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ABSTRACT 

 With the large scale deployment of phasor measurement units (PMU) in the United 

States, a resonating topic has been the question of how to extract useful “information” or 

“knowledge” from voluminous data generated by supervisory control and data acquisition 

(SCADA), PMUs and advanced metering infrastructure (AMI). 

With a sampling rate of 30 to as high as 120 samples per second, the PMU provide a fine-

grained monitoring of the power grid with time synchronized measurements of voltage, 

current, frequency and phase angle. Running the sensors continuously can produce nearly 

2,592,000 samples of data every day. This large data need to be treated efficiently to extract 

information for better decision making in a smart grid network (SG) environment. 

My research presents a flexible software framework to process the streaming data 

sets for smart-grid applications. The proposed Integrated Software Suite (ISS) is capable 

of mining the data using various clustering algorithms for better decision-making purposes. 

The decisions based on the proposed methods can help electric grid’s system operators to 

reduce blackouts, instabilities and oscillations in the smart-grid. The research work 

primarily focus on integrating a density-based clustering (DBSCAN) and variations of k-

means clustering methods to capture specific types of anomalies or faults. A novel method 

namely, multi-tier k-means was developed to cluster the PMU data. Such a grouping 

scheme will enable system operators for better decision making. Different fault conditions, 

such as voltage, current, phase angle or frequency deviations, generation, and load trips, 

are investigated and a comparative analysis of application of three methods are studied.



 

xxv 

A collection of forecasting techniques has also been applied to PMU datasets. The 

datasets considered are from the PJM Corporation that describes the energy demand for 13 

states and District of Columbia (DC). The applications and suitability of forecasting 

techniques to PMU data using random forest (RF), locally weighted scatterplot smoothing 

(LOWESS) and seasonal auto regressive integrated moving average (SARIMA) has been 

investigated. The approaches are tested against standardized error indices like mean 

absolute percentage error (MAPE), mean squared error (MSE), root mean squared error 

(RMSE) and normal percentage error (PCE), to compare the performance. It is observed 

that the proposed hybrid combination of RF and SARIMA can be usd with good results in 

day ahead forecasting of load dispatch. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

I. INTRODUCTION 

The term, “Smart Grid” has been around for decades and is used in connection with ways 

to automate the functioning of the conventional grid system. Various definitions of a smart 

grid including the context of technical, functional and economic benefits exist. However, 

the common definition that runs through all of them is the addition of a digital processing, 

intelligent and communications layer to the grid system. The SG concept and its benefits 

were originally published in [1]. The idea was to make the conventional power grid more 

efficient and self-aware of its environment. Although an engineering marvel, the power 

grid was not able to keep up with the growing demand of users [2]. Coupled with reduced 

power quality during peak hours, blackouts and brownouts, the necessity of a more efficient 

power grid was felt [2].  

A power grid that would be self-aware of grid-environment and is able to take decisions 

and self-heal is now a necessary requirement. This obviated the introduction of automation 

in the existing system. The application of a digital layer with a communication 

infrastructure made information management and data flow central to the smart grid. A two 

way communication could be established between the users and a distributed set of power 

generation units. Figure 1 gives an overall view of the structure of a Smart Grid and Figure 

2 shows the all-important digital layer controlling a smart grid. The evolution of metering 

devices has played a key role in modelling the smart grid. In the 1980’s, automatic meters 

were introduced to monitor loads from large customers. This later resulted in the
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 development of the Advanced Metering Infrastructure (AMI) in the 1990’s that could also 

store the usage of electricity at different times of the day [3]. Smart Meters (SM), aided 

real-time monitoring of the grid and functioned as a gateway to demand response-aware 

devices and “smart sockets”. Italy’s Telegestore Project came out as a front runner in the 

smart grid technology when it connected a large number of users (approx. 27 million) 

through these smart meters, using low bandwidth power line communication (PLC) [4]. 

Figure 1: A fully connected Smart Grid Network [5] 

A fully realized Smart Grid should perform the following functions: 

1. Be able to heal itself, which basically means that it should be in control in case 

of any contingency scenario. 

2. Be able to allow producers as well as consumers to participate actively in grid 

operations 

3. Be able to resist any kind of attacks. 

4. Be able to maintain power quality, thus eliminating financial losses due to 

power cuts. 
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5. Be able to accommodate different generation sources (conventional and 

renewable) of electricity. 

6. Be able to improve the efficiency and reliability of the current power grid. 

Figure 2: Digital Layer of a Smart Grid [8] 

1.1 Synchrophasors/Phasor Measurement Units (PMU’s) 

The concept of a Phasor Measurement Unit (PMU), also known as a synchrophasor was 

developed as early as the late 80’s, by Dr. Arun G. Phadke and Dr. James S. Thorp. 

Synchrophasors are the modern-day measuring devices that measure the magnitudes of 

voltage and current, frequency and phase angle of the electrical buses and lines. Parameters 

that can be used to monitor the state of a power grid [6]. Figure 3 shows the functional 
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block diagram of a PMU. Synchrophasors are replacing the previously installed Remote 

Terminal Units (RTU) to overcome the short-comings of the Supervisory Control and Data 

Acquisition (SCADA) system. Under this system, state estimators (SE) approximate the 

condition of a grid from the data collected at each RTU. The data collected has information 

about the basic parameters of the system topology. This data is collected asynchronously 

at periodic scans of the network, every 2 to 10 seconds [7]. While the estimated results 

would not vary from that of a synchrophasor during steady state conditions, SCADA would 

fail to record any contingency scenario in transient state and for a duration less than the 

scan period. The asynchronous nature of collected data disallowed the possibility of 

comparing deviations in phasor values between two nodes at a given time. 

Also, the analog measurements are proportional to the time difference between the 

measurements [9]-[10]. 

Figure 3: Functional Block Diagram of a PMU [11] 

PMUs are essentially metering devices which record phasor data at a very high sampling 

rate (the latest PMUs have 240 samples/second rate of data acquisition). They are also very 

precise time keepers, being synchronized with a GPS time clock. Unlike their mechanical 

predecessors, PMUs are equipped with a communication system that allows a two way 

communication with the power generation units as well as other PMUs in the grid. These 
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units can not only record live data with high granularity, but also have the capability to 

detect and respond to the network load, changing tariff rates. In a real network, there are 

several PMUs to form a distributed network of sensors that allow the utilities to monitor 

the grid status. Such a distributed network is called a Wide Area Monitoring System 

(WAMS) as shown in Figure 4. The three major components that make up a WAMS are as 

follows: 

1. Phasor Measurement Unit (PMU) 

2. Phasor Data Concentrator (PDC) 

3. Global Positioning System (GPS) clock 

Figure 4: A Wide Area Monitoring System (WAMS) [12] 

Phasors are the repetitions of the waveform of alternating current which should ideally 

conform to the same shape all over the network. PMUs apply a very common method of 

generating phasor signals that represent the line voltage/current [12]. The actual waveforms 

are obtained as samples through a series of network components like filters and 

transformers [12]. The samples are then subjected to Discrete Fourier Transform (DFT) for 

phasor computation [13] and then digitized through Analog to Digital Conversion (ADC). 
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The GPS clock accurately time stamps the resulting signal to the coordinated universal 

time (UTC) to assist the WAMS operation. These time synchronized phasor data are 

aggregated into centralized data servers called Phasor Data Concentrators (PDC) as per 

IEEE C37.244 standard [14]-[15].  

The time stamped data gathered from all the PMUs present a consolidated view of the 

entire grid system and thus allows the data to be used a variety of applications. The 

applications include state estimation, transient analysis, load shedding schemes, inter-area 

oscillations monitoring and micro- grid operations [16]-[17] like islanding and anti-

islanding and detecting fault locations on transmission lines [18]-[20].  

1.2 Utilization of Synchrophasor Data 

Modern day power transmission and delivery is affected by changing load characteristics, 

limited transmission paths and distributed generation. The increased stress on the power 

system can only be relieved by improved operator and automatic response times. For this 

reason, accurate data collected synchronously at a high time resolution is as important as 

the proper utilization of the highly granular data. GPS time stamping and high sampling 

rate can provide such accuracy and precision. To extract information out of the raw data, 

specific data scan techniques should be applied to filter the data. The concept of organizing 

and cleaning large amounts of raw data is called Big Data Analysis. 

The importance of PMUs its basis can be reinforced by discussing the case of the North 

American Eastern blackout in the year 2003 [21]. Figure 5 show the differences in phase 

angle between two buses. It indicates how, PMUs identify that North American Eastern  
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Figure 5: System separation, August 2003 [21] 

Interconnection System was heading for a blackout. The phase angle values change at a 

high rate and in order to perform a differencing operation between two angle values at a 

given time, synchronized measurements are critical. This can only be done by 

synchrophasors. Figure 6 represents the difference in phase angles of the two buses on a 

linear scale. A closer inspection of Figure 6 reveals that the phase angles have been plotted 

on a non-linear scale. A comparison of the two figures reveal that the linear representation 

in Figure 6 fails to detect the change in phase angles until the last three seconds, whereas, 

the deviations can be clearly noted in Figure 5 from much earlier. This proves that, both 

time synchronized phasor data collection, and proper representation of the gathered data is 

equally important. 

1.2.1 Challenges with PMU data 

Synchrophasors capture phasor data at around 30 to 120 samples per second, with the 

modern day PMUs can even take 240 sample measurements per second. Thus, the system 

operators at the utilities are bombarded with nearly 108,000 samples/hour, which amounts 
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to about 2,592,000 samples/a day or 77,660,000 samples a month. These numbers grow 

exponentially with an addition of new PMUs and as much as 1.5 Terra Bytes (TB) of data 

can be accumulated in a month’s span. This huge volume of data needs to be handled 

tactfully so that critical information can be extracted from it and appropriate alarm systems 

can be generated to inform the system operators.  

Figure 6: Redrawn phase angle with linear scale [21] 

To perform any kind of analysis in protecting the grid, synchrophasor data needs to be 

utilized. This can be done only through Synchrophasor Data Mining (SDM). SDM is the 

process of analyzing synchrophasor data through clustering algorithms. As a result 

meaningful information can be derived from the tons of data provided by synchrophasors 

for use of wide area monitoring services such as fault detection, and line protection etc. 

This allows effective monitoring of the state of the grid, thus enabling crucial decisions to 

be made. A data analysis and visualization technique has been proposed in this work that 

will allow an independent system operator (ISO) to conveniently study the incoming 

phasor data and visualize it on a near real-time basis. A novel multi-tier k-means approach 

has been implemented and was compared against the performance of prevalent methods, 
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namely Density-based spatial clustering of applications with noise (DBSCAN) and k-

means, under different test scenarios. The streaming data is also stored in a database (DB), 

which creates a repository for historical data. This history was also used to develop a load 

forecasting scheme that allows the ISO to do a day ahead prediction of the load on a given 

region or zone. 

1.2.2 Application of open source phasor data concentrator (openPDC) 

In a WAMS network, the PMUs connected to an optimally selected transmission and 

distribution lines [22] send streaming data that gets collected in a Phasor Data Concentrator 

(PDC), ready to be analyzed by ISO. Various non-storage, vendor based software are used 

to process the PDC data to derive valuable information. The openPDC is one such PDC 

software that can be used to process streaming time-series data in real-time [23].  The 

software is managed by Grid Protection Alliance (GPA) that gather time-stamped data 

from hundreds of utilities. The data is time-sorted and provided for user defined actions as 

well as to custom outputs for archival. The openPDC is not only a phasor data concentrator, 

it is a flexible platform for processing high speed, streaming data that can adapt with 

changing technology to provide a future-proof phasor data architecture [24]. The phasor 

data concentrator has been in production use since 2004. It is based on the SuperPDC, 

which was developed by the Tennessee Valley Authority [24]. It is a Microsoft.NET 

application that runs as a Windows service and is responsible for managing the life-cycle 

of adapters that create and process the streaming phasor measurements. The openPDC 

software framework functions by receiving data broadcasted by a PMU. It provides 

features like data storage, data archival, rebroadcasting, and analysis of the phasor data. 

openPDC suite provides different options to view the historian data by selecting a sampling 
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rate to display various parameters such as phasor, frequency etc. Generally, openPDC 

archives the time-synchronized data as it receives it. A comprehensive input protocol 

supported by openPDC includes IEEE 37.118, IEEE1344, SEL FastMessage, Macrodyne 

and Virginia Tech F-Net protocols [24]. Synchrophasor data can be mined by extracting 

the archived data that is stored in openPDC. For this task, a C# code using Microsoft Visual 

Studio has been formulated [25]. A SQL database have been set up for the openPDC 

environment that produces PMU data using a PDC connection tester file. The data is 

produced as per the Grid Protection Alliance directives. The generated data gets stored in 

an Archives folder in the computer as “.d” files, namely ‘ppa_archive.d’. There are separate 

virtual ports to access frequency, magnitude, and phase angle data. The streaming data gets 

stored in the “.d” file with the port number as an identifier. To record the data for a post-

event analysis, or a near real-time analysis, the port numbers corresponding to the fields 

can be utilized. A data extraction code is required to extract the data from the “.d” files and 

transferring them to an “.xlsx” or a “.csv” file. This extraction is done using the Microsoft 

Visual Studio for C# programming. The research work exploits the parallel computing 

feature of C# by using parallel for-loops to extract the data from different ports 

simultaneously, with minimal time offset. Once the data is extracted, it gets written in a 

“.csv” file. This is done by using the ‘Microsoft.Office.Interop.Excel’ library function built 

in the Visual Studio IDE. The program for extracting the data is developed as a console 

application. The whole process takes an average of about 47 seconds for a five minute 

dataset [26]. Figure 7 represent the entire process of data extraction from openPDC 

environment and application of various data mining algorithms on it. 
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1.3 Thesis Contributions 

The following are the two objectives of this research work. 

Objective 1 To provide a software solution framework which will reduce the chances of a 

blackout conditions. This is achieved by mining the smart grid data for effective decision 

making. 

To accomplish this objective, following four tasks were carried out: 

Task 1 Conducted literature review on topics such as representing and grouping of Smart 

Grid data. 

Task 2 Application of data mining algorithms, namely ‘Density-Based Spatial Clustering 

of Applications with Noise’ (DBSCAN) and k-means clustering for time synchronized 

synchrophasor measurements. The data source used in this was from the openPDC 

environment. 

Task 3 Developed a novel hybrid clustering method, namely ‘multi-tier k-means’ suited to 

classify synchrophasor data into good, bad, low-noise and high-noise clusters. 

Task 4 Evaluated the separation of clusters using ‘Dunn Index’ in DBSCAN, k-means and 

multi-tier k-means clustering methods. 

Objective 2 Develop forecasting models for time-synchronized demand data from PJM 

Corporation. 

To accomplish this objective, following two tasks were carried out: 

Task 5 Conduct literature review of various forecasting algorithms suitable for time-series 

datasets. 
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Task 6 Test the applicability of techniques such as multiple linear regression, random 

forest, locally weighted scatterplot smoothing (LOWESS), curve fitting and time series 

analysis seasonal auto regressive integrated moving average (SARIMA) to PJM datasets. 

A statistical comparison of the above method are done using indices such as, mean absolute 

error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE). 

Figure 7: Smart Grid Management Framework (SGDMF) 

1.4 Thesis Organization 

The thesis is organized as follows. Chapter 2 is divide into two sections. The first section 

represent the literature review on clustering algorithms for PMU datasets. The second 

section presents the literature review of existing forecasting methods. Chapter 3 discusses 

application of existing clustering methods and the development of a novel method of 

clustering phasor data. It is a hybrid k-means method. It was developed using 

Matlab/Simulink with an aim to identify clusters based on threshold values and thus 

allowing the development of an effective alarm generation. Chapter 4 presents the 

application of existing forecasting models on phasor data sets. It also discuss the 

development of a hybrid model that conducts short term and mid-term load forecasting. 
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Chapter 5 is divided into two sections. The first section present the results obtained from 

application of the novel clustering algorithm and compare it to other existing methods. The 

second section presents the accuracy of results obtained from the application of the hybrid 

forecasting model and compares with the other existing methods. Finally, Chapter 6 

summarize the conclusion and the directions of future work. 
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II. LITERATURE REVIEW 

2.1 Data mining and visualization 

The term data mining was first coined in the 1990’s. However, the idea existed already in 

the form of classical statistics, artificial intelligence and machine learning [27]. There are 

generally two main reasons for using the concept of data mining: 1) there is a lot of data to 

comb through which have too little information and 2) there is a need to extract useful 

information from the huge amount of raw data which will serve as the basis for some 

decision making system. Data mining is an interdisciplinary field that merges areas like 

database systems, statistics, machine learning and pattern recognition [28]. It forms the 

pre-processing block of any control system providing services like data extraction, data 

cleaning, data fusion, data reduction, and feature construction. As a post-processing block, 

it can provide pattern and model interpretation, hypothesis confirmation and generation. 

Data mining is typically a highly iterative and interactive process as new data generated. It 

is this feature of data mining that form the backbone of any decision making and 

forecasting algorithms. 

2.1.1 Data Clustering and Classification

Data clustering and classification are fundamental data mining processes applied on n data 

points in a d dimensional space. While classification is a supervised method of grouping 

data, clustering is largely unsupervised [29]. Supervised method means that there is already 

a predefined set of classes present and the incoming data is categorized based on the class 

it belongs to. Unsupervised learning, on the other hand groups data into separate clusters 
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and tries to find out the relationship between the groups. Since the research concentrates 

on clustering of PMU data into pre-defined ranges. The research topic aligns largely with 

supervised learning methods. 

2.1.2 Clustering of data 

Clustering of data and technique depend on the type of data and the desired cluster 

characteristics. The methods can be representative-based, hierarchical, density-based, 

graph-based and spectral clustering [28]. Representative based clustering includes k-means 

clustering, Expectation-Maximization (EM) and its various forms. Hierarchical clustering 

is an agglomerative process where each data point starts from its own cluster and 

successively merge pairs of clusters until the desired number of clusters has been found 

[28]. Density based clustering works on the density or the connectedness of clusters. In 

some cases, the distance between two data points in the same cluster may be more than that 

between two points in different clusters [28]. The density based clustering schemes 

(DBSCAN) are useful when applied on nonconvex data clusters. Graph based clustering 

methods focus on spectral density of graph data. They can be considered as an optimization 

problem over a k-way cut in a graph. Multiple objective functions can be formulated for 

spectral decomposition of graphs. They employ different graph matrices such as adjacency 

matrix and Laplacian matrix [28]. 

2.1.3 Classification of data 

The task of classification encompasses predicting the label of a data object based on the 

number of classes present. There are different types of classification algorithms that are 

available, 1) decision trees, 2) probabilistic classifiers, 3) support vector machines (SVM). 

The powerful Bayes classification is a probabilistic approach to classify data. It uses Bayes 
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theorem to classify data objects that would maximize the posterior probability [28]. A 

decision tree classifier is known for its simplistic models [28]. It recursively partitions the 

data set into groups that are different from each other with very few exceptions. SVM is 

by far the most effective classification methods for many different problem domains [28]. 

The goal of SVMs is to find the optimal hyperplane that maximizes the margin between 

different classes. With the use of a kernel, the SVMs can be used to find non-linear 

boundaries, which correspond to some linear hyperplane in some high-dimensional, non-

linear space [28]. 

2.1.4 Visualization of data 

Data visualization is the use of any combination of text, audio, video, charts, images, 

timelines, trends, etc. to represent information. While data mining can provide effective 

methods to extract information from data sets, visualization methods can help represent 

information for clearer human perception [30]. Information extracted from a data set can 

be used by computers and processing units to make decisions, but it is not always effective 

for human understanding [30]. We restrict the term “Visualization” in this work to system 

operators perception in the grid. 

2.1.5 Visualization and data analysis 

Data visualization uses the brain-to-eye connection and brings with it an array of promises, 

some of which are discussed as follows: 

1. It is able to affect the visual cortex directly, bypassing the language centers. 

2. A good visualization scheme is able to leverage the ability of pattern recognition 

and visual sense making of human beings. 
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3. Powerful graphics chips enable processing of live data and animation of stored data 

possible, thus giving us a better sense of perception what the data suggest. 

The current trend of data visualization in practice is not only to facilitate the monitoring of 

data points in a multidimensional space, but also to empower users to interact with data 

objects. The ability to interact with data gives an added advantage towards effective 

analysis of data. One of the most powerful techniques of visual analysis involve the 

simultaneous display of multiple graphs, which feature either different subsets of data taken 

from a larger data set, or different views of a shared data set [30]. For example, several 

instances of static graphs could be bar graphs, line graphs, scatterplots, etc. These graphs 

could be displayed simultaneously. Each of them represent the same data, but give a 

different perspective to it. To establish a good trend in visual analytics, data visualization 

needs to play the following roles: 

1. Making sense of new information  

For information which was previously unknown to man, visualization should be 

able to provide new insights about the data. It should provide a way of simply 

“throwing things on a wall” in order to examine them. This would allow users to 

perceive possibilities which were previously unknown and thus unfathomable. 

However, the data visualization should still maintain the integrity of data, i.e. it 

should be more about the data than visualization [30]. 

2. Provide an interactive environment for data exploration  

In order make data analysis more interactive, visual analytics needs to provide tools 

which allows users a holistic exploration of data. Provisions should be made to 
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represent the data in multiple dimensions like time or space. In addition to that, 

there should be filters provided that allows in depth analysis of a data object. 

Finally, it should also provide for marking and sharing discoveries within the tool 

or over the internet [30]. 

2.1.6 Visualizing power grid data  

In order to modernize the power grid to increase its efficiency and keep up with the growing 

demands led to the realization of a robust smart grid. This led to the innovation of the 

PMUs. These are time synchronized metering devices that relay information to utilities 

with a data rate of 30 samples per second. The large amount of data generated by PMUs 

need to be analyzed for effective control of the grid. There has been little or no work done 

on the data analytics platform of handling PMU data. References [31]-[51] describe various 

approaches to analyze and represent phasor data to solve for various power system 

challenges. The time-tagged data from synchrophasors can be used for applications such 

as state estimation (SE) [31]-[32], load forecasting (LF), fault detection and micro-grid 

islanding operations [33]-[36]. Using synchrophasor data, a voltage stability assessment 

technique has been proposed in [37]. An algorithm has been developed to detect and locate 

the faults on the transmission lines using the phasor data in [38]. A RTU/SCADA system 

provide data at a scan rate of 30 samples for a 5 minute period, while the same number of 

data samples are provided by synchrophasors within a second. This makes a major 

difference to operators to capture faults or abnormal conditions in the grid using 

synchrophasors. Although, synchrophasors provide power system information at a large 

sampling rate, they can be useful only if the operators know how to utilize the data. 

Recently, a method for visualizing and interpreting the synchrophasor data was developed 
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using Hilbert analysis. It has been discussed in [39]. This problem of visualizing real time 

data has been addressed by using circle representation [39]. Although the utilities have 

been using services of PMUs for pre- and post-event monitoring of the grid, the true 

potential of the data provided by the PMUs hasn’t been fully realized. Due to expensive 

cost of procuring real hardware, a virtual synchrophasor monitoring network (PMU and 

PDC) using LabVIEW software has been developed in [40], and used as a teaching tool in 

power system courses. A synchrophasor network was developed and used to monitor the 

PMU data for both on-line and off-line data analysis in [41]. The authors in [33] use 

multiple data classification algorithms (k-means and Naïve Bayes) for classification and 

fault detection from synchrophasor data. Synchrophasor data quality has been addressed in 

[42] for data conditioning. Decision Tree (DT) methods are used to detect the loss of 

synchronism within PMU data [43]. Using software platforms such as Real Time Dynamic 

Monitoring System (RTDMS), a methodology has been proposed for assessing the static 

and dynamic stresses in large, interconnected power grids [44].  

A classification and regression trees (CART) method was used to classify the dynamic 

events in the power systems using synchrophasor measurements in [45]. A more realistic 

model of a power system is proposed in [46] to monitor security assessment using decision 

trees and [47] describes a similar method to monitor voltage levels in particular. In Ref. 

[48], different methods such as Fourier transform, Yule-Walker- and matrix-pencil were 

used  to analyze the power system events. Recently, a parallel de-trended fluctuation 

analysis method has been proposed to detect the transient events utilizing a computer 

cluster in [49]. In [50], researchers proposed a SPASE state estimator. It uses the 

synchrophasor data to perform state estimation and also for visualization application. A 
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prediction and frequency quality detection theorem based on Bayesian networks is 

developed in [51] to improve the reliability of the grid. The time synchronized phasor 

measurements provided by PMUs can be used for applications such as state estimation, 

transient analysis, capacitor bank’s performance, analysis of load shedding schemes and 

inter-area oscillations in [52]-[54]. PMU data can also be used for generator black start, 

islanding and anti-islanding conditions with Distributed Energy Resources (DER), to 

measure transmission relay parameters. These analysis methods have been discussed in 

[55]-[57]. The PDC software that has been used in this research to simulate and gather 

phasor data for analysis is an open source one and is called openPDC [23].  

2.2 Forecasting techniques 

Time series based forecasting methods are applied to data points collected over successive 

intervals of time. Examples of such data include weather, energy demand over time and 

ocean tides. Time series analysis comprises methods for analyzing time series data in order 

to extract meaningful statistics and other characteristics of the data. Time 

series forecasting is the use of a model to predict future values based on previously 

observed values. Time series are used in statistics, signal processing, pattern 

recognition, econometrics, mathematical finance, weather forecasting, load forecasting, 

and so on. Some of the types of time-series forecasting are 1) Moving average (MA), 2) 

Weighted moving average (WMA), 3) Exponential smoothing (ES), 4) Autoregressive 

moving average (ARMA), 5) Autoregressive integrated moving average (ARIMA), 6) 

Seasonal Autoregressive integrated moving average (SARIMA), 7) Extrapolation, 8) 

Linear prediction and 9) Trend estimation [58]. 

Explanatory models and time series models together form what is known as Quantitative 

https://en.wikipedia.org/wiki/Model_(abstract)
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Mathematical_finance
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forecasting methods. While a time series model is concerned with a single dimensional 

data set which has been collected sequentially in time, explanatory models take into 

account all factors that might have caused the observation to occur. For example, the cause 

for energy demand can depend on environmental factors like outside temperature, time of 

the day, month of the year, season, humidity, etc. All these factors play a key role to induce 

the amount of electricity being used. So, in order to get a better idea of what the usage is 

going to be in the future, having such information of the future could help in better 

estimating the future energy demand.  

In this research, both time series and explanatory models have been investigated and a 

hybrid model has been tested. The results obtained from the model has been presented in 

chapter 6. 

2.2.1 Forecasting data model types 

Statistical models used for forecasting can be broadly categorized in to parametric and 

non-parametric models. These models basically describe the test parameters used in 

accumulation of observational data collected from test scenarios. A brief description of 

both the models are presented below: 

1. Parametric Model 

In statistics, a parametric model or parametric family or finite-dimensional model is a 

family of distributions that can be described using a finite number of parameters [59]. 

These parameters are usually collected together to form a single k-dimensional parameter 

vector θ = (θ1, θ2, …, θk). Hence, in a collection of probability distributions making up an 

observation model, each member can be denoted as: 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Parameter
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 𝜌 = {𝑃𝜃 | 𝜃 𝜖 Θ} (1) 

Where, 𝑃𝜃 is a member probability distribution function and Θ ⊆ Rk and R is the number 

of observations for each distribution. 

For example, the Poisson family of distributions is parametrized by a single number λ > 0: 

 
𝑃 = {𝜌𝜆(𝑗) =

𝜆𝑗

𝑗!
𝑒−𝜆, 𝑗 = 0, 1, 2, … | 𝜆 > 0} 

(2) 

Where 𝜌𝜆the probability mass function and the family is an exponential. 

2. Non-parametric model 

Non-parametric statistical models are not based on parameterized families of probability 

distributions [60]. They include both descriptive and inferential statistics [60]. The typical 

parameters are the mean, variance, etc. Unlike parametric statistics, non-parametric 

statistics make no assumptions about the probability distributions of the variables being 

assessed. The difference between parametric model and non-parametric model is that the 

former has a fixed number of parameters, while the latter grows the number of parameters 

with the amount of training data. Examples of such models in use are as follows: 

a) Anderson-Darling test 

b) Statistical bootstrap methods 

c) Friedman two-way analysis of variance 

2.2.2 Steps involved in forecasting tasks 

The number of steps involved in performing a forecasting task can be broadly divided into 

five stages [61]. These have been briefly described as follows: 

a) Problem definition: The definition of the problem is sometimes the most difficult 

task for a forecaster. It involves understanding how the forecasts will be used 

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Parametrization
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Probability_distribution
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and who requires the forecasts. 

b) Gathering information: It is important to collect historical data of the fields of 

interest. This data can be used to construct a model for forecasting. There are 

always at least two kinds of information available, statistical data based 

accumulated judgement and expertise of key personnel. Both of these information 

needs to be referred to make a good forecasting model. 

c) Preliminary (exploratory) analysis: This stage involves extracting useful 

information from the data. The data can be graphed for visual inspection, followed 

by calculating simple descriptive statistics like mean, standard deviation, etc. 

Scatter plots can then be used to represent datasets that contains collecting historical 

data and the forecasted data.  

d) Choosing and fitting models: Based on the understanding of the historical data, 

appropriate forecasting models can fitted. This done to figure out which model 

would be more appropriate for use. For example, an ARIMA model would be well 

suited for a time series data. However, if the data is impacted by several other 

factors, then certain regression analysis methods can also be used for forecasting. 

e) Evaluating forecasting models: Once a model has been selected judiciously and its 

parameters are estimated appropriately, the model is now ready to make forecast. 

As time progresses, the pros and cons of using the model can then be evaluated by 

the user. The performance of the model can only be evaluated properly after the 

forecasted data becomes available. 

In most forecasting scenarios, the accuracy of the forecast decide the selection of 

the model. In many cases, the accuracy of the model basically means the “goodness 
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of fit” of the model, which basically means how well the model is being able to 

reproduce the data that are already known [61]. There are number of standardized 

statistical indices that are used for this purpose. They have been listed below: 

a) Mean absolute error (MAE):  

 
𝑀𝐴𝐸 =

∑ |𝐸𝑡|
𝑁
𝑡=1

𝑁
 

(3) 

 

b) Mean absolute percentage error (MAPE): 

 

𝑀𝐴𝑃𝐸 =
∑ |

𝐸𝑡
𝑌𝑡
∗ 100|𝑁

𝑡=1

𝑁
 

(4) 

 

c) Mean squared error (MSE): 

 
𝑀𝑆𝐸 =

∑ |𝐸𝑡
2|𝑁

𝑡=1

𝑁
 

(5) 

 

d) Root mean squared error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
∑ |𝐸𝑡

2|𝑁
𝑡=1

𝑁
 

(6) 

 

In all of the above cases, error Et, actual data Yt and forecasted value Ft are related as: 

 𝐸𝑡 = 𝑌𝑡 − 𝐹𝑡 (7) 

There has been a large number of papers published in the field of load forecasting over the 

past few decades.  The literature review in this section concentrates on papers published in 

reputed journals that discuss forecasting models and its criteria for selection. The authors 

of [62] conceptualize STLF as a regression model, while a time series approach has been 
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employed to model the same in [63]. On the other hand, the authors of [64]-[66] use the 

application of Artificial Intelligence (AI) methods and their combinations to perform 

STLF. While [64]-[65] discuss about the application of ANN, [60] uses Fuzzy Logic (FL) 

and [67] applies SVM. The success of explanatory forecasting methods lie in the correct 

choice of its independent variables that govern the use of electricity by people. A lot of 

work has been done in choosing the most suitable variables for that purpose.  

The researchers discuss the choice of temperature and relative humidity as the controlling 

factors in [68], while the effect of humidity and wind speed was considered through linear 

transformation of temperature in the improved version [69]. In general, the electric load is 

mainly driven by nature and human activities. The effects of nature are normally 

represented by weather variables like temperature, while the effects of human activities are 

normally reflected by the calendar variables like business hours in a day. The combined 

effects of both elements exist as well but are nontrivial. The authors of [70] describe a 

semi-parametric approach of forecasting loads, where a historical database of demand at 

corresponding temperatures have been used to predict the future power consumption. The 

errors resulted from prediction is then used as a time series dataset for a Seasonal ARIMA 

(SARIMA) input. The authors of [71] study the effect of application of various models on 

historical data collected from various sites. They discuss the criteria for choosing a 

particular model based on the characteristics of available data. The other popular 

forecasting models for time-series datasets are Multiple Linear Regression (MLR), 

SARMA and SARIMA, Random Forest (RF) and Double Exponential Smoothing (DES). 

It was observed that model selection is heavily influenced by the variability in the data. 

Models which do not use weather forecast information, but rely only on historical usage 
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data perform better on sites with highly variable loads. Finally, detailed discussion on load 

forecasting is very well summed up by the author of [72] which elaborates on the history 

of load forecasting and how it has evolved over several decades from simply counting bulbs 

to today’s complex and computationally extensive models. 

