, abundant glauconite, minor amounts of hematite.

9,212.5' – 9,223' SILTSTONE. Very light to medium tan, light gray, very fine to fine grained, well sorted, horizontal beds, interlaminated with thin shale beds, glauconite found in occasional zones but minor throughout, abundant soft sediment deformation and water escape structures, occasional faint vertical burrows. A few zones of conglomerate with subrounded to well rounded elongated siltstone clasts, abundant glauconite, minor amounts of hematite, poorly sorted.

9,223' – 9,228' SHALE. Medium to dark gray, green gray, very fissile, very fine grained, horizontally bedded, moderate unidentifiable fossil fragments, abundant glauconite grains up to 90%, occasional interlaminated quartz arenite sandstone to siltstone, slightly calcareous, minor soft sediment deformation.

9,228' – 9,235' No core.

9,235' – 9,236' SANDSTONE. Light to medium gray, light tan, light green gray, very fine to medium grained, well sorted, subrounded, 5% to 30% medium grained glauconite, trace pyrite, trace anhydrite, massive to near horizontal bedded, abundant bioturbation from burrows and soft sediment deformation, in zones of deformation hematite is abundant.

9,236' – 9,248.5' SILTSTONE. Light gray, light to medium green gray, fine to medium grained, moderate to well sorted, subrounded to well rounded, glauconite up to 60%, slightly calcareous, minor unidentifiable fossil fragments, horizontal beds, occasional soft sediment deformation, minor cross beds, occasional thin clayshale laminae.

9,248.5' – 9,249' SHALE. Medium to dark gray, very fine grained, moderate glauconite grains 20%, occasional coarse grained quartz sand, fissile, occasional faint horizontal beds, noncalcareous.

9,249' – 9,254' SILTSTONE. Light gray, light to medium green gray, fine to medium grained, moderate to well sorted, subrounded to well rounded, glauconite up to 30%, clasts similar to the underlying

conglomerate found in multiple zones with no oxidation, faint horizontal beds, abundant deformation due to burrows and minor soft sediment deformation

9,254' – 9,255' CONGLOMERATE. Brick red, medium olive green, light gray, medium tan, matrix is very fine to fine grained quartz silt and fine to medium grained glauconite, up to 40% glauconite, poorly sorted, subangular to well rounded, elongated clasts of quartz siltstone, abundant hematite staining.

9,255' – 9,270.5' SILTSTONE. Light to medium green gray, light gray, off white, very fine to fine grained, very well to well sorted, subrounded, up to 5% to 75% glauconite, moderate unidentifiable fossil fragments, some areas where glauconite is altered to hematite, minor amounts of pyrite, mostly horizontal to near horizontal beds with minor cross beds, very minor bioturbations, occasional horizontal burrows and minor soft sediment deformation,

9,270.5' – 9,271' LIMESTONE. Brick red, brown, massive, abundant fossil fragments, red color due to intense oxidation.

9,271' – 9,296' SILTSTONE to SHALE: Light to dark green gray, medium to dark gray, very fine to fine grained, well to very well sorted, abundant glauconite 30% to over 75%, wavy to near horizontal bedded, slightly carbonaceous, areas of minor soft sediment deformation and minor burrows, mudstone is noncalcareous, very dark gray, fissile, and horizontally bedded.

# **Deadwood Formation**

### Member A

#### Cambrian

9,296' – 9,298.5' SANDSTONE. Glauconitic quartz arenite, light tan, light brown, reddish brown, light green gray, heavily oxidized, very fine to medium grained, subangular to subrounded,

carbonaceous in part, faint horizontal laminations, abundant hematite, abundant limonite and hematite staining.

9,298.5' – 9,299' LIMESTONE. Brick red, brown, yellow red, highly deformed from soft sediment deformation, moderate fossil fragments, most likely trilobites, red color due to intense oxidation, hematite and limonite staining throughout, glauconite sandstone found at the bottom.

9,299' – 9,301.5' SILTSTONE. Light gray, light to medium gray green, very fine to medium grained, well sorted, subrounded to rounded, up to 40% glauconite grains, wavy to near horizontal laminated, upper section is more deformation are contains glauconitic quartz clasts similar to the underlying conglomerate.

9,301.5' – 9,303.5' CONGLOMERATE. Light to medium gray green, light gray, matrix is mostly fine grained quartz and medium grained glauconite, rounded to well rounded, poorly sorted, clasts are lined in glauconite, carbonaceous in part.

9,303.5' – 9,304.5' SANDSTONE. Quartz arenite. Very light to light tan, light gray, off white, light brown, very fine to medium grained, very well to well sorted, less than 5% medium grained glauconite, massive with some vertical burrows

9,304.5' – 9,306.5' SANDSTONE. Quartz wacke. Very light to medium gray, light tan, very fine to medium grained, 10% medium grained glauconite grains, glauconite content increases towards the top to about 20%, some grains weathered to hematite and stained the surrounding grains, faint horizontal bedding.

9,306.5' – 9,307' CONGLOMERATE. Light to medium brown, fine to very coarse grained, poorly sorted, grains up to 0.25", subrounded to rounded, clasts are mostly quartz sand grains with some limonite stained metamorphic clasts, 20% to 25% fine to medium grained glauconite.

9,307' – 9,307.5' SANDSTONE. Quartz arenite. Light tan, very light gray green, fine to coarse grained, subrounded to rounded, well sorted, 10% glauconite grains, upper part horizontally bedded and lower part mostly massive, a few sub horizontal fractures, sharp uneven upper contact.

9,307.5' – 9,308' CONGLOMERATE. Light to medium brown, fine to very coarse grained, poorly sorted, grains up to 0.25", subrounded to rounded, clasts are mostly quartz sand grains with some limonite stained metamorphic clasts, 20% to 25% fine to medium grained glauconite.

# **Precambrian**

9,308' – 9,322.5' PRECAMBRIAN. Quartz gneiss, dark gray to black, occasionally weathered green, abundant biotite, subvertical fractures.

API Number: 33-023-00171 Well Name: Svangstu #24-18

Well Operator: Shell Oil Co.

Location: SESW Sec18 T163N R95W. Divide County, ND.

Cored Intervals: 11,637' – 11,669'
Top of Deadwood Formation: 11,300'

# **Deadwood Formation**

### Member B

### Ordovician/Cambrian

TS 11,652' SANDSTONE. Medium grained, well sorted, subrounded to rounded, porosity low, slightly increased porosity near fractures, fractures filled with clay, abundant glauconite, anhydrite cement.

TS 11,665' SANDSTONE. Fine to medium grained, poorly sorted, subrounded to rounded, abundant intergranular porosity, slightly increased porosity near fractures, abundant glauconite, anhydrite cement.

TS 11,637' SANDSTONE. Fine to medium grained, subrounded, moderate to well sorted, occasional angular to subangular microcline, very low porosity, calcite cement, abundant glauconite.

TS 11,669' SANDSTONE. Medium grained, subrounded, well sorted, occasional microcline, occasional dolomite rhombs, moderate intergranular porosity, minor anhydrite cement, minor quartz overgrowths, abundant glauconite, occasional hematite, trace feldspar.

**API Number:** 33-089-00242

Well Name: William Bernhardt #1

Well Operator: Shell Oil Co.

Location: NWNE Sec28 T141N R93W. Stark County, ND.

**Cored Intervals:** 12,386' – 12,443'

**Top of Deadwood Formation: 12,466**'

**Winnipeg Group** 

**Black Island Formation** 

**Ordovician** 

TS 12,387' SANDSTONE. Arenite, fine grained, well sorted, subrounded, low porosity, occasional

zones of increased porosity, increase porosity usually caused by fractures, silica cement.

TS 12,396' SANDSTONE. Arenite, fine to medium grained, moderate to well sorted, subangular to

subrounded, increased fracture porosity, still low porosity, very fine grained clay matrix, some fractures

filled with calcite.

TS 12,399' SANDSTONE. Arenite, medium grained, moderate sorted, subrounded to rounded,

moderate porosity, some quartz overgrowths.

TS 12,401.5° SANDSTONE. Arenite, medium grained, moderate to well sorted, subangular to

subrounded, high porosity, low amplitude stylolite, minor calcite cement.

TS 12,402.5° SANDSTONE. Arenite, medium grained, moderate to well sorted, subangular to

subrounded, high porosity, minor calcite cement.

TS 12,435' SANDSTONE. Medium grained, poorly sorted, subrounded, high intergranular porosity,

abundant dolomite cement.

181

**API Number:** 33-053-01190 **Well Name:** Grimestad #4-6

Well Operator: Amerada Hess Corporation

Location: NESE Sec6 T152N R95W. McKenzie County, ND.

**Cored Intervals:** 14,615' – 14,627'

14,631' - 14,643'

**Top of Deadwood Formation:** 14,621'

# **Winnipeg Group**

# **Black Island Formation**

### **Ordovician**

14,615' – 14,615.5' SHALE. Green, very fine grained with occasional laminations of coarser, occasional black grains.

14,615.5' – 14,617.5' SILTSTONE. Gray to dark gray, fine to very fine grained. Soft sediment deformation and wavy clay lamination visible.

# **Deadwood Formation**

# Member F

# **Ordovician**

14,617.5' – 14,618.5' SANDSTONE. Arenite, light gray to gray, medium to fine grained. Evidence of soft sediment deformation and bioturbation, burrows, fossils debris, and cross bedding.

14,618.5' – 14,627' SANDSTONE. Wacke, light to dark gray, fine to medium grained and mostly well sorted. Evidence of soft sediment deformation and possible bioturbation, as well as burrows and fossils debris. Darker and finer grains found within thin clay laminations. Predominantly noncalcareous with occasional quartz filled fractures.

14,627' – 14,631' No core.

14,631' – 14,643' SANDSTONE. Wacke, light gray to dark gray, fine to medium grained, and poorly to moderately sorted, darker, finer grains are found within wavy clay laminations, soft sediment deformation and bioturbation, as well as fossil debris.

TS 14,640' SANDSTONE. Fine to medium grained, poorly sorted, quartz grains, some grains are rimmed in dolomite, cement is dolomitic, occasional silica cement, minor anhydrite and calcite cement, smaller grains are subangular to subrounded, larger grains are subrounded to rounded, minor very fine brown clay, low porosity,

**API Number:** 33-089-00262

Well Name: Hamann #1-19-4B

Well Operator: Gulf Oil Corp.

Location: NESW Sec19 T139N R92W. Stark County, ND.

Cored Intervals: 11,780' – 11,867'
Top of Deadwood Formation: 11,810'

### **Winnipeg Group**

### **Black Island Formation**

### **Ordovician**

11,799' – 11,801' SANDSTONE. Off white, light to medium gray, pale yellow, orange brown, fine grained, rounded to well rounded, well sorted, extensively bioturbated, mostly horizontal wavy burrows, minor dolomite cement, some cement replaced with pyrite, large voids lined with dolomite crystals and some pyrite crystals, interbedded shale, up to six inches thick, horizontal to wavy beds, minor amounts of fine to medium sand.

11,801' – 11,801.5' LIMESTONE. Gray, very fine to medium grained, subrounded, well sorted, minor subhorizontal and subvertical fractures, occasional zones of bioturbation, mostly horizontal burrows, minor zones where the cement has been replaced with pyrite, medium grain sand found within.

11,801.5' – 11,803' SANDSTONE. Tan, medium to dark gray, very fine to fine grained, well sorted, bioturbation increases in lighter colored zones, occasional intermixed very dark gray clay laminae, near the bottom deformation increases, three inch zone of black shale.

11,803' – 11,807' SANDSTONE. Arenite, very light to light tan, off white, very fine to fine grained, well sorted, mostly massive, rare horizontal <u>Skolithos</u> burrows, occasional intervals of dark gray clay laminae, nearly horizontal with some soft sediment deformation, occasional thicker clay intervals.

11,807' – 11,808' SHALE. Dark gray to black, very fine grained, well sorted, no deformation, horizontal beds.

# **Deadwood Formation**

# Member F

### **Ordovician**

11,808' – 11,809.5' SANDSTONE. Arenite, very light to light tan, off white, light gray, pale yellow, fine grained, well sorted, rounded to well rounded, heavily deformed, mostly horizontal burrows, occasional small zones where the cement has been replaced with pyrite, occasional zones where the grains are stained orange due to the oxidation of hematite, very minor effervescence, minor dolomite cement, large voids are lined with dolomite crystals and minor amounts of pyrite crystals.

11,809.5' – 11,810' LIMESTONE. Light to medium tan, light brown, very fine to fine grained, subrounded to subangular, well sorted, intense effervescence, clusters of hematite and pyrite, horizontal fractures are stained very dark brown to red, due to the oxidation of hematite.

11,810' – 11,832.5' SANDSTONE. Arenite, very light to light tan, off white, light gray, pale yellow, fine grained, well sorted, rounded to well rounded, heavily deformed, mostly horizontal burrows, occasional small zones where the cement has been replaced with pyrite, occasional zones where the grains are stained orange due to the oxidation of hematite, very minor effervescence, minor dolomite cement, large voids are lined with dolomite crystals and minor amounts of pyrite crystals.

### **Deadwood Formation**

# Member E

#### Ordovician

11,832.5' – 11,833' SHALE. Medium to dark gray, black, very fine grained, well sorted, horizontal beds, rare soft sediment deformation.

11,833' – 11,833.5' SANDSTONE. Tan, light green, light gray, very fine grained, well sorted, subangular, dolomitic cement, occasional horizontal fractures, small shale interval at the bottom.

11,833.5' – 11,834' SILSTONE. Light pink tan, light tan, very fine to fine grained, well sorted, subangular, dolomitic cement, minor anhydrite, heavily deformed, mostly horizontal burrows, filled with glauconitic siltstone, thin glauconitic wavy clay laminae throughout.

11,834' – 11,837.5' SILSTONE. Light pink tan, light tan, very fine to fine grained, well sorted, subangular, dolomitic cement, minor anhydrite, horizontal laminations, conglomerate towards the bottom, unidentifiable fossil debris, coarser grains, minor carbonate zones, thick glauconite beds.

11,837.5' – 11,840' SILTSTONE. Light pink, light pink tan, off white, fine grained, subrounded, heavily burrowed, mostly horizontal burrows, anhydrite cement, carbonate cement, intense effervescence in some areas, abundant unidentified fossil debris, hematite oxidation staining, minor glauconitic laminations.

11,840' – 11,848.5' SILTSTONE. Light to medium pink, off white, fine grained, subrounded, heavily burrowed, mostly horizontal burrows, moderate anhydrite, carbonate cement, intense effervescence in some areas, abundant unidentified fossil debris and intact brachiopods, gastropods, and crinoids, hematite oxidation staining, minor glauconitic laminations.

11,848.5' – 11,868' CONGLOMERATE. Deep brownish red, coarse grained, fine grained matrix, poorly sorted, carbonaceous, intense effervescence, abundant unidentified fossil debris and intact Maclurea gastropod and hylolithes, abundant glauconite found in clay laminae, hematite oxidation staining, minor quartz overgrowths, clay content increases towards the bottom.

**API Number:** 33-105-01389

Well Name: Nelson #22-44

Well Operator: Amerada Hess Corporation

Location: SESE Sec22 T156N R96W. Williams County, ND.

**Cored Intervals:** 13,839' – 13,849'

13,944' - 14,004'

**Top of Deadwood Formation: 13,895**'

# **Winnipeg Group**

# **Black Island Formation**

### **Ordovician**

13,839' – 13,846.5' SANDSTONE. Light gray, fine to medium grained, subrounded, mostly massive, occasional soft sediment deformation, thin horizontal fractures, occasional vertical fractures that offset bedding planes, occasional pyrite nodules, minor hematite staining, minor low amplitude stylolite.

13,846.5' – 13,849.5' SANDSTONE. Light to medium gray, light tan, fine to medium grained, subrounded, well sorted, mostly massive, occasional faint horizontal laminations with occasional cross beds, occasional vertical <u>Skolithos</u> burrow, larger vertical fractures filled with quartz, fractures have minor hematite staining, minor low amplitude stylolites.

13,849.5' – 13,944' No core.

# **Deadwood Formation**

### Member E

# Ordovician

13,944' – 13,952.5' LIMESTONE. Gray, very fine to fine grained, thin beds of sandstone, mostly horizontally laminated with occasional cross beds, some areas of bioturbation producing a mottled texture,

some soft sediment deformation producing clasts of surrounding limestone, minor water escape structures, occasional massive areas, unidentifiable fossil debris, fractures filled with calcite, rare large nodules of pyrite, up to 4mm in size.

13,952.5' – 13,961.5' SANDSTONE. Light gray, very light to light tan, off white, fine to coarse grained, subangular to subrounded, moderate to well sorted, minor amounts of dolomitic cement, extensively bioturbated, multiple subvertical fractures that offset bedding planes, fractures are filled with quartz, some wavy horizontal fractures, filled with dark gray to black clay, minor amounts of pyrite near the bottom.

13,961.5' – 13,963.5' LIMESTONE. Medium to dark gray, very fine to coarse grained, angular to subrounded, poorly sorted, soft sediment deformation produces abundant areas of breccia, clasts are similar to the surrounding unit, large clasts of shale and occasional sandstone, rectangular in shape with horizontal laminations and faint cross bedding, occasional rounded clasts, pyritic, large subvertical fractures that do not offset bedding planes.

13,963.5' – 13,964' LIMESTONE. Light to medium gray, fine to medium grained, well sorted, subrounded, fossiliferous, slightly pyritic, interfingered with siltstone, mostly massive, some areas of bioturbation producing a mottled texture, very thin black clay laminae throughout.

13,964' – 13,964.5' LIMESTONE. Light to medium gray, very fine to fine grained, well sorted, subrounded, wavy to near horizontally bedded, oily, very dark gray to black non calcareous clay laminae, minor amounts of pyrite, minor unidentifiable fossil debris, minor soft sediment deformation, deformation produces large clasts of surrounding limestone.

13,964.5' – 13,967.5' SANDSTONE. Gray, very fine to fine grained, moderate to well sorted, subrounded to rounded, minor amounts of dolomitic cement, extensively bioturbated, thin beds of dark gray to black shale, horizontal laminations near the bottom, large near vertical fractures.

