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ABSTRACT 

In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. 

The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic 

which is iteratively updated by the robust super resolution algorithm to achieve the final high-

resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data 

and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are 

employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of 

reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing 

shows that the proposed algorithm is effective in improving the captured aerial data and the 

performance metrics are accurate in quantifying the evaluation of the algorithm. 
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CHAPTER 1 

INTRODUCTION 

There are various applications of super-resolution mosaicing, including surveillance, 

disaster management, and urban mapping. Example results of super-resolution mosaicing relevant 

to the aforementioned applications are shown in Figure 1.1. The two-fold benefit of super-

resolution mosaicing is obvious: 1) instead of processing each and individual frames to analyze a 

certain scene, this technique gives the advantage of processing a single integral frame, thus it saves 

significant processing time and 2) higher spatial resolution output of this technique provides the 

advantage of better content visualization, which is critical in all of the aforementioned applications.  

Figure. 1.1: Applications of super-resolution mosaicing. (a) Application in surveillance; (b) Application in 

disaster management; (c) Application in urban mapping. 

                   (a)                                                                             (b)                                   

          (c)                                                                              
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Higher the quality of the images, better the spatial resolution. The sensor size and detector 

density primarily determine the spatial resolution of the captured images. Larger the size of the 

sensor, and/or the higher the density of the detectors, the better the spatial resolution of the acquired 

images. The most direct hardware-based approach of increasing the spatial resolution is to reduce 

the detector size or, equivalently, to increase the detector density. Alternatively, the sensor size 

can also be increased. However, smaller detectors have lower dynamic range, lower fill factor, 

lower light sensitivity, higher dark signal, higher diffraction sensitivity, and higher non-uniformity 

[1]. In addition, the hardware cost increases with both the increase of detector density and sensor 

size. Thus, the aforementioned hardware-based approach often restricts the maximum achievable 

resolution of the captured images. Besides the sensor-imposed restriction, there are several other 

factors that limit the quality of the captured images, including lens and atmospheric blurs, finite 

shutter speed, finite aperture, movement of objects in the scene, sensor noise, and media turbulence 

[2]. Similarly, the frames lose spatial resolution during video acquisition due to sensor array 

sampling. Some of these limitations can be overcome by employing computationally intensive 

image processing algorithms that require high processing time and high-power computers, making 

them unsuitable for low to medium budget systems. 

In order to overcome the limitations inherent in the commercially available affordable 

electronics, an approach that combines the available optics and a resolution-enhancement 

algorithm can be used. This technique would overcome the final specification restrictions of the 

commercial optics. The aim of this dissertation is to develop an efficient, robust and automated 

super-resolution mosaicing algorithm that is able to run successfully even with limited 
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computational resources. Other than increasing the field of view of commercial imagers, the 

mosaicing algorithm will add further benefit of eliminating redundant data from overlapping 

frames, which are required as input for the high-resolution algorithm. The essential steps required 

for the proposed super-resolution mosaicing are image mosaicing and super-resolution. 

Super-resolution reconstruction algorithm (SR) creates a high-resolution (HR) image from 

a sequence of correlated low-resolution images of the same scene taken from different viewpoints. 

Since super-resolution increases the spatial resolution by taking advantage of more samples than 

those found in any single low-resolution image, the presence of motion among the low-resolution 

images is compulsory for the success of this method. The reconstruction primarily relies on the 

ability to estimate the aforementioned motion between frames to recover details that are finer than 

the sampling grid. Simultaneously the effects of blur, noise, and other artifacts are eliminated in 

the reconstruction process.  

Image mosaicing, on the other hand, is the alignment of multiple correlated images into a 

wider composition. Mosaicing is a special case of scene building where the images are related by 

planar homography only.  This is a reasonable assumption if the images exhibit no parallax effects, 

i.e. when the scene is approximately planar or the camera purely rotates about its optical center. 

Using mosaicing, it is possible to extend the field of view of a camera by preserving the original 

resolution and without introducing undesirable lens deformation. 

Combining image mosaicing and super resolution becomes a powerful means to represent 

all the information on multiple overlapping images and obtain a high-resolution panoramic view 

of a specific scene. It registers successive frames into a common coordinated system and 
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simultaneously generate mosaic output with an improved spatial resolution. This method is 

referred to as super-resolution mosaicing. The stability of a super-resolution mosaicing method 

necessitates that the overlapping images are correlated solely by planar homography, which is 

fulfilled readily in small satellite applications since the captured images from high altitude do not 

suffer from parallax effects.  

In this dissertation, we will describe a super-resolution mosaicing algorithm and compare 

its performance with those of other well-known state-of-the-art algorithms. The dissertation is 

organized as follows: Chapter 2 presents an introduction to image mosaicing framework and 

reviews the state-of-the-art of image mosaicing techniques. A classification of the techniques is 

also proposed, highlighting the benefits and drawbacks of different methods. Chapter 3 presents 

an introduction to super-resolution framework along with the image observation model that has 

been used in most super-resolution algorithms. A detailed survey of the state-of-the-art super-

resolution techniques by classifying them into several categories is also presented. Chapter 4 

details the proposed mosaicing technique. All the steps involved, including registration, 

reprojection, and stitching are described. Finally, some experimental results, based on large 

datasets, are presented. Chapter 5 presents the proposed super-resolution mosaicing approach in 

detail. Some experimental results are also discussed and compared to results obtained by other 

state-of-the-art approaches. Chapter 6 presents the conclusions of this work, and identifies some 

future research directions. 
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CHAPTER 2 

STATE-OF-THE-ART OF IMAGE MOSAICING METHODS 

2.1 Introduction 

Image mosaicing is the alignment of multiple overlapping images into a large composition 

which represents a part of a 3D scene [3]. Mosaicing could be regarded as a special case of scene 

reconstruction where the images are related by planar homography only [4].  This is a reasonable 

assumption if the images exhibit no parallax effects, i.e. when the scene is approximately planar 

or the camera purely rotates about its optical center [5]. Using mosaicing it is possible to extend 

the field of view (FOV) of a camera by preserving the original resolution and without introducing 

undesirable lens deformation [6]. There have been a variety of new additions to the classic 

applications of image mosaicing that primarily aim to augment the FOV. Mosaic construction is 

finding its practices in many computer vision and computer graphics applications, such as motion 

detection and tracking [7-9], mosaic-based localization [10,11], resolution enhancement [12-14], 

augmented reality [15, 16] etc. Furthermore, video compression [17], video indexing [18], and 

image stabilization [19] are some of the prominent areas where mosaicing is creating significant 

impacts.  

As shown in Figure 2.1, mosaicing involves various steps of image processing: registration, 

reprojection, stitching, and blending. Registration refers to the establishment of geometric 

correspondence between a pair of images depicting the same scene. In order to register a set of 

images, it is required to estimate the geometric transformations, which align the images with 
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respect to a reference image within that set. The set may consist of two or more images taken of a 

single scene at different times, from different viewpoints, and/or by different sensors. The most 

general case of the transformation is the 8 degree of freedom planar homography [3]. The next 

step, following the registration, is reprojection which refers to the alignment of the images into a 

common coordinate system using the computed geometric transformations. The goal of the 

stitching step is to overlay the aligned images on a larger canvas by merging pixel values of the 

overlapping portions and retaining pixels where no overlap occurs. Errors propagated via 

geometric and photometric misalignments often result in undesirable object discontinuities and 

Figure. 2.1: Different steps of image mosaicing. Here H are the homography matrices between source images. 
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seam visibility in the vicinity of the boundary between two images. Thus, a blending algorithm 

needs to be used during or after the stitching step in order to minimize the discontinuities in the 

global appearance of the mosaic.  

Image mosaicing is an attractive research area, which has resulted in the development of 

many algorithms in the literature [12,20-34]. A comprehensive review of the existing algorithms 

will undoubtedly be a valuable guide to researchers and developers for selecting a suitable image 

mosaicing method for a specific application. The continuous emergence of new algorithms in 

recent years further reinforce the necessity of such a comprehensive review. In the following 

sections, we classify the past and current mosaicing techniques based on image registration as well 

as image blending. For each of these classifications, we provide a comprehensive review of the 

major categories of the image mosaicing methods. In addition, this review highlights the evolving 

paths of those methods by providing the modifications that have been made to those basic methods 

by different researchers. 

Both registration and blending directly influence the performance of image mosaicing. 

Being the first and last step of image mosaicing, it is almost impossible to build a successful 

mosaicing algorithm without correctly implementing registration and blending algorithms. Though 

attempts have been made to overcome the registration errors by utilizing sophisticated blending 

algorithms, the significance of accurate registration in image mosaicing remains unquestionable. 

In this chapter, we focus on the classification of the existing image mosaicing algorithms based on 

their registration methods, as well as based on their blending methods.  

2.2 Classification of image mosaicing methods based on registration 
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Image registration is not only an important step of image mosaicing, but also is the 

foundation of it. Registration of multi-source images, which are focused on the same target but 

produced from different sensors, different perspective, and different times, computes the optimal 

geometric transformation by looking into the correspondences between each pair of images. This 

process makes the multi-source images aligned into a common reference frame using the estimated 

geometric transformations. To the extent that corresponding points from multi-source images are 

aligned together, the registration is successful [41]. The aforementioned correspondences can be 

established by matching templates between images, or by matching features extracted either from 

images, or by utilizing the phase correlation property in the frequency domain. 

As shown in Figure 2.2, based on image registration methods, image mosaicing algorithms 

can be spatial domain-based or frequency domain-based. Spatial domain-based image mosaicing 

can further be grouped into area-based image mosaicing and feature-based image mosaicing. 

Feature-based image mosaicing can again be subdivided into low-level feature-based image 

mosaicing and contour-based image mosaicing. Low-level feature-based mosaicing can be divided 

into four classes: Harris corner detector-based mosaicing, FAST corner detector-based mosaicing, 

SIFT feature detector-based mosaicing, and SURF detector-based mosaicing. Different classes of 

image mosaicing algorithms based on the image registration are discussed in details as follows. 
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2.2.1 Spatial domain image mosaicing methods 

Algorithms in this category use properties of pixels to perform registration, and, thus they 

are the most direct methods of image mosaicing. Majority of the existing image mosaicing 

algorithms fall into this category. Spatial domain-based image mosaicing can be either area-based 

or feature-based. Area-based image mosaicing algorithms rely on computation between 

“windows” of pixel values in the two images, which need to be mosaicked [42]. The fundamental 

approach is to shift the “windows” of the images relative to each other and see how much the 

pixels match. Subsequently, transformation parameters are obtained and used to warp and stitch 

the images. Unlike area-based image mosaicing, feature-based mosaicing methods use feature-to-

feature matching in order to compute the geometric transformation between a pair of images. Thus, 

these methods rely primarily on feature extraction algorithms which can detect salient features 

Figure 2.2: Classification of mosaicing based on registration. 
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from the images. Salient features are subsets of the image domain, often in the form of isolated 

points, continuous curves or connected regions [49]. Since the features are used as the starting 

point, the overall algorithm will often be as good as the feature extraction algorithm is. 

Two of the most commonly used area-based image mosaicing algorithms are normalized 

cross correlation-based mosaicing and mutual information-based mosaicing. Based on the types of 

features extracted, feature-based mosaicing methods can also be classified into low-level feature-

based mosaicing and contour-based mosaicing. Again, based on popular low-level feature 

extraction methods, low-level feature-based mosaicing can be subdivided into the following 

categories: Harris corner detector-, Features from Accelerated Segment Test (FAST)-, Scale 

Invariant Feature Transform (SIFT)-, Speeded Up Robust Feature (SURF)-based mosaicing 

methods. These above-mentioned classes of mosaicing algorithms are described below. 

2.2.1.1 Normalized Cross Correlation (NCC)-based mosaicing 

This method computes similarity between the “windows” in the two images for each shifts. 

It is defined as [43]: 

( ) ( )
( )

2 2
( ) ( )

U x U V x u Vi i i
NCC u

U x U V x u Vi i i

     
   



     
   

       (2.1) 

where 

 

             1
( )U U x

iN i

                                                                   (2.2) 

                1
( )V V x u

iN i

                                                    (2.3)  
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where U  and V  are the mean images of the corresponding “windows”, U  and V for the first 

and second images respectively. N is the number of pixels in the “window”,
( , )x x y

i i i


 is the pixel 

coordinate in the “windows”, ( , )u u v is the displacement or shift where NCC coefficient is 

calculated. The NCC coefficient values are always within the range [-1, 1]. The shift parameter 

corresponding to the peak NCC value represents the geometric transformation between the two 

images. Once geometric transformations are obtained between the image pairs, images are warped 

in the reference frame, and finally stitching is performed to generate the final mosaic. Methods 

within this category have the advantage of being computationally simple, however, at the cost of 

being particularly slow. Moreover, they perform accurately only when there are significant 

overlapping between the source images. 

Several techniques [22,44-46] have been proposed to tackle the above mentioned problems. 

In order to make the computation faster, Berberidis et al. [44] proposed  an iterative algorithm for 

the spatial cross correlation in order to compute the displacements between the source images. Yet 

another method based on adjusting the correlation windows according to the scale and orientation 

of extracted interest-points from the source images was proposed by Zhao et al. [45] to increase 

the computation speed. In order to improve the performance of the algorithm in the presence of 

non-rigid deformation, Vercauteren et al [46] suggested the use of Riemannian statistics along with 

a scattered data fitting-based mosaicing. Nasibov et al. [22] employed a brightness correction 

matrix before the registration step in order to make the algorithm less sensitive to the illumination 

changes.  
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2.2.1.2 Mutual Information (MI)-based mosaicing 

Unlike NCC, which computes similarity based on image intensity values, mutual 

information measures similarity based on the quantity of information shared between two images. 

MI between two images 1I  and 2I  is expressed in terms of entropy as: 

1 2 1 2 1 2( , ) ( ) ( ) ( , )MI I I E I E I E I I         (2.4) 

where 1( )E I and 2( )E I  are the entropies of 1I  and 2I , respectively. And 1 2( , )E I I  represents the joint 

entropy between the two images. Entropy is a measure of variability of a random variable. Thus 

variability of 1I  is expressed as: 

1 11( ) ( ) log( ( ))I Ig
E I p g p g 

       (2.5) 

where g are the possible gray level values of 1I , and accordingly 1
( )Ip g

is the probability 

distribution function of g . Similarly, the joint variability of 1I and 2I  is expressed as: 

1 2 1 21 2 , ,,
( , ) ( , ) log( ( , ))I I I Ig h

E I I p g h p g h 
     (2.6) 

where h indicates the possible gray level values of 2I . 1 2, ( , )I Ip g h
 is the joint probability distribution 

function of g and h . Typically, the joint probability distribution between two images is measured 

as normalized joint histogram of the gray level values. It is observed that better the alignment 

between two images, higher the MI between them. Thus, two images are geometrically aligned by 

a transformation if the MI between them is maximum for that transformation. After the appropriate 

transformations are obtained between the image pairs, they are reprojected and stitched to get the 

final mosaic. These mosaicing methods have the advantage of being less sensitive to lighting and 
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occlusion changes between source images. However, similar to NCC-based methods, these 

techniques have the disadvantages of being computationally slow, and requiring high degree of 

overlapping between input images. 

A number of techniques [24,47,48] have been proposed to address its shortcomings. To 

increase the computation speed, Dame et al. [47] employed a B-spline function for normalized 

mutual probability density, in combination with Newton’s method for optimizing the MI cost 

function. Another method presented by Luna et al. [24]uses a stochastic gradient optimization 

along with MI-based similarity measure in order to make the algorithm faster. Concerning the 

drawback of MI-based mosaicing algorithms for low overlapping images, Césare et al. [48] 

proposed a template matching approach capable of explicitly acknowledging the plausibility of 

similarity between distant neighborhoods, and delaying definite block-to-block association to a 

step that globally evaluates their collective likelihood. 

2.2.1.3 Harris corner detector-based mosaicing 

Harris corner detector detects corner points as robust low-level features from source 

images. Initially a local detection window in an image is chosen. Subsequently the variation in 

intensity that results by shifting the window by a small amount in different direction is determined 

as below [39]: 

2

,

( , ) ( , ) [ ( , ) ( , )]

x y

E u v w x y I x u y v I x y          (2.7) 
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where ( , )w x y is the window function, ( , )I x y is the image intensity value at pixel location ( , )x y , 

( , )I x u y v  is the shifted intensity with ( , )u v shift,  is the convolution operator. The local texture 

around pixel ( , )x y  is expressed as autocorrelation matrix C as below: 

2

2
,

( , )
x x y

x y x y y

I I I
C w x y

I I I

 
  
 
 

       (2.8) 

where xI and yI
are the first derivative of ( , )I x y . Two large eigenvalues for the matrix C

corresponds to a corner point. The center point of the window is characterized as a corner point. 

For more robustness, a “cornerness” measure R is used to eliminate the edge points as below [25]:  

2( ) ( )R Det C Tr C         (2.9) 

where ( )Tr C is the trace of C and  is within the range 0.04 0.06  . Corner points are detected 

as local maxima of R above a predefined threshold T . After the Harris corner points are detected 

from both the images, correspondences are established either by NCC or by any other Sum of 

Squared Difference (SDD) method. Subsequently, the geometric motion parameters are calculated 

and images are warped into a global reference frame in order to stitch them all. Mosaicing 

algorithms using Harris corner detector are computationally simple and accurate.  

One major problem with the Harris corner detector-based mosaicing methods is that large 

changes in rotation often generates ghosting in the mosaic output.  [25]  dealt with this by utilizing 

a luminance center-weighting algorithm which is used following a slope clustering algorithm for 

Harris corner point matching. Another problem related to the uncertainty in choosing a local 

detection window was addressed by[51], where the authors used region segmentation and 
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matching in order to limit the search window to potential homologous points. Harris corner 

detector almost always finds closely crowded feature points. However, this can be overcome by 

counting the number of feature points in the neighborhood and then accordingly exclude some of 

the points, as has been done in [26]. 

2.2.1.4 FAST corner detector-based mosaicing 

FAST algorithm is a corner detection algorithm which is computationally more efficient 

and faster than most of the other low-level feature extraction methods; thus mosaicing methods 

based on this algorithms are particularly suitable for real-time image processing applications. 

Initially a circle of sixteen pixels is considered around each corner candidate. According to the 

FAST algorithm, the candidate is a corner if there exists a set of n  contiguous pixels in the circle 

which are all brighter than the intensity of the candidate pixel plus a threshold, or all darker than 

the intensity of the candidate pixel minus the threshold, as shown in Figure 2.3. The number n is 

usually chosen twelve. In order to increase the computational speed of FAST algorithm, a corner 

response function (CRF) is used. CRF gives the numerical value of the “cornerness” of a corner 

Figure 2.3: Candidate feature detection for FAST algorithm. 
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point based on image intensities in the local neighborhood [39]. Corners are detected as local 

maxima for the CRF function computed over the entire image. Following the detection, corner 

point matching is performed for each pair of frames. Sometimes a Bag-of-Words (BoW) algorithm 

is used to represent each image as a set of corner descriptors to speed up the matching process as 

in [27]. Then, homography matrices are computed and finally the images are projected into a 

common coordinate to get the final mosaic.  