In the research, at first RF method was used to create a forecasting model with the decision 

variables being average daily temperature, day of the week, hour of the day, season and 

type of day. RF was used to take advantage of all factors available that affect the load 

usage. The error between actual and forecasted data was then calculated. This error value 

was identified as a result of some unnatural spikes in load data. Since such spike’s causes 

cannot be accounted for in a general forecasting model, a data dependant forecasting 

technique, SARIMA was used. Here, the error values were used as a time series dataset. 

The predicted error was then adjusted with the RF forecasted value to get a final load data 

prediction. 
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III. CLUSTERING METHODS AND openPDC INTERFACE 

PMUs with basic features can generate up to a least of 1.5 Terra Bytes (TB) of data in a 

month. For complete observability and better situational awareness of the grid, there is a 

need to include multiple PMUs for a large scale grid. Thus, it is evident that huge amount 

of data will get generated in the long run. In order to extract useful information from the 

huge data to control smart grid operations, a proper data handling and mining approach is 

required. This research focuses on the use of two common data clustering methods, namely 

DBSCAN and k-means to power grid data sets. In addition a novel, hybrid multi-tier 

clustering approach has been developed and integrated. This section describes the software 

setup to acquire and handle streaming datasets from PMUs through an openPDC software 

framework. The rest of sections are organized as: 1) openPDC setup and data extraction 

process. 2) Application of k-means Clustering. 3) Application of DBSCAN Clustering. 4) 

Development of a novel method, multi-tier k-means clustering method. 

3.1 openPDC set-up and Data Extraction Process 

The openPDC is an open source software framework that is maintained by the Grid 

Protection Alliance (GPA) [23]-[25]. It is a phasor data concentrator (PDC) software that 

allows utilities to connect multiple PMUs and extract time-synchronized phasor 

measurements. This data can then be archived and used at a later stage for any post-event 

analysis. The openPDC software also provide simulated PMU data that can be used for 

developing and testing streaming algorithms. This test dataset is actually a phasor data
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 retrieved from a real PMU that is run in a cyclic order when it is used for testing purpose. 

The data is time-stamped with coordinated universal time (UTC) and archived as a “*.d” 

file in a source folder of the software. The data extraction stage of the data analysis process 

includes collecting data from various PMUs, storing it in a PDC and access them through 

openPDC software. This process is essential for the later part of data analytics work. At 

this stage, data stored in various file formats is converted to a common “.csv” format. This 

data format serves as the source for the data analysis phase. For my research, streaming 

data from only one PMU is considered for investigating the clustering methods. It is a 

continuous stream of phasor data generated from the openPDC software. This data remains 

stored with its time stamp information in the archive folder in a computer. The format of 

the stored data is “.d”. These are shared object code, something like .obj files created by 

Visual Studio in windows [73]. The data analysis software codes are developed and 

executed in the MATLAB environment [74]. The openPDC is a software created in C# 

language and developed in the Visual Studio environment. To bring clarity between the 

two data formats, there is a need for a common data format. It was realized that “.csv” 

would be the best fit for storing large amounts of data. A C# based software code was 

developed to convert the “.d” files into “.csv” format. The code is present in Appendix A. 

The code developed will allow the user to select data based on inputed time periods 

(mm/dd/yyyy hh:mm:ss:ffff). Upon receiving time period, the code can be run to correct 

the formats. The rest of the process is automatic. Once the data gets converted, the program 

would trigger the Matlab code to run clustering algorithms on historical datasets. The 

process automatically forms clusters of good, bad (noise) and bordering data points. Figure 

8 gives a diagrammatic representation of this process.  
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Figure 8: Data Extraction and Conversion Stage 

Upon clustering the data into different groups, an average value from the cluster is 

represented as a sample for decision making. Depending on values of each cluster, alarms 

are generated to alert the grid operators to take appropriate actions. The entire process of 

data extraction to alarm generation has been summarized in figure 9.  

Figure 9: Data Mining and Visualization providing basis for decision making 

3.2 Application of k-means clustering  

k-means clustering is a kind of representative-based clustering method [28]. Given a d 

dimensional space having n data points, a representative-based clustering method work 

towards grouping the n data points into k different clusters [28]. For each cluster, there is 
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a point, usually the mean or average value, which represents the statistical information for 

the entire cluster. Thus, we can mathematically represent the clustering algorithm as 

follows: 

If 𝑑 = {𝑥}𝑖=1
𝑛 , is the d dimensional space, having k clusters, such that each cluster is 

represented as 𝐶 = {𝐶1, 𝐶2, … . , 𝐶𝑘}, then the centroid of each cluster is given by  

 
𝜇𝑖 = 

1

𝑛𝑖
∑ {𝑥𝑗
𝑥𝑗∈𝐶𝑖

} 
(8) 

Where, 𝑛𝑖 = |𝐶𝑖| is the number of points in the cluster Ci.  

Using simple brute-force method or exhaustive algorithm, a good clustering method will 

be to simply generate all possible partitions of the n data points into k clusters, then 

calculate an optimization score for each of them and retain the one that performs the best 

with respect to other methods. The number of possibilities to partition n points into k non-

empty and disjoint parts is given by: 

 

𝑃(𝑛, 𝑘) =  
1

𝑘!
∑(−1)𝑡 (

𝑘
𝑡
)

𝑘

𝑡=0

(𝑘 − 𝑡)𝑛 

(9) 

k-means is a greedy iterative approach to find clustering that minimizes the sum of squared 

error (SSE), where the SSE is represented mathematically as [28]: 

 

𝑆𝑆𝐸(𝐶) =  ∑ ∑ ||𝑥𝑗 − 𝜇𝑖||
2

𝑥𝑗= 𝐶𝑖

𝑘

𝑖=1

 

(10) 

Where, 𝑥𝑗= actual data and 𝜇𝑖 is the mean value. 
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k-means initializes the cluster means by randomly generating k points in the data space. 

This is done by generating values randomly within the range for each dimension. Each 

iteration of k-means consists of the following two steps: (1) cluster assignment, and (2) 

centroid update.  

Given the k cluster means, in the cluster assignment step, each point xj ϵ d is assigned to 

the closest mean, which induces a clustering with each cluster Ci comprising points that are 

closer to µi than any other cluster mean. That is, each point xj is assigned to cluster Cj*, 

where  

 
𝑗∗ = 𝑎𝑟𝑔

𝑘
𝑚𝑖𝑛
𝑖 = 1

{||𝑥𝑗 − µ𝑖||
2} 

(11) 

Given a set of clusters Ci, i = 1, …, k, in the centroid update step, new average values are 

computed for each cluster from the point in Ci. The cluster assignment stage and centroid 

update steps are carried out iteratively until we reach a fixed point or local minima is 

reached. Practically speaking, it can be assumed that k-means has converged, if the 

centroids do not change from one iteration to the next. For instance, the iterations can be 

stopped subject to the following condition being true. 

 
∑ ||µ𝑖

𝑡 − µ𝑖
𝑡−1||2

𝑘

𝑖=1
≤ 𝜖 

(12) 

𝑤ℎ𝑒𝑟𝑒 𝜖 > 0 𝑎𝑛𝑑 𝑡 = 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

The pseudo-code for k-means is given in Figure 10. 

Input: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (Set of entities to be clustered) 

𝑘 (Number of clusters) 
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maxIters (limit of Iterations) 

Output 𝐶= {𝑐1, 𝑐2, … , 𝑐𝑘}  (Set of cluster centroids) 

𝐿= { 1(𝑒)|𝑒 = 1,2, … 𝑛}  (Set of cluster labels of 𝐸) 

 
Figure 10: Pseudo-code for k-means Clustering 

The k-means clustering algorithm was applied on the data collected from openPDC. The 

idea was to create a set of three clusters which will group the entire data into acceptable 

(good), non-acceptable (bad) and border (ok) values. The results obtained from the k-

means clustering method are discussed in chapter 5. Figure 11 gives a diagrammatic 

representation of cluster formation in k-means algorithm. The figure shows the formation 

of three clusters based on user input. The centroid values act as user input. The algorithm 

starts with initial, random values of centroids, 𝐶1, 𝐶2 𝑎𝑛𝑑 𝐶3. With every iteration, the 

centroid values get updated 𝐶𝑖 → 𝐶𝑖
′ → 𝐶𝑖

′′ → 𝐶𝑖
′′′, where 𝑖 𝜖 (1,2,3). The centroid values 

are updated based on threshold conditions. If the condition does not satisfy, then the 
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centroid value is no longer updated, which basically imply that the no other value from the 

input dataset can be fit into the cluster. In figure 11, we can see that the centroid 𝐶1
′′ = 𝐶1

′ 

for the red cluster. This value remains unchanged after the first iteration as no other data 

point (from the yellow or the green cluster) are included in the red cluster for the rest of 

the k-means process. 

Figure 11: k-means cluster formation 

3.3 Application of Density-based spatial clustering of applications with noise (DBSCAN) 

Clustering 

Density based clustering (DBSCAN) of data points focuses on the density of points to 

determine the clusters instead of using only the distance between points [28]. A ball of 

radius ɛ is defined around a point x ϵ Rd, called the ɛ neighborhood of x, as follows: 

 𝑁ɛ(𝑥) =  𝐵𝑑(𝑥, ɛ) =  {𝑦 | 𝛿(𝑥, 𝑦) ≤ ɛ} 
 

(13) 
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Here, 𝛿(𝑥, 𝑦) represents the distance between points x and y, which is usually assumed to 

be Euclidean distance, that is, 𝛿(𝑥, 𝑦) =  ||𝑥 − 𝑦||2 [28]. Now, for any point x ϵ d, it is 

considered that x is a core point, if there are at least minpts points in its ɛ-neighborhood. 

That means, x is a core point if |𝑁ɛ(𝑥)| ≥ 𝑚𝑖𝑛𝑝𝑡𝑠, where minpts is a user defined local 

density threshold. A border point is defined as one which does not meet the minpts 

threshold, that is it has |𝑁ɛ(𝑥)| < 𝑚𝑖𝑛𝑝𝑡𝑠, but it belongs to the ɛ-neighborhood of some 

core point z, that is, 𝑥 𝜖 𝑁ɛ(𝑧). Finally, if a point is neither a core nor a border point, then 

it is called a noise point or an outlier.  

Figure 12: Growth of clusters based on their density 

It is considered that a point x is density reachable from y, if there exist a chain of points, 

𝑥0, 𝑥1, …… , 𝑥𝑖, such that x = x0 and y = xi and xl is directly density reachable from xl-1 for 

all l = 1, 2, ……, i. In Figure 12, point “r” is density reachable from “o”, while point “q” is 

directly density reachable from “m”. The pseudocode for a DBSCAN clustering algorithm 

is given in Figure 13. 

Input: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}  (set of entities to be clustered)  

𝑒𝑝𝑠 = Minimum distance between two points to be clustered (𝐷). 

𝑀𝑖𝑛𝑃𝑡𝑠 = Minimum number of points that should be in a cluster to consider it as a border 

group (𝑃𝑡). 
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Output: L= { 1(𝑥)|𝑥 = 1,2, … 𝑛} (Set of cluster labels of 𝑥) 

Figure 13: Pseudo-code for DBSCAN clustering 

Figure 14 gives a diagrammatic presentation of DBSCAN clustering. From Figure 14 it is 

evident how, that the clusters C1, C2 and C3 (in green) which consists of core points (i.e., 

satisfies both conditions of minpts. and eps.) together form a core group of data points 

which have values close to each other. Whereas, the border group (in yellow) consists of 

points satisfying the border point properties (i.e., eps, not minpts.). Finally, the isolated red 

colored points form the noise group. 

3.4 Need for a hybrid method 

The purpose of introducing the concepts of data mining into power systems is to aid in 
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Figure 14: DBSCAN Cluster formation 

taking critical decisions by exploring data. Thus, allowing the smart grid to be reliable and 

efficient in generating and delivering power. This research focuses on application of data 

mining techniques to create a robust monitoring and alarm system. Thus, serving as a 

software interface that can provide services like data mining, data visualization, intrusion 

detection and mitigation, alert services, topology capturing and state estimator and 

forecasting. A diagrammatic representation of the entire software framework is presented 

in Figure 15. 

This research work deploy common clustering methods, namely k-means and DBSCAN 

on PMU data to study its grouping and its effects in capturing anomalies. A comparative 

analysis of this study has been presented in the results section, in chapter 4. The results 

obtained demonstrated that there is a need for such clustering methods to accurately track 
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the changes in load values on the transmission lines. These techniques can also detect any 

contingency scenarios and alert the system operators to take corrective measures to 

mitigate the problem. A hybrid data clustering (multi-tier k-means) method was developed 

to with improve performance in capturing anomalies. The method has been discussed in 

the following section. 

Figure 15: Integrated software framework for PMU/AMI data 

3.4.1 Development of Multi-tier k-means method 

There are several variations of k-means discussed in literatures, where the original k-means 

algorithm has been modified to suit the type of data [75]-[78]. They include k-medians, k- 

mediods, k-means ++, weighted k-means, fuzzy c-means, Kd- trees, and spherical k-means. 

k-means has been popular for its speed and accuracy of clustering data objects. Although 

DBSCAN and k-means clustering algorithms proved to accurately classify normal steady 

state conditions (without faults) they failed to capture faults. It was mainly because these 

algorithms could not accurately identify the border lying data points, which are critical to 

generate alarm. While DBSCAN could correctly track the shift in data points due to 

changing demand in the system, the computation time was too slow. On the other hand, k-
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means, although being one of the fastest clustering algorithms, could not correctly identify 

the good data points from the border lying ones, as far as the phasor data was concerned. 

Hence, there is a need for a method that capture both steady-state (normal) and abnormal 

conditions of the grid. This is carried out using multi-tier k-means method. 

The multi-tier k-means algorithm can be described in two stages. The first stage is similar 

to k-means clustering, where three clusters are formed. The algorithm begins with three 

initial clusters. Each of the three clusters represent normal, abnormal (faulty) data in low 

threshold and abnormal (faulty) data in the high threshold ranges. The normal data 

indicates ideal steady state scenario, i.e., the power system is not under any stress. The high 

and low fault data clusters indicate that a contingency scenario (a line-to-ground fault) was 

recorded where magnitude of voltage (V) or current (I) or frequency (F) reached very large 

or very small values. The algorithm allows the user with two options. Option 1 allows user 

to choose the centroid values of the three clusters. Option 2 chooses centroid values 

automatically. In case of automatic choice, the user is prompted to enter the ideal line 

parameters like voltage or current magnitude. The ideal value of the line parameter 

(current, voltage or frequency) is taken as centroid of one of the cluster and the other two 

cluster centroids are chosen at ±1% threshold of user input.  Based on this input, the clusters 

are formed. There may or may not be three clusters, depending on the PMU data. Once the 

initial clusters are formed, the algorithm enters the second phase of execution. This second 

phase is developed with the goal of identifying the border regions (outliers) near the 

clusters. Based on specific threshold values (shown in equations 14-17), the data points in 

the groups resulting from the initial stage of clustering, are further categorized into border 

values. These are overlapping data between the three clusters from stage 1, which have the 
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potential to detect contingencies. The second stage also acts as a way of visualizing the 

data. Each resulting cluster are subjected to certain conditions. A color scheme has been 

developed which categorize data points as follows: 

1. Good data – Green 

2. High bordering data – Yellow 

3. Low bordering data – Cyan 

4. High noise (bad) data – Red 

5. Low noise (bad) data – Blue 

Figure 16 shows a diagrammatic representation of the color scheme. 

The following variables indicate the centroid values of individual cluster. 

1. 𝐶𝑁𝑔𝑜𝑜𝑑 – Centroid value of a cluster with good data points during iteration N 

2. 𝐶𝑁𝑙𝑜𝑤– Centroid value of a cluster with low range of data points during iteration N 

3. 𝐶𝑁ℎ𝑖𝑔ℎ – Centroid value of a cluster with higher range of data points during 

iteration N. 

Figure 16: Multi-Tier k-means Cluster Categories 
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The novel hybrid algorithm was applied to voltage magnitude, current magnitude and 

frequency of the PMU datasets. The thresholds for each parameter, namely voltage 

magnitude, current magnitude and frequency to be grouped into five clusters as per the 

equations 14-17. 

The algorithm can be mathematically represented as follows: 

Stage – I Creation of 1-3 clusters based on the phasor data input: 

If 𝑑 = {𝑥}𝑖=1
𝑛 , is the d dimensional space, having k clusters, such that each cluster is 

represented as 𝐶 = {𝐶1, 𝐶2, … . , 𝐶𝑘}, then the centroid of each cluster is given by  

 
𝜇𝑖 = 

1

𝑛𝑖
∑ {𝑥𝑗
𝑥𝑗∈𝐶𝑖

} 
(14) 

Where, 𝑛𝑖 = |𝐶𝑖| is the number of points in the cluster Ci.  

Since, the number of clusters are set at 3, 𝐶 = {𝐶1, 𝐶2, 𝐶3}, using brute force, iterative 

method, the data points are clustered into any one of the three clusters. Each iteration results 

in new centroid values. The iterations continue until the centroids stop shifting to form a 

new centroid center points, that is, |µ𝑖 − µ𝑖
′| = 0. Here, µ𝑖

′ is the new centroid and i = {1, 

2, 3}. 

Stage – II Extending the clusters from stage I to 4 or 5 clusters based on any border 

data present: 

The clusters from stage I are further analyzed to detect the ‘outliers’ – data points that are 

not exactly good data. These border clusters lie close enough to the upper or lower 

threshold values. They are to not be considered dangerous to the system. The density of 

these border points acts as an indicator for contingency scenarios. Each of the clusters are 

tested, if the data points lie within the following thresholds in the cluster: 
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𝑚𝑎𝑥.  {𝐶𝑖}  ≤  [1 +

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] && 𝑚𝑖𝑛. {𝐶𝑖}  ≥  [1 −

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] 

(15) 

If the maximum and the minimum of the cluster falls within the range ([1 −
𝑃

100
∗

𝑉𝑖𝑑𝑒𝑎𝑙], [1 +
𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙]), where ‘P’ is a set percentage of points to be considered as good 

or bad and Xideal is the ideal voltage (V) or current (I) or frequency (F) of the line that is 

known or considered to be normal value. 

 
𝑚𝑎𝑥. {𝐶𝑖} >  [1 +

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙]&& 𝑚𝑖𝑛. {𝐶𝑖} ≥  [1 −

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] 

(16) 

Where, Xideal = {V, I, F}. 

If certain number of points in a cluster are greater than large threshold values, then they 

are classified as high noise. This indicate that the system is under low load (demand) 

condition. The rest of the points in the cluster belong to the core group. 

 
𝑚𝑎𝑥. {𝐶𝑖} ≤  [1 +

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙]&& 𝑚𝑖𝑛. {𝐶𝑖} <  [1 −

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] 

(17) 

This condition suggests that data points that have values lower than the low threshold 

values are low border points. This indicate the presence of high load (demand) conditions. 

 
𝑚𝑎𝑥. {𝐶𝑖} >  [1 +

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] & 𝑚𝑖𝑛. {𝐶𝑖} <  [1 −

𝑃

100
∗ 𝑋𝑖𝑑𝑒𝑎𝑙] 

(18) 

Equation 17 illustrate the presence of core, high and low border points in the cluster. 

The multi-tier k-means method was developed with the knowledge that a k-means 

algorithm creates clusters based on their distance from a pre-defined centroid value. As the 

average value keeps updating, there is an inclination of the clusters to move further apart 
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from each other. It is this property of the k-means algorithm that is used in stage 1 to isolate 

the noise cluster from the rest of its data. The second stage is used to differentiate the core 

and the border (high and low) points. Thus, if a cluster extremities (max. and min.) do not 

match any of the conditions presented in equations 15-18, then it is categorized as noise 

cluster. 

Figure 17  shows the pseudo-code for multi-tier k-means: 

Figure 17: Pseudocode of multi-tier k-means (Phase I & II) 

Figure 18 illustrates two case scenarios that can be captured using multi-tier k-means. For 

the first case, it is evident that the three clusters (red, yellow and green) with centroids C1, 

C2 and C3 that were formed in stage I gets further divided into five separate clusters (red, 

yellow, green, cyan and blue) indicating that the system is under a lot of stress. For the 

second case however, only three clusters are formed (green, cyan and blue) indicating the 

system is under a high load condition, which finally resulted in a fault. The results obtained 
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from the application of the multi-tier k-means method are discussed in details in chapter 

5. 

Figure 18: Cluster formation in multi-tier k-means  

3.4.2 Advantages of using proposed Multi-tier k-means method 

There are three major advantages of using multi-tier k-means method. They are as follows. 

1. The proposed approach dynamically form varying number of clusters. This could 

be anywhere from 1 to 5 clusters depending on the data thresholds and fault type. 

The need for such varying clusters in the approach is to clearly identify specific  

type of faults that may not be visible otherwise. For example, the addition of two 

new clusters; 1) low and 2) high border clusters indicate that the values are 
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beginning to reach their end of thresholds. Detecting those border points will help 

operators to caution and arrive at pro-active remedial actions to stabilize the grid. 

2. Capable of clearly distinguishing the good, bad and the noisy data regions based on 

thresholds. 

3. Requires only 1 parameter (voltage or current) as input, initiate the algorithm.

Thus the application of multi-tier k-means method can not only track changes in load 

conditions, but also aids in decision making of the system  that enable operators to generate 

alarms. This will help avoid contingency scenarios that disrupt the normal functions of the 

power grid. 
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IV. FORECASTING OF ELECTRIC UTILITY DATASETS 

The electric power system network created by mankind is one of the most complex objects 

on this planet. It generates electricity and distributes to close to 7 billion people on this 

planet. Naturally, for a power generation company, forecasting of supply, demand and 

pricing becomes imperative for normal functioning. Load forecasting has been a 

conventional and important process in electric utilities since the early 20th century [79]. 

Due to the deregulation of the electric utility industry, utilities tend to be conservative about 

any infrastructure upgrade that burden the assets with more stress [79]. Consequently, the 

load forecasting process for planning, operations and maintenance has become more 

crucial than before. In addition, participation in the electricity market require the utilities 

to forecast their loads accurately and consistently. Nowadays, with the innovation of new 

smart grid technologies, load forecasting plays an active role in planning demand side 

management of electric vehicles, distributed and renewable energy resources. 

4.1 Forecasting in electric utilities 

To keep up with the growing demand and to maintain stable and efficient generation of 

power, utilities need to plan and schedule the resources optimally. To accomplish this task, 

load forecasting is an important process for planning. As a result, the forecasting task span 

across number of departments within a utility. While the operations and planning 

department decide on what a utility should do given a certain forecast of energy demand, 

the trading department uses the billing data to generate a price rate for the following day. 

The business needs for forecasting of a utility can be summarized as follows:
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1. Energy tradingWhether a utility purchases its own energy supplies from the market 

place, or outsources this function to other parties, appropriate load forecast methods 

are essential for purchasing energy. The utilities can perform bi-lateral purchases 

and asset commitment in the long term, e.g., 10 years ahead. They can also do 

hedging and block purchases one month to 3 years ahead, and adjust (buy or sell) 

the energy purchase in the day-ahead market [79]. So, energy trading is a key 

business need that rely on forecasting. 

2. Transmission and distribution (T&D) planning [80] 

 The utilities continuously need to properly maintain and upgrade their sub-system 

to meet the growing demand for its services and to improve its reliability. 

Sometimes, the utilities hedge the real estate to place any further substations. The 

planning decisions heavily rely on spatial load forecasting, where the projections 

of customers and volume of load demands need to be made ahead for better 

planning resources. 

3. Operations and maintenance 

In daily operations, load patterns obtained during the load forecasting process guide 

the system operators to make switching and loading decisions, and schedule 

maintenance outages [79]. Hence, there is a need for scheduling such maintenance 

activities that rely on forecasting methods. 

4. Demand side management (DSM) 

Although a large number of DSM activities are done for daily operations, it is 

worthwhile to separate DSM from the operations category due to its importance in 
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smart-grid era. A load forecast can support key decisions in load control, smart 

energy reduction and in predicting end user behavior patterns. 

5. Financial planning 

The load forecasts can help the utilities to project medium and long-term revenues 

and thus aid in making decisions related to acquisitions, project budgets and plan 

new technologies [79]. Depending on the individual business models and utility 

requirements in discussed category, the minimum update cycle and maximum 

horizon of the forecasts are summarized in Table 1.  

Table 1: Update cycle for forecasting [79] 

Areas Minimum Updating Cycles Maximum Horizon 

Energy Purchasing 1 hour 10 years and more 

T&D Planning 1 day 30 years 

Operations 15 mins 2 weeks 

DSM 15 mins 10 years and more 

Financial Planning 1 month 10 years and more 

Classification of load forecasts in utilities 

There is no single forecasting technique that satisfy all needs of a utility. Hence, 

classification of forecasting techniques in utilities is dependent not only on the business 

need of the organization, but also dependent on factors that affect the consumption of 

electricity like weather or climatic changes, human activities, holidays, or other factors. 

Weather encompasses information about meteorological components for a certain place, 

like temperature, humidity, wind, rainfall, etc. Climate includes the same components but 

are recorded for longer periods of time. Of the various meteorological components 

temperature usually plays the most important motivating factor for the use of electricity 

[79]. For example, users need more heating or cooling depending on whether it is colder 

or warmer outside. The dependence of power consumed with respect to the atmospheric 
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temperature can be plotted as shown in Figure 19. It shows how the power consumed in 

the Mid-Atlantic region from 2012 to 2015 at 10 am varies with temperature. It is observed 

that the scatter plot forms a deformed U shaped pattern with values of demand peaking 

towards high and low temperature values. This can be explained by the increased heating 

or cooling needs of human beings when the outside temperature is too hot or too cold. The 

data used here was collected from PJM Corporation website [75]. Nowadays, temperature 

forecast can be accurate up to a day ahead and at least somewhat reliable up to about two 

weeks in ahead [79]. 

Figure 19: Load vs Temperature scatter plot for Mid-Atlantic region [92] 

The impact of human behavior on energy consumption can be studied on the basis of 

several time related factors. On an hourly data, the impact varies over the day of the week 

and the month of the year. This calendar information is fairly certain over the next decade. 

For example, the power consumed during business days would vary relative to holidays 

[79]. Figure 20 shows how power consumption vary over an entire day for a holiday 

Time: 10 am 

Data Period: 2012-2015 
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compared to a business day. It also shows that power consumption vary by hour of the day. 

For example, power consumed at 2 am in the morning will be low and fairly remain 

constant over different days as opposed to that at 8 pm of the same day. 

Figure 20: Load vs hour of day for business day and holiday 

Again, in monthly or quarterly resolution, the usage of electricity may depend on various 

economic factors. For example, the power consumed during the recession of 2009, was 

much less than that of the earlier years [79]. This was mostly because a number of offices 

were shut down that resulted in conservative usage of power. With the advancement of 

econometric techniques, the economics information can be relatively accurate up to one 

year ahead, and be inaccurate but reliable up to 3 years ahead for load forecasting purpose. 

In the annual resolution, both climate and economics can affect the energy consumption. 

However, due to the unavailability of both inputs, the system level load forecast can be 

only obtained by simulating various scenarios [79]. Long term energy consumption on the 

circuit level is affected by urban development, which can be realized by land use changes. 

The land use information is normally accurate within one year, inaccurate but reliable up 
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to 5 years. Although some counties can provide a 30 years ahead urban development plan, 

it is still not clear what exactly would happen year by year during the next 30 years. 

The availability of information regarding various factors affecting the amount of energy 

usage can facilitate various forecasting periods. Types of load forecasting can be broadly 

categorized into very short term load forecast (VSTLF), short term load forecast (STLF), 

medium term load forecast (MTLF) and long term load forecast (LTLF) [79].  

In VSTLF, temperature, economics and land use information can all be optional, because 

the load in the near future can be forecasted by the load in the past. Since both economics 

and land use information are relatively constant in the short time span (less than 2 weeks), 

they can be optional in STLF. Temperature, however plays a key role in STLF. In MTLF, 

temperature cannot be predicted accurately for the coming 3 years. Therefore, simulated 

scenarios of temperature based on the local temperature history can be used into the model. 

While the economics is predictable and affect the mid-term load consumption, it is required 

in MTLF. Land use information is optional in VSTLF, STLF, and MTLF because the land 

use could barely change a lot during a 3-year period. However, in the long term, land use 

change is the major factor that drives the load. Therefore, land use information is required 

in LTLF. Table 2 gives an account of required fields for successful forecasting for various 

periods of time [79].  

In this research, both parametric and non-parametric models of prediction have been 

studied for both midterm (MTLF) and short term (STLF) load forecasts. A combination of 

non-parametric and time series model as well as parametric and time series model has been 

applied on load data obtained from PJM website for the Mid-Atlantic region. Their 

performances have been compared under standardized indices.  
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Table 2: Classification of load forecasts [79] 

Forecast type Temperature Economics Land Use Updating Cycle Period 

VSTLF Optional Optional Optional <= 1 Hour 1 Day 

STLF Required Optional Optional 1 Day 2 Weeks 

MTLF Simulated Required Optional 1 Month 3 Years 

LTLF Simulated Simulated Required 1 Year 30 Years 

4.2 Investigation of forecasting models and need for novel forecasting 

In this research work a collection of common forecasting models have been applied on 

PJM data sets for future demand allocation. The performance has been measured using 

standardized statistical metrics like mean absolute error (MAE), mean absolute percentage 

error (MAPE) and root mean squared error (RMSE). The results have been gathered for 

short-term and mid-term load forecasting. These results obtained are discussed in chapter 

6. Finally, a novel hybrid forecasting method resulting from the combination of the two 

existing methods is also tested and compared against the standard forecast methods. The 

prediction models that are proposed and investigated are as follows: 

1. Locally weighted scatterplot smoothing (LOWESS) 

It is a semi-parametric, data driven method of forecasting that is used to generate 

a fitted line through a scatter plot involving two variables [81]. 

2. Random forest model (RF) 

It is an ensemble learning method, used for classification, regression and other 

tasks. It works by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes (classification) or mean 

prediction (regression) of the individual trees [82]. 

3. Seasonal autoregressive integrated moving average (SARIMA) model 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)


 

52 

For time-series data, anautoregressive integrated moving average (ARIMA) model 

is a generalization of an autoregressive moving average (ARMA). These models 

are fitted to time series data either to better understand the data or to predict future 

points in the series (forecasting). These are applied to where data show evidence 

of non-stationarity, where an initial differencing step (corresponding to the 

"integrated" part of the model) can be applied to reduce the non-stationarity. Often 

time-series possess a seasonal component that repeat every ‘s’ observations. For 

monthly observations s = 12 (12 in 1 year), for quarterly observations s = 4 (4 in 1 

year). In order to deal with seasonality, ARIMA models have been generalized to 

form SARIMA models. 

4.3 LOWESS model 

LOWESS is a non-parametric regression method that combine multiple regression models 

in a k-nearest-neighbor-based meta-model. Originally proposed by Cleveland in 1979 [81] 

and was later developed Cleveland and Devlin in 1988 [81]. It is based classical methods 

of forecasting, like least squares regression (LSR). It addresses situations in which the 

classical forecasting procedures do not perform well or cannot be effectively applied 

without undue labor. LOWESS combines much of the simplicity of linear least squares 

regression with the flexibility of non-linear regression [81]. It does this by fitting simple 

models to localized subsets of the data to build up a function that describes the deterministic 

part of the variation in the data, point by point. The popularity of this method lies in the 

fact that data analyst is not required to specify a global function of any form to fit a model 

to the data, only to fit segments of the data [81]. At each point in the data set a low-

degree polynomial is fitted to a subset of the data, with explanatory variable values near 

https://en.wikipedia.org/wiki/Autoregressive_moving_average
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Explanatory_variable
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the point whose response is being estimated. The polynomial is fitted using weighted least 

squares, giving more weight to points near the point whose response is being estimated and 

less weight to points further away. The value of the regression function for the point is then 

obtained by evaluating the local polynomial using the explanatory variable values for that 

data point. The LOWESS fit is complete after regression function values have been 

computed for each of the n data points [81]. However, it is computationally intensive and 

practically impossible to use LOWESS at a time, when LSR was being developed. This is 

because computers were unable to handle long and complex computations in that period. 

A smooth curve through a set of data points obtained with this statistical technique is called 

a lowess curve, particularly when each smoothed value is given by a weighted quadratic 

least squares regression over the span of values of the y-axis scatter-gram criterion 

variable. Many of the details of this method, such as the degree of the polynomial model 

and the weights, are flexible [81]. The range of choices for each part of the method and 

typical defaults are briefly discussed in the next section. 

