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ABSTRACT 

Gas-liquid phase flow pressure drops occurred in circular channels with sudden contraction or 

expansion have been studied and investigated experimentally.  Especially, water and nitrogen gas 

phases as experimental fluids were applied in this study.  In this study, single phase, deionized 

water, and two phase, deionized water and nitrogen gas mixture, were under investigation and 

observation.  The diameters of the test channels were 0.5, 0.375, 0.315, 0.19 and 0.14 inches.  The 

setup of the contraction channels, 0.5 to 0.375 inches, 0.5 to 0.315 inches, 0.5 to 0.19 inches, and 

0.5 to 0.14 inches were applied.  For studying the expansion channels, the reverse  of the 

contraction channels setup were used.   

In single phase flow experiment, the ranges of the water mass flows were operated from 

approximately 5 to 30 g/s.  The range of the Reynolds numbers in the smallest contraction channel, 

area ratio of 0.0784, was from 2016 to 10740.  The pressure differences were obtained between 

0.59 to 8.46 kPa.  The loss coefficients were found to be approximately 0.85 when Reynolds 

number is above 8000.    For the largest contraction channel, area ratio of 0.5652, the range of the 

Reynolds number became narrower, from 675 to 4014.  The range of the pressure drop was to 

between 0.26 and 0.31 kPa.   The loss coefficient remained constant value, which was 0.4, all 

measured flow rates.  The range of Reynolds number in the smallest expansion channel, area ratio 

of 0.0784, was from 1958 to 10714.  The pressure drops data was between 0.64 and 6.69 kPa.  The 

value of the loss coefficient was a constant value of 0.849.  In the largest expansion channels, area 
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ratio of 0.5652, the Reynolds number ranges between 780 and 3997.   The pressure drops were 

between 0.18 to 0.295 kPa.     

In two phase flow, the water flow rates were controlled between approximately 5  to 30 g/s.   The 

nitrogen gas was added into the experimental test section.  The flow rates of the nitrogen were 

from 0.00049 to 0.029 g/s.  The experimental liquid Reynold numbers were recorded from 1310 

to 7913 in the smallest contraction channel at the lowest gas mass flow rate.  The pressure drops 

were measured between 0.64  and 3.78 kPa.  The liquid Reynolds number range in the largest 

contraction channel, at the largest gas mass flow rate, was between 1326 and 4031.  The range of 

the pressure drop was 0.19 to 0.46 kPa.    For the smallest expansion channel, the range of liquid 

Reynolds number was from 1290 to 7899 at the smallest gas flow rate.  The pressure drop results  

were between 0.51 and 1.2 kPa.  In the largest expansion channel at the largest gas mass flow rate, 

the pressure drop was between 0.027 and 0.42.   The liquid Reynolds number range was between 

1323 and 4005.    When comparing the experimental data with theoretical and semi-empirical 

equations, the conditions of incompressible flow, flat velocity profile, vena contracta, slip ratio, 

homogeneous two-phase flow, and void fraction effect were considered.  In our experimental result, 

the two-phase flow pressure drop data agrees well with the correlations available in the literature.  

In addition, the two-phase flow pressure drops are observed to be very sensitive to the void fraction.  

In order to accurately predict the pressure drops with correlations, the void fractions have to be 

properly determined.  
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NOMENCLATURE 

 

A               flow area [m2] 

CC             vena-contracta coefficient 

g                Gravitational acceleration [m/s2] 

k               Minor loss coefficient 

kd,              Momentum correction factor 

𝑚̇              Mass flow rate [g/s] 

P                Pressure [pa] 

∆𝑃𝑒            Pressure drop due to sudden expansion [pa] 

∆𝑃𝑐            Pressure drop due sudden contraction [pa] 

Re              Reynolds number 

v                Flow velocity [m/s] 

T               Temperature [ºC] 

L               Test section length [m] 

hf              Head loss due to friction [m] 

fD              Darcy friction factor  

D               Pipe diameter [m] 

ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒     Head loss due to turbine [m] 

ℎ𝑝𝑢𝑚𝑝        Head loss due to pump [m] 

𝜎𝑥           Standard deviation  
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𝑁            Number of the measured values 

𝑥𝑖            The i-th measured value of 𝑥 

𝑥̅             Meaning of the measured values 

 

Greek Symbols 

σ             Area ratio 

ρ             Density [Kg/m3] 

µ             Viscosity [pa s] 

β             Kinetic correction factor 

Subscripts  

1              Smaller channel 

3              Bigger channel 

c              Contraction 

e              Expansion 

G              Gas    

w              Water       



1 

 

 

 

CHAPTER I 

INTRODUCTION 

1.1 Conception  

Pressure drop, also called pressure loss, is a phenomenon of mechanical energy loss that 

occurs due to viscous effects when the fluid flows through a passage.  There are many reasons that 

can cause pressure loss, for instance, surface roughness of the passage, a 90 degree elbow for 

changing the fluid direction, sudden contraction and sudden expansion in the fluid system, etc.  In 

order to maintain the same efficiency of the work from input to output of the system, the conditions 

of the flow passage, the flow characteristics, and properties of the working fluids must be 

considered and understood in the system design. 

1.2 Purpose  

 This proposal is to this study and analyzed how gas and liquid phases flow in contraction 

and expansion of small circular channels with diameters of 0.5 inches (0.127 mm) to 0.19 inches 

(0.0483 mm).  Pressure loss, loss coefficient and mass flow rate were be observed in these channels.  

The channels have five different diameters, which allowed four area ratio variations for abrupt 

contraction and expansion conditions.  The gas and liquid mass flow rates were be controlled 

separately in the beginning of the experiment.  The experiment data were be collected by a data 

acquisition system.  The data collected was analyzed and compare with previous work results and 

a new conclusion may be made.   
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1.3 Expectation 

The anticipated results of this experiment will indicate the performance of the pressure 

drops in the pair channels with controllable mass flow rates.  The results will provide useful data 

and benefits to engineering applications involving multiphase flow systems with complex flow 

geometries.    

1.4 Scope of this experiment 

 In this thesis, the area ratios of the test sections were 0.0784, 0.1444, 0.3844 and 0.5625 

inches.  Liquid mass flow rates, approximately 5 to 30 g/s, were applied in the single and two 

phase flow in circular channels with contraction and expansion.  In the two phase flow experiment, 

the nitrogen gas was added in to the test section and the flow rates of the nitrogen gas were from 

0.00049 to 0.029 g/s.  The pressure drop and loss coefficient were observed and estimated in this 

studying.   
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CHAPTER II 

LITERATURE REVIEW 

Phase flow is a system of fluid mechanics that contains one or more than one phase of gas, 

liquid or solid.  The applications of phase flow are broadly used in various field in the modern 

society.  The one of most recently popular application is nuclear reactors as large-scale power 

systems.  Two-phase flow and heat transfer significantly important for the reactor’s design and 

safe operation.   Designs of large boilers are greatly required detail knowledge of two-phase flow, 

heat transfer and pressure drop performance.  Climate control systems are also needed deep 

understanding of two-phase flow.  The two-phase flow in large-scale systems is ubiquitous and 

significantly related in the modern society.   