Choosing an optimal threshold is often a fundamental challenge of the FAST corner 

detector-based algorithms. However, it can be addressed by incorporating a robust threshold 

selection algorithm as in  [53]. For matching the corner points from successive frames, they further 

proposed a threshold learning method together with a region-based gray correlation. Another major 

issue of the FAST-based algorithms is that they are not particularly robust to increased degree of 

variations. For that, extending the sampling area beyond the sixteen pixels around each candidate 

point [52] could be considered as a promising approach, since it gives the FAST corner points 

more distinctiveness and, in turn, makes them invariant to larger variations. 

2.2.1.5 SIFT feature detector-based mosaicing 

SIFT algorithm is a low-level feature detection algorithm which detects distinctive features 

(also called “keypoints”) from images.  The SIFT descriptor is invariant to translations, rotations 

and scaling transformations in the image domain and robust to moderate perspective 

transformations and illumination variations. SIFT’s operation is based on five major steps: scale-

space construction, scale-space extrema detection, keypoint localization, orientation assignment, 

and defining keypoint descriptors. Initially, a scale space is constructed by convolving an image 
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repeatedly using a Gaussian filter with changing scales and grouping the outputs into octaves as 

[54]: 

( , , ) ( , , )* ( , )L x y G x y I x y        (2.10) 

where *  is the convolution operator, ( , , )G x y   is a Gaussian filter with variable scale  , and ( , )I x y  

is the input image. After the scale space construction is complete, difference-of-Gaussian (DoG) 

images are computed from adjacent Gaussian-blurred images in each octave as [54]: 

( , , ) ( , , ) ( , , )D x y L x y k L x y          (2.11) 

Following that, candidate keypoints are identified as local extrema of DoG images across 

the scales. The scale space and DoG scale space construction as well as extrema detection in DoG 

scale space is illustrated in Figure 2.4. In the next step, low contrast keypoints and edge response 

points along the edges are discarded using accurate keypoint localization. The keypoints are then 

assigned one or more orientations based on local image gradient directions as [54]: 

1( , ) tan (( ( , 1) ( , 1)) / ( ( 1, ) ( 1, )))x y L x y L x y L x y L x y            (2.12) 

where ( , )x y  represents the gradient direction for ( , , )L x y  . A set of orientation histograms is 

formed over the neighborhoods of each keypoint. Finally, a normalized 128-dimensional vector is 

computed for each keypoint as its descriptor [13]. In order to find the initial matching keypoints 
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from two images, nearest neighbor of a keypoint in the first image is identified from a database of 

keypoints for the second image [54, 55]. Following the initial matching, RANSAC algorithm is 

used to remove the outliers and to compute the transformation parameters between a pair of frames. 

Finally, images are warped using the transformation parameters and stitched to generate the mosaic 

image. SIFT based image mosaicing algorithms are particularly suitable for stitching high 

resolution images under variety of changes (rotation, scale, affine etc.), however, at the cost of 

high processing time.  

Several researchers have made variations to the above mentioned SIFT-based mosaicing 

method in order to further improve its performance. For example, in [12] the authors proposed 

switching between Kanade-Lucas-Tomasi (KLT) tracker and SIFT matching to find the 

correspondences between successive frames depending on their amount of overlapping. In [28], 

Figure 2.4: Scale space formation and extrema finding. (a) Scale space and DoG scale space construction; (b) 

Extrema detection in DoG scale space by looking into 26 neighbors. 
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the author exploited a deformation vector propagation algorithm in the gradient domain to reduce 

the intensity discrepancy between the mosaiced images. Similarly, a bundle adjustment algorithm 

along with a modified-RANSAC algorithm capable of developing a probabilistic model is used in 

[56] to eliminate registration error and make the matching process more accurate.  

2.2.1.6 SURF feature detector-based mosaicing 

SURF algorithm is a scale and rotation invariant local feature detector. Like SIFT, this 

algorithm is also based on scale space theory. However, SURF uses Hessian matrix of the integral 

image to estimate local maxima across different scale spaces [57]. The Hessian matrix of an image 

I with scale  at any point ( , )X x y  is defined as [58]: 

( , ) ( , )
( , )

( , ) ( , )

xx xy

xy yy

L X L X
H X

L X L X

 


 

 
  
 
 

     (2.13) 

where ( , )xxL X  , 
( , )yyL X 

, and 
( , )xyL X 

are the convolutions of I in point X with Gaussian second 

order filters 

2

2
( )G

x




 , 

2

2
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y



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( )G
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


  respectively. While computing Hessian matrix at 

each pixel, the Gaussian filter operations are approximated by operations using box filters as 

shown in Figure 2.5. The response at each pixel is computed as the determinant of the Hessian 

matrix. Following that, a thresholding and a 3 x 3 x 3 local maxima detection window are used for 

non-maxima suppression. The local maxima are then interpolated in scale space to achieve 

keypoints with their location and scale values. In order to assign orientation for each keypoint, 

Haar-wavelet responses are calculated within a circular neighborhood around each keypoint. A 
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vector is formed by summing up all the responses within 60-degree window. The longest vector is 

assigned as orientation to the keypoint. In order to assign descriptor vector to each keypoint, a 

square neighborhood region around the keypoint is selected. It is then split into smaller sub-

regions. Sum of the Haar-wavelet responses from all the sub-regions are then used to generate a 

64 dimensional descriptor vector [50]. After finding the matching keypoints from a pair of images, 

RANSAC algorithm is used to eliminate false matches as well as to calculate the homography 

matrices. Once homography matrices are achieved, images are warped and stitched to get the final 

mosaic. SURF based mosaicing techniques are faster than SIFT based techniques. However, they 

perform poorly under certain variations (particularly color, illumination, some affine 

transformation). 

The process of determining the SURF descriptors as mentioned above has sometimes been 

modified by some authors. For example, in [59] the local maxima is searched beyond a 3 x 3 x 3 

neighborhood in the present scale and two immediately adjacent scales in order to make the feature 

descriptors more distinctive. In [60], the authors proposed dividing the SURF descriptor window 

into eight sub-regions while assigning descriptor vector. This technique increases the matching 

Figure 2.5:  Approximation of Gaussian second order partial derivatives. (a) Approximation in x direction; (b) 

Approximation in y direction; (c) Approximation in xy direction. 

 (a)                                                        (b)                                                          (c)   
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speed at the cost of increased false matches. However, the authors show that the use of RANSAC 

guarantees elimination of most of those incorrect matches. 

Often multiple low-level feature extraction methods are used together in image mosaicing 

algorithms in order to use their respective benefits. Joshi et al. [61] propose a mosaicing algorithm 

which uses both Harris corner detector and SURF detector for extracting distinctive features from 

source images. Feature-based mosaicing algorithm proposed by Bind et al. [62] use both SIFT and 

SURF based feature detector to detect interest points from images. Kang et al. [63] and Zhu et al. 

[64] use Harris corner detector and SIFT detector in their feature-based mosaicing algorithm. 

2.2.1.7 Contour-based mosaicing 

This type of mosaicing algorithms is based on extraction of high-level features from 

images. Unlike the low-level features, these features are more natural to human perception and 

therefore they are high-level. High-level feature extraction mostly concerns finding the shapes or 

textures in an image. Shape extraction implies finding their position, orientation and their size [49]. 

Usually regions of different structures are extracted as high level image features. Then these 

features are matched to find correspondences, which are later used to compute the transformation 

parameters. Different techniques can be used to eliminate the false matches. Finally, warping and 

blending are performed to generate the mosaic output. The use of high-level features significantly 

increase the computation in these types of mosaicing algorithms. However, they are particularly 

suitable to work under larger and complicated motion parameters, and even under multi-layer 

registration. 
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Some of the notable contributions in high-level feature-based mosaicing include [65-67]. 

In [65], the authors used a wide baseline algorithm together with an adaptive region expansion 

method to achieve robust registration using high-level features. Prescott et al. [66] proposed 

extracting regions of image structures using a threshold technique and then computing area-based 

similarity matching for registration. Contour extraction using a segmentation algorithm, followed 

by finding their centroids for image registration was used in [67].  

2.2.2 Frequency domain image mosaicing methods 

Unlike spatial domain-based image mosaicing algorithms, methods classified in this 

category require computation in the frequency domain in order to find the optimal transformation 

parameters between a pair of images. These algorithms use the property of phase correlation for 

registering images. Let 1( , )I x y and 2( , )I x y are two images having some overlapping areas. Let’s 

further assume that ( 0x , 0y ) is the translation between the images. Thus,  

2 1 0 0( , ) ( , )I x y I x x y y        (2.14) 

The corresponding Fourier transforms 1( , )F u v and 2( , )F u v are related by: 

0 0( )
2 1( , ) ( , ).

j ux vy
F u v F u v e

 
       (2.15) 

The cross-power spectrum of the two images is defined as: [Ref 54] 

0 0

*
( )1 2

*
1 2

( , ) ( , )

( , ) ( , )

j ux vyF u v F u v
e

F u v F u v

 
       (2.16) 

where 
*

1 ( , )F u v  is the complex conjugate of 1( , )F u v . The shift theorem guarantees that the phase of 

the cross-power spectrum is equivalent to the phase difference between the images. 0 0( , )x y  could 
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be solved in two different ways. One way is to work directly in frequency domain. However, this 

technique is very sensitive to noise. A better approach is to take inverse Fourier transform of the 

above equation and get an impulse function 0 0( , )x x y y   , which is approximately zero 

everywhere except at the displacement 0 0( , )x y  as shown in Figure 2.6. With the displacement 

(translational) parameters the two images are warped and finally stitched to get a mosaic. 

Mosaicing algorithms based on this technique are usually efficient because of the use of shift 

property of Fourier transform and the use of Fast Fourier Transform (FFT). However, they suffer 

from being overly sensitive to noise. Additionally, accurate registration often requires significant 

overlapping between source images. 

The above explained method of image mosaicing has sometimes, as in [30,68,69], been 

modified to make it suitable for handling transformations other than translation. A two-step 

method is proposed in [68]. The first step computes the rotation angle by finding the maximum 

peak by rotating the target image with an incremental angle. Using the computed rotation angle 

and phase correlation, the second step determines the translational displacement. A log-polar 

transformation is utilized in [30] to find the scale and translational parameters. In [69], the authors 

Figure 2.6: Use of cross-power spectrum to detect transformation. (a), (b) Source images with displacement 

between them; (c), (d) Corresponding spectrum; (e) Impulse function indicating displacement between the images. 

 (a)                               (b)                                  (c)                              (d)                                 (e) 
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suggested changing the rotation and scale parameters to translational parameters using Fourier-

Mellin transform.  

The comparative overview of different categories of mosaicing algorithms based on image 

registration is presented in Table 2.1.  

Table 2.1: Comparative overview of different categories of mosaicing methods based on image registration 

Category Advantages Disadvantages 

NCC-based No high level structural analysis required, 

and can be applied directly to image data 

Flat similarity due to self-similarity of 

images, and good only for images with large 

overlapping 

MI-based Good for multimodal analysis and less 

sensitive to illumination and occlusion 

changes 

Slow and causes registration error when 

images have small overlapping 

Harris corner detector-

based 

Simple and accurate computation Needs prior knowledge of window size and 

good only for moderate changes in scale 

and rotation 

FAST corner detector-

based 

Accurate and fast computation Not robust to high degree of noise, and prior 

knowledge about threshold required 

SIFT feature detector-

based 

Efficient for high resolution images and 

offers invariance to various 

transformations 

Computationally expensive 

SURF detector-based Fast computation, good for real-time 

applications 

Poor performance under certain 

transformations (e.g. color, illumination) 

Contour-based Efficient when large and complicated 

motion involved 

Computationally expensive because of the 

use of high-level features 

Frequency domain-based Efficient because of FFT Overly sensitive to noise and accuracy 

relies on large overlapping 

 

2.3 Classification of image mosaicing methods based on blending 

Similar to registration, image blending is also a significant step for successful 

implementation of mosaicing. Stitching multiple images together to create a seamless mosaic 

requires the use of a suitable blending algorithm. Blending is often referred to as photometric 



25 

 

registration, which is vital to equalize color and luminance appearance in a composite image. There 

are several reasons (differences in camera exposure, scene illumination, or presence of moving 

objects between frames or geometric misalignments) which may lead to image inconsistencies in 

the final mosaic. The visibility of such inconsistencies can be minimized by choosing appropriate 

blending algorithm. This way, the final mosaic would be visibly free of annoying seams, giving it 

a more consistent global appearance. Figure 2.7 shows that based on the image blending, 

mosaicing algorithms can be transition smoothening-based and optimal seam-based. Transition 

smoothening-based mosaicing can be further grouped into feathering-based, pyramid-based, and 

gradient-based mosaicing. Different classes of image mosaicing algorithms based on the image 

blending methods are discussed below. 

Mosaicing

Optimal seam-based
Transition 

smoothening-based

Feathering-based Gradient-basedPyramid-based
 

2.3.1 Mosaicing methods using transition smoothing-based blending 

Mosaicing algorithms within this category attempt to minimize the visibility of seams by 

smoothing the common overlapping regions of the combined images. The information of the 

overlapping region between two images is fused in such a way that the boundaries of the images 

involved become imperceptible. Even though a totally indistinguishable transition may be 

Figure 2.7: Classification of mosaicing based on blending. 
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achieved, the content and coherency of the overlapping region is not guaranteed, as the information 

is fused without taking into account the content of the scene [70]. Thus, most often, these 

mosaicing methods generate mosaic with blurry transitions in the boundary regions. Popular 

methods which use transition smoothing for their blending operation include feathering, pyramid 

blending, and gradient-based blending. Mosaicing algorithms based on these techniques are 

discussed briefly as follows: 

2.3.1.1 Mosaicing algorithms using feathering-based blending 

Mosaicing algorithms within this category perform blending operation by taking an 

average value in each pixel of the overlapping region. However, the simple average method fails 

when exposure differences, misalignments, and presence of moving object are very obvious in the 

input images. A better approach to the averaging method is to use weighted averaging along with 

a distance map. Pixels near the center of an image are weighted heavily and those near the edges 

are weighted lightly. This is done by computing a distance map in terms of Euclidean distance of 

each valid pixel (mask) from its nearest invalid pixel as [43].  

~

( ) arg min{ ( ) }k k
y

w x yy I x y is invalid      (2.17) 

where 
~

( )kI x  are the warped images and ( )kw x  are the weights of the images. Finally, the mosaic 

image is generated as a weighted combination of the input images. Examples of composite images 

formed of six color images using simple average blending and feathering are shown in Figure 2.8. 

Mosaicing algorithms which use the aforementioned technique perform reasonably well under 
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exposure differences. However, it is difficult in practice to achieve a balance between smoothing 

out low-frequency exposure differences and preserving sharp enough transitions to prevent 

blurring. Furthermore, these methods suffer from ghosting effect. 

Examples of mosaicing methods using feathering-based blending include [56] [71] and 

[60]. [56] and [71] used alterations of the above mentioned method for finding the weights of 

images in the overlapping region. In [56]. the aforementioned weight is measured by computing 

the distance of the overlapping pixels from the borders of the left and the right images. In [71], the 

authors used weighted average of the pixel color values in the overlapping region. 

2.3.1.2 Mosaicing algorithms using pyramid-based blending 

In an attempt to perform the blending operation in a more robust way, these mosaicing 

algorithms convert the input images into band-pass pyramids as shown in Figure 2.9. Mask image 

associated with each source image is then created. Mask creation can be made automatic by using 

grassfire transform as used in [72]. Then the mask image is converted into a low-pass pyramid by 

using a Gaussian kernel [43]. The resultant blurred and subsampled masks are treated as weights 

to perform per-level feathering. The final mosaic is then achieved by interpolating and summing 

the results from per-level feathering as: 

Figure 2.8: Image blending results. (a) Blending using simple averaging; (b) Blending using feathering. 

(a)                                                                                    (b) 
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1 2( , ) ( , )* ( , ) (1 ( , ))* ( , )LO x y GM x y LI x y GM x y LI x y        (2.18) 

where 1( , )LI x y and 2( , )LI x y are the Laplacian pyramids of the warped source images 1I and 2I . 

( , )GM x y  is the Gaussian pyramid of the mask image ( , )M x y and ( , )LO x y is the Laplacian pyramid 

of the output image ( , )O x y . Sometimes, all the strips are combined in a single blending step when 

it needs building pyramids for multiple narrow strips as proposed in [31]. Algorithms using the 

above method achieve reasonable balance between smoothing out low frequency components and 

preserving sharp enough transitions to prevent blurring [74]. Edge duplication is also eliminated 

noticeably. However, double contouring and ghosting effects become significant when the 

registration error is significant. 

2.3.1.3 Mosaicing algorithms using gradient-based blending 

Another group of transition smoothening method are those based on gradient domain 

blending. These methods are based on the idea that by suitably mixing the gradient of images, it is 

possible to mosaic image regions convincingly. In general the gradients across seams are set to 

zero for smoothing out the color differences. Since humans are more sensitive to gradients than 

image intensities, mosaicing methods using this technique generate visually more pleasant results 

(a)                                                                      (b) 

Figure 2.9: Pyramid formation for blending. (a) Low-pass pyramid; (b) Band-pass pyramid. 
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compared to the other two techniques discussed before. However, working exclusively in the 

gradient domain requires higher computational resources to deal with large data sets. Furthermore, 

for best performance, the alignment of images through registration needs to be almost perfect.  

Notable work in this group was developed by [32], [75], and [76]. In [75], the authors used 

a gradient domain object moving and region filling algorithm to eliminate the visible artifacts 

arising from moving objects in the scene. Algorithm based on assigning low resolution offset map 

to each source image followed my Poisson’s blending was proposed by Szeliski et al. [76]. In [32], 

the authors developed two approaches called GIST (gradient domain image stitching). One of the 

approaches is based on minimizing a cost function that evaluates the dissimilarity measure between 

the derivatives of the mosaic and the derivatives of the source images. The other approach is based 

on inferring a mosaic by optimization over image gradients.  