The subsets of data used for each weighted least squares fit in LOWESS are determined by 

a nearest neighbors algorithm [81]. A user-specified input to the procedure called the 

"bandwidth" or "smoothing parameter" determines how much of the data is used to fit each 

local polynomial. The smoothing parameter,𝛼, is a number between (𝜆 + 1)/𝑛  and 1, 

with 𝜆 denoting the degree of the local polynomial. The value of 𝛼 is the proportion of data 

used in each fit. The subset of data used in each weighted least squares fit comprises 

the 𝑛𝛼 points (rounded to the next largest integer) whose explanatory variables values are 

closest to the point at which the response is being estimated. 𝛼 is called the smoothing 

parameter because it controls the flexibility of the LOWESS regression function. Large 

https://en.wikipedia.org/wiki/Response_variable
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Scattergram
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values of 𝛼 produce the smoothest functions that wiggle the least in response to 

fluctuations in the data. The smaller 𝛼 is, the closer the regression function will conform 

to the data. Using too small a value of the smoothing parameter is not desirable, however, 

since the regression function will eventually start to capture the random error in the data. 

Useful values of the smoothing parameter typically lie in the range 0.25 to 0.5 for most 

LOWESS applications. Figure 21 shows a LOWESS curve fitted through a scatter plot 

representing demand vs. temperature data collected over a period of 4 years at 1 am. The 

data was gathered from PJM website and plotted for only business days.  

Figure 21: LOWESS curve fitting 

In [70], the authors have applied this method of curve fitting through a load vs. temperature 

data scatter. In order to evaluate the smoothing parameter α, they have used the cross-

validation algorithm as follows: 
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𝛼 = 𝑎𝑟𝑔𝛼min {

1

𝑛
∑[𝑌𝑖

𝑛

𝑖=1

− 𝑓̅̂𝜆,[−𝑖](𝑋𝑖)]
2} 

(19) 

where (Xi, Yi) is the ith observation, and 𝑓̅̂𝜆,[−𝑖] is the estimated function omitting the ith 

observation using bandwidth 𝛼. LOWESS uses a weight function which gives maximum 

weight to data points that are closest to the points of estimation, whereas points have lesser 

weights if they are further away. The use of weights is based on the idea that points nearer 

to each other are more likely to be related than those further apart. The following equations 

give the set of weight functions properties that were set by Cleveland [81].  

 𝑊(𝑥) > 0 𝑓𝑜𝑟 |𝑥| < 1; (20) 

 𝑊(−𝑥) = 𝑊(𝑥); (21) 

 𝑊(𝑥)𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑥 ≥ 0; (22) 

 𝑊(𝑥) = 0 𝑓𝑜𝑟 |𝑥| ≥ 1. (23) 

Where ‘W’ is the weight function and x is a data point. 

The weight function used for LOWESS traditionally is as follows:  

 
𝑊(𝑥) = {

(1 − 𝑥3)3        𝑓𝑜𝑟 |𝑥| < 1

0                       𝑓𝑜𝑟 |𝑥| ≥ 1
 

(24) 

The pseudocode for LOWESS can be represented as shown in Figure 22 below: 
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Figure 22: Pseudocode for LOWESS Smoothing 

4.4 Random forest (RF) model 

Random forest is an ensemble approach that can also be thought of as a form of nearest 

neighbor predictor. It was developed by Breiman in the year 2001[82]. Ensembles are a 

divide-and-conquer approach used to improve performance of classification. The main 

principle behind ensemble methods is that a group of “weak learners” can come together 

to form a “strong learner”. Figure 23 below shows a plot representing the relationship 

between temperature and ozone. The data used here was gathered from the website of the 

University of Cologne and provided by Rousseeuw and Leroy in the year 1986. Figure 23 

mediate that each classifier, individually, is a “weak learner,” but taken together they 

become a “strong learner”. The data to be modeled are the blue circles. It is assumed that 

they represent some underlying function along with noise. Each individual learner is shown 

as a gray curve. Each gray curve (a weak learner) is a fair approximation to the underlying 

data. The red curve (the ensemble “strong learner”) can be seen to be a much better 

approximation to the underlying data.  

 

http://oz.berkeley.edu/users/breiman/randomforest2001.pdf
https://en.wikipedia.org/wiki/Peter_Rousseeuw
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Figure 23: Ozone vs. Temperature plot [83] 

The fundamental component of random forests is a “Decision tree” (DT). From an 

ensemble point of view, a DT is basically a weak learner. In a decision tree, the input data 

to be classified, is entered at the top layer. As it trickles down to the bottom, the data gets 

split into smaller sets based on the conditions present at each node that the data comes 

across. The functioning of a DT can be explained with the help of an example represented 

in figure 24. In the example, a decision tree is used to conclude whether or not to go out to 

play [83]. There are 14 data points that are dependent on weather variables and atmospheric 

conditions like sunny, rainy, windy, etc. The figure shows how the entire data set gets 

broken into smaller decision sets at every node based on the independent (decision) 

variables. 
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Figure 24: Decision tree function layout [83] 

In a RF, several such trees are used to come to a conclusion that has a higher possibility of 

being accurate. Thus, defining from an ensemble viewpoint, each such DT forms a weak 

learner since they are incapable of considering all the possible conditions. However, if a 

large number of such trees are used with combination of decision nodes which are mutually 

exclusive to each other, then the total group becomes a strong learner and is better able to 

fit data. Usually, in a random forest, each decision tree block consists of a random 

collection of decision nodes and these combinations may or may not repeated. Figure 25 

represents a block diagram conceptually representing a random forest. Each decision node 

is known as a classifier. When running RF for a given data, the data points are divided into 

1) a training set and 2) a test set. The classifiers are trained using data from the training set 

and then applied on the test set to find out their accuracy. The classifier testing is done 

under a four-fold validation process, namely, cross-validation, thresholding, mean 
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precision and precision above chance. This is done to find out how a classifier predict click 

through rates (CTR) for the test data set which is unfamiliar to it.  

Figure 25: Random Forest formation from decision trees [83] 

Success of a RF depends on the following factors [83]: 

1. With a large number of predictors, the eligible predictor set will be quite different 

from node to node. 

2. The greater the inter-tree correlation, the greater the random forest error rate, so 

one pressure on the model is to have the trees as un-correlated as possible. 

3. As number of predictor variables reduce, the inter-tree correlation and the strength 

of individual trees reduce as well. So, optimal value of such variables must be set. 
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Random forest runtimes are quite fast, and they are able to deal with unbalanced and 

missing data. Random Forest weaknesses are that when used for regression they cannot 

predict beyond the range in the training data, and that they may over-fit data sets that are 

particularly noisy. A pseudocode for RF can has been presented in Figure 26.  

Figure 26: Pseudocode for Random Forest 

4.5 Seasonal autoregressive integrated moving average (SARIMA) 

Time series datasets require special conditioning for forecasting data. ARIMA and 

SARIMA are time series models. These are more generalized forms of auto regressive 

moving average (ARMA) models. These are used in order to include more realistic 

dynamics, in particular, respectively, non-stationarity in mean and seasonal behaviors of a 

time-series data. Hence, to conceptualize a SARIMA process, it is imperative that an 

ARMA process is discussed first [84]. 

ARMA process was originated out of two lines of thinking (For keeping things simple, 

univariate models have been discussed here). The first case scenario was, for a series xt, it 

can be thought that the level of the current observation are dependent on that of its lagged 

values. For example, if there is a high value of gross domestic product (GDP) realization 
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in the present quarter, it would lead to be expected that the GDP in the next few quarters 

will good as well [84]. This notion can be modelled by an auto regressive (AR) model. 

Thus, the auto regressive model of order 1 can be represented as follows: 

 𝑥𝑡 = ∅𝑥𝑡−1 + 𝜖𝑡 (25) 

Where, 𝜖𝑡~𝑊𝑁(0, 𝜎𝑡
2) is a back-shift operator.  

Extrapolating from the AR(1) process, an AR(p) process can be represented as follows: 

 𝑥𝑡 = ∅𝑥𝑡−1 + ∅𝑥𝑡−𝑝 +⋯+ ∅𝑥𝑡−𝑝 + 𝜖𝑡 (26) 

Therefore, p represents the orde-r of the AR process. In a second manner of thinking, the 

observations of a random variable at time t is thought to not only be affected by the shock 

at time t, but also the shocks that have taken place before time t. For example, if a negative 

shock to the economy is observed due to, say, a catastrophic earthquake, then it can be 

expected that this negative effect will affect the economy not only for the time it takes 

place, but also for the near future. This kind of thinking can be represented by a moving 

average (MA) model. The MA(1) (moving average of order one) and MA(q) (moving 

average of order q) can be written as follows: 

 𝑥𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1 (27) 

and 

 𝑥𝑡 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 +⋯+ 𝜃𝑞𝜖𝑡−𝑞  (28) 

For order q. 

On combination of the AR and the MA model in one representative equation, the resulting 

process becomes an ARMA(p,q) model. The resulting equation can be represented as 

follows: 
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 𝑥𝑡 = ∅𝑥𝑡−1 + ∅𝑥𝑡−𝑝 +⋯+ ∅𝑥𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 +⋯+ 𝜃𝑞𝜖𝑡−𝑞  (29) 

ARMA model provides one of the basic tools in time series modeling.  

The following properties of ARMA provides useful insight to draw inference from an 

univariate model: 

1. Lag Operators 

These help in representing ARMA in a concise format. While applying a lag 

operator L once, the index is moved back by a single time unit, and applying it k 

times, moves the index back by k units [84]. The process can be represented as 

follows: 

 𝐿𝑥𝑡 = 𝑥𝑡−1 (30) 

 𝐿2𝑥𝑡 = 𝑥𝑡−2 (31) 

 …….  

 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘 (32) 

The lag operator has distributive properties over addition, that is: 

 𝐿(𝑥𝑡 + 𝑦𝑡) = 𝑥𝑡−1 + 𝑦𝑡−1 (33) 

Using lag operators, the ARMA model can be rewritten as follows: 

 𝐴𝑅(1): (1 − ∅𝐿)𝑥𝑡 = 𝜖𝑡 (34) 

 

 𝐴𝑅(𝑝): (1 − ∅1𝐿 − ∅2𝐿
2 −⋯− ∅𝑝𝐿

𝑝)𝑥𝑡 = 𝜖𝑡 (35) 

 𝑀𝐴(1): 𝑥𝑡 = (1 + 𝜃𝐿)𝜖𝑡 (36) 

 𝑀𝐴(𝑞): 𝑥𝑡 = (1 + 𝜃1𝐿 + 𝜃2𝐿
2 +⋯+ 𝜃𝑞𝐿

𝑞)𝜖𝑡 (37) 
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Putting∅0 = 1 𝑎𝑛𝑑 𝜃0 = 1, the lag polynomials can be defined as: 

 ∅(𝐿) = 1 − ∅1𝐿 − ∅2𝐿
2 −⋯− ∅𝑝𝐿

𝑝 (38) 

 𝜃(𝐿) =  1 + 𝜃1𝐿 + 𝜃2𝐿
2 +⋯+ 𝜃𝑞𝐿

𝑞 (39) 

Finally, with lag polynomials, ARMA can be rewritten in a more compact way: 

 𝐴𝑅:∅(𝐿)𝑥𝑡 = 𝜖𝑡 (40) 

 𝑀𝐴: 𝑥𝑡 = 𝜃(𝐿)𝜖𝑡 (41) 

 𝐴𝑅𝑀𝐴: ∅(𝐿)𝑥𝑡 = 𝜃(𝐿)𝜖𝑡 (42) 

2. Invertibility 

A time series probability model can be represented in multiple ways. The 

representation to choose depends on the problem at hand. For example, to study 

impulse-response function, MA representations maybe more convenient; while to 

estimate an ARMA model, AR representations maybe more convenient as usually 

xt is observable while ϵt is not. Although it is an important property, not all ARMA 

processes can be inverted. The following equations show how an AR(1) process 

can be represented by an MA(∞) process through invertibility with the use of an 

inversion operator (1 − ∅𝐿)−1, such that (1 − ∅𝐿)−1(1 − ∅𝐿) = 1. 

An AR(1) process, multiplied by the inversion operator can be represented as [84]: 

 𝑥𝑡 = (1 − ∅𝐿)−1𝜖𝑡 (43) 

 Now, if  𝜃𝑘 = ∅𝑘, 𝑓𝑜𝑟 |∅| < 1, then it can be shown that 

 𝐴𝑅(1): (1 − ∅𝐿)𝑥𝑡 = 𝜖𝑡 (44) 

  And, 

 𝑀𝐴(∞): 𝑥𝑡 = 𝜃(𝐿)𝜖
𝑡
 (45) 



 

64 

3. Auto-covariance functions and stationarity of ARMA models 

For an MA(1) process, the first two moments can be calculated as follows: 

 𝑥𝑡 = 𝜖𝑡 + ∅𝜖𝑡−1 (46) 

 Where, 𝜖𝑡~𝑊𝑁(0, 𝜎𝑡
2), is a back-shift operator. The first two moments are: 

 𝐸(𝑥𝑡) = 𝐸(𝜖𝑡 + 𝜃𝜖𝑡−1) = 0 (47) 

 𝐸(𝑥𝑡
2) = 𝐸(1 + 𝜃2)𝜎𝑡

2 (48) 

And, 

 𝛾𝑥(𝑡, 𝑡 + ℎ) = 𝐸[(𝜖𝑡 + 𝜃𝜖𝑡−1)(𝜖𝑡+ℎ + 𝜃𝜖𝑡+ℎ−1)] (49) 

 
𝛾𝑥(𝑡, 𝑡 + ℎ) = {

𝜃𝜎𝜖
2 𝑓𝑜𝑟 ℎ = 1 
0 𝑓𝑜𝑟 ℎ > 1

 
(50) 

So, for an MA(1) process, the mean is fixed and the co-variance function does not depend 

on time. Hence, MA (1) is a stationary process [84]. This notion can be generalized for an 

MA(q) process and extended to an MA(∞) process as well, provided the co-efficients are 

absolutely summable, which basically means that the integral function of the squares of 

their absolute values is finite. Similarly, an AR(1) process is also stationary, since AR(1) 

= MA(∞) through invertibility. This can again be generalized to an AR(p) process, where 

the inverted co-efficients need to be absolutely summable. Combining the AR and MA 

processes and considering that it holds its invertible property, it can presented that [84] 

 ∅(𝐿)𝑥𝑡 = 𝜃(𝐿)𝜖𝑡 (51) 

Inverting ∅(𝐿)it can be seen that  

 𝑥𝑡 = ∅(𝐿)−1𝜃(𝐿)𝜖𝑡 = 𝜓(𝐿)𝜖𝑡 (52) 

Where, 𝜓 can be calculated recursively by equating the co-efficients of the lag operator𝐿𝑘. 
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Therefore, an ARMA(p,q) process is stationary as long as ∅(𝐿)is invertible [84]. This 

reduces the entire ARMA process to its AR component and is independent of the moving 

average part, assuming all the parameters are finite. This basically proves that in order to 

apply ARMA to a time series function, the function first needs to be broken down to its 

stationary component. Only then can ARMA be applied. 

Figure 27: Demand power plot for the year 2014 Mid-Atlantic region 

The power demand data obtained from PJM Corporation website for the Mid-Atlantic 

region, was plotted against time. Figure 27 shows the data plotted over a period of the 2014 

year, whereas, Figure 28 shows the plot for a period of 48 hours between 06.25.2014 and 

06.26.2014. It is evident that the data is seasonal for 12 months and do show a periodicity 

of 24 hours with a non-stationary mean. A visual inspection of the curves thus prove that 

application of ARMA process to the time series is infeasible, since it is not capable to deal 

with seasonality in data or non stationary data. So, in this research, application of ARIMA 

and SARIMA processes was necessary.  
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Figure 28: Demand power plot between 06/25/2014 and  

06/26/2014 for Mid-Atlantic region 

ARIMA and SARIMA models are extensions of ARMA class in order to include more 

realistic dynamics, in particular, respectively, non-stationarity in mean and seasonal 

behavior [85]. In practice, many load time series are nonstationary in mean as evident from 

Figure 27 and Figure 28. These can be modelled as an ARMA model only by removing the 

nonstationary source of variation. This is done by differencing the series. For example, if 

Xt is a time-series data which is non-stationary in mean, then an ARMA model can be built 

on a series, wt, where 

 𝑤𝑡 = Δ𝑑𝑋𝑡 (53) 

Where, Δ𝑑 is the differencing function. So, an ARIMA can be represented as ARMA 

process defined on the dth difference of the original process [85]. It can be shown in the 

following equation: 
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 𝜙(𝐿)Δ𝑑𝑋𝑡 =  𝜃(𝐿)𝜖𝑡 (54) 

Where, 𝜙(𝐿) is the AR component and Δ𝑑𝑋𝑡 is a series made stationary through 

differentiation and can be modelled through ARMA. Characteristics of an ARIMA process 

are as follows [85]: 

1. When d = 0, it is a stationary process. For d = 1, it is a nonstationary process. The 

level changes in time, but the increase is constant, that is, the level is nonstationary, 

but its increments are. For d = 2, it is a nonstationary process, that is, both level and 

increments are non-stationary.  

2. When Xt is nonstationary its theoretical ACF is not defined (only the empirical 

ACF is). However, by observing the behavior of processes that are nearly stationary 

the following points can be assumed. 

a) The auto-correlation function (ACF) decreases extremely slowly to zero, the 

decrease is not exponential by linear.  

b) The partial ACF (PACF) takes value 1 for lag k = 1 and zero elsewhere. These 

characteristics of ACF and PACF are motivated by the dominance of the trend 

on the other dynamics in the series. Unless the trend is removed, nothing else 

(e.g. other MA or AR components) can be recognized from ACF and PACF. 

SARIMA is a generalized version of ARIMA, applied to a series which has seasonal 

characteristics along with being non-stationary in mean. Seasonality refers to the property 

of a time-series data, where similar patterns are repeated after a known period of time. For 

example, seasonality of 12 months means that similar patters will be found in the time-

series data set after every 12 months. A SARIMA process can be modelled as [85]: 
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 𝜙(𝐿)Δ𝑑𝑋𝑡 =  𝜃(𝐿)𝜖𝑡 (55) 

Where, 𝜖𝑡 is such that,  

 𝜙𝑠(𝐿
𝑠)Δ𝑠

𝐷𝜖𝑡 = Θ𝑠(𝐿
𝑠)𝑒𝑡 (56) 

So, the ARIMA equation can be re-written as: 

 𝜙(𝐿)𝑠𝜙(𝐿
𝑠)Δ𝑠

𝐷Δ𝑑𝑋𝑡 = 𝜃(𝐿)𝑠Θ(𝐿
𝑠)𝜖𝑡 (57) 

The above equation can be represented as Xt ~ ARIMA(p,d,q)x(P,D,Q)s. What it means is 

that SARIMA is basically ARIMA(p,d,q) models whose residuals 𝜖𝑡are again 

ARIMA(P,D,Q). In the equation, the operators defined by 𝐿𝑠 and its successive powers 

represent ARIMA(P,D,Q) [85].  

4.6 Developing a hybrid method 

From an initial literature study on the topic of load forecasting, it was evident that a major 

portion of the total variation in electricity load time series can be attributed to the strong 

periodic behavior in the data [70]. Meteorological factors, such as temperature, humidity, 

and wind speed, are important sources of variation in electricity load. Among these 

meteorological variables, temperature was found to be the most important in many studies 

[86]. It is also observed that the temperature–load relationship is highly non-linear [87]. 

The research work investigated this relationship and found that it can be approximated by 

an asymmetric V-shaped function with a minimum at around 65°F. This minimum 

represents the transition point between the needs for heating and cooling. However, it was 

later assumed that a better representation could be made if the relationship was 

approximated to be U-shaped function because there is generally a range of temperature 

when neither heating nor cooling is needed [88]. Consequently, this approach requires two 
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transition points to be identified. One common method of practice is to transform 

temperature into degree-days or degree-hours based on the transition points and use 

piecewise regression to model the temperature effect [86] and [88]-[89]. It is also found 

that the hourly temperature–load relationship may be affected by factors such as time of 

day, day of the week, season, location, income, price, holidays, and so on. Some 

researchers model the temperature–load relationship individually for different intraday 

period and day type [90]-[91].  

To capture the influences of as many factors influencing the temperature-load relationship 

as possible, this research has used a combination of random forest and SARIMA 

forecasting methods. The forecasting method implemented for STLF and MTLF is a two-

step process where the available power demand data has been represented as a dependent 

variable governed by controlling factors like type of day (holiday or business day), average 

temperature for the day, hour of the day, day of the week, moth of the year and season. The 

hourly power demand data for Mid-Atlantic region was obtained from PJM website [92]. 

The daily temperature data for the entire region was obtained from the National Centers 

for Environmental Information website [93]. This temperature was later averaged over all 

the states consisting of the Mid-Atlantic region (New York, Pennsylvania, New Jersey, 

Delaware, Maryland, Virginia and West Virginia) [94]. The entire process of forecasting 

is divided into 3 stages. They are described as follows: 

1. Data collection from utilities 

PJM Interconnection LLC is a regional transmission organization (RTO) in the 

United States, with the headquarters being at Valley Forge, Pennsylvania. It is part 

of the Eastern Interconnection grid operating an electric transmission system, 

https://en.wikipedia.org/wiki/Eastern_Interconnection
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serving all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, 

New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West 

Virginia and District of Columbia. PJM coordinates the movement of wholesale 

electricity in all or parts of 13 states and the District of Columbia [75]. Hourly Load 

data is available from the PJM website in an ‘.xlsx’ format. In order to create a 

historical database to run the forecasting algorithms, the files were downloaded 

from the website and stored. The data archive in PJM has metered load data dating 

back to as early as ten years old. However, since the research focusses on STLF 

and MTLF, only the data from the past four years was used. This was done to 

capture the trend of power usage in the recent history, in a bid to create a more 

accurate model. Each ‘.xlsx’ file consists of load data from 28 regions. However, 

for this research, data from the Mid-Atlantic region was considered only. The 

downloaded data was then integrated into a single ‘.csv’ file for all years starting 

from the year 2012 till the most recent available date of year 2015. This process 

was executed in a matlab environment. 

The temperature data for the corresponding period was collected from the National 

Centers for Environmental Information (NOAA) database. The National Oceanic 

and Atmospheric Administration is an American scientific agency within 

the United States Department of Commerce focused on the conditions of 

the oceans and the atmosphere. NOAA warns of dangerous weather, charts seas 

and skies, guides the use and protection of ocean and coastal resources, and 

conducts research to improve understanding and stewardship of the environment 

[93]. The temperature data was acquired in a ‘.txt’ format from all weather stations 
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present in the seven states comprising the Mid-Atlantic region. The temperature 

readings for the day was then averaged over all the stations to get a single 

temperature value representing the entire region for each day. This was done using 

the matlab environment. The resulting, approximated temperatures were then 

integrated for the entire period from year 2012 to the latest date and stored in a 

‘.csv’ file. 

2. Data preprocessing 

A user interface was developed in this stage in the matlab environment, where, the 

user has a flexibility to choose what part of the data (both temperature and power 

demand) should be allocated for a training dataset. This dataset serves as a historical 

database required for building the RF forecasting model. In this stage, the data was 

also divided on the basis of the type of day (business day or holiday). The interface 

developed allows the user to choose the hour of the day for which the forecasting 

model is to be built. Based on this time, the rest of the forecasting process will be 

carried out for future days’ load forecasting. New variables were created which 

indicates properties of the data which have been presented in the Table 3.  

Table 3: Sample dataset for all business days at 2am 

Date DemandP Season Month Day_of_Week Temperature 

1/3/2012 28128.519 3 1 3 26.676 

1/4/2012 33965.268 3 1 4 20.329 

1/5/2012 30738.251 3 1 5 33.214 

1/6/2012 29455.599 3 1 6 41.045 

1/9/2012 27201.48 3 1 2 34.048 

1/10/2012 27602.549 3 1 3 38.279 

Table 3 shows demand data (in Watts) represented in a chronological format along 

with corresponding temperatures in Fahrenheit (F) scale. Columns season, month 

and day of week are indicator variables, describing properties of observation like 
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the season of the year, the month of the year and the day of the week, respectively. 

This type of representation of a variable is called a categorical variable, where, the 

values of the variable are not treated as factors, but labels that indicate certain 

information about the data which otherwise cannot be quantified. For example, the 

variable ‘Day of Week’ can have 7 levels, each level representing each day of a 

week. Table 5, Table 6 and Table 7 represent the variables with their possible levels. 

Hence, the dataset in Table 3 has three categorical variables and one quantitative 

variable.  

Table 4 shows the name of the variable and its type. Together the categorical 

variables and the quantitative variable form the set of predictor variables, which are 

used in modelling the random forest process (the dependent variable).  

Table 4: Name of predictor variables with their types 

Variable Name Variable Type 

Season Categorical 

Month Categorical 

Day of Week Categorical 

Temperature Quantitative 

 

Table 5: Possible level and label names for variable Month 

Month 

Label Name Level Number 

January 1 

February 2 

March 3 

April 4 

May 5 

June 6 

July 7 

August 8 

September 9 

October 10 

November 11 

December 12 
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Table 6: Possible level and label names for variable Season 

Season 

Label Name Level Number 

Summer (Jun, Jul, Aug) 1 

Fall (Sept, Oct, Nov) 2 

Winter (Dec, Jan, Feb) 3 

Spring (Mar, Apr, May) 4 

  

Table 7: Possible level and label names for variable Day of Week 

Day of Week 

Label Name Level Number 

Sunday 1 

Monday 2 

Tuesday 3 

Wednesday 4 

Thursday 5 

Friday 6 

Saturday 7 

With the database getting created, the forecasting moves to the third and final 

stage of processing.  

3. Building forecasting model to predict future load values 

This is a two-step process, which were executed in R programming environment. 

R is a programming specifically used to execute statistical experiments, hence the 

choice of the environment. A) In the first step, the dataset generated in the data 

preprocessing stage is used to build a RF model. For this, a pre-built software 

package called ‘randomForest’ was used. The function used to execute the 

modelling is “fit < ̶ randomForest(DemandP ~ season + month + dow + 

Temperature, data = dat[1:r1,],replace = TRUE, importance=TRUE, 

ntree=2000,mtry = 2)” [95]. A random forest object, ‘fit’ is created which consists 

of the software model of RF pertaining to the input arguments. Here, ‘DemandP’ is 

the dependent variable, having the load information. ‘Season’, ‘month’, ‘dow’ and 
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‘Temperature’ are the predictor variables. The randomForest function has built in 

provisions to work with categorical variables. Table 8 gives a complete idea of the 

input arguments and their properties in the randomForest function. 

Table 8: Input arguments and their properties for randomForest 

randomForest 

Input Argument Property 

DemandP Dependent Variable 

Season Independent Variable (Categorical) 

Month Independent Variable (Categorical) 

Dow Independent Variable (Categorical) 

Temperature Independent Variable (Quantitative) 

Data Dataset to be used to train the model 

Replace Set replacement of case samples from dataset 

Importance Set importance of predictors assessment 

Ntrees Number of trees in the RF model 

Mtry Number of predictors sampled for splitting at each node. 

The ‘fit’ model is then used to predict the power demand for all the days in the train 

dataset. It should be noted here that the prediction is done for the same dataset that 

was used to train the RF model. The predicted values are then differenced from the 

actual values to create a residual dataset. Table 9 illustrates how the residuals are 

created from the actual datasets. 

Table 9: Calculating residuals from RF model 

Residuals from Random Forest Model 

Date 
Actual Data 

(PJM) at 2am 

Predicted Data 

(RF) at 2am 

Residuals 

(PJM-RF) 

1/3/2012 43241.29 43064.02 222.95 

1/4/2012 42545.21 43575.10 -1048.93 

1/5/2012 39572.38 39606.04 -91.84 

B) In the second step, the residuals are used as a time-series input to a SARIMA 

model. SARIMA is available as an R package, which can be used by calling the 

function "mod_fit < ̶  sarima(dat_ts,p,d,q,P,D,Q,S)”. Here, the ‘dat_ts’ corresponds 

to the residual values and ‘p,d,q,P,D,Q’ values are the parameters to indicate which 
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model we are using in SARIMA and S is the seasonality in the dataset. For example, 

sarima(dat_ts, 1,0,1,1,1,1,24) means An ARMA process is being used inside an 

ARIMA model with a seasonality of 24 hours. The sarima function creates the 

‘mod_fit’ object, which consists of the software model of SARIMA. This model is 

then used to predict residual values for the rest of the days in the month (business 

days or holidays, depending on user input). The randomForest model created in the 

first step is used here to get load forecasts for the rest of the month as well. Finally, 

the forecasted loads from RF is added to the predicted residuals from sarima to get 

a final, adjusted load forecast. This data is compared against actual PJM data set 

for the corresponding dates to calculate errors. This concludes the MTLF. The 

results have been discussed in chapter 4. 

The same setup can be used for STLF, where the first predicted value will be the 

predicted load for the next day. Table 10 shows the final predicted results. 

Table 10: RFSRIMA Predicted values for load data at 2 am 

Random Forest + SARIMA Forecasting 

Date 
RF 

Prediction 

SARIMA 

Prediction 

Adjusted 

Result 

(RFSRIMA) 

Actual 

Data 

(PJM) 

% Error 

(PJM-

RFSRIMA) 

1/2/2015 27379.52 -181.308 27198.21 27422.008 0.816 

1/3/2015 27338.02 -237.799 27100.23 24633.998 -10.011 

1/4/2015 31405.59 -99.406 31306.19 31695.589 1.23 

Table 10 shows the results obtained from hybrid RF and SARIMA forecasts. Here, 

the dataset used to train the RF model is expected to be present till the day before 

1/1/2015 for best results. If we consider a scenario that the latest recorded data from 

a power system is available till the 31st of December, 2014. Then, the predicted 

result for 2nd January, 2015 will be an hourly forecasted value, thus satisfying the 

STLF properties. This process can be repeated for all the 24 hours of day, thus 
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resulting in a day-ahead load forecasting scheme. Figure 29 shows a block diagram 

for the entire process of forecasting. All results obtained from the STLF and MTLF 

have been presented and discussed in chapter 4. All codes for the RF+SARIMA 

hybrid process is presented in Appendix B. 

Figure 29: Functional block diagram of RF + SARIMA (RFSRIMA) process
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V. RESULTS AND DISCUSSIONS 

A comparative analysis and investigation on various clustering and forecast models has 

been discussed in this chapter. This chapter is organized into two sections. The first section 

presents the results obtained from clustering algorithms (DBSCAN, k-means and multi-

tier k-means). The second section presents a discussion on the results obtained from 

(random forest, SARIMA, hybrid method including LOWESS and SARIMA model) and a 

novel hybrid model (which includes random forest and SARIMA models).  

5.1 Results obtained from data clustering algorithms 

Four different test cases have been formulated to evaluate the performance of existing 

clustering methods against multi-tier k-means. The cases under consideration are the 

following: 1) Ideal or Normal Load condition, 2) Heavy Load condition, 3) Light Load 

condition and 4) Single Line-to-ground Fault condition. The methods evaluated are, 1) 

DBSCAN, 2) k-means and 3) multi-tier k-means. The performance of the clustering 

algorithms have been evaluated using dunn’s index (DI). This is a standard metric to 

evaluate cluster separation [96]. 

The parameters studied for clustering methods are voltage and current (magnitude and 

phase angle) and the frequency values from the openPDC software suite. It showcases the 

level of accuracy of the three algorithms during fault conditions. The four test cases are 

conducted for time-intervals of 5, 10, 15 and 20 minutes. The data include voltage, current 
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and frequency data from the synchrophasor sensors collected at a rate of 30 samples per 

second [98]. 

5.1.1 Test case 1: System under steady state (normal) conditions 

Under normal conditions, the power system conditions are generally stable and its 

parameters lie within acceptable threshold values. Figure 30 shows clustering of voltage 

data from openPDC for a 15 minute time period using DBSCAN. Figure 31 indicates the 

clustered voltage data from the proposed multi-tier k-means algorithms and Figure 32 

shows the clusters from k-means algorithm which is initialized to with a total of 3 clusters. 

These clusters are formed based on the value of the data points and they do not conform to 

any power system thresholds. Hence, we will see later in the chapter that although they 

have a desirable DI value, the clustering scheme fails to correctly classify the phasor data, 

in a manner that would be helpful for system operators to monitor the system. DBSCAN 

cluster the data into three clusters as core, border and noise as shown in Figure 30. The 

core points are data points that are equal or nearer to the threshold value of ideal 

transmission line voltage (300 kv). They are encoded in green color. Values that are slightly 

away from nominal value of core points are defined as border points. Any further isolated 

points are classified as noise points. From power systems perspective, this is a miss 

classification, since the voltage data captured is still within the allowable range of ±5% of 

ideal voltage value for the range of voltage considered [97]. Figure 31 represents the 

voltage data clustered by multi-tier k-means algorithm. The only input that is needed to be 

provided by the user is to initialize the value for ideal transmission line parameter, i.e. 

voltage value of 300 kv. It is evident from Figure 31 that the voltage data gets correctly 

clustered into core points (green) as the system is in steady state condition. Based on its 
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initial centroid values, the k-means algorithm continue to cluster all data points, where the 

number of clusters were set to 3. This is done with the idea that the power data can have 

three possible clusters, the core group representing normal data, the border group 

consisting of voltage values just outside the threshold values and finally the noise group 

consisting of voltage data having values further away from threshold values of border and 

core. Figure 32 shows the clustering output from k-means algorithm. 

