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ABSTRACT 

 With the current push to return to planetary exploration it is important to consider 

what science will be performed on such missions and how it is to be performed. This 

study considered three hand tools used for geologic sampling during the Apollo missions 

to determine whether handle redesigns guided by NASA-STD-3001 improved the 

performance of the tools. The tools of interest were the large adjustable scoop, the rake, 

and the 32-inch tongs, selected for relevance and usability in the test location. The three 

tools with their original and modified handle diameters were tested with two subjects 

wearing the NDX-1 Planetary Suit and performed within the regolith bin operated by 

Swamp Works at Kennedy Space Center. The effects of the tool modifications on task 

performance did not conclusively demonstrate improvement. However, a methodology 

was developed that may prove beneficial in future tests using larger sample sizes.
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CHAPTER 1 

INTRODUCTION 

 During the 1960s and 1970s, twelve men walked on the lunar surface during the 

course of six Apollo missions. It was the first time a human set foot on another planetary 

body and, to accomplish the goals of the Apollo program, a vast array of equipment 

needed to be designed for use in a reduced gravity environment. Toward the 

accomplishment of one of these goals, each lunar landing visited a unique area of the near 

side of the Moon and returned an selection of samples that is still being studied today. 

Geology tools had to be designed to collect these important samples and, since this was 

the first time such tools had to be fabricated, tool development progressed along with the 

program. 

 Several of the tools underwent modifications as experience was gained during the 

landings and other tools were added to better accomplish the lunar exploration. With the 

difficulties of working in such an environment it is no wonder that issues would be found 

and changes made. However, NASA standards have been changed and updated since the 

Apollo missions and the tools may no longer meet all the requirements set out for flight 

hardware. If these tools were to be redesigned to such standards would the performance 

changes be measurable or perceived by the astronauts using them? For this research one 

area of tool design was the focus, the diameter of the handles. 

 This study was designed, in part, based on a unique opportunity afforded by 

NASA's Kennedy Space Center (KSC). The University of North Dakota's (UND) Human 
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Spaceflight Laboratory was given the opportunity to perform the first suited test in the 

regolith bin operated by Swamp Works. This study was then refined to work within the 

time available and the physical constraints of an indoor facility. 

  Since the end of the Apollo program no human has set foot on non-terrestrial 

ground, but it would seem that humanity wishes to return. If this is true, then preparations 

for such missions cannot start too soon, and among these preparations must be a look at 

how best to gain all the scientific knowledge that is possible. Looking at something as 

basic as field geology tools, especially those that may also double as maintenance tools, 

will need to be done. Since Apollo is the only in situ data available, it would seem 

prudent to make that the start for such an effort. 

 



3 
 

CHAPTER II 

BACKGROUND 

Lunar Geology Equipment 

 The background of the Apollo geology tools was researched to ensure that the 

selected tools for this study were still being used at the end of the Apollo lunar landings 

and fit the experiment design and location. A review of the types of containers available 

for the Apollo sample returns was completed as part of designing the study's procedure. 

Tools 

 There were several hand geology tools utilized during the Apollo lunar surface 

operations, some can be seen in Figure 1. They included the contact soil sampling device, 

Figure 1. Apollo lunar geology tools (Apollo 17 Mission, 1973). 
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contingency soil sampler, core/drive tube, drill, hammer, lunar rover soil sampler, rake, 

scoop, tongs, and trenching tool. Included is also an extension handle that was used for 

various tools. Not all of these tools were used consistently throughout the program and 

some were modified to correct for deficiencies reported during use on the lunar surface 

(Allton, 1989). These tools were sometimes used outside of their design envelope and it 

was reported that the tools, such as the scoop, could be used to lean on while astronauts 

retrieved objects from the lunar surface and aided them when they wanted to stand up 

again (Apollo 11 Technical, 1969). It is important to keep in mind that the Apollo surface 

operations were the first manned planetary operations and the tools were not designed 

with modern extravehicular activity (EVA) standards in mind. Observations on how the 

tools worked, and how they were used can be found in various NASA documents, along 

with the kinds of samples they were used to collect.  

 For the most part the Apollo 11 crew observed that the geology tools they used 

were suitable and useful (Apollo 11 Mission, 1969). The tools of Apollo 11 and 12 were 

nearly indistinguishable from each other (Apollo 12 Mission, 1970). One general 

observation made by a crewmember of Apollo 12 was that the tools with a shiny finish, 

such as the tongs, would seem to increase the temperature of his hands. This was not 

noted as being uncomfortable or a danger and would end when the tool was released. It 

was also noted that some of the tools seemed "flimsy" and that a crewmember should not 

feel worried about possibly breaking something because it was not sound enough (Apollo 

12 Technical, 1969). The Apollo 14 crew reported that the "geology hand tools are good" 

(Apollo 14 Mission, 1971). The crew of Apollo 15 stated that the "equipment used during 

the geology portion of the extravehicular activities performed well". They did have a 
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couple of issues, one with the gnomon not discussed here and one when a seal on an 

Apollo lunar sample return container did not work correctly due to a sample bag in the 

way (Apollo 15 Mission, 1971). The Apollo 17 crew that worked on the lunar surface, 

noted that tools that are to be gripped for extended time periods should have custom 

grips. In this case, the hammer grip was too large for one crewman's hand, but fit the 

others well. Beyond this observation, they said the tools worked as anticipated (Apollo 17 

Mission, 1973). 

 Contact Soil Sampling Device (Lunar Surface Sampler Tool). The contact soil 

sampling device's purpose was to sample only the very top layers of the lunar regolith. 

The sampler was only utilized on Apollo 16 and was actually flown as a set of two 

(Allton, 1989). One sampler had velvet covering on the contact surface and the second 

had beta cloth. The purpose of the different materials was to sample the uppermost 

regolith layer to different depths (Apollo 16 Mission, 1972). Figure 2 shows a contact soil 

sampling device both open, ready to sample and closed for transport. The universal hand 

tool (UHT) was used as a handle for the soil samplers (Apollo 16 Mission, 1972). The 

 
Figure 2. Contact soil sampling device (Allton, 1989) (Apollo 16 Mission, 1972) (NASA photo S72-43792). 
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UHT was a "special long-handled allen wrench which doubles as a handling tool" 

(Apollo 14 Lunar, 1989).  

 Contingency Soil Sampler. The contingency soil sampler's purpose was to 

ensure a sample return from the lunar surface even if operations terminated before more 

extensive samples could be taken, Figure 3. This piece of equipment was utilized on 

Apollo 11, 12, 14, and 15. The diameter of the bag was 10 cm (Allton, 1989). 

   
Figure 3. Contingency soil sampler (Allton, 1989) (NASA photo S68-54937). 

 Core/Drive Tube. The purpose of the core and drive tubes was to retrieve lunar 

samples in which the stratigraphy of the upper layers of the regolith would be preserved 

for study, Figure 4 (Apollo 11 Mission, 1969). The core and drive tubes had a more 

 

Figure 4. Double length drive tube and ram (Allton, 1989) (NASA photo S71-16525). 

complicated development during the Apollo missions than most of the geology tools. The 

core tube was employed first and had two different bits (Allton, 1989). The original 

configuration was only flown on Apollo 11. This included the original inverted funnel-

shaped bit (Allton, 1989), which compressed the sample and increased the resistance 

(Apollo 11 Mission, 1969). Apollo 12 and 14 used the core tube, but with a second, 
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tapered bit design, see Figure 5 (Allton, 1989). The Apollo 12 design also compacted the 

soil with the consequence that even after the tube had been driven to its greatest depth the 

core tube still would not be filled to its entire length (Apollo 12 Mission, 1970). The core 

tubes were designed to have the extension handle attached and be driven into the soil

 

Figure 5. (a) is the original core tube bit used on the Apollo 11 mission. (b) is the bit used for the core tube on 

Apollo 12 and 14 (Apollo 12 Preliminary, 1970).

with a hammer. Within the tube there was a "follower" that was placed at the bottom of 

the tube before flight. As the tube was driven down, the follower moved up the tube, 

pushed by the soil, and retained the upper soil in the tube. Two core tubes could be 

screwed together to get a deeper sample (Allton, 1989).  

 To deal with issues that came from the design of the core tube, the design was 

modified. The main issues intended to be addressed by the redesign were "(1) to reduce 

the amount of sample disturbance, (2) to increase the size of the sample, and (3) to 

facilitate ease of sampling by the crew" (Apollo 15 Preliminary, 1972). The revised 

design was flown on Apollo 15, 16, and 17. The main improvement over the core tube 

was the increased inner diameter and decreased wall thickness. Another change was that 

the "follower" was replaced by a "keeper". This was placed at the top of the tube and, 
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only after the sample was taken, was pushed down to meet 

the top of the regolith sample to help maintain sample 

integrity (Allton, 1989). There was also a redesigned bit, 

see Figure 6 (Apollo 15 Preliminary, 1972). Once again, the 

sections could be screwed together to lengthen the sample 

that could be taken (Allton, 1989). 

  Drill. The rotary-percussive drill was flown on Apollo 15, 16, and 17 to collect 

core samples and to drill placement holes for the heat flow probes, see Figure 7. The 

Apollo 15 and 16 drills were used 

with six core stem tubes and 

increased to eight core stems on 

Apollo 17 (Allton, 1989). The core 

stems had fluting on the exterior 

walls to allow for transport of 

cuttings up and out of the way of 

the drilling. With the material used 

for the Apollo 15 model the fluting 

disappeared around the core stem 

joints, which caused some binding, 

see Figure 8. To fix this for the 

following missions the joint of the 

bore stems was changed from "boron/fiberglass tapered joints" and was replaced with 

"threaded titanium inserts which provide continuous flutes". The section lengths were 

Figure 6. Core tube bit for 

Apollo 15 (Apollo 15 

Preliminary 1972). 

 

Figure 7. Fred Haise testing the drill at KSC. The image clearly 

shows the main parts of the drill; handle, battery, power head, 

and drill stems. In the foreground is a stand retaining bore 

stems (Allton, 1989) (NASA photo S70-29673). 
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also increased, reducing the number of joints 

necessary (Apollo 15 Mission, 1971). With eight core 

stem tubes a sample could reach three meters in 

length. After drilling was completed, the core stems 

were removed from the surface by a jack utilizing the 

treadle (Allton, 1989). The "mechanical assist 

(modified jacking mechanism)" was not added to the 

treadle until after the Apollo 15 flight, in response to 

some of the issues they had (Apollo 15 Mission, 

1969).  

 Extension Handle. Two different extension handles were flown during the 

Apollo missions. The first is referred to as the shorter extension handle and the revised 

version is the longer extension handle, pictured in Figure 9. The purpose of the extension 

handles was to be a kind of general tool handle that could be attached to multiple 

different tool heads to help reduce the mass of equipment flown. When attached to the 

drive/core tubes it was used as a driving surface to hammer against. It could also be 

attached to the hammer, scoop, and rake. In each of these instances its purpose was either 

to help increase leverage or reach length (Allton, 1989). While there were times that the 

extension handles were necessary, the Apollo 11 crew observed of lunar sample 

collection that "crewmembers may want to consider kneeling in order to work with their 

hands. Getting to and from the kneeling position would be no problem, and being able to 

do more work with the hands would increase the productive capability" (Apollo 11 

Mission, 1969). 

Figure 8. Drawing of bore stem joint 

prior to redesign (Apollo 15 Mission, 

1971). 
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 The shorter extension handle had a mass of 

590 g and a total length of 61 cm. The handle had a 

"T" form and a width of 15.5 cm. The aluminum was 

reinforced with stainless steel where the handle was 

designed to be struck with the hammer. This handle 

design was flown on Apollo 11 and 12 (Allton, 

1989). On Apollo 12, the crew reported they could 

have dug to greater depths on the lunar surface 

except that the length of the extension handle 

wouldn't permit it and, when used with the "shovel", 

it was 3 inches to 5 inches too short (Apollo 12 

Mission, 1970). The longer extension handle was 

used for the remainder of the Apollo flights; 14, 15, 

16, and 17. The overall length of this design was 76 

cm with the same 15.5 cm width for the t-handle. However, more of the t-handle had 

been reinforced with stainless steel. The Apollo 14 mass is listed as 770 g, while the mass 

listed for Apollo 15, 16, and 17 is listed as 820 g. The aluminum alloy and the stainless 

steel that was used on the shorter extension handle was also changed for the longer 

extension handle (Allton, 1989). 

 Hammer. There were two hammer designs for the Apollo missions. Both could 

be used with extension handles and functioned to collect rock chips from boulders, sink 

core/drive tubes, and to trench. The lighter weight hammer was used for Apollo 11 and 

12, Figure 10 (Allton, 1989). The heavier weight hammer, Figure 11, was used for 

Figure 9. Longer extension handle 

attached to a scoop (Allton, 1989) (NASA 

photo AS16-109-17846). 
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Apollo 14, 15, 16, and 17, though minor changes were made during these missions as 

well (Allton, 1989). The astronauts of Apollo 17 said the hammer grip was a good size 

for one, but it was much too large for the other astronaut (Apollo 17 Mission, 1973). 

 

Figure 10. Lighter weight hammer (Allton, 1989) (NASA photo S69-31847). 

 
Figure 11. Heavier weight hammer (Allton, 1989) (NASA photo S71-22471). 