2.3.2 Mosaicing methods using optimal seam-based blending 

This type of mosaicing algorithms attempt to minimize the visibility of seams by looking 

for optimal seams in the joining boundaries between the images. The objective of optimal seam 

technique is to allocate the optimal location of a seam line by looking into the overlapping region 

between a pair of images. The seam line placement should be such that it minimizes the 

photometric differences between the two sides of the line. At the same time the seam line should 

be able to determine the contribution of each of the images in the final mosaic. Once the placement 

and the contribution information are obtained, each image is copied to the corresponding side of 

the seam. When the difference between the two images on the seam line is zero, no seam gradients 

are produced in the mosaic. Unlike the mosaicing methods using transition smoothing-based 
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blending, optimal seam-based mosaicing algorithms consider the information content of the scene 

in the overlapping region, allowing to deal with problems like moving objects or parallax. 

However, no information is fused in the overlapping region, thus the transition between the images 

can be easily noticeable when there are global intensity or exposure difference between the frames. 

Different optimal seam finding methods have been used in mosaicing literature. For 

example, in [33] a modified region-of-difference method is used.[77] proposed the use of an 

algorithm based on watershed segmentation and graph cut optimization. Another method based on 

dynamic programming and grey relational analysis is used in [78].  

A general comparison of different categories of mosaicing algorithms based on image 

blending is presented in Table 2.2. 

Table 2.2: Comparative overview of different categories of mosaicing methods based on image blending 

Category Advantages Disadvantages 

Feathering-based Fast and good performer under exposure 

differences 

Output often suffer from blur and ghosting 

effect  

Pyramid-based Good in preventing blur and edge duplication Suffers from double contouring and ghosting 

when registration error significant 

Gradient-based Output visually more appealing than other 

methods 

High computation required and registration 

error must be small for good performance 

Optimal seam-

based 

Good in dealing with moving objects an 

parallax 

Transition obvious when there are exposure 

differences 
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CHAPTER 3 

STATE-OF-THE-ART OF IMAGE SUPER-RESOLUTION METHODS 

3.1 Introduction 

Super-Resolution (SR) is the process of achieving a high-resolution (HR) image from a 

single low-resolution (LR) observation or a sequence of LR observations of a scene taken at 

different viewpoints. It aims to overcome the limitations of the image capturing devices to produce 

a high resolution image. In SR context, HR means higher spatial resolution and hence higher 

information content. HR images are not only visually appealing, but also valuable in several 

practical applications for extracting additional details. SR has been an active research area over 

the last two decades and most recently it is gaining growing interests in the image processing 

community for its potential derivatives. Application areas of SR include but not limited to satellite 

imaging [79, 80], astronomical image processing [81], medical image processing [82-84], HDR 

imaging [85], automatic image mosaicing [13], fingerprint and face image enhancement [14], 

target recognition [86], video surveillance [87], and converting video standards [88].   

The sensor size and the density of detectors that form the sensor primarily determines the 

spatial resolution of the captured images. Larger the size of the sensor, and/ or higher the density 

of the detectors, better the spatial resolution of the acquired images. The most direct hardware-

based approach of increasing the spatial resolution is to reduce the detector size or equivalently 

increase the detector density. Alternatively, the sensor size can also be increased. However, smaller 

detectors have lower dynamic range, lower fill factor, worse low light sensitivity, higher dark 

signal, higher diffraction sensitivity, and higher non-uniformity [89]. Also, the hardware cost 
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increases with the increase of both detector density as well as sensor size. Thus, the above 

mentioned hardware-based approaches often restricts the maximum achievable resolution of the 

captured images. Besides the sensor-imposed restriction, there are several other factors that limits 

the capture of high resolution images, for example lens and atmospheric blurs, finite shutter speed, 

finite aperture, movement of objects in the scene, sensor noise, and media turbulence. 

Consequently, a software-based approach (like SR) to obtain images with improved spatial 

resolution from one or more LR observations becomes an attractive proposition [13].  

Single-frame SR increases the spatial resolution by utilizing one or more learning models. 

In contrast, multi-frame SR increases the spatial resolution by taking advantage of more samples 

than that found in any single LR observation. Thus, each LR observation must exhibit either sub-

pixel shift, or change in illumination, or variation in blur from the other. The physical size of the 

SR output may be same as the size of one of the LR observations or larger depending on the image 

interpolation method used [90]. Two closely related techniques of SR are interpolation and 

restoration. Image interpolation increases the size of an image, however, it does not improve the 

quality of it. Image restoration, on the other hand, improves (by deblurring and denoising) the 

quality of an image without changing its physical dimensions. Thus SR must not be confused with 

either interpolation or restoration, rather it could be seen as a combination of these two techniques. 

A multi-frame SR technique is illustrated in Figure 3.1.  
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Being an attractive research area, SR has resulted in the development of numerous 

algorithms. Thus, it would be extremely difficult for someone interested in this research area to 

select a suitable method without having a comprehensive survey. In this chapter, we classify the 

past and the newly emerging SR techniques into several categories. The basics of all the categories 

are discussed. Furthermore, the improvements over the basic methods made by different 

researchers are also highlighted. However, before going into the detailed classification, we will 

discuss an image observation model which is used by almost all reconstruction-based SR methods. 

3.2 Image observation model 

The first strategic step to understand SR imaging is to formulate an observation model that 

establishes the relationship between desired HR image and a set of LR images. During the 

acquisition process, the captured scene undergoes a series of transformations to generate the LR 

images. For simplicity in the formulation of the observation model, these transformations are 

limited to the following four operations: 1) geometric transformation, 2) blurring, 3) down-

sampling, and 4) addition of white Gaussian noise. Geometric transformation includes global or 

local translation, rotation, and scaling that are responsible for scene motion. Since these 

Figure 3.1: A framework of multi-frame super-resolution. 
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information are usually unknown, a warp operator can be modeled that can estimate the scene 

motion for each image with reference to one particular image. Blur includes any blurring effect for 

example optical blur (related to lens and/or sensor), motion blur, atmospheric blur etc. For 

reconstruction-based SR methods, the characteristics of the blur are assumed to be known. Hence 

blurs are usually modeled as a point spread function (PSF) kernel. Different downsampling 

operators can be used to generate LR images of different size. However, for simplicity we would 

restrict the observation model to generate LR images of same size. Furthermore, we would 

consider the down-sampling factors for the vertical and horizontal directions to be equal. 

To formulate the model, let’s assume that 𝑥 is the desired HR image of size 𝑁1 × 𝑁2, which 

is derived from a bandlimited continuous scene. Considering 𝑞 to be the down-sampling factor in 

both directions, each of the 𝐾 LR images (𝑦𝑘, 𝑘 = 1 𝑡𝑜 𝐾) is of size 𝑀1 × 𝑀2, where 𝑁1 = 𝑞𝑀1 

and 𝑁2 = 𝑞𝑀2. If the LR images are generated by warping, blurring, down-sampling, and addition 

of white Gaussian noise to the HR image 𝑥, we can represent the observation model as: 

𝑦𝑘 = 𝐷𝐵𝑘𝑊𝑘𝑥 + 𝑛𝑘        𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝐾     (3.1) 

= 𝑀𝑘𝑥 + 𝑛𝑘                                                                        

where both 𝑦𝑘 and 𝑥 are represented in lexicographically ordered vectors having a size of  𝑀1𝑀2 ×

1 and  𝑁1𝑁2 × 1, respectively. 𝐷, 𝐵𝑘, and 𝑊𝑘 are the decimation operator, blur operator, and the 

warp operator expressed in matrix form. 𝑀𝑘 is the matrix which represents all the above mentioned 

degradation factors. Figure 3.2 shows a graphical representation of the observation model of Eq. 

(1). Alternation in the order of blur and warp operators in the above mentioned observation model 

is investigated in [103, 104]. It is explained that when the blur operation is space invariant and 
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motion among the LR images is pure translational, the two aforementioned operators are eligible 

to commute. However, when the blur operation is space variant, it is more appropriate to use the 

blur operator first and then the warp operator unlike the one in Eq. (1).  
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The classical observation model on Eq. (1) has been modified by many researchers. In [105], two 

nonstationary observation models related to the quantization noise are used in the presence of 

compression. Zhang et al. [106] modifies the observation model to use it with hyperspectral data. 

In [107] the pointwise interpolation of the conventional observation model is replaced by a 

technique based on L2 function approximation. [108, 109] propose modification of the model in 

Eq. (1) by including different zooming in the LR images. [110] Suggest addition of three separate 

PSF functions for sensor blur, lens blur, and motion blur. The explicit motion parameter of the 

observation model is replaced by probabilistic motions in [111].  

3.3 Classification of image super-resolution methods 

Figure 3.2: Observation model relating LR image with HR image. 
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SR algorithms can be classified based on several factors, for e.g. number of input LR 

frames, domains of operation, operating principles, etc. While majority of the previous surveys 

classified the existing SR methods based on either of these aforementioned factors, it is obvious 

that these surveys are not comprehensive. In this present survey, the SR algorithms are first 

classified based on their number of input frames, i.e. multi-frame and single-frame SR techniques. 

In terms of domain of operation, multi-frame SR algorithms are then grouped into spatial domain, 

and frequency domain-based methods. Note that almost all of the single-frame SR algorithms are 

based on spatial domain, thus the classification of the algorithms based on domain of operation is 

only presented for the multi-frame SR techniques. Single-frame SR algorithms can be classified 

in terms of their operating principles. The detailed taxonomy used in this survey is shown in Figure 

3.3. 

3.3.1 Multi-frame super-resolution methods 

As mentioned earlier, the foundation of multi-frame SR is the availability of multiple LR 

images of the same scene captured at different view-points. Assuming the LR images are aliased 

versions of the desired HR scene, there must be subpixel shift present between each pair of the LR 

images. When the LR images are shifted by integer units, then there exists no additional 

information that could be exploited to reconstruct the HR image. If the relative scene motion can 
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be estimated with subpixel precision from different subpixel shifted LR images, it is possible to 

combine them for SR reconstruction. Based on domain representation, multi-frame SR algorithms 

can be classified into two classes: frequency-domain SR algorithms and spatial-domain SR 

algorithms. Though the initial SR work was performed in frequency-domain, majority of the 

present-day SR research is concentrated in spatial domain because of several advantages including 

unconstrained inter-frame motion, simplicity in incorporating prior information into the SR 

solution. Spatial-domain algorithms can be grouped into six categories: interpolation-based 

methods, deterministic regularization methods, stochastic regularization methods, set theoretic 

methods, and iterative back projection methods. All the above-mentioned multi-frame SR 

algorithms are discussed in the following subsections. 
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Figure 3.3: Taxonomy of super-resolution algorithms. 

 



38 

 

3.3.1.1 Frequency-domain super-resolution methods 

These algorithms compute the desired HR image by combining multiple subpixel shifted 

LR images based on shift and aliasing properties of continuous and discrete Fourier transform as 

proposed in the seminal work by [112]. Let 𝑐(𝑥, 𝑦) be the continuous HR scene seen by the camera 

and 𝑐𝑘(𝑥, 𝑦) be the kth globally translated scene obtained from 𝑐(𝑥, 𝑦). Thus 𝑐𝑘(𝑥, 𝑦) =

 𝑐(𝑥 + ∆𝑥𝑘, 𝑦 + ∆𝑦𝑘), where (∆𝑥𝑘, ∆𝑦𝑘) denotes the translation parameter for the kth scene. Let 

𝐶(𝑢, 𝑣) and 𝐶𝑘(𝑢, 𝑣) be the continuous Fourier transform (CFT) of the HR scene and the kth 

translated scene, respectively. Using shifting property of the CFT, 𝐶(𝑢, 𝑣) and 𝐶𝑘(𝑢, 𝑣) can be 

related as: 

𝐶𝑘(𝑢, 𝑣) = 𝑒𝑗2𝜋(∆𝑥𝑘𝑢+∆𝑦𝑘𝑣)𝐶(𝑢, 𝑣)    (3.2) 

The translated scenes are sampled with sampling frequencies 1 𝑇𝑚⁄  and 1 𝑇𝑛⁄  to obtain the 

LR images, 𝑑𝑘(𝑚, 𝑛) = 𝑐𝑘(𝑚𝑇𝑚 + ∆𝑥𝑘, 𝑛𝑇𝑛 + ∆𝑦𝑘) with 𝑚 = 0, 1, 2, … … , 𝑀 − 1 and 𝑛 =

0, 1, 2, … … , 𝑁 − 1, where (𝑀, 𝑁) is the dimension of each LR image. Let 𝐷𝑘(𝑢, 𝑣) be the discrete 

Fourier transform (DFT) of the kth LR image. Using aliasing property of the DFT,𝐷𝑘(𝑢, 𝑣) 

and 𝐶𝑘(𝑢, 𝑣) are related as: 

𝐷𝑘(𝑢, 𝑣) =
1

𝑇𝑚𝑇𝑛
∑ ∑ 𝐶𝑘 (

2𝜋

𝑇𝑚
(

𝑢

𝑀
− 𝑝) , (

2𝜋

𝑇𝑛
(

𝑣

𝑁
− 𝑞))+∞

𝑞=−∞
+∞
𝑝=−∞    (3.3) 

If 𝑐(𝑥, 𝑦) is assumed to be bandlimited, equation 3.1 and 3.2 can be combined to obtain the 

relationship between the DFT of the LR images and the CFT of the HR scene as: 

𝐷 = ∅𝐶      (3.4) 

where D is a Kx1 column vector (with K be the number of LR images), C is a MNx1 column 

vector, and ∅ is a KxMN matrix. Unknown C can be solved using the above equation.  
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The above framework of frequency-domain SR is extended by several researchers [37-40] 

in an attempt to make it more acceptable to real world applications by incorporating noise and blur 

models into the SR formulation. To achieve registration and restoration simultaneously, authors in 

[117, 118] propose the use of EM algorithm. In [119], the authors use DCT instead of DFT to 

make the SR computation faster. Vandewalle et al. [120] suggest the use of low frequency (aliasing 

free) image components only while generating super-resolved image. In spite of all these attempts, 

frequency-domain-based SR algorithms still remain inappropriate choice for several limitations 

including extreme sensitivity to model errors, strict requirement of pure translational motion, and 

linear space invariant blur during image acquisition. Furthermore, the addition of prior information 

in order to regularize the ill-posed SR problem is considerably difficult using these algorithms.  

As an alternative to the above mentioned Fourier transform-based methods, wavelet 

transform-based algorithms [121-129] have gained much popularity within the family of 

frequency-domain SR algorithms. Multiresolution analysis in discrete wavelet transform (DWT) 

generates different frequency sub-bands of a given LR image. Out of these, three high-frequency 

sub-bands along with the LR image are interpolated and later combined to obtain the HR output 

by using inverse-DWT. In [122, 123], the authors propose incorporating stationary wavelet 

transform coefficients to improve the SR result. Demirel et al. [125] use a dual tree complex 

wavelet transform (DT-CWT) instead of DWT. Their later work [126] extends the work further 

by introducing an edge directional interpolation following the DT-CWT step. In order to utilize 

the ease of implementing deconvolution filter using Fourier transform, authors in [127, 128] 

propose a combined Fourier-wavelet transform. 
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3.3.1.2 Interpolation-based super-resolution methods 

These methods [130-136] construct a HR image from the captured LR images by using a 

three-step approach: registration, interpolation, and restoration as shown in Figure 3.4. 

Registration generates a motion compensated single, dense composite image of non-uniformly 

distributed samples. Non-uniform interpolation produces uniformly spaced samples in the HR 

image grid. Finally, restoration compensates for various degradations including blur and noise, 

which are introduced during the image acquisition. Note that single image interpolation cannot 

reconstruct the lost high frequency components in an image, hence it cannot handle the SR 

problem.  

Zhong et al. [130] propose a biharmonic spline interpolation along with frequency domain-based 

registration for super resolving a sequence of X-Ray images. Based on the idea of generalized 

Figure 3.4: Interpolation-based super-resolution reconstruction. 
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multi-channel sampling theorem, Ur et al. [131] perform a non-uniform interpolation on a set of 

spatially shifted LR images, followed by a deblurring process. Panagiotopoulou et al [132] use a 

geostatistical interpolation method based on weighted combination of the neighbors, followed by 

Wiener filtering for deblurring and denoising. In [133], authors present a generalized bilinear 

interpolation, followed by a deblurring scheme based on back propagation neural networks 

(BPNN). Addressing the spatial structure information lost while rounding subpixel displacement 

in the HR grid, authors in [134] propose an interpolation technique based on multisurface the 

fitting. Gilman et al. [135] propose a least-square optimal interpolation method based on 

optimizing the resampling filter coefficients using a simple image model in a least square fashion. 

Hardie [136] suggests a SR algorithm using adaptive Wiener filtering, which combines the non-

uniform interpolation and the restoration steps into a single weighted sum operation. 

Computational simplicity is the advantage of these methods. However, they have several 

disadvantages including limited degradation models, uncertain optimality, and lack of prior 

constraints. 

3.3.1.3 Deterministic regularization-based super-resolution methods 

These methods rely on the fact that by carefully estimating the registration parameters, the 

observation model can be completely specified [137]. The inverse SR problem is then solved by 

using prior information about the solution. Among many techniques to impose prior knowledge 

on the solution space, one common approach is to use the constrained least square (CLS) 

optimization function. Deterministic methods then seek a super-resolved image 𝑥̂, which 

minimizes the following cost functional: 



42 

 

𝑥 = arg 𝑚𝑖𝑛𝑥  [∑ ‖𝑦𝑘 − 𝑀𝑘𝑥‖2
2𝐾

𝑘=1 + 𝜆‖𝐿𝑥‖2
2]                                            (3.5) 

 

where the operator L is usually a high-pass filter, 𝑀𝑘 is the degradation matrix for the LR image 𝑦𝑘. 

Note that since images tend to be smooth in nature with limited high-frequency components, it is 

appropriate to implement the prior knowledge as a smoothness constraint as above. The Lagrange 

multiplier 𝜆 is called regularization parameter, which controls the balance between the data fidelity 

term and the smoothness constraint. When the fidelity of data is low (number of non-redundant 

low-resolution frames < square of resolution enhancement factor), higher value of 𝜆 is used. 

Conversely, for higher fidelity of data, smaller value of 𝜆 leads to good solution. Unique estimate 

of 𝑥̂ can be achieved by solving the above optimization problem using any deterministic iterative 

technique. Using gradient descent optimization, the iterative solution can be expressed as: 

𝑥̂(𝑛+1) = 𝑥̂𝑛 + 𝛽(𝑛) [∑ 𝑀𝑘
𝑇(𝑦𝑘 − 𝑀𝑘𝑥̂𝑛) − 𝜆𝑛𝐿𝑇𝐿𝑥̂𝑛𝐾

𝑘=1 ]     (3.6) 

𝛽 represents the step size of the gradient descent method. Primary advantage of a deterministic 

method is that use of a convex and differentiable cost functional guarantees a unique estimate of 

SR image.  