Figure 30: Steady State Voltage Output – DBSCAN 

5.1.2 Test case 2: System under heavy load conditions 

During the heavy loaded condition, the demand increases and thus voltage level starts to 

drop. Figures 33, 34 and 35 represent the clustering outputs from DBSCAN, multi-tier k-

means and k-means algorithms. In Figure 33, operators can easily identify the densely 

populated areas (green) and the sparsely populated data points (yellow). In comparison 

with the Figure 30, the shift in the density of core points from 299800 volts to 299500 volts 

can be easily identified. Figure 34 represents the multi-tier k-means clustering of heavy 
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load condition. As per the enforced conditions, the data points that are within tolerable 

limits are clustered as good cluster (green) and other data points form a low noise cluster 

(blue) and the dat that do not fall into either of these two clusters are grouped as an outlier 

region (cyan). The shift in the data points due to heavy load conditions. This means that 

there is a reduction in the percentage of core group points and an increase in percentage of 

low outlier cluster points. Finally, Figure 35 represents the output from k- means algorithm 

to form 3 clusters. The k-means clustering method again forms three clusters, but fails to 

clearly indicate the density shift and thus csnnot accurately capture the heavy load 

conditions. 

Figure 31: Steady State Voltage output – Multi-tier k-means 
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Figure 32: Steady State Voltage output – k-means 

Figure 33: Heavy Load Condition – DBSCAN 
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Figure 34: Heavy Load Condition – Multi-tier k-means 

Figure 35: Heavy Load Condition - k-means 
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5.1.3 Test case 3: System under light load conditions 

Under light load conditions, there will be a slight increase in the voltage values due to low 

demand. Figure 36 shows the clustered output from DBSCAN. In light load conditions, the 

voltage valu increases to above normal. Figures 30 and 33 indicate the shift in the density 

of core points from 299800 volts to 300600 volts. Figure 37 shows the data clustered by 

multi-tier k-means under light load conditions. As per the pre-defined centroid settings, the 

data is clustered into four (4) clusters. They are the good data (green), the high value 

outliers (yellow), the low value outliers (cyan) and the high value noise data (red) clusters. 

The change in load conditions can again be captured by tracking the increase in percentage 

of high outlier cluster points in Figure 37, with respect to that of Figure 31. Figure 38 is 

the output from the normal k-means algorithm to form 3 clusters for the light loaded 

condition. It is again evident from the figure that the k-means algorithm fails to capture the 

light load conditions.  

Figure 36: Light Load Condition – DBSCAN 
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Figure 37: Light Load Condition – Multi-tier k-means 

Figure 38: Light Load condition – k-means 

5.1.4 Test case 4: System under single line to ground fault condition 

The final test case is a single line to ground (SLG) fault condition. This fault is captured 

using the proposed clustering methods. Figure 39 shows the DBSCAN clustered output for 
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the fault condition for voltage data. The DBSCAN clusters the fault conditions into noise 

and clearly separates the good and faulty points. However, it fails to clearly identify the 

beginning of the fault, i.e., the capture the time when a contingency occurred, resulting in 

the drop in voltage below normal threshold. This makes it unsuitable to generate alarms. 

Figure 40 shows the same fault case clustered correctly using multi-tier k-means method. 

It does a good job in clustering the fault data into low outliers (cyan) and low noise (blue) 

clusters. From Figure 40 the fault condition is clearly visible when the voltage level goes 

below a critical value (i.e., changes over from cyan to blue). Thus, using this method, an 

alarm generated will alert the system operator through a pre-warning message that there is 

a contingency scenario (the line to ground fault). Figure 41 shows the output from k-means 

algorithm. It clusters the given fault condition into 3 clusters irrespective of any threshold 

values. 

Figure 39: Line to Ground Fault – DBSCAN 
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Figure 40: Line to Ground Fault – Multi-Tier k-means 

Figure 41: Line to Ground Fault – k-means 
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5.1.5 Test results with current (I) data 

The clustering algorithms (DBSCAN, multi-tier k-means and k-means) were applied to 

current (magnitude and phase angle) and frequency data as well. The results obtained were 

analogous to the voltage dataset. Figures 42, 43 and 44 illustrate the results of these 

clustering methods on current parameter under normal, heavy load and light load 

conditions. The ideal line current value is 500 amps. The data was gathered over a period 

of 15 minutes. 

Figure 42: Steady state condition multi-tier k-means 

From Figure 42, the multi-tier k-means captures accurately the normal state of the system 

and, thus generates only the core cluster. The percentage of good data points in the cluster 

is 100%. 
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Figure 43: Heavy load condition multi-tier k-means 

Figure 43 illustrates how multi-tier k-means is able to capture the heavy load condition 

(when the current drawn from the system starts to increase). The percentage of the core 

data points drops from 100% to 91% and the high outliers have 9% of the data. 

Finally, Figure 44 captures the effect of light load conditions on the current data. The 

percentage of core points reduces and the value shifts toward the lower outliers indicating 

that there is less demand than the ideal conditions. 
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Figure 44: Heavy load condition multi-tier k-means 

5.1.6 Quantification of the visual data representation 

This section discusses the distribution of voltage data captured in the figures 30-44. 

Under normal conditions, with different data sizes, Tables 11, 12 and 13 provide the 

percentage distribution of cluster points in multi-tier k-means, DBSCAN and k-means 

algorithms. 

Table 11: Distribution of data points with multi-tier k-means 

Load condition Low Noise 

(Blue) 

Low Outliers 

(Cyan) 

Good Points 

(Green) 

High Outliers 

(Yellow) 

High Noise 

(Red) 

Normal 0 10.53 89.47 0 0 

Heavy 24.7 5.2 70.04 0 0 

Light 0 3.3 79.76 16.94 0 

Fault 5.32 10.4 84.2 0 0 



 

90 

As the conditions change from normal values, the percentage of good points decrease from 

89%. In the similar way, light load condition can be observed with high border points 

(16%) and the heavy load condition with low noise (24%). 

From the Table 12, the distribution of points is DBSCAN can be observed. 

Table 12: Distribution of data points with DBSCAN 

Load condition Noise points (Red) 
Border points 

(Yellow) 

Core points 

(Green) 

Normal 0.5 6.3 93.2 

Heavy 0.078 8.96 90.5 

Light 0.8 56.3 42.8 

Fault 7.73 14.4 77.8 

Table 13 shows the distribution of data points under different load conditions. 

Table 13: Distribution of data points with k-means 

Load condition Cluster 1 (Blue) 
Cluster 2 

(Cyan) 

Cluster 3 

(Green) 

Normal (100%) 27.1 36 36.7 

Heavy (100%) 25.3 40.1 34.4 

Light (100%) 32.7 27.7 39.4 

Fault (100%) 94.6 4.29 1.02 

5.1.7 Computational time 

The computational time is calculated for various phases in the data mining proces. A pre-

processing time is required to interface with MATLAB environment, and extract data from 

openPDC by C# application. Once the data is made available, the algorithms perform their 

operations of clustering. This run-time varies between the algorithms and with different 

data sizes. After the clustering process is completed, users visualize the clusters and 

decision samples in MATLAB environment. The time it takes to form completed clusters 

is referred as post-processing time.  The processing times for data sizes of various time-

intervals 10, 15, 20 and 30 minutes are tabulated in table 14. It is clear from table 14 that 

k-means is fastest when compared to multi-tier and DBSCAN methods. The proposed 
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multi-tier k-means does take extra seconds to cluster the data. The clustered information is 

very easy to visualize and accurate in multi-tier k-means than DBSCAN and k-means. 

However, DBSCAN does take a longer time to process the data ranging from 10’s of 

seconds to 100’s of seconds depending on the time-interval. We believe that this is due to 

the fact that the number of iterations in DBSCAN is higher than other algorithms.  

All test cases have been conducted using the following PC configurations: 

PC Configuration Tested: 

1. Server Configuration: AMD FX-9590 4.7GHz 8-Core, 32 GB DDR3 RAM, 500 

GB SSD 

2. Software: Windows operating system, Microsoft Visual Studio 2012, openPDC 

2.1, MySQL, SQLite, R, MATLAB/Simulink  

From the case studies tested, each of the three algorithms has their advantages, and 

disadvantages. Based on the feedback from utility operator’s requirement, any of these 

algorithms can be selected at various stages for power system planning and operations. 

DBSCAN can be used to provide valuable understanding on the system during heavy load 

conditions. The multi-tier k-means can provide insight on the grid situation as well as 

cluster the data to show the load intensities. Although the original k-means known to be 

the fastest algorithm in the literatures, it does not provide any useful information for power 

system data sets. Table 14 presents a break-up of the time taken to perform the experiments 

under various periods of collected data. 
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Table 14: Computation time for different data sizes 

Algorithm 

Time 

Duration 

(Minutes) 

Pre-processing 

(seconds) 

Processing 

(seconds) 

Post- processing 

(seconds) 

DBSCAN 

10 68.4 8.35 13.4 

15 126 26.04 30.6 

20 227.966 56.3988 66.7 

30 478.17 132.3 146.7 

Multi-Tier 

k-means 

10 62.1 5.13 4.49 

15 123.8 8.2 6.71 

20 204.1 9.6 8.86 

30 429.9 15.2 13.1 

k-means 

10 55.4 0.02 2.62 

15 113.7 0.03 3.86 

20 186.7 0.09 6.19 

30 414.8 0.14 7.49 

5.1.8 Visual Fidelity 

A survey of 10 students were conducted to assess the visual appeal of the three clustering 

methods as well as their tendancies of misclassification (MC) and identify which method 

is effective for visualizing faults or anomalies under varying conditions. MC over here 

indicates the failure of a data clustering method to correctly place data points in the 

appropriate cluster. Table 15 indicates that proposed multi-tier k-means visually appeals 

better under heavy load conditions, and DBSCAN appeals good for light load conditions. 

A work is in progress to seek inputs on the visual fidelity of proposed clustering method 

from system operators. 

Table 15: Visual Fidelity of clustering algorithms 

Visual Fidelity under k-means DBSCAN multi-tier k-means 

Heavy Load condition + (MC ~ 50%) -- (MC > 80%) ++ (MC < 20%) 

Light Load condition ++ (MC < 20%) -- (MC > 80%) + (MC ~ 50%) 

Normal condition ++ (MC < 20%) -- (MC > 80%) + (MC ~ 50%) 

Fault condition -- (MC > 80%) -- (MC > 80%) ++ (MC < 20%) 
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5.1.9 Dunn’s Index (DI) 

Dunn’s index is used as a metric to evaluate clustering algorithms. The aim is to identify 

sets of clusters that are compact, with smaller variance values between members of the 

cluster, and are well separated. Here, the average values of different clusters are sufficiently 

far apart compared to values of individual cluster variance. Dunn’s index can be 

mathematically represented:  

 

𝐷𝐼𝑚 = 
min

1≤𝑖≤𝑗≤𝑚
𝛿(𝐶𝑖, 𝐶𝑗)

max
1≤𝑘≤𝑚

∆𝑘
 

(58) 

Where, Ci and Cj are the ith and jth centroids of m clusters formed from a clustering 

algorithm and ∆𝑘 is the distance between any two points within the kth cluster. Therefore, 

DI calculates the ratio of the minimum inter-cluster distance to the maximum intra-cluster 

distance [96]. 

Table 16: Dunn's indices for voltage and current data 

Dunn’s 

Index 

Time  

(mins) 

DBSCAN 

 

mutli-tier k-means 

 

k-means 

 

  V C V C V C 

Heavy 

Load 

10 0.1894 0.0462 0.2069 0.0506 0.4350 101.3 

15 0.1922 0.0365 0.3714 0.0641 0.4297 178.9 

20 0.3136 0.0529 0.2004 0.0586 0.4241 56.8 

30 0.2167 0.0523 0.1901 0.0516 0.4543 59.2 

Steady 

State 

10 0.2236 0.326 0.3016 0.816 0.4203 75.9 

15 0.323 0.0425 0.3016 0.0818 0.2968 118.2 

20 0.1936 0.2443 0.3016 0.0818 0.2836 74.6 

30 0.1536 0.0904 0.3016 0.0818 0.4203 79.7 

Light 

Load 

10 1.162 0.36 0.4035 0.04 0.4098 117.5 

15 0.1978 0.695 0.3714 0.0381 0.369 57.3 

20 1.158 0.852 0.3538 0.0372 0.405 59.9 

30 0.7375 0.09 1.1695 0.0516 0.4202 153.2 

The DI calculated in each experiment was used both as a performance metric to check the 

compactness of the clusters and also to track load conditions. In table 16, the “time in min” 

column presents the period of data used for the calculations and columns “V” and “C” 
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indicate data calculated for voltage and current parameter respectively. It was observed 

that under steady state conditions, the DI for multi-tier k-means held the same value, 

regardless of the tested time period. This was further re-enforced in figure 31, which 

showed that only core points were present in the overall data. Thus, any changes in the DI 

value (increase or decrease) would mean the formation of new clusters, which in turn 

indicated that there was presence of border or noise clusters. Table 16 suggests that the DI 

tends to increase under light load conditions and tends to decrease under heavy load 

conditions, for voltage data. Using this observation as a reference, the operators can capture 

whether a system is in steady state or transient condition. 

5.2 Results obtained from data forecasting algorithms 

The load data obtained from PJM Corporation website was used for both MTLF and STLF. 

Four models, namely random forest, SARIMA, a hybrid model utilizing LOWESS and 

SARIMA (LOWRIMA) models and finally a novel, hybrid model using RF and SARIMA 

(RFSRIMA) models were used to forecast the demand values. Besides the historical load 

data, other factors, such as average daily temperature, day of the week, month of the year, 

type of day, etc. are also considered to build prediction models. The following section 

discuss the application of these models for mid-term load forecasting and short-term load 

forecasting. For each model, their accuracy of prediction is evaluated using statistical 

indices like MSE, MAE, RMSE and MAPE. A calendar year was divided into four seasons 

(spring, summer, fall and winter). A month was chosen at random from each season as a 

representative of the whole season. The rationale for this assumption was the notion that 

temperatures do not vary drastically during a season. This is shown in Figure 45, where 

hourly load data for working days has been plotted for the months of the spring season 
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(March to May). It can be seen that of the total of 528 hours in all the working days for the 

season, there was only one hour when a high peak of load values was detected. Hence, the 

power demand would not have any significant variance for the three month season being 

tested. Hence, a four month seasonal representation was considered appropriate for testing 

the annual load demand for MTLF to allow capturing variations in the data.  

Figure 45: Comparison of hourly load data for the months of Mar-May in 2012 

The models were applied to four different hours of a working day (2 am, 9 am, 2 pm and 8 

pm). From a study of the hourly data for a day, it was clear that although the load demand 

varies over a whole day, there are certain periods of the day, when the load characteristics 

behave similarly (increases, decreases or hold constant). Hence, a day was divided into 4 

parts (early morning, mid morning, afternoon and evening), as a reasonable approximate 

for the 24 hours. Figure 46 illustrates how the demand during certain periods of a day are 

similar. 
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5.2.1 Mid-term load forecasting (MTLF) 

In this section, the forecasted values of load have been presented and the forecasting 

accuracies have been compared using statistical indices like MAE, MSE, RMSE, and 

MAPE. Along with the data tables, this section also uses charts to compare the error indices 

for each method. In each case, a whole month’s load values were forecasted using four 

different methods and the results were compared to the actual data. For the test cases 

studied, the RF model and the RFSRIMA hybrid models yielded similar accuracies. When 

separately run, the LOWESS and the SARIMA models, were not quite accurate for the 

tested cases. However, when used together, the hybrid model LOWRIMA performed much 

better. 

Figure 46: Demand power for Mid-Atlantic region on Jan 3rd, 2012 
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Table 17: Demand data predicted by each model for May 2015 at 2am 

May 2015, 2am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

05/01/2015 23662.86 25260.20 26986.60 23327.75 22542.86 22639.09 

05/04/2015 23166.08 24586.59 23973.48 22539.55 22370.67 23622.81 

05/05/2015 22923.27 23012.76 23316.22 21081.97 21996.21 22059.73 

05/06/2015 23395.35 24586.59 25535.02 22099.97 22398.85 22660.33 

05/07/2015 23575.58 26497.27 25513.92 24625.90 22774.48 24959.52 

05/08/2015 25377.92 28322.32 25421.23 26606.94 24814.34 25938.52 

05/11/2015 22374.61 22534.18 22391.30 20521.01 21462.95 24270.48 

05/12/2015 22117.32 21732.99 22176.03 20091.01 21451.97 21682.22 

05/13/2015 22391.86 22104.53 23188.15 20231.58 21514.87 21587.79 

05/14/2015 23276.53 25818.91 22947.41 23885.18 22397.63 25413.72 

05/15/2015 23516.46 24791.13 22161.29 22831.73 22680.99 24345.59 

05/18/2015 22381.42 22534.18 22403.86 20831.34 21391.39 25082.14 

05/19/2015 22312.44 22328.21 23238.71 20144.35 21262.48 21872.17 

05/20/2015 22620.85 22026.71 22973.26 19963.99 21642.45 21733.52 

05/21/2015 25629.92 28322.32 23495.29 26843.84 24795.26 24009.07 

05/22/2015 26643.06 29007.44 25035.37 27070.61 25670.86 27509.50 

05/26/2015 26714.60 29007.44 23283.37 27079.75 25799.56 27027.23 

 

Table 18: Prediction error percentages for May 2015 at 2am 

Percentage Error May 2015, 2am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-4.52 -11.58 -19.20 -3.04 0.43 

1.93 -4.08 -1.48 4.59 5.30 

-3.91 -4.32 -5.70 4.43 0.29 

-3.24 -8.50 -12.69 2.47 1.15 

5.54 -6.16 -2.22 1.34 8.75 

2.16 -9.19 1.99 -2.58 4.33 

7.81 7.15 7.74 15.45 11.57 

-2.01 -0.23 -2.28 7.34 1.06 

-3.72 -2.39 -7.41 6.28 0.34 

8.41 -1.59 9.70 6.01 11.87 

3.41 -1.83 8.97 6.22 6.84 

10.77 10.16 10.68 16.95 14.71 

-2.01 -2.09 -6.25 7.90 2.79 

-4.08 -1.35 -5.70 8.14 0.42 

-6.75 -17.97 2.14 -11.81 -3.27 

3.15 -5.45 8.99 1.60 6.68 

1.16 -7.33 13.85 -0.19 4.54 
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Table 19: Standardized error for each model at 2am on May 2015 

 May 2015, 2am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1056.07 1448.75 1796.55 1477.98 1236.35 

MSE 1541656.34 3274538.16 4565340.41 3467703.90 2764910.35 

RMSE 1241.63 1809.57 2136.67 1862.18 1662.80 

MAPE 4.39 5.96 7.47 6.25 4.96 

 

Figure 47: MAE values for May 2015 projection (MTLF 2012-2015) at 2am 

 

Figure 48: MSE values for May 2015 projection (MTLF 2012-2015) at 2am 
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Figure 49: RMSE values for May 2015 projection (MTLF 2012-2015) at 2am 

 

 

 
Figure 50: MAPE values for May 2015 projection (MTLF 2012-2015) at 2am 
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Table 20: Demand data predicted by each model for May 2015 at 9am 
 

 

Table 21: Prediction error percentages for May 2015 at 9am 

Percentage Error May 2015, 9am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-6.20 -9.31 -15.92 -2.92 -5.06 

-1.88 -1.98 -4.90 3.78 -0.39 

-4.79 -4.03 -7.09 2.60 1.08 

-3.14 -4.64 -14.80 2.26 -0.04 

2.55 -0.94 -1.84 4.03 3.54 

0.88 -3.51 1.46 1.15 2.51 

-0.72 -1.06 -3.18 5.22 2.63 

-3.70 -2.58 -7.10 3.41 1.25 

-3.31 -3.04 -8.28 3.51 0.90 

6.60 2.13 9.07 6.86 10.07 

0.09 -0.80 5.05 5.32 4.96 

0.02 -0.29 -5.22 5.15 3.99 

-2.94 -5.09 -5.73 0.92 2.52 

-5.09 -4.07 -8.77 1.96 1.13 

-3.84 -8.02 2.01 -4.04 1.78 

 

 

 

 

May 2015, 9am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

05/01/2015 31376.32 32297.53 34249.16 30408.34 31040.83 29545.54 

05/04/2015 30769.37 30800.22 31682.15 29058.99 30317.88 30201.54 

05/05/2015 30203.37 29985.43 30867.18 28074.43 28511.36 28823.61 

05/06/2015 30359.82 30800.22 33791.61 28768.57 29446.17 29434.92 

05/07/2015 32066.67 33214.05 33509.48 31578.28 31739.28 32905.66 

05/08/2015 33177.26 34647.85 32985.06 33087.38 32632.03 33473.44 

05/11/2015 29671.05 29770.65 30393.98 27921.72 28681.90 29458.07 

05/12/2015 29234.22 28920.37 30194.50 27229.72 27838.78 28191.83 

05/13/2015 29323.98 29245.41 30732.39 27387.68 28129.28 28383.38 

05/14/2015 31475.06 32982.57 30644.35 31387.32 30305.75 33699.37 

05/15/2015 31318.28 31598.18 29764.96 29680.16 29791.78 31347.59 

05/18/2015 29677.58 29770.65 31231.90 28155.47 28500.15 29683.36 

05/19/2015 29565.72 30181.59 30365.44 28456.84 27996.43 28720.01 

05/20/2015 29436.58 29152.51 30467.09 27463.52 27695.07 28011.67 

05/21/2015 33309.09 34647.85 31430.29 33371.69 31503.45 32076.01 
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Table 22: Standardized error for each model at 9am on May 2015 

 May 2015, 9am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1056.07 1448.75 1796.55 1477.98 1236.35 

MSE 1541656.34 3274538.16 4565340.41 3467703.90 2764910.35 

RMSE 1241.63 1809.57 2136.67 1862.18 1662.80 

MAPE 4.39 5.96 7.47 6.25 4.96 

 

Figure 51: MAE values for May 2015 projection (MTLF 2012-2015) at 9am 

Figure 52: MSE values for May 2015 projection (MTLF 2012-2015) at 9am 
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Figure 53: RMSE values for May 2015 projection (MTLF 2012-2015) at 9am 

 

Figure 54: RMSE values for May 2015 projection (MTLF 2012-2015) at 9am 
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Table 23: Demand data predicted by each model for May 2015 at 2pm 
 

 

 

 

Table 24: Prediction error percentages for May 2015 at 2pm 

Percentage Error May 2015, 2pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-4.29 -13.05 4.65 -6.41 -3.99 

-7.37 -8.92 2.62 -3.45 -6.79 

-0.58 -1.47 6.00 7.67 -3.30 

1.25 -2.10 14.16 4.99 0.32 

1.14 -3.23 20.63 -0.19 0.86 

-1.53 -5.11 18.41 -4.62 -1.56 

-2.75 -5.22 -12.26 -9.25 1.77 

-1.47 -0.61 -10.05 3.67 2.51 

-2.98 -3.70 3.78 5.35 2.67 

6.73 0.05 23.55 5.27 10.08 

3.08 -3.83 20.26 2.88 6.17 

-1.57 -4.02 6.41 2.11 0.84 

-1.05 -1.10 0.19 7.84 5.49 

-2.45 -1.87 -3.99 4.63 -3.06 

0.81 -2.12 30.17 3.50 4.14 

 

May 2015, 2pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

05/01/2015 34611.69 35109.61 31390.93 33346.53 34421.97 32234.76 

05/04/2015 32357.07 32643.43 30240.04 29702.52 33229.88 32169.47 

05/05/2015 33958.65 35109.61 29520.11 32673.31 34277.59 34387.97 

05/06/2015 38594.53 40301.68 30986.62 39114.35 38704.38 39040.84 

05/07/2015 40107.06 41523.07 32231.47 41326.25 40118.97 39502.57 

05/08/2015 30981.26 31726.35 33850.68 32943.70 29620.17 30153.30 

05/11/2015 29857.83 29603.92 32381.14 28344.79 28685.25 29424.67 

05/12/2015 30890.27 31107.84 28864.18 28392.81 29196.72 29997.65 

05/13/2015 36257.84 38856.42 29717.77 36825.35 34955.63 38874.41 

05/14/2015 34690.51 37163.70 28539.48 34760.04 33583.49 35792.23 

05/15/2015 30979.09 31726.35 28546.15 29857.10 30243.64 30499.74 

05/18/2015 29903.50 29917.32 29535.77 27270.65 27967.92 29591.96 

05/19/2015 29855.28 29686.84 30303.23 27793.20 30033.61 29141.76 

05/20/2015 40334.01 41523.07 28394.54 39239.81 38977.47 40662.59 
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Table 25: Standardized error for each model at 2pm on May 2015 

 May 2015, 2pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1010.08 1182.06 5309.11 1638.06 1381.61 

MSE 1604667.75 2519077.58 47333705.15 3217901.07 2924795.25 

RMSE 1266.75 1587.16 6879.95 1793.85 1710.20 

MAPE 2.84 3.48 14.01 4.80 3.86 

 

Figure 55: MAE values for May 2015 projection (MTLF 2012-2015) at 2pm 

 

Figure 56: MSE values for May 2015 projection (MTLF 2012-2015) at 2pm 
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Figure 57: RMSE values for May 2015 projection (MTLF 2012-2015) at 2pm 

 

 

Figure 58: MAPE values for May 2015 projection (MTLF 2012-2015) at 2pm 
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Table 26: Demand data predicted by each model for May 2015 at 8pm 

 

Table 27: Prediction error percentages for May 2015 at 8pm 

Percentage Error May 2015, 8pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-2.60 -10.72 12.67 -3.75 -1.99 

-6.97 -10.66 4.96 0.44 -6.94 

2.57 1.31 10.97 10.56 2.11 

2.58 -3.43 11.14 3.21 2.04 

-1.11 -2.79 21.84 0.12 -1.32 

-4.23 -7.52 22.87 -9.55 -4.11 

-4.66 -7.86 -0.33 -8.58 -4.09 

-0.46 -3.95 2.61 5.36 -1.58 

-1.71 -9.29 0.78 0.27 -1.18 

-0.81 -6.27 19.26 -0.86 -0.97 

11.41 4.51 27.84 11.00 11.13 

-3.88 -6.99 5.15 -0.42 -4.28 

-2.23 -7.75 1.89 3.08 -1.64 

-3.15 -7.73 -3.87 0.33 -3.01 

4.51 1.60 32.15 7.34 4.31 

 

 

May 2015, 8pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

05/01/2015 33381.46 34532.58 29657.49 31067.79 33369.33 31205.08 

05/04/2015 31681.20 32089.34 28949.80 29080.70 31830.52 32515.24 

05/05/2015 32527.60 34532.58 29667.47 32315.53 32708.51 33388.00 

05/06/2015 38533.35 39170.55 29785.20 38062.35 38613.33 38108.71 

05/07/2015 39809.98 41066.91 29459.28 41840.52 39764.94 38193.93 

05/08/2015 30856.61 31800.84 29581.63 32012.69 30690.39 29483.68 

05/11/2015 29511.02 30538.34 28609.84 27802.29 29841.55 29377.19 

05/12/2015 29507.46 31704.20 28783.56 28932.52 29353.90 29010.41 

05/13/2015 36080.58 38033.18 28896.10 36096.50 36137.29 35789.12 

05/14/2015 34274.81 36943.88 27915.44 34430.46 34383.15 38687.26 

05/15/2015 30875.58 31800.84 28191.90 29846.85 30993.52 29722.10 

05/18/2015 29660.64 31263.48 28465.57 28120.26 29490.51 29013.88 

05/19/2015 28853.99 30137.04 29056.99 27880.07 28814.56 27973.59 

05/20/2015 39850.35 41066.91 28315.03 38669.36 39933.99 41732.70 
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Table 28: Standardized error for each model at 8pm on May 2015 

 May 2015, 8pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1170.42 1955.35 5305.15 1517.26 1115.76 

MSE 2337308.99 4666966.08 49841783.89 4410728.65 2183832.48 

RMSE 1528.83 2160.32 7059.87 2100.17 1477.78 

MAPE 3.37 5.94 14.05 4.28 3.21 

 

Figure 59: MAE values for May 2015 projection (MTLF 2012-2015) at 8pm 

 

Figure 60: MSE values for May 2015 projection (MTLF 2012-2015) at 8pm 
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Figure 61: RMSE values for May 2015 projection (MTLF 2012-2015) at 8pm 

 

 

Figure 62: MAPE values for May 2015 projection (MTLF 2012-2015) at 8pm 
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Table 29: Demand data predicted by each model for August 2015 at 2am 

 

Table 30: Prediction error percentages for August 2015 at 2am 

Percentage Error August 2015, 2am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

4.72 5.16 4.74 1.65 3.09 

0.23 -2.21 -10.13 4.37 0.05 

5.03 8.19 -13.40 12.78 2.54 

1.90 5.91 -15.28 2.45 1.71 

4.36 2.48 -28.64 1.44 4.68 

-3.55 -0.98 -33.02 0.76 -4.64 

0.62 4.55 -28.96 3.90 2.13 

0.28 4.44 -34.90 2.46 1.29 

-3.85 -1.02 -30.40 -9.77 -0.70 

-0.54 -2.30 -13.62 -11.00 -1.29 

5.82 3.91 -11.38 3.71 4.25 

3.64 2.67 1.16 -1.87 6.41 

4.24 3.56 3.41 -1.58 4.52 

6.09 7.53 -33.29 3.07 0.69 

-4.58 -5.39 -52.26 -9.69 -12.89 

4.22 3.69 -17.93 -1.23 1.92 

2.82 7.82 -19.95 3.84 1.96 

-0.89 3.86 -25.66 -1.50 3.84 

August 2015, 2am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual 

08/03/2015 30467.03 30326.73 30460.54 31447.46 30986.47 31975.05 

08/04/2015 29771.76 30499.75 32863.75 28537.91 29827.04 29841.56 

08/05/2015 27034.35 26133.55 32281.11 24827.18 27742.78 28465.52 

08/06/2015 27247.21 26133.55 32018.15 27094.51 27298.79 27774.64 

08/07/2015 26003.64 26516.21 34976.47 26799.25 25918.33 27190.08 

08/10/2015 28806.63 28093.17 37004.98 27609.05 29109.41 27819.74 

08/11/2015 27608.01 26516.21 35823.62 26696.28 27188.09 27779.77 

08/12/2015 26420.03 25318.31 35743.57 25843.77 26153.57 26495.53 

08/13/2015 26867.62 26133.55 33736.61 28397.69 26052.35 25870.82 

08/14/2015 30410.10 30940.49 34365.22 33572.16 30635.62 30245.43 

08/17/2015 30326.92 30940.49 35863.95 31006.59 30831.27 32200.88 

08/18/2015 30630.06 30940.49 31418.35 32382.76 29749.91 31788.02 

08/19/2015 30721.14 30940.49 30988.72 32586.92 30630.48 32081.41 

08/20/2015 29170.20 28723.90 41402.42 30107.11 30847.71 31061.29 

08/21/2015 27876.44 28093.17 40585.13 29239.09 30091.41 26655.93 

08/24/2015 28565.46 28723.90 35172.93 30189.58 29251.90 29824.07 

08/25/2015 26200.83 24852.18 32340.70 25926.26 26433.46 26961.88 

08/26/2015 25552.33 24349.30 31825.54 25706.31 24355.16 25327.51 
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Table 31: Standardized error for each model at 2am on August 2015 

 August 2015, 2am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 882.05 1183.81 6136.31 1255.88 957.58 

MSE 1118252.37 1754304.85 49601630.43 2590727.64 1493942.10 

RMSE 1057.47 1324.50 7042.84 1609.57 1222.27 

MAPE 3.01 4.11 22.17 4.42 3.35 
 

Figure 63: MAE values for Aug 2015 projection (MTLF 2012-2015) at 2am 

 

Figure 64: MSE values for Aug 2015 projection (MTLF 2012-2015) at 2am 
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Figure 65: RMSE values for Aug 2015 projection (MTLF 2012-2015) at 2am 

 

 

Figure 66: MAPE values for Aug 2015 projection (MTLF 2012-2015) at 2am 
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Table 32: Demand data predicted by each model for August 2015 at 9am 

 

Table 33: Prediction error percentages for August at 2015 9am 

Percentage Error August 2015, 9am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-3.33 -3.71 0.81 -0.80 -1.61 

-5.42 -5.59 -7.86 -3.22 -1.44 

-0.02 0.78 -9.37 3.46 2.74 

-2.49 -0.43 -17.75 1.72 -0.68 

1.77 1.40 -23.21 3.96 5.84 

-3.04 -0.35 -23.62 3.02 -1.94 

-0.81 1.18 -21.19 4.59 1.09 

-2.07 -0.05 -22.49 2.70 1.29 

-5.48 -4.37 -25.17 -1.54 -6.49 

-3.44 -2.56 -8.41 -0.65 -1.96 

0.15 -0.44 -6.30 1.61 1.30 

2.20 2.30 9.03 4.56 -0.57 

2.95 3.35 7.51 5.07 1.39 

-0.27 0.57 -31.04 3.25 2.51 

-5.30 -2.73 -32.49 -0.09 -3.49 

1.04 0.49 -8.13 3.46 2.59 

1.95 2.73 -13.60 5.44 4.48 

1.68 1.14 -16.29 3.93 1.25 

  