 Lunar Roving Vehicle (LRV) Soil Sampler. The LRV soil sampler, Figure 12, 

was designed to allow for sample 

collection by an astronaut from within the 

LRV. This was designed and implemented 

to save the time and effort of astronauts 

having to get out of and back into the rover 

to collect samples. The head of the LRV 
 

 

 

Figure 12. LRV soil sampler (Allton, 1989). 
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soil sampler was attached to the UHT to allow for the necessary reach. This tool was only 

flown on Apollo 17 (Allton, 1989). The Apollo 17 crew observed that the LRV sampler 

worked well for sampling from the rover and also reported using it for some sampling 

while walking (Apollo 17 Mission, 1973). 

 Lunar Soil Rake. The lunar soil rake was designed to collect pebbles greater than 

1 cm in size from within the regolith. It had a mass of 1500 g and the portion of the 

handle seen in Figure 13 has a length of 22.3 cm. The rake head was then attached to an 

extension handle 

(discussed previously). 

Both the total length of the 

basket and the mouth were 

29.4 cm and the height was 

10.4 cm with a wire 

separation of 1 cm. The 

basket wires were stainless 

steel and the sidewalls of 

the rake's mouth were aluminum alloy. The rake was flown on Apollo 15, 16, and 17 

(Allton, 1989). Its purpose was to "give a statistical sampling of rocks in the size range 

between soil and the average documented sample" (Apollo 15 Preliminary Report, 1972). 

 The first crew to use the rake, Apollo 15, said it "worked well" and also could 

function as a scoop (Apollo 15 Mission, 1971). The Apollo 16 crew also believed the 

rake worked well for sampling. However, they did report having some issues when using 

it in thin regolith layers, such as bending the tines. To help mitigate the problems of 

Figure 13. Lunar soil rake (Allton, 1989). 
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raking in thin regolith, they would kick material into the rake and sieve the material 

through the rear of the rake. This was a method that had been practiced in ground training 

(Apollo 16 Technical, 1972). The Apollo 17 crew reported that the joint on the rake 

became stiff after repeated use and was no longer able to be locked after adjustment 

(Apollo 17 Technical, 1972). 

 Scoop. The purpose of the scoop was to collect rock fragments, perform minor 

trenching (Apollo 11 Mission, 1969) and collect regolith samples (Allton, 1989), as well 

as collect regolith and rock samples together (Apollo 11 Lunar, 1969). The regolith 

collection was made more difficult due to the reduced lunar gravity. The material being 

collected would be driven upward into an arc so a rotating movement while scooping was 

necessary (Allton, 1989). A full scoop of material was nearly unobtainable and filling the 

container took around twice the time anticipated (Apollo 11 Mission, 1969).  

 There were a total of four different scoops used throughout Apollo surface 

operations. The large, box-shaped scoop, Figure 14, was used during Apollo 11, 12, and 

14. The small, non-adjustable scoop, Figure 15, was employed on Apollo 12 and 14. The 

large, box-shaped scoop and the small, non-adjustable scoop were both made of 

aluminum. The small, non-adjustable scoop had a stainless steel reinforced edge and top 

to allow it to be used as a chisel. The small, adjustable-angle scoop, Figure 16, was flown 

only on Apollo 15. The large, adjustable-angle scoop, Figure 17, was utilized on Apollo 

16 and 17. The small, adjustable-angle scoop and the large, adjustable angle scoop were 

made from stainless steel and were designed to collect samples both by pushing and 

pulling the scoop. They were all designed to be attached to the extension handles (Allton, 

1989). The large, adjustable-angle scoop, the last version flown, could be set from 0°
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(horizontal) - 55° for sampling and to 90° for trenching (Apollo 17 Mission, 1973). It also 

had a mass of 590 g and an overall length of 35.4 cm. The head had a height of 5.1 cm, 

width of 11.4 cm, and a length of 15.2 cm (Allton, 1989).The Apollo 17 crew reported 

that the large, adjustable-angle scoop worked well and was their principal tool for 

sampling, but by their third EVA only one angle position was useable (Apollo 17 

Mission, 1973) because adjusting and locking the joint wasn't possible (Apollo 17 

Technical, 1972). 

 Tongs. There were two different tong lengths used for Apollo surface operations. 

The shorter were used during Apollo 11, 12, and 14 and the longer, 32-inch tongs were 

used during Apollo 15, 16, and 17. Both tongs appear to be of similar construction, tine 

and handle style but the tine material for the shorter tongs was aluminum and on the 32-

inch tongs the tines were stainless steel. The 32-inch tongs, the last version flown, were 

Figure 17. Large, adjustable-angle scoop 

(Allton, 1989) (NASA photo AS17-138-

21160).     

Figure 15. Small, non-adjustable scoop (Allton, 1989) 

(NASA photo S69-31850). 

Figure 16. Small, adjustable-angle scoop (Allton, 

1989) (NASA photo S71-22472). 

Figure 14. Large, box-shaped scoop (Allton, 1989) 

(NASA photo S69-31846). 
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230 g, had an overall length of 80 cm, and a 12 cm wide t-handle (Allton, 1989), Figure 

18. The handle length of the tongs was 28 inches (Apollo 17 Mission, 1973). The tongs 

were designed to retrieve lunar sample rocks that were smaller than 6 - 10 cm (Allton, 

1989).  

 
Figure 18. 32 inch tongs (Allton, 1989) (NASA photo S71-22469). 

 The Apollo 11 crew also used their tongs to right a camera that had been upset 

during their surface operation, as they were also designed with the idea of "retrieving 

tools that might have been dropped", along with documented samples (Apollo 11 

Mission, 1969). The tongs were certainly used during the missions, but it was also 

suggested that a normal operating mode should be kneeling on the lunar surface to collect 

samples and thus "allow closer inspection of the lunar surface". The Apollo 12 crew 

observed that the tongs were 3 to 5 inches too short to readily retrieve lunar surface 

samples (Apollo 12 Mission, 1970) and that the jaw of the tongs only allowed for 

retrieval of small rocks and thus the samples were biased toward the small rocks (Apollo 

12 Technical, 1969). The Apollo 15 crew reported that by their third EVA the tongs had 

become problematic and the backup pair had to be used. The second pair functioned as 

they were supposed to (Apollo 15 Mission, 1971). This malfunction was in part due to 

pushing them into the lunar soil to store them in between uses as the original storage 

attachment to the suits no longer worked (Apollo 15 Technical, 1971). 

 Trenching Tool. The trenching tool, Figure 19, was designed to dig trenches on 

the lunar surface. The joint attaching the blade to the handle allowed for the angle of the 
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trenching tool to be adjusted. This tool was only flown on Apollo 14. The large, 

adjustable-angle scoop was used in place of the trenching tool in later missions (Allton, 

1989). 

 
Figure 19. Trenching tool (Allton, 1989) (NASA photo S71-2470). 

Documented Sample Bags 

 Documented sample bags were used to store individual samples and then were 

placed inside other, larger containers for the flight back to Earth. Several documented 

sample bags could fit inside the larger containers along with larger, loose rock samples. 

The documented sample bags were numbered and had ways to be sealed to allow for 

samples to be identifiable and discrete (Allton, 1989). To document the bags, the 

numbers printed on the bags were reported to ground control during sampling (Apollo 12 

Mission, 1970).  

 The following sections detail the various documented sample bags as they are 

described by Allton in Catalog of Apollo Lunar Surface Geological Sampling Tools and 

Containers (1989) and then gives a brief description of some of the larger containers used 

to store the samples for the return flight. 
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 Cup-shaped Documented Sample Bag. The cup 

shaped bags were placed in a dispenser that was attached 

to the small tool carrier and carried a stack of thirty-five 

cups at a time (Allton, 1989), see Figure 20. The cups 

were 3.25 inches in diameter with a depth of 5.25 inches 

(Apollo 17 Mission, 1973). These were used with their 

dispenser on Apollo 12 and 14 (Allton, 1989).  

 LRV Soil Sampler Bag. These bags were only 

used with the LRV soil sampler and as such were only 

flown for Apollo 17, see Figure 21. Each was 8 cm in 

diameter with a depth of 13 cm (Allton, 1989).  

 
Figure 21. LRV sampler, cup-shaped bags shown in the LRV sampler (Allton, 1989). 

 Flat, Rectangular Documented Sample Bags. 

 Early Missions. For Apollo 12 and 14 these bags were 15 cm x 15 cm and were 

dispensed from a metal cylinder (Allton, 1989). The closure tabs had a tendency to 

entangle so detaching a bag became problematic and reportedly it was very difficult to 

only take one bag at a time. Typically two or three would come off and some would 

become lost (Apollo 14 Mission, 1971; Apollo 14 Technical, 1971). The Apollo 12 crew 

Figure 20. Cup-shaped documented 

sample bags in dispenser (Allton, 

1989) (NASA photo AS12-49-7243). 
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stated that the "tear-away" bags were the easier of the documented sample bags to use but 

they were too small to package the more desired rock samples (Apollo 12 Mission, 1970). 

 Later Missions. The Apollo 15, 16, and 17 missions flew larger, flat, rectangular 

documented sample bags, Figures 22. The dispenser was designed to make opening the 

bags simpler for the suited astronauts, Figure 23. These bags were designed with up to an 

11 cm diameter rock in mind (Allton, 1989).

 

Figure 22. Flat, rectangular documented sample bags 

stowed pre-flight (Allton, 1989) (NASA photo S88-

52669). 

 

Figure 23. Dispenser of later mission flat, rectangular 

documented sample bags (Allton, 1989).

Sample Stowage 

 The Apollo lunar sample return container (ALSRC), also referred to as a rock 

box, was the main storage for samples returning from the Moon, see Figures 24 and 25. 

They were designed with the idea of keeping the samples in a "lunar-like vacuum" until 

the boxes were opened at the Lunar Receiving Laboratory (LRL). The boxes had exterior 

dimensions of 48 cm x 27 cm x 20 cm with a typical wall thickness of 2 mm, not taking 

into account the reinforcing ribbing. All Apollo missions flew two ALSRCs (Allton, 

1989). 
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Figure 24. ALSRC, Serial Number 09, flown on Apollo 

12 and 16 (Allton, 1989) (NASA photo S72-37196). 

Figure 25. Apollo 16 ALSRC in LRL (Allton, 1989) 

(NASA photo S72-36984).  

 The purpose of the protective padded sample bag, Figure 26, was to provide 

protection to more fragile samples and help avoid 

abrading rock surfaces. Two of these bags were 

flown on Apollo 16. The majority of the bag was 

made from teflon ribbon and film. They employed 

a double closure that included an aluminum tab 

and Velcro. The mass of one bag was 

approximately 220 g with a padded volume of 15 

cm x 14 cm x 5 cm (Allton, 1989).  

 There were other containers and bags flown on Apollo missions (Allton, 1989) 

which are not covered here as they either do not pertain to taking regolith or rock 

samples. 

NASA Requirements 

 Design considerations for any systems intended for the purpose of manned space 

flight are governed by NASA standards and NASA center standards, as well as 

influenced by other NASA documentation, such as technical papers. Standards can either 

be all encompassing or geared toward a specific area of spaceflight, e.g., medical, 

controls, EVA. Hand held equipment, such as tools, can fall under two different 

Figure 26. Protective padded sample bag 

(Allton, 1989) (NASA photo S72-43790). 
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categories: those which are designed to be used within a pressurized environment, such as 

the International Space Station (ISS), and are therefore to be used unsuited, and those 

which are to be used outside the confines of living quarters, either in microgravity or 

reduced gravity, and must be able to be operated while suited.  

 Tools purposefully made to be manipulated by suited astronauts must be designed 

to address multiple concerns. First, design must address the degradation of both fine 

motor function and gross motor function that occurs while suited. Second, fatigue 

develops more quickly while working within a suit and against suit pressure when 

compared with the performance of unsuited operations. Third, the apparatus must pose no 

probable threat to the person inside the suit. Finally, the tool may not cause foreseeable 

damage to the spacesuit. These requirements are considered in various NASA 

documentation with the purpose of making EVAs more productive and ensuring the 

safety of the people not only performing the operations, but also those around them. 

 This section will focus on the requirements and recommendations that apply to 

tools designed for EVA operations on an extraterrestrial surface that are most pertinent to 

the topic of this paper. Often equipment design requirements come from the experience 

that is gained from previous missions and designs. The experiences to draw from for the 

development of EVA standards that apply to suited, reduced gravity surface operations 

are limited. Though these conditions have been simulated, only twelve humans have ever 

worked in this actual environment. The majority of EVA experience is from the 

microgravity environment and, while some EVA issues are shared between 

environments, requirements between these two types of EVA vary. Issues associated with 

microgravity EVAs include floating objects, translation paths along spacecraft, and 
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remaining anchored or tethered during work. Reduced gravity, surface EVA participants 

need to be able to work at different levels and in multiple eye lines, pick things up from 

the surface, traverse distances, and minimize dust and regolith impeding tool and suit 

operations. Surface EVAs can be geared toward different mission objectives. The Apollo 

landings were of a short enough duration that major maintenance and repairs were not 

needed and their EVAs were primarily used to set up experiments and gather scientific 

samples. Microgravity EVAs, particularly those programmed for the ISS, have been 

focused more on equipment tests, construction, maintenance, and repair. 