3.3.1.4 Stochastic regularization-based super-resolution methods 

Stochastic regularization methods, which treat SR reconstruction as a statistical estimation 

problem provide a flexible way for the inclusion of prior knowledge necessary for satisfactory 

solution of the ill-posed SR problem. From the Bayesian perspective, the information that can be 

extracted from the LR observations about the unknown HR image is contained in the probability 

distribution of the unknown [92]. Thus, the unknown HR image can be estimated via some 
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statistics of the probability distribution of the unknown HR image. The maximum a posterior 

(MAP) estimator of 𝑥 seeks the estimate 𝑥̂ MAP for which the probability 𝑝(𝑥|𝑦1, 𝑦2, … . , 𝑦𝑘) is 

maximum as: 

             𝑥𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥  𝑝(𝑥|𝑦1, 𝑦2, … . , 𝑦𝑘)                                                                      (3.7) 

By applying Bayes’s rule and taking logarithmic function, the above expression can be re-

written as: 

                   𝑥𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥((𝑙𝑜𝑔 𝑝(𝑦1, 𝑦2, … . , 𝑦𝑘|𝑥) + 𝑙𝑜𝑔 𝑝(𝑥))                                       (3.8) 

The term 𝑙𝑜𝑔 𝑝(𝑦1, 𝑦2, … . , 𝑦𝑘|𝑥) is the log-likelihood function and 𝑝(𝑥) is the priori density of 𝑥. 

Since the LR images are independent of each other, the above equation becomes: 

                            𝑥𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥(∑ 𝑙𝑜𝑔 𝑝(𝑦𝑘|𝑥) + 𝑙𝑜𝑔 𝑝(𝑥)𝐾
𝑘=1 )                                        (3.9) 

Since image is treated as a locally smooth data field, it is common to utilize MRF as prior 

image model. The priori density can then be written in Gibbs form as: 

𝑝(𝑥) =
1

𝐶
exp(−𝛦(𝑥)) =

1

𝐶
exp(− ∑ 𝑃𝑟(𝑥)𝑟∈𝑅 )    (3.10) 

where 𝐶 is a normalizing constant, 𝐸(𝑥) is the priori energy function, 𝑃𝑟(𝑥) is the potential energy 

function that depends on local group of points 𝑟, which are called cliques. 𝑅 is the set of all the 

cliques. Using MRF prior, the potential energy function is expressed as derivative of the image 𝑥.  

If the noise is assumed to be an independent identically distributed zero mean white 

Gaussian noise, the MAP solution becomes 

𝑥̂𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑥(∑ ‖𝑦𝑘 − 𝑀𝑘𝑥‖2
2𝐾

𝑘=1 + 𝜆 ∑ 𝑃𝑟(𝑥)𝑟∈𝑅 )   (3.11) 

where 𝜆 is the regularization parameter. When Gaussian prior is used, 𝑃𝑟(𝑥) takes the quadratic 

form and in the simplest case (Tikhonov regularization [138] the above solution becomes identical 
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to that of the deterministic estimation an in Eq. (5). Tikhonov regularization penalizes the high 

frequency components severely, resulting in overly smooth final solution. To preserve sharp edges 

and other discontinuities in the HR image, Huber MRF (HMRF) prior is alternatively used in 

literature [139-141], which has the following form for the potential energy function: 

𝑃𝑟(𝑥) = {
𝑥2,                                           𝑥 ≤ 𝛼

2𝛼|𝑥| − 𝛼2,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ≥ 0
     (3.12) 

where 𝛼 is a threshold parameter which separates quadratic and linear regions.  

When the above mentioned clique operation in the MRF solution is approximated over four 

directional image derivatives, the prior is well known as Gaussian MRF (GMRF) or directional 

HMRF [13, 142], which uses the following  priori energy function: 

𝛦(𝑥) = ∑ 𝑃𝑟(𝑑𝑖𝑥)4
𝑖=1      (3.13) 

When 𝛼 in the HMRF formulation tends to zero, the prior becomes total variation (TV) 

prior [143-146] which uses Norn 1 of the image gradient operator as: 

𝑝(𝑥) = |∇𝑥|1      (3.14) 

Besides the aforementioned prior models, several other priors have been exploited in the 

literature, such as, natural image prior [147], soft edge smoothness prior [148], conditional random 

field (CRF) prior [149], discontinuity adaptive MRF (DAMRF) prior [150], bilateral total variation 

(BTV) prior [151], principal component analysis based prior [152]. Other than defining the 

appropriate prior model, another fundamental issue that need to be addressed for these regularized 

SR approaches is determining the best optimization method to solve the SR problem. Choosing 

the best optimization often depends on the nature of the regularized cost functional. With convex 

cost functional, gradient based optimization methods like gradient descent, conjugate gradient are 
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used. Whereas for non-convex cost functional, Bregman method [153, 154], expectation 

maximization [155], Markov Chain Monte Carlo [147] are used.  

Another Bayesian-based approach is maximum likelihood (ML) estimation, which can be 

derived from the MAP estimation by eliminating the prior term. Due to the ill-posed nature of SR 

inverse problems, MAP estimation is usually preferred to ML. Robustness and flexibility in 

modeling noise characteristics and prior knowledge of the solution are the major advantages of the 

stochastic methods [92]. MAP estimation with convex prior guarantees the uniqueness of the 

solution. Joint motion estimation and restoration is also possible [156]. 

3.3.1.5 Set theoretic super-resolution methods 

Set theoretic methods [157-165], especially the projection onto convex sets (POCS), utilize 

an iterative approach for convenient inclusion of prior knowledge into the SR reconstruction 

process. The desirable SR image characteristics are associated with a set of convex constraint sets 

in the solution space. Commonly used convex sets include data consistency, bounded energy, 

positivity, amplitude constraint, and smoothness constraint. Data consistency is modeled as K 

convex sets as [166]: 

𝐶𝑘 = {𝑥| ‖𝑦𝑘 − 𝑀𝑘𝑥‖2 ≤ 𝛿2, 1 ≤ 𝑘 ≤ 𝐾}   (3.15) 

where 𝛿 is the upper bound of the uncertainty of the model. Similarly, amplitude constraint can be 

modeled as [159]: 

𝐶𝐴 = {𝑥|𝐵 ≤ 𝑥𝑝 ≤ 𝐴, ∀𝑝 = 1, … . , 𝑀}    (3.16) 

where M denotes the number of pixels in 𝑥 and A and B are the upper and lower bound for the 

pixel amplitude. For each convex set 𝐶𝑖 , a projection operator 𝑃𝑖 is defined. Projection operator 
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associated with a particular set projects a point in SR space onto a point in the space of the set. 

With a group of m convex sets, the space of the SR solution lies in the intersection of these m sets. 

Using an iterative method, POCS seeks a point within the intersection set (that comply with all the 

convex constraint sets) given an initial estimate of the unknown HR image as: 

𝑥(𝑛+1) = 𝑃1𝑃2𝑃3 … . 𝑃𝑚𝑥𝑛    (3.17) 

Gevrekci et al. [161] propose a POCS-based restoration algorithm using a constraint set 

utilizing spatio-intensity neighborhood. In order to address the spatial information loss in the 

captured remote sensing images, authors in [160] suggest a global weighted POC method. In their 

method the residual error and gray scale are used as constraint sets during the iterative 

reconstruction process. To reduce the effect of inaccurate estimation of sub-pixel motion in the SR 

result, Caner, Tekalp, and Heinzlman [162] propose registration of the multi-views of a dynamic 

scene.  In [163], the authors propose using an adaptive regularization based on noise variance 

within the POCS framework in order to incorporate the effect of noise energy. The constraint sets 

defined on edges are modified in [164] to reduce the amount of edge ringing present in the POCS 

HR estimate. Addressing the issue that traditional constraints yield slow convergence of the POCS 

method, Brodzik and Mooney [165] suggest a SVD-based constraint consistent with image spectral 

characteristics.  

Advantages of these methods include simplicity in incorporating prior information. 

However, they have disadvantages like nonuniqueness of the solution because of the variable 

initial guess, slow convergence, high computation cost. Furthermore, results of these methods will 

be erroneous if the estimated sub-pixel motion is inaccurate.  
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3.3.1.6 Iterative back projection-based super-resolution methods 

First proposed in [2], IBP methods [167-174] update the estimate of the SR reconstruction 

by backprojecting the error between simulated LR images and the observed LR images. Having 

defined the image observation model as in equation 3.5, these methods start by an initial guess for 

the desired HR image. Such a guess can be obtained by registering the LR images and then 

interpolating them in the HR grid. A set of K simulated LR images {𝑦̂𝑘, 𝑘 = 1 𝑡𝑜 𝐾} is obtained 

from this initial guess.  The residual error between the observed and simulated LR images is then 

iteratively backprojected to the initial guess until a minimum error-threshold or maximum 

iteration-number is reached. The residual error (𝑒𝑟
𝑡) in the tth iteration is given by: 

𝑒𝑟
𝑡 = √∑ ‖𝑦𝑘 − 𝑦̂𝑘

𝑡 ‖
2

2𝐾
𝑘=1      (3.18) 

The iterative process to obtain HR estimate can be expressed by: 

𝑥(𝑡+1) = 𝑥𝑡 +
1

𝐾
∑ (𝑦𝑘 − 𝑦̂𝑘

𝑡 )𝐾
𝑘=1 × 𝐻𝐵𝑃

𝑘     (3.19) 

where  𝐻𝐵𝑃
𝑘  is the backprojection operator that creates a projection from the kth difference images. 

 𝐻𝐵𝑃
𝑘  can be modeled as 𝑀𝑘

−1. In that case the backprojection operator becomes a combination of 

inverse warping, upsampling, and deblurring operators. The graphical representation of the IBP 

method is shown is Figure 3.5.  
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One common issue related to the abovementioned IBP methods is that their results suffer from 

ringing effects around the edges. This is dealt with by employing edge preserving regularization 

[167, 168], total variation regularization [171].  To address the slow or no convergence of the IBP 

methods, a meta-heuristic optimization is proposed in [169]. In [172], Qin uses a wavelet-based 

locally adaptive interpolation for initial value estimation, which results in fast convergence. 

Choosing the back projection operator is often difficult, since it requires accurate knowledge of 

geometric transformation and degradation process. Yan et al. [170] propose integrating Papoulis-

Gerchberg method with IBP method in order to avoid the requirement of a back projection 

operator. Even though research has been done [175-177] to add prior knowledge to tackle the ill-

posed nature of the inverse SR problem, this process seems significantly difficult compared to 

POCS and regularized approaches. 

A comparative overview of different multi-frame super-resolution algorithms is shown in 

Table 3.1. 

Figure 3.5: Iterative back projection. 
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Table 3.1: Comparative overview of different multi-frame super-resolution algorithms 

Category Advantages Disadvantages 

Frequency-

domain 

Simple computation Good for pure translational motion and linear space invariant blur 

among LR frames 

Interpolation Simple computation No guarantee about the optimality of the estimation, lack of prior 

constraints, limited degradation model 

Deterministic 

regularization 

Unique solution guaranteed using 

convex and differentiable cost 

functional 

Final solution often overly smooth due to lack of edge preserving 

prior 

Stochastic 

regularization 

Flexibility in modeling noise 

characteristics and prior 

knowledge, easy to implement 

edge preserving prior  

High computation, degradation of performance with large 

magnification factor 

Iterative back 

projection 

Intuitive and easy to understand Nonunique solution, slow convergence, choice of back projection 

operator arbitrary, difficult to integrate prior information 

Set theoretic Flexibility in incorporating prior 

information 

Nonunique solution, slow convergence with improper constraint 

set selection, high computation, performance heavily dependent of 

accurate motion estimation 

 

3.3.2 Single-frame super-resolution methods 

The multi-frame SR techniques, discussed so far, fail to perform accurately if the estimated 

motion between the LR frames is not precise, i.e., not in subpixel accuracy. Since precise motion 

estimation becomes less achievable for complex motions of the objects in real world scenes, single-

frame SR algorithms offer more attractive solutions for real world applications. However, single-

frame SR is inherently an ill-posed problem, as there could be several HR images generated from 

the same LR input. Accordingly, prior information like those used in reconstruction-based multi-

frame SR algorithms is required to approach this problem. But the generic smoothness prior used 

in case of multi-frame SR algorithms cannot help single-frame SR algorithms in reconstructing 

the lost high frequencies. Thus, in this case, the prior information is defined either in the explicit 
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form of a class-specific energy functional leading to the reconstruction-based SR, or in the implicit 

form of example images leading to the example-based SR [178]. Depending on the types of prior 

used, reconstruction-based methods can be either edge-directed or regularization-based. 

Depending on the type of dictionary requirement (which is typical in example-based methods), 

example-based methods can be either neighbor embedding-based, or regression-based, or sparse 

coding-based. All these methods are discussed in the following subsections. 

3.3.2.1 Edge directed super-resolution methods 

Motivated by the fact that edges are important primitive image structures that are more 

robust to image scale changes than other structures, edge-focusing prior are typically used by this 

category of SR algorithms [148, 179-184]. These algorithms learn prior by looking into the 

relationship between the edge features present in the LR and the HR images. The learned 

information is then used to apply an edge-focusing constraint to the reconstruction process. 

Different features of edges have been used as prior information, including depth and width of an 

edge [148, 182] and the parameter of the gradient profile [179-181]. In the approach of [182], the 

authors use statistical edge dependency between two resolutions as the prior information in order 

to increase image resolution. In [148], given a weighted grid-graph 𝐺 = 〈𝑉, 𝐸〉, and a 

curve 𝐶in ℝ2, a soft-edge smoothness prior is approximated by the following cut metric as follows: 

|𝐶|𝐺 = ∑ 𝑤𝑒𝑒∈𝐸𝐶
      (3.20) 

where 𝐸𝐶 the set of edges intersecting with the curve is 𝐶, 𝑤𝑒 is the edge width, |𝐶|𝐺 is the weight 

summation of the edges intersecting with 𝐶.  
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Li et al. [181] propose a global non-zero gradient prior while solving an optimization 

problem to reconstruct the edge components correctly. In [180] the authors show that edge gradient 

profile in natural images follow the generalized Gaussian distribution as: 

𝑔(𝑥; 𝜎, 𝜆) =
𝜆𝛼(𝜆)

2𝜎𝛤(
1

𝜆
)

𝑒𝑥𝑝 (− (𝛼(𝜆) |
𝑥

𝜎
|)

𝜆

)     (3.21) 

where 𝛤(∙) is the gamma function and 𝛼(𝜆) = √𝛤 (
3

𝜆
) 𝛤 (

1

𝜆
)⁄  is the scaling factor which makes the 

second moment of the above distribution equal to 𝜎2and thus allows estimation of 𝜎 from the 

second moment.  The shape parameter 𝜆 controls the overall shape of the distribution. 

Some other algorithms [183, 184] in this category try to reconstruct the image details while 

focusing on sharpening the edges by utilizing different filters (e.g. bilateral filter, shock filter).  

3.3.2.2 Regularization-based super-resolution methods 

This group of algorithms [171,185-188] try to solve the ill-posed SR problem by using 

different regularization methods, e.g. sparsity, total variation etc. Li et al. [186] propose a SR 

algorithm using two complementary regularization terms for the MAP framework: a steering 

kernel regression total variation (SKRT) and a non-local total variation (NLTV). In [171], a total 

variation regularization term is used to guide the iterative back-projection process and minimize 

the SR reconstruction error. The total variation energy functional is comprised of the total variation 

norm of an image 𝐼 and the fidelity of this image to the observational image 𝐼0 as:  

𝐸𝑇𝑉 = ∫ (|∇𝐼| +
𝜆

2
(𝐼 − 𝐼0)2)

𝛺
𝑑𝑥𝑑𝑦    (3.22) 

where 𝜆 ∈ ℝ is a scalar controlling the fidelity of the solution to the input image. 
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The total variation regularized approaches do not help much in recovering the fine image 

details and often result in staircase artifacts. Later, several research have been performed in the 

literature using sparsity-based regularizations with greater success. Using sparsity regularization 

(constraint that the HR image is sparse in the wavelet domain) along with compressed sensing, the 

authors in [188] propose a compressive image SR. [185] use a non-local regularization method, 

which at first estimates the sparse domain of the HR image patches and then utilize a non-local 

self-similarity constraint to achieve the HR image. Following the similar concept of non-local 

regularization, Li et al. [187] suggest a dual-sparsity regularized sparse representation in order to 

tackle the limited capability of the earlier methods. Here a row non-local similarity regularization 

is introduced along with the conventional column non-local similarity sparse representation model.   

3.3.2.3 Neighbor embedding-based super-resolution methods 

Example-based single-frame SR method aims at estimating the HR image by employing a 

dictionary of patch correspondences. One serious consequence of this approach is the necessity of 

having an enormous dictionary that includes any patches possibly encountered during testing. To 

overcome the large-dictionary requirement, neighbor embedding-based methods use a manifold 

learning technique based on local linear embedding (LLE) to estimate the HR image from a single 

LR image and a set of training patches. The basic assumption is that a patch in the LR input image 

and the corresponding HR unknown patch share similar neighborhood structures. As a 

consequence, once the LR patch is expressed as the linear combination of a certain number of its 

neighbors taken from the dictionary, the output patch can be reconstructed by using the HR patches 
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in the dictionary corresponding to the neighbors selected, and combining them in the same way 

[193].  