13,967.5' – 13,968.5' LIMESTONE. Medium to dark gray, very fine to medium grained, soft sediment deformation abundant in the upper half, deformation producing clasts of surrounding limestone up to 50mm, clasts display planar laminations, lower section mostly massive with occasional faint laminations, minor small clasts near the bottom.

13,968.5' – 13,972.5' SHALE. Medium to dark gray, brown, very fine to fine grained, occasional medium grain, upper part soft sediment deformation, wavy bedding, interbedded with abundant limestone, bottom half near horizontal beds, oily, abundant pyrite at the bottom.

13,972.5' – 13,974' LIMESTONE. Light gray, very fine to medium grained, extensive soft sediment deformation, pyritic near the top, upper section, deformation producing large clasts of surrounding limestone, very thin dark gray to black wavy clay laminae, middle section, poorly sorted, very fine to coarse grained, large clasts, matrix mostly medium grained, bottom section, siltstone laminations with abundant limestone clasts.

13,974' – 13,979.5' LIMESTONE. Gray, very fine to fine grained, wavy laminations, horizontal laminations near the bottom occasional soft sediment deformation, deformation producing clasts, occasional slump features, occasional thin very dark gray to black clay laminae.

13,979.5' – 13,982.5' LIMESTONE. Medium to dark gray, dark brown, black, very fine to fine grained, well sorted, subrounded to subangular, mostly horizontal to slightly wavy beds, interbedded with shale, calcite found throughout, minor amounts of pyrite, oily in part.

13,982.5' – 13,983' LIMESTONE. Gray, very fine to coarse grained, subrounded to rounded, very poorly sorted, extensive soft sediment deformation, deformation producing abundant limestone clasts, abundant bioturbation producing mottled texture.

13,983' – 13,989' LIMESTONE. Medium to dark gray, color is very inconsistent and goes against stratigraphy, very fine to medium grained, mostly horizontal beds, minor deformation, abundant fractures, very large vertical fracture over a foot, filled with pink calcite.

13.989' – 13,993.5' LIMESTONE. Medium to dark gray, very fine to coarse grained, extensive soft sediment deformation, occasional horizontal burrows, deformation producing limestone clasts, angular to rounded, poorly sorted, moderate unidentifiable fossil debris.

13,993.5' – 13,995.5' LIMESTONE. Gray, brown, fine to medium grained, minor amounts of pyrite, very mottled due to burrows, occasional zones of limestone clasts produced by soft sediment deformation, occasional thin vertical and horizontal fractures.

13,995.5' – 13,999' LIMESTONE. Light gray, fine to medium grained, very mottled due to burrows, occasional zones of limestone clasts produced by soft sediment deformation, very thin dark gray to black clay laminae, rare thick black shale beds, large vertical fractures filled with calcite.

13,999' – 14,004' SANDSTONE. Light to medium gray, fine to coarse grained, subrounded, moderate to well sorted, wavy laminations, large fractures filled with calcite, minor soft sediment deformation.

**API Number:** 33-053-02397

Well Name: Brenna-Lacey 1 #32

Well Operator: Amerada Hess Corporation

Location: SWNE Sec1 T152N R95W, McKenzie County, ND.

Cored Intervals: 14,260' – 14,371'

**Top of Deadwood Formation:** 14,255'

#### **Deadwood Formation**

### Member F

### **Ordovician**

14,260' – 14,262.5' SANDSTONE. Grey, medium grained, well sorted, subrounded to rounded, carbonate cement, mostly massive, occasional zones of extensive bioturbation.

14,262.5' – 14,264.5' SANDSTONE. Quartz wacke, light gray, tan, some yellow hydrogen sulfide staining, medium grained, well sorted, subrounded to rounded, mostly horizontal beds with some cross beds, occasional vertical <u>Skolithos</u> burrows,

14,264.5' – 14,266.5' SANDSTONE. Quartz wacke, light to medium gray, medium grained, subrounded to rounded, well sorted, carbonate cement, horizontally bedded with minor cross beds, some horizontal low amplitude stylolites, occasional vertical burrows.

14,266.5' – 14,269' SANDSTONE. Quartz wacke, light to medium gray, light tan, brown, medium grained, subrounded, well sorted, carbonate cement, extensively bioturbated, burrows are lined by brown clay, the majority are horizontal burrows, occasional low amplitude stylolite, some areas on less bioturbation, hydrogen sulfide minor in these areas, well defined vertical Skolithos burrows occur.

14,275' – 14,282.5' SANDSTONE. Quartz wacke, light to dark gray, very fine to medium grained, poorly sorted, general fines towards the bottom, extensively bioturbated, mostly wavy horizontal burrows and some water escape structures, occasional areas of horizontal beds with faint cross beds.

14,282.5' – 14,293.5' SANDSTONE. Quartz wacke, light gray, light tan, occasional yellow hydrogen sulfide staining, medium grained, well sorted, subrounded to rounded, well cemented, silica cement, large vertical fractures, filled with minor amounts of calcite, mostly massive, faint horizontal beds with low angle cross beds, occasional vertical Skolithos burrows.

14,293.5' – 14,300.5' SANDSTONE. Quartz wacke, light to dark gray, tan, medium grained, well sorted, minor carbonate cement, extensively bioturbated, abundant soft sediment deformation, horizontal burrows, slump structures, small scale faulting, occasional low amplitude horizontal stylolites, small zones of massive, silica cemented sandstone, minor vertical Skolithos burrows, very faint cross beds.

14,300.5' – 14,301.5' SHALE. Black, very dark gray, very fine grained, well sorted, minor larger quartz grains, carbonaceous, planar laminated, upper contact has shale injected into the overlying sandstone, minor soft sediment deformation, unidentifiable fossil debris is minor throughout, there are beds of abundant fossil debris, these beds pinchout on both sides.

14,301.5' – 14,307' LIMESTONE. Light to dark gray, very fine to medium grained, well sorted, subrounded, extensively deformed, carbonate cement, mostly soft sediment deformation, slumping, abundant mixing of shale and sand layers, some load deformation, occasional burrows, minor faint cross beds, minor small scale subvertical and subhorizontal fractures.

14,307' – 14,311.5' SHALE. Medium to dark gray, dark brown, black, very fine grained, minor larger quartz grains, well sorted, carbonaceous, mostly planar laminated, moderate soft sediment deformation, mostly caused by loading and slumping, minor water escape structures, minor fossil debris throughout, minor amounts of pyrite.

14,311.5' – 14,315.5' LIMESTONE. Light to dark gray, medium tan, brown, very fine to medium grained, well sorted, subrounded, extensively deformed, carbonate cement, mostly soft sediment deformation, slumping, abundant mixing of shale and sand layers, some load deformation, minor water escape structures, minor faint cross beds, minor small scale subvertical and subhorizontal fractures.

14,315.5' – 14,316' SHALE. Medium to dark gray, dark brown, black, very fine grained, minor larger quartz grains, well sorted, carbonaceous, mostly planar laminated, moderate soft sediment deformation, mostly caused by loading and slumping, minor fossil debris throughout.

14,316' – 14,317.5' CONGLOMERATE. Very light to medium tan, medium to dark gray, very fine to medium grained, poorly sorted, large rounded clasts of limestone, in calcite cemented sandstone, clasts are subrounded to rounded.

14,317.5' – 14,327' SANDSTONE. Light to dark gray, fine to medium grained, well sorted, subrounded, well cemented, carbonate cement, extensively bioturbated, mottled, wavy burrows, conglomerate zone, darker colored sandstone clasts, surrounded by clean carbonate cemented sandstone, minor yellow hydrogen sulfide staining, trace anhydrite.

14,327' – 14,329.5' SANDSTONE. Light gray, light tan, medium grained, well sorted, subrounded to rounded, mostly massive, minor amounts of calcite cement, occasional horizontal laminations, minor bioturbation, vertical Skolithos burrows, minor yellow hydrogen sulfide staining.

14,329.5' – 14,332' SANDSTONE. Light to medium gray, light tan, fine to medium grained, well sorted, subrounded, carbonaceous cement, moderate bioturbation, sedimentary structures are not present, mostly horizontal burrows with some well-defined vertical <u>Skolithos</u> burrows, occasional subangular to subrounded limestone clasts, subvertical fracture filled with calcite,

14,332' – 14,333' SANDSTONE. Light gray, medium grained, well sorted, subrounded to rounded, carbonate cement, extensively bioturbated, burrows outlined in dark gray to black clay, occasional massive areas with vertical <u>Skolithos</u> burrows, few horizontal and vertical fractures filled with calcite, minor yellow hydrogen sulfide staining.

14,333' – 14,336' SANDSTONE. Very light to medium gray, fine to medium grained, moderate to well sorted, subrounded, extensively deformed, mostly soft sediment deformation, some limestone clasts intermixed.

14,336' – 14,337.5' SANDSTONE. Quartz wacke, very light to medium gray, fine to medium grained, well sorted, subrounded, horizontal beds with obvious cross beds, minor soft sediment deformation towards the bottom.

14,337.5' – 14,338' SANDSTONE. Light gray, medium grained, well sorted, subrounded to rounded, carbonate cement, crystalline dolomite, soft sediment deformation, sandstone intermixed with limestone, minor bioturbation, small zone near the bottom, massive to wavy horizontal beds, occasional dolomitized horizontal beds with faint cross beds, minor low amplitude stylolites, minor areas of clasts.

14,338' – 14,357' LIMESTONE. Dark gray to black, very fine to fine grained, horizontal laminations, occasional fossiliferous zones, unidentifiable fossil debris, some soft sediment deformation, obvious slumping and loading, water escape structures, minor faulting, occasional zones of bioturbation, rip up clasts with horizontal laminations, matrix is medium grained, fossiliferous, carbonate cement, some vertical fractures filled with calcite.

14,357' – 14,357.5' SHALE. Medium to dark gray, tan, very fine to fine grained, well sorted, shale interbedded with limestone, moderately deformed, soft sediment deformation, most of the planar laminations are still visible, slumping and loading,

14,357.5' – 14,358' CONGLOMERATE. Very dark gray, very dark brown, very fine to coarse grained, heavily deformed carbonaceous shale, large clasts of shale are in a mix of limestone, shale, and fossil debris, minor subhorizontal fractures, possible low amplitude stylolite.

14,358' – 14362' LIMESTONE. Light to medium gray, zones of medium sand intermixed with the limestone, extensively bioturbated, fossiliferous, soft sediment deformations, rip up clasts, water escape structures, occasional horizontal wavy beds.

14,362' – 14,371' LIMESTONE. Light gray, medium grained, minor amounts of quartz and dolomite, moderate soft sediment deformation, slumping, some shale intermixed, minor subvertical fractures filled with calcite.

**API Number:** 33-075-01397

Well Name: E-M Emmel 10-3

Well Operator: Eagle Operating, Inc.

Location: NENW Sec10 T163N R87W. Renville County, ND.

**Cored Intervals:** 9,235' – 9,267'

**Top of Deadwood Formation:** 9,189'

#### **Deadwood Formation**

#### Member B

### Ordovician/Cambrian

9,235' – 9,239' SANDSTONE. Very light to light gray, light green gray, fine to very fine grained, medium sized grains near the bottom, well sorted, subrounded, 10-15% fine grained glauconite, soft sediment deformation due to slumping, mottled texture, multiple subvertical fractures, filled with dark gray clay, some fractures offset surrounding structures, occasional horizontal burrows, glauconitic sandstone interfingers underlying glauconite free sandstone at the bottom contact.

9,239' – 9,255.5' SANDSTONE. Light to dark brown, tan, fine grained, well sorted, subangular, no glauconite, severely oil stained, occasional subvertical and subhorizontal fractures, soft sediment deformation due to slumping, core has salt precipitate on it, zones of extensive deformation are usually lighter in color, some large angular clasts, very fine silica cement, some hematite staining.

9,255.5' – 9,258.5' SANDSTONE. Very light to light gray, some areas are darker gray, fine grained, subangular, well sorted, not deformed areas are massive, silica cement, most is extensively deformed, some areas are a breccia, very mottled textures, soft sediment deformation due to slumping, off set fractures, minor water escape structures, abundant dark gray clay intermixed with the sandstone, everything is folded together.

9,258.5' – 9,262.5' SANDSTONE. Very light to light gray, light green gray, fine grained, subangular, very well sorted, 5-25% glauconite, up to 40% glauconite in wavy bands, extensive soft sediment deformation due to slumping, multiple subvertical and subhorizontal offsetting fractures, abundant intermixed dark gray clay, some hematite clasts.

9,262.5' – 9,267.5' SANDSTONE. Very light to light gray, light brownish yellow, light green gray, medium to fine grained, subangular, well sorted, faint soft sediment deformation, 5-10% glauconite, possible horizontal beds, glauconite grains seem to be orientated in the same direction, minor oil saturation, minor intermixed dark gray clay, occasional subvertical and subhorizontal offset fractures.

**API Number:** 33-075-01398

Well Name: E-M Flying H 5-9

Well Operator: Eagle Operating, Inc.

Location: NESE Sec5 T163N R87W. Renville County, ND.

**Cored Intervals:** 9,380' – 9,387'

9,438' - 9.502'

Top of Deadwood Formation: 9,385'

# **Deadwood Formation**

### Member B

### Ordovician/Cambrian

9,438' – 9,460.5' SANDSTONE. Light to medium green gray, light gray, very fine grained, well sorted, subrounded, carbonate cement, abundant glauconite, alternating zones of horizontal to wavy laminations and intense bioturbation.

9,460.5' – 9,462' CONGLOMERATE. Light to medium gray, light tan, green gray, very fine to coarse grained, poorly sorted, angular to subrounded, abundant glauconite, small area of massive sandstone, distinct vertical <u>Skolithos</u> burrows, rip up clasts up to three inches wide, some are massive sandstone others are glauconitic sandstone similar to what is found above.

9,462' – 9,467.5' SANDSTONE. Light to medium tan, light brown, fine to medium grained, well sorted, minor dolomite cement near the top, mostly massive, faint horizontal and possible cross beds, rare bioturbation, just a few vertical <u>Skolithos</u> burrows, occasional soft sediment deformation, some vertical fractures that offset bedding planes, occasional cement replaced with pyrite, brown color is caused by the matrix in some areas the matrix is quartz and the unit is a light gray color, usually around fractures.

9,467.5' – 9,469' SANDSTONE. Light to medium tan, light to medium brown, fine to medium grained, moderate to well sorted, extensive bioturbation, occasional well defined vertical <u>Skolithos</u>

burrows, most are horizontal wavy burrows, some soft sediment deformation, some vertical and near horizontal burrows.

9,469' – 9,470.5' CONGLOMERATE. Light to medium gray, light tan, green gray, very fine to coarse grained, poorly sorted, subrounded, carbonate cement, abundant to moderate glauconite, small area of massive sandstone, distinct vertical <u>Skolithos</u> burrows, rip up clasts up to three inches wide, some are massive sandstone others are glauconitic sandstone similar to what is found above, occasional voids filled with calcite.

9,470.5' – 9,472' SANDSTONE. Wacke, light to medium tan, very light brown, light blue green gray, very fine to medium grained, moderate to well sorted, subrounded, carbonate cement, abundant medium sized glauconite grains, glauconite grains are subangular, 5% to 30%, extensively deformed, sharp upper contact, mottled texture due to bioturbation, abundant soft sediment deformation, small scale subhorizontal and subvertical fractures, abundant shale intermixed with burrows, glauconite founded within shale intervals.

9,472' – 9,477' SANDSTONE. Light brown, light to medium tan, light blue green gray, fine to medium grained, carbonate cement, well sorted, subrounded, contact above is gradational, glauconite grains grade to about >1% shortly after contact, mostly massive with some faint horizontal beds present, faint bioturbation.

9,477' – 9,478' SANDSTONE. Light brown, light to medium tan, light blue green gray, fine to medium grained, carbonate cement, well sorted, subrounded, interbedded with very dark gray shale wavy beds, glauconite in the sandstone is about 10%, shale contains rip up clasts of glauconitic sandstone, shale beds contain minor medium quartz and glauconite grains.

9,478' – 9,482' CLAYSTONE. Dark to very dark gray, black, very fine to medium grained, moderately sorted, subrounded to subangular, abundant individual grains of glauconite and quartz sand, tiny rip of clasts of shale also occur, shale is horizontally bedded and very fissile, abundant soft sediment deformation, angular clasts of shale are mixed with massive poorly sorted sandy claystone.

### **Deadwood Formation**

### Member A

#### Cambrian

9,482' – 9,484' SANDSTONE. Wacke, very light to medium tan, light brown, light gray, fine to medium grained, sandstone is mostly massive, abundant soft sediment deformation, abundant blue gray shale streaks, they are very deformed and random to subhorizontal in orientation, glauconite is minor in sandstone areas but abundant in shale.

9,484' – 9,487.5' SANDSTONE. Light to medium tan, light to medium brown, medium grained, well sorted, subrounded to rounded, mostly massive with abundant bioturbation throughout, most is burrows, occasional well defined vertical burrows, moderate soft sediment deformation, minor small scale fractures.

9,487.5' – 9,493.5' SANDSTONE. Wacke, very light to light blue gray, light tan, off white, brown, very fine to medium grain, occasional coarse grains, moderate to poorly sorted, subangular to subrounded, repeating intervals of blue gray sandstone and brown sandstone, differences has to do with the matrix, blue gray areas are more mottles, sedimentary structures are rare, occasional cross beds, abundant soft sediment deformation, abundant burrows.

9,493.5' – 9,494.5' SILTSTONE. Light to medium blue gray, light tan, light gray, fine to medium grained, moderate to well sorted, subrounded, similar to above but not as mottled, abundant glauconite,

mostly soft sediment deformation, slump structures, burrows and soft sedimentation has a subhorizontal orientation, faint beds and cross beds.

# Precambrian

9,494.5' – 9,502' METAMORPHIC. Gneiss.

Well Number: 18631

**API Number:** 33-105-01787

Well Name: Blou 12

Well Operator: Hess Corporation

Location: NWNE Sec15 T155N R96W. Williams County, ND.