August 2015, 9am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

08/03/2015 37911.93 38051.03 36393.31 36984.88 37279.96 36690.66 

08/04/2015 36641.97 36701.39 37487.40 35875.82 35259.18 34757.05 

08/05/2015 33165.94 32902.29 36265.60 32013.30 32249.56 33159.69 

08/06/2015 33577.47 32902.29 38576.39 32196.79 32984.18 32761.59 

08/07/2015 33034.42 33158.31 41434.17 32297.11 31665.28 33629.12 

08/10/2015 35346.91 34424.02 42406.66 33269.17 34969.91 34303.97 

08/11/2015 33826.19 33158.31 40663.51 32013.85 33188.32 33554.57 

08/12/2015 32673.24 32026.47 39208.81 31145.87 31598.73 32011.02 

08/13/2015 33249.54 32902.29 39456.55 32007.75 33568.67 31523.59 

08/14/2015 38271.38 37942.51 40109.61 37237.51 37723.48 36996.86 

08/17/2015 37719.85 37942.51 40154.37 37167.31 37284.36 37775.96 

08/18/2015 37980.61 37942.51 35327.92 37064.81 39057.01 38834.80 

08/19/2015 38100.45 37942.51 36309.58 37268.80 38713.05 39259.32 

08/20/2015 35703.19 35403.31 46659.80 34451.01 34712.60 35607.93 

08/21/2015 35283.44 34424.02 44395.81 33537.80 34678.34 33508.06 

08/24/2015 35206.62 35403.31 38470.34 34343.84 34655.42 35576.48 

08/25/2015 31859.27 31604.59 36911.00 30724.20 31037.59 32491.97 
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Table 34: Standardized error for each model at 9am on August 2015 

 August 2015, 9am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 817.86 649.65 5550.36 969.81 787.97 

MSE 971206.78 708373.18 39410798.64 1253979.95 875688.65 

RMSE 985.50 841.65 6277.80 1119.81 935.78 

MAPE 2.37 1.85 16.42 2.81 2.32 

 

Figure 67: MAE values for Aug 2015 projection (MTLF 2012-2015) at 9am 

 

Figure 68: MSE values for Aug 2015 projection (MTLF 2012-2015) at 9am 
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Figure 69: RMSE values for Aug 2015 projection (MTLF 2012-2015) at 9am 

 

 

Figure 70: MAPE values for Aug 2015 projection (MTLF 2012-2015) at 9am 
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Table 35: Demand data predicted by each model for August 2015 at 2pm 

 

 

Table 36: Prediction error percentages for August at 2015 2pm 

Percentage Error August 2015, 2pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-1.82 -2.24 6.03 -2.44 2.37 

-2.05 -2.19 -3.07 -1.34 1.77 

-0.43 4.09 -13.02 9.34 2.51 

-2.00 1.01 -15.52 -1.78 0.84 

-7.00 -3.76 -16.77 -11.40 -3.77 

-5.13 -2.59 -10.88 -9.86 -1.39 

-2.78 0.22 -12.80 -1.37 -4.45 

0.96 5.01 -16.05 -3.95 2.17 

3.96 4.27 -13.16 -7.61 6.25 

5.89 7.83 11.08 3.95 7.58 

5.18 5.06 7.30 0.59 5.65 

2.39 3.56 6.19 -0.90 0.61 

-1.57 0.50 3.44 -0.74 0.88 

-1.81 -0.33 -6.20 -6.11 -0.13 

2.65 6.76 -3.37 4.57 5.24 

2.31 2.39 -3.93 -1.92 2.11 

-0.33 4.30 -17.76 -0.42 2.08 

3.45 5.15 -23.01 -0.72 0.50 

August 2015, 2pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

08/03/2015 48651.31 48853.57 44904.43 48950.52 46651.97 47783.47 

08/04/2015 45205.51 45263.99 45655.03 44891.33 43510.13 44295.73 

08/05/2015 40723.87 38889.37 45827.32 36763.23 39531.74 40549.58 

08/06/2015 40071.68 38889.37 45383.41 39985.70 38954.91 39286.18 

08/07/2015 41106.58 39860.05 44857.68 42793.30 39864.72 38415.81 

08/10/2015 42601.50 41573.34 44931.19 44517.44 41086.59 40522.01 

08/11/2015 41055.16 39860.05 45059.69 40492.91 41723.91 39946.63 

08/12/2015 38859.00 37269.24 45531.40 40782.97 38382.96 39233.87 

08/13/2015 39016.66 38889.37 45973.14 43716.92 38085.43 40626.07 

08/14/2015 48050.60 47057.09 45397.99 49039.05 47183.71 51055.51 

08/17/2015 47001.13 47057.09 45950.71 49273.08 46768.39 49566.65 

08/18/2015 47626.37 47057.09 45772.60 49231.34 48493.67 48792.07 

08/19/2015 48035.55 47057.09 45666.69 47643.01 46876.27 47294.03 

08/20/2015 43666.80 43031.83 45549.30 45512.71 42946.85 42890.69 

08/21/2015 43407.82 41573.34 46090.29 42549.29 42249.81 44588.13 

08/24/2015 43066.10 43031.83 45818.32 44933.35 43154.74 44085.93 

08/25/2015 38924.90 37126.89 45686.23 38960.89 37990.53 38796.38 
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Table 37: Standardized error for each model at 2pm on August 2015 

 August 2015, 2pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1219.80 1434.43 4403.20 1603.70 1175.32 

MSE 2108508.55 2999316.36 25155541.62 4276045.21 2346721.45 

RMSE 1452.07 1731.85 5015.53 2067.86 1531.90 

MAPE 2.83 3.33 10.75 3.85 2.69 

 

Figure 71: MAE values for Aug 2015 projection (MTLF 2012-2015) at 2pm 

 

Figure 72: MSE values for Aug 2015 projection (MTLF 2012-2015) at 2pm 
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Figure 73: RMSE values for Aug 2015 projection (MTLF 2012-2015) at 2pm 

 

 

 

Figure 74: MAPE values for Aug 2015 projection (MTLF 2012-2015) at 2pm 
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Table 38: Demand data predicted by each model for August 2015 at 8pm 
 

 

Table 39: Prediction error percentages for August at 2015 8pm 

Percentage Error August 2015, 8pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-1.22 -3.47 3.68 -2.51 -1.27 

-3.00 -3.44 -3.46 -1.09 -3.41 

-0.45 2.04 -14.78 5.37 3.86 

4.55 1.13 -14.23 1.18 5.32 

-7.70 -6.10 -18.50 -10.81 -6.93 

-4.40 -1.85 -8.26 0.97 -0.84 

-0.91 1.90 -11.42 5.27 2.49 

0.21 4.59 -14.96 9.35 4.76 

10.58 7.65 -9.36 6.91 9.79 

6.48 7.36 9.84 5.23 6.04 

2.62 2.30 3.24 7.79 2.74 

0.46 0.90 3.55 -4.01 -0.51 

-5.15 -3.80 -1.07 -3.52 -5.48 

-4.10 -3.05 -8.80 -0.67 -4.52 

3.06 6.76 -2.71 8.36 5.05 

-1.28 -0.27 -5.81 0.46 0.76 

-1.46 1.30 -18.22 -2.08 -2.49 

2.06 3.39 -23.93 1.35 0.31 

 

August 2015, 8pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

08/03/2015 46542.30 47580.53 44288.97 47138.37 46564.90 45983.03 

08/04/2015 44545.54 44732.41 44742.14 43716.20 44721.47 43246.47 

08/05/2015 38861.99 37899.46 44404.21 36611.63 37194.75 38687.54 

08/06/2015 36588.87 37899.46 43787.99 37883.07 36292.72 38333.63 

08/07/2015 39528.78 38942.08 43492.43 40670.27 39246.28 36701.91 

08/10/2015 41973.73 40949.68 43527.57 39815.49 40543.09 40205.56 

08/11/2015 40058.37 38942.08 44227.55 37604.89 38706.88 39695.85 

08/12/2015 38529.41 36837.97 44388.49 35003.27 36773.74 38611.60 

08/13/2015 36696.30 37899.46 44879.00 38202.74 37017.27 41036.78 

08/14/2015 45837.03 45404.06 44189.64 46451.21 46051.68 49012.29 

08/17/2015 45255.86 45404.06 44965.96 42854.63 45200.40 46474.00 

08/18/2015 45605.26 45404.06 44191.52 47654.63 46048.52 45816.68 

08/19/2015 45991.42 45404.06 44208.67 45279.65 46138.74 43740.81 

08/20/2015 42621.43 42193.17 44544.90 41216.85 42793.21 40943.41 

08/21/2015 42572.90 40949.68 45106.40 40244.68 41700.85 43917.65 

08/24/2015 42616.81 42193.17 44523.91 41884.23 41758.59 42079.56 

08/25/2015 38164.84 37125.84 44470.70 38398.86 38550.83 37615.75 
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Table 40: Standardized error for each model at 8pm on August 2015 

 August 2015, 8pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1410.42 1443.51 3993.96 1732.84 1567.80 

MSE 3170052.65 2940676.63 21609370.40 4588930.63 3426679.79 

RMSE 1780.46 1714.84 4648.59 2142.18 1851.13 

MAPE 3.40 3.45 10.12 4.19 3.79 

 

Figure 75: MAE values for Aug 2015 projection (MTLF 2012-2015) at 8pm 

 

Figure 76: MSE values for Aug 2015 projection (MTLF 2012-2015) at 8pm 
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Figure 77: RMSE values for Aug 2015 projection (MTLF 2012-2015) at 8pm 

 

 

Figure 78: MAPE values for Aug 2015 projection (MTLF 2012-2015) at 8pm 
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Table 41: Demand data predicted by each model for November 2014 at 2am 
 

 

Table 42: Prediction error percentages for November 2014 at 2am 

Percentage Error November 2014, 2am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

0.97 6.19 1.15 4.31 -0.51 

-5.11 1.16 -3.88 1.49 -3.44 

-2.87 -0.37 -0.96 -0.42 -1.89 

-1.87 -5.12 -1.37 -5.14 -3.30 

1.80 -4.47 2.81 -4.70 2.91 

1.25 2.11 1.34 1.76 2.90 

-4.84 1.85 -3.35 1.59 -3.11 

-9.69 -10.48 3.48 -10.43 -10.93 

-7.12 -7.58 11.29 -7.06 -7.21 

0.13 -5.63 8.35 -5.77 -1.38 

-5.97 -10.24 16.24 -10.82 -5.70 

9.75 1.56 29.27 1.26 9.99 

6.96 7.31 21.58 7.02 6.76 

5.05 0.92 19.49 0.26 4.36 

4.28 5.82 1.77 5.80 4.34 

-2.42 3.00 -1.40 3.09 -2.10 

-7.01 -15.04 8.77 -14.86 -6.25 

-4.49 -12.51 17.05 -13.10 -3.19 

November 2014, 2am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

11/02/2015 22867.29 21663.17 22827.06 22095.75 23209.75 23091.81 

11/03/2015 23082.11 21704.85 22811.26 21633.44 22716.24 21960.04 

11/04/2015 22897.73 22340.39 22472.42 22352.27 22678.36 22258.38 

11/05/2015 23141.95 23880.11 23029.28 23884.74 23466.59 22717.78 

11/06/2015 23169.09 24647.64 22931.33 24702.38 22907.01 23593.44 

11/09/2015 23212.68 23010.74 23191.98 23093.36 22825.62 23507.23 

11/10/2015 23140.25 21663.17 22812.19 21720.01 22758.36 22071.89 

11/11/2015 25751.43 25937.76 22659.84 25924.84 26043.23 23476.53 

11/12/2015 27567.85 27686.27 22829.55 27550.70 27588.92 25734.70 

11/13/2015 24695.12 26119.62 22662.66 26153.78 25068.42 24726.81 

11/16/2015 27760.76 28879.45 21944.05 29033.27 27691.36 26197.97 

11/17/2015 28561.69 31153.58 22382.98 31246.90 28483.62 31645.70 

11/18/2015 27199.73 27099.07 22926.14 27183.79 27259.35 29235.86 

11/19/2015 27674.84 28879.45 23467.47 29072.03 27876.77 29147.20 

11/20/2015 22370.88 22011.35 22958.26 22014.51 22355.42 23370.82 

11/23/2015 22873.18 21663.17 22646.12 21641.98 22801.26 22332.79 

11/24/2015 25972.57 27922.49 22143.44 27879.71 25788.60 24272.04 

11/25/2015 27716.96 29844.54 22003.47 30001.91 27373.01 26525.79 
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Table 43: Standardized error for each model at 2am on November 2014 

November 2014, 2am 

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1162.47 1403.87 2334.89 1368.98 1145.00 

MSE 1984041.00 3083418.55 12033747.96 3064036.97 1938359.34 

RMSE 1408.56 1755.97 3468.97 1750.44 1392.25 

MAPE 4.53 5.63 8.53 5.49 4.46 

 

Figure 79: MAE values for Nov 2014 projection (MTLF 2012-2014) at 2am 

 

Figure 80: MSE values for Nov 2014 projection (MTLF 2012-2014) at 2am 
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Figure 81: RMSE values for Nov 2014 projection (MTLF 2012-2014) at 2am 

 

 

Figure 82: MAPE values for Nov 2014 projection (MTLF 2012-2014) at 2am 
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Table 44: Demand data predicted by each model for November 2014 at 9am 
 

 

Table 45: Prediction error percentages for November 2014 at 9am 

Percentage Error November 2014, 9am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

0.97 6.19 1.15 4.31 -0.51 

-5.11 1.16 -3.88 1.49 -3.44 

-2.87 -0.37 -0.96 -0.42 -1.89 

-1.87 -5.12 -1.37 -5.14 -3.30 

1.80 -4.47 2.81 -4.70 2.91 

1.25 2.11 1.34 1.76 2.90 

-4.84 1.85 -3.35 1.59 -3.11 

-9.69 -10.48 3.48 -10.43 -10.93 

-7.12 -7.58 11.29 -7.06 -7.21 

0.13 -5.63 8.35 -5.77 -1.38 

-5.97 -10.24 16.24 -10.82 -5.70 

9.75 1.56 29.27 1.26 9.99 

6.96 7.31 21.58 7.02 6.76 

5.05 0.92 19.49 0.26 4.36 

4.28 5.82 1.77 5.80 4.34 

-2.42 3.00 -1.40 3.09 -2.10 

-7.01 -15.04 8.77 -14.86 -6.25 

-4.49 -12.51 17.05 -13.10 -3.19 

November 2014, 9am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

11/02/2015 30758.67 29798.67 30901.73 30383.55 30420.15 29543.60 

11/03/2015 30618.93 29798.67 30963.28 29775.84 30074.01 29483.85 

11/04/2015 30245.07 30606.33 30651.97 30591.10 29985.84 30356.34 

11/05/2015 30648.33 29781.29 31385.52 29755.69 30823.35 29854.22 

11/06/2015 31077.28 29842.69 31057.90 29815.58 30536.50 31405.07 

11/09/2015 31351.37 28917.43 31363.46 28878.52 30965.03 30538.63 

11/10/2015 30686.24 29308.63 30824.70 29227.43 30313.92 29564.36 

11/11/2015 33570.29 29046.65 30971.62 29014.98 33008.18 31767.20 

11/12/2015 34855.75 31568.83 31084.82 31572.37 34804.10 33352.17 

11/13/2015 32944.17 31306.91 30683.11 31319.93 33243.43 33376.92 

11/16/2015 34845.17 29781.29 30145.90 29775.47 34346.89 36324.65 

11/17/2015 36657.76 29361.27 30625.38 29373.72 36637.46 38518.08 

11/18/2015 34489.96 32146.11 31287.59 32130.38 34263.22 36119.24 

11/19/2015 34408.03 29335.64 31430.83 29301.90 34264.29 37002.62 

11/20/2015 30228.94 30175.73 31108.44 30125.43 30026.29 30457.96 

11/23/2015 30770.81 30175.73 30450.65 30184.32 30625.86 29923.21 

11/24/2015 33695.56 29335.64 30115.04 29318.37 33731.02 33236.54 

11/25/2015 34668.08 30563.85 30194.92 30560.32 34267.59 31317.02 
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Table 46: Standardized error for each model at 9am on November 2014 

November 2014, 9am 

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1205.98 2413.06 2375.00 2460.69 1150.52 

MSE 2132266.78 13188454.05 10469489.64 13280654.77 1965505.14 

RMSE 1460.23 3631.59 3235.66 3644.26 1401.96 

MAPE 3.67 6.87 6.89 7.03 3.46 

 

Figure 83: MAE values for Nov 2014 projection (MTLF 2012-2014) at 9am 

 

Figure 84: MSE values for Nov 2014 projection (MTLF 2012-2014) at 9am 
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Figure 85: RMSE values for Nov 2014 projection (MTLF 2012-2014) at 9am 

 

 

Figure 86: MAPE values for Nov 2014 projection (MTLF 2012-2014) at 9am 
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Table 47: Demand data predicted by each model for November 2014 at 2pm 
 

 

Table 48: Prediction error percentages for November 2014 at 2pm 

Percentage Error November 2014, 2pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-4.66 -2.66 -1.42 -4.24 -3.06 

-2.48 -0.14 -0.83 0.25 -1.76 

2.53 3.58 2.49 2.60 3.42 

0.20 -4.57 -1.66 -4.80 0.90 

-3.04 -6.97 -1.72 -6.41 -1.63 

-4.46 -3.39 -0.63 -1.94 -3.11 

-2.98 -1.81 -0.83 -0.62 -1.81 

-0.83 -3.19 7.02 -1.77 0.66 

-1.84 -5.13 6.79 -4.31 -0.91 

9.70 5.19 14.67 4.99 10.97 

3.57 -2.93 18.42 -1.52 4.65 

3.20 -5.19 17.48 -4.58 4.41 

2.02 -2.26 7.56 -1.02 3.41 

5.88 -5.02 12.15 -4.12 6.79 

-1.56 -4.05 1.29 -2.81 -1.05 

-0.59 1.34 4.95 2.52 0.21 

10.47 6.81 20.47 7.36 11.48 

-3.84 -10.94 7.82 -10.08 -2.29 

November 2014, 2pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

11/02/2015 30542.97 29959.48 29597.63 30421.00 30076.00 29183.30 

11/03/2015 30315.15 29622.86 29826.37 29507.91 30101.98 29580.40 

11/04/2015 29949.16 29626.46 29960.49 29926.21 29676.19 30725.85 

11/05/2015 29724.26 31146.11 30277.78 31214.41 29516.83 29784.36 

11/06/2015 30166.43 31318.96 29781.48 31154.86 29754.31 29277.36 

11/09/2015 30702.09 30386.62 29574.37 29959.80 30304.80 29390.65 

11/10/2015 30305.50 29959.48 29672.71 29610.76 29961.28 29427.32 

11/11/2015 32104.30 32854.08 29604.00 32402.56 31630.35 31839.55 

11/12/2015 32559.08 33611.13 29801.80 33347.91 32260.55 31971.16 

11/13/2015 30603.14 32132.71 28917.51 32198.93 30172.99 33890.08 

11/16/2015 33665.63 35936.01 28482.23 35443.95 33289.21 34913.69 

11/17/2015 34017.49 36965.93 28999.90 36750.87 33591.88 35140.88 

11/18/2015 31791.96 33182.82 29994.86 32778.88 31342.75 32448.37 

11/19/2015 32205.95 35936.01 30061.20 35627.98 31895.28 34217.79 

11/20/2015 30418.85 31164.19 29566.32 30792.88 30266.13 29951.37 

11/23/2015 30544.69 29959.48 28863.73 29601.64 30301.68 30366.90 

11/24/2015 32060.59 33371.15 28479.77 33172.02 31698.21 35808.39 

11/25/2015 32282.78 34490.12 28659.33 34223.32 31801.50 31089.97 
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Table 49: Standardized error for each model at 2pm on November 2014 

 November 2014, 2pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1154.17 1334.39 2392.21 1169.91 1148.64 

MSE 2250759.47 2384634.14 11124252.87 2011654.00 2594052.16 

RMSE 1500.25 1544.23 3335.30 1418.33 1610.61 

MAPE 3.55 4.18 7.12 3.66 3.47 

 

Figure 87: MAE values for Nov 2014 projection (MTLF 2012-2014) at 2pm 

 

Figure 88: MSE values for Nov 2014 projection (MTLF 2012-2014) at 2pm 
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Figure 89: RMSE values for Nov 2014 projection (MTLF 2012-2014) at 2pm 

 

 

Figure 90: MAPE values for Nov 2014 projection (MTLF 2012-2014) at 2pm 
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Table 50: Demand data predicted by each model for November 2014 at 8pm 
 

 

Table 51: Prediction error percentages for November 2014 at 8pm 

Percentage Error November 2014, 8pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-4.66 -2.66 -1.42 -4.24 -3.06 

-2.48 -0.14 -0.83 0.25 -1.76 

2.53 3.58 2.49 2.60 3.42 

0.20 -4.57 -1.66 -4.80 0.90 

-3.04 -6.97 -1.72 -6.41 -1.63 

-4.46 -3.39 -0.63 -1.94 -3.11 

-2.98 -1.81 -0.83 -0.62 -1.81 

-0.83 -3.19 7.02 -1.77 0.66 

-1.84 -5.13 6.79 -4.31 -0.91 

9.70 5.19 14.67 4.99 10.97 

3.57 -2.93 18.42 -1.52 4.65 

3.20 -5.19 17.48 -4.58 4.41 

2.02 -2.26 7.56 -1.02 3.41 

5.88 -5.02 12.15 -4.12 6.79 

-1.56 -4.05 1.29 -2.81 -1.05 

-0.59 1.34 4.95 2.52 0.21 

10.47 6.81 20.47 7.36 11.48 

-3.84 -10.94 7.82 -10.08 -2.29 

November 2014, 8pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

11/02/2015 33278.38 30943.53 30465.96 31341.87 32559.72 31567.32 

11/03/2015 32661.88 30552.51 30594.55 30497.44 32130.58 31667.38 

11/04/2015 32333.21 31695.88 30909.47 31696.90 31830.19 32197.91 

11/05/2015 31375.39 33534.15 30987.43 33335.21 30943.01 32507.77 

11/06/2015 33357.59 34037.44 30477.00 33906.85 33018.54 32281.97 

11/09/2015 33509.96 32163.52 30470.75 32246.12 33281.65 31751.39 

11/10/2015 32676.79 30943.53 30246.89 30845.14 32418.43 31879.96 

11/11/2015 35080.74 36504.11 30234.74 36001.60 34999.51 35030.22 

11/12/2015 35566.65 36718.83 30343.98 36247.93 35515.67 35032.28 

11/13/2015 33923.18 35434.80 29406.09 35499.44 33548.17 34898.78 

11/16/2015 37040.10 38841.56 29042.45 38704.87 36530.24 40804.53 

11/17/2015 39203.41 42185.11 30019.06 42079.64 38683.34 39652.96 

11/18/2015 35785.02 36755.52 30906.46 36502.43 35558.45 37060.68 

11/19/2015 35685.43 38841.56 30685.23 38184.93 35409.72 37948.20 

11/20/2015 32806.28 31637.98 29921.00 31190.66 32315.32 32312.28 

11/23/2015 33277.92 30943.53 29268.57 30871.24 32851.37 33206.18 

11/24/2015 35571.29 36002.27 28853.98 35946.47 35163.38 36482.67 

11/25/2015 35614.37 37608.50 29762.63 37528.93 35185.76 35349.37 
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Table 52: Standardized error for each model at 8pm on November 2014 

 November 2014, 8pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1036.63 1190.98 4390.87 1119.98 1065.75 

MSE 1867343.43 1913055.89 28970117.15 1750345.12 2156637.27 

RMSE 1366.51 1383.13 5382.39 1323.01 1468.55 

MAPE 2.95 3.41 12.11 3.21 2.97 

 

Figure 91: MAE values for Nov 2014 projection (MTLF 2012-2014) at 8pm 

 

Figure 92: MSE values for Nov 2014 projection (MTLF 2012-2014) at 8pm 
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Figure 93: RMSE values for Nov 2014 projection (MTLF 2012-2014) at 8pm 

 

 

Figure 94: MAPE values for Nov 2014 projection (MTLF 2012-2014) at 8pm 
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Table 53: Demand data predicted by each model for December 2014 at 2am 
 

 

Table 54: Prediction error percentages for December 2014 at 2am 

Percentage Error December 2014, 2am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

0.58 2.11 0.34 2.10 0.97 

-2.53 -5.61 7.15 -5.50 -3.56 

8.08 5.24 7.66 7.10 7.05 

1.41 -2.47 -0.62 -1.40 3.00 

0.37 -5.31 4.94 -4.63 1.67 

1.81 4.10 4.86 3.01 3.06 

-0.64 -1.19 -2.62 -0.50 -0.44 

4.04 3.10 -1.17 3.51 4.03 

-2.40 2.20 -15.41 2.93 -0.12 

-0.13 0.90 -5.05 1.82 3.12 

-1.54 0.83 -2.78 1.34 1.07 

5.03 4.29 -8.63 5.16 6.04 

3.72 6.01 -13.77 8.01 5.38 

1.37 7.12 -22.85 7.93 -4.97 

-11.12 -13.36 -13.77 -12.94 -14.49 

-6.77 -8.86 -11.97 -8.99 -9.92 

-6.48 -11.28 -0.98 -11.70 -7.96 

-3.68 -0.53 3.26 0.05 -2.16 

December 2014, 2am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

12/01/2015 27245.21 26826.23 27310.67 26827.52 27138.76 27403.36 

12/02/2015 28931.03 29798.84 26200.41 29767.93 29220.76 28217.01 

12/03/2015 26528.26 27346.78 26648.14 26811.84 26826.67 28859.91 

12/04/2015 26535.76 27580.79 27082.22 27290.53 26106.82 26914.96 

12/07/2015 28651.29 30283.52 27335.84 30088.06 28277.93 28756.94 

12/08/2015 28270.23 27612.92 27393.23 27926.76 27910.40 28792.23 

12/09/2015 25787.18 25928.63 26294.02 25752.38 25734.83 25623.00 

12/10/2015 26102.39 26357.82 27520.55 26247.60 26104.93 27201.90 

12/11/2015 26109.11 24934.80 29426.56 24750.55 25525.83 25496.38 

12/14/2015 27551.42 27267.49 28904.89 27012.65 26657.02 27514.49 

12/15/2015 28551.78 27885.39 28899.11 27742.24 27818.38 28117.96 

12/16/2015 27670.45 27885.39 31652.03 27633.12 27375.73 29136.42 

12/17/2015 25832.62 25217.93 30526.55 24681.47 25388.94 26831.72 

12/18/2015 24380.54 22958.56 30366.74 22758.39 25946.19 24718.15 

12/21/2015 27035.94 27580.79 27678.96 27476.38 27855.14 24329.31 

12/22/2015 25851.31 26357.82 27109.45 26388.80 26615.16 24212.34 

12/23/2015 28976.78 30283.52 27480.41 30396.98 29380.54 27213.18 

12/24/2015 31100.53 30153.72 29017.82 29981.25 30644.46 29996.15 
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Table 55: Standardized error for each model at 2am on December 2014 

 December 2014, 2am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 893.18 1209.41 1813.25 1261.18 1124.14 

MSE 1345900.27 2227070.42 5314607.20 2434353.19 1966240.44 

RMSE 1160.13 1492.34 2305.34 1560.24 1402.23 

MAPE 3.35 4.57 6.89 4.76 4.23 

 

Figure 95: MAE values for Dec 2014 projection (MTLF 2012-2014) at 2am 

 

Figure 96: MSE values for Dec 2014 projection (MTLF 2012-2014) at 2am 
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Figure 97: RMSE values for Dec 2014 projection (MTLF 2012-2014) at 2am 

 

 

Figure 98: MAPE values for Dec 2014 projection (MTLF 2012-2014) at 2am 
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Table 56: Demand data predicted by each model for December 2014 at 9am 
 

 

Table 57: Prediction error percentages for December 2014 at 9am 

Percentage Error December 2014, 9am 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

0.52 15.57 8.18 15.64 -0.03 

4.68 21.43 13.69 21.50 4.12 

6.42 21.85 14.94 21.96 7.07 

1.42 16.54 11.14 16.77 2.77 

1.78 21.34 14.64 21.43 2.23 

1.82 13.68 14.89 13.67 3.36 

0.89 8.33 6.60 8.29 1.45 

3.75 15.76 10.65 15.78 4.99 

-2.36 11.90 7.56 11.86 -0.04 

0.50 10.82 10.69 10.86 2.79 

1.08 19.51 9.68 19.61 2.57 

5.37 19.49 10.39 19.62 6.01 

0.68 11.33 -5.74 11.30 -1.42 

-5.40 4.49 -19.36 4.54 -8.76 

-13.26 0.11 -13.00 0.12 -14.57 

-4.75 9.13 -11.20 9.14 -8.87 

-4.59 15.45 8.75 15.50 -4.76 

-7.79 14.65 12.93 14.79 -7.16 

December 2014, 9am 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

12/01/2015 35091.42 29781.29 32387.11 29755.69 35283.99 35273.24 

12/02/2015 36204.86 29842.69 32783.71 29815.58 36417.97 37981.81 

12/03/2015 34626.15 28917.43 31476.33 28878.52 34386.57 37002.87 

12/04/2015 34615.60 29308.63 31203.09 29227.43 34141.39 35114.92 

12/07/2015 36270.12 29046.65 31521.23 29014.98 36104.13 36926.94 

12/08/2015 35904.64 31568.83 31125.01 31572.37 35340.93 36570.08 

12/09/2015 33846.59 31306.91 31898.98 31319.93 33657.15 34151.59 

12/10/2015 34029.38 29781.29 31590.29 29775.47 33589.54 35354.07 

12/11/2015 34115.47 29361.27 30807.64 29373.72 33341.50 33327.45 

12/14/2015 35867.70 32146.11 32192.00 32130.38 35039.18 36046.44 

12/15/2015 36053.87 29335.64 32918.69 29301.90 35509.38 36447.65 

12/16/2015 35466.28 30175.73 33585.57 30125.43 35227.98 37479.88 

12/17/2015 33797.59 30175.73 35982.74 30184.32 34511.99 34030.44 

12/18/2015 32371.69 29335.64 36660.09 29318.37 33405.82 30713.83 

12/21/2015 34653.54 30563.85 34576.06 30560.32 35054.93 30597.25 

12/22/2015 33846.32 29361.27 35930.28 29357.59 35177.03 32310.69 

12/23/2015 36321.57 29361.27 31688.18 29345.39 36380.29 34727.64 

12/24/2015 39079.32 30942.99 31568.24 30892.32 38848.84 36254.55 
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Table 58: Standardized error for each model at 9am on December 2014 

 December 2014, 9am  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1117.66 4953.93 3954.64 4945.20 1462.08 

MSE 2327139.71 28798606.93 16809136.29 28789836.06 3310208.48 

RMSE 1525.50 5366.43 4099.89 5365.62 1819.40 

MAPE 3.25 13.89 11.31 13.87 4.26 

 

Figure 99: MAE values for Dec 2014 projection (MTLF 2012-2014) at 9am 

 

Figure 100: MSE values for Dec 2014 projection (MTLF 2012-2014) at 9am 
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Figure 101: RMSE values for Dec 2014 projection (MTLF 2012-2014) at 9am 

 

Figure 102: MAPE values for Dec 2014 projection (MTLF 2012-2014) at 9am 
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Table 59: Demand data predicted by each model for December 2014 at 2pm 
 

 

Table 60: Prediction error percentages for December 2014 at 2pm 

Percentage Error December 2014, 2pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