NASA-STD-3000 

 NASA-STD-3000, the Man-Systems Integration Standards (MSIS), was last 

updated in 1995. It replaced previous "NASA field center human engineering standards 

documents" and integrated principles of other standards from "NASA, military, and 

commercial human engineering" documents when they were found to be pertinent. This 

was done to create "a single, comprehensive document defining all generic requirements 

for... equipment which directly interfaces with crewmembers" (Man-systems, 1995). The 

requirements and sections relevant to surface EVA tool design follow. 

 Section 2 of the MSIS deals with general requirements. One principle is to keep 

designs as simple as may be. This reduces the likelihood of failures and will typically 

allow for less necessary training due to simpler operational requirements. The second 

important concept is standardization. For the purpose of EVA tool design, this would 

imply consistently using the same hardware for assembly, ensuring a minimum number 

of maintenance tools required (Man-systems, 1995). 
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 Section 3 of the MSIS is about anthropometry and biomechanics. In the case of 

EVA tools, the tools must be manipulated through the medium of the suit, which 

influences measurements such as optimal grip size or mean grip strength. Here 

anthropomorphic measurements are to be based on the actual user population. The 

difficulty in this comes from the wide variety of people currently represented in the space 

program and thus the great differences that can be seen among crew members of any 

given mission. The MSIS gives data at its own defined end points of user population and 

considers "the 5th percentile Asian Japanese and the 95th percentile White or Black 

American male projected to the year 2000." (Man-systems, 1995). 

 Any equipment that is flown must accommodate this variety of possible users. To 

accomplish this goal the MSIS gives three strategies that can be utilized: 

 "Single Size For All" - This can be accomplished when using either the minimum 

or maximum data point allowed for one crewmember for use by the whole crew 

(Man-systems, 1995). An instance where this strategy would work is in designing 

for reach. If a tool, perhaps a pair of tongs, allows the tallest person to 

comfortably retrieve an object from the ground, then the shortest crew member 

should also be able to perform this task.  

 "Adjustment" - Using this strategy the same piece of equipment can be altered to 

allow easy use by different people (Man-systems, 1995). This principle could be 

seen when allowing a tool head to be locked at different angles. 

 "Several Sizes" - Sometimes the differences in measurements are simply too large 

and the best way to accommodate the entire crew is to produce more than one of a 

single piece of equipment in various sizes (Man-systems, 1995). Especially when 
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suited, the grip size of a tool handle may be important in keeping an astronaut 

comfortable and productive. Producing custom grips for each astronaut would be 

an example of the this strategy.  

 Anthropomorphic measurements are given in 1-G conditions with notes on how 

these measurements are expected to change in microgravity. The measurements do not 

address reduced gravity conditions or transferring from 1-G to microgravity to reduced 

gravity or the reverse. Clothing need not be taken into account when determining body 

size in most habitable space when under shirtsleeve conditions. However, "[w]hen an 

individual must wear an EVA pressure garment or a space suit, body dimensions will be 

affected drastically. In this case, dimensional studies must be made for the user 

population wearing the garment" (Man-systems, 1995). 

 Section 4 addresses issues beyond body size that are relevant when developing 

tools. Some areas do not apply to surface operations and are only relevant for 

microgravity EVA, but there are constraints discussed relevant to both: strength, 

muscular endurance, and deconditioning.  

 First, the MSIS defines strength as "the ability to generate muscular tension and to 

apply it to an external object through the skeletal lever system." The upper limit 

of a person's strength can only be sustained for seconds (Man-systems, 1995). The 

range of strength of both the weakest and strongest crew members needs 

consideration in design phases. The weakest member needs to be able to operate 

the equipment, but the strongest member should not be able to damage or break 

the equipment accidentally. 
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 Second, muscular endurance can encompass both "the duration a submaximal 

force may be held in a fixed position (Isometric)" and "the number of times a 

movement requiring a submaximal force may be repeated (Isotonic)" (Man-

systems, 1995). Both are important to tool designs, especially those tools that will 

need to be held or carried for an extended period of time or those that, like the 

tongs, require the same repeated motion to open the tines to grasp an object. 

 Finally, deconditioning due to time in microgravity affects both aerobic power 

and strength predominately in the antigravity muscles (Man-systems, 1995). 

Geology tools rely greatly on the upper body to operate but strength in the legs 

and lower back are also important for the sample collection. Deconditioning will 

be a greater factor for some missions over others depending on the amount of time 

in microgravity and the gravitational force experienced once on the planetary 

body. However, long term stays in reduced gravity have never occurred so there 

are no in situ observations for this. 

 Section 11 covers hardware and equipment including tools. This section is not 

devoted to EVA, but there are still mentions of EVA requirements that are relevant to 

surface operations.  

 Tools that are to be used during EVA should have "gripping surfaces" on handles 

that do negligible harm to EVA gloves from rubbing against the surface.  

 The handles of tools should allow the operator to apply force while maintaining a 

natural wrist position. 

 Controls should not be able to be activated without intent. 

 Tools should be operable with only one hand where possible. 
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 Handles should not have a handedness preference and should be usable with 

either the left or right hand. 

 The force required by hand tools shall be less than 20 lbs (89N). 

 Tools that are "plier-type" in design "shall be spring actuated in the open direction 

to permit one-handed operation" (Man-systems, 1995). 

 Section 14 deals with topics related to EVA. There is an explicit reference to 

reduced gravity EVA stating that there are advantages and disadvantages to suited 

operations when microgravity and reduced gravity are compared. One factor in decreased 

efficiency in any suited performance of assigned duties would be "poor... tool design" 

(Man-systems, 1995). 

 Tool design must either prevent the possibility of sharp edges or protrusions or 

provide for their coverage. If a piece of equipment could cause harm to a crewmember on 

EVA or destruction of EVA paraphernalia "by entrapment, snagging, tearing, puncturing, 

cutting, burning, or abrading [the equipment] shall be designed to ensure elimination of, 

or protection from, the hazard." Any tool design should be tested by a representative 

group of people to ensure that the tools can be operated as expected by all. This should 

include testing within the expected pressure suit so that "[d]esign forces required for 

operation of hardware shall not exceed the capabilities of the potential population...". 

Suited operations also have modified capabilities in joint movement, which affects the 

reach envelope as does the use of one or two hands for a task. (Man-systems, 1995). 

NASA-STD-3001 

 The NASA-STD-3001: NASA Space Flight Human-System Standard is divided 

into two volumes covering both human and hardware requirements for manned 



26 
 

spaceflight. Both state within their bodies of text that "[t]his Standard establishes 

requirements... but does not supersede nor waive established Agency requirements found 

in other documentation" (NASA SFHSS Volume 1, 2015; NASA SFHSS Volume 2, 

2015). The following review of the NASA-STD-3001 primarily focuses on Volume 2 as 

that contains the sections relevant to tools in "all mission phases (including 

extravehicular activity (EVA)) [and] all gravity environments..." (NASA SFHSS Volume 

2, 2015). 

 The first volume deals with Crew Health and "establishes requirements to protect 

the health and safety of crew and to provide health and medical programs for 

crewmembers during all phases of space flight". It was initially approved in 2007 and 

was last revised in 2015. Topics include standards for "fitness for duty, space flight 

permissible exposure limits, permissible outcome limits, levels of medical care, medical 

diagnosis, intervention, treatment and care, and countermeasures". These prerequisites for 

flight and planetary habitation are not all in their complete forms and some still need to 

be developed further for crew safety (NASA SFHSS Volume 1, 2015). 

 The second volume, "Human Factors, Habitability, and Environmental Health", 

considers human abilities and how these must affect the interfaces a crew will work with 

in space and "focuses on human physical and cognitive capabilities and limitations and 

defines standards for spacecraft (including orbiters, habitats, and suits), internal 

environments, facilities, payloads, and related equipment, hardware, and software 

systems with which the crew interfaces during space operations." This volume also 

references other documents that can be suitable for guidance with other various covered 
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subjects. It was initially approved in 2011 and most recently revised in 2015. (NASA 

SFHSS Volume 2, 2015). 

 The following statements govern all "hardware and equipment" design that the 

crew interfaces with. 

 Range of motion, reach, and strength data will be used as "developed in 

accordance with section 4.1". Section 4.1 essentially says that any data sets will 

be developed with the entire population of crew members considered in all 

measurements and characteristics. 

 "The effects of muscle endurance and fatigue shall be factored into system 

design." 

 Equipment design will be such that any tool will be useable with the "lowest 

anticipated strength." 

 All designs will safeguard crewmembers "from entrapment (tangles, snags, 

catches, etc.)." 

 Equipment that is both "fixed and handheld" will have their edges and corners 

rounded to specifications. While the rationale for this requirement does say that 

sharp edges and corners could cause damage to EVA suits and be dangerous in 

EVA situations, "[t]his requirement applies to bare skin." 

 "Pinch points shall be covered or otherwise prevented from causing injury to the 

crew." 

 Equipment intended to be transported by hand will be designed with "a means for 

grasping, handling, and carrying (and, where appropriate, by a gloved hand)." 
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 The Operations section has not yet been addressed (NASA SFHSS Volume 2, 

2015). 

JSC-0808-2A 

 JSC-0808-2A, JSC Design and Procedural Standards, had its origins around 1964 

as bulletins which were combined into document JSCM 8080 in 1971. This document 

was amended in 1991, 2005 and most recently in 2015 when it was re-designated JSC-

0808-2A. It is comprised of "design and procedural requirements for human spaceflight 

equipment based on lessons learned and best practices." These requirements may be 

enforced for a project in their entirety or as individual requirements. "These requirements 

are appropriate for the acquisition, design, development, test, evaluation, operation, and 

sustaining engineering of any human spaceflight program, project, spacecraft, system, or 

end item" (JSC, 2015). 

 Most of the relevant requirements for EVA tool design are under the "General" 

heading. For example: 

 During design the functional thermal environment of the hardware, both hot and 

cold, will be accounted for and hardware "shall be designed to function" in both. 

 "Where possible, actuating devices shall be made an integral part of the 

equipment to be operated. Detachable actuating tools, such as handles, pins, and 

ratchets, shall not be permitted in applications where tool nonavailability could 

compromise crew safety or primary mission objectives" (JSC, 2015). 

JSC-26626A 

 JSC-26626A: Extravehicular Activity (EVA) Hardware Generic Design 

Requirements Document (GDRD) was released in 1995. This document supersedes 
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NASA-STD-3000. Its purpose is to institute the "design and verification requirements" of 

tools intended for EVA use. It applies to designs utilized "in the external environment of 

low earth orbit" and "development of general purpose EVA hardware". However, the 

document can accommodate "special purpose EVA hardware with unique requirements" 

(Extravehicular, 1995). 

 The requirements considered most relevant to the modifications tested in this 

study: 

 Edges and corners that are "exposed" shall follow the standards as stated in Figure 

27. "A 45° chamfer with a resulting radius of 0.06 inch is also acceptable with a 

minimum flat of 0.5 inch."  

 

Figure 27. "Exposed Corner and Edge Requirements" (Extravehicular, 1995). 

 Hardware will have a "shelf/storage life of 10 years." This time factors in the 

interval which hardware may be kept "under controlled conditions" from which 

the hardware can be taken and utilized without any maintenance "beyond routine 

servicing."  

 "The structure shall possess sufficient strength, rigidity, and other necessary 

physical characteristics required to survive design conditions specified herein. 
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a. Consistent with the structural design principles listed herein, the structure 

shall be designed to achieve minimum weight wherever practicable. 

b. The effects of allowable structural misalignments and other permissible 

and expected dimensional tolerances shall be considered in the analysis of 

all loads, load distributions, and structural adequacy. 

c. The effects of repeated loads will be considered in the structural design. 

The design structural adequacy of the EVA hardware shall not be impaired 

by fatigue damage resulting from exposure to flight as well as non-flight 

environments. 

d. The environmental phenomena corresponding to each design condition 

shall include all factors that can influence the EVA hardware structural 

design and typically including heating, vibration, acoustic noise, and 

shock in addition to quasi-static and dynamic loads." 

 "All devices shall be designed and/or shielded in a manner that does not allow 

gaps or overhangs and precludes sharp edge and/or pinch hazards which could 

potentially damage the EMU [Extravehicular Mobility Unit]." 

 "Actuation forces shall not exceed 20 lb (89 N) for hand tools and other hardware 

items which require repetitive/continuous operation." 

 "The actuation of hardware designed for finger operation shall be 2 to 10 lb (9 to 

44 N)." 

 "Hand gripping surfaces shall incorporate a non-slip surface and prevent 

abrasions to the EVA glove material. Note: This requirement applies to items with 

repetitive use potential." 
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 "Hand tools shall be capable of one-handed, ambidextrous, engagement, 

disengagement, and operation." 

 "Pliers-type tools shall be spring actuated in the open direction to permit one-

handed operation" (Extravehicular, 1995). 

NASA/SP-2010-3407 

 NASA/SP-2010-3407: Human Integration Design Handbook (HIDH) has the 

purpose of being "a resource for implementing the requirements in the SFHSS [Space 

Flight Human-System Standard, NASA-STD-3001], and it provides the data and 

guidance necessary to derive and implement program-specific requirements that are in 

compliance with the SFHSS." This document is to cover any operations by a crew 

including both intravehicular and extravehicular activities both in open space and on 

"lunar and planetary surfaces." It was first released in 2010 and was last revised in 2014 

(HIDH, 2014). 

 Choosing user population is important due to its universal affect on spacecraft and 

equipment. User population is affected by a number of factors and should consider "age, 

gender, ethnicity, and other special considerations" such as degree of physical fitness. 