2.1 Pressure drop  

Pressure drop or pressure loss is a pressure difference between two points when a fluid 

flows through these two points.  There are many reasons lead to the pressure drop, for instance, 

resistance to flow, flow area, density, elevation, etc.  Therefore, the accurate total pressure drop 

observation and estimate in a fluid flow could be helped to understand the behaviors and 

characteristic of the given fluid.  The total pressure drop can be divided into two portions: the one 

irreversible pressure drop that is due to the conversion of the mechanical energy irreversible.  The 

friction loss and local loss are the typical type of this kind pressure drop.  The other called 

reversible pressure drop, for example elevation pressure drop and acceleration pressure drop.  In 

our experiment elevation pressure drop can be neglected due to the horizontal test section applying.    
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2.2 Single phase and two phase flow performance in contraction and expansion 

Yoda et al. [1], the annular flow in the channels was referred by Hewitt et al. [2] and the 

consideration of pressure drop at 600 to 1400 psia in two phase flow was referred by Jansen and 

Kervinen [3], conducted two phase flow, air and water, experiments on abrupt flow area 

contraction and expansion in small channels.  Two diameter of channels were used in this test, the 

large channel was 1.6 mm and the small one was 0.84.  The range of Reynolds number in the small 

diameter channel was from 870 to 12960.  Furthermore, flow quality was found between 1.9 x 10-

3 and 1.6 x 10-2 in the two phase flow experiment.  The authors also demonstrated loss coefficients 

were different for gas and liquid in the contraction and expansion test section.  However, the 

expansion loss coefficients were approximately constant in the single phase (water) flow.   

2.2.1 Friction loss 

Friction loss occurred due to several reasons 

1. Viscosity of fluid in motion 

2. Fluid molecules against each other 

3. Fluid layers moving in different velocities 

4. Inter-phase friction between gas-liquid phases 

5. Channel inside surface roughness 

However, the friction loss can be expressed as Darcy–Weisbach equation  

ℎ𝑓 = 𝑓𝐷 ∗
𝐿

𝐷
∗

𝑣2

2𝑔
 

(2.1) 

where: 
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ℎ𝑓 = Head loss due to friction, given in units of length 

𝑓𝐷 = Darcy friction factor  

𝐿 = Pipe length 

𝐷 = Pipe diameter 

𝑣 = Flow velocity 

 𝑔 = Gravitational acceleration 

 

The friction loss also can be described by pressure loss formation 

∆𝑃 = 𝑓𝐷 ∗
𝐿

𝐷
∗

𝜌𝑣2

2
 

(2.2) 

 

Where ∆𝑃 presents pressure drop in the flow system and 𝜌 is the density of fluid.  

2.2.2 Local loss, acceleration, and total pressure drop 

Local loss caused by formation of vortices and strong turbulence in the flow, local 

disturbances of the flow, etc.  

Acceleration pressure drop can be found in the flow area changing or density changing in 

two-phase flow system.  

However, single phase flow total pressure drop and two-phase flow total pressure drop 

have defined into different equations in the research paper [1].  The total pressure drop of the single 

phase flow in the expansion channels demonstrated, as the previous discussion, into two parts: 

reversible pressure loss and irreversible pressure loss.  Another majority factor in contraction and 

http://en.wikipedia.org/wiki/Gravitational_acceleration
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expansion system is minor loss.  The minor loss was happened at when a fluid flows through joints, 

valves, filters, contraction system, expansion condition, etc.  The loss can cause a significant effect 

in the pressure drop in a small system, such as our setup.  For the relationship of the total pressure 

loss, minor loss, reversible pressure loss and irreversible pressure loss, the equations described as 

below: 

2.2.3 Single phase in expansion channels 

The pressure drop in the expansion channels equations will be:  

∆𝑃𝑒 = 𝑃2,1 − 𝑃2,3 =  ∆𝑃𝑒,𝑟 − ∆𝑃𝑒,𝑖 (2.3) 

Flat velocity profiles were assumed, where: 

∆𝑃𝑒 = Pressure drop in the expansion channel  

P2,1 = Pressure measured from the flow area change to the small channel (See Figure 6) 

P2,3 = Pressure measured from the flow area change to the large channel (See Figure 6) 

∆𝑃𝑒,𝑟 = Reversible pressure drop in the expansion channels (Elevation loss and acceleration loss) 

∆𝑃𝑒,𝑖 = Irreversible pressure drop in the expansion channels (Friction loss and local loss) 

∆𝑃𝑒,𝑟 =  −
𝑣1

2

2
∗ 𝜌𝐿 ∗ (1 − 𝜎2) 

(2.4) 

where 𝜎  = 
𝐴1

𝐴3
 :     

𝑣1 = Velocity in the small channel 

𝜌 = Density 
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𝐴1 = Area of the small channel 

𝐴3 = Area of the large channel 

∆𝑃𝑒,𝑖 = 𝐾𝑒 ∗ 𝜌𝐿 ∗
𝑣1 2

2
 

(2.5) 

𝑘𝑒 = (1 − 𝜎)2 (2.6) 

 

where: 

𝑘𝑒 = loss coefficient in the expansion channels  

 The pressure difference of the expansion channels in single phase could would also be 

claimed by I.Y.Chen et al. [4], similar to Schmidt [5] and Attou [6] studyings.  The pressure drop 

can be related to the kinetic energy of the flow and be described into three parameters: density, 

velocity and area ratio of the channels. The equation expression as below: 

∆𝑃𝑒 = 𝜌𝐿 ∗ 𝑣1 2 ∗ 𝜎 ∗ (1 − 𝜎) 

 

(2.7) 

2.2.4 Single phase in contraction channel 

The point vena contracta takes place when a fluid flows through the minimum cross section 

of a channel where fluid velocity reach its maximum.  The sudden contraction is the case of this 

condition.  Vena contracta occurs at a place slightly downstream of the changing area of the 

channel.  Figure 1 illustrates how and where the vena contracta happens.  Vena contracta point 

condition was also considered into the pressure loss at contraction channels.  Normally, the 

coefficient of the vena contracta describes as area at vena contracta divides by area of orifice. 
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Figure 1: Schematic diagram of vena contracta [7] 

The pressure drop in the contraction channel equations in Yoda et al. was formulated as 

velocity of the small channel, kinetic energy correction factor (𝛽), area ratio, vena contracta 

coefficient (𝐶𝐶) and momentum correction factor (𝑘𝑑).  For laminar flow in the channels, the 

kinetic energy correction is going to be 2 and the momentum factor equals to 1.33, are defined. 

However in the fully turbulent flow situation, both two factors will be approximate to one.  The 

general equation can be expressed: 

∆𝑃𝑐 = 𝑃2,1 − 𝑃2,3 =  ∆𝑃𝑐,𝑟 + ∆𝑃𝑐,𝑖 (2.7) 

∆𝑃𝑐 =  
𝜌𝐿 ∗ 𝑣1

2

2
∗

1 − 𝛽3 ∗ 𝜎2 ∗ 𝐶𝐶
2 − 2 ∗ 𝐶𝐶 + 2 ∗ 𝐶𝐶

2 ∗ 𝑘𝑑1

𝐶𝐶
2  

(2.8) 

The contration coefficient (𝐶𝐶) in single phase flow referred to Geiger’s thesis in 1964 [8].  