3.37 5.64 6.41 4.86 3.57 

5.31 7.18 12.25 6.04 5.62 

7.44 7.37 11.97 6.20 9.70 

5.01 3.97 9.40 2.77 6.09 

5.84 3.27 13.19 2.79 4.19 

3.79 4.25 12.01 4.34 3.84 

-3.69 -3.10 3.35 -3.47 -1.83 

4.77 4.96 8.45 4.09 6.93 

-0.53 2.98 4.72 1.58 1.04 

2.76 0.92 8.15 0.89 2.86 

1.01 0.35 6.85 -0.19 1.74 

1.23 3.36 3.92 2.84 -4.12 

3.47 5.40 -7.29 4.98 1.45 

-0.65 4.69 -8.51 4.76 -3.57 

-15.55 -16.63 -13.50 -16.70 -17.08 

-2.92 -1.03 -3.45 -1.26 -7.83 

-7.93 -6.12 7.41 -5.80 -7.46 

-6.62 -8.37 7.34 -8.58 -7.39 

December 2014, 2pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

12/01/2015 33360.03 32576.83 32309.14 32845.97 33290.14 34523.76 

12/02/2015 35083.00 34392.21 32512.68 34815.22 34967.83 37051.94 

12/03/2015 33071.50 33096.48 31450.72 33512.59 32264.66 35728.86 

12/04/2015 32863.85 33225.20 31346.37 33638.41 32489.51 34597.13 

12/07/2015 34309.98 35246.08 31632.31 35421.62 34911.64 36438.50 

12/08/2015 33390.28 33234.04 30539.22 33200.86 33374.61 34707.38 

12/09/2015 32882.69 32696.90 30652.30 32813.12 32294.38 31713.79 

12/10/2015 32120.25 32055.95 30879.87 32350.75 31391.18 33729.23 

12/11/2015 32098.11 30978.38 30421.35 31424.01 31597.42 31930.01 

12/14/2015 33432.69 34065.51 31580.92 34077.26 33397.90 34381.85 

12/15/2015 34064.54 34289.81 32052.74 34474.57 33813.24 34410.83 

12/16/2015 35044.73 34289.81 34090.73 34475.04 36943.82 35482.02 

12/17/2015 31845.76 31209.16 35395.38 31346.60 32511.63 32991.19 

12/18/2015 31681.40 30002.40 34157.00 29980.03 32603.28 31478.16 

12/21/2015 32919.47 33225.20 32335.36 33245.84 33354.65 28488.58 

12/22/2015 32655.80 32055.95 32822.92 32129.44 34214.15 31728.97 

12/23/2015 35847.78 35246.08 30751.51 35140.98 35692.39 33213.19 

12/24/2015 36193.67 36787.03 31454.24 36859.57 36455.51 33946.66 
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Table 61: Standardized error for each model at 2pm on December 2014 

 December 2014, 2pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1545.15 1643.34 2834.53 1464.00 1777.12 

MSE 3437193.63 3916358.95 9356318.83 3221928.58 4515399.55 

RMSE 1853.97 1978.98 3058.81 1794.97 2124.95 

MAPE 4.62 4.92 8.34 4.41 5.31 

 

Figure 103: MAE values for Dec 2014 projection (MTLF 2012-2014) at 2pm 

 

Figure 104: MSE values for Dec 2014 projection (MTLF 2012-2014) at 2pm 
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Figure 105: RMSE values for Dec 2014 projection (MTLF 2012-2014) at 2pm 

 

 

 

Figure 106: MAPE values for Dec 2014 projection (MTLF 2012-2014) at 2pm 
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Table 62: Demand data predicted by each model for December 2014 at 8pm 
 

 

Table 63: Prediction error percentages for December 2014 at 8pm 

Percentage Error December 2014, 8pm 

RF LOWESS SARIMA LOWRIMA RFSRIMA 

-0.37 0.50 -2.02 -0.62 -0.15 

4.94 7.18 5.58 6.56 4.86 

2.93 3.62 3.22 2.88 3.41 

5.61 7.86 6.05 7.10 5.66 

4.39 3.69 8.30 2.05 4.17 

2.41 2.34 1.87 1.94 1.21 

0.58 1.60 0.44 1.25 1.26 

0.64 4.22 0.03 3.01 2.56 

1.88 8.39 1.01 6.87 2.34 

1.77 2.94 3.28 2.46 1.98 

3.35 1.82 -0.67 0.99 3.45 

1.29 2.40 -2.34 0.76 0.51 

-3.06 2.57 -22.05 1.40 -5.97 

-17.31 -2.35 -35.48 -2.88 -18.85 

-8.17 -8.81 -17.54 -9.49 -9.74 

-1.01 3.32 -10.54 2.70 -3.46 

-2.51 0.26 4.05 -0.08 -2.37 

-9.87 -11.06 0.74 -12.11 -11.30 

December 2014, 8pm 

Date RF LOWESS SARIMA LOWRIMA RFSRIMA Actual  

12/01/2015 36022.59 35708.89 36613.55 36110.92 35944.61 35889.45 

12/02/2015 38354.10 37451.04 38098.67 37702.35 38387.40 40348.95 

12/03/2015 37008.87 36745.26 36897.25 37027.64 36826.45 38125.92 

12/04/2015 36875.47 35997.43 36702.55 36292.65 36857.00 39067.82 

12/07/2015 37898.34 38176.95 36350.04 38828.08 37986.52 39639.85 

12/08/2015 36592.36 36618.21 36796.87 36768.61 37042.05 37497.10 

12/09/2015 36779.20 36398.80 36829.03 36530.96 36524.57 36992.45 

12/10/2015 36316.89 35005.80 36539.58 35449.40 35614.76 36549.31 

12/11/2015 36088.18 33695.45 36407.78 34253.64 35920.56 36780.06 

12/14/2015 38078.52 37623.42 37492.77 37810.86 37997.68 38764.22 

12/15/2015 36814.76 37400.12 38349.69 37716.43 36778.18 38092.74 

12/16/2015 37825.75 37400.12 39217.87 38028.88 38125.90 38320.65 

12/17/2015 36105.97 34132.18 42758.51 34543.17 37122.92 35032.96 

12/18/2015 35555.90 31020.37 41062.26 31182.61 36020.56 30308.43 

12/21/2015 35785.48 35997.43 38886.12 36224.49 36305.71 33083.28 

12/22/2015 36571.88 35005.80 40023.69 35230.61 37457.68 36206.49 

12/23/2015 39239.29 38176.95 36725.68 38308.79 39184.24 38277.09 

12/24/2015 41501.51 41951.80 37495.93 42347.81 42044.84 37774.51 
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Table 64: Standardized error for each model at 8pm on December 2014 

 December 2014, 8pm  

Err RF LOWESS SARIMA LOWRIMA RFSRIMA 

MAE 1327.66 1571.14 2219.68 1303.67 1510.73 

MSE 3352170.43 3615797.23 12243459.41 2995347.34 4214191.16 

RMSE 1830.89 1901.52 3499.07 1730.71 2052.85 

MAPE 3.70 4.22 6.36 3.52 4.23 

 

Figure 107: MAE values for Dec 2014 projection (MTLF 2012-2014) at 8pm 

 

Figure 108: MSE values for Dec 2014 projection (MTLF 2012-2014) at 8pm 
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Figure 109: RMSE values for Dec 2014 projection (MTLF 2012-2014) at 8pm 

 

 

Figure 110: MAPE values for Dec 2014 projection (MTLF 2012-2014) at 8pm 
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Figure 111 to 126 represent a comparative analysis of the statistical indices (MAE, MSE, 

RMSE and MAPE) calculated for each of the forecasting methods (RF, LOWESS, 

SARIMA, LOWRIMA and RFSRIMA) used to project demand data for the months of 

May, August, November and December. Figures 111, 112, 113 and 114 represent a 

comparison of MAE values, figures 115, 116, 117 and 118 present a comparison of MSE 

values, figures 119, 120, 121 and 122 represent a comparison of the RMSE values and 

figures 123, 124, 125 and 126 represent a comparison of MAPE values for the forecasting 

methods for four separate months of a year. A study of the figures reveals that in all of the 

cases, SARIMA method of forecasting performs the worst, while the rest of the methods 

like RF, LOWESS, LOWRIMA and RFSRIMA perform similarly. 

Figure 111: Comparison of MAE values for the projections for May 2015 
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Figure 112: : Comparison of MAE values for the projections for August 2015 

 

Figure 113: Comparison of MAE values for the projections for November 2014 
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Figure 114: Comparison of MAE values for the projections for December 2014 

Figure 115: Comparison of MSE values for the projections for May 2015 
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Figure 116: Comparison of MSE values for the projections for August 2015 

 

Figure 117: Comparison of MSE values for the projections for November 2014 
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Figure 118: Comparison of MSE values for the projections for December 2014 

Figure 119: Comparison of RMSE values for the projections for May 2015 
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Figure 120: Comparison of RMSE values for the projections for August 2015 

 

Figure 121: Comparison of RMSE values for the projections for November 2014 

 

 

2am 9am 2pm 8pm

RF 1057.47 985.5 1452.07 1780.46

LOWESS 1324.5 841.65 1731.85 1714.84

SARIMA 7042.84 6277.8 5015.53 4648.59

LOWRIMA 1609.57 1119.81 2067.86 2142.18

RFSRIMA 1222.27 935.78 1531.9 1851.13

0

1000

2000

3000

4000

5000

6000

7000

8000

R
M

SE

Time of the day

2am 9am 2pm 8pm

RF 1408.56 1460.23 1500.25 1366.51

LOWESS 1755.97 3631.59 1544.23 1383.13

SARIMA 3468.97 3235.66 3335.3 5382.39

LOWRIMA 1750.44 3644.26 1418.33 1323.01

RFSRIMA 1392.25 1401.96 1610.61 1468.55

0

1000

2000

3000

4000

5000

6000

R
M

SE

Time of the day



 

151 

 

Figure 122: Comparison of RMSE values for the projections for December 2014 

 

Figure 123: Comparison of MAPE values for the projections for May 2015 
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Figure 124: Comparison of MAPE values for the projections for August 2015 

 

 

Figure 125: Comparison of MAPE values for the projections for November 2014 
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Figure 126: Comparison of MAPE values for the projections for December 2014 

 

 

Figure 127: Comparison of MAE values for the projections at 2am 
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the MAE values for every month, figures 131 to 134 represent MSE values, figures 135 to 

138 represent the RMSE values and finally figures 139 to 142 present the MAPE values 

for four separate hours of a day. 

Figure 128: Comparison of MAE values for the projections at 9am 

 

Figure 129: Comparison of MAE values for the projections at 2pm 
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Figure 130: Comparison of MAE values for the projections at 8pm 

 

 

Figure 131: Comparison of MSE values for the projections at 2am 

 

 

May August November December

RF 1170.42 1410.42 1036.63 1327.66

LOWESS 1955.35 1443.51 1190.98 1571.14

SARIMA 5305.15 3993.96 4390.87 2219.68

LOWRIMA 1517.26 1732.84 1119.98 1303.67

RFSRIMA 1115.76 1567.8 1065.75 1510.73

0

1000

2000

3000

4000

5000

6000

M
A

E

Projected months

May August November December

RF 1541656.34 1118252.37 1984041 1345900.27

LOWESS 3274538.16 1754304.85 3083418.55 2227070.42

SARIMA 4565340.41 49601630.43 12033747.96 5314607.2

LOWRIMA 3467703.9 2590727.64 3064036.97 2434353.19

RFSRIMA 2764910.35 1493942.1 1938359.34 1966240.44

0

10000000

20000000

30000000

40000000

50000000

60000000

M
SE

Projected months



 

156 

 

Figure 132: Comparison of MSE values for the projections at 9am 

 

 

Figure 133: Comparison of MSE values for the projections at 2pm 
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Figure 134: Comparison of MSE values for the projections at 8pm 

 

 

Figure 135: Comparison of RMSE values for the projections at 2am 
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Figure 136: Comparison of RMSE values for the projections at 9am 

 

 

Figure 137: Comparison of RMSE values for the projections at 2pm 
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Figure 138: Comparison of RMSE values for the projections at 8pm 

 

Figure 139: Comparison of MAPE values for the projections at 2am 
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Figure 140: Comparison of MAPE values for the projections at 9am 

 

 

Figure 141: Comparison of MAPE values for the projections at 2pm 
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Figure 142: Comparison of MAPE values for the projections at 8pm 
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index. MAE and MAPE are not a part of standard regression output. They are more 

commonly found in the output of time series forecasting procedures [99]. 

Mathematically this can be represented as 

 
𝑀𝐴𝐸 =  

∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
 

(59) 

Where, 𝑒𝑖 = 𝑦𝑖 − 𝑦 
𝑖
 

b) Mean Squared Error (MSE) 

The mean error (ME) and mean percentage error (MPE) that are reported in some 

statistical procedures are signed measures of error which indicate whether the 

forecasts are biased--i.e., whether they tend to be disproportionately positive or 

negative. Bias is normally considered a bad thing, but it is not the bottom line. Bias 

is one component of the mean squared error. In fact mean squared error equals the 

variance of the errors plus the square of the mean error. That is: MSE = VAR(E) + 

(ME)2.  Hence, if mean squared error is minimized, the bias and the variance of the 

errors get minimized as well [99]. Mathematically it can be presented as 

 
𝑀𝑆𝐸 = 

∑ (𝑒𝑖
2)𝑛

𝑖=1

𝑛
  

(60) 

Where, 𝑒𝑖
2 = (𝑦𝑖 − 𝑦 

𝑖
)2 

c) Root Mean Squared Error (RMSE) 

This index is more sensitive than other measures to the occasional large error. The 

squaring process gives disproportionate weight to very large errors. If an occasional 

large error is not a problem in inferring results, then the MAE or MAPE may be a 

more relevant criterion [99]. Mathematically it is represented as 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑖

2)𝑛
𝑖=1

𝑛
 

(61) 

Where, 𝑒𝑖
2 = (𝑦𝑖 − 𝑦 

𝑖
)2 

d) Mean Absolute Percentage Error 

This index is often useful for purposes of reporting, because it is expressed in 

generic percentage terms which makes it easy to comprehend any big errors in the 

prediction. The MAPE can only be computed with respect to data that are 

guaranteed to be strictly positive, so if this statistic is missing the output, it is 

possible that it has been suppressed due to negative data values [99]. Mathematical 

representation of the index is given as 

 
𝑀𝐴𝑃𝐸 = 

∑ |𝑝𝑖|
𝑛
𝑖=1

𝑛
 

(62) 

Where, the percentage error 𝑝𝑖 is given by 

 𝑝𝑖 = 100 ∗
𝑒𝑖
𝑦𝑖

 
(63) 

And 𝑒𝑖 = 𝑦𝑖 − 𝑦 
𝑖
. 

In each of the equations 59-63, 𝑦𝑖 is the actual load demand data for a given working day 

at a certain hour of the day and 𝑦 
𝑖
 is the corresponding predicted value. 

Application of RFSRIMA is a two step process. In stage one, a preliminary prediction for 

demand power is made using RF method. The demand power data downloaded from PJM 

Corp. database was divided into two groups, training set and testing set. The hybrid model 

was used to forecast load data for the month of May and August in the year 2015 and 

November and December in the year 2014.  The training dataset consisted of historical load 

data starting from the date 1/1/2012 and continuing till end of the month previous to the 
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forecast months i.e., while predicting load data for the month of May, 2015, the training 

set included data from January, 2012 till February, 2015. The error between the actual and 

the predicted data was then calculated for that month. This difference set was then used as 

a time series data for SARIMA modelling in the second stage. In order to select the best 

fitting SARIMA model, i.e. the model that is likely to predict with the most accuracy, for 

the time series data, a trial and error method was adopted. In order to select the appropriate 

p, d, q, P, D and Q values to generate the corresponding SARIMA model, autocorrelation 

(ACF) and a partial autocorrelation (pACF) plot had to be calculated [100]. A seasonality 

of 24 was chosen since the load data showed similar patterns after every 24 hours. From 

the pACF plot, the lags that are 24 or its multiples were studied for their significance. Based 

on a positive or negative spike as well as gradual or sharp cut-off of the plots, appropriate 

values were chosen [101]. Figure 143 shows a sample of the ACF and pACF plots and 

figure 112 shows a SR plot. In order to select an appropriate model that would give the 

maximum accuracy, the SR value was kept within ±3 [102]. The standardized residual (SR) 

is the ratio of residual (difference between actual and predicted values) to the standard 

deviation of the residuals values. It can be mathematically represented as:  

 
𝑆𝑅 =  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑅)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷)𝑜𝑓 𝑅
 

(64) 

Where, R can be represented as: 

𝑅 = 𝑦 − 𝑦  

Where, y = actual values and ŷ = the predicted values. 

Standard Deviation (SD) of a dataset can be represented mathematically as follows. 
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(𝑆𝐷)𝜎 =  √
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 

(65) 

Where, N = number of data points in the dataset, xi is the ith data point and 𝜇 is the mean 

of the dataset. 

Figure 143: ACF and pACF plot for residuals from  

1/1/2012 to 4/30/2015 at 2am 

 
 

 

Figure 144: Standardized residuals plot for the period 1/1/2012 - 4/30/2015 at 2am 

The figure 144 shows the SR plot for the residuals dataset encompassing 1/1/2012 - 

4/30/2015 at 2am. The SARIMA models used for each of the four hours (2am, 9am, 2pm 
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and 8pm) of months May, August, November and December for the RFSRIMA hybrid 

method are represented in table 65.  

Table 65: SARIMA models for forecasting residuals 

May 2015 SARIMA(p,d,q,P,D,Q)S 

2 am 9 am 2 pm 8 pm 

(1,1,0,1,1,1), s = 24 (1,1,0,1,1,1), s = 24 (1,1,0,1,1,0), s = 24 (1,1,0,1,1,0), s = 24 

August 2015 SARIMA(p,d,q,P,D,Q)S 

(0,1,1,0,1,0), s = 22 (1,1,0,0,1,1), s = 22 (0,0,1,0,1,0), s = 24 (0,0,1,0,1,0), s = 24 

November 2014 SARIMA(p,d,q,P,D,Q)S 

(0,0,1,1,0,1), s = 22 (0,0,1,1,0,1), s = 22 (1,0,0,0,1,1), s = 24 (0,0,1,0,1,1), s = 24 

December 2014 SARIMA(p,d,q,P,D,Q)S 

(1,0,1,1,1,0), s = 24 (1,0,1,1,1,0), s = 24 (1,1,1,0,1,0), s = 24 (1,0,1,0,1,1), s = 22 

5.2.2 Short term load forecasting (STLF) 

In the previous section, data models were developed to best fit the load data available and 

reduce the error. In this section, previously fitted models have been used to predict the day 

ahead load data on an hourly basis. Hybrid model LOWRIMA was used for STLF and its 

accuracy was compared with that of the novel hybrid model RFSRIMA. The various error 

metrics are evaluated for the model using MA E, MSE, RMSE and MAPE. The experiment 

was conducted in two steps. First, a prediction model was built by using historical load 

data from PJM Corporation for the period 1/1/2012 to 6/24/2015. A specific SARIMA 

model was developed for every hour of the day. Then the model was used to forecast the 

load data for the following day, i.e. 6/25/2015. Figure 145 presents the hourly forecasted 

data for the day 6/25/2015 against the actual load data. Figure 146 shows the prediction 

error for each hour. Table 66 presents the actual load data and the predicted data in an 

hourly format.  
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Figure 145: LOWRIMA predicted load vs actual load for 6/25/2015 

 

Figure 146: Error plot for hourly predicted load using LOWRIMA data on 6/25/2015 
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Table 66: Hourly data (Actual vs Predicted) for LOWRIMA 

Actual and Predicted Hourly Load Data 

Time 1 am 2 am 3 am 4 am 5 am 6 am 

Actual 28293.21 26443.05 25280.4 24588.2 24723.35 25644.63 

Predicted 28623.32 26533.65 25182.3 24899.96 24557.4 25734.97 

Time 7 am 8 am 9 am 10 am 11 am 12 am 

Actual 27753.11 30513.82 32841.11 34718.86 36537.43 38107.71 

Predicted 28217.05 30682.78 33391.7 34961.54 36382.07 37473.47 

Time 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 

Actual 39248.88 40128.29 40583.28 40610.92 40320.25 39702.01 

Predicted 38245.98 39064.68 39475.83 39438.17 39353.94 39514.99 

Time 7 pm 8 pm 9 pm 10 pm 11 pm 12 pm 

Actual 38586.06 37536.37 37066.83 35914.27 33055.43 30035.9 

Predicted 37897.54 36322.41 36307.89 35180.96 32288.68 29391.27 

 

Similarly, the hourly load data for 6/25/2015 was forecasted by using the novel RFSRIMA 

model. Data used to train the model was the metered load data obtained from PJM 

Corporation website for the period 1/1/2012 – 6/24/2015 [92]. Figure 147 presents the 

hourly forecasted data for the day 6/25/2015 against the actual load data. Figure 148 shows 

the error in prediction for each hour. Table 67 presents the actual load data and the 

predicted data in an hourly format and Table 68 gives a comparison of accuracy of the two 

hybrid methods against statistical error indices. 

Table 67: Hourly data (Actual vs Predicted) for RFSRIMA 

Actual and Predicted Hourly Load Data 

Time 1 am 2 am 3 am 4 am 5 am 6 am 

Actual 28293.214 26443.05 25280.4 24588.2 24723.35 25644.63 

Predicted 27905.992 26442.47 25136.74 24581.38 24654.46 25765.24 

Time 7 am 8 am 9 am 10 am 11 am 12 am 

Actual 27753.11 30513.82 32841.11 34718.86 36537.43 38107.71 

Predicted 28290 30832.23 32397.11 33893.72 35893.07 37008.25 

Time 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 

Actual 39248.88 40128.29 40583.28 40610.92 40320.25 39702.01 

Predicted 38199.94 38798.63 40171.67 40981.67 40305.47 40186.88 

Time 7 pm 8 pm 9 pm 10 pm 11 pm 12 pm 

Actual 38586.06 37536.37 37066.83 35914.27 33055.431 30035.9 

Predicted 38873.46 37956.46 37288.09 34888.01 33874.236 30090.3 



 

169 

Table 68: Statistical indices measuring Accuracy of LOWRIMA and RFSRIMA 

Error Indices 

Error Index LOWRIMA RFSRIMA 

MAE 567.03 461.87 

MSE 461016.91 355276.9 

RMSE 678.98 596.05 

MAPE 1.59 1.3008 

From table 68, it is observed that RFSRIMA performs better than LOWRIMA method for 

data based on an entire day. In comparison to MTLF, both the hybrid methods perform 

much better and are thus more reliable for STLF. Since, both weather parameters and 

electricity usage keeps changing, the model needs to continuously updated to maintain 

reliability.  

Figure 147: RFSRIMA predicted load vs actual load for 6/25/2015 
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Figure 148: Error plot for hourly predicted load using RFSRIMA data on 6/25/2015 

The 24 hours in a day was divided into four quarters of 6 hours each. Statistical indices for 

each of these 6 hour quartiles were calculated and plotted in an attempt to do a further 

analysis into the errors in model selection. These errors cause deviation of predicted values 

from the actual load data acquired from PJM Corporation. Figures 149 to 152 present the 

error indices (MAE, MSE, RMSE and MAPE) for LOWRIMA hybrid forecasting method 

calculated for every six hour periods of a day, namely, early morning, mid-day, afternoon 

and evening. 

Figure 149: MAE for values projected quarterly by LOWRIMA on 6/25/2015 
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Figure 150: MSE for values projected quarterly by LOWRIMA on 6/25/2015 

 

Figure 151: RMSE for values projected quarterly by LOWRIMA on 6/25/2015 
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Figure 152: MAPE for values projected quarterly by LOWRIMA on 6/25/2015 

Figures 153 to 156 present the error indices (MAE, MSE, RMSE and MAPE) for 

RFSRIMA hybrid forecasting method calculated for every six hour periods of a day, 

namely, early morning, mid-day, afternoon and evening. 

Figure 153: MAE for values projected quarterly by RFSRIMA on 6/25/2015 
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Figure 154: MAE for values projected quarterly by RFSRIMA on 6/25/2015 

 

Figure 155: MAE for values projected quarterly by RFSRIMA on 6/25/2015 
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Figure 156: MAPE for values projected quarterly by RFSRIMA on 6/25/2015 
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VI. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The conventional power grid has undergone a series of developments and evolved to the 

modern day smart grid for reliable and clean delivery of electricity. The vision for this 

development has been to integrate a data processing layer, which will allow the smart grid 

to have round the clock monitoring of the grid. This will not only provide solutions to get 

a stable power grid, but will also make existing smart grids from any probable threats [103] 

With this as a background, this research was conducted. The research developed an 

integrated software suite (ISS) that enable system operators to monitor the grid and 

generate alarms in case of some contengencies. In the research, preliminary work was done 

on topics such as data clustering and visualization to the software suite. A novel hybrid 

method, namely multi-tier k-means clustering method was developed to correctly group 

power data. In the second part of the research, forecasting algorithms were tested and a 

novel hybrid forecasting technique, namely RFSRIMA, was developed that could also be 

integrated into the ISS [104]. The key findings of this research are as follows: 

1. Developed an integrated software suite (ISS) for monitoring streaming phasor data 

that include a collection of software applications for state estimation, data mining, 

visualization, forecasting, topology management and alarm generation. The first 

part of this research focused on the conceptualization and development of the ISS 

and adding the features of data clustering and visualization to the software suite.
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2.  The applications were set up in such a way that the user can choose the period of 

phasor data that needs analysis. Once the application is initiated, it is capable of 

retrieving data from a local file space and perform data analysis on it, finally 

projecting the results in the form of a visualization scheme that would simplify the 

understanding of the connected network and its conditions. 

3. Developed a hybrid multi-tier k-means clustering method. While integrating the 

data analysis software into the ISS, some data clustering algorithms (DBSCAN, k-

means) were applied on the phasor data to test the clustering accuracy. Since both 

of these methods mis-classified the phasor data under various circumstances, the 

need for a novel method of clustering, suited for phasor data, was felt. The multi-

tier k-means clustering method was developed and tested under four conditions 

(steady state, heavy load, light load and single line to ground). In each of these, it 

out performed the other two methods from the point of view of correctly classifying 

phasor data. 

4. Developed a hybrid forecasting method that improved accuracies in prediction of 

demand data for PJM datasets. A novel, hybrid method of forecasting was 

developed which utilized the advantages of both RF and SARIMA methods. Such 

hybrid method of forecasting showed significant improvements in the accuracy of 

predicting demand data. This RFSRIMA method was compared with other 

forecasting methods like RF, SARIMA, LOWESS and another hybrid method with 

features of LOWESS and SARIMA (LOWRIMA) for MTLF and STLF schemes. 

In each of them, RFSRIMA performed better than the other methods. 
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5. The second part of this research investigated the performance of various forecasting 

algorithms applied for mid-term load forecasting (MTLF) and short-term load 

forecasting (STLF). Every algorithm that was tested, performed much better for 

STLF than MTLF. It was inferred from the overall results that in order to improve 

accuracy of MTLF method, more decision variables should be included along with 

weather correction factors for specific hours of the day. For STLF, the accuracy 

was high (greater than 95%) in all the cases, however, in competitive trading 

markets it is always advisable to strive for higher accuracies. Hence, it was inferred 

that further investigation needs to be conducted to improve on the accuracies 

obtained from RFSRIMA method. 

The three clustering algorithms, DBSCAN, k-means and multi-tier k-means were tested 

for their rate of mis-classification (MC) under various load conditions. Here MC refers to 

the event of including datapoints in the wrong cluster. Their performance could be 

tabulated as in table 69.  

Table 69: Performance analysis of clustering algorithms 

Load Condition DBSCAN k-means Multi-tier k-means 

Normal Load Okay (MC ~ 50%) Fail (MC > 80%) Best (MC < 20%) 

Heavy load Best (MC < 20%) Fail (MC > 80%) Okay (MC ~ 50%) 

Light load Best (MC < 20%) Fail (MC > 80%) Okay (MC ~ 50%) 

Fault (SLG) Fail (MC > 80%) Fail (MC > 80%) Best (MC < 20%) 

6.2 Future Work 

This research work is only a preliminary investigation on phasor data analysis. With the 

application of the novel clustering methods to PMU datasets, the work has shown real-time 

control of the grid is possible. The proposed multi-tier k-means algorithm needs to be re-

organized in a way to run continuously at regular intervals. Thus, generating data charts 

for system operators to guide them accurately about the condition of the grid. The work 
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still needs to be implemented in real grid conditions to test its effectiveness. For load 

forecasting, the entire RFSRIMA experiment is done manually starting from data 

collection to model selection, it would be very useful if the whole process could be 

automated at periodic intervals. The objective of the research was to lay ground work for 

the development of an ISS which would be an open source, versetile software platform that 

can work as the interface of various software programs meant to implement grid system 

analysis applications. Presnetly, software platforms like MATLAB, OMNet++, R and 

Visual Studio have been successfully integrated to the system and are working efficiently 

to analyse phasor data, create bus topologies and generate alarms [105]. Further work is 

required in this area to facilitate a seamless integration and automation of the ISS. 
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APPENDIX A 

CLUSTER FORMATION AND DATA VISUALIZATION 

1. C# CODE FOR DATA ACQUISITION FROM openPDC 

using System; 

using System.IO; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Linq; 

using System.Text; 

using System.Threading; 

using System.Threading.Tasks; 

using GSF;//includes for data transport 

using GSF.TimeSeries; 

using GSF.TimeSeries.Transport; 

using GSF.Historian.Files; 

using GSF.Historian; 

using Excel = Microsoft.Office.Interop.Excel; 

using System.Reflection; 

using System.IO.Pipes; 

 

 

namespace DataReadTemplate 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            Stopwatch stopwatch = Stopwatch.StartNew(); 

string filePath1 = "C:\\Users\\Anupam\\Desktop\\Research\\EPEC\\Bus 

Animation\\" + "data_feed_Vm.csv"; 

string filePath2 = "C:\\Users\\Anupam\\Desktop\\Research\\EPEC\\Bus 

Animation\\" + "data_feed_Va.csv"; 

string filePath3 = "C:\\Users\\Anupam\\Desktop\\Research\\EPEC\\Bus 

Animation\\" + "data_feed_Im.csv"; 

string filePath4 = "C:\\Users\\Anupam\\Desktop\\Research\\EPEC\\Bus 

Animation\\" + "data_feed_Ia.csv"; 
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string filePath5 = "C:\\Users\\Anupam\\Desktop\\Research\\EPEC\\Bus 

Animation\\" + "data_feed_F.csv"; 

            if (!File.Exists(filePath1)) 

            { 

                File.Create(filePath1).Close(); 

            } 

            if (!File.Exists(filePath2)) 

            { 

                File.Create(filePath2).Close(); 

            } 

            if (!File.Exists(filePath3)) 

            { 

                File.Create(filePath3).Close(); 

            } 

            if (!File.Exists(filePath4)) 

            { 

                File.Create(filePath4).Close(); 

            } 

            if (!File.Exists(filePath5)) 

            { 

                File.Create(filePath5).Close(); 

            } 

            System.IO.File.WriteAllText(@filePath1, string.Empty); 

            System.IO.File.WriteAllText(@filePath2, string.Empty); 

            System.IO.File.WriteAllText(@filePath3, string.Empty); 

            System.IO.File.WriteAllText(@filePath4, string.Empty); 

            System.IO.File.WriteAllText(@filePath5, string.Empty); 

 List<int> measIDs = new List<int> { 98, 101, 102, 105, 106}; 

 List<string> output1 = new List<string>(); 

            List<string> output2 = new List<string>(); 

            List<string> output3 = new List<string>(); 

            List<string> output4 = new List<string>(); 

            List<string> output5 = new List<string>(); 

 ArchiveReader archive = new ArchiveReader(); 

            archive.Open("C:\\Program Files\\openPDC\\Archive\\ppa_archive.d"); 

 DateTime DT = new DateTime(); 

            DT = DateTime.UtcNow; 

Parallel.ForEach(measIDs, id => 

             { 

      foreach (IDataPoint datum in archive.ReadData(id, "*-1m", "*")) 

                   { 

  if (id == 101) 

                         { 

                             output1.Add(datum.Value.ToString()); 

                             output1.Add(datum.Time.ToString()); 

       string delimiter = ","; 
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                             string[][] output = new string[][]{ 

                             new string[]{datum.Value.ToString(),datum.Time.ToString()}};  

                             int length1 = output.GetLength(0); 

                             StringBuilder sb = new StringBuilder(); 

                             for (int index = 0; index < length1; index++) 

                              { 

                                   sb.AppendLine(string.Join(delimiter, output[index])); 

      } 

                              File.AppendAllText(filePath1, sb.ToString()); 

 } 

                         else if (id == 102) 

                          { 

                              output2.Add(datum.Value.ToString()); 

                              output2.Add(datum.Time.ToString()); 

                              string delimiter = ","; 

                              string[][] output = new string[][]{ 

                              new string[]{datum.Value.ToString(),datum.Time.ToString()}}; 

                              int length1 = output.GetLength(0); 

                              StringBuilder sb = new StringBuilder(); 

                              for (int index = 0; index < length1; index++) 

                               { 

                                   sb.AppendLine(string.Join(delimiter, output[index])); 

         } 

                              File.AppendAllText(filePath2, sb.ToString()); 

    } 

                          else if (id == 105) 

                           { 

                              output3.Add(datum.Value.ToString()); 

                              output3.Add(datum.Time.ToString()); 

        string delimiter = ","; 

                              string[][] output = new string[][]{ 

                              new string[]{datum.Value.ToString(),datum.Time.ToString()}}; 

                              int length1 = output.GetLength(0); 

                              StringBuilder sb = new StringBuilder(); 

                              for (int index = 0; index < length1; index++) 

                               { 

                                   sb.AppendLine(string.Join(delimiter, output[index])); 

                               } 

                              File.AppendAllText(filePath3, sb.ToString()); 

   } 

                           else if (id == 106) 

                            { 

                               output4.Add(datum.Value.ToString()); 

                               output4.Add(datum.Time.ToString()); 
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         string delimiter = ","; 

                               string[][] output = new string[][]{ 

                               new string[]{datum.Value.ToString(),datum.Time.ToString()}}; 

         int length1 = output.GetLength(0); 

                               StringBuilder sb = new StringBuilder(); 

                               for (int index = 0; index < length1; index++) 

                                    { 

                                        sb.AppendLine(string.Join(delimiter, output[index])); 

   } 

                                    File.AppendAllText(filePath4, sb.ToString()); 

       } 

                           else if (id == 98) 

                            { 

                               output5.Add(datum.Value.ToString()); 

                               output5.Add(datum.Time.ToString()); 

         string delimiter = ","; 

                               string[][] output = new string[][]{ 

                               new string[]{datum.Value.ToString(),datum.Time.ToString()}}; 

                               int length1 = output.GetLength(0); 

                               StringBuilder sb = new StringBuilder(); 

                               for (int index = 0; index < length1; index++) 

                                { 

                                    sb.AppendLine(string.Join(delimiter, output[index])); 

          } 

   File.AppendAllText(filePath5, sb.ToString()); 

      } 

                   } 

             }); 

 stopwatch.Stop(); 

            Console.WriteLine(stopwatch.ElapsedMilliseconds); 

            Console.ReadKey(); 

 } 

    } 

} 

2. MATLAB CODE FOR CLUSTERING AND VISUALIZATION 

The data acquisition process is common for both voltage and current. After the data is 

collected, the matlab code for clustering and visualization with multi-tier k-means is 

implemented. 