Also, change in population over time may be an important aspect in determining user 

population if the design is for equipment to be used in the distant future. The range of 

user population as defined in the NASA-STD-3000 was found to omit too many 

anthropomorphic characteristics and therefore "a broader range of user population must 

be considered" if regulations for selection are unchanged (HIDH, 2014). 

 Once the characteristics of the users are determined, equipment and system design 

must accommodate them. The three options for designs that can be used by a varied crew 
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are "single solution for all", "adjustment", and "several solutions". These are the same 

methods that are offered in NASA-STD-3000 and necessitate obtaining and utilizing 

suitable "anthropometric, biomechanics, and strength data." These data must also account 

for whether the appropriate measure is taken for shirtsleeve crewmembers or for suited 

crewmembers. If the activities are for suited individuals, consideration must be given to 

whether the operations will be performed with the suit fully pressurized, ventilated, or 

either/both, as specific suits and suit statuses will affect anthropometry differently. The 

gravity conditions of the crewmember must also be considered as this can affect 

characteristics such as height. However, "though additional postural effects may be 

present due to partial gravity, this has not yet been quantified and therefore is not 

addressed." Thus, more data on changes in anthropomorphic characteristics in "partial 

gravity (1/6 and 3/8)" are needed (HIDH, 2014). 

 EVA equipment is held to the standards of two sections of the HIDH: Chapter 9 

"Hardware and Equipment" and Chapter 11 "EVA". Hardware design should incorporate 

human factors to "enhance crew performance, safety, and comfort during operations" 

(HIDH, 2014). The following list contains a representation of these requirements. 

 Equipment design should be safe and afford "safe and efficient use, manipulation, 

and handling." 

 Designs should be robust and dependable and able to "[withstand] the forces 

imposed intentionally and unintentionally by crewmembers and capable of 

sustaining operations for extended durations with minimal maintenance." 

 Equipment should be designed for use by the entire range of crew 

anthropomorphic characteristics, strength, and range of motion (HIDH, 2014). 
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 A selection of tool design requirements follows: 

 For EVA tools, the "grip surface" should accommodate the glove of the EVA suit 

to be worn. In addition, the surface on the EVA tool handle must " minimize 

abrasion to EVA glove material." 

 The handle should permit use while the wrist is in its most natural attitude when 

"force or guidance inputs are applied." 

 Tools should be equally functional for crewmembers of right or left-handedness 

and should be useable with a single hand where possible. 

 The actuation force of a tool needs to be "less than the strength capabilities of the 

crew". 

 Tools should not be able to be disassembled accidently "while installing, using, 

removing, or transporting the tool." 

 All tools should have a method of restraint for "0g conditions" (HIDH, 2014). 

This last point would seem to suggest that this document assumes all tools will be used in 

micro or zero gravity and that no tools would be developed exclusively for use in a 

reduced gravity environment such as the lunar surface.   

 The following section from Chapter 11 is specifically for EVA. An EVA is 

defined as "any activity performed by a pressure-suited crewmember in unpressurized 

environments internal or external to space flight habitable modules, in space 

environments, or in extraterrestrial environments with atmospheres unable to support 

human life." Suited performance is affected by a number of factors, including the internal 

pressure. "The current suit used on the ISS, the ... EMU, operates at 4.3 psi total pressure. 

These factors can decrease "mobility and dexterity, force application, and endurance". In 
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order to advance the capabilities of crewmembers suited for EVA "visual performance, 

reach, range of motion, strength, and mobility" must be improved. While suited, the reach 

of a crewmember is changed and EVA tasks and procedures should not call upon a 

crewmember to "approach the limits of reach" (HIDH, 2014). 

 Suit designs change with intended purpose and working environment; planetary 

suits need to function differently than suits intended for microgravity or 0g. In such an 

environment, the legs and feet become important and must accommodate "walking, 

hopping, and performing weight-bearing tasks" to allow for safe carriage across terrain, 

both flat and irregular, and possibly climbing ladders. Also, "kneeling to collect surface 

samples should be considered." "Controls that will be operated by a pressure-suited 

crewmember must accommodate limited finger and hand range of motion and dexterity" 

(HIDH, 2014). 

 The issue of gripping objects and hand strength while suited is a complex problem 

that both EVA glove designers and EVA tool engineers must consider. Moving fingers 

and hands within a pressurized glove takes noticeable effort. This is especially apparent 

with repetitive motion and continuous gripping. The repetitive nature of some tasks can 

be partially alleviated by glove design or the design of the interface between the object 

and the glove itself (HIDH, 2014).  

NASA/TP-2014-218556 

 NASA/TP-2014-218556: Human Integration Design Process (HIDP) was released 

in 2014. Its purpose is to expand upon the implementation of NASA-STD-3001, but "can 

be applied to any set of human-systems requirements." There are four central concepts to 

human-centered design: "[a]ctive involvement of users and a clear understanding of user 
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and task requirements, [f]unction allocation between users and technology, [d]esign 

iteration, [and m]ultidisciplinary design" (HIDP, 2014). 

NASA/TM-2007-214755 

 NASA/TM-2007-214755, The Apollo Medical Operations Project: 

Recommendations to Improve Crew Health and Performance for Future Exploration 

Missions and Lunar Surface Operation, is a document that was researched and assembled 

to record the opinions of Apollo astronauts on "the impact of the Apollo vehicles, 

hardware, and systems on crew health [and] performance throughout all mission phases, 

including lunar surface operations and the influence of that impact on the new 

exploration vehicles and mission architectures." It includes historical research into 

previous observations made by Apollo astronauts which were then used as a basis for 

discussion topics covered during a summit and in post-summit correspondence. In total, 

considering both summit and post-summit participation, fourteen Apollo astronauts 

contributed of a potential twenty-two. One of the fourteen category topics covered was 

lunar surface operations. This paper is included because recommendations from the 

summit and post-summit questions and discussions are in various stages of consideration 

for inclusion in future requirements (NASA, 2007). 

 From the gathered crew data, "the most fatiguing part of surface EVA tasks was 

repetitive gripping." This is discussed as part of the EVA suit category and the astronauts 

comments appeared to imply that this was due more to the glove design or suit pressure 

than from the design of the surface tools (NASA, 2007). 

 In a panel discussion, hand fatigue was again given attention, reiterating the 

problem of "requiring finger dexterity", referencing maintaining a continuous hold on an 
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object, such as a hammer. When grip fatigue came up in a later question and forearm 

fatigue was indicated, "[t]he crewmembers were unable to specify cause of problem." 

The idea of working on forearm strength was discussed separately, but an observation in 

the comments was that "operating the surface tools in partial gravity, particularly the 

drill, requires more force generated from the shoulders than needed in 1 g." A mention 

was made that kneeling would be done more often if the suit possessed greater flexibility 

(NASA, 2007). 

 The paper also references recommendations from the various Apollo Medical 

Mission Debriefs. One of the observations was "[d]o not re-design lunar tools. They 

worked for the jobs that had to be performed". This comment is not cited to a particular 

mission and it should be noted that the medical debriefs are "considered medically 

confidential material and subject to the Medical Privacy Act of 1974"(NASA, 2007). Due 

to this, these documents are not referred to in this thesis. 
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CHAPTER III

STATEMENT OF PROBLEM 

 Reduced gravity, planetary exploration has not been performed by humans since 

the lunar landings of the Apollo program. Future astronauts will have scientific objectives 

to accomplish just as their Apollo counterparts did, including collecting data and samples 

with regard to planetary geology. Since such operations have only been relevant for the 

manned lunar landings, the tools for reduced gravity, geology collection have not been a 

main focus of tool development. The focus has been more concentrated on microgravity 

EVA tool development.  

 This research is looking forward to answer some specific questions for the next 

steps in space exploration as outlined by the NASA Authorization Act of 2010 and 

NASA's declared plan for future manned planetary missions (NASA's Journey to Mars, 

2015). EVA tool design is integral to human exploration of planetary bodies. A 

determination needs to be made whether hardware can be improved for different tasks so 

they may be performed efficiently and with the least physical strain and fatigue. 
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CHAPTER IV 

HYPOTHESIS 

 Modifications that increase the grip diameters of geologic sampling hand tool 

replicas will significantly improve performance of geologic sampling tasks. 

 The greatest improvement in performance will occur with tool configurations 

featuring increased diameters of all modified grips.  
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CHAPTER V 

METHODOLOGY 

Tool Selection 

 Many geology tools were flown during the Apollo lunar landing missions. Each 

had a purpose at the time, but all were not equally relevant in the long term. Some tools 

changed during their flight history to address reported issues, while others remained static 

for different reasons, e.g., adequate original design, time constraints, only flown on a 

single mission. Multiple factors were considered when deciding on the tools that would 

benefit most from a redesign: planetary geology, what is known and what data are 

important to future planetary research, the purpose and history of the geology tools, as 

well as the interfaces between human, space suit, and equipment.  

 All these factors led to the development of selection criteria to designate the tools 

for this study. First, the chosen tools needed to still be in use at the end of the Apollo 

lunar landings. This was to ensure the tools modified for the test were still relevant and 

had not been replaced or deemed extraneous. Second, the tools needed to be used for 

general geological sample collection, which precluded any tools designed for a specific 

experiment. Third, the tools needed to be used while the astronaut was on the surface. For 

example, tools intended to be used from a rover would need to be redesigned based on 

rover specifications as well as human needs. Such modifications would require a specific 

rover design and such future designs could negate the ability to sample from within the 
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rover using hand tools. Finally, the tools needed to have characteristics capable of being 

tested at the chosen research site.  

 Ultimately the tools selected were the large-adjustable scoop, 32-inch tongs, and 

rake. They were made according to specifications obtained from the archives at NASA's 

Johnson Space Center (JSC). The material selection does vary some from the lunar tools 

themselves due to the need for the tools to be durable enough to repeatedly pick up and 

work with material in terrestrial gravity as opposed to reduced lunar gravity. The two 

materials used were 4130 steel and 6061 T6 aluminum. The scoop and rake are also made 

with permanent handles instead of requiring the attachment and detachment of the 

extension handle. 

 Two versions of the tongs were taken to the testing site, but only one was used. 

The pair of tongs tested was provided by NASA's JSC. These tongs were also built to 

Apollo era specifications with the exception of the attachment of the tines. The original 

plans call for these to be welded to their structure and the version tested had the tines 

bolted on. 

Tool Modification 

 It was determined that a complete redesign of the tools would make any 

improvements or detriments in performance difficult to trace back to the corresponding 

modification. This led to alteration of only the diameter of the tool handles; the lengths 

remained unaltered. Casings were made for the handles that could easily be mounted and 

removed during the experiment. Both the rake and the scoop had two handles modified 

during the test. The first fit over the crossbar of the t-handle and the second fit over the 

shaft. The tongs only had the top handle modified due to the manner in which it was 
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used, typically one-handed, and its mechanics. The original and modified handle 

diameters are listed in Table 1. 

Table 1. Tool measurements. 

Tool 

Original T-

Handle Diameter 

Modified T-

Handle Diameter 

Original Shaft 

Diameter 

Modified Shaft 

Diameter 

Inches cm Inches cm Inches cm Inches cm 

Rake 0.50  1.27  1.15 2.93  0.75 1.91  1.11  2.85 

Scoop 0.50  1.26 1.07  2.70  0.75 1.90  1.08  2.71 

Tongs 0.73  1.85 1.06   2.71 NA NA NA NA 

 The handle casings were made of ¾ inch PVC pipe (internal diameter) with a 

thickness ranging between .116 to .131 inches (2.91-3.20 mm). This material was chosen 

for its uniformity, durability, rigidity, smooth surface, minimal addition of mass, the ease 

of modification, and the ability to be used on all necessary tool handles. The casings for 

the shafts of the scoop and rake were PVC pipe cut into two pieces lengthwise which 

were then attached using Velcro. The t-handle covers were all made to slide over their 

respective handles. The scoop casing was secured on the far side with a screw cap while 

the rake and scoop casings were secured by Velcro. All of the handles had foam in them 

to ensure a snug fit over the original handle and to decrease the movement of the casing 

while the tool was in use. 

Suit 

 The North Dakota Experimental 1 (NDX-1) Planetary Suit was designed to be 

used during planetary surface analog EVA, Figure 28. It is intended to allow for greater 

mobility during exploration, Figure 29, and to minimize the contamination and thermal 

impacts that would be experienced on extraterrestrial surfaces. 

 The NDX-1 was designed to be a pressurized planetary exploration suit. It is a 

mid-level entry suit comprised of two parts: the torso, constructed of soft components 
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Figure 28. NDX-1 Planetary Suit. 

 

Figure 29. Demonstration of NDX-1 suit flexibility 

{Credit: NASA-JSC: Larry K. Dungan}.

attached to a hard upper torso, and the soft pants. The two pieces are joined in the middle 

using clamps. The soft portions of the outer/restraint layer of the suit are comprised of a 

Kevlar material with nylon banding and hard components are constructed of carbon fiber 

with Nomex® core material. The inner bladder is made of neoprene coated nylon and is 

removable for repair or replacement and the gloves are neoprene with cuffs coated in 

natural latex. The NDX-1 is designed to accommodate a range of heights and limb 

lengths through lacing in multiple places, with torso length being more restrictive due to 

the hard component. The helmet is made of carbon fiber with a similar structure to the 

upper torso, differing by the use of Nomex® core material in key places and not 

throughout the entire structure, and has a fixed visor made of Plexiglass®. Steel pegs 

attach the helmet to the hard upper torso at the neck ring.  
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 The life support system was by umbilical for this study, with the pressure 

differential in the suit never exceeding 3.5 psi to ensure the safety of the occupant. 