The expression formula shown as below: 

𝐶𝐶 =  
1 − 𝜎

2.08 ∗ (1 − 𝜎) + 0.5371
 

(2.9) 
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For the laminar flow, the equation can be shown as (𝛽 = 2, 𝑘𝑑 = 1.33): 

∆𝑃𝑐 =  
𝜌𝐿 ∗ 𝑣1

2

2
∗ [

1

𝐶𝐶
2 −

2

𝐶𝐶
+ 2 ∗ (1.33 − 𝜎2)] 

(2.10) 

In this case, flat velocity profiles or fully turbulent flow were postulated.  The pressure 

drop in the contraction channel equations will be:  

∆𝑃𝑐 =  
𝜌𝐿 ∗ 𝑣1

2

2
∗ [(1 −

1

𝐶𝐶
)2 + 1 −  𝜎2] 

(2.11) 

Single phase flow pressure drop in contraction channels was also defined in the Geiger’s 

thesis, the equation used as following equation: 

∆𝑃𝑐 =  
𝜌𝐿 ∗ 𝑣1

2

2
∗ (

1

𝐶𝐶
− 1)2 

(2.12) 

Chisholm [9] found total pressure drop could be associated with the static pressure drop to 

the vena contracta (∆𝑃𝑆𝐶)and pressure recovery downstream of the vena contracta (∆𝑃𝑅𝐶) for single 

phase flow in contraction channels.  The application of the contraction coefficient in Chisholm’s 

report was slight different with Geiger’s [8].  The formulas can be described as below: 

∆𝑃𝑐 =  
𝜌𝐿 ∗ 𝑣1

2

2
∗ [(

1

(𝜎 ∗ 𝐶𝐶)2
) − 1 −  

2 ∗ (𝐶𝐶
−1 − 1)

𝜎2
] 

(2.13) 

𝐶𝐶 =  
1

0.639 ∗ (1 − 𝜎)0.5 + 1
 

(2.14) 
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2.2.5 Two-phase in expansion channel 

The two-phase flow in the expansion channels were assumed as both liquid and gas phases 

were incompressible and void fraction kept same in this case.  The pressure drop in the expansion 

channel was going to be: 

∆𝑃𝑒 = Φ𝐿0,𝑒 ∗ ∆𝑃𝐿0,𝑒 (2.15) 

where: 

Φ𝐿0,𝑒 = Two-phase flow multiplier at all liquid condition in expansion channel 

∆𝑃𝐿0,𝑒 = Pressure drop at all liquid condition in expansion channel 

∆𝑃𝐿0,𝑒 =  
𝑚̇1

2

𝜌𝐿 ∗ 𝐴1 ∗ 𝐴3
∗ (𝜎 − 1) 

(2.16) 

where: 

𝑚̇1 = Mass flow rate at small channel 

Φ𝐿0,𝑒 =  
𝜌𝐿

𝜌′
 

(2.17) 

𝜌′ = [
1 − 𝑥2

𝜌𝐿 ∗ (1 − 𝛼)
+  

𝑥2

𝜌𝐺 ∗ 𝛼
]−1 

(2.18) 

𝑥

(1 − 𝑥)
= 𝑆 ∗  

𝜌𝐺 ∗ 𝛼

𝜌𝐿 ∗ (1 − 𝛼)
 

(2.19) 

𝑆 =  
𝑣𝐺

𝑣𝐿
 

(2.20) 

𝑥 =  
𝑚̇𝐺

𝑚̇𝐺 + 𝑚̇𝐿
 

(2.21) 

where: 
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𝜌𝐿 = Density of liquid 

𝜌′= fictitious mixture densities  

𝜌𝐺  = Density of gas 

𝑥 = Flow quality  

𝛼 = Volumetric void fraction  

𝑆 = Slip ratio 

𝑚̇ = Mass flow rate 

 The homogeneous flow assumption was also applied in Yoda’s [1] experimental report.  

Due to the assumption the velocity of liquid and gas were same, therefore slip ratio equaled to one.  

The relationship of the void fraction and quality were shown as following formula: 

𝛼 =

𝑥
(1 − 𝑥)

∗
𝜌𝐿

𝜌𝐺

1 +
𝑥

(1 − 𝑥)
∗

𝜌𝐿

𝜌𝐺

 

(2.22) 

Substitution was applied: 

𝜉 =
𝑥

(1 − 𝑥)
∗

𝜌𝐿

𝜌𝐺
 

(2.23) 

The void fraction relative equation could be simplify into: 

𝛼 =
𝜉

1 + 𝜉
 

(2.24) 

 For ideal annular flow situation, Zivi [10] proposed the minimum entropy generation 

assumption, the outcome of the slip ratio was different. The slip ratio expression was: 
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𝑆 = 0.7 ∗ ( 
𝜌𝐿

𝜌𝐺
)1/3 

(2.25) 

To repeat the process of the substitution Eq. 2.19 and Eq. 2.22. 

𝜛 =
𝑥

(1 − 𝑥)
∗

𝜌𝐿

𝜌𝐺
∗ ( 

𝜌𝐺

𝜌𝐿
)1/3 

(2.26) 

The void fraction relative equation could be simplify into: 

𝛼 =
𝜛

1 + 𝜛
 

(2.27) 

 An equation of two phase flow pressure drop, which illustrated the pressure recovery in 

sudden diffuser, was generated by Wadle [11].  Wadle proposed constant minor loss coefficients 

in different fluid applications.  For steam and water, the coefficient was 0.667.  The coefficient 

was 0.83 in the application of air and water.  The final pressure drop equation derivation was 

shown as: 

∆𝑃𝑒 = (1 − 𝜎2) ∗
𝑘 ∗ 𝐺2

2
∗ (

(1 − 𝑥)2

𝜌𝐿
+

𝑥2

𝜌𝐺
) 

(2.28) 

Where: 

𝐺 = mass flux = 𝜌 * 𝑣 = 
𝑚̇

𝐴
 

 Collier and Thome [12] derived and rearranged the non-friction loss mechanical energy 

equation of two phase flow of the pressure drop in expansion channels.  The pressure drop 

performances were proportional to its void fraction behaviors.  The derivation could be expression 

as below: 
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∆𝑃𝑒 =
−(1 − 𝜎2) ∗ 𝐺2

2 ∗ (
𝑥

𝜌𝐺
+

1 − 𝑥
𝜌𝐿

)
∗ [(

(1 − 𝑥)3

(1 − 𝛼)2 ∗ 𝜌𝐿
2

+
𝑥3

𝛼2 ∗ 𝜌𝐺
)] 

(2.29) 

where void fraction was proposed by Kawahara et al. [13], the heat transfer concept was referred 

by Hewitt et al. [14]: 

𝛼 =
0.03 ∗ 𝛽0.5 

(1 − 0.97 ∗ 𝛽0.5)
 

(2.30) 
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Figure 2: The two phase flow pressure difference vs Re in sudden expansion from Yoda data 

result [1] 

 The experimental data was predicted in two methods, slip flow model and homogeneous 

flow model in Figure 2.  From the result of the two methods comparison, slip flow model which 

the value was obtained by using Eq. 2.25, demonstrated the great agreement of the prediction than 

the model of homogeneous flow for either Reynolds number big or small  than 3000.  The similar 

data pattern and slop with slip flow model were found in the plots.   