Input = ‘.csv’ file from a file location. The file can contain current or voltage data. 
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2.1 MATLAB CODE FOR VOLTAGE DATA 

% Data input from .CSV magnitude and angle 

delimiter = ','; 

formatSpec = '%f%s%[^\n\r]'; 

     

filename1 = 

'C:\Users\ranganath.vallakati\Documents\Classification\Test_Folder\data_feed_Vm.csv';     

fileID = fopen(filename1,'r'); 

dataArray1 = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' ,NaN, 

'ReturnOnError', false); 

d1 = dataArray1{:,1}; 

t1 = char(dataArray1{:,2}); 

t_1(1:length(t1),1) = datenum(t1(:,:)); 

filename2 = 

'C:\Users\ranganath.vallakati\Documents\Classification\Test_Folder\data_feed_Va.csv'; 

fileID = fopen(filename2,'r'); 

dataArray2 = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' ,NaN, 

'ReturnOnError', false); 

d2 = dataArray2{:,1}; 

t2 = char(dataArray2{:,2}); 

t_2(1:length(t2),1) = datenum(t2(:,:)); 

%% Matching both magnitude and angle and rounding off data to integers 

if length(d1) >= length(d2)  

   pdata = zeros(length(d1),4); 

end 

if length(d1) < length(d2) 

   pdata = zeros(length(d2),4); 

end 

pdata(1:length(d1),1) = d1(:,1); 

pdata(:,2) = 0; 

pdata(1:length(d2),3) = d2(1:length(d2),1); 

pdata(:,4) = 0; 

pdata(1:length(d1),2) = t_1(:,1); 

pdata(1:length(d2),4) = t_2(:,1); 

for i = 1:length(pdata) 

    if pdata(i,2) == 0  

       pdata(i,2) = NaN; 

     pdata(i,1) = NaN; 

    end 

    if pdata(i,4) == 0  

   pdata(i,4) = NaN; 

       pdata(i,3) = NaN; 

    end 

end 

    data1 = NaN(length(pdata),4); 
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for i = 1:length(pdata) 

    for j = 1:length(pdata) 

  if ~isnan(pdata(i,2)) && ~isnan(pdata(i,1)) 

           if pdata(i,2)== pdata(j,4) && ~isnan(pdata(j,3)) 

              data1(i,1) = pdata(i,1); 

         data1(i,2) = pdata(i,2); 

              data1(i,3) = pdata(j,3); 

              data1(i,4) = pdata(j,4); 

              t_data(i,:) = t1(i,:); 

           end 

        end 

    end 

end 

data1(isnan(data1(:,1)),:) = []; 

j = 1; 

for i = 1:length(data1) 

    if data1(i,2) ~= 0 

       data(j,:) = data1(i,:); 

       t_d_str(j,:) = t_data(i,:); 

       j = j+1; 

    end 

end 

x(:,1) = data(:,1); 

x(:,2) = data(:,3); 

end 

t_d_str = datestr(datenum(t_d_str),'dd mmm yyyy HH:MM:SS.FFF'); 

disp('Data Acquisition and pre-processing time: ') 

toc 

 Centroid_val = 'Manually enter centroid values? Y, N \n'; 

CV = input(Centroid_val,'s'); 

centr = zeros(3,2); 

 Ideal_Val = 'Ideal Value of Tx line voltage you expect:\n'; 

V = input(Ideal_Val); 

 Set_Percent = 'Set the percentage separation of initial centroids from Transmission Line 

Voltage \n'; 

SP = input(Set_Percent);   

Dist = 'What kind of distance metric do you want to use? \n 1. Euclidean \n 2. Manhatten 

\n 3. Cosine Similarity \n 4. Vector Sum \n 5. L2 Norm \n'; 

D = input(Dist); 

tic 

%% Initializing centroids based on number of centroids chosen and data coming in. 

if CV == 'Y' 

    disp('Please Enter 3 values of centroids'); 

    for i = 1:3 

        disp(i) 

        centroid_vals = ' Enter Magnitude '; 
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        centr(i,1) = input(centroid_vals); 

        centroid_vals = ' Enter Phase '; 

        centr(i,2) = input(centroid_vals); 

    end 

elseif CV == 'N' 

    centr(1,1) = V; 

    centr(1,2) = mean(x(:,2)); 

    centr(2,1) = (1+SP/100)*V; 

    centr(2,2) = (1+SP/100)*mean(x(:,2)); 

    centr(3,1) = (1-SP/100)*V; 

    centr(3,2) = (1-SP/100)*mean(x(:,2)); 

else 

    disp('Enter Correct choice!') 

end 

%% Creating centroids and updating Cluster 

test = 0;  

while test ~= 3 

    sep = NaN; 

    count = 0; 

    pdist = inf; 

    sum_n_mean = zeros(1,2); 

    test = 0; 

    for i = 1:length(x) 

        for j = 1:3         

            X = (centr(j,1)-x(i,1))^2+(centr(j,2)-x(i,2))^2; 

            switch D  

                case 1 

                    sep = sqrt(X); 

                case 2 

                    sep = abs((centr(j,1)-x(i,1)))+abs((centr(j,2)-x(i,2))); 

                case 3 

                    sep = abs((centr(j,1)-

x(i,1)))*(((centr(j,2)*x(i,2)))/(abs(centr(j,2))*abs(x(i,2)))); 

                case 4 

                    sep = (centr(j,1))^2+(x(i,1))^2+2*centr(j,1)*x(i,1)*cos((centr(j,2)-

x(i,2))*pi/180); 

                otherwise 

                    sep = X; 

            end 

            if ~isnan(sep) && sep < pdist 

                pdist = sep; 

                x(i,3) = j; 

            end 

        end 

        pdist = inf; 

    end 
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    % Shifting Centroids 

    for i = 1:3 

        for j = 1:length(x) 

            if x(j,3) == i 

                sum_n_mean(1,1) = sum_n_mean(1,1)+x(j,1); 

                sum_n_mean(1,2) = sum_n_mean(1,2)+x(j,2); 

                count = count+1; 

            end 

        end 

        sum_n_mean(1,1) = sum_n_mean(1,1)/count; 

        sum_n_mean(1,2) = sum_n_mean(1,2)/count; 

        centr1(i,1) = sum_n_mean(1,1); 

        centr1(i,2) = sum_n_mean(1,2); 

        count = 0; 

        sum_n_mean = zeros(1,2); 

    end 

    for i = 1:3 

        if abs(centr1(i,1)-centr(i,1)) > 0 || abs(centr1(i,2)-centr(i,2)) > 0 

            centr(i,1) = centr1(i,1); 

            centr(i,2) = centr1(i,2); 

        elseif (abs(centr1(i,1)-centr(i,1)) <= 0 && abs(centr1(i,2)-centr(i,2)) <= 0) || 

isnan(centr1(i,1)) 

            test = test+1; 

        end 

    end 

end 

disp('K-Means computation time:') 

toc 

tic 

%% Grouping Data for Visualization 

sz = get(0,'ScreenSize'); 

strng = strcat('Cluster of voltages'); 

fig = figure('Position',[1 1 sz(3) sz(4)],'name',strng,'NumberTitle','off'); 

fll = [0 0 1;0 1 1;0 1 0;1 1 0;1 0 0;1 0 1;1 1 0;1 1 1]; 

brdr = [0 0 1;0 1 1;0 1 0;1 1 0;1 0 0;1 1 0;1 0 1;0 0 0]; 

subplot(1,2,1) 

temp = 1; 

plot_data1 = nan(length(x),3); 

plot_data2 = nan(length(x),3); 

plot_data3 = nan(length(x),3); 

plot_data4 = nan(length(x),3); 

plot_data5 = nan(length(x),3); 

data_table = zeros(8,5); 

data_table(4,:) = V+V; 

data_table(6,:) = 1000; 

chk_gd = 0; chk_lbd = 0; chk_hbd = 0; chk_lod = 0; chk_hod = 0; 
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unq = unique(x(:,3)); 

if length(unique(x(:,3))) > 1 

for i = 1:3    

        mx = max(x(x(:,3)==i,1)); 

        mn = min(x(x(:,3)==i,1)); 

        if ~isempty(mx) || ~isempty(mn) 

            if mx <= (1+SP/100)*V && mn >= (1-SP/100)*V 

                data_table(1,3) = data_table(1,3)+length(x(x(:,3)==i,1)); 

                data_table(3,3) = max(mx,data_table(3,3)); 

                data_table(4,3) = min(mn,data_table(4,3)); 

                data_table(5,3) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,3)); 

                data_table(6,3) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,3)); 

                chk_gd =chk_gd+1; 

                if chk_gd > 1 

                    data_table(7,3) = (data_table(7,3)+centr1(i,1))/chk_gd; 

                    data_table(8,3) = (data_table(8,3)+centr1(i,2))/chk_gd; 

                    plot_data1 = vertcat(plot_data1,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

ones(length(x(x(:,3)==i,1)),1)]); 

                    plot_time1 = vertcat(plot_time1,datenum(t_d_str(x(:,3)==i,:))); 

                else 

                    data_table(7,3) = centr1(i,1); 

                    data_table(8,3) = centr1(i,2); 

                    plot_data1 = [x(x(:,3)==i,1) x(x(:,3)==i,2) ones(length(x(x(:,3)==i,1)),1)]; 

                    plot_time1 = datenum(t_d_str(x(:,3)==i,:)); 

                end 

                clear mx_array mn_array 

            end 

            if mn > (1+SP/100)*V 

                data_table(1,5) = data_table(1,5)+length(x(x(:,3)==i,1)); 

                data_table(3,5) = max(mx,data_table(3,5)); 

                data_table(4,5) = min(mn,data_table(4,5)); 

                data_table(5,5) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,5)); 

                data_table(6,5) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,5)); 

                chk_hbd = chk_hbd+1; 

                if chk_hbd > 1 

                    data_table(7,5) = (data_table(7,5)+centr1(i,1))/chk_hbd; 

                    data_table(8,5) = (data_table(8,5)+centr1(i,2))/chk_hbd;  

                    plot_data2 = vertcat(plot_data2,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

2*ones(length(x(x(:,3)==i,2)),1)]); 

                    plot_time2 = vertcat(plot_time2,datenum(t_d_str(x(:,3)==i,13:24))); 

                else 

                    data_table(7,5) = centr1(i,1); 

                    data_table(8,5) = centr1(i,2); 

                    plot_data2 = [x(x(:,3)==i,1) x(x(:,3)==i,2) 2*ones(length(x(x(:,3)==i,2)),1)]; 

                    plot_time2 = datenum(t_d_str(x(:,3)==i,:)); 

                end 



 

192 

                clear mx_array mn_array 

            end 

            if mx < (1-SP/100)*V 

                data_table(1,1) = data_table(1,1)+length(x(x(:,3)==i,1)); 

                data_table(3,1) = max(mx,data_table(3,1)); 

                data_table(4,1) = min(mn,data_table(4,1)); 

                data_table(5,1) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,1)); 

                data_table(6,1) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,1)); 

                chk_lbd = chk_lbd+1; 

                if chk_lbd > 1 

                    data_table(7,1) = (data_table(7,1)+centr1(i,1))/chk_lbd; 

                    data_table(8,1) = (data_table(8,1)+centr1(i,2))/chk_lbd; 

                    plot_data3 = vertcat(plot_data3,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

3*ones(length(x(x(:,3)==i,2)),1)]); 

                    plot_time3 = vertcat(plot_time3,datenum(t_d_str(x(:,3)==i,:))); 

                else 

                    data_table(7,1) = centr1(i,1); 

                    data_table(8,1) = centr1(i,2); 

                    plot_data3 = [x(x(:,3)==i,1) x(x(:,3)==i,2) 3*ones(length(x(x(:,3)==i,2)),1)]; 

                    plot_time3 = datenum(t_d_str(x(:,3)==i,:)); 

                end 

                clear mx_array mn_array 

            end 

            if (mx >= (1-SP/100)*V && mx <= (1+SP/100)*V)  && mn < (1-SP/100)*V 

                oll = x(x(:,3)==i,1:2); 

                t_oll = t_d_str(x(:,3)==i,:); 

                for j = 1:2 

                    if j == 1 

                        data_table(1,3) = data_table(1,3)+length(oll(oll(:,1)>=(1-SP/100)*V,1)); 

                        data_table(3,3) = max(max(oll(oll(:,1)>=(1-

SP/100)*V,1)),data_table(3,3)); 

                        data_table(4,3) = min(min(oll(oll(:,1)>=(1-

SP/100)*V,1)),data_table(4,3)); 

                        data_table(5,3) = max(max(oll(oll(:,1)==max(oll(oll(:,1)>=(1-

SP/100)*V,1)),2)),data_table(5,3)); 

                        data_table(6,3) = min(min(oll(oll(:,1)==min(oll(oll(:,1)>=(1-

SP/100)*V,1)),2)),data_table(6,3)); 

                        chk_gd = chk_gd+1; 

                        if chk_gd > 1  

                            data_table(7,3) = (data_table(7,3)+mean(oll(oll(:,1)>=(1-

SP/100)*V,1)))/chk_gd; 

                            data_table(8,3) = (data_table(8,3)+mean(oll(oll(:,1)>=(1-

SP/100)*V,2)))/chk_gd; 

                            plot_data1 = vertcat(plot_data1,[oll(oll(:,1)>=(1-SP/100)*V,1) 

oll(oll(:,1)>=(1-SP/100)*V,2) ones(length(oll(oll(:,1)>=(1-SP/100)*V,1)),1)]); 
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                            plot_time1 = vertcat(plot_time1,datenum(t_oll(oll(:,1)>=(1-

SP/100)*V,:))); 

                        else 

                            data_table(7,3) = mean(oll(oll(:,1)>=(1-SP/100)*V,1)); 

                            data_table(8,3) = mean(oll(oll(:,1)>=(1-SP/100)*V,2)); 

                            plot_data1 = [oll(oll(:,1)>=(1-SP/100)*V,1) oll(oll(:,1)>=(1-

SP/100)*V,2) ones(length(oll(oll(:,1)>=(1-SP/100)*V,1)),1)]; 

                            plot_time1 = datenum(t_oll(oll(:,1)>=(1-SP/100)*V,:)); 

                        end 

                        clear mx_array mn_array 

                    else 

                        data_table(1,2) = data_table(1,2)+length(oll(oll(:,1)<(1-SP/100)*V,1)); 

                        data_table(3,2) = max(max(oll(oll(:,1)<(1-SP/100)*V,1)),data_table(3,2)); 

                        data_table(4,2) = min(min(oll(oll(:,1)<(1-SP/100)*V,1)),data_table(4,2)); 

                        data_table(5,2) = max(max(oll(oll(:,1)==max(oll(oll(:,1)<(1-

SP/100)*V,1)),2)),data_table(5,2)); 

                        data_table(6,2) = min(min(oll(oll(:,1)==min(oll(oll(:,1)<(1-

SP/100)*V,1)),2)),data_table(6,2)); 

                        chk_lod = chk_lod+1; 

                        if chk_lod > 1 

                            data_table(7,2) = (data_table(7,2)+mean(oll(oll(:,1)<(1-

SP/100)*V,1)))/chk_lod; 

                            data_table(8,2) = (data_table(8,2)+mean(oll(oll(:,1)<(1-

SP/100)*V,2)))/chk_lod; 

                            plot_data4 = vertcat(plot_data4,[oll(oll(:,1)<(1-SP/100)*V,1) 

oll(oll(:,1)<(1-SP/100)*V,2) 4*ones(length(oll(oll(:,1)<(1-SP/100)*V,1)),1)]); 

                            plot_time4 = vertcat(plot_time4,datenum(t_oll(oll(:,1)<(1-

SP/100)*V,:))); 

                        else 

                            data_table(7,2) = mean(oll(oll(:,1)<(1-SP/100)*V,1)); 

                            data_table(8,2) = mean(oll(oll(:,1)<(1-SP/100)*V,2)); 

                            plot_data4 = [oll(oll(:,1)<(1-SP/100)*V,1) oll(oll(:,1)<(1-SP/100)*V,2) 

4*ones(length(oll(oll(:,1)<(1-SP/100)*V,1)),1)]; 

                            plot_time4 = datenum(t_oll(oll(:,1)<(1-SP/100)*V,:)); 

                        end 

                    end 

                end 

                clear mx_array mn_array 

            end 

            if mx > (1+SP/100)*V && (mn >= (1-SP/100)*V && mn <= (1+SP/100)*V) 

                olh = x(x(:,3)==i,1:2); 

                t_olh = t_d_str(x(:,3)==i,:); 

                for j = 1:2 

                    if j == 1 

                        data_table(1,3) = data_table(1,3)+length(olh(olh(:,1)<=(1+SP/100)*V,1)); 
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                        data_table(3,3) = 

max(max(olh(olh(:,1)<=(1+SP/100)*V,1)),data_table(3,3)); 

                        data_table(4,3) = 

min(min(olh(olh(:,1)<=(1+SP/100)*V,1)),data_table(4,3)); 

                        data_table(5,3) = 

max(max(olh(olh(:,1)==max(olh(olh(:,1)<=(1+SP/100)*V,1)),2)),data_table(5,3)); 

                        data_table(6,3) = 

min(min(olh(olh(:,1)==min(olh(olh(:,1)<=(1+SP/100)*V,1)),2)),data_table(6,3)); 

                        if chk_gd > 1 

                            chk_gd = chk_gd+1; 

                            data_table(7,3) = 

(data_table(7,3)+mean(olh(olh(:,1)<=(1+SP/100)*V,1)))/chk_gd; 

                            data_table(8,3) = 

(data_table(8,3)+mean(olh(olh(:,1)<=(1+SP/100)*V,2)))/chk_gd; 

                            plot_data1 = vertcat(plot_data1,[olh(olh(:,1)<=(1+SP/100)*V,1) 

olh(olh(:,1)<=(1+SP/100)*V,2) ones(length(olh(olh(:,1)<=(1+SP/100)*V,1)),1)]); 

                            plot_time1 = 

vertcat(plot_time1,datenum(t_olh(olh(:,1)<=(1+SP/100)*V,:))); 

                        else 

                            chk_gd = chk_gd+1; 

                            data_table(7,3) = mean(olh(olh(:,1)<=(1+SP/100)*V,1)); 

                            data_table(8,3) = mean(olh(olh(:,1)<=(1+SP/100)*V,2)); 

                            plot_data1 = [olh(olh(:,1)<=(1+SP/100)*V,1) 

olh(olh(:,1)<=(1+SP/100)*V,2) ones(length(olh(olh(:,1)<=(1+SP/100)*V,1)),1)]; 

                            plot_time1 = datenum(t_olh(olh(:,1)<=(1+SP/100)*V,:)); 

                        end 

                    else 

                        data_table(1,4) = data_table(1,4)+length(olh(olh(:,1)>(1+SP/100)*V,1)); 

                        data_table(3,4) = 

max(max(olh(olh(:,1)>(1+SP/100)*V,1)),data_table(3,4)); 

                        data_table(4,4) = 

min(min(olh(olh(:,1)>(1+SP/100)*V,1)),data_table(4,4)); 

                        data_table(5,4) = 

max(max(olh(olh(:,1)==max(olh(olh(:,1)>(1+SP/100)*V,1)),2)),data_table(5,4)); 

                        data_table(6,4) = 

min(min(olh(olh(:,1)==min(olh(olh(:,1)>(1+SP/100)*V,1)),2)),data_table(6,4)); 

                        if chk_hod > 1 

                            chk_hod = chk_hod+1; 

                            data_table(7,4) = 

(data_table(7,4)+mean(olh(olh(:,1)>(1+SP/100)*V,1)))/chk_hod; 

                            data_table(8,4) = 

(data_table(8,4)+mean(olh(olh(:,1)>(1+SP/100)*V,2)))/chk_hod; 

                            plot_data5 = vertcat(plot_data5,[olh(olh(:,1)>(1+SP/100)*V,1) 

olh(olh(:,1)>(1+SP/100)*V,2) ones(length(olh(olh(:,1)>(1+SP/100)*V,1)),1)]); 

                            plot_time5 = 

vertcat(plot_time,datenum(t_olh(olh(:,1)>(1+SP/100)*V,:))); 
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                        else 

                            chk_hod = chk_hod+1; 

                            data_table(7,4) = mean(olh(olh(:,1)>(1+SP/100)*V,1)); 

                            data_table(8,4) = mean(olh(olh(:,1)>(1+SP/100)*V,2)); 

                            plot_data5 = [olh(olh(:,1)>(1+SP/100)*V,1) 

olh(olh(:,1)>(1+SP/100)*V,2) ones(length(olh(olh(:,1)>(1+SP/100)*V,1)),1)]; 

                            plot_time5 = datenum(t_olh(olh(:,1)>(1+SP/100)*V,:)); 

                        end 

                    end 

                end 

                clear mx_array mn_array 

            end 

        end 

    end 

else 

    mx = max(x(:,1)); 

    mn = min(x(:,1)); 

    if mx <= (1+SP/100)*V && mn >= (1-SP/100)*V 

        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(3,:),'MarkerEdgeColor',brdr(3,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('Good data'); 

        temp = temp+1; 

        hold on 

        data_table(1,3) =  length(x(:,1)); 

        data_table(3,3) = mx; 

        data_table(4,3) = mn; 

        data_table(5,3) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,3) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,3) = centr1(1,1); 

        data_table(8,3) = centr1(1,2);    

    end 

    if mn > (1+SP/100)*V 

        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(5,:),'MarkerEdgeColor',brdr(5,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('High value noise'); 

        disp(h.Marker) 
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        temp = temp+1; 

        hold on 

        data_table(1,5) =  length(x(:,1)); 

        data_table(3,5) = mx; 

        data_table(4,5) = mn; 

        data_table(5,5) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,5) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,5) = centr1(1,1); 

        data_table(8,5) = centr1(1,2);    

    end 

    if mx < (1-SP/100)*V 

        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(1,:),'MarkerEdgeColor',brdr(1,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('Low value noise'); 

        disp(h.Marker) 

        temp = temp+1; 

        hold on 

        data_table(1,1) =  length(x(:,1)); 

        data_table(3,1) = mx; 

        data_table(4,1) = mn; 

        data_table(5,1) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,1) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,1) = centr1(1,1); 

        data_table(8,1) = centr1(1,2); 

    end 

end 

% Plotting Data 

for i = 1:5 

    switch(i) 

        case 1 

            if ~isnan(plot_data1(1,1)) 

                h = scatter3(plot_time1,plot_data1(:,2),plot_data1(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(3,:),'MarkerEdgeColor',brdr(3,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Good Data'); 
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                temp = temp+1; 

                hold on 

            end 

        case 2 

            if ~isnan(plot_data2(1,1)) 

                h = scatter3(plot_time2,plot_data2(:,2),plot_data2(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(5,:),'MarkerEdgeColor',brdr(5,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('High Noise'); 

                temp = temp+1; 

                hold on 

            end 

        case 3 

            if ~isnan(plot_data3(1,1)) 

                h = scatter3(plot_time3,plot_data3(:,2),plot_data3(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks');                

set(h,'MarkerFaceColor',fll(1,:),'MarkerEdgeColor',brdr(1,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Low Noise'); 

                temp = temp+1; 

                hold on 

            end 

        case 4 

            if ~isnan(plot_data4(1,1)) 

                h = scatter3(plot_time4,plot_data4(:,2),plot_data4(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(2,:),'MarkerEdgeColor',brdr(2,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Low Outlier'); 

                temp = temp+1; 
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                hold on 

            end 

        case 5 

            if ~isnan(plot_data5(1,1)) 

                h = scatter3(plot_time4,plot_data4(:,2),plot_data4(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

                set(h,'MarkerFaceColor','Yellow','MarkerEdgeColor','Yellow'); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('High Outlier'); 

                temp = temp+1; 

                hold on 

            end 

    end 

end 

legend(labl); 

dcm_obj = datacursormode(fig); 

set(dcm_obj,'DisplayStyle','datatip','SnapToDataVertex','on','Enable','on','UpdateFcn',@m

yupdatefcn); 

for i = 1:5 

    data_table(2,i) = data_table(1,i)/length(x)*100; 

end 

data_table(4,data_table(4,:) == V+V) = 0; 

data_table(6,data_table(6,:) == 1000) = 0; 

old = digits(6); 

data_table = double(vpa(data_table)); 

tic 

%% Calculate Dunn's Index 

f = 1; 

r = 1; 

length(data_table(1,:)~=0) 

dist_centroids = zeros(combntns(length(data_table(1,data_table(1,:)~=0)),2),1); 

for i = f:length(data_table(1,:)) 

    if data_table(1,i) ~= 0 

        for j = (f+1):length(data_table(1,:)) 

            if data_table(1,j) ~= 0  

                dist_centroids(r,1) = sqrt((data_table(7,i)-data_table(7,j))^2+(data_table(8,i)-

data_table(8,j))^2); 

                r = r+1; 

                disp(r) 

            end 

        end 
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    end 

    f = f+1; 

end 

dist_points = zeros(length(data_table(1,data_table(1,:)~=0)),1); 

for i = 1:length(data_table(1,:)) 

    if data_table(1,i) ~= 0 

        dist_points(i,1) = sqrt((data_table(3,i)-data_table(4,i))^2+(data_table(5,i)-

data_table(6,i))^2); 

    end 

end 

dunn_idx = zeros(length(dist_points)*length(dist_centroids),1); 

r = 1; 

for i = 1:length(dist_points) 

    for j = 1:length(dist_centroids) 

        dunn_idx(r,1) = dist_centroids(j,1)/dist_points(i,1); 

        r = r+1; 

    end 

end 

disp('Dunn Index calculation time:') 

toc 

data_table(10,1) = min(dunn_idx); 

  

table_figure(data_table); 

hold off 

disp('Data plotting time:') 

toc 

 

%% Function table_figure 

 

function [] = table_figure(data_table) 

rowName = {'NUMBER OF POINTS','PERCENTAGE OF TOTAL','MAX 

MAGNITUDE','MIN MAGNITUDE','MAX ANGLE','MIN ANGLE','CENTROID 

MAGNITUDE','CENTROID ANGLE','RATE OF CHANGE OF VOLTAGE 

MAG.','DUNN IDX'}; 

colName = {'BLUE','CYAN','GREEN','YELLOW','RED'}; 

subplot(1,2,1) 

t=uitable('ColumnName',colName,'RowName',rowName,'Data',data_table); 

  

  

  

tableextent = get(t,'Extent'); 

oldposition = get(t,'Position'); 

newposition = [oldposition(4)+700 oldposition(4)+200 tableextent(3) tableextent(4)]; 

set(t, 'Position', newposition); 

end 
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%% Function myupdatefcn 

 

function txt = myupdatefcn(empt,event_obj) 

% Customizes text of data tips 

  

pos = get(event_obj,'Position'); 

txt = {['Time: ',datestr(pos(1),14)],['Magnitude: ',num2str(pos(3))],['Phase: 

',num2str(pos(2))]}; 

end 

 

2.1 MATLAB CODE FOR CURRENT DATA 

% Data input from .CSV magnitude and angle 

    delimiter = ','; 

    formatSpec = '%f%s%[^\n\r]'; 

    filename1 = 

'C:\Users\ranganath.vallakati\Documents\Classification\Test_Folder\data_feed_Vm.csv';     

    fileID = fopen(filename1,'r'); 

    dataArray1 = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' ,NaN, 

'ReturnOnError', false); 

    d1 = dataArray1{:,1}; 

    t1 = char(dataArray1{:,2}); 

    t_1(1:length(t1),1) = datenum(t1(:,:)); 

    filename2 = 

'C:\Users\ranganath.vallakati\Documents\Classification\Test_Folder\data_feed_Va.csv'; 

    fileID = fopen(filename2,'r'); 

    dataArray2 = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' ,NaN, 

'ReturnOnError', false); 

    d2 = dataArray2{:,1}; 

    t2 = char(dataArray2{:,2}); 

    t_2(1:length(t2),1) = datenum(t2(:,:));     

%% Matching both magnitude and angle and rounding off data to integers 

    if length(d1) >= length(d2)  

        pdata = zeros(length(d1),4); 

    end 

    if length(d1) < length(d2) 

        pdata = zeros(length(d2),4); 

    end  

    pdata(1:length(d1),1) = d1(:,1); 

    pdata(:,2) = 0; 

    pdata(1:length(d2),3) = d2(1:length(d2),1); 

    pdata(:,4) = 0; 

    pdata(1:length(d1),2) = t_1(:,1); 

    pdata(1:length(d2),4) = t_2(:,1); 

    for i = 1:length(pdata) 

        if pdata(i,2) == 0  



 

201 

            pdata(i,2) = NaN; 

            pdata(i,1) = NaN; 

        end 

        if pdata(i,4) == 0  

            pdata(i,4) = NaN; 

            pdata(i,3) = NaN; 

        end 

    end 

    data1 = NaN(length(pdata),4); 

    for i = 1:length(pdata) 

        for j = 1:length(pdata) 

            if ~isnan(pdata(i,2)) && ~isnan(pdata(i,1)) 

                if pdata(i,2)== pdata(j,4) && ~isnan(pdata(j,3)) 

                    data1(i,1) = pdata(i,1); 

                    data1(i,2) = pdata(i,2); 

                    data1(i,3) = pdata(j,3); 

                    data1(i,4) = pdata(j,4); 

                    t_data(i,:) = t1(i,:); 

                end 

            end 

        end 

    end 

    data1(isnan(data1(:,1)),:) = []; 

    j = 1; 

    for i = 1:length(data1) 

        if data1(i,2) ~= 0 

            data(j,:) = data1(i,:); 

            t_d_str(j,:) = t_data(i,:); 

            j = j+1; 

        end 

    end 

x(:,1) = data(:,1); 

x(:,2) = data(:,3); 

end 

t_d_str = datestr(datenum(t_d_str),'dd mmm yyyy HH:MM:SS.FFF'); 

disp('Data Acquisition and pre-processing time: ') 

toc 

 Centroid_val = 'Manually enter centroid values? Y, N \n'; 

CV = input(Centroid_val,'s'); 

centr = zeros(3,2); 

 Ideal_Val = 'Ideal Value of Tx line voltage you expect:\n'; 

V = input(Ideal_Val); 

 Set_Percent = 'Set the percentage separation of initial centroids from Transmission Line 

Voltage \n'; 

SP = input(Set_Percent);   
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Dist = 'What kind of distance metric do you want to use? \n 1. Euclidean \n 2. Manhatten 

\n 3. Cosine Similarity \n 4. Vector Sum \n 5. L2 Norm \n'; 

D = input(Dist); 

tic 

%% Initializing centroids based on number of centroids chosen and data coming in. 

if CV == 'Y' 

    disp('Please Enter 3 values of centroids'); 

    for i = 1:3 

        disp(i) 

        centroid_vals = ' Enter Magnitude '; 

        centr(i,1) = input(centroid_vals); 

        centroid_vals = ' Enter Phase '; 

        centr(i,2) = input(centroid_vals); 

    end 

elseif CV == 'N' 

    centr(1,1) = V; 

    centr(1,2) = mean(x(:,2)); 

    centr(2,1) = (1+SP/100)*V; 

    centr(2,2) = (1+SP/100)*mean(x(:,2)); 

    centr(3,1) = (1-SP/100)*V; 

    centr(3,2) = (1-SP/100)*mean(x(:,2)); 

else 

    disp('Enter Correct choice!') 