Communications were accomplished through cabled headsets and a control box allowing 

for contact between the subject and multiple members of the study staff. The suit has the 

ability to be worn with a liquid cooling garment (LCG), but the LCG was deemed 

unnecessary for this study. 

 Prior to this study, the NDX-1 was tested in multiple controlled and natural 

environments. Field testing that executed simulated EVA tasks was performed for a week 

in the Badlands of North Dakota. The next test was performed at the Mars Desert 

Research Station (MDRS) in Utah where field testing could be done with a habitat for 

variation in EVA tasks. The third field test was done at the Marambio Base in Antarctica 

where different equipment was tested. The last field test was performed in the Pilbara 

region of Australia and executed EVA tasks, as well as tested perception of surroundings 

while operating within a space suit and helmet. This suit has also been tested in a 

controlled environment to determine dust contamination.  

Location 

 Testing was performed at NASA's KSC in the Regolith Bin operated by Swamp 

Works, see Figure 30. It contains approximately 120 tons of regolith simulant and has a 

surface area of approximately 24 x 25 feet [7.3 x 7.6 m] and a height of 18 feet [5.5 m] 

with 42 inches [1.1 m] of regolith, Figure 31. The Don/Doff area is approximately 10 x 6 

feet [3.0 x 1.8 m] (J. Beardall, personal communication, March 10, 2016), see Figure 32. 

The facility is climate controlled. Testing can be viewed from outside the regolith bin as 
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the walls are made of lexane. This was the first time a suited test has taken place at the 

regolith bin. 

 

Figure 30. Regolith bin, Swamp Works NASA KSC {Credit: NASA-JSC: Larry K. Dungan}. 

 

Figure 31. View through regolith bin. 

 

Figure 32. Regolith bin airlock and Don/Doff area. 
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 This experiment was, in part, built around the opportunity presented to the UND's 

Human Spaceflight Laboratory to bring one of its space suits to NASA's KSC to test the 

feasibility of performing fully pressurized, suited operations within the regolith bin. The 

test needed to be of such a design that the use of the regolith bin would increase the 

fidelity or at least better inform the study with the physical characteristics of the simulant. 

This study was then adapted to work within the confines of the regolith bin and in the 

time allotted for the testing. 

Regolith Simulant 

 The regolith simulant was BP-1 (Black Point 1) Lunar Regolith Simulant, Figure 

33. BP-1 comes from a rock quarry in northern Arizona and consists of "Black Point 

basalt flow and silt-sized washing paste" (Suescun-Florez et al., 2015). Suescun-Florez, 

Roslyakov, Iskander, and Baamer (2015), studied BP-1 and compared it with other 

simulants and lunar regolith geotechnical properties, e.g., granular size distribution, 

specific gravity, shear strength, see Figure 34. They concluded that "available 

geotechnical properties of BP-1 are consistent with those of lunar regolith and other 

regolith simulants" (Suescun-Florez et al., 2015).

 
Figure 33. BP-1 Lunar Regolith Simulant (Suescun-

Florez et al., 2015). 

 
Figure 34. Table of minimum and maximum densities 

of Lunar regolith and assorted regolith simulants 

(Suescun-Florez et al., 2015).
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 An initial test run with the suit and tools was performed prior to reaching KSC. 

This dry run used sand bought from a hardware store for a regolith simulant substitute 

and was to help determine timing and set-up. Differences in the interactions between the 

tools and the material were found when observations were compared between the 

preliminary test run to the testing at the regolith bin. Subject 1 reported in the post-test 

questionnaire that there was a vacuum-like effect on the scoop while collecting simulant 

during the scoop regolith test, an observation not made by the suited participant in the 

sand test. The simulant also had a greater resistance to tools attempting to penetrate 

deeper into the simulant, especially in areas where the regolith had been compacted. 

Experiment 

Experiment Design 

 This experiment was composed of four different tests: two involving the scoop, 

one with the rake, and one for the tongs. All four of these tests are two-factor 

experiments: suited/unsuited condition and tool configuration. Unsuited/suited condition 

had two levels; Two subjects engaged in both unsuited and suited operations. The number 

of levels with the number of configuration changes depended on the tool. The scoop and 

rake had five levels and the tongs had three; see Table 2 for a listing of configurations. 

Each set of conditions had three replicates.  

 Target size was also an independent variable used during three of the tests. The 

scoop target, rake, and tongs test each had a standard combination of target sizes that 

were randomly distributed in the target area. This variation in target size was done to help 

ensure that the full range of the tools were tested and to decrease the potential of any one 

target size skewing a tool's results. Tools were tested in their original configuration 
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before and after the modifications to observe subject changes in performance due to 

factors such as learning and fatigue. Handle modifications were tested separately and 

then together to help permit the traceability of any performance changes to the 

contributing factor or factors.  

Table 2. List of tested tool modifications in order performed. 

Tool Configuration Description Figure 

Scoop 1a No handle modifications 

35 

  2 T-handle modified 

  3 Shaft modified 

  4 T-handle and shaft modified 

  1b No handle modifications 

Rake 1a No handle modifications 

36 

  2 T-handle modified 

  3 Shaft modified 

  4 T-handle and shaft modified 

  1b No handle modifications 

Tongs 1a No handle modifications 

37   2 T-handle modified 

  1b No handle modifications 

 

Figure 35. Scoop configurations. 
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Figure 36. Rake configurations. 

 

Figure 37. Tong configurations shown with UND's tongs not those on loan from JSC. 

Test Subjects 

 Due to the human involvement during testing this study was approved by the 

University of North Dakota's Institutional Review Board through the expedited review 

process, IRB project number IRB-201510-106. Test subjects were informed of their 

rights and any dangers of the testing and gave their consent to be part of the study. Safety 
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precautions were taken as they were set out in the IRB documentation. These included: 

keeping a spare mask accessible to all study staff during suited testing in case the 

subject's helmet had to be removed; every individual to enter the bin had to be wearing 

appropriate personal protective equipment (PPE) including respirators; air being pumped 

to the suit was required to pass through an OSHA approved filter; verbal communication 

and line of sight observation with the subject was maintained at all times; and the 

compressor used to pressurize the suit was constantly monitored by study staff who were 

in the communications loop. 

 Two subjects participated in this study. Both were male and their respective 

anthropomorphic measurements can be found in Table 3, illustrations of these 

measurements from NASA-STD-3000 can be found in Appendix B. Both subjects had 

experience in NDX-1 operations prior to the start of the testing, as well as experience 

with other suits. One subject was left-handed and one subject was right-handed. 

Table 3. Subjects' Anthropomorphic Measurements. 

Anthropomorphic Measurements MSIS Number 

Subject 1 Subject 2 

Centimeters Centimeters 

Stature 805 180 177.0 

Wrist Height 973 85.0 91.0 

Elbow Height 309 113.0 115.0 

Popliteal Height 678 52.5 47.5 

Shoulder-elbow Height 751 39.0 36.0 

Buttock-knee Length 194 53.5 45.0 

Hand Length 420 19.0 19.0 

Hand Breadth 411 8.5 9.5 

Acromial (Shoulder) Height 23 145.0 149.5 

Trochanteric Height 894 97.5 96.0 

Tibiale Height 873 50.0 48.0 

Thumb-tip Reach 67 69.0 69.0 

Waist Height 949 113.0 107.0 
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Layout 

 The experiment set-up included three, 1 square meter sections cordoned off within 

the regolith bin using stakes and flagging tape. Two sides of the squares were left open to 

minimize the chance of subjects and tools becoming entangled in the boundary markings. 

All targets were spheres to ensure uniformity of target-tool interactions between runs and 

between subjects. The target sizes used depended on the tool being tested and were 

chosen to reflect the tools original intent and design capabilities. Spheres of identical size 

were painted the same color so target size could be determined in images and video, see 

Table 4, Table 5, and Figure 38 for target sizes. 

Table 4. Target sizes according to manufacturer. 

Color 
Diameter 

Color 
Diameter 

Inches Centimeters Inches Centimeters 

Purple 1.0 2.5 Black 3.0 7.6 

Yellow 1.5 3.8 Red 4.0 10.2 

Orange 2.0 5.1 Dark Blue 5.0 12.7 

Light Blue 2.5 6.4 Green 6.0 15.2 

 

Table 5. Target size; purple through black measured directly, red through green calculated. 

Color 
Diameter 

Color 
Diameter 

Inches Centimeters Inches Centimeters 

Purple 0.99 2.53 Black 3.01 7.64 

Yellow 1.49 3.78 Red 4.14 10.52 

Orange 1.98 5.02 Dark Blue 4.89 12.42 

Light Blue 2.48 6.29 Green 5.97 15.16 

 

 

Figure 38. Targets arranged by diameter. 
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 All set-ups are shown in Figure 39. The first test of the scoop focused on the 

retrieval of individual targets. Ten targets of 1, 1.5, and 2 inches in diameter were placed 

in every designated test area, for a total of thirty targets in an area. Twenty containers 

with a top diameter of 4.11 inches (10.44 cm) were placed along an outside edge of each 

target area. Within each container a labeled plastic zip top bag was placed to capture the 

excess regolith. The scoop regolith test used no targets, but had a plastic bin measuring 

10.5 x 13.5 inches ( 26.7 x 34.3 cm) at the top placed outside the demarcated test area. A 

labeled large plastic bag was placed within each bin to collect the regolith. A set of thirty 

 

Figure 39. Experimental set-ups, top-left rotating clock-wise; scoop target test, rake test, tongs test {Credit: 

NASA-JSC: Larry K. Dungan}, scoop regolith test. 

targets was also placed randomly within each of the 1 square meter areas for the rake test. 

A set contained six different target sizes with five sizes of each in any one test area: 1, 

1.5, 2, 2.5, 3, and 4 inches. The rake test also used the 10.5 x 13.5 inches (26.7 x 34.3 
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cm) plastic bins. The test of the tongs also had thirty targets in each test area: three of 1 

inch, two of 1.5 inches, two of 2 inches, two of 2.5 inches, five of 3 inches, five of 4 

inches, six of 5 inches, and five of 6 inches. Subjects were instructed to pick up an 

individual target and then place it in either a small container of 4.11 inches (10.44 cm) in 

diameter or a large container of 10.5 x 13.5 inches (26.7 x 34.3 cm) depending on their 

assessment of which container would be most appropriate for the target diameter.  

Procedure 

 The procedure was designed in such a way to help mitigate, or at least detect, the 

factors of learning and fatigue. First, both participants were given the same amount of 

training prior to their testing. During training, subjects were instructed on how to perform 

their assigned tasks including the methods in which the tools should be used and an 

explanation of the tasks they were to execute. Second, the tool testing order was identical 

for both subjects. This created an option for comparing subjects against each other across 

time, since subjects were anticipated to have similar amounts of fatigue and learning at 

corresponding times during the experiment. Finally, extended breaks were kept at the 

same time during the experiment. Variations in timing could be due to suit donning time, 

differences in set-up time, and breaks requested by the subjects. Tests were performed 

unsuited and then suited. 

 The scoop, Figure 40, had two functions tested. Both followed the handle 

modifications as outlined in the configuration listing in Table 2. Each of the listed 

configurations had three runs unsuited and three runs suited. The first scoop test dealt 

with the ability of the scoop to pick up individual targets by counting the number of 

targets collected in one minute and recording the number of collection attempts, drops,
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Figure 40. Scoop. 

and times the sample containers were missed. Subjects were instructed to pick up one 

target at a time with as little regolith as possible. Targets were retrieved with the scoop at 

a 45° degree angle and placed in containers. The excess regolith was captured in bags that 

were later weighed. The second scoop test was designed to determine how much regolith 

could be scooped in thirty seconds with the scoop at a 45° angle. Subjects were instructed 

to shovel regolith for thirty seconds and to retain all the regolith scooped without spilling 

material between the collection site and the container. The mass of collected regolith was 

later weighed.  

 The number of targets collected and dropped was employed as a measurement of 

usability that could easily be compared across configurations. Sample containers being 

missed was a measure of accuracy, e.g., whether the scoop allowed for enough control to 

place a target in a relatively small container, and precision, e.g., did the scoop perform 

this task with any predictability. The number of collection attempts and the amount of 

incidental regolith collected with the targets was used as a measure of accuracy; how 

much regolith did the subject need to gather with the target to retrieve it. A smaller 

amount of incidental regolith implied higher accuracy. Precision was measured by the 

consistency of the amount of regolith collected for all targets or for targets of a single 

diameter. Target color was recorded for each gathered target to determine whether target 

size contributed to the differences in any of these measures. The simulant gathered during 
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the regolith scoop test was used as a measure of performance, the instruction to the 

subjects to be as accurate as possible when placing the accrued material in the collection 

bin. 

 The test objective for the rake, Figure 41, was to measure its ability to collect 

samples. The configurations were tested as outlined in Table 2 with each configuration 

tested three times unsuited and then three times suited. The rake was tested at a 45° angle. 