2.2.6 Two-phase in contraction channel 

Yoda et al [1]. considered the effect of the vena contracta unleashed downstream of the 

channels when two phase flow across abrupt contraction channels.  The postulate incompressible 

gas and liquid and void frication and qualities were same and unchangeable. Geiger’s [8] Vena 

contracta coefficient (𝐶𝐶) was applied in the case. Total pressure difference could be described as:  
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∆𝑃𝑐 = 𝐺1
2 ∗ [

𝜌ℎ

2 ∗ 𝜌′′2 ∗ (
1

𝐶𝐶
2 − 𝜎2) +

1

𝜌′
∗ (1 − 𝐶𝐶)] 

(2.31) 

where: 

𝜌′′ = [
(1 − 𝑥)3

𝜌𝐿
2 ∗ (1 − 𝛼)2

+  
𝑥3

𝜌𝐺
2 ∗ 𝛼2

]−1/2 
(2.32) 

  To receive a better result, the assumption of homogeneous were made which the slip ratio 

equaled to one.   

∆𝑃𝑐 = Φ𝐿0,𝑐 ∗ ∆𝑃𝐿0,𝑐 (2.33) 

where: 

Φ𝐿0,𝑐 = Two-phase flow multiplier at all liquid condition in contraction channel 

∆𝑃𝐿0,𝑐 = Pressure drop at all liquid condition in contraction channel 

∆𝑃𝐿0,𝑐 =  
𝑚̇1

2

2∗𝜌𝐿∗𝐴1
2 ∗ [(

1

𝐶𝑐
− 1)

2

+ (1 − 𝜎2)] 
(2.34) 

Φ𝐿0,𝑐 = 1 +   
𝑥 ∗ (𝜌𝐿 −  𝜌𝐺)

𝜌𝐿
 

(2.35) 

C𝑐 = 1 −   
1 − 𝜎

2.08 ∗ (1 − 𝜎) + 0.5371
 

(2.36) 

The Eq. 2.24 was applied in the Eq. 2.32.  Furthermore, Yoda et al [1]. continued to make 

other postulate circumstance that fluids flow through the abrupt contraction channels without vena 

contracta.  The value of the vena contracta coefficient was going to be one under this assumption.  

The liquid and gas density ratio to the power 1/3 which proposed by Zivi [10] was joint the estimate 

comparison.  Collier and Thome recommended the estimation of the two phase flow pressure drop 



16 

 

in sudden contraction by using homogeneous flow.  The Geiger’s [8] vena contracta coefficient 

was applied.   The formula shown: 

∆𝑃𝑐 =
𝐺2

2 ∗ 𝜌𝐿
∗ [(

1

𝐶𝐶
− 1)

2

+ (1 − 𝜎2)] ∗ [1 + 𝑥 ∗ (
𝜌𝐿

𝜌𝐺
− 1)] 

(2.37) 

 The plots of the Yoda’s [1] experimental two phase flow pressure difference against 

Reynolds number in fully liquid flow condition were drawn and exhibited.            
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Figure 3: The two phase flow pressure difference vs Re in sudden contraction from Yoda data 

result [1] 
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Four difference of the prediction model were used for the pressure drop in Figure 3.  The 

homogeneous flow model with vena contracta which Eq. 2.33 - Eq. 2.36 were applied. The 

prediction from the homogeneous model was far from the experimental data.  The homogeneous 

model without vena contracta result predicated by applying Eq. 2.33 - Eq. 2.35 with 𝐶𝐶= 1. The 

prediction were even not close to the experimental pressure drop data whatever lower or higher 

Reynolds number.  The slip ratio with or without vena contracta consideration could receive the 

rough agreement with Reynolds number lower than 1800.  Therefore, the good pressure drop 

prediction of Reynolds number from 2580 to 3540 occurred only the vena contracta was accounted 

in slip flow model.  The pressure drop pattern was agreed perfectly when the range of Reynolds 

number from 2580 to 2600. 

2.3 Minor loss coefficient  

In this experiment, each test section length was considered as the short pipe length, so 

major loss was neglected in the experiment.  Due to change velocities and flow fluid accelerations 

in the geometrical construction of channels when fluid flow through them, the minor loss occurred 

and considered into the loss calculation was needed.   

2.3.1 Single phase in expansion channels 

To estimate the minor loss coefficient (k), the application and derivation of the general 

energy equation is necessary.  The energy equation can be written as: 

𝑃1

𝜌1 ∗ 𝑔
+

𝑣1
2

2 ∗ 𝑔
+ 𝑧1 + ℎ𝑝𝑢𝑚𝑝 =

𝑃3

𝜌3 ∗ 𝑔
+

𝑣3
2

2 ∗ 𝑔
+ 𝑧3 + ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒 +  ℎ𝑙𝑜𝑠𝑠 

(2.38) 

Assuming there are no additional work done by and into pumps and turbines in the system.  

The flow fluid is under incompressible which density is going to remain constant everywhere.   
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The test sections are under level condition, no elevation head generates at this time. The equation 

becomes:   

𝑃1

𝜌 ∗ 𝑔
+

𝑣1
2

2 ∗ 𝑔
=

𝑃3

𝜌 ∗ 𝑔
+

𝑣3
2

2 ∗ 𝑔
+  ℎ𝑙𝑜𝑠𝑠 

(2.39) 

The pressure difference can be found as: 

∆𝑃1,3 =
𝜌 ∗ (𝑣3

2 − 𝑣1
2)

2
+  𝜌 ∗ 𝑔 ∗ ℎ𝑙𝑜𝑠𝑠 

(2.40) 

Minor head loss can be expressed as: 

ℎ𝑙𝑜𝑠𝑠 = 𝑘 ∗ 
𝑣1

2

2∗𝑔
  (2.41) 

The single phase minor loss coefficient in expansion channels is united by pressure drop, 

fluid density, fluid velocity and area ratio which described in Yoda’s [1] report.  For determining 

the loss coefficient, the equation is going to be: 

𝑘𝑒 = −
2 ∗ ∆𝑃

𝜌𝐿 ∗ 𝑣𝐿
− (𝜎2 − 1) 

(2.42) 

However, the loss coefficient in the expansion channels also can be estimated in different 

methods.  The parameters in this method are different. This loss coefficient is highly determined 

by the area ratio and momentum factor.  The equation can be: 

𝑘𝑒 = 1 − 2 ∗ 𝑘𝑑1 ∗ 𝜎 + 𝜎2 ∗ (2 ∗ 𝑘𝑑3 − 1) (2.43) 

Where 𝑘𝑑 is momentum correction factor. Let 𝑘𝑑1 and 𝑘𝑑3 equals to one, the flat velocity profiles 

are generated the formula can be simplified into: 

𝑘𝑒 = (1 − 𝜎)2 (2.44) 
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2.3.2 Single phase in contraction channels 

For determining the single phase minor loss coefficient in contraction channels, the formula 

of the loss coefficient in expansion should be changed the signs in the right side of the equation.  