Let 𝐿𝑡𝑒𝑠𝑡 = {𝑙𝑡𝑒𝑠𝑡
𝑝 }

𝑝=1

𝑁𝑡
 be the LR input image represented as collection of  𝑁𝑡 overlapping 

patches and 𝐻𝑡𝑒𝑠𝑡 = {ℎ𝑡𝑒𝑠𝑡
𝑝 }

𝑝=1

𝑁𝑡
 be the corresponding HR estimate. Let the training set of LR 

patches be 𝐿𝑠𝑎𝑚𝑝𝑙𝑒 = {𝑙𝑠𝑎𝑚𝑝𝑙𝑒
𝑞 }

𝑞=1

𝑁𝑠
and the corresponding training set of HR patches be 𝐻𝑠𝑎𝑚𝑝𝑙𝑒 =

{ℎ𝑠𝑎𝑚𝑝𝑙𝑒
𝑞 }

𝑞=1

𝑁𝑠
, where 𝑁𝑠 represents the number of training samples. For each LR input patch 𝑙𝑡𝑒𝑠𝑡

𝑝
, 

these algorithms find the set 𝑁𝑝 of k-nearest neighbors in 𝐿𝑠𝑎𝑚𝑝𝑙𝑒 and compute a weight-vector 

(𝑤̂) for the neighbors that minimizes the error of reconstructing 𝑙𝑡𝑒𝑠𝑡
𝑝

 as follows [192]: 

𝑤̂ = arg 𝑚𝑖𝑛𝑤𝑠
‖ 𝑙𝑡𝑒𝑠𝑡

𝑝
− ∑ 𝑤𝑠𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑞

 𝑙
𝑠𝑎𝑚𝑝𝑙𝑒
𝑞

∈𝑁𝑝

‖2   (3.23) 

𝑠. 𝑡. ∑ 𝑤𝑠 = 1
 𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑞
∈𝑁𝑝

 

Finally the same weight-vector is used to reconstruct the HR patch ℎ𝑡𝑒𝑠𝑡
𝑝

 corresponding to 

the LR patch 𝑙𝑡𝑒𝑠𝑡
𝑝

as: 

ℎ𝑡𝑒𝑠𝑡
𝑝

= ∑ 𝑤̂ℎ𝑠𝑎𝑚𝑝𝑙𝑒
𝑞

 𝑙
𝑠𝑎𝑚𝑝𝑙𝑒
𝑞 ∈𝑁𝑝

 

In order to avoid subtractive combination of patches, which often causes unstable behaviors 

for these algorithms, a semi-nonnegative matrix factorization (SNMF) method is proposed in 

[193], which replaces the above weight constraint with 𝑤𝑠 ≥ 0  

Feature selection plays a crucial role in preserving the neighborhood relationships among 

the LR and HR patches. In the pioneering work [192] the authors use 1st and 2nd order gradient 
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of the luminance as the feature vectors. In an attempt to reduce the sensitivity of the selected 

features to noise, and at the same time to preserve the neighborhood in a more robust way, several 

feature vectors have been utilized. [194] uses a combination of 1st order gradient and norm 

luminance, [198] uses DCT coefficients of the norm luminance, [196] uses a combination of 1st 

order gradient and residual luminance, [197]uses norm luminance along with stationary wavelet 

transform coefficients, [195] uses DCT coefficients of the interpolated patches. 

One weakness related to the aforementioned NE-based algorithms is that when they try to 

preserve the neighborhood of the LR space for the reconstructed HR space, the geometry of the 

actual HR space is neglected. Since the LR image involves several degradations, the neighborhood 

relationship of the LR space does not truly reflect the original HR space. In [199-201] the authors 

propose incorporating a locality constraint into the patch representation objective function as 

below. 

𝑤̂ = arg 𝑚𝑖𝑛𝑤𝑠
‖ 𝑙𝑡𝑒𝑠𝑡

𝑝 − ∑ 𝑤𝑠𝑙𝑠𝑎𝑚𝑝𝑙𝑒
𝑞

 𝑙𝑠𝑎𝑚𝑝𝑙𝑒
𝑞

∈𝑁𝑝

‖2 + 𝜏‖𝑑𝑖𝑠𝑡 ⊙ 𝑤̂‖2    (3.24) 

where 𝜏 is the regularization parameter, ⊙ denotes the element-wise multiplication, 𝑑𝑖𝑠𝑡 is a 

locality adaptor that gives different freedom for each LR training patch 𝑙𝑠𝑎𝑚𝑝𝑙𝑒
𝑞

 to its similarity to 

the LR input patch 𝑙𝑡𝑒𝑠𝑡
𝑝

. 

3.3.2.4 Regression-based super-resolution methods 

Differently than the NE-based methods, regression-based methods [189,202-207] attempt 

to learn the relationship between the space of the LR patches and the space pf the HR patches by 

finding a regression function 𝑓.Thus, this group of methods are not based on the LLE assumption, 
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which is often doubted. Similar to the NE-based methods, a local LR training set is first chosen 

according to the similarity between the LR training patch2[150]es and the LR test patch. The local 

HR training set corresponding to the local LR training set is also identified. A regression function 

is then learned taking into account the two aforementioned local training sets. 

If {𝑙𝑠𝑎𝑚𝑝𝑙𝑒
𝑞 }

𝑞=1

K
and {ℎ𝑠𝑎𝑚𝑝𝑙𝑒

𝑞 }
𝑞=1

𝐾
are the two local training sets from the LR and HR dictionaries 

(assuming K-nearest neighbors for each test patch are under consideration), the regression 

function Ʀ𝑓can be obtained by minimizing a regularized cost functional as below [202]:  

Ʀ𝑓 = arg 𝑚𝑖𝑛𝑓∈ℋ [∑ ‖ℎ𝑠𝑎𝑚𝑝𝑙𝑒
𝑞 − 𝑓(𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑞 )‖
2

2𝐾
𝑞=1 + 𝜆‖𝑓‖ℋ

2 ]   (3.35) 

where λ denotes the regularization parameter, ℋ is the Hilbert function space, ‖𝑓‖ℋ is the norm 

in ℋ. Finally, a unique estimation of the HR patch is generate using the regression function. 

Different techniques have been used in literature to obtain the local regression function 

discussed above. [206,207] use a support vector regression (SVR) based on support vector 

algorithm, which works in the similar way neural network regression works. On the other hand, 

[202-205] use kernel ridge regression (KRR), which works on the basis of expanding a kernel 

function. 

3.3.2.5 Sparse coding-based super-resolution methods 

Even though the local learning-based methods use smaller training database (by allowing 

combination of patches) to represent more number of patches, the fixed number of K nearest 

neighbors for the reconstruction often generates blurring artifacts, due to over- or under-fitting 

[101]. In order to avoid this problem, another family of example-based method, pioneered by the 
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work of Yang et al. [176], proposes to adaptively choose the relevant number of neighbors based 

on a sparse representation. Using compressive sensing theory [208], these methods [83, 176, 209-

214] assume that the sparse representation of the HR patches can be precisely recovered from their 

LR counterparts.  

Let 𝐻𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ𝑛𝑥𝑁𝑠 and 𝐿𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ𝑚𝑥𝑁𝑠 be the dictionaries of 𝑁𝑠 example HR and LR 

patches respectively. Each of the HR and LR patches are assumed to be an 𝑛-dimensional and a 𝑚-

dimensional feature vectors respectively. For each input LR image patch 𝑙𝑡𝑒𝑠𝑡, its sparse 

representation can be formulated as [176]: 

min‖𝛼‖0            𝑠. 𝑡.      ‖ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒𝛼 − 𝑙𝑡𝑒𝑠𝑡‖
2

2
≤ 𝜖     (3.26) 

where 𝛼 is a 𝑁𝑠 dimensional vector, called coefficient representation vector and ‖𝛼‖0 represents 

the number of non-zero elements in 𝛼. Since the 𝑙0-norm is non-convex, it is replaced by 𝑙1-norm 

to make the above optimization problem convex [210] as: 

min‖𝛼‖1            𝑠. 𝑡.      ‖ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒𝛼 − 𝑙𝑡𝑒𝑠𝑡‖
2

2
≤ 𝜖    (3.27) 

which can be rewritten by using Lagrange multiplier as the following optimization problem, well 

known as Lasso: 

𝑚𝑖𝑛𝛼 ‖ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒𝛼 − 𝑙𝑡𝑒𝑠𝑡‖
2

2
+ 𝜌‖𝛼‖1    (3.28) 

where 𝜌 is a regularization parameter.  

Sparse coding over a large LR patch database directly is computationally expensive. Thus, 

a joint dictionary learning technique has been used by many researchers in the literature [209, 211, 

213, 214]. By concurrently learning the following two dictionaries, the same sparse representations 

can be maintained with respect to the LR and HR dictionaries. 
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𝐷𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷𝑙,𝐴‖ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐷𝑙𝐴‖
2

2
+ 𝜌‖𝐴‖1                                 (3.29) 

and  

𝐷ℎ = arg 𝑚𝑖𝑛𝐷ℎ,𝐴‖ 𝐻𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐷ℎ𝐴‖
2

2
+ 𝜌‖𝐴‖1                             (3.30) 

where 𝐴 is the sparse coding vector. The joint learning can then be formulated as below to obtain 

the new dictionary 𝐷𝑛𝑒𝑤: 

𝐷𝑛𝑒𝑤 = arg 𝑚𝑖𝑛𝐷,𝐴‖𝑇 − 𝐷𝐴‖2
2 + 𝜌̂‖𝐴‖1                                     (3.31) 

where 𝑇 = [
1

√𝑛
𝐻𝑠𝑎𝑚𝑝𝑙𝑒;   

1

√𝑚
𝐿𝑠𝑎𝑚𝑝𝑙𝑒] and 𝐷 = [

1

√𝑛
𝐷ℎ;  

1

√𝑚
𝐷𝑙] 

Once 𝐷𝑛𝑒𝑤 is learned, 𝐷𝑛𝑒𝑤
𝑙  and 𝐷𝑛𝑒𝑤

ℎ  can be obtained by dividing 𝐷𝑛𝑒𝑤 into two parts. 

Using these learned couple dictionaries, sparse representation of the input LR image patch is 

obtained by optimizing: 

𝛼̂ = 𝑚𝑖𝑛𝛼  ‖𝐷𝑛𝑒𝑤
𝑙 𝛼 − 𝑙𝑡𝑒𝑠𝑡‖2

2 + 𝜌‖𝛼‖1                                   (3.32) 

Finally, the HR image patch ℎ𝑡𝑒𝑠𝑡 corresponding to the input LR image patch can be 

obtained as: 

ℎ𝑡𝑒𝑠𝑡 =  𝐷𝑛𝑒𝑤
ℎ 𝛼̂      (3.33) 

Differently than Lasso, several other methods are used in literature to solve the 

optimization problem like equation 5.11. [215, 216] use KSVD, [211] uses stochastic gradient, 

[212] uses a combination of K-SVD and Batch-OMP.  

A comparative overview of different single-frame super-resolution algorithms is presented 

in Table 3.2. 
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Table 3.2: Comparative overview of different single-frame super-resolution algorithms 

Category Advantages Disadvantages 

Edge directed Output with high quality edges having 

proper sharpness and less artifacts 

Other high-frequency structures such as textures cannot be 

reconstructed 

Regularization No necessity for large training dataset, 

ease of incorporating prior 

Performance degrades with large magnification factor 

Neighbor 

embedding 

Compact dictionary size, reasonably low 

computation 

Blurring artifacts due to over or under fitting 

Regression Computationally faster than neighbor 

embedding   

Degraded performance compared to neighbor embedding 

Sparse coding Highly compact dictionary size, low 

computation, no overfitting 

No guarantee about the global optimality of the estimation 
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CHAPTER 4 

MOSAICING SYSTEM 

This chapter describes the proposed mosaicing system. The first section describes the 

proposed algorithm. The second section describes the evaluation methodology. The third section 

talks about result and explanations. 

4.1 Methodology 

The mosaicing algorithm is composed of Scale Invariant Feature Transform (SIFT), Best 

Bins First (BBF), Random Sample Consensus (RANSAC), reprojection, and stitching algorithms. 

Figure 4.1 shows the flowcharts of the proposed mosaicing algorithm.  

SIFT feature extraction

SIFT matching using BBF

Start

RANSAC for homography

Reprojection of frames

Stitching multiple frames

End

Input image 
frames

A

A

 

 

As shown in Figure 4.1, the first step of the mosaicing algorithm is the extraction of SIFT 

features or keypoints from the input frames. Initially, a scale space is constructed using a Gaussian 

filter with changing scales and an input image. The image is convolved repeatedly with the 

Figure 4.1: Flowchart of the mosaicing algorithm. 
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Gaussian filters and grouped into octaves.  An octave corresponds to doubling the value of the 

standard deviation of the Gaussian filter that we start the octave with. Then the difference-of-

Gaussian (DoG) images are computed from adjacent Gaussian-blurred images in each octave. 

After the DoG images are obtained, candidate keypoints are identified as local extrema of DoG 

images across the scales. In the next step, low contrast keypoints and edge response points along 

the edges are discarded using accurate keypoint localization. The candidate keypoints are then 

assigned one or more orientations based on local image gradient directions. A set of orientation 

histograms is formed over 4x4 pixel neighborhoods with 8 bins in each. Since there are 4x4= 16 

histograms each with 8 bins, a 128 dimension descriptor vector could be assigned to each keypoint. 

Since the 128 element keypoint descriptor is represented relative to the orientation(s) assigned to 

that particular keypoint, the keypoints are invariant to rotation. Furthermore, a very high 

dimensional descriptor vector makes the keypoints highly distinctive. Figure 2 and Figure 3 show 

an example dataset and SIFT features extracted from each of the frames in the dataset. 

The second step evaluates the best matching keypoints between image pairs. This is 

achieved by identifying the nearest neighbor of a keypoint in the first image from a database of 

keypoints for the second image. The nearest neighbor is defined as the keypoint with minimum 

Euclidean distance from a given descriptor vector. However, because of the high dimensionality 

of the descriptor vectors, matching the feature points by comparing the descriptor vector one by 

one will require considerably high computation time. Instead, the use of BBF, which is an 

approximation algorithm, saves significant computation time at the cost of negligible loss of 

correct matching. This approximation is achieved by using a parameter BBF NN bins, which 
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indicates when the BBF algorithm cuts off the search while looking for the nearest neighbor 

candidates for a particular feature vector.    

Following the initial-matching-points-searching between a pair of images, the RANSAC 

algorithm is used to remove the outliers and to compute an optimum homography matrix based on 

certain homography constraints (geometric distance error, maximum number of inliers, etc.). The 

homography matrix is a 3x3 matrix which designates several transformation parameters between 

a pair of images. In order to find the homography matrices for a set of frames, one of the frames 

is assigned as the reference frame and the current homography matrix is multiplied with all the 

previous homography matrices until the reference frame is reached. Using the homography 

matrices, frames are projected into a common coordinate system. 

Finally, the reprojected frames are stitched to the reference frame to construct the mosaic 

output. This stitching is achieved by checking each pixel of the mosaic frame to see if it belongs 

to the warped frame or the reference frame. Accordingly, that pixel in the mosaic frame is assigned 

the corresponding pixel value from the warped frame or the reference frame. Once the reference 

frame and the first reprojected frame is stitched, the result is treated as the reference frame for the 

next stitching process, and continued until all the frames are stitched.  

The mosaicking program is developed in Microsoft Visual Studio C++ platform. A PC 

with 1.9 GHz Core2 Duo processor and 3 GB RAM is used for all the evaluations. 

4.2 Evaluation 

Three different categories of datasets: images of 2D surfaces, images of outdoor 3D scenes, 

and airborne images from an Unmanned Aerial Vehicle, are used to evaluate the performance of 
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the proposed mosaicing algorithm. Each of these datasets has a sequence of ten frames. While the 

first two categories of datasets were captured by using a handheld camera, the third category of 

images were collected by an UAV on-board camera. For objective evaluation, four metrics are 

used: percentage of mismatches, difference of pixel intensities, peak signal-to-noise ratio, and 

mutual information. All these metrics are used to measure the amount of asymmetry between a 

mosaic output and a reference image. Thus obtaining the reference image is a crucial step for 

evaluating the mosaicing algorithm. In the following subsections we will first discuss the 

evaluation setup followed by the performance metrics and their interpretation.   

Initially, from the wide-angle HR image 10 frames are extracted with inter-frame 

translational motion. This process acts as photographing a scene by multiple shots that cover 

different areas of the scene. Mosaicing algorithm is then applied to these frames to generate a 

mosaic output. From the coordinates of the individual frames a mask, imitating the shape of the 

mosaic, is created. With that appropriate padding (layers of black pixels) is added to give the mask 

same dimension as that of the mosaic output. A region-of-interest is later extracted from the wide-

angle image. This region-of-interest has the same dimension as that of the mosaic frame. The mask 

created earlier is then used together with the region-of-interest to generate the ground-truth image 

corresponding to the mosaic output. A pixel-wise multiplication was performed between the mask 

and the region-of-interest to achieve the ground truth. Figure 4.2 shows the aforementioned 

procedure using a 2D scene data. Quantitative comparison between the mosaic output and the 

ground truth is obtained using the following four performance metrics: 
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Percentage of mismatches: The percentage of mismatches is a measurement of the number 

of mismatching pixels in two images, an output image and a ground truth image, beyond a 

threshold intensity value of 15. The lower this value, the higher the similarity between the two 

images. In the worst case of an 8-bit image, this threshold value of 15 represents only 6% of the 

highest intensity value (255).   

 

 

 

 

 

 

Average difference of pixel intensities: The average difference of pixel intensities is a 

measurement of the average error of pixel intensities along with their fluctuation from the mean 

error value. The lower this value, the higher the similarity between two images, an output image 
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Figure 4.2: Schematic of the mosaicing algorithm’s evaluation process. 
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and a ground truth image. The average difference of pixel intensity value can be used to choose 

the threshold intensity value for calculating the percentage of mismatches.  

Peak Signal to Noise Ratio: The peak signal to noise ratio (PSNR) is used as a measurement 

of the difference between two images. PSNR of corresponding pixel values is defined as:   

            𝑃𝑆𝑁𝑅 =  
10 log10(max (𝐺(𝑖,𝑗),𝑂(𝑖,𝑗)))2

MSE
                                (4.1) 

where, MSE is the mean square error and G(i,j) and O(i,j) are the (i,j)th pixel values in the 

ground-truth and the mosaic output respectively. The mean square error is given as 

       𝑀𝑆𝐸 =
∑ ∑ (ji G(I,j)−O(I,j))2

N
                                     (4.2) 

where, N is the total number of pixels in each image. 

The lower the difference between two the images (and hence lower the MSE), the higher 

the PSNR between them. 

Mutual information: The mutual information (MI) is a measurement of the asymmetry 

between two images along with its fluctuation from the mean value. MI between two images G(i,j) 

and O(i,j) is expressed as: 

      𝐼(𝐺, 𝑂)  =  𝐻(𝐺) + 𝐻(𝑂) − 𝐻(𝐺, 𝑂)                  (4.3) 

where, H(G) is the entropy of the image G(i,j), H(O) is the entropy of the image O(i,j),and H(G,O) 

is their joint entropy, which is expressed as: 

𝐻(𝐺, 𝑂) = − ∑ 𝑝𝐺𝑂(𝑖, 𝑗)𝑙𝑜𝑔𝑝𝐺𝑂(𝑖, 𝑗)𝑖,𝑗                                       (4.4) 

where 𝑝𝐺𝑂(𝑖, 𝑗) represents the probability of a single pixel pair from G(i,j) and O(i,j). 

Maximizing the mutual information is equivalent to minimizing the joint entropy. The 

lower the joint entropy (and hence higher the mutual information) between two images, the higher 
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the similarity between them. The advantage of using mutual information over joint entropy is that 

it includes the entropy of the individual images, which adds offset to pixels that can help in low 

contrast regions [217]. 