**Cored Intervals:** 13,671' – 13,707'

13,709' - 13,728'

**Top of Deadwood Formation: 13,703**°

13,671' – 13,678' MUDSTONE. Light to medium gray, light green gray, light to medium red brown, very fine grained, well sorted, horizontal to wavy laminated, some zones of bioturbation, mostly horizontal burrows, some areas have occasional subvertical fractures, occasional zones with abundant unidentified fossil debris, fossiliferous zones are commonly gray in color.

13,678' – 13,682.5' SILTSTONE. Wacke, medium to dark purple brown, red brown, light tan, very fine to medium grained, moderately sorted, similar to overlying mudstone but contains coarser grains, extensively bioturbated, all sedimentary structures are destroyed, burrows are faint, bottom grades into a massive, light tan, sandstone.

13,682.5' – 13,683.5' SANDSTONE. Light to dark gray, fine to medium grained, well sorted, subrounded, dolomite cement, occasional dark gray clasts of limestone, rare glauconite, very light limestone, dark gray to black clay laminae, some pyrite.

13,683.5' – 13,684.5' SANDSTONE. Very light to medium gray, dolomite cement, calcitic along fractures and in occasional voids, occasional zones of limestone breccia, limestone is very dark gray to black, subangular, clasts are up to a cm, bottom is massive, arenite, silica cement, minor limestone interclast, carbonaceous along fractures.

13,684.5' – 13,687' SANDSTONE. Light gray, light to medium tan, very light brown, fine to medium grained, moderately well sorted, subrounded to rounded, calcite cement, mostly massive, some

horizontal beds, beds are difficult to see because they are formed by slight changes in color, possible faint cross beds near the top, small subhorizontal fractures throughout, minor hydrogen sulfide staining.

13,687 – 13,702.5' SANDSTONE. Dark to very dark tan, brown, dark gray, extensively oil stained, fine to medium grain, moderately well sorted, subrounded, calcite cement, upper contact very sharp, contact is a low amplitude stylolite, bioturbated with faint horizontal and minor cross beds.

13,702.5' – 13,707' SANDSTONE. Light gray, light to medium tan, very light brown, fine to medium grained, moderately well sorted, subrounded to rounded, calcite cement, massive, moderate horizontal beds, occasional cross beds, beds are difficult to see because they are formed by slight changes in color, small subhorizontal and subvertical fractures throughout, some fractures are oil stained.

13,707' – 13,709' No core.

13,709' – 13,723.5' SANDSTONE. Wacke, light to medium gray, very light tan, fine to medium grained, well sorted, subrounded, massive but extensively bioturbated, occasional vague horizontal bedding planes, occasional subhorizontal fractures.

13,723.5' – 13,728' LIMESTONE. Medium to dark gray, tan, extensively deformed, soft sediment deformation due to slumping, subvertical and subhorizontal fractures filled with calcite, moderate fossil debris throughout, occasional horizontal burrows.

Well Number: 54F047

UWI: 101-05-30-023-01-W3

Well Name: Tide Water Eyebrow Crown #2

**Location:** Saskatchewan, Canada **Cored Interval:** 5,966' – 5,971' **Top of Deadwood on Log:** 5,968'

## **Winnipeg Group**

#### **Black Island Formation**

#### **Ordovician**

5,966' – 5,967.5' SANDSTONE. White, off white, very light tan, very fine to medium grained, subrounded to rounded, well sorted, poorly cemented, porous, mostly massive, minor faint cross beds, occasional small scale fractures, abundant pyrite near the bottom, pyrite is found in nodules, some pyrite is altered to hematite.

5,967.5' – 5,968' SHALE. Light brownish red, very fine grained, well sorted, wavy horizontal beds, occasional pyrite nodules.

#### **Deadwood Formation**

#### Member B

#### Ordovician/Cambrian

5,968' – 5,970' SHALE. Dark green, brown, very fine grained, well sorted, platy, mostly horizontal beds with occasional wavy beds, glauconitic, minor fractures filled with very dark gray to black clay.

5,970' – 5,971' SILTSTONE. Very light to light green, very light tan, off white, glauconitic layers are interbedded with quartz silt layers, very fine to fine grained, well sorted, well cemented, mostly

horizontal beds, minor amounts of wavy beds and cross beds, occasional thin beds of dark green shale, minor small scale horizontal fractures, occasional zones of hematite staining.

Well Number: 57G023

UWI: 101-06-13-002-19-W2

Well Name: Imperial Hummingbird

Location: Saskatchewan, Canada

**Cored Interval:** 10,320' – 10,370' **Top of Deadwood on Log:** 10,327'

## **Winnipeg Group**

#### **Black Island Formation**

## **Ordovician**

10,320' – 10,322' SANDSTONE. Very light to light tan, light gray, very light brown, very fine grained, well sorted, subangular to subrounded, well cemented, alternating zones of heavy bioturbation and massive sandstone, minor faint horizontal beds in massive zones, fractures and burrows outlined in very dark gray to black clay an occasionally pyrite.

10,322' – 10,323.5' SILTSTONE to SHALE. Very light to medium tan, light to medium brown, very fine grained, well sorted, subrounded to rounded, upper and lower contacts are very sharp, heavily bioturbated, mix of siltstone and shale, large clasts of siltstone surrounded by shale, possibly rip up clasts from underlying unit.

## **Deadwood Formation**

## Member B

## Ordovician/Cambrian

10,323.5' – 10,327.5' SILTSTONE. Very light tan, off white, very fine grained, well sorted, subrounded to subangular, well cemented, mostly massive, minor glauconite 2%, occasional rip up clasts of the underlying green shale found near the bottom.

10,327.5' – 10,348' SILTSTONE. Very light to light tan, light gray, very fine grained, well sorted, subangular, well cemented, abundant calcite cement, moderate glauconite 5%, interbedded with green shale. Shale is dark green, extremely fine grained, noncalcareous, well sorted, faint horizontal beds are visible, occasional burrows, minor pyrite, occasional siltstone rip up clasts are found in the shale zones, horizontally bedded and random orientation.

10,348' – 10,370' SILTSTONE. Very light to light tan, gray tan, very fine grained, subangular, well sorted, well cemented, carbonate cement, horizontal beds, minor faint cross beds, glauconite about 5%, interbedded with dark green shale, abundant glauconite in the shale, occasional horizontal burrows, minor amounts of pyrite, some soft sediment deformation, rip up clasts making it look like a conglomerate, occasional beds of fine to medium grained sandstone.

Well Number: 58I075

**UWI:** 101-02-11-015-26-W2

Well Name: Ceepee Baildon 2-11

Location: Saskatchewan, Canada

**Cored Interval:** 7,502' – 7,512'

7,730' - 7,740'

Top of Deadwood on Log: 6,968'

## **Deadwood Formation**

## Member A

## **Cambrian**

7,502' – 7,503' SANDSTONE. Very light to medium tan, very light to dark gray, fine to medium grained, minor coarse grains, moderately sorted, moderately cemented, highly fractured, fractures filled with dark gray to black clay, small scale fractures have hematite staining.

7,503' – 7,508.5' SANDSTONE. Light to medium gray, very light tan, fine to coarse grained, zones of coarse grains are surrounded by fine grains, subrounded, poorly sorted, well cemented, minor amounts of bioturbation, massive to horizontal beds, visible cross beds.

7,508.5' – 7,512' SANDSTONE. Very light to light tan, very light to light gray, very fine to coarse grained, subangular, moderately sorted, heavily bioturbated.

## Precambrian

7,730' – 7,740' IGNEOUS. Precambrian basement granite.

Well Number: 78L010

**UWI:** 131-03-08-017-19-W2

Well Name: University of Regina

Location: Saskatchewan, Canada

**Cored Interval:** 6,709' – 6,768.5'

6,781.5' - 6,840.5'

6,874.5' - 6,905.5'

7,224.5' -7,256'

Top of Deadwood on Log: 6,834'

## **Winnipeg Group**

## **Black Island Formation**

# Ordovician

6,709' – 6,712.5' SANDSTONE. Brownish red, light to medium tan, blue green, fine to medium grained, moderately sorted, subangular to subrounded, moderately cemented, extensively bioturbated, horizontal and vertical burrows, burrows outlined in very dark gray to black clay.

6,712.5' – 6,714' SANDSTONE. Quartz wacke, Very dark brown, medium to dark gray, very fine to medium grained, poor to moderate sorting, subangular to subrounded, very argillaceous, extensive bioturbation, no vertical burrows, occasional nodules of pyrite replaced cement, quartz grains found within the pyrite.

6,714' – 6,721' SANDSTONE. Very light to medium tan, very light to dark gray, light brown, fine grained, well sorted, subangular to subrounded, moderately cemented, heavily bioturbated, burrows outlined in very dark gray to black clay, hematite stained siltstone rip up clasts found near the bottom.

6,721' – 6,722' SILTSTONE. Very light to medium gray, light tan, gray tan, minor hydrogen sulfide staining, very fine to fine grained, well sorted, subangular to subrounded, well cemented, moderate

soft sediment deformation, minor bioturbation, occasional zones of fine grained sandstone, a few sandstone rip up clasts found near the bottom.

6,722' – 6,729.5' SANDSTONE. Very light to dark tan, very light to medium brown, very light to light gray, fine to medium grained, occasional coarse grains, moderately sorted, subangular to subrounded, moderately sorted, moderately cemented, heavily bioturbated, burrows outlined in very dark gray to black clay, occasional very thin horizontal clay laminae, sharp lower contact with a lot argillaceous material.

6,729.5' – 6,731.5' SANDSTONE. Quartz arenite, very light to light tan, off white, very light gray, very fine to fine grained, well sorted, subrounded to rounded, moderately cemented, minor bioturbation, occasional large well preserved vertical burrows, occasional nodules of pyrite replaced cement, quartz grains found within the pyrite. Core contained a lot of crystalized salt on the outside, most likely from the drilling fluid, indicating the unit is porous.

6,731.5' – 6,750' SANDSTONE. Quartz arenite, off white, very light gray, very light tan, very clean, very fine to fine grained, well sorted, subrounded, moderately cemented, porous, moderate faint horizontal beds with occasional cross beds, minor amounts of bioturbation, occasional zones of hematite staining with 40% pyrite.

6,750' – 6,764' SANDSTONE. Off white, very light to light tan, light gray, very light to light green blue, very fine to medium grained, moderate to poorly sorted, subangular to subrounded, moderately cemented, horizontal and wavy bedded with occasional cross beds, pyritic, occasional zones of extensive bioturbation, darker green in color, occasional zones of medium brown bioturbation similar to the underlying unit.

6,764' – 6,770' SANDSTONE. Very light to medium tan, very light to light brown, off white, very fine to fine grained, well sorted, subrounded, moderately cemented, minor pyrite, extensively bioturbated, horizontal and vertical burrows, burrows outlined in very dark gray to black clay.

6,770' – 6,773.5' SANDSTONE. Quartz wacke, medium to dark gray, light to medium tan brown, very fine to medium grained, subrounded, well sorted, moderately cemented, extensively bioturbated, vertical and horizontal burrows, burrows outlined in very dark gray to black clay.

6,773.5 – 6,781.5' No core.

6,781.5' – 6,793.5' SANDSTONE. Very light to medium tan, light to medium gray, occasional very dark gray, fine to medium grained, rounded to well rounded, moderately sorted, moderately cemented, pyritic, occasional zones where pyrite has oxidized to hematite.

6,793.5' – 6,796.5' SANDSTONE. Quartz wacke, very light to medium gray, very fine to medium grained, subrounded to subangular, moderate to well sorted, moderately cemented, very minor amounts of pyrite, extensively bioturbated, mostly burrows, minor amounts of soft sediment deformation and water escape structures, occasional horizontal beds some disturbed by burrows, some very thin horizontal clay laminae, burrows and fractures are outlined in light brown clay.

6,796.5' – 6,798.5' SANDSTONE. Very light to medium tan, light to medium gray, occasional dark gray, fine to medium grained, rounded to well rounded, moderately sorted, moderately cemented, moderate bioturbation, moderately calcareous, pyritic, occasional zones where pyrite has oxidized to hematite.

6,798.5' – 6,801.5' SANDSTONE. Quartz arenite, very light to light tan, light brown, very light gray, fine to medium grained, minor coarse grains, subrounded to rounded, moderately sorted, moderate to well cemented, dolomite cement with minor calcite cement, extensively bioturbated, some horizontal bedding plane with some faint cross beds, fractures filled with dark brown clay.

6,801.5' – 6,803.5' SANDSTONE. Light to dark tan, medium brown, tan gray, fine to coarse grained, subrounded to rounded, moderate to poorly sorted, moderate to well cemented, dolomite cement,

horizontal to wavy beds, occasional soft sediment deformation and burrows, occasional zones of limestone mud, dark to medium gray in color.

6,803.5' – 6,808' SANDSTONE. Quartz arenite, very light to light tan, light gray, gray tan, fine to medium grained, well sorted, subangular to subrounded, moderately cemented, upper half has dolomitic cement, wavy horizontal lamination, very thin light to medium brown clay laminae, occasional pyrite clusters.

6,808' – 6,811.5' SANDSTONE. Quartz wacke, light to dark tan, medium brown, gray tan, fine grained, well sorted, subangular to subrounded, moderately cemented, noncalcareous, extensively bioturbated, mostly horizontal burrows, significant argillaceous material, contacts with overlying and underlying sections are sharp.

6,811.5' – 6,817' SANDSTONE. Light tan, pale green, very fine to medium grained, subrounded to rounded, moderate to poorly sorted, moderately cemented, minor dolomite cement, occasional thin clay laminae, minor bioturbation, occasional zones of hematite staining.

6,817' – 6,820' SANDSTONE. Quartz wacke, dark brown, dark gray, very fine to fine grained, occasional coarse grains found in bioturbated areas, well sorted, subangular to subrounded, top transitions from overlying section, noncalcareous, very thin horizontal clay laminae, abundant extensive bioturbated areas, mostly horizontal burrows,

6,820' – 6,831' SANDSTONE. Very light to medium pale green, very light tan, off white, very fine to medium grained, moderately sorted, subrounded, heavily bioturbated, horizontal and vertical burrows, abundant pyrite clusters near the top, rare clusters throughout, occasional staining from pyrite oxidizing to hematite.

6,831' – 6,834' SANDSTONE. Quartz arenite, very light to medium brown, fine to coarse grained, poorly sorted, subrounded to rounded, poorly cemented, calcite cement, small inclusions of pale blue green sandstone, no bioturbation, interfingered bottom contact.

#### **Deadwood Formation**

#### Member B

## Ordovician/Cambrian

6,834' – 6,849.5' SANDSTONE. Light to dark green, light to medium tan, light brown, very fine grained, well sorted, subangular to subrounded, well cemented, glauconitic 40%, occasional light tan areas with no glauconite, minor amounts of pyrite, horizontally bedded with some cross beds, occasional very thin clay laminae, occasional areas of bioturbation and soft sediment deformation with minor faults and escape structures.

6,849.5' – 6,875' No core.

6,875' – 6,885.5' SILTSTONE. Very light to medium tan, light brown, light gray, occasional areas of very dark brown, very fine to fine grained, well sorted, subrounded with very minor subangular grains, well cemented, extensively bioturbated, some soft sediment deformation, fractures and burrows are outline in dark brown clay.

6,885.5' – 6,894.5' SANDSTONE. Very light to medium gray, light tan, fine to medium grained, well sorted, subrounded, well cemented, intermixed dolomite and silica cement, silica cement is cement better, horizontal beds with occasional cross beds, very thin clay laminae, occasional thin shale beds, minor bioturbation.

6,894.5' – 6,899.5' No core.

6,899.5' – 6,902' SANDSTONE. Very light to medium gray, light tan, fine to medium grained, well sorted, subrounded, well cemented, intermixed dolomite and silica cement, silica cement is cement better, horizontal beds with occasional cross beds, very thin clay laminae, occasional thin shale beds, minor bioturbation.

6,902' – 6,905.5' SILTSTONE. Very light to light tan, light gray, stained light purple to red towards the top, very fine to fine grained, well sorted, subangular to subrounded, well cemented, horizontal beds with minor cross beds, abundant very thin clay laminae, no bioturbation, noncalcareous.

6,905.5' – 7,224.5' No core.

#### **Deadwood Formation**

#### Member A

#### Cambrian

7,224.5' – 7,226.5' SANDSTONE. Very light to medium pale green, fine to coarse grained, subrounded, poorly sorted, poorly cemented, very fine shaly green cement, mostly massive, occasional horizontal beds with some cross beds.

7,226.5' – 7,228' SANDSTONE. Very light to medium tan, occasional reddish brown hematite staining, very fine to coarse grained, not well sorted, subangular to subrounded, moderate to well sorted, wavy horizontal beds, minor very thin clay laminae, minor amounts of bioturbation with occasional soft sediment deformation.

7,228' – 7,255.5' SANDSTONE. Very light to medium pale green, fine to coarse grained, poorly sorted, subrounded, poorly cemented, very fine shaly green cement, no bioturbation, mostly massive, faint horizontal beds with some cross beds, rip up clasts of the Precambrian near the bottom contact.

# **Precambrian**

7,255.5' – 7,256' IGNEOUS. Granite.

Well Number: 94G082

**UWI:** 141-02-28-033-23-W2

Well Name: PCS Lanigan SWD

Location: Saskatchewan, Canada

**Cored Interval:** 4,655.5' – 4,677'

5,055' - 5,114'

Top of Deadwood on Log: 4,648'

#### **Deadwood Formation**

#### Member B

#### Ordovician/Cambrian

4,655.5' – 4,667' SILTSTONE. Interbedded with shale. Siltstone: very light to medium tan, light gray, light brown, very fine grained, very well sorted, subrounded, well cemented, mostly horizontal beds with occasional faint cross beds, minor bioturbation, occasional vertical burrows, rare soft sediment deformation, occasional orange hematite stained areas. Shale: thin horizontal beds within the siltstone with minor larger beds, blue green to dark green, occasionally transitions to dark brown to purple due to oxidation, extremely fine grained, occasional vertical burrow from overlying siltstone, burrows are filled with siltstone, not all contacts have burrows and some have soft sediment deformation, coarser grains and more bioturbation near the bottom.

4,667 - 5,055' No core.

5,055' – 5,114' SANDSTONE/SILTSTONE. Very light green, very light to medium tan, fine to coarse grained, subangular to rounded, for the most part poor to moderately sorted, porous, some interbedded red shale, extremely fine grained, mild bioturbation, filled with fine grained sand.