Subjects were instructed to collect targets within the designated areas and to shake out all 

the excess regolith. The subjects were not 

instructed on how to shake out the excess 

regolith and ended up using two main methods 

to accomplish this: shaking the rake in an up and 

down motion or twisting the rake about an axis 

through the shaft. The targets were then placed 

within the nearby container. The number of 

targets collected over the thirty second time period was recorded, as well as the number 

of passes, the number of targets that were dropped (this includes targets that missed the 

container), and the sizes of all targets collected and dropped.  

 The number of targets collected was used as a measure of performance for the 

rake to compare between configurations. The number of passes was also counted as a 

performance measure for the rake and to complement the data collected on the number of 

targets gathered. These data allowed for clarification on why the number of targets may 

have varied other than due to handle modifications, e.g., length of the passes. The count 

of targets dropped measured the accuracy of the rake to place samples in a container and 

Figure 41. Rake Head. 
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whether this characteristic was consistent measuring precision. Target sizes were 

recorded for the eventuality that they influenced any collected data. 

 The functionality of the tongs, Figure 42, was tested by collecting individual 

targets. The handle modification was performed as outlined in Table 2 with each 

configuration being tested three times unsuited and then suited. Targets were collected 

 

Figure 42. Tongs provided by JSC and used for testing {Credit: NASA-JSC: Anthony D. Hood}. 

and then placed in a nearby container. Subjects were instructed to allow the tongs to close 

entirely around each target. The total number of targets collected in 30 seconds along 

with the size, collection attempts, drops, and container misses of each target were 

recorded.  

 The number of targets collected and the number of drops for any particular target 

was a measure of performance for the tongs. Accuracy was measured by the number of 

collection attempts needed to retrieve a particular target and the ability of the tongs to 

place a target in a collection container, measured by the number of missed containers. 

These two measures also allowed for a measure of precision by looking at the consistency 

of the tong's performance. The size of each target was recorded so diameter could be 

looked at as a contributing factor to the different measures. 

Data Capture 

 Most data were gathered manually in real time on data collection sheets 

(Appendix C) that included all the counts, i.e., targets collected, targets dropped, targets 

missed, collection attempts. After a section of testing was finished, such as Subject 1 
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unsuited, the regolith from the scoop target test was weighed in grams on a digital lab 

scale, Figure 43, and regolith from the scoop regolith test was weighed in kilograms on a 

larger digital lab scale provided by Swamp Works, Figure 44. These numbers were also 

recorded manually on data collection sheets. Portions of the test were video recorded 

 

Figure 43. Set-up for small lab scale measurements. 

 

 

Figure 44. Large lab scale and speakers.

using two stationary Gopro cameras and, during suited portions of the test, another Gopro 

camera mounted on the helmet of the NDX-1. Portions of the audio loop were recorded 

via a wireless transmitter that sent the signal to a receiver attached to speakers, Figure 44, 

outside the regolith bin and then to a digital recorder. During testing subjects were free to 

remark on the tool functioning and were sometimes asked to respond to questions from 

the study coordinator. After the testing was finished, subjects were given a brief 

questionnaire asking them to compare and contrast the use of the tools in their different 

configurations. 
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Statistical Method 

 The gathered data were later entered into Minitab 17 by hand. The data were 

examined both by individual subject data and combined subject data. Comparisons were 

made within these data sets between tool configurations to determine if changes in 

performance occurred. The time permitted for the study was believed to be generous, but 

only allowed for two subjects and three runs of any one configuration during a test. This 

meant that overarching conclusions were unlikely to be made and general trends would 

be more the scope of this study. Means were used to compare data and significant 

differences were used to help determine if the variation in the data could have real world 

relevance. Difference was considered significant if p < 0.05. These calculations were 

done using a 1- sample t test, a 2-sample t test, or a one-way ANOVA test. 
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CHAPTER VI 

RESULTS 

General Test Observations 

 Data collected during this study allowed for the analysis of general trends. More 

definitive conclusions will require a greater pool of subjects and likely more runs, which 

scheduling did not allow during this test. The two subjects' data sets were combined for 

comparisons of the modified configurations to the baseline tools. However, direct 

comparisons were not made across subjects due to differences in suited experience and 

their approaches to the task.  

 The unsuited tests of both subjects were used as a trial run to both familiarize the 

subjects with the procedure, surroundings, tools, expectations, etc. and for the study staff 

to practice data collection, procedure, and to observe subjects, i.e., difficulties being had, 

necessary reminders during testing. Thus the unsuited data for this test are only touched 

on to demonstrate any possible learning that occurred with the tools and tests for each 

subject. The suited data are also the focus because the modifications being tested are for 

EVA tools, the concern is how they operate with suited personnel, not during shirtsleeve 

operations. 

  There were some observed differences between the subjects personal approaches 

to the testing made by the test coordinator. Subject 1 appeared more aware of being 

observed than of the time allowed and therefore seemed more focused on accuracy than 

speed. Subject 2 came across as being conscious of the passing time and worked more 
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quickly to accomplish as much in the time allowed as possible. Whether due to these 

innate differences or other external factors, there were instances when the statistical 

analysis presented significant differences that only showed in one subject's data, but not 

in the combined. The significant differences found in the combined subjects' data are 

indicated in a table for each test and are the only significant differences discussed in this 

paper.

Scoop Target Test 

 This test collected data on number of targets retrieved, incidental regolith 

collected, number of retrieval attempts, number of targets dropped, and number of times 

targets missed their intended container. If targets missed the collection container, subjects 

were instructed not to attempt retrieval, but to continue to place the simulant in the 

container so the amount of simulant for a target size could be compared without the 

contamination of the extra regolith or loss of regolith.  

 Total targets collected for each replicate of all configurations can be seen in 

Figure 45. The unsuited testing for both Subject 1 and Subject 2, top two frames in the 

figure, suggests possible learning from Configuration 1a to Configuration 1b, the baseline 

configuration. The lower half of Figure 45 displays the suited data for both subjects. 

Subject 1and Subject 2 appear to remain more consistent within the baseline, 

Configurations 1a and 1b, suggesting less learning occurred during the suited versus the 

unsuited portion of the test. There appears to be little variation between modifications as 

well. During the suited testing the subjects stated that the unmodified handles felt a little 

too small when used with the gloves. When suited both subjects' perception was that the 

handle modifications affected the performance of the tools. Subject 1 thought the 
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increased diameter of the t-handle was more important than that of the shaft, but noted 

that having both was the preferred configuration. Subject 2 mentioned that the 

modifications made the repetitiveness of the tasks more effortless. When comparing the

 

Figure 45. Chart of total targets collected vs. configuration sorted by subject and unsuited/suited. 

modifications of the scoop to the baseline, i.e., Configurations 1a and 1b, there were no 

significant differences found in any of the subjects' suited data: total targets collected, 

collection attempts, targets dropped, overall incident regolith, or missed containers, Table 

6. However, both subjects reported a perceived increase in tool performance when the 

modifications were used.  

 When the incidental regolith was analyzed, the data included all three possible 

target sizes indicated by their color. In order to take a closer look at incidental regolith, 

the targets collected during suited operations were separated by size and the 

modifications were again compared against the baseline scoop, Configurations 1a and 1b. 
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Table 6. Scoop target test data. 

  
Targets 

Collected 

Collection 

Attempts 
Targets Dropped 

Missed 

Container 

Combined  

Baseline to: 
Combined Subject Data 

Config. 2 
Not 

Significant 

Not 

Significant 

Significant at p < 0.10 
Not 

Significant 
Config. 3 

Not Significant 
Config. 4 

     

  

  

Incidental Regolith 

w/all 

Targets 

w/1.0 inch 

Targets 

w/1.5 inch 

Targets 
w/2.0 inch Targets 

Combined  

Baseline to: 
Combined Subject Data 

Config. 2 
Not 

Significant 

Not 

Significant 

Not 

Significant 

Significant at p < 0.05 

Config. 3 
Not Significant 

Config. 4 

    

 

Incidental Regolith Compared by Target Size (1.0, 1.5, and 

2.0 inches) 

Combined Subject Data 

Config. 1a/b Significant at p < 0.05 

Config. 2 

Not Significant Config. 3 

Config. 4 

  Significant difference (p < 0.05) between the baseline configuration and 

Configuration 2, t-handle modified, was found for incidental regolith when 2.0 inch 

(orange) targets were collected in both the combined subject's data (Figure 46). A 

decrease in incidental regolith accompanying 2.0 inch targets is found for Configuration 

2. While the reality of this improvement is bolstered by being found in the combined data 

set, its practicality for target collection is still uncertain. Configuration 2 may increase 

accuracy for one target size, but shows no improvement in the other two sizes tested. 

Therefore the relevance of this test result may depend on the operational decision of 

when to use the scoop during sample collection. 
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Figure 46. 2-Sample t test of incidental regolith collected with orange targets, baseline to Configuration 2, both 

subjects suited. 

 Since this difference was only significant for one of the target sizes in the above 

comparison it does raise the question whether specific target size matters when 

researching handle modifications to a tool. Data analysis was done for this and is partially 

represented in the bottom chart of Table 6. Since it is not pertinent to the question of 

handle modifications improving EVA geology tool performance it is not covered here. 

However, this may be relevant to future testing so it is briefly discussed in Appendix D.  

Scoop Regolith Test 

 Data gathered during this test included the number of scoops during the allotted 

thirty seconds and the amount of regolith collected. Average regolith per scoop was then 

calculated to help mitigate any differences in a single run caused by such variations as 

terrain or local regolith simulant density. This was also done to help lessen differences 
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between the innate working styles between Subject 1 and Subject 2, such as smaller, 

faster scoops compared with larger, slower scoops.  

 It should be noted that the first replicate for Subject 1 unsuited allowed more time 

for the task than the rest, one minute instead of one half minute. Due to the increased 

time, this data point was not used for the analysis for the number of scoops per replicate 

or total regolith collected. It was left in with the amount of regolith per scoop data since 

this was a calculated average and consistent with Subject 1's data. 

 Figure 47 shows the amount of total regolith collected by each subject per 

replicate for a configuration. Subject 1 unsuited, top-left of the figure, has a noticeable 

difference between the two baseline configurations, 1a and 1b. This would suggest 

learning occurred during his unsuited runs. Comparing this to Subject 2's unsuited run, 

there is little change from Configuration 1a to 1b for Subject 2.

 
Figure 47. Chart of regolith collected vs. configuration sorted by subject and unsuited/suited. 
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 Examining the suited portion of the data for Subject 1, bottom-left of the figure, 

the learning shown from Configuration 1a to 1b appears less pronounced than when 

unsuited and the data points are also still well grouped. Here there would appear to be 

some improvement with the modifications, in particular Configuration 4, both handles 

modified. Subject 2 suited, bottom-right, shows a larger spread between most replicates 

of the configurations and a fairly consistent average performance independent of the 

scoop's configuration. During the suited testing the subjects stated that the original 

handles felt a little too small when used with the gloves. Subject 1 wrote in the 

questionnaire that, while suited, "The thin handle made pushing it [the scoop] into the 

regolith difficult at times," and thought the increased diameter of the t-handle was more 

important than that of the shaft, but noted that having both was the preferred 

configuration.  

 In order to better understand the performance of the scoop and the subjects, the 

average regolith per scoop was calculated for each replicate. This calculated quantity can 

be seen in Figure 48 for both subjects, unsuited and suited. Subject 1 unsuited, top-left of 

figure, shows an increase across the configurations, suggesting learning may have 

occurred. Subject 2, unsuited appears to show no learning from the first base 

configuration test to the second. Suited data for Subject 1, bottom-left, suggests 

improvement with the modifications in comparison to combined baseline configurations. 

When comparing the modifications, Configuration 3 shows the lowest performance and 

Configuration 4 the highest. The suited data for Subject 2, bottom-right, seem relatively 

consistent, with a possible decrease in performance for Configuration 4. 
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Figure 48. Chart of regolith/scoop vs. configuration sorted by subject and unsuited/suited. 

 When performing the analysis on the suited data for number of scoops taken, 

amount of regolith collected, and average regolith per scoop, pairwise comparisons were 

made between the modified configurations and the combined baseline data, 

Configurations 1a and 1b. One relationship was found to be significant, p < 0.05, for 

Subject 1, but this did not carry over into the combined subject data, Table 7, and so is 

not discussed here. 

Table 7. Scoop regolith test data. 

  

Total Scoops 

Taken: 

Total Regolith 

(kg) Collected: 

Average Regolith 

(kg) /Scoop: 

Combined  

Baseline to: 
Combined Subject Data 

Config. 2 

Not Significant Not Significant Not Significant Config. 3 

Config. 4 
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Rake Test 

 The rake test collected data on the total number of targets collected, total passes 

for each subject, i.e., from the time the rake was placed on the regolith to the point it was 

lifted above the simulant's surface, and the number of targets dropped, i.e., targets that 

were picked up by the rake but did not make it into the container. The targets were not 

purposefully arranged in any particular pattern and were believed to be randomly 

distributed in the test area. For both subjects the rake was the most difficult of the three 

tools to work with. It was considered awkward due to its weight, size, and balance traits, 

which were most noticeable when shaking the excess regolith out of the basket. 

 One final general note about the rake test, the 4.0 inch diameter (red) targets had a 

tendency to become trapped in the basket area of the rake. This did occasionally slow the 

subjects down, though Subject 1 became very proficient at removing the red targets 

without disrupting his collection. These difficulties were logged during data collection. 