4.3 Results and discussion 

The probability that a nearest neighbor found during SIFT matching is correct can be 

determined by taking the ratio of distance of the closest neighbor to the distance of the second 

closest neighbor. Typically a threshold value for the aforementioned ratio is used to eliminate the 

false or incorrect matches, especially arising from background clutter or noise. Matches for which 

the ratio is greater than the threshold value are rejected. Lower the value of this threshold, better 

is the performance of the SIFT matching. Because correct match needs to have the closest neighbor 

significantly closer than the closest incorrect match. This could be verified from the graph of the 

Figure 4.3: Matching performance vs distance threshold at different values of BBF NN bins for an example image pair. 
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matching performance vs the distance threshold value as shown in Figure 4.3. Note that the plots 

are drawn for different values of the BBF NN bins, which indicates when the BBF algorithm 

terminates its search operation. As can be seen from the graph, a distance threshold value close to 

0.5 would be ideal. Note that a too low value of this threshold would possibly result in discarding 

many correct matches.  

As previously mentioned, the value of BBF NN bins is chosen such that the search 

algorithm cuts off the operation while looking for the nearest neighbor candidates for a particular 

feature vector. Thus, lower the value of this parameter, higher is the speed of the nearest neighbor 

search. However, a low value could cost losing a high number of correct matches. Figure 4.4 shows 

that a minimum value of 200 is ideal for BBF bins value in order not to compromise the 

performance of the algorithm. Note that plots are drawn while varying the aforementioned distance 

Figure 4.4: Matching performance vs number of BBF NN bins at different distance threshold values for an 

example image pair. 
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threshold parameter value. It is clear from the graph that the performance saturates at a BBF NN 

bins of 200. Thus increasing this number would only result in slowing the entire search process 

without improving the result.      

Probability that the final transformation returned by the RANSAC algorithm is corrupted 

by outliers is a user-defined parameter which balances the tradeoff between the computation and 

the performance of the algorithm. Lower the value of this parameter, better is the transformation 

model, hence better is the performance. However, it costs more computation, since more number 

of iterations is required. Similarly, distance threshold for considering inliers while computing the 

final transformation is also a user-defined parameter. Lower the value of this parameter, better is 

the final transformation model; however at the cost of more computation. Figure 4.5 and Figure 
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Figure 4.5: Performance vs computation of the RANSAC algorithm at a constant distance threshold value for an 

example image pair. 
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4.6 show the effect of changing these parameters on computation. We have empirically chosen the 

values of 0.01 and 6 for the two aforementioned parameters. 

While evaluating the sensitivity of the mosaicing algorithm to image details, it is seen that 

the algorithm works even with very few numbers (but not less than 10) of extracted features from 

the frames. However, a minimum number of 10 matching features is required for the success of 

the algorithm.  

Output of the different steps of the proposed mosaicing algorithm is shown in Figure 4.8-

4.11 using an example UAV scene dataset (Figure 4.7). Note that optimal parameter values are 

chosen based on the aforementioned discussion. 
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Figure 4.6: Distance threshold vs computation of the RANSAC algorithm at a constant probability of model 
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Figure 4.7: Input frames for the mosaicing algorithm. 
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Figure 4.8: SIFT features extracted from the input frames. 

Figure 4.9: SIFT features matching from pair of input frames. 
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Figure 4.10: Projection of frames into common coordinate. 

system 
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Figure 4.12, 4.13 and 4.14 show examples of the mosaicing algorithm using one of the sets 

of each category of data. Figure 4.12 shows an example of a 2D scene consisting of 10 frames 

(Figure 4.12 a, b, c, d, e, f, g, h, i, and j) and their corresponding mosaicing output (Figure 4.12 k). 

Figure 4.13 shows an example of a 3D scene consisting of 10 frames (Figure 4.13 a, b, c, d, e, f, 

g, h, i, and j) and their corresponding mosaicing output (Figure 4.13 k). Figure 4.14 shows an 

Figure 4.11: Step-by-step stitching process. 
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example of a UAV scene consisting of 10 frames (Figure 4.14 a, b, c, d, e, f, g, h, i, and j) and their 

corresponding mosaicing output (Figure 4.14 k) obtained during a 2011 University of North 

Dakota UAV flight test.  

            

             

             

             

              

 

 

 

Figure 4.12: Mosaicing using an example 2D scene dataset. (a)-(j) Input frames; (k) Mosaic output.

   

                (a)                                     (b)                                       (c)                                    (d)                                  (e) 

 

                (f)                                     (g)                                       (h)                                    (i)                                  (j) 

 

                (k)                                      
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                (a)                                     (b)                                       (c)                                    (d)                                  (e) 

 

                (f)                                     (g)                                       (h)                                    (i)                                  (j) 

 

                (k)                                      

 Figure 4.13: Mosaicing using an example 3D scene dataset. (a)-(j) Input frames; (k) Mosaic output. 

                (a)                                     (b)                                       (c)                                    (d)                                  (e) 

 

                (f)                                     (g)                                       (h)                                    (i)                                  (j) 
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A small value of the average difference of pixel intensities indicates that the mosaicing 

output is similar to the ground-truth image, and, hence it gives a larger PSNR value. If the 

mosaicing output is barely similar to the ground-truth (which we have considered as worst case 

scenarios), the average difference of pixel intensities is of the order of 35, 36 and 20, respectively 

for the three aforementioned categories. Similarly, the PSNR is of the order of 11dB, 12dB and 

15dB for the worst case scenarios. 

Table 4.1 shows the results of the assessment using four metrics on the mosaicing outputs 

of the 36 scenes. The average difference in pixel intensities is of the order of 1, 2 and 3 for the 

three categories respectively, which gives an average ratio of mismatches for different categories 

of data ranging from 0.91 to 1.42 using a pixel intensity threshold of 15. The fluctuation of the 

average difference of pixel intensities is small for all the three categories compared to the highest 

values of 39.56, 41.47 and 35.2 for the worst cases. PSNR average values are of 22.99 dB, 27.06 

dB and 38.50 dB for the three categories of data. Compared to the worst case values of 11 dB, 12 

dB and 15 dB, these PSNR average values indicate that the mosaicing algorithm produces outputs 

                (k)                                      

 
Figure 4.14: Mosaicing using an example UAV dataset. (a)-(j) Input frames; (k) Mosaic output. 
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similar to their corresponding ground-truth images. Low joint entropy values of 8.01, 8.52 and 

5.92, compared to the highest values of 10.16, 10.25 and 7.9 for the three categories of data, 

designate low mosaicing errors. High mutual information values of 2.8, 3 and 3.46, compared to 

the lowest values of 1.01, 1.12 and 0.7, show low stitching errors. The average PSNR measures 

the geometric and photometric error, along with the variation of those errors from the mean error 

values; accordingly, it is the most appropriate choice for the quantitative evaluation of image 

mosaicing for the cases, where different input image frames are created from a single reference 

image. 

Table 4.1: Mosaicing algorithm assessment 

 

Categories of data 
 

Average ratio of 

mismatch (%) 

 

Average difference 

of pixel intensity 

 

Average PSNR in 

dB 

 

Joint 

entropy 

 

Mutual 

information 
 

Images of 2D surfaces 
 

1.42 

 

3.14+/-14.05 

 

22.99 

 

8.01+/-0.49 

 

 

2.8+/-0.30 
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scenes 

 

1.26 

 

2.83+/-10.58 

 

27.06 

 

8.52+/-0.50 

 

 

3+/-0.29 
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from UAV 

 

0.91 

 

0.86+/-2.22 

 

38.50 

 

5.92+/-1.00 

 

 

3.46+/-1.51 
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CHAPTER 5 

SUPER-RESOLUTION MOSAICING SYSTEM 

This chapter describes the proposed super-resolution mosaicing system. The first section 

describes the proposed algorithm. The second section describes the evaluation methodology. The 

third section talks about result and explanations. 

5.1 Methodology 

The proposed super-resolution mosaicing method and the two other comparative methods 

(method based on Tikhonov regularization and Total Variation regularization) are all based on 

similar concepts of minimizing an error functional using maximum a posterior estimates and then 

solving optimization problems. Thus, these algorithms share similar mathematical backgrounds 

but utilize different Norms and regularizations. In this section, the common mathematical model 

using various Norms and regularizations employed by these three algorithms is discussed in detail.  

In order to develop a comprehensive understanding of the super-resolution mosaicing 

algorithm it is often necessary to formulate a linear observation model which relates the acquired 

low-resolution images to the super-resolution mosaic. Note that this observation model has the 

similar formulation as that used in Chapter 3, in the state-of-the-art of the super-resolution. The 

only difference is that the present model includes a mosaicing operator in the formulation. Similar 

to the earlier model this one incorporates warp, blur (both atmospheric blur and optical blur), noise, 

and downsampling, since these are the most common degradations and can be modelled fully or 

partially in different super-resolution mosaicing techniques.  Using the same notations used in the 
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SR observation model, the observation model for super-resolution mosaicing could be expressed 

as [221]: 

       yk = DBkWkR[x]k + nk        for 1 ≤  k ≤ K                                                                    (5.1) 

Unlike in the observation model for SR, here 𝑥 is the desired super-resolution mosaic. 𝑅[ ] is the 

reconstruction operator, that extracts warped images from the super-resolution mosaic.  

Since the aim of the super-resolution mosaicing algorithm is to determine an estimate of 𝑥 

given the captured image sequence and the characterization of the imaging process, it is 

fundamentally an inverse process. Consequently the super-resolution mosaicing algorithm’s 

stability is not solely determined by the availability of multiple low-resolution observations, rather 

estimation of several other factors like 𝐵𝑘 and 𝑛𝑘 are also necessary [13]. Clearly, super-resolution 

mosaic assembly is a large sparse optimization problem which could be solved using iterative 

methods [222]. However, instead of sparse matrices multiplication, basic image operations (e.g. 

convolution, warping, down-sampling) could be applied along with gradient computation in order 

to speed up the required super-resolution computations. Subsequently, an estimate of the super-

resolution mosaic 𝑥̂ could be achieved from equation 5.1 by optimizing a utility function which 

minimizes the error between the input low-resolution images and the reconstructed ones [223]. A 

common utility function using the maximum likelihood estimate is expressed as: 

𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

]                                                                       (5.2) 

Note that L2 Norm is used in equation 5.2. Super resolution mosaic is a typical ill-posed problem 

because of the insufficient number of low-resolution frames and ill-conditioned blur operations 
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[224]. The minimum number of non-redundant low-resolution frames available must be the square 

of the resolution enhancement factor. For an under-determined case (number of non-redundant 

low-resolution frames < square of resolution enhancement factor), there exists an infinite number 

of solutions for equation 5.2. On the other hand, for over-determined cases (number of non-

redundant low-resolution frames ≥ square of resolution enhancement factor) the solution is not 

stable and becomes extremely sensitive to noise [218]. Thus, considering regularization in super-

resolution mosaic problems becomes significant since regularization allows addition of a 

smoothness constraint to the solution by penalizing gradients or higher-order spatial derivatives in 

the image. If the smoothness constraints are differentiable and their derivatives can be 

approximated by image operations, it is possible to include those constraints in the maximum-

likelihood estimates in order to achieve maximum a posterior estimators. The most common 

approach for representing the smoothness constraint is the use of a discrete 2D Laplacian operator, 

L. In super-resolution literature, this approach is well known as super-resolution with Tikhonov 

regularization, which is one of the most representative algorithms. Using this method, the 

constrained least square (CLS) formulation for super resolution mosaicing can be written as [219]: 

𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

+ 𝜆‖𝐿𝑥‖2
2]                                                (5.3) 

The first term on the right hand side is the data fidelity term, and the second term is the 

regularization term. The intention behind the aforementioned regularization method is to enforce 

spatial smoothness on the solution. For very noisy images, a higher value of λ is desirable since it 

suppresses the noise components. However, since noise pixels and edge pixels both contain high-



79 

 

frequency components, both of them are subdued in this regularization method, and the final 

solution becomes overly smoothed, lacking sharp edges and detailed information. A superior 

method for adding regularization is to use a Total Variation (TV) regularization, which reduces 

the shortcomings of the Tikhonov regularization. The TV regularization term is expressed as:  

𝛤(𝑥) = ∫ |∇𝑥|𝑑𝑥𝑑𝑦
𝑐

=  ∑|∇𝑥|

𝑐

                                                               (5.4) 

where 𝑐 denotes a clique (local group of points) in the image domain. Thus the TV regularization 

term computes gradient operation over the clique.  

|∇𝑥| = √|∇𝑥|2 = √∇𝑥ℎ
2 + ∇𝑥𝑣

2                                                     (5.5) 

where ∇𝑥ℎand ∇𝑥𝑣 are linear operations corresponding to horizontal and vertical first-order 

differences, respectively. Thus, at pixel (𝑝, 𝑞), 

∇𝑥ℎ(𝑝, 𝑞) = 𝑥(𝑝 + 1, 𝑞) − 𝑥(𝑝, 𝑞)                                                (5.6)  

and 

∇𝑥𝑣(𝑝, 𝑞) = 𝑥(𝑝, 𝑞 + 1) − 𝑥(𝑝, 𝑞)                                               (5.7)  

Based on TV, the CLS formulation for super resolution mosaicing can be written as: 

𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

+ 𝜆 ∑ √∇𝑥ℎ
2 + ∇𝑥𝑣

2

𝑐

]                              (5.8)      

It is noted that the smoothness constraint in the above equation is not differentiable when ∇𝑥=0. 

Hence, a small positive parameter 𝜀 is added to ensure differentiability. Thus the CLS formulation 

can be rewritten as: 
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𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

+ 𝜆 ∑ √∇𝑥ℎ
2 + ∇𝑥𝑣

2 + 𝜀

𝑐

]             (5.9)     

Although the TV regularization has the advantages of preserving edges and other detailed 

information, it results in “staircase effects” in the flat regions of the super-resolved image. This 

can be significantly reduced by adjusting the regularization parameter 𝜆 to a large value, but the 

edge and texture information will be smoothed out. Considering the drawbacks of the TV 

regularization, I propose a directional Huber-Markov regularization model for the super-resolution 

mosaicing problem.  

Huber-based prior penalizes the edges and other discontinuities less severely and 

encourages local smoothness in the output image. Using Huber-based regularization, CLS 

formulation can be written as: 

𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

+ 𝜆𝑓(𝑔)]                              (5.10) 

 The Huber function can be defined as:    

               𝑓(𝑧) = {
𝑧2,                     𝑖𝑓 |𝑧| ≤ 𝛼

2𝛼|𝑧| − 𝛼2,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                        (5.11) 

                                             𝑓′(𝑧) = {
2𝑧,                     𝑖𝑓 |𝑧| ≤ 𝛼

2𝛼 𝑠𝑔𝑛(𝑧),    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (5.12) 

Note that Huber function switches between a quadratic and a linear function depending on 

a threshold α. For smaller 𝑧 values the function is quadratic, whereas for larger 𝑧 values the 

function becomes linear. The variable 𝑧 often refers to the smoothness measure, thus the Huber 
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function switches between eliminating small scale noise and preserving edges or other 

discontinuities in the high-resolution image.  

For Huber-Markov regularization, the Huber function f(.) is applied over a clique 𝑐 [225]. 

Thus, 𝑓(𝑔) = ∑ 𝑓(𝑔)𝑔∈𝑐 . The operation over cliques is approximated over directional image 

gradients 𝑑𝑥 in the super-resolution mosaic x.  Conventionally, four directional image gradients 

are used. Thus, ∑ 𝑓(𝑔)𝑔∈𝑐  can be expressed as ∑ 𝑓(𝑑𝑖𝑥)4
𝑖=1 , which becomes directional Huber-

Markov regularization. 

The Huber Norm has been proven to be more robust with respect to outliers than L1 and 

L2. Unlike the other two Norms, it uses L1 Norm for the outliers, making this approximation less 

sensitive to those points. Using directional Huber-Markov regularization along with Huber norm 

for the data fidelity gives the following CLS approximation: 

𝑥̂ = arg 𝑚𝑖𝑛𝑥 [∑ ℎ(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘)

𝐾

𝑘=1

+ 𝜆 ∑ 𝑓(𝑑𝑖𝑥)

𝑖

]                       (5.13) 

where ℎ(.) is another Huber function similar to 𝑓(. ) discussed above. 

Using Tikhonov regularization, TV regularization, and the proposed directional Huber-

Markov regularization, the error functional between input low -resolution images and the 

reconstructed ones can be expressed as: 

𝐸(𝑥) =
1

2
[∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2

2

𝐾

𝑘=1

+ 𝜆‖𝐿𝑥‖2
2]                            (5.14) 

𝐸(𝑥) = [∑‖𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘‖2
2

𝐾

𝑘=1

+ 𝜆 ∑ √∇𝑥ℎ
2 + ∇𝑥𝑣

2 + 𝜀

𝑐

]      (5.15) 
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𝐸(𝑥) = [∑ ℎ(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥]𝑘)

𝐾

𝑘=1

+ 𝜆 ∑ 𝑓(𝑑𝑖𝑥)

𝑖

]                         (5.16) 

∇𝐸(𝑥) = 0 is solved in order to find the actual minimizer 𝑥 of the minimization problem 

formed by equations 5.3, 5.9, and 5.13. Furthermore, a unique estimate 𝑥̂ of 𝑥 can be iteratively 

achieved by using steepest descent optimization by applying: 

                                                 𝑥̂(𝑛+1) = 𝑥̂𝑛 − 𝛽(𝑛)∇𝐸(𝑥)                                                         (5.17) 

where 𝛽 is the scalar defining the step size of the optimization. Using steepest descent, the iterative 

solutions for equations 5.14, 5.15 and 5.16 can be expressed as: 

𝑥̂(𝑛+1) = 𝑥̂𝑛 + 𝛽(𝑛){𝑅𝑇[𝑊𝑘
𝑇𝐵𝑘

𝑇𝐷𝑇(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥̂𝑛]𝑘)]𝑘=1
𝐾 − 𝜆𝐿𝑇𝐿𝑥̂𝑛}                           

(5.18) 

𝑥̂(𝑛+1) = 𝑥̂𝑛 + 𝛽(𝑛){𝑅𝑇 [𝑊𝑘
𝑇𝐵𝑘

𝑇𝐷𝑇(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥̂𝑛]𝑘)]𝑘=1
𝐾 − 𝜆 ∑ 𝑑𝑖𝑣(

∇𝑥̂𝑛

|∇𝑥̂𝑛|
)𝑐 }  (5.19) 

𝑥̂(𝑛+1) = 𝑥̂𝑛 + 𝛽(𝑛){𝑅𝑇[𝑊𝑘
𝑇𝐵𝑘

𝑇𝐷𝑇ℎ′(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥̂𝑛]𝑘)]𝑘=1
𝐾 − 𝜆 ∑ 𝑓′(𝑑𝑖𝑥̂𝑛)𝑖 }  (5.20) 

where ∇𝑥̂𝑛 =  [
∇𝑥̂ℎ

𝑛

∇𝑥̂𝑣
𝑛] and |∇𝑥̂𝑛| = √∇𝑥̂ℎ

𝑛2
+ ∇𝑥̂𝑣

𝑛2
+ 𝜀 in equation 5.19. 