Well Number: 97G483

**UWI:** 141-04-16-006-13-W2

Well Name: PCP Weyburn DD

Location: Saskatchewan, Canada

**Cored Interval:** 9,052' – 9,086'

9,474' - 9,497'

Top of Deadwood on Log: 9,136'

## **Winnipeg Group**

#### **Black Island Formation**

#### **Ordovician**

9,052' – 9,058.5' SANDSTONE. Very light to medium gray, occasional yellow hydrogen sulfide staining, very fine to fine grained, subangular to subrounded, well sorted, extensively bioturbated, burrows are outlined in very dark gray to black clay, vertical Skolithos burrows are found near the bottom.

9,058.5' – 9,067.5' SANDSTONE. Very light to medium tan, light brown, occasional areas of reddish brown hematite staining, fine to medium grained, subrounded to rounded, well sorted, poorly cemented, extensively bioturbated.

9,067.5' – 9,074.5' SANDSTONE. Very light to medium gray, light to medium brown and tan near fractures, very fine to fine grained, subangular to subrounded, well cemented, extensively bioturbated, vertical <u>Skolithos</u> burrows, abundant fractures, minor amounts of pyrite, this shale zone, very dark gray to black, extremely fine grained, zones of pyrite, rip up clasts of surrounding sandstone.

9,074.5' – 9,085' SILTSTONE. Very light to medium tan, light brown, light gray, very fine to fine grained, very fine grained areas are darker brown and have an increase in pyrite content, extensively bioturbated, occasional fractures, fractures are filled with dark gray to black clay.

9,085' – 9,086' SANDSTONE. Very light to light gray, off white, fine grained, well sorted, subrounded to rounded, very well cemented, noncalcareous, mostly massive, occasional fractures, fractures are filled with dark gray to black clay, some hematite staining along fractures.

9,086' – 9,474' No core.

## **Deadwood Formation**

## Member A

## **Cambrian**

9,474' – 9,497' SANDSTONE. Very light to medium tan, light brown, light gray, very fine to fine grained, well sorted, subrounded to rounded, well cemented, mostly horizontal beds with occasional cross beds, very minor amounts of bioturbation, zones of bioturbation have an increase in glauconite and grainsize, very thin dark gray to black clay laminae found in bioturbated areas.

Well Number: 97I438

**UWI:** 111-16-23-002-01-W2

Well Name: Vista Glen Ewan

Location: Saskatchewan, Canada

**Cored Interval:** 9,104.5' – 9,185'

**Top of Deadwood on Log:** 8,961'

## **Deadwood Formation**

## Member B

#### Ordovician/Cambrian

9,104.5' – 9,106.5' BRECCIATED SANDSTONE. Light green gray, light tan, light gray, fine to medium grained, well to poorly sorted, subangular, glauconitic 40-75%, highly bioturbated caused by burrows, glauconite grains are larger in the deformed zones, hematite staining is found in bioturbated areas, clasts of very fine to fine grained, planar laminated glauconitic sandstone, sharp contact between grain sizes.

9,106.5' – 9,115.5' SANDSTONE. Light gray, green gray, light tan, fine grained, subrounded to subangular, well sorted, glauconitic 40-60%, minor bioturbation, mostly massive with faint planar laminations, dark gray to black horizontal clay laminations, rare cross beds.

9,115.5' – 9,124.5' SANDSTONE. Light gray, light green gray, light tan, fine grained, subrounded to subangular, well sorted, glauconitic 40%, heavily bioturbated, finer grains found in deformed areas, occasional massive zones.

#### **Deadwood Formation**

# Member A

#### Cambrian

9,124.5' – 9,135' SANDSTONE. Light green gray, light gray, fine grained, subangular to subrounded, moderately sorted, mostly massive, 40-60% glauconite grains, minor zones of deformation, rip up clasts of medium grained dolomitic sandstone, minor unidentified fossil debris.

9,135' – 9,143.5' SANDSTONE. Off white, light gray, medium grained, very well sorted, subangular to subrounded, mostly massive, faint horizontal laminations and minor cross beds, minor glauconite 2-3%, slightly dolomitic.

9,143.5' – 9,152' SANDSTONE. Off white, tan, yellowish tan, fine grained, subangular, well sorted, heavily bioturbated, burrows outlined in dark gray to black clay, trace glauconite, minor hematite staining.

9,152' – 9,160.5' SANDSTONE. Off white, light tan, light green gray, fine grained, moderately sorted, subangular to subrounded, 35-65% glauconite, horizontal beds with very pronounced cross beds, minor amounts of soft sediment deformation, fractures are filled with glauconite.

9,160.5' – 9,166.5' SANDSTONE. Light tan, off white, light green gray, fine grained, subangular to subrounded, moderately sorted, 20-85% glauconite grains, heavily bioturbated, occasional areas of shale.

9,166.5' – 9,167.5' SANDSTONE. Light tan, off white, light gray, fine to medium grained, well sorted, subrounded, massive with interbedded oxidized clay laminae, occasional faint crossbeds, very fine glauconite grains about 2%.

9,167.5' – 9,185' SANDSTONE. Light tan, off white, light to medium green gray, fine to medium grained, subrounded, moderately sorted, slightly calcareous, heavily bioturbated, large subangular rip up clasts at the bottom.

## **Precambrian**

9,185' – 9,199.5' IGNEOUS and METAMORPHIC. Granite with green schist near the top.

Well Number: 98E189

UWI: 142-12-01-010-09-W2

Well Name: Founders et al Hartaven Location: Saskatchewan, Canada Cored Interval: 7,897' – 8,034'

**Top of Deadwood on Log: 8,015**°

## **Winnipeg Group**

## **Black Island Formation**

#### **Ordovician**

7,978.5' – 7,996' SANDSTONE. Very light to medium gray, fine to medium grained, grainsize fines downwards, subrounded, well sorted, glauconite content decreases downwards, pyrite content decreases downwards, hematite content decreases downwards, extensively bioturbated, vertical <u>Skolithos</u> burrows, horizontal burrows, burrows outlined in fine grained, reddish brown clay.

7,996' - 8,015' No core.

## **Deadwood Formation**

#### Member B

#### Ordovician/Cambrian

8,015' – 8,020.5' SANDSTONE. Gray, very fine to fine grained, well sorted, subangular to angular, extensively bioturbated, occasionally burrows are filled with pyrite, oxidized to hematite causing staining.

8,020.5' – 8,034' SANDSTONE, Light gray, light to medium gray green, light tan, very fine grained, well sorted, subangular to subrounded, very glauconitic up to 70%, mostly horizontally bedded, very rare deformation.

# Appendix E General Information for the Novva® Software

The software has a step by step process and the following information is what was entered or selected while working through the software. These include general stratigraphy, sedimentology, and ages.

| <u>Information For All Wells</u>                 |                    |  |
|--------------------------------------------------|--------------------|--|
| Depth Unit                                       | Feet (ft)          |  |
| Temperature Unit                                 | Fahrenheit (°F)    |  |
| Depth Step Thickness                             | 150 ft             |  |
| Original Basin Type                              | Interior Sag Basin |  |
| Basin-Forming Event                              | Sagging            |  |
| Event Start                                      | 501 Ma             |  |
| Event End                                        | o Ma               |  |
| Initial Water Depth                              | Offshore / 30 ft   |  |
| No other tectonic events                         |                    |  |
| No TVD conversion needed                         |                    |  |
| No subsurface dissolution or plastic deformation |                    |  |
| Include paleobathymetry and paleoelevation       |                    |  |
| Include isostasy                                 |                    |  |
| Include eustatic sea-level change                |                    |  |
| Enter verbal information about depositional      |                    |  |
| environments for entire rock units               |                    |  |
| Temperature Correction Method                    | MY-MX-DK           |  |
| Do not enter thermal-indicator data              |                    |  |
| Do not include source rocks and kerogens         |                    |  |
| Skip Expulsion section                           |                    |  |
| Skip Cracking section                            |                    |  |

| <u>Unconformities</u> |                     |                 |               |                       |  |
|-----------------------|---------------------|-----------------|---------------|-----------------------|--|
| Surface Event Type    | Rock Layer Affected | Start Time (Ma) | End Time (Ma) | Thickness Change (ft) |  |
| Erosion               | Deadwood F          | 471             | 467           | -400                  |  |
| Deposition            | Deadwood F          | 474             | 471           | 400                   |  |
|                       |                     |                 |               |                       |  |
| Surface Event Type    | Rock Layer Affected | Start Time (Ma) | End Time (Ma) | Thickness Change (ft) |  |
| Erosion               | Deadwood A          | 495             | 494           | -50                   |  |
| Deposition            | Deadwood A          | 497             | 495           | 50                    |  |

| Custom Lithologies        |                                 |               |  |  |
|---------------------------|---------------------------------|---------------|--|--|
| Name                      | Pure Lithology Type             | Present Day % |  |  |
| Can datana/Ciltatana Clay | Sandstone, clay-rich            | 65            |  |  |
| Sandstone/Siltstone Clay  | Siltstone, organic-rich         | 35            |  |  |
| = 0/ Limestone/Candatone  | Limestone (micrite)             | 50            |  |  |
| 50% Limestone/Sandstone   | Sandstone                       | 50            |  |  |
|                           | Shale, organic-lean             | 10            |  |  |
| Siliciclastic Mudstone    | Sandstone, subarkose, clay-rich | 60            |  |  |
|                           | Limestone, shaly                | 30            |  |  |
|                           | Sandstone                       | 60            |  |  |
| Carbonaceous Sandstone    | Limestone, organic-rich         | 40            |  |  |

# Appendix F Specific Information for the Novva® Software

Specific information for each of the seven wells that were used in the study.

These include the thicknesses, depths, temperatures, and data that was entered into the software.

| General Well Information for NDGS #1385 |                 |  |
|-----------------------------------------|-----------------|--|
| <b>Latitude</b> 48.330861 No            |                 |  |
| Longitude                               | 102.908685 West |  |
| Present-Day Onshore Ground Elevation    | 2,352 feet      |  |
| Total Depth                             | 14,828 feet     |  |
| Kelly Bushing Elevation                 | 2,360 feet      |  |

| Temperature for NDGS #1385                         |  |  |  |  |
|----------------------------------------------------|--|--|--|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hrs) |  |  |  |  |
| 8,811 176                                          |  |  |  |  |
| 14,105 269 8                                       |  |  |  |  |

|              | Stratigraphy for NDGS #1385 |             |                 |  |  |
|--------------|-----------------------------|-------------|-----------------|--|--|
| Туре         | Name of Layer               | Top MD (ft) | Thickness (ft)  |  |  |
| Rock Layer   | Cenozoic                    | 0           | 3,974           |  |  |
| Rock Layer   | Greenhorn                   | 3,974       | 301             |  |  |
| Rock Layer   | Mowry                       | 4,275       | 355             |  |  |
| Rock Layer   | Inyan Kara                  | 4,630       | 440             |  |  |
| Rock Layer   | Swift                       | 5,070       | 424             |  |  |
| Rock Layer   | Rierdon                     | 5,494       | 572             |  |  |
| Rock Layer   | Spearfish                   | 6,066       | 233             |  |  |
| Rock Layer   | Minnekahta                  | 6,299       | 44              |  |  |
| Rock Layer   | Opeche                      | 6,343       | 357             |  |  |
| Rock Layer   | Broom Creek                 | 6,700       | 73 <sup>2</sup> |  |  |
| Rock Layer   | Kibbey                      | 7,432       | 142             |  |  |
| Rock Layer   | Madison                     | 7,574       | 596             |  |  |
| Rock Layer   | Charles Ratcliffe           | 8,170       | 273             |  |  |
| Rock Layer   | Mission Canyon FA           | 8,443       | 417             |  |  |
| Rock Layer   | Lodgepole                   | 8,860       | 880             |  |  |
| Rock Layer   | Bakken                      | 9,740       | 126             |  |  |
| Rock Layer   | Three Forks                 | 9,866       | 220             |  |  |
| Rock Layer   | Birdbear                    | 10,086      | 100             |  |  |
| Rock Layer   | Duperow                     | 10,186      | 446             |  |  |
| Rock Layer   | Souris River                | 10,632      | 330             |  |  |
| Rock Layer   | Dawson Bay                  | 10,962      | 748             |  |  |
| Rock Layer   | Interlake                   | 11,710      | 1,268           |  |  |
| Rock Layer   | Gunton                      | 12,978      | 84              |  |  |
| Rock Layer   | Stoughton                   | 13,062      | 63              |  |  |
| Rock Layer   | Red River                   | 13,125      | 624             |  |  |
| Rock Layer   | Roughlock                   | 13,749      | 32              |  |  |
| Rock Layer   | Icebox                      | 13,781      | 141             |  |  |
| Rock Layer   | Black Island                | 13,922      | 256             |  |  |
|              | Unconfo                     | rmity       |                 |  |  |
| Rock Layer   | Deadwood F                  | 14,178      | 102             |  |  |
| Rock Layer   | Deadwood E                  | 14,280      | 125             |  |  |
| Rock Layer   | Deadwood D                  | 14,405      | 145             |  |  |
| Rock Layer   | Deadwood C                  | 14,550      | 78              |  |  |
| Rock Layer   | Deadwood B                  | 14,628      | 113             |  |  |
|              | Unconfo                     | rmity       |                 |  |  |
| Rock Layer   | Deadwood A                  | 14,741      | 29              |  |  |
| Unconformity |                             |             |                 |  |  |
| Rock Layer   | Precambrian                 | 14,770      |                 |  |  |

| General Well Information for NDGS #2373 |                 |  |
|-----------------------------------------|-----------------|--|
| <b>Latitude</b> 48.012115 N             |                 |  |
| Longitude                               | 102.774689 West |  |
| Present-Day Onshore Ground Elevation    | 2,102 feet      |  |
| Total Depth                             | 15,135 feet     |  |
| Kelly Bushing Elevation                 | 2,117 feet      |  |

| Temperature NDGS #2373                             |     |   |  |  |
|----------------------------------------------------|-----|---|--|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hrs) |     |   |  |  |
| 8,811                                              | 176 | 4 |  |  |
| 14,105                                             | 269 | 8 |  |  |

| Stratigraphy NDGS #2373 |                   |             |                |  |
|-------------------------|-------------------|-------------|----------------|--|
| Туре                    | Name of Layer     | Top MD (ft) | Thickness (ft) |  |
| Rock Layer              | Cenozoic          | 0           | 4,065          |  |
| Rock Layer              | Greenhorn         | 4,065       | 336            |  |
| Rock Layer              | Mowry             | 4,401       | 356            |  |
| Rock Layer              | Inyan Kara        | 4,757       | 498            |  |
| Rock Layer              | Swift             | 5,255       | 426            |  |
| Rock Layer              | Rierdon           | 5,681       | 612            |  |
| Rock Layer              | Spearfish         | 6,293       | 269            |  |
| Rock Layer              | Minnekahta        | 6,562       | 39             |  |
| Rock Layer              | Opeche            | 6,601       | 362            |  |
| Rock Layer              | Broom Creek       | 6,963       | 826            |  |
| Rock Layer              | Kibbey            | 7,789       | 135            |  |
| Rock Layer              | Madison           | 7,924       | 566            |  |
| Rock Layer              | Charles Ratcliffe | 8,490       | 246            |  |
| Rock Layer              | Mission Canyon FA | 8,736       | 498            |  |
| Rock Layer              | Lodgepole         | 9,234       | 873            |  |
| Rock Layer              | Bakken            | 10,107      | 83             |  |
| Rock Layer              | Three Forks       | 10,190      | 208            |  |
| Rock Layer              | Birdbear          | 10,398      | 85             |  |
| Rock Layer              | Duperow           | 10,483      | 383            |  |
| Rock Layer              | Souris River      | 10,866      | 248            |  |
| Rock Layer              | Dawson Bay        | 11,114      | 590            |  |
| Rock Layer              | Interlake         | 11,704      | 1,246          |  |
| Rock Layer              | Gunton            | 12,950      | 81             |  |
| Rock Layer              | Stoughton         | 13,031      | 78             |  |
| Rock Layer              | Red River         | 13,109      | 653            |  |
| Rock Layer              | Roughlock         | 13,762      | 49             |  |
| Rock Layer              | Icebox            | 13,811      | 155            |  |
| Rock Layer              | Black Island      | 13,966      | 278            |  |
|                         | Unconfo           | ormity      |                |  |
| Rock Layer              | Deadwood F        | 14,244      | 153            |  |
| Rock Layer              | Deadwood E        | 14,397      | 180            |  |
| Rock Layer              | Deadwood D        | 14,577      | 186            |  |
| Rock Layer              | Deadwood C        | 14,763      | 215            |  |
| Rock Layer              | Deadwood B        | 14,978      | 69             |  |
|                         | Unconfo           | rmity       |                |  |
| Rock Layer              | Deadwood A        | 15,047      | 73             |  |
| Unconformity            |                   |             |                |  |
| Rock Layer              | Precambrian       | 15,120      |                |  |