While this could result in test disruptions, it is conceivable that a sample may become 

lodged in the rake during mission operations and helps to illustrate possible beneficial 

changes to the design of the rake.  

  The performance of the rake in Figure 49 is illustrated by the total number of 

targets both subjects collected during each replicate for all configurations. The top-left 

graph of Figure 49 is Subject 1's unsuited runs and does not suggest the presence of 

learning, but possibly of fatigue. The top-right graph displays Subject 2's unsuited runs 

which do not demonstrate distinctive learning or fatigue.  

 Suited data are displayed at the bottom of Figure 49. Subject 1's performance, as 

seen in the bottom-left quadrant, would appear to have been negatively affected by
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Figure 49. Chart of total targets collected vs. configuration sorted by subject and unsuited/suited. 

Configuration 3, shaft modified. However, Subject 2's performance on the bottom-right 

of the figure may be showing some minor increase in performance for Configuration 3. 

The other configurations for both subjects appear more in line with the base 

configuration. For this suited testing both subjects discussed ways in which the handle 

modifications helped. Subject 1 said, "Control and ease of turning it [the rake] upside 

down [to deposit targets into the bin] was greatly improved." Subject 2 shared that "...due 

to the increased diameter, the fingers were able to grab it [the rake] better, reducing the 

fatigue in the palm." 

 The targets dropped, Figure 50, during the testing were used to measure error in 

accuracy for the rake. Most targets were dropped when attempting to place them in the 

collection container. Subject 1 and Subject 2's unsuited data, top of Figure 50, look to 

remain fairly constant across the baseline, Configurations 1a and 1b, and modified 
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configurations. Both suited subjects, lower half of Figure 50, show a possible decrease in 

error for Configuration 2, t-handle modified. Subject 1 shows a possible decrease in error 

from the baseline to Configuration 4, both handles modified. 

  
Figure 50. Chart of total targets dropped vs. configuration sorted by subject and unsuited/suited. 

 When the data of total targets collected by both subjects were analyzed using 

pairwise comparison looking at the relationships between the baseline and each 

configuration only one relationship was found to be significant (p < 0.05) in Subject 1's 

data. The modified configurations were then compared pairwise with the baseline data set 

composed of both Configurations 1a and 1b for targets dropped. When these comparisons 

were completed one significant difference was found in each of the three data sets: 

Subject 1, Subject 2, and both subjects combined, Table 8. Only the difference found to 

be significant in the combined data is discussed here. 
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Table 8. Rake test data. 

  
Total Targets 

Collected: 
Targets Dropped 

Combined  

Baseline to: 
Combined Subject Data 

Config. 2 

Not Significant 

Significant at p < 0.05 

Config. 3 
Not Significant 

Config. 4 

 When the subjects' suited data were combined, Figure 51, and compared against 

the baseline, the comparison to Configuration 2, t-handle modified, was found to be 

significant. The addition of the t-handle modification was found to significantly decrease 

the number of targets dropped, thus decreasing error.

  
Figure 51. 2-Sample t test of targets dropped, Configuration 3 to Configuration 2, both subjects suited. 

Tongs Test 

 During the testing of the tongs, the total targets collected, number of collection of 

attempts, number of drops, and how often containers were missed were recorded. 

Collection attempts were counted as the number of times a subject attempted to initially 
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retrieve a target from the regolith surface. Number of drops was recorded as the number 

of times a target was released by the tongs after a successful initial retrieval and before 

attempting placement in the sample container. A missed container was a record of the 

subject intentionally releasing the target to place it in the container, but landing outside 

the container. This was counted separately from the previously mentioned target drops. 

  The design of the tongs allowed them to be used with a wide range of target 

diameters, which this test tried to capture. It is possible fewer or different sizes could 

have affected the outcome of the test. The smallest target (1.0 inch, purple) may have 

been able to be decreased in size and still have been retrievable. The largest target used 

(6.0 inches, green) was governed by the tongs maximum tine opening of 6.5 inches. 

Different sizes, larger or smaller, may also affect the subjects' fatigue, as well as the 

tong's performance. 

 Figure 52 shows the total number of targets collected by each subject unsuited 

Figure 52. Chart of total targets collected vs. configuration sorted by subject and unsuited/suited. 
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and suited separated by configuration. Learning does not appear to be present for either 

unsuited subject. The suited testing by both subjects of the tongs is displayed in the 

bottom two graphs of Figure 52. Neither subject shows much change from one 

configuration to the next. 

 Figures 53, 54, and 55 report on the data used to evaluate error in the tongs. For 

these figures it should be noted that the baseline, Configurations 1a/b combined, have 

approximately twice as many data points as the modified tongs. Subject 1 and Subject 2 

would then appear to increase their errors slightly in collection attempts from the baseline 

modified tool while decreasing error in both dropped targets and missed containers. 

 
Figure 53. Chart of collection attempts by subject and configuration. 

 
Figure 54. Chart of dropped targets by subject and configuration. 
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Figure 55. Chart of missed containers by subject and configuration. 

 When pairwise comparisons were performed with the combined baseline data, 

Configuration 1a and 1b, and the modified configuration, no significant differences, p < 

0.05, were found. This included all data for total targets collected, number of collection 

attempts per target, times a target was dropped, and the times sample containers were 

missed. The data for Subjects 1 and 2 for all variables were also combined to increase the 

number of data points, but there were no significant differences, Table 9. 

Table 9. Tongs test data. 

  
Total Targets 

Collected: 

Collection 

Attempts 

Targets 

Dropped 

Missed 

Container 

Combined  

Baseline to: 
Combined Subject Data 

Config. 2 Not Significant Not Significant Not Significant Not Significant 

 While statistically there were no significant changes, the subjects did express that 

they detected at least some increase in usability from the unmodified to the modified 

tongs in their questionnaires. Subject 1 wrote of the modification of the tongs, "While 

suited, I felt more accurate with the top handle on. I [had] less control when the top 

handle was removed." Subject 2 noted hand fatigue with the original tongs both unsuited 

and suited in the palm and fingers with the repetition of the task, however this fatigue 

was "nothing out of the ordinary" for such a task and unsuited the modification was 
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hardly noticeable. However, during the suited testing Subject 2 appears to have noticed a 

greater change in performance from the original to the modified tool, "...the larger 

diameter handles made it easier to manipulate and to actuate the closing portion. It was 

more comfortable after repetitive tasks." 
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CHAPTER VII 

DISCUSSION AND CONCLUSIONS 

 This study examined the use of three Apollo era geology tools and the changes in 

their performance brought about by modifications to the original handle design while 

wearing a pressurized suit. The time allotted for the study allowed for the participation of 

two subjects. While performing this study in the regolith bin did limit the number of 

subjects, it increased the test environment validity and allowed for more realistic tool-

environment interactions. While working with the simulant during the regolith collection 

test, Subject 1 commented on the sensation of a vacuum-like effect experienced with the 

scoop, displaying the subject's awareness of his surroundings and its attributes. 

 When the data were analyzed for each tool tested, there were no handle 

modifications that were found to make a significant difference in a tool's performance 

from that of the baseline configuration in both Subject 1 and Subject 2's individual data. 

Significant differences found in an individual subject's data did not always carry through 

to the combined data and so were not discussed. When significant differences were found 

between a modification and the baseline configuration in the combined subjects' data they 

were supported in some instances by a single subject's data, but not always.  

 The limited number of subjects, the difference in their pressurized, suited 

experience, and their apparent different methods when approaching the assigned tasks 

likely affected the results. These effects and the lack of significant differences found 
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 across the two subjects during the testing of a tool's configurations impacts the 

conclusions that can be drawn from these data.

 The scoop was tested performing two separate tasks: target collection and regolith 

collection. The data for the target collection showed no significant differences (p < 0.05), 

between the baseline scoop and any of the modified scoop configurations when total 

targets collected, collection attempts, targets dropped, missed containers, or incidental 

regolith were compared. A significant difference was only found when incidental regolith 

data was organized by target size. With this classification, the combined subject data 

showed that Configuration 2, t-handle modified, improved the scoop's accuracy for the 

largest target available, 2.0 inch diameter, over the base configuration. This significant 

difference discussed was also found in Subject 2's individual data set. 

  If this difference were found to be indicative of trends for the larger population 

the importance of modifying the scoop's handles could depend on the intended use of the 

scoop or the scientific needs for sample collections. The t-handle modification, 

Configuration 2, may prove useful to increase accuracy for larger targets while not 

significantly affecting the collection of smaller targets. However, if smaller targets are 

intended to be collected with the scoop and larger targets recovered by another method, 

i.e., tongs or gloved hands, increasing accuracy for smaller targets while perhaps 

sacrificing accuracy for larger targets may be reasonable, but this modification would not 

meet this need.  

 When the scoop was tested for regolith collection it was again found to have very 

few significant differences (p < 0.05) between the original configuration and the modified 

configurations. In this area of testing, only Subject 1 showed any significant difference in 
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performance and this did not carry through to the combined data. Since most differences 

for either scoop test were not significant between the base configuration and the modified 

configurations for the subjects, either separately or together, it is likely that these handle 

modifications did not change performance in a meaningful way.  

 The rake was tested collecting targets and showed only one significant difference 

(p < 0.05) in the number of targets collected and three significant differences in the 

number of targets dropped between base configuration and the modified configurations. 

Only one of these significant differences was found in the combined subjects' data. The 

errors for the rake, as measured by the number of targets dropped, were significantly 

decreased in the combined data with the t-handle modification, Configuration 2. This 

performance improvement was also seen in Subject 2's individual data, but was not found 

for Subject 1. 

 Configuration 2's significant decrease in error and no significant difference in 

target collection compared to the baseline, would indicate that errors declined while 

target collection remained unaffected. If these two circumstances were duplicated in a 

study using a larger sample size, there would be evidence that modifying both handles 

may help decrease error while not decreasing overall performance. Yet, as with the scoop 

handles in general, modifications would not seem to make consistent, measurable 

changes to the performance of the rake.  

 The tongs, unlike the scoop and rake, only had one handle modification tested. 

There were no significant differences, p < 0.05, found in any of the data collected during 

this test: total targets collected, number of collection attempts, number of targets dropped, 

and number of missed containers.  
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 Overall, there are little objective data that support a change in performance for 

any of the modifications to the three tested tools. This could be because the modifications 

tested were not effective enough to make a measurable difference in performance, the 

data collected did not sufficiently measure the parameters of interest, or changing the 

handle diameter does not affect the suited use of the tools. There are some data that point 

to either detrimental or beneficial changes due to different configurations, but in order to 

answer these questions with greater clarity and reliability a larger sample size will be 

required.  

 The objective data may show little support for the study of such changes, but the 

subjective data submitted by both subjects favored the modifications over the original 

tools' configurations. This was especially true of the scoop and the rake. Less 

improvement was noted for the tongs, but the consensus of the two subjects still favored 

the modified over the original. This difference in perceived versus actual performance 

cannot be readily explained within the scope of this experiment, but may suggest 

additional study could be warranted. 
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CHAPTER VIII 

FUTURE RESEARCH DIRECTIONS 

 This research highlighted several important factors for testing future EVA tools. 

These observations pertain to various portions of the study: experiment design, 

procedure, tool modifications, and location. 

Testing 

 It was anticipated that two subjects would not provide enough data points to fully 

understand the implications of the tool modifications for generalization with respect to 

usability, so increased subject numbers would be beneficial in the future. What was 

unexpected was how different the two subjects performances were when compared with 

each other. For subject selection, the most concern was placed on finding subjects that 

would be able to comfortably operate in the suit, preferably with some experience 

working within pressurized suits. No personality comparison or personality trait 

inventory was performed. While anthropomorphic differences between subjects may 

explain some performance variation, they cannot account for all.  

 Having a wide pool of astronaut-like candidates in both physical and mental 

characteristics certainly has its advantages, but for the sake of experimental purposes, it 

may be worth sorting through the personalities of test subjects and choosing those with 

similar relevant character traits to be used as a control during the experiment. This 

screening may benefit from being taken further and selecting subjects for specific 

personality traits or using select-out methods to avoid other traits. The importance of such
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 traits in part depends on how large of a study is being conducted, with those performed 

with larger subject pools being less affected. The relevant positive or negative traits may 

vary depending on the experimental set-up or hypothesis. For example, the way subjects 

are timed could make their degree of competitiveness relevant or whether they value 

quality or quantity in task performance. Another potentially important personality trait in 

such a test is how the subject will deal with irritations that arise during the testing. For 

example, during this experiment the 4.0 inch (red targets) had a tendency to stick in the 

rake due to their size and the subjects had different reactions to this occurrence. 

 This test was conducted with three runs of each tool configuration. It is 

recommended that this be increased in any similar future testing. Disregarding former 

adaptations for a tool, as well as the adjustments to a new handle configuration, may 

affect the data collected for a tool near the beginning of its runs. Several tool 

configurations had data with a wide distribution between points making any outliers 

difficult to determine because of the low number of data points, three runs. However, the 

possibility of fatigue is very real, as is the need to try and control fatigue over the length 

of a testing period. Therefore adding too many runs may be as detrimental as having too 

few. 

 Targets during this test were all spherical in shape so the tool-target interface 

would be as similar as possible for each interaction. Using different shapes, including 

natural target shapes and sizes could provide additional insight into the tools' functioning 

that was not visible in the more controlled testing of this experiment. 