The equation can be shown as: 

𝑘𝑐 =
2 ∗ ∆𝑃

𝜌𝐿 ∗ 𝑣𝐿
+ (𝜎2 − 1) 

(2.45) 

Geiger [8] indicated the correlation between momentum factor (kd) and kinetic energy 

factor (β), and loss coefficient.  There are three known cases, for a laminar velocity profiles kd2 = 

kd3=1.33, β1 = β2 = 2, for a turbulent flow but not completely uniform kd2 = kd3=1.1, β1 = β2 = 1.1, 

the last one is uniform velocity profile kd2 = kd3=1, β1 = β2 = 1.  The equation will be: 

𝑘𝑐 = (𝜎2 − 1) + 2 ∗ (𝑘𝑑3 −
𝑘𝑑2

𝐶𝐶
) + (

𝛽2

𝐶𝐶
2 − 𝛽1 ∗ 𝜎2) 

(2.46) 

The loss coefficient in Kays [15] proposed that the fluid flow in the abrupt contraction 

channels always faces the vena contracta situation.  In this case the uniform velocity assumption 

is made. Therefore, the loss coefficient formula becomes as:  

𝑘𝑐 = (1 −
1

𝐶𝐶
)2 

(2.47) 

where 𝐶𝐶 is used from the correlation of Geiger’s [8] thesis. (Eq. 2.9) 

Toufik et al [16] mentioned that under low values of Reynolds numbers, the loss coefficient 

can be estimated natural log of the Reynolds numbers themselves. The equation shown as:   

𝑘𝑐 = 0.0588 ∗ ln(𝑅𝑒) + 0.0218 (2.48) 
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2.4 Nitrogen and water phase flow in different circular channels 

In order to verify the effect of channel diameter on adiabatic two-phase flow characteristics 

in microchannels, Chung and Kawaji [17] and Chisholm [18], conducted experiments with a 

mixture of nitrogen gas and water in circular channels of 530, 250, 100, and 50 µm in diameter.  

Chung and Kawaji [17] clarified the flow characteristics of 530 and 250 µm channels were similar 

to the microchannel ≈ 1 mm diameter as described by Triplett et al [19].  Yet in the 100, and 50 

µm channels, turbulence flow did not be generated due to the effect of surface tension and liquid 

viscosity in the channels.  However, Chung and Kawaji [17] built a predicable model based on 

Darcy–Weisbach equation, Blasius formula, the Armand [20] correlation, etc. Figure 4 and 5 

represented the model of the 50 µm channel appeared a good prediction than the 100 µm because 

of the absence of the multiple flow pattern in 50 µm channel.   

 

Figure 4: Comparison of model predictions with experimental results for the two-phase pressure 

drop in microchannels in 100 µm channel.  ●: using experimental void fraction ○: using void 

fraction from the Armand [20] correlation [17]. 
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Figure 5: Comparison of model predictions with experimental results for the two-phase pressure 

drop in microchannels in 50 µm channel [17].   

 

2.5 Oil and water phase flow performance in contraction and expansion 

Without phase change in microchannel as discussed above, nothing more than focusing on 

phase frictional pressure drops and thermal resistance effects and superficial surface roughness 

behavior and heat transfer coefficients, and geometrical channel shape were quite different from 

the conventional correlations.  However, these acquaintances had been obtained on multi-phase 

flow in microchannel.  Ching-Yi J. Hwang and Rajinder Pal [21], two phase oil and water 

application also discussed in Pal studying [22] and the pressure drop obtained from resistance loss 

method was referred by Sookprasong [23], experimentally measured the pressure drop along the 

circular stainless steel pipes which the two-phases flow went through sudden expansions and 

contractions.  The inner diameters of the pipe were 0.802 and 1.624 inches, and the oil and water 

mixture were tested on the examination.  The obtained pressure profiles was used for evaluating 

the pressure loss data furthermore, the loss coefficients were collected from the pressure loss and 

velocity data.  Figure 6 illustrated the frictional loss in the upstream and downstream pipes 
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accompany with the performance of the pressure drop.  While the flow compassed the transitional 

region, the pressure was abrupt by increased.  

 

Figure 6: Pressure profile for a sudden expansion [21]. 

The concentration of oil was an observation point that the authors focused on it.   It 

depended on the proportion of the oil concentration, either oil in water or water in oil emulsion, 

was flowing through the pipe.  The volume fraction of oil in the emulsion control the behavior of 

pressure drop Figure 7 showed the pressure profile was different before and after the expansion 

and also various by changing volume fraction.  However, the behave comparison of oil in water 

and water in oil emulsion was quite similar in the experiment, Figure 8 represented the pressure 

profiles for water in oil emulsion [21]. 
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Figure 7: Pressure profiles for oil-in-water emulsions in a sudden expansion [21]. 
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Figure 8: Pressure profiles for water-in-oil emulsions in a sudden expansion [21]. 

The loss coefficient were insignificant on both the emulsions flowing through expansions or 

contractions.  The range of loss coefficient, Ke were around 0.4 to 0.6 in the emulsions flowing 

through expansions.  Figure 9 demonstrated, no matter what, the emulsions flowing through 

contractions had found different values of pressure drop and loss coefficient, but the behavior of 

these two factors were similar. 

 

Figure 9: Expansion loss coefficient as a function of oil concentration [21]. 
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2.6 Two phase flow in circular and semi-triangular channels 

In the same year, K.A. Triplett et al. [24], about upward liquid flow observation was 

referred by Oya [25] and air-water phase flow in narrow channel concept was considerred from 

Fouran and Bories [26] conducted experiments on air-water two-phase flow in microchannels.  

The flow patterns, transition boundaries, void fraction and pressure drop were reported in the 

investigation.  Two types of the microchannels had been used, the one was circular microchannels 

with 0.0433 and 0.0570 inches inner diameters.  The other was semi-triangular microchannels with 

0.0429 and 0.0586 inches.  No surprise, bubble flow, slug flow, churn flow, and annular flow were 

the flow patterns in the test sections.  Yet, these flow regimes for these two types of microchannels 

were very similar from slug to slug-annular flow patterns. 

K.A. Triplett et al. [19], frictional pressure drop calculation method notation was referred 

by Beattie and Whalley [27] and performance of the two phase flow concept was referred by Chen 

and Spedding [28] also reported that in the bubble and slug flow regimes, and high Reynolds 

number, the predictions of experimental data were quite precise, therefore, in the slug-annular and 

annular flow patterns, and low Reynolds number of slug low would come out significant deviations 

result.  Figure 10 expressed the result of pressure drops normalization.     
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Figure 10: Model-predicted pressure drops normalized with experimentally-measured pressure 

drops [19]. 

2.7 Flow regimes and bubbles 

Two years late, in order to understand these knowledge thoroughly in two-phase 

minichannels, flow regime pattern identification, transition criteria, void fraction and interfacial 

concentration are priority for consideration.  Xu et al. [29], modeling flow pattern in for two phase 

flow in the tubes was referred by Taitel [30] and Flow regime transition concept was from Mishima 

[31] in Xu et al. [29] report, conducted adiabatic experiments in a vertical rectangular channels 

with narrow gaps of 0.3, 0.6 and 1.0 mm.  The experiment illustrated flow regimes cap-bubbly 

flow, slug-droplet flow, churn flow and annular-droplet flow are normally occurred in the narrow 

small gap 0.3 or less due to the small bubbles squeezing and merging with each other.  Yet, the 

flow regimes were converted and dominated by bubbly flow, slug flow, churn-turbulent flow in 

the channels with medium size gaps as the gaps of 0.6 and 1.0 mm.  Figure 11 represented the flow 

regimes in 0.3 mm channel.  Figure 12 presented the flow regimes in the channels with medium 

size gaps as the narrow gaps of 0.6 and 1.0. 
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Figure 11: Flow regimes in 0.3 mm channel [29]. 
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Figure 12: Flow regimes in channels with medium size gaps [29].  