end 

%% Creating centroids and updating Cluster 

test = 0;  

while test ~= 3 

    sep = NaN; 

    count = 0; 

    pdist = inf; 

    sum_n_mean = zeros(1,2); 

    test = 0; 

    for i = 1:length(x) 

        for j = 1:3         

            X = (centr(j,1)-x(i,1))^2+(centr(j,2)-x(i,2))^2; 

            switch D  

                case 1 

                    sep = sqrt(X); 

                case 2 

                    sep = abs((centr(j,1)-x(i,1)))+abs((centr(j,2)-x(i,2))); 

                case 3 

                    sep = abs((centr(j,1)-

x(i,1)))*(((centr(j,2)*x(i,2)))/(abs(centr(j,2))*abs(x(i,2)))); 

                case 4 

                    sep = (centr(j,1))^2+(x(i,1))^2+2*centr(j,1)*x(i,1)*cos((centr(j,2)-

x(i,2))*pi/180); 
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                otherwise 

                    sep = X; 

            end 

            if ~isnan(sep) && sep < pdist 

                pdist = sep; 

                x(i,3) = j; 

            end 

        end 

        pdist = inf; 

    end 

    % Shifting Centroids 

    for i = 1:3 

        for j = 1:length(x) 

            if x(j,3) == i 

                sum_n_mean(1,1) = sum_n_mean(1,1)+x(j,1); 

                sum_n_mean(1,2) = sum_n_mean(1,2)+x(j,2); 

                count = count+1; 

            end 

        end 

        sum_n_mean(1,1) = sum_n_mean(1,1)/count; 

        sum_n_mean(1,2) = sum_n_mean(1,2)/count; 

        centr1(i,1) = sum_n_mean(1,1); 

        centr1(i,2) = sum_n_mean(1,2); 

        count = 0; 

        sum_n_mean = zeros(1,2); 

    end 

    for i = 1:3 

        if abs(centr1(i,1)-centr(i,1)) > 0 || abs(centr1(i,2)-centr(i,2)) > 0 

            centr(i,1) = centr1(i,1); 

            centr(i,2) = centr1(i,2); 

        elseif (abs(centr1(i,1)-centr(i,1)) <= 0 && abs(centr1(i,2)-centr(i,2)) <= 0) || 

isnan(centr1(i,1)) 

            test = test+1; 

        end 

    end 

end 

disp('K-Means computation time:') 

toc 

tic 

%% Grouping Data for Visualization 

sz = get(0,'ScreenSize'); 

strng = strcat('Cluster of voltages');% from',t_d_str(1,1:11),' to'); 

% strng = strcat(strng,t_d_str(length(t_d_str),1:11)); 

fig = figure('Position',[1 1 sz(3) sz(4)],'name',strng,'NumberTitle','off'); 

fll = [0 0 1;0 1 1;0 1 0;1 1 0;1 0 0;1 0 1;1 1 0;1 1 1]; 

brdr = [0 0 1;0 1 1;0 1 0;1 1 0;1 0 0;1 1 0;1 0 1;0 0 0]; 
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subplot(1,2,1) 

temp = 1; 

plot_data1 = nan(length(x),3); 

plot_data2 = nan(length(x),3); 

plot_data3 = nan(length(x),3); 

plot_data4 = nan(length(x),3); 

plot_data5 = nan(length(x),3); 

data_table = zeros(8,5); 

data_table(4,:) = V+V; 

data_table(6,:) = 1000; 

chk_gd = 0; chk_lbd = 0; chk_hbd = 0; chk_lod = 0; chk_hod = 0; 

unq = unique(x(:,3)); 

if length(unique(x(:,3))) > 1 

    for i = 1:3    

        mx = max(x(x(:,3)==i,1)); 

        mn = min(x(x(:,3)==i,1)); 

        if ~isempty(mx) || ~isempty(mn) 

            if mx <= (1+SP/100)*V && mn >= (1-SP/100)*V 

                data_table(1,3) = data_table(1,3)+length(x(x(:,3)==i,1)); 

                data_table(3,3) = max(mx,data_table(3,3)); 

                data_table(4,3) = min(mn,data_table(4,3)); 

                data_table(5,3) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,3)); 

                data_table(6,3) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,3)); 

                chk_gd =chk_gd+1; 

                if chk_gd > 1 

                    data_table(7,3) = (data_table(7,3)+centr1(i,1))/chk_gd; 

                    data_table(8,3) = (data_table(8,3)+centr1(i,2))/chk_gd; 

                    plot_data1 = vertcat(plot_data1,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

ones(length(x(x(:,3)==i,1)),1)]); 

                    plot_time1 = vertcat(plot_time1,datenum(t_d_str(x(:,3)==i,:))); 

                else 

                    data_table(7,3) = centr1(i,1); 

                    data_table(8,3) = centr1(i,2); 

                    plot_data1 = [x(x(:,3)==i,1) x(x(:,3)==i,2) ones(length(x(x(:,3)==i,1)),1)]; 

                    plot_time1 = datenum(t_d_str(x(:,3)==i,:)); 

                end 

                clear mx_array mn_array 

            end 

            if mn > (1+SP/100)*V 

                data_table(1,5) = data_table(1,5)+length(x(x(:,3)==i,1)); 

                data_table(3,5) = max(mx,data_table(3,5)); 

                data_table(4,5) = min(mn,data_table(4,5)); 

                data_table(5,5) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,5)); 

                data_table(6,5) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,5)); 

                chk_hbd = chk_hbd+1; 

                if chk_hbd > 1 
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                    data_table(7,5) = (data_table(7,5)+centr1(i,1))/chk_hbd; 

                    data_table(8,5) = (data_table(8,5)+centr1(i,2))/chk_hbd;  

                    plot_data2 = vertcat(plot_data2,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

2*ones(length(x(x(:,3)==i,2)),1)]); 

                    plot_time2 = vertcat(plot_time2,datenum(t_d_str(x(:,3)==i,13:24))); 

                else 

                    data_table(7,5) = centr1(i,1); 

                    data_table(8,5) = centr1(i,2); 

                    plot_data2 = [x(x(:,3)==i,1) x(x(:,3)==i,2) 2*ones(length(x(x(:,3)==i,2)),1)]; 

                    plot_time2 = datenum(t_d_str(x(:,3)==i,:)); 

                end 

                clear mx_array mn_array 

            end 

            if mx < (1-SP/100)*V 

                data_table(1,1) = data_table(1,1)+length(x(x(:,3)==i,1)); 

                data_table(3,1) = max(mx,data_table(3,1)); 

                data_table(4,1) = min(mn,data_table(4,1)); 

                data_table(5,1) = max(max(x(x(:,1)==max(x(x(:,3)==i,1)),2)),data_table(5,1)); 

                data_table(6,1) = min(min(x(x(:,1)==min(x(x(:,3)==i,1)),2)),data_table(6,1)); 

                chk_lbd = chk_lbd+1; 

                if chk_lbd > 1 

                    data_table(7,1) = (data_table(7,1)+centr1(i,1))/chk_lbd; 

                    data_table(8,1) = (data_table(8,1)+centr1(i,2))/chk_lbd; 

                    plot_data3 = vertcat(plot_data3,[x(x(:,3)==i,1) x(x(:,3)==i,2) 

3*ones(length(x(x(:,3)==i,2)),1)]); 

                    plot_time3 = vertcat(plot_time3,datenum(t_d_str(x(:,3)==i,:))); 

                else 

                    data_table(7,1) = centr1(i,1); 

                    data_table(8,1) = centr1(i,2); 

                    plot_data3 = [x(x(:,3)==i,1) x(x(:,3)==i,2) 3*ones(length(x(x(:,3)==i,2)),1)]; 

                    plot_time3 = datenum(t_d_str(x(:,3)==i,:)); 

                end 

                clear mx_array mn_array 

            end 

            if (mx >= (1-SP/100)*V && mx <= (1+SP/100)*V)  && mn < (1-SP/100)*V 

                oll = x(x(:,3)==i,1:2); 

                t_oll = t_d_str(x(:,3)==i,:); 

                for j = 1:2 

                    if j == 1 

                        data_table(1,3) = data_table(1,3)+length(oll(oll(:,1)>=(1-SP/100)*V,1)); 

                        data_table(3,3) = max(max(oll(oll(:,1)>=(1-

SP/100)*V,1)),data_table(3,3)); 

                        data_table(4,3) = min(min(oll(oll(:,1)>=(1-

SP/100)*V,1)),data_table(4,3)); 

                        data_table(5,3) = max(max(oll(oll(:,1)==max(oll(oll(:,1)>=(1-

SP/100)*V,1)),2)),data_table(5,3)); 



 

206 

                        data_table(6,3) = min(min(oll(oll(:,1)==min(oll(oll(:,1)>=(1-

SP/100)*V,1)),2)),data_table(6,3)); 

                        chk_gd = chk_gd+1; 

                        if chk_gd > 1  

                            data_table(7,3) = (data_table(7,3)+mean(oll(oll(:,1)>=(1-

SP/100)*V,1)))/chk_gd; 

                            data_table(8,3) = (data_table(8,3)+mean(oll(oll(:,1)>=(1-

SP/100)*V,2)))/chk_gd; 

                            plot_data1 = vertcat(plot_data1,[oll(oll(:,1)>=(1-SP/100)*V,1) 

oll(oll(:,1)>=(1-SP/100)*V,2) ones(length(oll(oll(:,1)>=(1-SP/100)*V,1)),1)]); 

                            plot_time1 = vertcat(plot_time1,datenum(t_oll(oll(:,1)>=(1-

SP/100)*V,:))); 

                        else 

                            data_table(7,3) = mean(oll(oll(:,1)>=(1-SP/100)*V,1)); 

                            data_table(8,3) = mean(oll(oll(:,1)>=(1-SP/100)*V,2)); 

                            plot_data1 = [oll(oll(:,1)>=(1-SP/100)*V,1) oll(oll(:,1)>=(1-

SP/100)*V,2) ones(length(oll(oll(:,1)>=(1-SP/100)*V,1)),1)]; 

                            plot_time1 = datenum(t_oll(oll(:,1)>=(1-SP/100)*V,:)); 

                        end 

                        clear mx_array mn_array 

                    else 

                        data_table(1,2) = data_table(1,2)+length(oll(oll(:,1)<(1-SP/100)*V,1)); 

                        data_table(3,2) = max(max(oll(oll(:,1)<(1-SP/100)*V,1)),data_table(3,2)); 

                        data_table(4,2) = min(min(oll(oll(:,1)<(1-SP/100)*V,1)),data_table(4,2)); 

                        data_table(5,2) = max(max(oll(oll(:,1)==max(oll(oll(:,1)<(1-

SP/100)*V,1)),2)),data_table(5,2)); 

                        data_table(6,2) = min(min(oll(oll(:,1)==min(oll(oll(:,1)<(1-

SP/100)*V,1)),2)),data_table(6,2)); 

                        chk_lod = chk_lod+1; 

                        if chk_lod > 1 

                            data_table(7,2) = (data_table(7,2)+mean(oll(oll(:,1)<(1-

SP/100)*V,1)))/chk_lod; 

                            data_table(8,2) = (data_table(8,2)+mean(oll(oll(:,1)<(1-

SP/100)*V,2)))/chk_lod; 

                            plot_data4 = vertcat(plot_data4,[oll(oll(:,1)<(1-SP/100)*V,1) 

oll(oll(:,1)<(1-SP/100)*V,2) 4*ones(length(oll(oll(:,1)<(1-SP/100)*V,1)),1)]); 

                            plot_time4 = vertcat(plot_time4,datenum(t_oll(oll(:,1)<(1-

SP/100)*V,:))); 

                        else 

                            data_table(7,2) = mean(oll(oll(:,1)<(1-SP/100)*V,1)); 

                            data_table(8,2) = mean(oll(oll(:,1)<(1-SP/100)*V,2)); 

                            plot_data4 = [oll(oll(:,1)<(1-SP/100)*V,1) oll(oll(:,1)<(1-SP/100)*V,2) 

4*ones(length(oll(oll(:,1)<(1-SP/100)*V,1)),1)]; 

                            plot_time4 = datenum(t_oll(oll(:,1)<(1-SP/100)*V,:)); 

                        end 

                    end 
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                end 

                clear mx_array mn_array 

            end 

            if mx > (1+SP/100)*V && (mn >= (1-SP/100)*V && mn <= (1+SP/100)*V) 

                olh = x(x(:,3)==i,1:2); 

                t_olh = t_d_str(x(:,3)==i,:); 

                for j = 1:2 

                    if j == 1 

                        data_table(1,3) = data_table(1,3)+length(olh(olh(:,1)<=(1+SP/100)*V,1)); 

                        data_table(3,3) = 

max(max(olh(olh(:,1)<=(1+SP/100)*V,1)),data_table(3,3)); 

                        data_table(4,3) = 

min(min(olh(olh(:,1)<=(1+SP/100)*V,1)),data_table(4,3)); 

                        data_table(5,3) = 

max(max(olh(olh(:,1)==max(olh(olh(:,1)<=(1+SP/100)*V,1)),2)),data_table(5,3)); 

                        data_table(6,3) = 

min(min(olh(olh(:,1)==min(olh(olh(:,1)<=(1+SP/100)*V,1)),2)),data_table(6,3)); 

                        if chk_gd > 1 

                            chk_gd = chk_gd+1; 

                            data_table(7,3) = 

(data_table(7,3)+mean(olh(olh(:,1)<=(1+SP/100)*V,1)))/chk_gd; 

                            data_table(8,3) = 

(data_table(8,3)+mean(olh(olh(:,1)<=(1+SP/100)*V,2)))/chk_gd; 

                            plot_data1 = vertcat(plot_data1,[olh(olh(:,1)<=(1+SP/100)*V,1) 

olh(olh(:,1)<=(1+SP/100)*V,2) ones(length(olh(olh(:,1)<=(1+SP/100)*V,1)),1)]); 

                            plot_time1 = 

vertcat(plot_time1,datenum(t_olh(olh(:,1)<=(1+SP/100)*V,:))); 

                        else 

                            chk_gd = chk_gd+1; 

                            data_table(7,3) = mean(olh(olh(:,1)<=(1+SP/100)*V,1)); 

                            data_table(8,3) = mean(olh(olh(:,1)<=(1+SP/100)*V,2)); 

                            plot_data1 = [olh(olh(:,1)<=(1+SP/100)*V,1) 

olh(olh(:,1)<=(1+SP/100)*V,2) ones(length(olh(olh(:,1)<=(1+SP/100)*V,1)),1)]; 

                            plot_time1 = datenum(t_olh(olh(:,1)<=(1+SP/100)*V,:)); 

                        end 

                    else 

                        data_table(1,4) = data_table(1,4)+length(olh(olh(:,1)>(1+SP/100)*V,1)); 

                        data_table(3,4) = 

max(max(olh(olh(:,1)>(1+SP/100)*V,1)),data_table(3,4)); 

                        data_table(4,4) = 

min(min(olh(olh(:,1)>(1+SP/100)*V,1)),data_table(4,4)); 

                        data_table(5,4) = 

max(max(olh(olh(:,1)==max(olh(olh(:,1)>(1+SP/100)*V,1)),2)),data_table(5,4)); 

                        data_table(6,4) = 

min(min(olh(olh(:,1)==min(olh(olh(:,1)>(1+SP/100)*V,1)),2)),data_table(6,4)); 

                        if chk_hod > 1 
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                            chk_hod = chk_hod+1; 

                            data_table(7,4) = 

(data_table(7,4)+mean(olh(olh(:,1)>(1+SP/100)*V,1)))/chk_hod; 

                            data_table(8,4) = 

(data_table(8,4)+mean(olh(olh(:,1)>(1+SP/100)*V,2)))/chk_hod; 

                            plot_data5 = vertcat(plot_data5,[olh(olh(:,1)>(1+SP/100)*V,1) 

olh(olh(:,1)>(1+SP/100)*V,2) ones(length(olh(olh(:,1)>(1+SP/100)*V,1)),1)]); 

                            plot_time5 = 

vertcat(plot_time,datenum(t_olh(olh(:,1)>(1+SP/100)*V,:))); 

                        else 

                            chk_hod = chk_hod+1; 

                            data_table(7,4) = mean(olh(olh(:,1)>(1+SP/100)*V,1)); 

                            data_table(8,4) = mean(olh(olh(:,1)>(1+SP/100)*V,2)); 

                            plot_data5 = [olh(olh(:,1)>(1+SP/100)*V,1) 

olh(olh(:,1)>(1+SP/100)*V,2) ones(length(olh(olh(:,1)>(1+SP/100)*V,1)),1)]; 

                            plot_time5 = datenum(t_olh(olh(:,1)>(1+SP/100)*V,:)); 

                        end 

                    end 

                end 

                clear mx_array mn_array 

            end 

        end 

    end 

else 

    mx = max(x(:,1)); 

    mn = min(x(:,1)); 

    if mx <= (1+SP/100)*V && mn >= (1-SP/100)*V 

        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(3,:),'MarkerEdgeColor',brdr(3,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('Good data'); 

        temp = temp+1; 

        hold on 

        data_table(1,3) =  length(x(:,1)); 

        data_table(3,3) = mx; 

        data_table(4,3) = mn; 

        data_table(5,3) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,3) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,3) = centr1(1,1); 

        data_table(8,3) = centr1(1,2);    

    end 

    if mn > (1+SP/100)*V 
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        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(5,:),'MarkerEdgeColor',brdr(5,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('High value noise'); 

        disp(h.Marker) 

        temp = temp+1; 

        hold on 

        data_table(1,5) =  length(x(:,1)); 

        data_table(3,5) = mx; 

        data_table(4,5) = mn; 

        data_table(5,5) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,5) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,5) = centr1(1,1); 

        data_table(8,5) = centr1(1,2);    

    end 

    if mx < (1-SP/100)*V 

        h = scatter3(datenum(t_d_str(:,13:24)),x(:,2),x(:,1)); 

        dateFormat = 13; 

        datetick('x',dateFormat,'keepticks'); 

        set(h,'MarkerFaceColor',fll(1,:),'MarkerEdgeColor',brdr(1,:)); 

        xlabel('Time'); 

        ylabel('Phase Angle'); 

        zlabel('Voltage Magnitude'); 

        labl{1,temp} = strcat('Low value noise'); 

        disp(h.Marker) 

        temp = temp+1; 

        hold on 

        data_table(1,1) =  length(x(:,1)); 

        data_table(3,1) = mx; 

        data_table(4,1) = mn; 

        data_table(5,1) = max(x(x(:,1)==max(x(x(:,3)==1,1)),2)); 

        data_table(6,1) = min(x(x(:,1)==min(x(x(:,3)==1,1)),2)); 

        data_table(7,1) = centr1(1,1); 

        data_table(8,1) = centr1(1,2); 

    end 

end 

% Plotting Data 

for i = 1:5 

    switch(i) 

        case 1 

            if ~isnan(plot_data1(1,1)) 

                h = scatter3(plot_time1,plot_data1(:,2),plot_data1(:,1)); 
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                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(3,:),'MarkerEdgeColor',brdr(3,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Good Data'); 

                temp = temp+1; 

                hold on 

            end 

        case 2 

            if ~isnan(plot_data2(1,1)) 

                h = scatter3(plot_time2,plot_data2(:,2),plot_data2(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(5,:),'MarkerEdgeColor',brdr(5,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('High Noise'); 

                temp = temp+1; 

                hold on 

            end 

        case 3 

            if ~isnan(plot_data3(1,1)) 

                h = scatter3(plot_time3,plot_data3(:,2),plot_data3(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(1,:),'MarkerEdgeColor',brdr(1,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Low Noise'); 

                temp = temp+1; 

                hold on 

            end 

        case 4 

            if ~isnan(plot_data4(1,1)) 

                h = scatter3(plot_time4,plot_data4(:,2),plot_data4(:,1)); 

                dateFormat = 13; 
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                datetick('x',dateFormat,'keepticks'); 

set(h,'MarkerFaceColor',fll(2,:),'MarkerEdgeColor',brdr(2,:)); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('Low Outlier'); 

                temp = temp+1; 

                hold on 

            end 

        case 5 

            if ~isnan(plot_data5(1,1)) 

                h = scatter3(plot_time4,plot_data4(:,2),plot_data4(:,1)); 

                dateFormat = 13; 

                datetick('x',dateFormat,'keepticks'); 

                set(h,'MarkerFaceColor','Yellow','MarkerEdgeColor','Yellow'); 

                set(h,'DefaultFigureVisible','off') 

                hold on                 

                xlabel('Time'); 

                ylabel('Phase Angle'); 

                zlabel('Voltage Magnitude'); 

                labl{1,temp} = strcat('High Outlier'); 

                temp = temp+1; 

                hold on 

            end 

    end 

end 

legend(labl); 

dcm_obj = datacursormode(fig); 

set(dcm_obj,'DisplayStyle','datatip','SnapToDataVertex','on','Enable','on','UpdateFcn',@m

yupdatefcn); 

for i = 1:5 

    data_table(2,i) = data_table(1,i)/length(x)*100; 

end 

data_table(4,data_table(4,:) == V+V) = 0; 

data_table(6,data_table(6,:) == 1000) = 0; 

old = digits(6); 

data_table = double(vpa(data_table)); 

tic 

%% Calculate Dunn's Index 

f = 1; 

r = 1; 

length(data_table(1,:)~=0) 

dist_centroids = zeros(combntns(length(data_table(1,data_table(1,:)~=0)),2),1); 

for i = f:length(data_table(1,:)) 
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    if data_table(1,i) ~= 0 

        for j = (f+1):length(data_table(1,:)) 

            if data_table(1,j) ~= 0  

                dist_centroids(r,1) = sqrt((data_table(7,i)-data_table(7,j))^2+(data_table(8,i)-

data_table(8,j))^2); 

                r = r+1; 

                disp(r) 

            end 

        end 

    end 

    f = f+1; 

end 

dist_points = zeros(length(data_table(1,data_table(1,:)~=0)),1); 

for i = 1:length(data_table(1,:)) 

    if data_table(1,i) ~= 0 

        dist_points(i,1) = sqrt((data_table(3,i)-data_table(4,i))^2+(data_table(5,i)-

data_table(6,i))^2); 

    end 

end 

dunn_idx = zeros(length(dist_points)*length(dist_centroids),1); 

r = 1; 

for i = 1:length(dist_points) 

    for j = 1:length(dist_centroids) 

        dunn_idx(r,1) = dist_centroids(j,1)/dist_points(i,1); 

        r = r+1; 

    end 

end 

disp('Dunn Index calculation time:') 

toc 

data_table(10,1) = min(dunn_idx); 

  

table_figure(data_table); 

hold off 

disp('Data plotting time:') 

toc 
 

%% Function table_figure 

 

function [] = table_figure(data_table) 

rowName = {'NUMBER OF POINTS','PERCENTAGE OF TOTAL','MAX 

MAGNITUDE','MIN MAGNITUDE','MAX ANGLE','MIN ANGLE','CENTROID 

MAGNITUDE','CENTROID ANGLE','RATE OF CHANGE OF VOLTAGE 

MAG.','DUNN IDX'}; 

colName = {'BLUE','CYAN','GREEN','YELLOW','RED'}; 

subplot(1,2,1) 

t=uitable('ColumnName',colName,'RowName',rowName,'Data',data_table); 
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tableextent = get(t,'Extent'); 

oldposition = get(t,'Position'); 

newposition = [oldposition(4)+700 oldposition(4)+200 tableextent(3) tableextent(4)]; 

set(t, 'Position', newposition); 

end 

 

%% Function myupdatefcn 

 

function txt = myupdatefcn(empt,event_obj) 

% Customizes text of data tips 

  

pos = get(event_obj,'Position'); 

txt = {['Time: ',datestr(pos(1),14)],['Magnitude: ',num2str(pos(3))],['Phase: 

',num2str(pos(2))]}; 

end 
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APPENDIX B 

FORECASTING OF LOAD DATA 

1. MATLAB CODE FOR DATA ACQUISITION FROM ‘.xls’ FILE 

Inputs: 1. Date of first forecast. 2. Hour of the day to forecast load data. 3. Train database 

start date. 4. Train database end date. 

%% Creating database from available xls files 

prompt = {'Enter forecast start date:','Enter the hour:','Enter database end date:','Enter 

database start date','Enter forecast end date'}; 

dlg_title = 'Input'; 

num_lines = 1; 

def = {'m/d/yyyy','24 hrs format','m/d/yyyy','m/d/yyyy'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

%% Creating Training database 

[database] = trainDatabase(answer); 

%% Gathering Temperature data 

[temp_data] = gatherTemperature(); 

vNames = {'Date','Temperature'}; 

T1 = cell2table(temp_data,'VariableNames',vNames); 

temp_file = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Temperature_Data.csv'; 

writetable(T1,temp_file); 

%% Converting database to linear data 

[linearData] = database2Linear(database,answer,temp_data); 

%% Converting cell to table 

varNames = 

{'Date','Datenum','DemandP','Year_from_Start','Season','Month','Day_of_Week','Daytype

','Hour','Temperature'}; 

T = cell2table(linearData,'VariableNames',varNames); 

filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Power_Data.csv'; 

filename1 = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Power_Data.xlsx'; 

writetable(T,filename); 

writetable(T,filename1); 

%% Creating file for inputted hour and business days 
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filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Gathering Data\Power_Data.xlsx'; 

[~,~,alldata] = xlsread(filename); 

count = 1; 

for i = 2:length(alldata(:,1)) 

    if cell2mat(alldata(i,9)) == str2double(cell2mat(answer(2,1))) && 

cell2mat(alldata(i,8)) == 1 && ~isnan(cell2mat(alldata(i,3))) 

        linData_20(count,1) = alldata(i,1); 

        linData_20(count,2) = alldata(i,3); 

        linData_20(count,3:5) = alldata(i,5:7); 

        linData_20(count,6) = alldata(i,10); 

        linData_20(count,7) = alldata(i,8); 

        count = count+1; 

    end 

end 

varNames = {'Date','DemandP','Season','Month','Day_of_Week','Temperature'}; 

T = cell2table(linData_20(:,1:6),'VariableNames',varNames); 

filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Gathering Data\'; 

filename = strcat(filename,cell2mat(answer(2,1)),'_Power_Data.csv'); 

writetable(T,filename); 

%% Getting PJM Forecast 

filename_PJM = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM 

Data\LOWESS_ARIMA\Code for forecasting\Final Data\PJM_Forecast.xlsx'; 

[~,~,PJM_data] = xlsread(filename_PJM); 

r = 1; t = 200; 

for i = 2:length(PJM_data(:,1)) 

    if (month(cell2mat(PJM_data(i,1))) >= month(cell2mat(answer(5,1))) && 

day(cell2mat(PJM_data(i,1))) > day(cell2mat(answer(5,1)))) || 

(month(cell2mat(PJM_data(i,1))) > month(cell2mat(answer(5,1))) && 

day(cell2mat(PJM_data(i,1))) <= day(cell2mat(answer(5,1)))) 

        if isbusday(cell2mat(PJM_data(i,1))) == 1 && cell2mat(PJM_data(i,2)) == t 

            pjm_pred(r,1) = PJM_data(i,1); 

            pjm_pred(r,2) = PJM_data(i,3); 

            r = r+1; 

        end 

    end 

end 

% Only for January 2015 

r = 1; t = 2000; 

for i = 2:length(PJM_data(:,1)) 

    if month(cell2mat(PJM_data(i,1))) == 1 

        if isbusday(cell2mat(PJM_data(i,1))) == 1 && cell2mat(PJM_data(i,2)) == t 

            pjm_pred(r,1) = PJM_data(i,1); 

            pjm_pred(r,2) = PJM_data(i,3); 

            r = r+1; 
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        end 

    end 

end 

r = 1;s = 20; 

for i = s:-1:1 

    pjm_plot(r,1) = cell2mat(pjm_pred(i,2)); 

    r = r+1; 

end 

filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Gathering Data\January\20_PJM_Pred.xlsx'; 

xlswrite(filename,pjm_plot) 

 

2. R CODE FOR FORECASTING 

Input: ‘.csv’ file with load and temperature data as well as indicator variables from a 

specific file location. 

install.packages("randomForest") 

library("randomForest") 

install.packages("astsa") 

library("astsa") 

setwd("C:/Users/Anupam/Desktop/Research/EPEC/Prediction/PJM Data/Using Random 

Forest/Matlab_R/Gathering Data") 

#str(dat) 

dat <- read.csv("24_Power_Data.csv",header = TRUE) 

# Setting Variables 

r1 <- 873; r2 <- r1+1; r3 <- r2+19; r4 <- 25 

#dat_ts <- ts(dat$DemandP[1:r1]) 

# Applying Random Forest on the historical data 

dat$season <- as.factor(dat$Season) 

dat$month <- as.factor(dat$Month) 

dat$dow <- as.factor(dat$Day_of_Week) 

fit <- randomForest(DemandP ~ season + month + dow + Temperature, data = 

dat[1:r1,],replace = TRUE, importance=TRUE, ntree=2000,mtry = 2) 

pred <- predict(fit, dat[1:r1,-c(1:5)], type="response") 

dat_pred <- as.data.frame(pred) 

residuals_RF <- dat$DemandP[1:r1]-dat_pred 

write.table(residuals_RF, file = 

"C:/Users/Anupam/Desktop/Research/EPEC/Prediction/PJM Data/Using Random 

Forest/Matlab_R/Gathering Data/RandomForest_Residuals.csv",row.names = 

FALSE,col.names = FALSE) 

dat_ts <- ts(residuals_RF) 

acf2(dat_ts) 

dat_ts_diff <- diff(dat_ts) 

acf2(dat_ts_diff) 
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dat_ts_diff2 <- diff(dat_ts_diff) 

acf2(dat_ts_diff2) 

dat_ts_diff3 <- diff(dat_ts_diff2) 

acf2(dat_ts_diff3) 

# Random Forest Prediction for the month 

rf_pred <- as.data.frame(predict(fit, dat[r2:r3,-c(1:5)], type="response")) 

rownames(rf_pred) <- 1:nrow(rf_pred) 

write.table(rf_pred, file = "C:/Users/Anupam/Desktop/Research/EPEC/Prediction/PJM 

Data/Using Random Forest/Matlab_R/Gathering 

Data/RandomForest_pred.csv",row.names = FALSE,col.names = FALSE) 

# Saving Actual Demand Data 

write.table(dat$DemandP[r2:r3], file = 

"C:/Users/Anupam/Desktop/Research/EPEC/Prediction/PJM Data/Using Random 

Forest/Matlab_R/Gathering Data/Actual_Demand.csv",row.names = FALSE,col.names = 

FALSE) 

# SARIMA Prediction for the month 

mod_fit <- sarima(dat_ts,1,1,1,1,1,1,22) 

mod_pred <- as.data.frame(sarima.for(dat_ts,n.ahead = r4,1,1,1,1,1,1,22)) 

SARIMA_pred <- as.data.frame(mod_pred$pred) 

write.table(SARIMA_pred, file = 

"C:/Users/Anupam/Desktop/Research/EPEC/Prediction/PJM Data/Using Random 

Forest/Matlab_R/Gathering Data/SARIMA_pred.csv",row.names = FALSE,col.names = 

FALSE) 
 

3. MATLAB CODE FOR ERROR CALCULATION AND PLOTTING DATA 

%% Plotting Actual, Estimated, PJM Model and Error 
clc 
clear 
filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Gathering Data\20_Power_Data.xlsx'; 
[~,~,plot_data] = xlsread(filename); 
st = 756;ed = 775;r = 1; 
filename = 'C:\Users\Anupam\Desktop\Research\EPEC\Prediction\PJM Data\Using 

Random Forest\Matlab_R\Gathering Data\Calculations.xlsx'; 
[~,~,read_data] = xlsread(filename); 
l = 21; 
for i = st:ed 
    datePlot(r,1) = datenum(cell2mat(plot_data(i,1))); 
    r = r+1; 
end 
% Plot Actual, Estimated and PJM Model 
figure() 
plot(datePlot(:,1),cell2mat(read_data(2:l,4)),'red') % Actual 
hold on 
plot(datePlot(:,1),cell2mat(read_data(2:l,3)),'black') % Model 
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hold on 
plot(datePlot(:,1),cell2mat(read_data(2:l,8)),'yellow') % PJM 
legend('Actual Data','Model Prediction','PJM Prediction') 
dateFormat = 2; 
datetick('x',dateFormat) 
% Plot Error percentages 
figure() 
plot(datePlot(:,1),cell2mat(read_data(2:l,6)),'red') % Model 
hold on 
plot(datePlot(:,1),cell2mat(read_data(2:l,10)),'yellow') % PJM 
legend('Model Error','PJM Error') 
dateFormat = 2; 
datetick('x',dateFormat) 
%% Calculating standardized error 
T = cell2mat(read_data(2:l,4)); 
P = cell2mat(read_data(2:l,3)); 
V2(1,1) = errperf(T,P,'mae'); 
V2(2,1) = errperf(T,P,'mse'); 
V2(3,1) = errperf(T,P,'rmse'); 
V2(3,1) = errperf(T,P,'rmse'); 
V2(4,1) = errperf(T,P,'mape'); 
P = cell2mat(read_data(2:l,8)); 
V2(1,2) = errperf(T,P,'mae'); 
V2(2,2) = errperf(T,P,'mse'); 
V2(3,2) = errperf(T,P,'rmse'); 
V2(4,2) = errperf(T,P,'mape'); 
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