| Porosity NDGS #2373 |        | Porosity NDGS #2373 |           |        |              |
|---------------------|--------|---------------------|-----------|--------|--------------|
| Lithology           | Depth  | Porosity            | Lithology | Depth  | Porosity     |
|                     | (ft)   | (fractional)        |           | (ft)   | (fractional) |
| Sandstone           | 14,240 | 0.079               | Sandstone | 14,650 | 0.071        |
| Sandstone           | 14,250 | 0.026               | Sandstone | 14,660 | 0.124        |
| Sandstone           | 14,260 | 0.033               | Sandstone | 14,670 | 0.102        |
| Sandstone           | 14,270 | 0.056               | Sandstone | 14,680 | 0.071        |
| Sandstone           | 14,280 | 0.041               | Sandstone | 14,690 | 0.064        |
| Sandstone           | 14,290 | 0.002               | Sandstone | 14,700 | 0.109        |
| Sandstone           | 14,300 | 0.002               | Sandstone | 14,710 | 0.079        |
| Sandstone           | 14,310 | 0.011               | Sandstone | 14,720 | 0.079        |
| Sandstone           | 14,320 | 0.041               | Sandstone | 14,730 | 0.056        |
| Sandstone           | 14,330 | 0.011               | Sandstone | 14,740 | 0.064        |
| Sandstone           | 14,340 | 0.026               | Sandstone | 14,750 | 0.071        |
| Sandstone           | 14,350 | 0.026               | Sandstone | 14,760 | 0.079        |
| Sandstone           | 14,360 | 0.018               | Limestone | 14,770 | 0.086        |
| Sandstone           | 14,370 | 0.002               | Limestone | 14,780 | 0.064        |
| Sandstone           | 14,380 | 0.001               | Limestone | 14,790 | 0.086        |
| Sandstone           | 14,390 | 0.002               | Limestone | 14,800 | 0.064        |
| Sandstone           | 14,400 | 0.026               | Limestone | 14,810 | 0.056        |
| Sandstone           | 14,410 | 0.041               | Sandstone | 14,820 | 0.056        |
| Sandstone           | 14,420 | 0.048               | Sandstone | 14,830 | 0.071        |
| Sandstone           | 14,430 | 0.064               | Sandstone | 14,840 | 0.048        |
| Sandstone           | 14,440 | 0.079               | Sandstone | 14,850 | 0.041        |
| Limestone           | 14,450 | 0.094               | Sandstone | 14,860 | 0.048        |
| Limestone           | 14,460 | 0.071               | Sandstone | 14,870 | 0.056        |
| Limestone           | 14,470 | 0.064               | Sandstone | 14,880 | 0.071        |
| Limestone           | 14,480 | 0.064               | Sandstone | 14,890 | 0.048        |
| Limestone           | 14,490 | 0.079               | Sandstone | 14,900 | 0.041        |
| Limestone           | 14,500 | 0.056               | Sandstone | 14,910 | 0.041        |
| Limestone           | 14,510 | 0.071               | Sandstone | 14,920 | 0.033        |
| Limestone           | 14,520 | 0.094               | Sandstone | 14,930 | 0.041        |
| Limestone           | 14,530 | 0.086               | Sandstone | 14,940 | 0.048        |
| Sandstone           | 14,540 | 0.071               | Sandstone | 14,950 | 0.056        |
| Sandstone           | 14,550 | 0.079               | Sandstone | 14,960 | 0.048        |
| Sandstone           | 14,560 | 0.071               | Sandstone | 14,970 | 0.056        |
| Sandstone           | 14,570 | 0.086               | Sandstone | 14,980 | 0.079        |
| Sandstone           | 14,580 | 0.132               | Sandstone | 14,990 | 0.132        |
| Sandstone           | 14,590 | 0.147               | Sandstone | 15,000 | 0.147        |
| Sandstone           | 14,600 | 0.102               | Sandstone | 15,010 | 0.132        |
| Sandstone           | 14,610 | 0.071               | Sandstone | 15,020 | 0.041        |
| Sandstone           | 14,620 | 0.102               | Sandstone | 15,030 | 0.071        |
| Sandstone           | 14,630 | 0.064               | Sandstone | 15,040 | 0.155        |
| Sandstone           | 14,640 | 0.086               | Sandstone | 15,050 | 0.011        |

| Porosity NDGS #2373 |               |                          |  |  |
|---------------------|---------------|--------------------------|--|--|
| Lithology           | Depth<br>(ft) | Porosity<br>(fractional) |  |  |
| Sandstone           | 15,060        | 0.003                    |  |  |
| Sandstone           | 15,070        | 0.033                    |  |  |
| Sandstone           | 15,080        | 0.011                    |  |  |
| Sandstone           | 15,090        | 0.003                    |  |  |
| Sandstone           | 15,100        | 0.041                    |  |  |
| Sandstone           | 15,110        | 0.033                    |  |  |
| Sandstone           | 15,120        | 0.018                    |  |  |

| General Well Information for NDGS #3844 |                 |  |
|-----------------------------------------|-----------------|--|
| Latitude 48.2714:                       |                 |  |
| Longitude                               | 102.960522 West |  |
| Present-Day Onshore Ground Elevation    | 2,366 feet      |  |
| Total Depth                             | 14,600 feet     |  |
| Kelly Bushing Elevation                 | 2,370 feet      |  |

| <u>Temperature for NDGS #3844</u>                  |     |     |  |  |
|----------------------------------------------------|-----|-----|--|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hrs) |     |     |  |  |
| 14044                                              | 285 | 3.5 |  |  |

| Stratigraphy for NDGS #3844 |                   |             |                 |
|-----------------------------|-------------------|-------------|-----------------|
| Туре                        | Name of Layer     | Top MD (ft) | Thickness (ft)  |
| Rock Layer                  | Cenozoic          | 0           | 3,825           |
| Rock Layer                  | Greenhorn         | 3,825       | 410             |
| Rock Layer                  | Mowry             | 4,235       | 334             |
| Rock Layer                  | Inyan Kara        | 4,569       | 464             |
| Rock Layer                  | Swift             | 5,033       | 427             |
| Rock Layer                  | Rierdon           | 5,460       | 559             |
| Rock Layer                  | Spearfish         | 6,019       | 281             |
| Rock Layer                  | Minnekahta        | 6,300       | 8o              |
| Rock Layer                  | Opeche            | 6,380       | 395             |
| Rock Layer                  | Broom Creek       | 6,775       | 698             |
| Rock Layer                  | Kibbey            | 7,473       | 174             |
| Rock Layer                  | Madison           | 7,647       | 563             |
| Rock Layer                  | Charles Ratcliffe | 8,210       | <sup>2</sup> 57 |
| Rock Layer                  | Mission Canyon FA | 8,467       | 675             |
| Rock Layer                  | Lodgepole         | 9,142       | 653             |
| Rock Layer                  | Bakken            | 9,795       | 99              |
| Rock Layer                  | Three Forks       | 9,894       | 190             |
| Rock Layer                  | Birdbear          | 10,084      | 89              |
| Rock Layer                  | Duperow           | 10,173      | 437             |
| Rock Layer                  | Souris River      | 10,610      | 256             |
| Rock Layer                  | Dawson Bay        | 10,866      | 697             |
| Rock Layer                  | Interlake         | 11,563      | 1,210           |
| Rock Layer                  | Gunton            | 12,773      | 87              |
| Rock Layer                  | Stoughton         | 12,860      | 64              |
| Rock Layer                  | Red River         | 12,924      | 614             |
| Rock Layer                  | Roughlock         | 13,538      | 36              |
| Rock Layer                  | Icebox            | 13,574      | 152             |
| Rock Layer                  | Black Island      | 13,726      | <b>2</b> 45     |
| Unconformity                |                   |             |                 |
| Rock Layer                  | Deadwood F        | 13,971      | 83              |
| Rock Layer                  | Deadwood E        | 14,054      | 139             |
| Rock Layer                  | Deadwood D        | 14,193      | 153             |
| Rock Layer                  | Deadwood C        | 14,346      | 65              |
| Rock Layer                  | Deadwood B        | 14,411      | 127             |
| Unconformity                |                   |             |                 |
| Rock Layer                  | Deadwood A        | 14,538      | 23              |
| Unconformity                |                   |             |                 |
| Rock Layer                  | Precambrian       | 14,561      |                 |

| Porosity for NDGS #3844 |        |              |  |
|-------------------------|--------|--------------|--|
| Depth Porosity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 13,730 | 0.06         |  |
| Sandstone               | 13,735 | 0.09         |  |
| Sandstone               | 13,740 | 0.11         |  |
| Sandstone               | 13,745 | 0.10         |  |
| Sandstone               | 13,750 | 0.13         |  |
| Sandstone               | 13,755 | 0.11         |  |
| Sandstone               | 13,760 | 0.09         |  |
| Sandstone               | 13,765 | 0.10         |  |
| Sandstone               | 13,770 | 0.08         |  |
| Sandstone               | 13,775 | 0.09         |  |
| Sandstone               | 13,780 | 0.12         |  |
| Sandstone               | 13,785 | 0.08         |  |
| Sandstone               | 13,790 | 0.09         |  |
| Sandstone               | 13,795 | 0.09         |  |
| Sandstone               | 13,800 | 0.10         |  |
| Sandstone               | 13,805 | 0.07         |  |
| Sandstone               | 13,810 | 0.13         |  |
| Sandstone               | 13,815 | 0.09         |  |
| Sandstone               | 13,820 | 0.08         |  |
| Sandstone               | 13,825 | 0.07         |  |
| Sandstone               | 13,830 | 0.07         |  |
| Sandstone               | 13,835 | 0.13         |  |
| Sandstone               | 13,840 | 0.07         |  |
| Sandstone               | 13,845 | 0.09         |  |
| Sandstone               | 13,850 | 0.13         |  |
| Sandstone               | 13,855 | 0.12         |  |
| Sandstone               | 13,860 | 0.09         |  |
| Sandstone               | 13,865 | 0.10         |  |
| Sandstone               | 13,870 | 0.10         |  |
| Sandstone               | 13,875 | 0.11         |  |
| Sandstone               | 13,880 | 0.07         |  |
| Sandstone               | 13,885 | 0.07         |  |
| Sandstone               | 13,890 | 0.08         |  |
| Sandstone               | 13,895 | 0.10         |  |
| Sandstone               | 13,900 | 0.10         |  |
| Sandstone               | 13,905 | 0.07         |  |
| Sandstone               | 13,910 | 0.13         |  |
| Sandstone               | 13,915 | 0.19         |  |
| Sandstone               | 13,920 | 0.13         |  |
| Sandstone               | 13,925 | 0.10         |  |
| Sandstone               | 13,930 | 0.10         |  |

| Porosity for NDGS #3844 |        |              |  |
|-------------------------|--------|--------------|--|
| Lithology               | Depth  | Porosity     |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 13,935 | 0.08         |  |
| Sandstone               | 13,940 | 0.07         |  |
| Sandstone               | 13,945 | 0.06         |  |
| Sandstone               | 13,950 | 0.05         |  |
| Sandstone               | 13,955 | 0.08         |  |
| Sandstone               | 13,960 | 0.10         |  |
| Sandstone               | 13,965 | 0.07         |  |
| Sandstone               | 13,970 | 0.16         |  |
| Sandstone               | 13,975 | 0.16         |  |
| Sandstone               | 13,980 | 0.14         |  |
| Sandstone               | 13,985 | 0.01         |  |
| Sandstone               | 13,990 | 0.01         |  |
| Sandstone               | 13,995 | 0.03         |  |
| Sandstone               | 14,000 | 0.03         |  |
| Sandstone               | 14,005 | 0.03         |  |
| Sandstone               | 14,010 | 0.03         |  |
| Sandstone               | 14,015 | 0.04         |  |
| Sandstone               | 14,020 | 0.01         |  |
| Sandstone               | 14,025 | 0.05         |  |
| Sandstone               | 14,030 | 0.04         |  |
| Sandstone               | 14,035 | 0.04         |  |
| Sandstone               | 14,040 | 0.04         |  |
| Sandstone               | 14,045 | 0.03         |  |
| Sandstone               | 14,050 | 0.06         |  |
| Sandstone               | 14,055 | 0.01         |  |
| Sandstone               | 14,060 | 0.08         |  |
| Sandstone               | 14,065 | 0.04         |  |
| Sandstone               | 14,070 | 0.02         |  |
| Sandstone               | 14,075 | 0.04         |  |
| Sandstone               | 14,080 | 0.03         |  |
| Sandstone               | 14,085 | 0.02         |  |
| Sandstone               | 14,090 | 0.06         |  |
| Sandstone               | 14,095 | 0.04         |  |
| Sandstone               | 14,100 | 0.04         |  |
| Sandstone               | 14,105 | 0.01         |  |
| Sandstone               | 14,110 | 0.06         |  |
| Sandstone               | 14,115 | 0.03         |  |
| Sandstone               | 14,120 | 0.03         |  |
| Sandstone               | 14,125 | 0.02         |  |
| Sandstone               | 14,130 | 0.04         |  |
| Sandstone               | 14,135 | 0.04         |  |

| Porosity for NDGS #3844 |        |              |  |
|-------------------------|--------|--------------|--|
| Depth Porosity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 14,140 | 0.03         |  |
| Sandstone               | 14,145 | 0.06         |  |
| Sandstone               | 14,150 | 0.05         |  |
| Sandstone               | 14,155 | 0.06         |  |
| Sandstone               | 14,160 | 0.07         |  |
| Sandstone               | 14,165 | 0.07         |  |
| Sandstone               | 14,170 | 0.06         |  |
| Sandstone               | 14,175 | 0.04         |  |
| Sandstone               | 14,180 | 0.05         |  |
| Sandstone               | 14,185 | 0.05         |  |
| Sandstone               | 14,190 | 0.04         |  |
| Sandstone               | 14,195 | 0.12         |  |
| Sandstone               | 14,200 | 0.11         |  |
| Sandstone               | 14,205 | 0.19         |  |
| Sandstone               | 14,210 | 0.18         |  |
| Sandstone               | 14,215 | 0.10         |  |
| Sandstone               | 14,220 | 0.07         |  |
| Sandstone               | 14,225 | 0.07         |  |
| Sandstone               | 14,230 | 0.08         |  |
| Sandstone               | 14,235 | 0.04         |  |
| Sandstone               | 14,240 | 0.02         |  |
| Sandstone               | 14,245 | 0.02         |  |
| Sandstone               | 14,250 | 0.01         |  |
| Sandstone               | 14,255 | 0.04         |  |
| Sandstone               | 14,260 | 0.02         |  |
| Sandstone               | 14,265 | 0.01         |  |
| Sandstone               | 14,270 | 0.05         |  |
| Sandstone               | 14,275 | 0.08         |  |
| Sandstone               | 14,280 | 0.08         |  |
| Sandstone               | 14,285 | 0.05         |  |
| Sandstone               | 14,290 | 0.05         |  |
| Sandstone               | 14,295 | 0.03         |  |
| Sandstone               | 14,300 | 0.07         |  |
| Sandstone               | 14,305 | 0.06         |  |
| Sandstone               | 14,310 | 0.04         |  |
| Sandstone               | 14,315 | 0.05         |  |
| Sandstone               | 14,320 | 0.05         |  |
| Sandstone               | 14,325 | 0.05         |  |
| Sandstone               | 14,330 | 0.06         |  |
| Sandstone               | 14,335 | 0.04         |  |
| Sandstone               | 14,340 | 0.04         |  |

| Porosity for NDGS #3844 |               |                          |  |
|-------------------------|---------------|--------------------------|--|
| Lithology               | Depth<br>(ft) | Porosity<br>(fractional) |  |
| Sandstone               | 14,345        | 0.04                     |  |
| Sandstone               | 14,350        | 0.01                     |  |
| Sandstone               | 14,355        | 0.03                     |  |
| Sandstone               | 14,360        | 0.01                     |  |
| Sandstone               | 14,365        | 0.02                     |  |
| Sandstone               | 14,370        | 0.01                     |  |
| Sandstone               | 14,375        | 0.01                     |  |
| Sandstone               | 14,380        | 0.01                     |  |
| Sandstone               | 14,385        | 0.02                     |  |
| Sandstone               | 14,390        | 0.04                     |  |
| Sandstone               | 14,395        | 0.02                     |  |
| Sandstone               | 14,400        | 0.01                     |  |
| Sandstone               | 14,405        | 0.02                     |  |
| Sandstone               | 14,410        | 0.01                     |  |
| Sandstone               | 14,415        | 0.04                     |  |
| Sandstone               | 14,420        | 0.03                     |  |
| Sandstone               | 14,425        | 0.03                     |  |
| Sandstone               | 14,430        | 0.04                     |  |
| Sandstone               | 14,435        | 0.04                     |  |
| Sandstone               | 14,440        | 0.04                     |  |
| Sandstone               | 14,445        | 0.05                     |  |
| Sandstone               | 14,450        | 0.04                     |  |
| Sandstone               | 14,455        | 0.04                     |  |
| Sandstone               | 14,460        | 0.04                     |  |
| Sandstone               | 14,465        | 0.05                     |  |
| Sandstone               | 14,470        | 0.06                     |  |
| Sandstone               | 14,475        | 0.05                     |  |
| Sandstone               | 14,480        | 0.06                     |  |
| Sandstone               | 14,485        | 0.06                     |  |
| Sandstone               | 14,490        | 0.06                     |  |
| Sandstone               | 14,495        | 0.07                     |  |
| Sandstone               | 14,500        | 0.06                     |  |
| Sandstone               | 14,505        | 0.10                     |  |
| Sandstone               | 14,510        | 0.08                     |  |
| Sandstone               | 14,515        | 0.09                     |  |
| Sandstone               | 14,520        | 0.15                     |  |
| Sandstone               | 14,525        | 0.03                     |  |
| Sandstone               | 14,530        | 0.04                     |  |

| General Well Information for NDGS #4321 |                 |  |
|-----------------------------------------|-----------------|--|
| Latitude                                | 48.464864 North |  |
| Longitude                               | 102.904315 West |  |
| Present-Day Onshore Ground Elevation    | 2,446 feet      |  |
| Total Depth                             | 14,426 feet     |  |
| Kelly Bushing Elevation                 | 2,457 feet      |  |

| <u>Temperature for NDGS #4321</u>                |  |  |  |
|--------------------------------------------------|--|--|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hr |  |  |  |
| 14,282 243 11                                    |  |  |  |