 

This experiment also found that the flow regimes would be small in gas velocity- liquid 

velocity diagram since the gap channel decreased and friction shear stress increased.  The authors 

also reported that bubbly flow appeared only in the gap channel which was greater than 0.3 mm 

the different flow would develop when the gap channel smaller than 0.3 mm [29].  
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2.8 Fins or channels effect 

Knight et al. [32] entirely optimized the microchannel experimental application from three 

published researches, this studying in single phase heat transfer portion was referred by Kakac and 

Aung [33].  In the first case, the comparison of Knight et al [32]. research to Tuckerman and Pease 

[34] was practiced.  The Table 1 indicated that all dimensions were remained same except the 

values of the ratio of fin thickness to channel width, laminar friction factor, and Nusselt number 

depends on the ratio of the hydraulic diameter to the fluid thermal conductivity and the state of the 

flow development.  No matter what, the optimal channel and fin dimensions were found by the 

conditions mentioned above and the thermal resistance is reduced by 35% from that of Tuckerman 

and Pease. 
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Table 1 : Comparison of Knight et al. result to the work of Tuckerman and Pease [32]. 

 

The relationship among number of channels and thermal resistance with various ratio of 

fin thickness to channel width shown in Figure 13.  The dashed line in the laminar regime with 

ratio of fin thickness to channel width, equals to one, has the best value of number of channels 

around 88 [32].  The optimal ratio of fin thickness to channel width in the laminar regime was 0.32 

expressed as the solid line.  However, the plot demonstrated the lowest thermal resistance occurred 

in turbulent regime when the ratio of fin thickness to channel equals to 0.215 as the solid line 

shown.  The optimal number of channels under this situation was around 22. 
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Figure 13: Thermal resistance as a function of the number of channels for the heat sink described 

in Table 1 [32]. 

In the secondary case, they remained the dimension of heat sink same but ratio of fin 

thickness to channel width, aspect ratio, flow regime and volumetric flow rate were flexible 

compared to the studying of Goldberg [35].  The optimal comparison result between Goldberg and 

Knight et al. shown on the Table 2 below.  The optimal result happened only on two situations in 

which the pressure drop is same or the power consumed is equally. 

Table 2: Comparison of Knight et al. result to the work of Goldberg [32]. n: Number of 

cooling channels, Γ: Ratio of fin thickness to channel width, ΔΘ: Improvement in thermal 

resistance. 
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Table 3 represented the comparison of Knight et al [32]. result to the work of Phillip [36].  

In this case, Knight et al. [32], however, increased almost the twice number of channels and 

reduced the ratio of fin thickness to channel width to 0.66 given the improvement result decreasing 

the thermal resistance to 21 percent.  The above cases illustrated that without the needless and 

useless limitation, for example to constrain the state of flow in laminar regime, brought the 

remarkable thermal resistance performance in heat sink applications.    

Table 3: Comparison of Knight et al. result to the work of Phillip [32]. 

 

The small rectangular channels having hydraulic diameters of 0.133 – 0.367 mm and 

unique geometric configurations were investigated in the single-phase convective heat transfer and 

flow friction studying of Peng and Peterson [37], about behavior of the fluid flow through the 

small channels was referred by Pfahler et al. [38]. Peng and Peterson further demonstrated the 
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geometric configuration is a significant factor in their studying.  The working fluid was water, 

moreover, the stainless steel was used in the microchannel structure rather than fused silica which 

used in Tuckerman and Pease studying.  There were twelve different geometric configuration setup 

shown as Table 4 below. 

Table 4: Geometric parameters of the test sections [37]. W: Width of microchannel,                   

Wc: Center-to-center distance of microchannel,                                                                             

Wt: Width of rnicrochannel structure,                                                                                             

Dh: Hydraulic diameter,                                                                                                                            

Z: Dimensionless variable ( 
Min(H,W)

Max(H,W)
  ),                                                                                             

Cf,l: Coefficient for laminar flow friction,                                                                                            

Cf,t: Coefficient for turbulent flow friction 

 

The aspect ratio and the ratio of the hydraulic diameter represented a significant heat 

transfer effect in the laminar regime.  Therefore, the heat transfer in turbulent regime was indicated 

to and the ratio of the hydraulic diameter and a new dimensionless variable, Z.  The friction factor 

or flow resistance reached a minimum value as Z = 0.5.  Comparing Figure 14 and 15, it is obvious 

to recognize that the geometric configuration is definitely a significant element in the minimizing 

friction factor no matter in the laminar or turbulent flow.  There results indicated that laminar and 

turbulent flow resistance was usually smaller than that predicted by classical relationships, and the 

Reynolds number for flow transition to fully developed turbulent flow became much smaller than 
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the ordinary channel flow. Empirical correlations were suggested for calculating both the heat 

transfer and pressure drop. 

 

Figure 14: Friction factor of plate 7 [37] refers to Table 4. 
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Figure 15: Friction factor of plate 10 [37] refers to Table 4. 

2.9 Reynolds number and pressure difference 

Mala and Li [39], the concept of liquid and gas transport in small channels referred by 

Pfahler et al. [40],experimentally tested two types of circular microchannels or microchannels that 

made in stainless steel and fused silica, furthermore the range of the diameters used in the studying 

from 50 to 254 µm.  It is well known the critical Reynolds number is for transition from laminar 

to turbulent flow.  The critical Reynolds number is about 2300 under the some certain condition.  

However the studying indicated the critical Reynolds number is affected by external disturbances.  

In other words, as long as the flow remain undisturbed, the critical Reynolds number could be very 

large values unless the flow keeps laminar regime.  Yet turbulent flow could be occurred for the 

Reynolds number in small values Figure 16 clearly illustrated the pressure gradients of the fused 

silica channels are larger than the stainless steel channels.  Moreover, the higher pressure gradient 

occurred at smaller diameter channels, rather than larger diameter channels.  However, the plot 

also demonstrated the classical theory is less significant when the channel diameter is getting larger.  
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This experiment looks like that the tests were under the laminar regime due to the Reynolds number 

less than 2100 but the pressure drops between the experimental results and theory are so different 

could be an early transition from laminar to turbulent flow or the surface roughness effects on the 

channel flow.  Figure 16 shows the comparison of the different Reynolds number regions with 

conventional laminar flow theory equation.  Figure 16(a) roughly indicated the agreement between 

the experimental result and the theory, moreover Figure 16(b) represented the transition from 

laminar flow.  Finally, Figure 17(c) demonstrated a fully developed turbulent flow was occurred 

in this region. 
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Figure 16: ΔP/Δl vs. Re for (a) Stainless steel (b) Fused silica channels and comparison with 

classical theory Poiseuille flow equation [39]. 
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Figure 17: ΔP/Δl vs. Re for Stainless steel in three regions for 130 µm [39]. 
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2.10 Friction factor and Reynolds number 

From Figure 18, the experiment results were considered reasonable for the conventional 

theory in the region Ⅰ where might be laminar flow regime.  Yet the region II, the range of 

Reynolds number from 500 to 1500 were regarded as a transition flow regime.  The most difference 

between the experiment values and the theory curve in region III was discussed as fully developed 

turbulent flow.  The friction factor was getting to a constant value gradually from the beginning of 

region III.  However, Blasius equation curve matched the experiment data very well in the region 

III.  The authors indicated the Blasius Equation gives the friction factor for turbulent flow in 

smooth pipes for Reynolds number ≤ 105. Thus, Blasius Equation can be used to determine the 

friction factor in microchannels for Reynolds number ≥ 1500 with reasonable accuracy [39].  