 The data collection process was satisfactory, though a new system for the scoop 

target collection test needs to be developed. The small bags in the cups required too much 
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attention and the process of placing the bags inside the cups and removing them was time 

consuming. These delays caused more down time during the testing than was ideal for 

scheduling, though it permitted the subjects to have a rest period before a new 

configuration of the scoop which allowed for less compounded fatigue between 

configurations. Ideally, the regolith and target would be scooped into a cup or box with 

its own dedicated balance to measure the mass of the regolith, which would allow the 

regolith data to be recorded and dumped immediately after the trial. Several of the cups 

or boxes could be placed near the test site.  

 Beyond the data collected in this test, motion capture could be a useful tool as 

well as more thorough collection of subjective data. Motion capture would allow for a 

comparison of the motions of subjects to pinpoint more specifically and accurately their 

differences in functioning with the tools. It could also be used to track the tools 

themselves, allowing for collection of data on deformation in tool structure, causes of 

mishaps such as dropped targets during testing, and changes in tool-target interactions 

based on target size or shape. Also subjective data was not a focus of this study, but 

showed that there was a perceived difference in tool performance, if not necessarily a 

measurable one. Collecting subjective data using an established metric for comparison of 

the modified to baseline tools may help pinpoint where the differences in data types are 

to be found and how real they are. 

 Manipulating the environment to help tease out performance differences in handle 

diameters could prove beneficial. If a vacuum environment, i.e., a glove box, could be 

used for additional testing, measures such as grip strength and endurance could be 

recorded for different handle diameters while working against a fully pressurized glove.  
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Tool Modifications 

 In this study the tool handles were only tested at two different diameters: the 

original diameter and the single modified diameter. Only testing two sizes opens the 

study up for uncertainty since it is unknown if a special case exists. Either could be at a 

maximum or minimum for performance quality or could be on the line between 

improvement and decline or decline and improvement. This brings about the idea of 

testing a range of handle sizes, starting at the initial handle diameter and increasing 

through diameters that are large enough to show detriment in performance. This process 

could allow a more systematic charting of the effects of various handle diameters and 

possibly distinguish trends that could determine where the maximum usability of the tool 

with respect to handle diameter is located.  

 The handle modifications were not permanent during this study. They worked 

well and caused little difficulty, the only exception being some sliding of the shaft cover 

on the rake when turned to place the targets in the bin. This was mainly seen during 

Subject 2's testing, but was not commented on by either subject. However, creating tools, 

or at least fully modified handles, could be important for future studies. Manufacturing 

the handles as they would be for flight will allow for the mass variation and change in 

balance to be taken into account when discussing the tools' usability. 

 While this study focused on the changes to the handle diameters, other 

observations of the functioning of the tools were also made during the course of testing. 

Observations of the subjects performing the tests suggested that the length of the tools 

may be another aspect to focus on. In particular while using the scoop the subjects 

remained in a knees and back bent posture for the majority of the testing. The tongs also 
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required regular bending over during use. Subject 1 noted that using the rake to reach the 

target bin required more bending at the knees for the suited portion of the test, compared 

with the unsuited portion. The different angles the tool heads are designed to be used at 

could also be an avenue worth exploring either by itself or in conjunction with other 

modifications. 

 Subjects also noted other issues that arose with tool function. Both subjects 

commented on the interference of the palm bars with the use of the tools, although as 

they became accustomed to this interaction it became less noticeable. This interaction 

between the tools and palm bars will be dependent on the suit being used for the 

operations. Subject 2 noted that the enclosed portion of the scoop was a problem while 

retrieving targets of a larger diameter.  

 The most discussed tool was the rake. Between the three tested tools it was the 

most awkward and tiring to use and Subject 2 stated, "It clearly is the tool that needs [the 

most] redesign of all the tested ones." From the subject reports and the observations of 

the test there are some design changes that can be recommended for the rake other than 

what has been previously stated. Reducing the weight to lessen fatigue and redistribute 

the center of gravity could be an important adjustment depending on what planetary body 

the tool is being redesigned for use on. If these changes entail reducing the tool head, 

considering what this would do to the comparison of productivity to performance would 

be an important relationship to examine. Further, redesigning the rake basket so that any 

sample that can enter the front of the basket will be less likely to become lodged at the 

rear could help eliminate some of the irritation and extra fatigue experienced during 

sampling. It may also be important to determine whether the benefits of adding a way to 
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release targets from the back of the rake basket, instead of having to turn it, would be 

worth complicating the design, and therefore introducing a greater possibility of 

mechanical failures. Finally the tines that stick out from the basket may need to be 

redesigned. The rake is typically pulled toward its user and the tines are pieces of metal 

protruding from the rake, possibly producing a concern for a suit puncture or other 

equipment damage. At a minimum this design feature may need to be reconsidered to 

ensure compliance with NASA standards. They also have a tendency to bend, which 

could cause sample collection and release problems. 

Regolith Bin Testing 

 This research was the first suited test to be performed in the regolith bin at KSC 

and, as such, unanticipated issues appeared during testing. Adjustments were made but 

some possible solutions could not be tested. Arguably the most important part of the 

suited test was providing the air to pressurize the suit. This was provided by an air 

compressor and filter placed adjacent to the regolith bin on the side of the bin with the air 

lock. There are not any fixtures to allow for the passing of the air or the air umbilical into 

the bin. However, there was a section of the bin wall that had been replaced with material 

held in place by Velcro. By opening a small portion of the Velcro the air umbilical could 

be passed through to the regolith bin, see Figure 56. The air umbilical was then 

suspended from a rope and pulley system above the regolith bin, see Figure 57. This 

permitted the subjects free movement since they were not required to drag the umbilical 

along with them. It also reduced the dust kicked up in the regolith bin, helped preserve 

the designated test areas, and helped keep both subjects and study staff from becoming 

entangled in the umbilical. If a regolith bin were to be dedicated to human testing, or
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Figure 56. Air umbilical being fed into the regolith bin. 

geared more toward human testing, it could be beneficial to have fittings placed at 

strategic points along the perimeter to allow for easy access to a sufficient, stable supply 

of air and perhaps a secondary, reserve supply. Another option would be to connect the 

umbilical outside the regolith bin and then suspend it so it would come over the top of the 

bin and did not interact with the regolith at all.  

 
Figure 57. Air umbilical being suspended from pulley system and tied off.
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 The other issue that arose from the umbilical arrangement was the necessity to 

first connect the subject to the umbilical outside the bin before they could go through the 

airlock and into the bin. This meant feeding the subject end of the umbilical out through 

the airlock doors, which resulted in an inability to completely close the doors during this 

procedure, and having to attach the umbilical in the suit donning area. This required extra 

hose length and meant the umbilical had to be carefully monitored while the subject 

entered the bin to ensure neither the subject nor the study staff became entangled with it. 

Once the subject was inside the regolith bin proper the umbilical was then attached to the 

pulley system and raised. There was also the concern that the quick disconnect on the 

umbilical would become contaminated with regolith after it was disconnected from the 

suit and taken back into the regolith bin or airlock so the airlock doors could be closed. 

To prevent any issues from this, the hose end was always wiped down and covered in 

plastic that was taped in place after it was disconnected from the suit.  

 Providing solutions for continuous airflow to a suited subject from outside to 

inside the regolith bin while maintaining a good setup for both safety and convenience is 

complex. This is made more complicated if it is a procedural requirement to pump air 

external to the regolith bin to the suited subject, as it was for this study. One possibility 

would be a portable system that could be carried by the suited subject into the airlock 

where they would be connected to the integrated system. If a portable system is not ideal 

a separate connection outside in the donning area could be used into the airlock and then 

replaced, but this may only be practical for suits with two connections for the air 

umbilical; such as the NDX-1 that has a connection on the hard upper torso and one in 

the helmet. If the umbilical itself were to be connected outside the regolith bin and was to 
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be suspended over the top, as mentioned previously, the regolith bin could be designed to 

allow for the passage of the umbilical through designated points in the structure. 

 During the test a wired communication system was used to ensure constant, 

reliable contact between the suited subject, study coordinator, and the safety officer. 

These three people were constantly connected. The study coordinator, within the bin, 

carried the communications box and the other two people were attached to the 

coordinator through that box. The communications cable to the safety officer manning 

the compressor was fed through to the outside of the bin in the same manner as the air 

umbilical. This meant the coordinator could only move as far away from either person as 

the cable length would allow. This was not an issue between the coordinator and the 

subject, but was an issue once the safety officer was connected. Once that connection was 

made, the coordinator could not quite reach the far corner of the regolith bin, although 

this was not a problem for the subject who had free movement about the entire surface of 

the regolith bin. These cables were also not suspended and had a propensity to tangle 

with themselves, the other communications cables, or the air umbilical.  

 A wired communications set up in the bin with strategic connections placed 

around the inside perimeter or suspended above the bin, as mentioned for the air 

umbilical, could be ways to help alleviate this problem. Another option would be a built 

in wireless system that would allow multiple people to monitor and participate in 

communications with the additional possibility of recording the conversation. In this 

study, a wireless transmitter was connected to the communications box to allow for the 

conversation to be monitored by people not directly wired into the system, in part for 

safety concerns, and for the communications to be recorded. A built in communications 
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system that would work well with different types of suits being tested, as well as with the 

respiratory protection required while in the regolith bin, would help simplify operations. 

 A camera system could also be hardwired into the building. For this test, Gopro 

cameras were used to record video, but battery and storage limitations meant that the 

entire test could not be recorded without extending the test time to allow for data dumps 

and battery recharging or changing. With a built-in system, cameras could run off the 

power supply of the building and be connected to a hard drive for video data storage. 

Ideally these cameras would allow for monitoring and adjustment in real time to permit 

the best video quality. This would also help reduce set-up and tear-down time for the test 

as well as the time spent in between tests performing data dumps and other camera 

maintenance. 

 An idea that worked well was using the small air compressor hose available in the 

regolith bin to remove regolith from the suit after the test and before the subjects left the 

airlock. One suggestion would be to make a similar hose available in the airlock so it is 

more accessible to the study staff at the end of the test. The hose would be less likely to 

become tangled or trip up staff within the regolith bin. For this test, a box was placed in 

the regolith bin so that the suited subjects could sit during their rest periods or whenever 

they deemed it necessary. It was placed in different positions in the bin, but always so 

that the subject would be able to lean back against a steady surface. It is conceivable that 

a more stable place for a suited subject to sit within the regolith bin could be convenient 

during some testing, but does not appear to be a vital design consideration since, as was 

done for this test, something can always be taken in to be used as a chair.
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APPENDIX A 

Acronyms Used 

 

Acronyms: 

ALSRC - Apollo Lunar Sample Return Container 

BP-1 - Black Point 1 Lunar Regolith Simulant 

EMU - Extravehicular Mobility Unit 

EVA - Extravehicular Activity 

GDRD - Generic Design Requirements Document 

HIDH - Human Integration Design Handbook 

HIDP - Human Integration Design Process 

ISS - International Space Station 

JSC - Johnson Space Center 

KSC - Kennedy Space Center 

LCG - Liquid Cooling Garment 

LRL - Lunar Receiving Laboratory 

LRV - Lunar Roving Vehicle 

MDRS - Mars Desert Research Station 

MSIS - Man-Systems Integration Standard  

NDX-1 - North Dakota Experimental 1 

OSHA - Occupational Safety and Health Administration 

PPE - Personal Protective Equipment 

SFHSS - Space Flight Human-System Standard 

UHT - Universal Handling Tool 

UND - University of North Dakota 
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Appendix B 

Anthropomorphic Measurement Figures as Related to Table 2 

 

Figure 58. "Body Size of the 40-year-Old American Male ... for Year 2000 in One Gravity Conditions" (Man-

systems, 1995). 
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Figure 59. "Body Size of the 40-year-Old American Male ... for Year 2000 in One Gravity Conditions" (Man-

systems, 1995). 
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Figure 60. "Body Size of the 40-year-Old American Male ... for Year 2000 in One Gravity Conditions" (Man-

systems, 1995). 
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Figure 61. "Body Size of the 40-year-Old American Male ... for Year 2000 in One Gravity Conditions" (Man-

systems, 1995). 
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Figure 62. "Body Size of the 40-year-Old American Male ... for Year 2000 in One Gravity Conditions" (Man-

systems, 1995). 
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Appendix C 

Data Collection Sheet Examples 
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Figure 66. Rake test data collection sheet. 
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Appendix D 

Example of effects of target diameter 

 The incidental regolith collected with the three target sizes (1.0, 1.5, and 2.0 

inches: purple, yellow, and orange respectively) during the scoop target test was 

compared by configuration for both individual subject data and the combined subject 

data. There was one significant difference found for Subject 1 but there was no carry over 

to the combined data. Another configuration displayed a significant difference 

exclusively in the combined data. Only the difference in combined data is discussed here. 

The subjects' combined data showed a significant difference between the incidental 

regolith collected with the purple and orange targets for the baseline configuration, 

Figure 68. An accuracy preference is indicated for the smaller target size as displayed by 

 

Figure 68. One-way ANOVA for incidental regolith compared by color, baseline configuration, both subjects 

suited. 
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the purple, smallest targets, being collected with the least amount of regolith. The mean 

amount of regolith collected increases with target diameter, showing a decrease in 

accuracy with an increase in target size, though this was not true of all individual 

comparisons. This significance was not shown in the combined data for any other 

configuration. 
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