|              | Stratigraphy for NDGS #4321 |             |                |  |
|--------------|-----------------------------|-------------|----------------|--|
| Туре         | Name of Layer               | Top MD (ft) | Thickness (ft) |  |
| Rock Layer   | Cenozoic                    | 0           | 4,158          |  |
| Rock Layer   | Greenhorn                   | 4,158       | 306            |  |
| Rock Layer   | Mowry                       | 4,464       | 336            |  |
| Rock Layer   | Inyan Kara                  | 4,800       | 415            |  |
| Rock Layer   | Swift                       | 5,215       | 442            |  |
| Rock Layer   | Rierdon                     | 5,657       | 594            |  |
| Rock Layer   | Spearfish                   | 6,251       | 151            |  |
| Rock Layer   | Minnekahta                  | 6,402       | 42             |  |
| Rock Layer   | Opeche                      | 6,444       | 107            |  |
| Rock Layer   | Broom Creek                 | 6,551       | 764            |  |
| Rock Layer   | Kibbey                      | 7,315       | 145            |  |
| Rock Layer   | Madison                     | 7,460       | 540            |  |
| Rock Layer   | Charles Ratcliffe           | 8,000       | 280            |  |
| Rock Layer   | Mission Canyon FA           | 8,280       | 586            |  |
| Rock Layer   | Lodgepole                   | 8,866       | 692            |  |
| Rock Layer   | Bakken                      | 9,558       | 102            |  |
| Rock Layer   | Three Forks                 | 9,660       | 193            |  |
| Rock Layer   | Birdbear                    | 9,853       | 93             |  |
| Rock Layer   | Duperow                     | 9,946       | 462            |  |
| Rock Layer   | Souris River                | 10,408      | 270            |  |
| Rock Layer   | Dawson Bay                  | 10,678      | 812            |  |
| Rock Layer   | Interlake                   | 11,490      | 1,083          |  |
| Rock Layer   | Gunton                      | 12,573      | 93             |  |
| Rock Layer   | Stoughton                   | 12,666      | 60             |  |
| Rock Layer   | Red River                   | 12,726      | 589            |  |
| Rock Layer   | Roughlock                   | 13,315      | 36             |  |
| Rock Layer   | Icebox                      | 13,351      | 125            |  |
| Rock Layer   | Black Island                | 13,476      | 231            |  |
| Unconformity |                             |             |                |  |
| Rock Layer   | Deadwood F                  | 13,707      | 26             |  |
| Rock Layer   | Deadwood E                  | 13,733      | 131            |  |
| Rock Layer   | Deadwood D                  | 13,864      | 159            |  |
| Rock Layer   | Deadwood C                  | 14,023      | 168            |  |
| Rock Layer   | Deadwood B                  | 14,191      | 65             |  |
| Unconformity |                             |             |                |  |
| Rock Layer   | Deadwood A                  | 14,256      | 27             |  |
| Unconformity |                             |             |                |  |
| Rock Layer   | Precambrian                 | 14,283      |                |  |

| Porosity for NDGS #4321 |        |              |  |
|-------------------------|--------|--------------|--|
| Denth Porosity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 13,700 | 0.15         |  |
| Sandstone               | 13,710 | 0.02         |  |
| Sandstone               | 13,720 | 0.01         |  |
| Sandstone               | 13,730 | 0.13         |  |
| Sandstone               | 13,740 | 0.01         |  |
| Sandstone               | 13,750 | 0.01         |  |
| Sandstone               | 13,760 | 0.01         |  |
| Sandstone               | 13,770 | 0.01         |  |
| Sandstone               | 13,780 | 0.01         |  |
| Sandstone               | 13,790 | 0.04         |  |
| Sandstone               | 13,800 | 0.02         |  |
| Sandstone               | 13,810 | 0.03         |  |
| Sandstone               | 13,820 | 0.01         |  |
| Sandstone               | 13,830 | 0.01         |  |
| Sandstone               | 13,840 | 0.02         |  |
| Sandstone               | 13,850 | 0.01         |  |
| Sandstone               | 13,860 | 0.02         |  |
| Sandstone               | 13,870 | 0.08         |  |
| Sandstone               | 13,880 | 0.13         |  |
| Sandstone               | 13,890 | 0.01         |  |
| Sandstone               | 13,900 | 0.02         |  |
| Sandstone               | 13,910 | 0.07         |  |
| Sandstone               | 13,920 | 0.01         |  |
| Sandstone               | 13,930 | 0.01         |  |
| Sandstone               | 13,940 | 0.01         |  |
| Sandstone               | 13,950 | 0.04         |  |
| Sandstone               | 13,960 | 0.12         |  |
| Sandstone               | 13,970 | 0.01         |  |
| Sandstone               | 13,980 | 0.03         |  |
| Sandstone               | 13,990 | 0.04         |  |
| Sandstone               | 14,000 | 0.06         |  |
| Sandstone               | 14,010 | 0.02         |  |
| Limestone               | 14,023 | 0.07         |  |
| Limestone               | 14,030 | 0.03         |  |
| Limestone               | 14,040 | 0.01         |  |
| Limestone               | 14,050 | 0.01         |  |
| Limestone               | 14,060 | 0.01         |  |
| Limestone               | 14,070 | 0.03         |  |
| Limestone               | 14,080 | 0.01         |  |
| Limestone               | 14,090 | 0.03         |  |
| Limestone               | 14,100 | 0.03         |  |

| Porosity for NDGS #4321 |               |                          |  |
|-------------------------|---------------|--------------------------|--|
| Lithology               | Depth<br>(ft) | Porosity<br>(fractional) |  |
| Limestone               | 14,110        | 0.01                     |  |
| Limestone               | 14,120        | 0.06                     |  |
| Limestone               | 14,130        | 0.07                     |  |
| Limestone               | 14,140        | 0.05                     |  |
| Sandstone               | 14,150        | 0.04                     |  |
| Sandstone               | 14,160        | 0.07                     |  |
| Sandstone               | 14,170        | 0.05                     |  |
| Sandstone               | 14,180        | 0.01                     |  |
| Sandstone               | 14,190        | 0.01                     |  |
| Sandstone               | 14,200        | 0.13                     |  |
| Sandstone               | 14,210        | 0.13                     |  |
| Sandstone               | 14,220        | 0.13                     |  |
| Sandstone               | 14,230        | 0.16                     |  |
| Sandstone               | 14,240        | 0.16                     |  |
| Sandstone               | 14,250        | 0.16                     |  |
| Sandstone               | 14,260        | 0.11                     |  |
| Sandstone               | 14,270        | 0.11                     |  |
| Sandstone               | 14,280        | 0.02                     |  |

| General Well Information for NDGS #6228 |                 |  |
|-----------------------------------------|-----------------|--|
| Latitude                                | 47.318737 North |  |
| Longitude                               | 103.093066 West |  |
| Present-Day Onshore Ground Elevation    | 2,521 feet      |  |
| Total Depth                             | 15,380 feet     |  |
| Kelly Bushing Elevation                 | 2,532 feet      |  |

| <u>Temperature for NDGS #6228</u>                  |     |    |  |
|----------------------------------------------------|-----|----|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hrs) |     |    |  |
| 11,731                                             | 230 | 15 |  |
| 13,882                                             | 276 | 38 |  |
| 15,264                                             | 300 | 14 |  |

| Stratigraphy for NDGS #6228 |                   |             |                 |  |
|-----------------------------|-------------------|-------------|-----------------|--|
| Туре                        | Name of Layer     | Top MD (ft) | Thickness (ft)  |  |
| Rock Layer                  | Cenozoic          | 0           | 4,737           |  |
| Rock Layer                  | Greenhorn         | 4,737       | 455             |  |
| Rock Layer                  | Mowry             | 5,192       | 378             |  |
| Rock Layer                  | Inyan Kara        | 5,570       | 365             |  |
| Rock Layer                  | Swift             | 5,935       | 531             |  |
| Rock Layer                  | Rierdon           | 6,466       | 498             |  |
| Rock Layer                  | Spearfish         | 6,964       | 386             |  |
| Rock Layer                  | Minnekahta        | 7,350       | 46              |  |
| Rock Layer                  | Opeche            | 7,396       | 35 <sup>2</sup> |  |
| Rock Layer                  | Broom Creek       | 7,748       | 992             |  |
| Rock Layer                  | Kibbey            | 8,740       | 147             |  |
| Rock Layer                  | Madison           | 8,887       | 409             |  |
| Rock Layer                  | Charles Ratcliffe | 9,296       | 259             |  |
| Rock Layer                  | Mission Canyon FA | 9,555       | 506             |  |
| Rock Layer                  | Lodgepole         | 10,061      | 853             |  |
| Rock Layer                  | Bakken            | 10,914      | 39              |  |
| Rock Layer                  | Three Forks       | 10,953      | <sup>2</sup> 54 |  |
| Rock Layer                  | Birdbear          | 11,207      | 88              |  |
| Rock Layer                  | Duperow           | 11,295      | 383             |  |
| Rock Layer                  | Souris River      | 11,678      | 218             |  |
| Rock Layer                  | Dawson Bay        | 11,896      | 385             |  |
| Rock Layer                  | Interlake         | 12,281      | 1,039           |  |
| Rock Layer                  | Gunton            | 13,320      | 76              |  |
| Rock Layer                  | Stoughton         | 13,396      | 81              |  |
| Rock Layer                  | Red River         | 13,477      | 633             |  |
| Rock Layer                  | Roughlock         | 14,110      | 41              |  |
| Rock Layer                  | Icebox            | 14,151      | 131             |  |
| Rock Layer                  | Black Island      | 14,282      | 77              |  |
| Unconformity                |                   |             |                 |  |
| Rock Layer                  | Deadwood F        | 14,359      | 34              |  |
| Rock Layer                  | Deadwood E        | 14,393      | 212             |  |
| Rock Layer                  | Deadwood D        | 14,605      | 168             |  |
| Rock Layer                  | Deadwood C        | 14,773      | 229             |  |
| Rock Layer                  | Deadwood B        | 15,002      | 206             |  |
|                             | Unconformity      |             |                 |  |
| Rock Layer                  | Deadwood A        | 15,208      | 57              |  |
| Unconformity                |                   |             |                 |  |
| Rock Layer                  | Precambrian       | 15,265      |                 |  |

| Porosity for NDGS #6228             |        |              |  |
|-------------------------------------|--------|--------------|--|
| Lithology Depth Porosity (fraction) |        |              |  |
| Lithology                           | (ft)   | (fractional) |  |
| Sandstone                           | 14,300 | 0.06         |  |
| Sandstone                           | 14,310 | 0.04         |  |
| Sandstone                           | 14,320 | 0.10         |  |
| Sandstone                           | 14,330 | 0.05         |  |
| Sandstone                           | 14,340 | 0.10         |  |
| Sandstone                           | 14,350 | 0.03         |  |
| Sandstone                           | 14,360 | 0.05         |  |
| Sandstone                           | 14,370 | 0.01         |  |
| Sandstone                           | 14,380 | 0.05         |  |
| Sandstone                           | 14,390 | 0.04         |  |
| Limestone                           | 14,400 | 0.06         |  |
| Limestone                           | 14,410 | 0.05         |  |
| Limestone                           | 14,420 | 0.05         |  |
| Limestone                           | 14,430 | 0.05         |  |
| Limestone                           | 14,440 | 0.04         |  |
| Limestone                           | 14,450 | 0.05         |  |
| Limestone                           | 14,460 | 0.04         |  |
| Limestone                           | 14,470 | 0.04         |  |
| Limestone                           | 14,480 | 0.03         |  |
| Limestone                           | 14,490 | 0.03         |  |
| Limestone                           | 14,500 | 0.06         |  |
| Limestone                           | 14,510 | 0.05         |  |
| Limestone                           | 14,520 | 0.06         |  |
| Limestone                           | 14,530 | 0.03         |  |
| Limestone                           | 14,540 | 0.06         |  |
| Limestone                           | 14,550 | 0.06         |  |
| Limestone                           | 14,560 | 0.07         |  |
| Limestone                           | 14,570 | 0.07         |  |
| Limestone                           | 14,580 | 0.06         |  |
| Limestone                           | 14,590 | 0.07         |  |
| Sandstone                           | 14,600 | 0.00         |  |
| Sandstone                           | 14,610 | 0.02         |  |
| Sandstone                           | 14,620 | 0.08         |  |
| Sandstone                           | 14,630 | 0.10         |  |
| Sandstone                           | 14,640 | 0.01         |  |
| Sandstone                           | 14,650 | 0.02         |  |
| Sandstone                           | 14,660 | 0.02         |  |
| Sandstone                           | 14,670 | 0.02         |  |
| Sandstone                           | 14,680 | 0.01         |  |
| Sandstone                           | 14,690 | 0.01         |  |
| Sandstone                           | 14,700 | 0.01         |  |

| Porosity for NDGS #6228 |        |              |  |
|-------------------------|--------|--------------|--|
| Lithology               | Depth  | Porosity     |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 14,710 | 0.03         |  |
| Sandstone               | 14,720 | 0.03         |  |
| Sandstone               | 14,730 | 0.06         |  |
| Sandstone               | 14,740 | 0.04         |  |
| Sandstone               | 14,750 | 0.04         |  |
| Sandstone               | 14,760 | 0.05         |  |
| Sandstone               | 14,770 | 0.06         |  |
| Limestone               | 14,780 | 0.08         |  |
| Limestone               | 14,790 | 0.04         |  |
| Limestone               | 14,800 | 0.06         |  |
| Limestone               | 14,810 | 0.07         |  |
| Limestone               | 14,820 | 0.10         |  |
| Limestone               | 14,830 | 0.04         |  |
| Limestone               | 14,840 | 0.03         |  |
| Limestone               | 14,850 | 0.06         |  |
| Limestone               | 14,860 | 0.08         |  |
| Limestone               | 14,870 | 0.04         |  |
| Limestone               | 14,880 | 0.05         |  |
| Limestone               | 14,890 | 0.06         |  |
| Limestone               | 14,900 | 0.10         |  |
| Limestone               | 14,910 | 0.07         |  |
| Limestone               | 14,920 | 0.09         |  |
| Limestone               | 14,930 | 0.08         |  |
| Limestone               | 14,940 | 0.08         |  |
| Limestone               | 14,950 | 0.07         |  |
| Limestone               | 14,960 | 0.09         |  |
| Limestone               | 14,970 | 0.09         |  |
| Limestone               | 14,980 | 0.10         |  |
| Limestone               | 14,990 | 0.09         |  |
| Limestone               | 15,000 | 0.08         |  |
| Sandstone               | 15,010 | 0.04         |  |
| Sandstone               | 15,020 | 0.07         |  |
| Sandstone               | 15,030 | 0.04         |  |
| Sandstone               | 15,040 | 0.06         |  |
| Sandstone               | 15,050 | 0.04         |  |
| Sandstone               | 15,060 | 0.06         |  |
| Sandstone               | 15,070 | 0.03         |  |
| Sandstone               | 15,080 | 0.13         |  |
| Sandstone               | 15,090 | 0.18         |  |
| Sandstone               | 15,100 | 0.05         |  |
| Sandstone               | 15,110 | 0.01         |  |

| Porosity for NDGS #6228 |               |                          |  |
|-------------------------|---------------|--------------------------|--|
| Lithology               | Depth<br>(ft) | Porosity<br>(fractional) |  |
| Sandstone               | 15,120        | 0.06                     |  |
| Sandstone               | 15,130        | 0.07                     |  |
| Sandstone               | 15,140        | 0.04                     |  |
| Sandstone               | 15,150        | 0.06                     |  |
| Sandstone               | 15,160        | 0.08                     |  |
| Sandstone               | 15,170        | 0.03                     |  |
| Sandstone               | 15,180        | 0.01                     |  |
| Sandstone               | 15,190        | 0.04                     |  |
| Sandstone               | 15,200        | 0.10                     |  |
| Sandstone               | 15,210        | 0.13                     |  |
| Sandstone               | 15,220        | 0.02                     |  |
| Sandstone               | 15,230        | 0.04                     |  |
| Sandstone               | 15,240        | 0.07                     |  |
| Sandstone               | 15,250        | 0.10                     |  |
| Sandstone               | 15,260        | 0.08                     |  |

| General Well Information for NDGS #7340 |                 |  |
|-----------------------------------------|-----------------|--|
| Latitude                                | 46.911145 North |  |
| Longitude                               | 101.746294 West |  |
| Present-Day Onshore Ground Elevation    | 2,210 feet      |  |
| Total Depth                             | 11,402 feet     |  |
| Kelly Bushing Elevation                 | 2,230 feet      |  |

| <u>Temperature for NDGS #7340</u>                  |     |     |  |
|----------------------------------------------------|-----|-----|--|
| Measured Depth (ft) Log Temperature (°F) TSC (hrs) |     |     |  |
| 11,341                                             | 175 | 7.5 |  |

| Stratigraphy for NDGS #7340 |                   |             |                |
|-----------------------------|-------------------|-------------|----------------|
| Туре                        | Name of Layer     | Top MD (ft) | Thickness (ft) |
| Rock Layer                  | Cenozoic          | 0           | 3,529          |
| Rock Layer                  | Greenhorn         | 3,529       | 400            |
| Rock Layer                  | Mowry             | 3,929       | 336            |
| Rock Layer                  | Inyan Kara        | 4,265       | 370            |
| Rock Layer                  | Swift             | 4,635       | 379            |
| Rock Layer                  | Rierdon           | 5,014       | 209            |
| Rock Layer                  | Spearfish         | 5,223       | 147            |
| Rock Layer                  | Minnekahta        | 5,370       | 35             |
| Rock Layer                  | Opeche            | 5,405       | 120            |
| Rock Layer                  | Broom Creek       | 5,525       | 919            |
| Rock Layer                  | Kibbey            | 6,444       | 125            |
| Rock Layer                  | Madison           | 6,569       | 222            |
| Rock Layer                  | Charles Ratcliffe | 6,791       | 172            |
| Rock Layer                  | Mission Canyon FA | 6,963       | 451            |
| Rock Layer                  | Lodgepole         | 7,414       | 702            |
| Rock Layer                  | Bakken            | 8,116       | 7              |
| Rock Layer                  | Three Forks       | 8,123       | 178            |
| Rock Layer                  | Birdbear          | 8,301       | 77             |
| Rock Layer                  | Duperow           | 8,378       | 286            |
| Rock Layer                  | Souris River      | 8,664       | 186            |
| Rock Layer                  | Dawson Bay        | 8,850       | 210            |
| Rock Layer                  | Interlake         | 9,060       | 668            |
| Rock Layer                  | Gunton            | 9,728       | 42             |
| Rock Layer                  | Stoughton         | 9,770       | 90             |
| Rock Layer                  | Red River         | 9,860       | 636            |
| Rock Layer                  | Roughlock         | 10,496      | 44             |
| Rock Layer                  | Icebox            | 10,540      | 135            |
| Rock Layer                  | Black Island      | 10,675      | 41             |
|                             | Unconfo           | ormity      |                |
| Rock Layer                  | Deadwood F        | 10,716      | 43             |
| Rock Layer                  | Deadwood E        | 10,759      | 152            |
| Rock Layer                  | Deadwood D        | 10,911      | 62             |
| Rock Layer                  | Deadwood C        | 10,973      | 192            |
| Rock Layer                  | Deadwood B        | 11,165      | 130            |
|                             | Unconfo           | rmity       |                |
| Rock Layer                  | Deadwood A        | 11,295      | 46             |
| Unconformity                |                   |             |                |
| Rock Layer                  | Precambrian       | 11,341      |                |