Figure 19 simply interpreted the ratio of roughness –viscosity is larger when it closes to the wall 

and approaches to zero when it closes to center of the microchannels.  The fused silica 

microchannels with small size hold the higher roughness –viscosity ratio than the stainless steel 

channels.  Apparently, the roughness-viscosity is proportional to Reynolds number the authors 

concluded it.   
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Figure 18: Friction factor vs. Reynolds number for stainless steel and fused silica microchannels 

and comparison with the classical theory and Blasius Eq. [39]. 
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Figure 19: Variation of roughness-viscosity ratio with non-dimensional radius for some stainless 

steel and fused silica microchannels at Reynolds number 950.                                                         

r: Radial coordinate,                                                                                                                         

R: Radius of the microchannel,                                                                                                          

µ𝑅: Roughness viscosity of water,                                                                                                         

µ: Dynamic viscosity of water [39]. 

2.11 The performance of trapezoidal channels  

Weilin et al. [41] conducted adiabatic experiments in trapezoidal silicon microchannels 

with a hydraulic diameter ranging from 51 to 169 mm, the general concept of the pipe flow was 

referred by Benedict [42] and laminar flow behavior in ducts was considered from Shah’s studying 

[43].  In the experiment, six different geometric microchannels were tested and the volume flow 
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rate and the pressure drop across the microchannel were measured.  The six various dimensions of 

the trapezoid showed on Table 5.  The author concluded there were several factors could deviate 

the experiment result far from the theory.  The one of the factors that the author indicated is the 

curve of experiment result of pressure gradient were always higher than the prediction at a given 

flow rate, especially the Reynolds number over 450 the experiment curve start to increase  greatly.  

The comparison result showed on the Figure 20.  Moreover, the flow friction was considered as 

the one of effects in the experiment.  No surprising, again, the flow friction was higher than the 

theoretical prediction in the studying.  A roughness viscosity model, which could have better 

agreements between the experimental result and theoretical outcome, is used to explain the effect 

of the surface roughness on laminar flow in microchannels.  The Figure 21 demonstrated the 

improvement of deviation between theoretical result and experiment data by using roughness 

viscosity model.  

Table 5: Types of the trapezoidal silicon microchannels [41].                                                              

a and b: Base of the trapezoid, h: Height of the trapezoid,                                                                  

dh: Hydraulic diameter, k: surface roughness
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Figure 20: The comparison of experiment result with predictions result in the chart of pressure 

gradient vs. Reynolds number [41]. 
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Figure 21: The comparison of experiment result with predictions result in the chart of pressure 

gradient vs. Reynolds number with the roughness viscosity model [41]. 
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2.12 Power density and channel width 

The notion of the phase flow is not only studied and used in large-scale systems but also in 

small dimensional scale.  Tuckerman and Pease [34] were the first who used heat transfer 

application in the mini-channel applied by single-phase flow the similar studying and test had done 

by Kay [44] [45].  The research successfully demonstrated single-phase forced convective cooling 

in microchannel, circuit power densities more than 1000 W/cm2, is feasible to remove a power 

density of 790 W/cm2 from a substrate temperature 71 °C above the input water.  This exciting 

research result, as a landmark paper, widely expressed in this field, more single-phase flow 

researchers involved in this studying area.  The relative research further developed and 

concentrated on optimization and analysis of single-phase flow in minichannel and microchannel.  

Goldberg [35] investigated three different channel widths, 5, 10, and 25 mils in his research.  The 

air flow rate of 30 L/min was applied in these three heat sinks, the heat transfer performance was 

referred by Ozisik [46].  The limitation of this research were kept the flow in laminar regime and 

ratio of fin thickness to channel width equals to one.  Unsurprised, the experiment result, match to 

the expectation, shown smallest channel width and largest pressure drop generated the smallest 

thermal resistance. 

The report by Sasaki and Kishimoto [47] indicated that the channel width, finned heat sink 

constructed on a silicon chip, could be reduced while the cooling capability with a constant rate of 

coolant flow is increasing.  Furthermore, the report shown channel cross-section is inversely 

proportional to the pressure drop from coolant inlet to outlet.  Figure 22 shows the relationship 

between allowable power density and channel width.  The report demonstrated the optimal channel 

widths could be 400 and 250 µm for a pressure drop of 200 and 2000 kg/m2.  The correlation 

between optimal channel width and cooling fin length shown in Figure 23.  The plot illustrated 
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that the optimal channel width would be magnified once the pressure drop decreases in order to 

remain the fin length same. 

 

Figure 22: Allowable power density per chip as a function of channel width                            

Wc, with pressure drop ΔP as a parameter [47]. 
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Figure 23: Optimal channel width as a function of cooling fin length, with pressure drop ΔP as 

a parameter [47]. 

Samalam [48] was also one of researchers who tended to optimize the Tuckerman and 

Pease’s work.  The purpose of his studying was to make the solutions simple enough and can be 

used to design advantageous cooling structure and also be applied first-order solutions to appraise 

order corrections. 

2.13 Thermal resistance 

The innovation of design measure of water cooled microchannel heat sinks was recorded 

in the research of Phillips [36].  The laminar and turbulent flow regimes were regarded for 

developing flow and fully developed flow where limitation were set on aspect ratio of channel 

width to fin width.  The thermal resistances presented as a function of channel width are the major 

discussions in his design that allowed turbulent flow yielded the smallest thermal resistance.  

Figure 24 indicated that the curve of R"bulk (Coolant bulk temperature rise thermal resistance) 

decreasing accompanies by increasing channel width.  R"conv (Convective thermal resistance) 

curve shows it is going to increase for laminar flow; it is smaller for turbulent flow.  The plot also 
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demonstrated that small channel widths are dominated by R"bulk, yet R"conv is the main factor for 

larger channel widths shown in the graph for the presenting of R"tot (Total thermal resistance).    

The consequence of the various channel length in the heat-sink performance shown by the 

blue and red curves in Figure 25.  The blue line, shown on the up-plot, resulted the shorter channel 

length accompanies by the lower total thermal resistance, however the down-plot, the one 

presented pump power versus channel width, unfortunately indicated to acquire this lower 

resistance, the high pump power is required.  Although, the resistance performance of red line, the 

one represented the longer channel length, is not as good as shorter length channel, but the pump 

power cost is quite low in the experience.  Freon has commonly used as refrigerants and as aerosol 

propellant.  Freon (CCI2F2) as the liquid coolant rather than water is applied in the studying of 

Phillips [36].  The total thermal resistance of Freon is higher than the total thermal resistance of 

water as showing in the up-plot, however, it is not hard to see the pump power of Freon and the 

power of water is quite similar as showing in the down-plot.   
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Figure 24: Total thermal resistance and pumping power requirements are shown as functions 

of channel width. The pressure drop is held constant for these curves [36]. 
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Figure 25: Total thermal resistance and pumping power requirements are shown for various 

coolants, heat-sink materials, and coolant flow-rate constraints [36]. 
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2.14 Heat power  

In single-channel measurements, Lian Zhang et al [49]. found that the pressure change in 

single-channel against heat power result was similar to the outcome of the multi-channel, except 

the onset of boiling point where was at 1.32 W less than the 2.14 W where the onset of boiling 

point of multi-channel was at.  Figure 26 showed the pressure against heat power curve.     