As mentioned earlier, the matrices 𝑊𝑘, 𝐵𝑘, and 𝐷 can be interpreted as image operations. 

Therefore, the corresponding transpose matrices 𝑊𝑘
𝑇, 𝐵𝑘

𝑇, and 𝐷𝑇 can similarly be interpreted as 

image operations. If 𝐵𝑘 is modeled as point spread function (PSF) kernel, 𝐵𝑘
𝑇  could be modeled 

from those kernels by flipping the columns and rows about the vertical and horizontal axes, 

respectively. If backward warping (warp from the super-resolution mosaic to the low-resolution 

frames) is modeled by 𝑊𝑘 operator, the corresponding forward warping (warping low-resolution 
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frames to the super-resolution mosaic framework) could be modeled by 𝑊𝑘
𝑇 operator. Similarly, 

𝐷𝑇 would be the interpolation operator corresponding to the decimation operator 𝐷.  

Instead of using a constant regularization parameter 𝜆, I introduced an adaptive 

regularization parameter in the super-resolution formulation. Since the super-resolution solution 

converges to the local minimum, it is desired that the regularization parameter decreases as the 

iterative procedure progresses. Using the aforementioned adaptive regularization parameter, 

equation 5.20 can be rewritten as: 

𝑥̂(𝑛+1) = 𝑥̂𝑛 + 𝛽(𝑛){𝑅𝑇[𝑊𝑘
𝑇𝐵𝑘

𝑇𝐷𝑇ℎ′(𝑦𝑘 − 𝐷𝐵𝑘𝑊𝑘𝑅[𝑥̂𝑛]𝑘)]𝑘=1
𝐾 − 𝜆𝑛 ∑ 𝑓′(𝑑𝑖𝑥̂𝑛)𝑖 }     (5.21) 

where 𝜆𝑛 =
∑ ℎ(𝑦𝑘−𝐷𝐵𝑘𝑊𝑘𝑅[𝑥̂𝑛]𝑘)𝐾

𝑘=1

𝐾‖∑ f(𝑑𝑖𝑥̂𝑛)𝑖 ‖1
. 

The proposed super-resolution mosaicing method generates mosaic image from a sequence 

of low-resolution frames and subsequently super-resolves the low-resolution mosaic to produce a 

high-resolution mosaic. Our method is based on two main algorithms: a mosaicing algorithm and 

a super-resolution algorithm. The mosaicing algorithm has already been discussed in the earlier 

chapter. Thus, I will discuss the super-resolution mosaicing algorithm in the following subsection.  

Figure 5.1 shows the flowchart of the proposed super-resolution mosaicing algorithm. As 

shown in the figure, the algorithm first reads ten low-resolution frames and a maximum number 

of iterations as its inputs. In the following step, the system interpolates those low-resolution frames 

according to the resolution enhancement factor. Subsequently, the system generates an initial 

mosaic out of those interpolated low-resolution frames. Then the system reconstructs the low-

resolution frames from the initial mosaic using inverse warping (by utilizing the same 

transformation parameters computed during the registration step of the mosaicing algorithm), then 
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blurring (by using the flipped kernel of that used while up-sampling the low-resolution frames), 

and finally down-sampling. The reconstructed low-resolution frames are then used to obtain the 

difference frames by subtracting them from the input low-resolution frames. Next, a first-order 

Huber derivative is computed on these difference frames and they are interpolated. These 

Start

LR input frames and 
max_iter

Interpolation of LR frames

Iter=1

Mosaicing of interpolated LR images

Reconstruction of LR frames via 
inverse mosaicing

Difference image of the original and 
reconstructed LR image

Interpolation of difference images

Mosaicing of interpolated difference images

Mosaic of interpolated difference images-
Regularized term

β  (Mosaic of interpolated difference images-
Regularized term)+Mosaic of interpolated LR 

images

Iter=iter+1

Iter<max_iter

β  (Mosaic of interpolated difference images-
Regularized term) + 

Mosaic of interpolated LR images

End

β  (Mosaic of interpolated difference images-
Regularized term)+Mosaic of interpolated LR 

images

A

A

B

B

Yes

C

C

No

Figure 5.1: Flowchart of super-resolution algorithm. 
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interpolated frames are then used to generate an error mosaic using forward warping and blurring. 

In the next step, the system subtracts a Huber prior-based adaptive regularization term from the 

error mosaic. It is then multiplied by the step size of the steepest descent optimization. Finally, this 

result is used to update the initial low-resolution mosaic as shown in equation 5.13. The algorithm 

repeats the updating procedure until the maximum number of iterations is reached or until the error 

between the outputs of two successive iterations falls below a predefined threshold. 

The super-resolution program is developed in Microsoft Visual Studio C++ platform. A 

PC with 1.9 GHz Core2 Duo processor and 3 GB RAM is used for all the evaluations. 

5.2 Evaluation 

Sixteen datasets are used to assess the performance of the proposed super-resolution 

mosaicking method. The first eight experiments are simulated experiments with known high-

resolution images, and the following eight experiments are the real data experiments with no access 

to the high-resolution images.   

To evaluate the performance of the proposed algorithm, six metrics are used: mean square 

error (MSE), peak signal-to-noise ratio (PSNR), singular value decomposition (SVD) based 

measure, structural similarity (SSIM) based metric, metric based on slope of reciprocal singular 

value (RSV) curve, and cumulative probability of blur detection (CPBD). MSE, PSNR, SVD, and 

SSIM-based metrics are used to measure the difference between the ground truth and the output 

of the proposed algorithm. Slope of RSV curve and CPBD-based metrics are used to measure the  

amount of distortion (especially blurriness) present in the output of the super-resolution 

mosaicking algorithm. Note that the first four metrics are fully-reference image quality-
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measurement metrics, whereas, the last two metrics are no-reference image quality measurement 

metrics. The definitions and interpretations of the aforementioned performance metrics are 

demonstrated below: 

MSE metric: MSE measures the sum of squared differences between the super-resolution 

mosaic and the original high-resolution mosaic (ground-truth) divided by the number of pixels in 

each image as [13]: 

𝑀𝑆𝐸 =
∑ ∑ (𝑂(𝑚, 𝑛) − 𝐺𝑇(𝑚, 𝑛))2

𝑛𝑚

𝑁
                                                   (5.22) 

where 𝑂(𝑚, 𝑛) and  𝐺𝑇(𝑚, 𝑛) are the (𝑚, 𝑛)𝑡ℎ pixel values of super-resolution mosaic and 

original high-resolution mosaic. 𝑁 is the total number of pixels in each of those two images. Lower 

the value of this metric, better the image quality, and hence better the performance of the super-

resolution mosaicking algorithm. 

PSNR metric: PSNR measures the ratio of the maximum pixel value between the super-

resolution mosaic and the original high-resolution mosaic to the MSE as [4]: 

𝑃𝑆𝑁𝑅 =
10 𝑙𝑜𝑔10(max (𝑂(𝑚, 𝑛), 𝐺𝑇(𝑚, 𝑛)))2

𝑀𝑆𝐸
                                    (5.23) 

Higher the value of this metric, better the performance of the super-resolution mosaicking 

algorithm. 

SVD-based metric: Hypostatic information, which has good stability, can be expressed by 

SVD of an image. Thus SVD can be used as one of the primary feature of an image. Any m x n 

rectangular matrix, A, can be decomposed into the product of three matrices, a m×m orthogonal 

matrix, U, a m×n diagonal matrix, S, and the transpose of a n×n orthogonal matrix, V, as: 
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𝐴 = 𝑈𝑆𝑉𝑇                                                                                                (5.24) 

Where 𝑈𝑇𝑈 = 𝐼 = 𝑉𝑇𝑉. The columns of U are the eigenvectors of AAT, the columns of V 

are the eigenvectors of ATA and S is a diagonal matrix containing the square roots of eigenvalues 

from AAT and ATA in descending order.  

SVD-based metric measures the square root of the sum of squared differences between the 

corresponding singular values of the super-resolution mosaic and the original high-resolution 

mosaic as [4]: 

𝐷𝑆𝑉𝐷 = 𝑠𝑞𝑟𝑡 [∑(𝑆𝑂𝑖
− 𝑆𝐺𝑇𝑖

)2

𝑝

𝑖=1

]                                                  (5.25) 

where 𝑆𝑂𝑖
 and 𝑆𝐺𝑇𝑖

 are the 𝑖𝑡ℎ singular values of the super-resolution mosaic and the 

original high-resolution mosaic. 𝑝 is the total number of singular values is each of those images. 

Lower the value of this metric, better the image quality, and hence better the performance of the 

super-resolution mosaicking algorithm. 

SSIM metric: SSIM index measures the similarity between the super-resolution mosaic and 

the original high-resolution mosaic by combining luminance, contrast, and structure comparison 

functions. The simplified form of SSIM index can be expressed as: 

𝑆𝑆𝐼𝑀(𝑂, 𝐺𝑇) =  
(2𝜇𝑂𝜇𝐺𝑇 + 𝐶1)(2𝜎𝑂,𝐺𝑇 + 𝐶2)

(𝜇𝑂
2 + 𝜇𝐺𝑇

2 + 𝐶1)(𝜎𝑂
2 + 𝜎𝐺𝑇

2 + 𝐶2)
                                           (5.26) 

where 𝜇𝑂 , 𝜇𝐺𝑇 , 𝜎𝑂 , 𝜎𝐺𝑇 , and 𝜎𝑂,𝐺𝑇 are the local means, variances, and cross-covariance for 

the super-resolution mosaic and the original high-resolution mosaic. Higher the value of this 

metric, better the performance of the super-resolution mosaicking algorithm. 
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Slope of RSV curve-based metric: This metric uses the computed singular values of an 

image to assess the amount of distortion in it, thus it requires no reference image for its 

computation. The RSV curve is generated by plotting the singular values of an image against the 

index of the singular vectors. The rate of fall-off of the curve becomes less with larger degrees of 

blurriness [41]. In contrast, with lower degrees of noise, the rate of fall-off of the curve becomes 

less. Thus, the rate of fall-off of the RSV curve of an image characterizes the degree of distortion 

in the image. A higher slope of the RSV curve in the trough region indicates better performance 

of the proposed algorithm in the presence of blur, and lower slope value of the reciprocal singular 

value curve in the trough region indicates better performance of the algorithm in the presence of 

noise.  

CPBD-based metric: As SR mosaicing fundamentally increases the resolution of the initial 

LR mosaic, which requires the use a no-reference image blur metric for quantitative evaluation. 

Because of its closeness to human blur perception, a metric that calculates the probability of blur 

detection is necessary such as cumulative probability of blur detection. This metric postulates that 

the blur around an edge is more or less visible based on the local contrast around that edge. Based 

on this idea, the probability of blur detection at each edge is computed and then pooled over the 

entire image to obtain a final quality score.  

For a given contrast, the probability of blur detection at an edge ei takes the form of a 

psychometric function as discussed in [32]. This probability is expressed as: 

𝑝 = ∑ 𝑝(𝑒𝑖) = 1 − exp (− |
𝜔(𝑒𝑖)

𝜔𝐽𝑁𝐵(𝑒𝑖)
|

𝛽

)
𝑖

                                          (5.27) 
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where 𝑝 is the total probability, 𝑝(𝑒𝑖) is the probability of blur detection at an edge 𝑒𝑖, 𝜔(𝑒𝑖) is the 

width of the edge 𝑒𝑖, 𝜔𝐽𝑁𝐵(𝑒𝑖) is the width of just noticeable blur (JNB) when the local contrast 

is 𝐶. 𝛽 is dependent on global contrast of the image. JNB is defined as the minimum amount of 

perceived blurriness around an edge. β is a parameter which depends on the global contrast of the 

image. wJNB is measured to be 5 when C ≤ 50 and 3 when C ≥ 51. If the actual width of an edge 

is the same as the JNB width, then P(ei) = 63%, below which blur is considered to be undetectable. 

CPBD corresponds to the percentage of edges at which the probability of blur detection is below 

63%, i.e. the percentage of edges at which blur cannot be detected. Thus, a higher metric value 

corresponds to better performance of the algorithm.  

5.3 Results and discussion 

To assess the relative merits of the proposed methodology, I compare the proposed 

algorithm with Tikhonov regularization, and TV regularization-based algorithms. Furthermore, for 

comparison purpose, I use the mosaics without super-resolution that are obtained by mosaicking 

the bicubic interpolated low-resolution observations.  

The algorithms are tested extensively using video data captured by on-board cameras fitted 

in a high-altitude balloon and a UAV payload. Both the cameras had a frame rate of 30 fps. 

Initially, still frames are extracted from the video streams. Once still frames are extracted, they are 

cropped near the borders in order to eliminate the border-abnormalities (e.g. shadows from 

appending payload or black pixels along the boundaries). Following that, testing datasets are 

formed by choosing successive frames having moderate (≥ 50%) overlapping. This overlapping 

criterion guarantees the best performance of the SIFT-based registration algorithm.  
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The cropped frames mentioned above are treated as high-resolution observations for the 

simulated experiments. In order to simulate the real low-resolution observations, frames in each 

dataset are degraded using a series of operations: decimation, convolution with Gaussian blurring 

kernel, contamination with additive white Gaussian noise. Decimation factor of 1/2 is used for all 

the datasets. For both types of datasets, the size of the blurring kernel is selected as 3 x 3 pixels 

and the standard deviation of the kernel is varied over the range [0.4-2.0]. Similarly, for both 

categories of datasets, noise with zero mean and variance changed within the range [0.0002-0.001] 

are used. Eight datasets, each containing ten frames, are generated in the aforementioned method 

to use them for simulated experiments. Other eight datasets, without degrading them in the 

aforementioned method, are used for the real data experiments.  

The atmospheric blur matrix 𝐵𝑘
𝑎 is assumed to be an identity matrix I, and the optical blur 

matrix is chosen as the space-invariant linear kernel : [0.101, 0.117, 0.101; 0.117, 0.125, 0.117; 

0.101, 0.117, 0.101]. The resolution enhancement factor is set to be 2 in all the experiments. The 

value of BBF NN bins is set to 200 to speed up the SIFT matching process without compromising 

the performance. The threshold parameters of the Huber Norms in our model, the regularization 

parameters in the Tikhonov and TV models are all adjusted until the best super-resolution 

mosaicking results are obtained. For the simulated experiments, the best result is selected to be the 

one with highest SSIM value, whereas for the real data experiments, the best result is selected to 

be the one with highest CPBD value. 

Maximum number of iterations is set to be the termination condition of the steepest descent 

procedure. With the increase in number of iterations, the algorithm enhances the sharpness of the 
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reconstructed image. Extensive testing shows that the quality does not improve after 7 iterations. 

Thus the maximum number of iterations was set to 7 throughout the testing. As stated in the 

methodology section, the decrease of the regularization parameter with the algorithm iteration 

indicates that the algorithm is moving toward a better solution. This was verified on different 

datasets and an example of results is shown in Figure 5.2. As one can see the regularization 

parameter has a value of 30x10-3 for one iteration and decreases exponentially as the number of 

iterations increases. Note that for iteration 7, λ value does not change significantly from that of 

iteration 6. This is further confirmed at iteration 8, when the value of λ is almost the same as its 

value at iteration 7. Therefore, in our algorithm I limited the number of iterations to 7.  

5.3.1 Results of Simulated Data Experiments 

In the simulated experiments, five high-altitude balloon datasets and three UAV datasets 

are used. The super-resolution mosaicking results using a high-altitude balloon dataset (Figs. 5.3a- 

j), obtained by contaminating high-resolution images by a Gaussian noise (variance = 0.0008), are 

presented in Figs. 5.3l- n. Fig. 3k is the mosaic with bicubic-interpolated low-resolution frames. 

Figure 5.2: Regularization parameter vs number of iterations. 
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Fig. 5.3l, 5.3m, 5.3n represent the super-resolution mosaicking results of the Tikhonov 

Figure 5.3: SR result using simulated balloon data. (a)-(j) LR input frames; (k) Mosaic without SR; (l) Mosaic with Tikhonov 

regularization-based SR; (m) Mosaic with TV regularization-based SR; (n) Mosaic with proposed algorithm 

 

  (a)                                              (b)                                                (c)                                             (d) 

  (e)                                              (f)                                                (g)                                             (h) 

  (i)                                                (j)                                                

  (k)                                                                                         (l)                                                

  (m)                                                                                          (n)                                                
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regularization model, TV regularization model, and the proposed double Huber regularization 

model, respectively. The detailed regions cropped from Figs. 5.3k-n are presented in Figs. 5.4a, 

5.4b, 5.4c, and 5.4d, respectively. 

Among the three super-resolution mosaicing algorithms, it is clear that the proposed 

method produces better visually enhanced result. In the edge area, the detailed information is well 

preserved. However, the other two comparable methods tend to produce output with overly smooth 

edges. It can be visualized especially in the detailed regions presented in Fig. 5.4. Since the 

Tikhonov regularization-based method does not consider the local spatial property in the image 

while applying the smoothness constraint, it fails to preserve the edges. By using the local image 

spatial characteristics in the smoothness constraint, TV regularization-based method performs 

better in preserving edges, and denoising. However, edge blurring is still noticeably present in the 

output. Clearly, the proposed double Huber-based method performs best in terms of maintaining 

the tradeoff among preserving edges, deblurring and denoising.  

The superior performance of the proposed method is illustrated quantitatively by MSE, 

PSNR, SVD, and SSIM metrics presented in Table 5.1. It is shown that the proposed method 

  (a)                                              (b)                                        (c)                                          (d) 

Figure 5.4: Detailed regions cropped from SR results using simulated balloon data. (a) Region from Figure 5.3k; (b) 

Region from Figure 5.3l;  (c) Region from Figure 5.3m;  (d) Region from Figure 5.3n. 
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produces results with lowest MSE, SVD values, and highest PSNR, SSIM values, which indicate 

that our method generates a better super-resolution mosaicking result, close to the original high-

resolution mosaic.   