| Porosity for NDGS #7340 |        |              |  |
|-------------------------|--------|--------------|--|
| Depth Porosity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 10,685 | 0.17         |  |
| Sandstone               | 10,690 | 0.17         |  |
| Sandstone               | 10,695 | 0.13         |  |
| Sandstone               | 10,700 | 0.13         |  |
| Sandstone               | 10,705 | 0.11         |  |
| Sandstone               | 10,710 | 0.10         |  |
| Sandstone               | 10,715 | 0.17         |  |
| Sandstone               | 10,720 | 0.15         |  |
| Sandstone               | 10,725 | 0.09         |  |
| Sandstone               | 10,730 | 0.13         |  |
| Sandstone               | 10,735 | 0.25         |  |
| Sandstone               | 10,740 | 0.23         |  |
| Sandstone               | 10,745 | 0.19         |  |
| Sandstone               | 10,750 | 0.24         |  |
| Sandstone               | 10,755 | 0.19         |  |
| Sandstone               | 10,760 | 0.12         |  |
| Sandstone               | 10,765 | 0.15         |  |
| Sandstone               | 10,770 | 0.13         |  |
| Sandstone               | 10,775 | 0.13         |  |
| Sandstone               | 10,780 | 0.11         |  |
| Sandstone               | 10,785 | 0.13         |  |
| Sandstone               | 10,790 | 0.09         |  |
| Sandstone               | 10,795 | 0.11         |  |
| Sandstone               | 10,800 | 0.10         |  |
| Sandstone               | 10,805 | 0.13         |  |
| Sandstone               | 10,810 | 0.14         |  |
| Sandstone               | 10,815 | 0.14         |  |
| Sandstone               | 10,820 | 0.02         |  |
| Sandstone               | 10,825 | 0.04         |  |
| Sandstone               | 10,830 | 0.08         |  |
| Sandstone               | 10,835 | 0.13         |  |
| Sandstone               | 10,840 | 0.13         |  |
| Sandstone               | 10,845 | 0.17         |  |
| Sandstone               | 10,850 | 0.16         |  |
| Sandstone               | 10,855 | 0.16         |  |
| Sandstone               | 10,860 | 0.16         |  |
| Sandstone               | 10,865 | 0.10         |  |
| Sandstone               | 10,870 | 0.14         |  |
| Sandstone               | 10,875 | 0.17         |  |
| Sandstone               | 10,880 | 0.18         |  |
| Sandstone               | 10,885 | 0.19         |  |

| Porosity for NDGS #7340 |        |              |
|-------------------------|--------|--------------|
| Denth Porosity          |        |              |
| Lithology               | (ft)   | (fractional) |
| Sandstone               | 10,890 | 0.18         |
| Sandstone               | 10,895 | 0.16         |
| Sandstone               | 10,900 | 0.18         |
| Sandstone               | 10,905 | 0.17         |
| Sandstone               | 10,910 | 0.11         |
| Sandstone               | 10,915 | 0.04         |
| Sandstone               | 10,920 | 0.08         |
| Sandstone               | 10,925 | 0.04         |
| Sandstone               | 10,930 | 0.06         |
| Sandstone               | 10,935 | 0.08         |
| Sandstone               | 10,940 | 0.06         |
| Sandstone               | 10,945 | 0.08         |
| Sandstone               | 10,950 | 0.14         |
| Sandstone               | 10,955 | 0.03         |
| Sandstone               | 10,960 | 0.11         |
| Sandstone               | 10,965 | 0.10         |
| Sandstone               | 10,970 | 0.16         |
| Sandstone               | 10,975 | 0.10         |
| Sandstone               | 10,980 | 0.08         |
| Sandstone               | 10,985 | 0.07         |
| Sandstone               | 10,990 | 0.06         |
| Sandstone               | 10,995 | 0.11         |
| Sandstone               | 11,000 | 0.06         |
| Sandstone               | 11,005 | 0.05         |
| Sandstone               | 11,010 | 0.10         |
| Sandstone               | 11,015 | 0.11         |
| Sandstone               | 11,020 | 0.05         |
| Sandstone               | 11,025 | 0.06         |
| Sandstone               | 11,030 | 0.03         |
| Sandstone               | 11,035 | 0.03         |
| Sandstone               | 11,040 | 0.02         |
| Sandstone               | 11,045 | 0.02         |
| Sandstone               | 11,050 | 0.02         |
| Sandstone               | 11,055 | 0.03         |
| Sandstone               | 11,060 | 0.02         |
| Sandstone               | 11,065 | 0.02         |
| Sandstone               | 11,070 | 0.02         |
| Sandstone               | 11,075 | 0.03         |
| Sandstone               | 11,080 | 0.02         |
| Sandstone               | 11,085 | 0.02         |
| Sandstone               | 11,090 | 0.02         |

| Porosity for NDGS #7340 |        |              |  |
|-------------------------|--------|--------------|--|
| Depth Porocity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 11,095 | 0.02         |  |
| Sandstone               | 11,100 | 0.04         |  |
| Sandstone               | 11,105 | 0.06         |  |
| Sandstone               | 11,110 | 0.07         |  |
| Sandstone               | 11,115 | 0.05         |  |
| Sandstone               | 11,120 | 0.11         |  |
| Sandstone               | 11,125 | 0.07         |  |
| Sandstone               | 11,130 | 0.09         |  |
| Sandstone               | 11,135 | 0.07         |  |
| Sandstone               | 11,140 | 0.07         |  |
| Sandstone               | 11,145 | 0.04         |  |
| Sandstone               | 11,150 | 0.04         |  |
| Sandstone               | 11,155 | 0.05         |  |
| Sandstone               | 11,160 | 0.02         |  |
| Sandstone               | 11,165 | 0.06         |  |
| Sandstone               | 11,170 | 0.05         |  |
| Sandstone               | 11,175 | 0.06         |  |
| Sandstone               | 11,180 | 0.06         |  |
| Sandstone               | 11,185 | 0.11         |  |
| Sandstone               | 11,190 | 0.20         |  |
| Sandstone               | 11,195 | 0.09         |  |
| Sandstone               | 11,200 | 0.07         |  |
| Sandstone               | 11,205 | 0.07         |  |
| Sandstone               | 11,210 | 0.07         |  |
| Sandstone               | 11,215 | 0.06         |  |
| Sandstone               | 11,220 | 0.07         |  |
| Sandstone               | 11,225 | 0.06         |  |
| Sandstone               | 11,230 | 0.07         |  |
| Sandstone               | 11,235 | 0.10         |  |
| Sandstone               | 11,240 | 0.17         |  |
| Sandstone               | 11,245 | 0.15         |  |
| Sandstone               | 11,250 | 0.09         |  |
| Sandstone               | 11,255 | 0.15         |  |
| Sandstone               | 11,260 | 0.05         |  |
| Sandstone               | 11,265 | 0.12         |  |
| Sandstone               | 11,270 | 0.11         |  |
| Sandstone               | 11,275 | 0.13         |  |
| Sandstone               | 11,280 | 0.14         |  |
| Sandstone               | 11,285 | 0.15         |  |
| Sandstone               | 11,290 | 0.13         |  |
| Sandstone               | 11,295 | 0.15         |  |

| Porosity for NDGS #7340 |               |                          |
|-------------------------|---------------|--------------------------|
| Lithology               | Depth<br>(ft) | Porosity<br>(fractional) |
| Sandstone               | 11,300        | 0.12                     |
| Sandstone               | 11,305        | 0.13                     |
| Sandstone               | 11,310        | 0.20                     |
| Sandstone               | 11,315        | 0.17                     |
| Sandstone               | 11,320        | 0.20                     |
| Sandstone               | 11,325        | 0.09                     |
| Sandstone               | 11,330        | 0.14                     |
| Sandstone               | 11,335        | 0.12                     |
| Sandstone               | 11,340        | 0.10                     |

| General Well Information for NDGS #8169 |                 |  |
|-----------------------------------------|-----------------|--|
| Latitude                                | 46.759015 North |  |
| Longitude                               | 102.298513 West |  |
| Present-Day Onshore Ground Elevation    | 2,350 feet      |  |
| Total Depth                             | 12,218 feet     |  |
| Kelly Bushing Elevation                 | 2,372 feet      |  |

| <u>Temperature for NDGS #8169</u> |                                 |      |  |
|-----------------------------------|---------------------------------|------|--|
| Measured Depth (ft)               | t) Log Temperature (°F) TSC (hr |      |  |
| 12,141                            | 201                             | 15.5 |  |

| Stratigraphy for NDGS #8169 |                   |             |                |
|-----------------------------|-------------------|-------------|----------------|
| Type                        | Name of Layer     | Top MD (ft) | Thickness (ft) |
| Rock Layer                  | Cenozoic          | 0           | 4,310          |
| Rock Layer                  | Mowry             | 4,310       | 318            |
| Rock Layer                  | Inyan Kara        | 4,628       | 394            |
| Rock Layer                  | Swift             | 5,022       | 442            |
| Rock Layer                  | Rierdon           | 5,464       | 384            |
| Rock Layer                  | Spearfish         | 5,848       | 146            |
| Rock Layer                  | Minnekahta        | 5,994       | 43             |
| Rock Layer                  | Opeche            | 6,037       | 98             |
| Rock Layer                  | Broom Creek       | 6,135       | 981            |
| Rock Layer                  | Kibbey            | 7,116       | 118            |
| Rock Layer                  | Madison           | 7,234       | 236            |
| Rock Layer                  | Charles Ratcliffe | 7,470       | 196            |
| Rock Layer                  | Mission Canyon FA | 7,666       | 447            |
| Rock Layer                  | Lodgepole         | 8,113       | 721            |
| Rock Layer                  | Bakken            | 8,834       | 8              |
| Rock Layer                  | Three Forks       | 8,842       | 167            |
| Rock Layer                  | Birdbear          | 9,009       | 71             |
| Rock Layer                  | Duperow           | 9,080       | 254            |
| Rock Layer                  | Souris River      | 9,334       | 121            |
| Rock Layer                  | Dawson Bay        | 9,455       | 278            |
| Rock Layer                  | Interlake         | 9,733       | 697            |
| Rock Layer                  | Gunton            | 10,430      | 50             |
| Rock Layer                  | Stoughton         | 10,480      | 91             |
| Rock Layer                  | Red River         | 10,571      | 633            |
| Rock Layer                  | Roughlock         | 11,204      | 44             |
| Rock Layer                  | Icebox            | 11,248      | 109            |
| Rock Layer                  | Black Island      | 11,357      | 27             |
| Unconformity                |                   |             |                |
| Rock Layer                  | Deadwood F        | 11,384      | 12             |
| Rock Layer                  | Deadwood E        | 11,396      | 172            |
| Rock Layer                  | Deadwood D        | 11,568      | 82             |
| Rock Layer                  | Deadwood C        | 11,650      | 222            |
| Rock Layer                  | Deadwood B        | 11,872      | 190            |
| Unconformity                |                   |             |                |
| Rock Layer                  | Deadwood A        | 12,062      | 79             |
|                             | Unconformity      |             |                |
| Rock Layer                  | Precambrian       | 12,141      |                |

| Porosity for NDGS #8169 |        |              |
|-------------------------|--------|--------------|
| Depth Porosity          |        |              |
| Lithology               | (ft)   | (fractional) |
| Sandstone               | 11,385 | 0.25         |
| Sandstone               | 11,390 | 0.18         |
| Sandstone               | 11,395 | 0.17         |
| Sandstone               | 11,400 | 0.14         |
| Sandstone               | 11,405 | 0.13         |
| Sandstone               | 11,410 | 0.09         |
| Sandstone               | 11,415 | 0.07         |
| Sandstone               | 11,420 | 0.09         |
| Sandstone               | 11,425 | 0.09         |
| Sandstone               | 11,430 | 0.05         |
| Sandstone               | 11,435 | 0.05         |
| Sandstone               | 11,440 | 0.04         |
| Sandstone               | 11,445 | 0.03         |
| Sandstone               | 11,450 | 0.02         |
| Sandstone               | 11,455 | 0.04         |
| Sandstone               | 11,460 | 0.03         |
| Sandstone               | 11,465 | 0.05         |
| Sandstone               | 11,470 | 0.03         |
| Sandstone               | 11,475 | 0.02         |
| Sandstone               | 11,480 | 0.04         |
| Sandstone               | 11,485 | 0.03         |
| Sandstone               | 11,490 | 0.02         |
| Sandstone               | 11,495 | 0.07         |
| Sandstone               | 11,500 | 0.06         |
| Sandstone               | 11,505 | 0.07         |
| Sandstone               | 11,510 | 0.04         |
| Sandstone               | 11,515 | 0.04         |
| Sandstone               | 11,520 | 0.06         |
| Sandstone               | 11,525 | 0.07         |
| Sandstone               | 11,530 | 0.08         |
| Sandstone               | 11,535 | 0.10         |
| Sandstone               | 11,540 | 0.11         |
| Sandstone               | 11,545 | 0.12         |
| Sandstone               | 11,550 | 0.14         |
| Sandstone               | 11,555 | 0.03         |
| Sandstone               | 11,560 | 0.05         |
| Sandstone               | 11,565 | 0.03         |
| Sandstone               | 11,570 | 0.06         |
| Sandstone               | 11,575 | 0.08         |
| Sandstone               | 11,580 | 0.08         |
| Sandstone               | 11,585 | 0.12         |

| Porosity for NDGS #8169  |        |              |  |
|--------------------------|--------|--------------|--|
| Lithology Depth Porosity |        |              |  |
| Lithology                | (ft)   | (fractional) |  |
| Sandstone                | 11,590 | 0.12         |  |
| Sandstone                | 11,595 | 0.07         |  |
| Sandstone                | 11,600 | 0.06         |  |
| Sandstone                | 11,605 | 0.08         |  |
| Sandstone                | 11,610 | 0.09         |  |
| Sandstone                | 11,615 | 0.08         |  |
| Sandstone                | 11,620 | 0.10         |  |
| Sandstone                | 11,625 | 0.06         |  |
| Sandstone                | 11,630 | 0.10         |  |
| Sandstone                | 11,635 | 0.08         |  |
| Sandstone                | 11,640 | 0.12         |  |
| Sandstone                | 11,645 | 0.14         |  |
| Sandstone                | 11,650 | 0.12         |  |
| Sandstone                | 11,655 | 0.05         |  |
| Sandstone                | 11,660 | 0.09         |  |
| Sandstone                | 11,665 | 0.07         |  |
| Sandstone                | 11,670 | 0.08         |  |
| Sandstone                | 11,675 | 0.05         |  |
| Sandstone                | 11,680 | 0.09         |  |
| Sandstone                | 11,685 | 0.05         |  |
| Sandstone                | 11,690 | 0.07         |  |
| Sandstone                | 11,695 | 0.06         |  |
| Sandstone                | 11,700 | 0.08         |  |
| Sandstone                | 11,705 | 0.09         |  |
| Sandstone                | 11,710 | 0.07         |  |
| Sandstone                | 11,715 | 0.04         |  |
| Sandstone                | 11,720 | 0.02         |  |
| Sandstone                | 11,725 | 0.03         |  |
| Sandstone                | 11,730 | 0.03         |  |
| Sandstone                | 11,735 | 0.02         |  |
| Sandstone                | 11,740 | 0.07         |  |
| Sandstone                | 11,745 | 0.04         |  |
| Sandstone                | 11,750 | 0.05         |  |
| Sandstone                | 11,755 | 0.03         |  |
| Sandstone                | 11,760 | 0.02         |  |
| Sandstone                | 11,765 | 0.02         |  |
| Sandstone                | 11,770 | 0.02         |  |
| Sandstone                | 11,775 | 0.02         |  |
| Sandstone                | 11,780 | 0.04         |  |
| Sandstone                | 11,785 | 0.02         |  |
| Sandstone                | 11,790 | 0.03         |  |

| Porosity for NDGS #8169 |        |              |  |
|-------------------------|--------|--------------|--|
| Depth Porosity          |        |              |  |
| Lithology               | (ft)   | (fractional) |  |
| Sandstone               | 11,795 | 0.02         |  |
| Sandstone               | 11,800 | 0.04         |  |
| Sandstone               | 11,805 | 0.02         |  |
| Sandstone               | 11,810 | 0.03         |  |
| Sandstone               | 11,815 | 0.03         |  |
| Sandstone               | 11,820 | 0.03         |  |
| Sandstone               | 11,825 | 0.03         |  |
| Sandstone               | 11,830 | 0.06         |  |
| Sandstone               | 11,835 | 0.04         |  |
| Sandstone               | 11,840 | 0.05         |  |
| Sandstone               | 11,845 | 0.05         |  |
| Sandstone               | 11,850 | 0.06         |  |
| Sandstone               | 11,855 | 0.07         |  |
| Sandstone               | 11,860 | 0.04         |  |
| Sandstone               | 11,865 | 0.07         |  |
| Sandstone               | 11,870 | 0.06         |  |
| Sandstone               | 11,875 | 0.08         |  |
| Sandstone               | 11,880 | 0.08         |  |
| Sandstone               | 11,885 | 0.07         |  |
| Sandstone               | 11,890 | 0.13         |  |
| Sandstone               | 11,895 | 0.14         |  |
| Sandstone               | 11,900 | 0.17         |  |
| Sandstone               | 11,905 | 0.06         |  |
| Sandstone               | 11,910 | 0.07         |  |
| Sandstone               | 11,915 | 0.09         |  |
| Sandstone               | 11,920 | 0.09         |  |
| Sandstone               | 11,925 | 0.09         |  |
| Sandstone               | 11,930 | 0.07         |  |
| Sandstone               | 11,935 | 0.11         |  |
| Sandstone               | 11,940 | 0.14         |  |
| Sandstone               | 11,945 | 0.08         |  |
| Sandstone               | 11,950 | 0.08         |  |
| Sandstone               | 11,955 | 0.80         |  |
| Sandstone               | 11,960 | 0.17         |  |
| Sandstone               | 11,965 | 0.14         |  |
| Sandstone               | 11,970 | 0.13         |  |
| Sandstone               | 11,975 | 0.11         |  |
| Sandstone               | 11,980 | 0.15         |  |
| Sandstone               | 11,985 | 0.13         |  |
| Sandstone               | 11,990 | 0.14         |  |
| Sandstone               | 11,995 | 0.10         |  |

| Porosity for NDGS #8169 |               |                          |
|-------------------------|---------------|--------------------------|
| Lithology               | Depth<br>(ft) | Porosity<br>(fractional) |
| Sandstone               | 12,000        | 0.09                     |
| Sandstone               | 12,005        | 0.12                     |
| Sandstone               | 12,010        | 0.13                     |
| Sandstone               | 12,015        | 0.15                     |
| Sandstone               | 12,020        | 0.14                     |
| Sandstone               | 12,025        | 0.14                     |
| Sandstone               | 12,030        | 0.13                     |
| Sandstone               | 12,035        | 0.13                     |
| Sandstone               | 12,040        | 0.07                     |
| Sandstone               | 12,045        | 0.09                     |
| Sandstone               | 12,050        | 0.13                     |
| Sandstone               | 12,055        | 0,10                     |
| Sandstone               | 12,060        | 0.13                     |
| Sandstone               | 12,065        | 0,10                     |
| Sandstone               | 12,070        | 0.09                     |
| Sandstone               | 12,075        | 0.09                     |
| Sandstone               | 12,080        | 0.07                     |
| Sandstone               | 12,085        | 0.07                     |
| Sandstone               | 12,090        | 0.09                     |
| Sandstone               | 12,095        | 0.10                     |
| Sandstone               | 12,100        | 0.07                     |
| Sandstone               | 12,105        | 0.11                     |
| Sandstone               | 12,110        | 0.07                     |
| Sandstone               | 12,115        | 0.08                     |
| Sandstone               | 12,120        | 0.05                     |
| Sandstone               | 12,125        | 0.09                     |
| Sandstone               | 12,130        | 0.10                     |
| Sandstone               | 12,135        | 0.09                     |
| Sandstone               | 12,140        | 0.07                     |