Table 5.1: MSE, PSNR, SVD, and SSIM values of different super-resolution mosaicking results using noisy high-altitude 

balloon frames 

 MSE PSNR (dB) SVD SSIM 

Bicubic interpolation  22.32 34.64 1511.30 0.3403 

Tikhonov  19.66 35.19 1066.20 0.372 

TV 17.04 35.82 909.59 0.3968 

Proposed method 14.62 36.48 651.23 0.4071 

 

The super-resolution mosaicking results using a UAV dataset (Figs. 5.5a- j), obtained by 

contaminating high-resolution images by a 3x3 Gaussian blurring kernel (SD = 1.2), are presented 

in Figs. 5.5l- n. Fig. 5.5k is the mosaic with bicubic-interpolated low-resolution frames. Fig. 5.5l, 

5.5m, 5.5n represent the super-resolution mosaicking results of the Tikhonov regularization model, 

TV regularization model, and the proposed double Huber regularization model, respectively. The 

detailed regions cropped from Figs. 5.5k-n are presented in Figs. 5.6a, 5.6b, 5.6c, and 5.6d, 

respectively. Noticeably, the Tikhonov regularization-based method generates mosaic with more 

details compared to the mosaic obtained without using any super-resolution technique. However, 

significant amount of blurry edges are still present as shown in Fig. 5.6b. TV regularization-based 

method certainly suppresses a substantial amount of edge blurs; however, blurring artifacts are still 

present. As can be seen from Fig. 5.6d, edge information is best preserved using the proposed 
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method when compared to the other two methods. Table 5.2 shows the superiority of the proposed 

  (m)                                                                           (n)                                                

  (a)                                              (b)                                           (c)                                          (d) 

  (e)                                              (f)                                             (g)                                         (h) 

Figure 5.5: SR result using simulated UAV data. (a)-(j) LR input frames; (k) Mosaic without SR; (l) Mosaic with Tikhonov 

regularization-based SR; (m) Mosaic with TV regularization-based SR; (n) Mosaic with proposed algorithm. 

 

  (k)                                                                           (l)                                                

  (i)                                                (j)                                                
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algorithm. Highest PSNR, SSIM values, and lowest MSE, SVD values are obtained using the 

proposed algorithm. 

 
Table 5.2: MSE, PSNR, SVD, and SSIM values of different super-resolution mosaicing results using blurry UAV frames 

 MSE PSNR (dB) SVD SSIM 

Bicubic interpolation  3.56 42.62 1334.8 0.8798 

Tikhonov  3.42 42.79 607.66 0.9125 

TV 1.80 45.57 472.05 0.9276 

Proposed method 1.43 46.57 294.37 0.9335 

 

5.3.2 Results of real data experiments 

In the real data experiments, five high-altitude balloon datasets and three UAV datasets are 

used to evaluate the proposed algorithm. The super-resolution mosaicking results using a high-

altitude balloon dataset (Figs. 5.7a- j) are shown in Figs. 5.7l- n. Fig. 5.7k is the mosaic output 

without using super-resolution. Fig. 5.7l, 5.7m, 5.7n represent the super-resolution mosaicking 

results of the Tikhonov regularization model, TV regularization model, and the proposed double 

  (a)                                               (b)                                          (c)                                           (d) 

Figure 5.6: Detailed regions cropped from SR results using simulated UAV data. (a) Region from Figure 5.5k; (b) Region 

from Figure 5.5l;  (c) Region from Figure 5.5m;  (d) Region from Figure 5.5n. 

  (i)                                                (j)                                                

  (k)                                                                                                      (l)                                                
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Huber regularization model, respectively. The detailed regions cropped from Figs. 5.7k-n are 

presented in Figs. 5.8a, 5.8b, 8c, and 5.8d, respectively.   

From these figures, it is obvious that resolution of the mosaic output has certainly increased 

after using super-resolution techniques, compared to the bicubic-interpolation result. The output 

of Tikhonov regularization-based method suffers from blurry edges. Although the edge blurring is 

suppressed to some extent in the TV regularization-based method, details are not well preserved, 

as can be seen from Fig. 5.8c. Clearly, the edge and other details are best preserved using the 

proposed algorithm. The quantitative assessment results are presented in Table 5.3. It can be seen 

that the proposed double Huber-based method generates output with highest CPBD and RSV slope 

values. Note that the visible degradation present in the real data is blur (both optical blur and 

motion blur). The amount of noise contamination is insignificant compared to the blur. Thus, 

output with higher value for the RSV curve’s slope essentially indicates lower degradation, and 

hence better quality of the image. 

 

 

 

 

 

 

 

  (a)                                              (b)                                           (c)                                          (d) 

  (e)                                              (f)                                             (g)                                         (h) 
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  (i)                                                (j)                                                

  (k)                                                                                 (l)                                                

  (m)                                                                                   (n)                                                

Figure 5.7: SR result using real UAV data. (a)-(j) LR input frames; (k) Mosaic without SR; (l) Mosaic with Tikhonov 

regularization-based SR; (m) Mosaic with TV regularization-based SR; (n) Mosaic with proposed algorithm. 

 

  (a)                                             (b)                                               (c)                                             (d) 

Figure 5.8: Detailed regions cropped from SR results using real UAV data. (a) Region from Figure 5.7k; (b) Region from 

Figure 5.7l;  (c) Region from Figure 5.7m;  (d) Region from Figure 5.7n. 
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Table 5.3: CPBD and RSV slope values of different super-resolution mosaicing results using real UAV frames  

 CPBD RSV curve slope 

Simple interpolation 13.36% 0.01% 

Tikhonov 33.81% 0.09% 

TV 48.72% 0.42% 

Our method 56.47% 0.56% 

 

Metrics’ behaviors with varying standard deviation of the blurring kernel for a single 

dataset are plotted for Tikhonov regularization, TV regularization, and the proposed method. 

Typical results are illustrated in Fig. 5.9a, Fig. 5.9b, Fig. 5.9c, Fig. 5.9d, Fig. 5.9e, and Fig. 5.9f 

for MSE, PSNR, SVD, SSIM, slope of RSV curves, and CPBD, respectively. As the standard 

deviation of the blurring kernel increases, MSE, and SVD values monotonically increase as shown 

in Fig. 5.9a and Fig. 5.9c. PSNR, SSIM, slope of RSV curve, and CPBD values behave conversely 

as the standard deviation of the blurring kernel increases, as shown in Fig. 5.9b, Fig. 5.9d, Fig. 

5.9e, and Fig. 5.9f. Thus, behaviors of these plots characterize the consistency of the performance 

metrics. As lower values of MSE, SVD, and higher values of PSNR, SSIM, slope of RSV curve, 

CPBD are indicative of the superior performance of a super-resolution mosaicking algorithm, the 

proposed method clearly outperforms the other two methods since it records lowest values for 

MSE, SVD and highest values for PSNR, SSIM, RSV curve slopes, CPBD for any given dataset. 

The TV regularization-based method is seen to outperform the Tikhonov regularization-based 

technique. 
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Fig. 5.10 presents the metrics’ behaviors for the three methods in the presence of additive 

Gaussian noise. Fig. 5.10a, Fig. 5.10b, Fig. 5.10c, Fig. 5.10d, and Fig. 5.10e show the behaviors 

for MSE, PSNR, SVD, and slope of RSV curves, respectively. As the variance of the additive 

white Gaussian noise increases, MSE, SVD, and slope of RSV curve values monotonically 

increase, as shown in Fig. 5.10a, Fig. 5.10c, and Fig. 5.10e, respectively. PSNR and SSIM values 

behave conversely with the increase in variance of the additive white Gaussian noise, as shown in 

Fig. 5.10b and Fig. 5.10d, respectively. Again, behaviors of these plots show the consistency of 

the performance metrics. It can be observed from the graphs that the proposed method is superior 

  (a)                                                                              (b)                                                                                (c)                                                   

Figure 5.9: Behavior of performance metrics in the presence of blur. (a) MSE behavior; (b) PSNR behavior; (c) 

SVD behavior; (d) SSIM behavior; (e) behavior of RSV curve’s slope; (f) CPBD behavior for a single dataset. 

  (d)                                                                           (e)                                                                                  (f)                                                   
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to the other two, since it generates output with smallest MSE, SVD, slope of RSV curve values, 

and highest PSNR and SSIM curve values. 

The CPBD values of the super-resolution mosaicking algorithm’s output (in the presence 

of Gaussian blur with SD=1) are plotted for bicubic interpolation, Tikhonov regularization, TV 

regularization, and proposed models as shown in Fig. 5.11. The CPBD values are shown for all 

the real high-altitude balloon datasets. It is observed that the least amount of blur is perceived 

using the proposed method, followed by TV regularization, Tikhonov regularization, and bicubic 

interpolation. Thus, the proposed algorithm based on using the Huber Norm for data fidelity in 

  (a)                                                                               (b)                                                                             (c)                                                   

  (d)                                                                                                 (e)                                                   

Figure 5.10: Behavior of performance metrics in the presence of noise. (a) MSE behavior; (b) PSNR behavior; (c) 

SVD behavior; (d) SSIM behavior; (e) Slope of RSV curve’s behavior for a single dataset 
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combination with directional Huber-Markov regularization performs better than the other 

methods. Also, note that, the TV regularization-based technique predominates over the Tikhonov 

regularization-based technique. Fig. 5.12 shows the reciprocal singular value curves for a single 

dataset (in the presence of Gaussian blur with SD=1.2) using the aforementioned four methods. It 

can be observed that the fastest fall-off of the curve occurs using the proposed method, followed 

by TV regularization-based method, Tikhonov regularization-based method, and interpolation-

based method. The corresponding slope values in the trough regions are 0.014, 0.008, 0.002, and 

0.001 for the four methods, which indicates that the proposed method performs best in terms of 

preserving details in the final output.  

 

 

 

The behavior of the MSE, PSNR, SSIM, and SVD metrics show some inconsistency while 

evaluating all our datasets. Six percent (6%) inconsistency is observed over total observations for 

each MSE, PSNR, and SSIM metric, whereas 15% inconsistency is observed over total 

observations for the SVD metric. However, the CPBD metric values and the slopes of RSV curve 

Figure 5.11. Output CPBD values for five real datasets using 

different super-resolution mosaicking algorithms. 

Figure 5.12. Reciprocal singular value curves for a single 

dataset using different super-resolution mosaicking. 

algorithms. 
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values remain consistent throughout the experiments when different distortion types and different 

distortion levels within a distortion type are evaluated. Furthermore, both of them, being no-

reference performance metrics, are preferred choice for several real world applications where 

ground truths are not available.  

Since, a future direction of this research is to implement the proposed algorithm in a small 

satellite’s imaging platform, measuring its processing time and comparing it with the existing 

methods becomes significant. Table 5.4 shows the processing times of different super-resolution 

mosaicing methods using a sequence of 10 100 x 67 frames. Note that the amount of blur, noise, 

and similarity with ground truth are also shown in the table to realize the relative significance of 

processing time on system performance. The processing time of the proposed algorithm is highest 

among the three methods. However, the slightly high processing time of the proposed method is 

paid off by lowest amount of blur, noise, and maximum amount of similarity with ground truth of 

the output. The amount of blur and the amount of noise in the table indicate CPBD and PSNR 

measurements, respectively as discussed in section 5.2.  

 

 

Table 5.4: Comparative processing time of different super-resolution mosaicing methods 

 Tikhonov method Total variation method Our method 

Processing time (lower is better) 5.5998 sec 6.143 sec 6.312 sec 

Amount of blur (higher is better) 32.8% 42.3% 57.9% 

Amount of noise (higher is better) 40.72 dB 44.85 dB 47.19 dB 

Similarity with ground truth (higher is better) 90% 92% 96% 
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CHAPTER 6 

CONCLUSIONS 

In this dissertation a novel approach for combing multiple overlapping views of a scene 

into a single, high-resolution still image has been proposed. The technique is intended to be used 

in small satellite platforms. Thus the aim is to generate high-resolution mosaics over large areas, 

allowing the broad scale monitoring of the underneath environment for surveillance, urban 

mapping, and remote sensing purposes, among others.  

Hardware cost and sensor-imposed restrictions often limit the imager selection for UAV or 

satellite’s payload. The contributions of this dissertation concern all the super-resolution 

mosaicing steps that can generate high quality panorama by accepting the low quality images 

captured by small satellites’ imagers. The proposed approach investigates two main areas: image 

mosaicing and super-resolution.  

Image mosaicing is the stitching of multiple correlated images into a larger composition. 

In Chapter 2, the common steps of image mosaicing were described. A comprehensive state-of-

the-art on image mosaicing techniques has also been presented in this chapter. Grouping of image 

mosaicing techniques can be performed based on image registration and image blending. Based 

on image registration, there are four main categories of image mosaicing methods in the literature: 

area-based methods, low level feature-based methods, contour-based methods, and frequency 

domain-based methods. Area-based methods are slow and often require images with significant 

overlapping for accurate mosaicing output. Low level feature-based methods rely primarily on low 

level feature extraction algorithms, such as Harris, FAST, SIFT, SURF detectors. These methods 
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offer invariance to several transformations. They are fast and accurate in computation. Contour-

based methods are good for large and complicated motions between frames. However, they are 

computationally expensive since they require finding high level features. Frequency domain-based 

methods are fast, but require large overlapping among images. Thus, low level feature-based 

methods become the most adequate strategy to perform image mosaicing, especially when dealing 

with images captured by satellite’s uncontrolled camera motion. Image blending technique is only 

important when captured images exhibit substantial parallax, which is particularly insignificant for 

images captured from a high altitude.  

Super-resolution is a technique of achieving a high-resolution image from one of multiple 

low-resolution observations. A comprehensive review of the state-of-the-art super-resolution 

techniques has been presented in Chapter 3. Two main groups of super-resolution methods in 

literature are multi-frame methods and single-frame methods. Since this dissertation concerns at 

developing a multi-frame super-resolution algorithm, I investigated the categories of multi-frame 

super-resolution methods: frequency domain, interpolation, deterministic regularization, 

stochastic regularization, IBP, and set theoretic methods. Frequency domain methods are simple 

but only suitable for translational motion between images. Interpolation and IBP methods are 

simple but offer no easy way to incorporate prior constraints, which are inevitable to tackle ill-

posed nature of super-resolution problem. Deterministic regularization methods often generate 

overly smooth output. Stochastic regularization methods give easy way to implement edge 

preserving prior constraint. Set theoretic methods give flexibility to incorporate edge preserving 

prior constraint; however, they suffer for nonuniqueness of the solution and slow convergence. 
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Thus, stochastic regularization methods become the best approach to perform multi-frame super-

resolution, especially when the aim is to generate output with great deal of edge information. 

This dissertation contributes to the state-of-the-art super-resolution mosaicing methods, 

focusing on the detail enhancement of the generated image mosaics and the computational 

complexity of the algorithm. The proposed framework includes two major steps mosaicing and 

super-resolution mosaicing, which are presented in Chapter 4 and Chapter 5, respectively. In 

Chapter 4, a low level feature-based mosaicing method is proposed, which uses SIFT feature 

detector. A five step SIFT feature detection algorithm is initially employed: scale-space 

construction, scale-space extrema detection, keypoint localization, orientation assignment, and 

defining keypoint descriptors. Once the SIFT features are extracted from a set of input frames and 

saved into databases, the BBF algorithm (a modified version of the k-d tree) is used to estimate 

the initial matching points between image pairs. RANSAC algorithm is later used to discard false 

matches and to estimate an optimum homography matrix based on homography constraints. Using 

the homography matrices, images are warped into a common coordinate frame. Finally, stitching 

is employed to obtain the final mosaicing output. The developed mosaicing algorithm is then 

extensively tested using 36 datasets falling into three categories: images of 2D surface, images of 

outdoor 3D scenes, airborne images from UAV. In order to quantify the performance of the 

proposed algorithm, four metrics are used: percentage of mismatches, difference of pixel 

intensities, peak signal-to-noise ratio, and mutual information. Evaluation shows that the proposed 

performance metrics are effective in evaluating the quality of mosaicing outputs. 



107 

 

The proposed super-resolution mosaicing approach is presented in Chapter 5. This 

approach combines a SIFT-based image mosaicing method and a stochastic regularization-based 

super-resolution method. The low-resolution input frames are initially interpolated. An initial 

mosaic is then generated using the proposed mosaicing algorithm. After that low-resolution frames 

are reconstructed from the initial mosaic. An error mosaic is then generated using the difference 

frames between the input low-resolution frames and the reconstructed low-resolution frames. 

Finally this error mosaic is used to iteratively update the initial mosaic using a Huber prior-based 

adaptive regularization. A gradient descent based optimization is used to solve the iterative 

process. Maximum number of iterations is used as terminating criterion for the iterative procedure. 

To achieve maximum robustness to the outliers I further proposed the use of Huber Norm for the 

data fidelity term of the super-resolution formulation. The proposed adaptive regularization 

guarantees that its value decreases as the iteration proceeds. The developed algorithm has been 

tested using 16 image sequences falling into two categories: UAV images and high-altitude balloon 

images. To evaluate the performance of the proposed algorithm, five metrics are used: mean square 

error (MSE), peak signal-to-noise ratio (PSNR), singular value decomposition (SVD) based 

measure, metric based on slope of reciprocal singular value (RSV) curve, and cumulative 

probability of blur detection (CPBD). The results obtained by the proposed approach have been 

compared with the results obtained by some of the existing super-resolution methods. Our method 

has demonstrated to be better than the existing techniques. 

In this dissertation, I have proposed a super-resolution mosaicing framework. Its 

functionality and superiority over the other methods are well demonstrated. I consider the future 
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work should include testing my algorithm in small satellite environment, i.e. in limited computing 

and power resources. The evaluation performed here required feeding the input low-resolution 

frames manually to the algorithm. Thus the future work must include adding a piece of code so 

that it automatically triggers the small satellite imaging payload and let it capture low-resolution 

frames and fed them to the proposed algorithm. This would make the proposed method fully 

automatic to be used in small satellite environment.  

Within the work it was mentioned that blending is not necessary considering the nature of 

the input frames. However, in some extreme cases when the low-resolution frames are overly 

degraded by noise and blur and/ or successive frames have huge illumination differences, blending 

needs to be exploited. Though, such input frames are unlikely to appear frequently, extension of 

this work should include a geometric and photometric blending algorithm into it. 

In order to address the ill-posed nature of the super-resolution problem, we have proposed 

a directional Huber-Markov regularization. Though, this regularization performs significantly well 

in recovering edge and other high frequency details, it might be too much computation if the input 

frames are not severely degraded in quality. Thus, future work could incorporate a model-based 

regularization, which would analyze the input frames first and then based on the amount of 

degradation it would select which regularization to use. For low to medium degraded input frames, 

simple regularization (for example: Tikhonov) could be used. On the other hand, for severe 

degraded input frames, our proposed regularization could be employed. 

Future work would also include investigating the effect of altitude and speed of the imaging 

payload. At different altitude, the captured frames would have different spatial resolution. 
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Similarly, the speed of the payload would have direct impact on quality of the captured frames. 

The results of the proposed super-resolution mosaicing algorithm can be evaluated using frames 

captured at different altitude as well as with different speed of the payload. The results could then 

be analyzed to show the super-resolution mosaicing result as a function of altitude as well as the 

speed of the payload. 
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