## REFERENCES

- Ahern, J.L., and Mrkvicka, S.R., 1984, A Mechanical and Thermal Model for the Evolution of the Williston Basin: Tectonics, v. 3, p. 79–102.
- Anderson, D.B., 1988, Stratigraphy and Depositional History of the Deadwood Formation (Upper Cambrian and Lower Ordovician), Williston Basin, North Dakota: University of North Dakota, 330 p.
- Athy, L.F., 1930, Density, Porosity, and Compaction of Sedimentary Rocks: The American Association of Petroleum Geologists Bulletin, v. 14, p. 24.
- Baldwin, B., and Butler, C.O., 1985, Compaction Curves: The American Association of Petroleum Geologists Bulletin, v. 69, p. 622–626.
- Barker, C.E., 2000, A Paleolatitude Approach to Assessing Surface Temperature Histor for Use in Burial Heating Models: Internal Journal of Coal Geology, v. 43, p. 121–135.
- Barnes, C.R., 1984, Early Ordovician Eustatic Events in Canada, *in* Aspects of the Ordovician System: Paleontological Contributions from the University of Oslo, p. 51–63.
- Barton, R., Bird, K., Hernandez, J.G., Grajales-Nishimura, J.M., Murillo-Muneton, G., Herber,
  B., Weimer, P., Neumaier, M., Schenk, O., and Stark, J., 2010, High-Impact Reservoirs:
  Oilfield Review: Winter, v. 21, p. 14–29.
- Blakey, R., 2013, North American Paleogeographic Maps: Paleogeography Library,.
- Bond, G.C., and Kominz, M.A., 1991, Disentangling Middle Paleozoic Sea Level and Tectonic Events in Cratonic Margins and Cratonic Basins of North America: Journal of Geophysical Research, v. 96, p. 6619–6639.

- Bowen, B.B., Ochoa, R.I., Wilkens, N.D., Brophy, J., Lovell, T.R., Fischietto, N., Medina, C.R., and Rupp, J.A., 2011, Depositional and Diagenetic Variability within the Cambrian Mount Simon Sandstone: Implications for Carbon Dioxide Sequestration: Environmental Geosciences (DEG), v. 18, p. 69–89.
- Brenan, R.L., Peterson, B.L., and Smith, H.J., 1975, Origin of Red Wing Creek Structure:McKenzie County, North Dakota: Wyoming Geological Association Earth Science Bulletin,v. 8, p. 11–41.
- Butler, R.J., Battin, R.L., Plank, R.F., and Winston, G.O., 1955, Lithologic Correlation of Middle and Lower Paleozoic Rockys: NDGS Guidebook, South Dakota Black Hills Field Conference,.
- Card, K.D., 1986, Geology and Tectonics of the Archean Superior Province, Canadian Shield: Geological Survey of Canada, p. 27–29.
- Carlson, C.G., 1960, Stratigraphy of the Winnipeg and Deadwood Formations in North Dakota:

  North Dakota Geological Society Bulletin, v. 35, p. 149.
- Carlson, C.G., 1958, The Stratigraphy of the Deadwood-Winnipeg Interval in North Dakota and Northwestern South Dakota: The Second Williston Basin Symposium,.
- Carlson, C.G., and Anderson, S.B., 1965, Sedimentary and Tectonic History of North Dakota Part of Williston Basin: The American Association of Petroleum Geologists Bulletin, v. 49, p. 1833–1846.
- Carlson, C.G., and Thompson, S.C., 1987, Stratigraphy of the Deadwood Formation and Winnipeg Group in the Williston Basin: Rocky Mountain Association of Geologists Symposium: Williston Basin: Anatomy of a Cratonic Oil Province, p. 71–81.
- Clement, J.H., and Mayhew, T.E., 1979, Newporte Discovery Opens New Pay: Oil and Gas Journal, v. 77, p. 165–172.
- Cohen, K., Finney, S., and Gibbard, P., 2013, International Chronostratigraphic Chart:.

- Cressie, N.A.C., 1991, Statistics for Spatial Data: New York, NY, John Wiley & Sons, Inc., 58-67 p.
- Darton, N.H., 1904, Comparison of the Stratigraphy of the Black Hills, Bighorn Mountains, and Rocky Mountain Front Range: Geological Society of America Bulletin, v. 15, p. 379–448.
- Darton, N.H., 1901, Preliminary Description of the Geology and Water Resources of the Southern Half of the Black Hills: U.S. Geological Survey 21st Annual Report, p. 409–459.
- Darton, N.H., and Paige, S., 1925, Description of the Central Black Hills:.
- DeRito, R.F., Cozzarelli, F.A., and Hodge, D.S., 1983, Mechanism of Subsidence of Ancient Cratonic Rift Basins: Tectonophysics, v. 94, p. 141–168.
- Dotsey, P., and Deighton, I., 2012, New Approach to Basin Formation Temperature Modelling: First Break, v. 20.
- Driese, S.G., Byers, C.W., and Dott Jr., R.H., 1981, Tidal Deposition in the Basal Upper Cambrian Mt. Simon Formation in Wisconsin: Journal of Sedimentary Petrology, v. 51, p. 367–381.
- Einsele, G., 2000, Basin Classification and Depositional Environments (Overview), *in*Sedimentary Basins: Evolution, Facies, and Sediment Budget, Springer Science & Business

  Media.
- Fischer, D.W., LeFever, J.A., LeFever, R.D., Anderson, S.B., Helms, L.D., Whittaker, S., Sorensen, J.A., Smith, S.A., Peck, W.D., Steadman, E.N., and Harju, J.A., 2005, Overview of Williston Basin Geology as it Relates to CO2 Sequestration: EERC: Plains CO2 Reduction (PCOR) Partnership, p. 25.
- Fowler, C.M.R., and Nisbet, E.G., 1985, The Subsidence of the Williston Basin: Canadian Journal of Earth Sciences, v. 22, p. 408–415.

- Furnish, W.M., Barragy, E.J., and Miller, A.K., 1936, Ordovician Fossils from Upper Part of Type Section of Deadwood Formation, South Dakota: The American Association of Petroleum Geologists Bulletin, v. 20, p. 1329–1341.
- Gerhard, L.C., Anderson, S.B., LeFever, J.A., and Carlson, C.G., 1982, Geological Development, Origin, and Energy Mineral Resources of Williston Basin, North Dakota: The American Association of Petroleum Geologists Bulletin, v. 66, p. 989–1020.
- Gerlach, T.R., 1994, Evaluation of a Possible Subsurface Impact Crater: The Newporte Structure, Northwestern Renville County, North Dakota: University of North Daktoa, 101 p.
- Gradstein, F., Ogg, J.G., Schmitz, M., and Ogg, G., 2012, The Geologic Time Scale: Elsevier.
- Gradstein, F.M., Ogg, J.G., and Smith, A.G., 2004, A Geologic Time Scale 2004: Cambridge University Press, 589 p.
- Green, A.G., Weber, W., and Hajnal, Z., 1985, Evolution of Proterozoic Terrains Beneath the Williston Basin: Geology, v. 13, p. 624–628.
- Greggs, D.H., 2000, The Stratigraphy, Sedimentology, and Structure of the Lower Paleozoic Deadwood Formation of Western Canada.
- Haq, B.U., and Schutter, S.R., 2008, A Chronology of Paleozoic Sea-Level Changes: Science, v. 322, p. 64–8, doi: 10.1126/science.1161648.
- Horton Jr., J.W., Gohn, G.S., Powars, D.S., and E., E.L., 2008, Origin and Emplacement of Impactities in the Chesapeake Bay Impact Structure, Virginia, USA: GSA Special Paper, v. 437, p. 73–97.
- Jaggar, T.A., and Howe, E., 1901, The Laccoliths of the Black Hills: U.S. Geological Survey 21st Annual Report, p. 163–307.
- Kalleson, E., Dypvik, H., and Naterstad, J., 2007, Postimpact Sediments in the Gardnos Impact Structure, Norway: GSA Special Paper, v. 437, p. 19–41.

- Kent, D.M., 1987, Paleotectonic Controls on Sedimentation in the Northern Williston Basin, Saskatchewan: Rocky Mountain Association of Geologists Symposium: Williston Basin: Anatomy of a Cratonic Oil Province,.
- Klein, G. d., and Hsui, A.T., 1987, Origin of Cratonic Basins: Geology, v. 15, p. 1094–1098.
- Kulik, J.W., 1965, Stratigraphy of the Deadwood Formation, South Dakota and Wyoming: South Dakota School of Mines and Technology.
- Ladle, G.H., 1972, The Sedimentary Petrography and Sedimentation of the Deadwood Formation in the Black Hills, South Dakota: University of Houston, 179 p.
- Laird, W.M., 1941, Selected Deep Well Records: North Dakota Geological Survey Bulletin, v. 12, p. 31.
- LeFever, R.D., 1992, Earliest Stratigraphic Record in the North Dakota Williston Basin:

  Constraints of the Age of Origin and Early Subsidence History of the Basin: American Geophysical Union: Spring Meeting,.
- LeFever, R.D., 1996, Sedimentology and Stratigraphy of the Deadwood-Winnipeg Interval (Cambro-Ordovician), Williston Basin: The Rocky Mountain Section SEPM: Paleozoic Systems of the Rocky Mountain Region, p. 11–28.
- LeFever, R.D., Thompson, S.C., and Anderson, D.B., 1987, Earliest Paleozoic History of the Williston Basin in North Dakota: Fifth International Williston Basin Symposium, p. 22–36.
- Lindsay, J.F., Korsch, R.J., and Wilford, J.R., 1987, Timing the Breakup of a Proterozoic Supercontient: Evidence from Australian Intracratonic Basins: Geology, v. 15, p. 1061–1064.
- Lochman, C., 1964a, Basal Ordovician Faunas from the Williston Basin, Montana: Journal of Paleontology, v. 38, p. 453–476.
- Lochman, C., 1966, Lower Ordovician (Arenig) Faunas from the Williston Basin, Montana and North Dakota: Journal of Paleontology, v. 40, p. 512–548.

- Lochman, C., 1964b, Upper Cambrian Faunas from the Subsurface Deadwood Formation, Williston Basin, Montana: Journal of Paleontology, v. 38, p. 33–60.
- Lochman, C., and Duncan, D., 1950, The Lower Ordovician Bellefontia Fauna in Central Montana: Journal of Paleontology, v. 24, p. 350–353.
- Lochman-Balk, C., and Wilson, J.L., 1967, Stratigraphy of Upper Cambrian-Lower Ordovician Subsurface Sequence in Williston Basin: The American Association of Petroleum Geologists Bulletin, v. 51, p. 883–917.
- Lowe, D.R., 1975, Water Escape Structures in Coarse-Grained Sediments: Sedimentology, v. 22, p. 157–204.
- McCabe, H.R., 1978, Reservoir Potential of the Deadwood and Winnipeg Formations in Southwest Manitoba: Manitoba Department of Mines Geological Paper, v. 73-8, p. 54.
- McCoy, M.R., 1952, Orodovician Sediments in the Northern Black Hills: Billings Geological Society: Guidebook: Third Annual Field Conference, p. 44–47.
- Meyerhoff, H.A., and Lochman, C., 1935, "Faunal" Zones in the Deadwood Formation of SOuth Dakota: Proceedings of the Geological Society of America, p. 352–353.
- Mueller, P.A., Shuster, R.D., Wooden, J.L., Erslev, E.A., and Bowes, D.R., 1993, Age and
   Composition of Archean Crystalline Rocks from the Southern Madison Range, Montana:
   Implications for Crustal Evolution in the Wyoming Craton: Geological Society of America
   Bulletin, v. 105, p. 437–446.
- Murphy, E.C., Nordeng, S.H., Juenker, B.J., and Hoganson, J.W., 2009, North Dakota Stratigraphic Column: North Dakota Geological Survey,.
- Newton, H., 1879, Geological Map of the Black Hills of Dakota: Geographical and Geological Survey of the Rocky Mountain Region (U.S.),.
- Odin, G.S., and Matter, A., 1981, De Glauconiarum Origine: Sedimentology, v. 28, p. 611–641.

- Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008, The Concise Geologic Time Scale: Geological Magazine, v. 147, p. 156–177.
- Palmer, A.R., 1960, Some Aspects of the Early Upper Cambrian Stratigraphy of White Pine County, Nevada and vicinity, *in* Geology of East Central Nevada: Intermountain Association of Petroleum Geologists Eleventh Annual Field Conference Guidebook, p. 53-58.
- Pitman, J.K., Price, L.C., and LeFever, J.A., 2001, Diagensis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member: U.S. Geological Survey Professional Paper 1653, p. 2.
- Ross Jr., R.J., 1957, Ordovician Fossils from Wells in the Williston Basin, Eastern Montana: U.S. Geological Survey Bulletin, v. 1021, p. 439–510.
- Ross Jr., R.J., 1976, Ordovician Sedimentation in the Western United States: Rocky Mountain Association of Geologists Symposium: Geology of the Corilleran Hingeline,.
- Ross Jr., R.J., 1951, Stratigraphy of the Garden City Formation, Northeastern Utah, and its Trilobite Faunas: Peabody Museum of Natural History Bulletin, v. 6, p. 155.
- Ruppel, S.C., and Walker, K.R., 1982, Sedimentology and Distinction of Carbonate Buildups:

  Middle Ordovician, East Tennesse: Journal of Sedimentary Petrology, v. 52, p. 1055–1071.
- Sandberg, C.A., 1962, Stratigraphic Section of Type Three Forks and Jefferson Formations at Logan, Montana: Billings Geological Society: Guidebook: Thirteenth Annual Field Conference: The Devonian System of Montana and Adjacent Areas, p. 47–50.
- Scherer, M., 1987, Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction: The American Association of Petroleum Geologists Bulletin, v. 71, p. 485–491.
- Seager, O.A., 1942, Stratigraphy of North Dakota: Discussion: Bulletin of the American Association of Petroleum Geologists, v. 26, p. 1414–1423.

- Sepkoski Jr., J.J., 1982, Flat Pebble Conglomerate, Storm Deposits, and the Cambrian Bottom Fauna, *in* Einsele, G. and Seilacher, A. eds., Cyclic and Event Stratification, New York, NY, Spring-Verlag, p. 371–385.
- Sleep, N.H., 1971, Thermal Effects of the Formation of Atlantic Continental Margins by Continental Break Up: Geophysical Journal International, v. 24, p. 325–350.
- Sleep, N.H., Nunn, J.A., and Chou, L., 1980, Platform Basins: Annual Review of Earth and Planetary Sciences, v. 8, p. 17–34.
- Sloss, L.L., 1984, Comparative Anatomy of Cratonic Unconformaties: AAPG Special Volume: Interregional Unconformities and Hydrocarbon Accumulation, p. 6.
- Sloss, L.L., 1963, Sequences in the Cratonic Interior of North America: Geological Society of America Bulletin, v. 74, p. 93–114.
- Sloss, L.L., 1962, Stratigraphic Models in Exploration: Journal of Sedimentary Research (SEPM), v. 32, p. 415–422.
- Stanley, T.M., 1984, Stratigraphy, Ichnology, and Paleoichnology of the Deadwood Formation (Upper Cambrian-Lower Ordovician), Northern Black Hills, South Dakota: Kent State University, 224 p.
- Steckler, M.S., and Watts, A.B., 1978, Subsidence of the Atlantic-Type Continental Margin Off New York: Earth and Planetary Science Letters, v. 41, p. 13.
- Steece, F. V., 1978, Deadwood Formation in the Williston Basin, South Dakota: Montana Geological Society: 24th Annual Conference: 1978 Williston Basin Symposium: The Economic Geology of Williston Basin, p. 65-69.
- USGS, 2015, U.S. Geologic Names Lexicon: National Geologic Map Database,.
- Watts, A.B., and Ryan, W.B.F., 1976, Flexure of the Lithosphere and Continental Margin Basins: Tectonophysics, v. 36, p. 25–44.

Wray, J.L., 1977, Developments in Paleontology and Stratigraphy, *in* Fossil Algae, New York, NY, Elsevier Scientific Publishing Company.