 

Figure 26: A single-channel device, as a function of heat power at the flow rate of 0.1 ml/min 

[49]. 

2.15 Boiling flow 

Lian Zhang et al. [49], two phase flow concept was referred by Stanley et al. [50] and 

concept of the boiling in low flow rate was considered from Bowers [51] conducted experiments 

on boiling flow in single microchannel which the hydraulic diameter was 58 µm and multi-

microchannel that the hydraulic diameter was 31 µm, both experiments were tested at 0.1 ml / min 

flow rate.  The measurements in the multi-channels reported that pressure of the channels 

decreased with increasing heat power in single phase flow, but the pressure increased suddenly at 

the water boiling point where indicated the beginning point of two phase flow.  Figure 27 

illustrated the result of the experiment, the boiling point occurred at the heat power of 2.14 W.  In 



53 

 

the experiments, the authors also claimed that the electrical signals of data acquisition system could 

be a significant indicator for seeking the water boiling point.  The test result pointed in Figure 28, 

it is obviously to found every point begins fluctuating after the onset of boiling water.  

 

Figure 27: Pressure change in the multi-channel measured as a function of heat power at the flow 

rate of 0.1 ml/min [49].  

 

 

Figure 28: The temperature of multi-channel measured as a function of heat power [49]. 
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CHAPTER III 

EXPERIMENTAL FACILITY AND PROCEDURE 

3.1 Experimental Facility 

 An experimental facility for our test requires some specific instruments to complete this 

study. In this experiment, pressure drop, mass flow rate, temperature difference, Reynolds number, 

etc. are the major parameters for analyzing and understanding the behaviors of the phases flow in 

the contraction and expansion channels.  Figure 29 shows that the closed-flow loop system was 

used to gather the data in the experiment.  The deionized water storage tank, standard duty gear 

pump, mass flow meter, thermocouples, contraction and expansion channels, pressure transmitters, 

static pressure transducers, data acquisition system, heat exchanger and pipes system.  
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Figure 29: Schematic diagram of the experimental system 

3.1.1 Storage Tank 

The cylindrical tank was made by using PVC material with the diameter 0.25 m, height 0.3048 m.  

The capacity of the tank volume is 15 liters.  The PVC cover is placed and sealed entirely on the 

top of the tank, the reason is to avoid any potential effect from outside the tank.  Furthermore, due 

to reasons of saving amount of energy consume in the pump and keeping the same required power 

output, the potential energy theory is applied, the tank is installed at 1 m above the pump.  In order 

to maintain the purity of deionized water, the deionized water in the tank is checked every time at 

the beginning of the experiment.  Figure 30 shows completely the configuration of the storage tank.        

Heat 

exchanger 

section 

Heat 

exchanger 

section 

N2 gas entrance 
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Figure 30: The DI water storage tank 

 

3.1.2 Standard duty gear pump  

 Figure 31 presents the Liquiflo 35F gear pump set up.  The pump is designed to operate 

within ambient temperature range of -20 ºC and 40 ºC.  Its maximum flow can be operated to 13.0 

LPM and maximum speed can be applied to 1750 RPM.  The maximum pressure drop, shows in 

the pump specifications, is 6.9 bar.  Deionized water is feeding by the PVC hose from right side 

of the pump and flowing into the pipes system from left side of the pump.  Figure 32 shows the 

performance of the gear pump when it operates with either water or oil.   
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Figure 31: Liquiflo gear pump  

       

Figure 32: The performance curves of the 35F gear pump with the test fluid water and oil. 

(http://www.liquiflo.com/v2/gears/3/35f.htm) 
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3.1.3 Mass flow meter 

 Figure 33 shows the CMFS010M model micro mass flow sensor.  It can be operated, the 

mass flow rate, approximate 30 g/s.  The mass flow accuracy of this sensor is ± 0.05 % on liquids 

and ± 0.25 % on gases.  For the temperature accuracy is ± 1 ºC ± 0.5 % of reading on both liquids 

and gases fluid.  The mass flow rate is measured by vibrations of two parallel measuring channels 

in the sensor.   When flow is introduced, the channels are going to twist and cause the inlet vibration 

frequency and outlet vibration frequency difference shows as Figure 34.  This sort of difference is 

proportional to the mass flow rate.       

 

Figure 33: Mass flow meter 
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Figure 34: Mass flow rate measurement  

3.1.4 Test section 

 Figure 35 shows the aluminum test section are 0.5, 0.375 and 0.14 inches on the top, and 

0.19 and 0.3 inches on the bottom.  In the experiment, the 0.5 inches diameter test section is 

irreplaceable no matter the contraction or expansion tests.   Figure 36  illustrates the configuration 

of the test section.  The given fluid are flowing through the test section from left side and leaving 

on the right side.  Ten pressure taps were installed in the bottom of the test section, the distance of 

a tap to another is approximately 1 inch, will provide us the local pressure data and help us to find 

static pressure.  However 1/8 inches flexible PVC channels are connected with taps.  In order to 

collect the accurate and efficient data, bubbles are not allowed in the internal flexible PVC 

channels before the fluid are introduced into the test section. 

 In the experiment, the constant mass flow rate and temperature are required.  The inconstant 

mass flow rate will cause various velocities in the test section during a time period.  The uncertainty 

velocities are going to affect the static pressure data we are expected.  The constant temperature 

or the isothermal condition is also an important factor during the experiment, because the 

temperature difference can make unnecessary thermal properties change especially when the phase 

change occurs.       
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Figure 35: Various diameters test sections 

 

Figure 36: The schematic of the test sections with upstream 0.5 in. - diameter (Left side) and 

downstream 0.14 in. – diameter (Right side). 
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3.1.5 Thermocouples 

 Six inches long TMQSS-020U-6 quick disconnect thermocouples with miniature 

connectors are used to measure the bulk temperature of the fluid at inlet and outlet. Figure 37 is 

the thermocouple set up downstream of the test section.  The tip of thermal probe is inserted in the 

center of the channel perpendicularly in order to get the accurate temperature data.  The purpose 

in this studying, the inlet temperature is expected to be approximately same as the outlet 

temperature.  The other side of the connector is connected to the acquisition system.  All of the 

temperature reading data are collected by the acquisition unit. 

 

Figure 37: TMQSS-020U-6 Thermocouple at downstream 
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3.1.6 Pressure transducers 

 From left to right 300, 36 and 9 psi Rosemount differential pressure (DP) transmitters, with 

± 0.65 % accuracy, are applied in the experiment as shown in Figure 38.  There are the manifolds, 

which are installed between the test section and the pressure transmitters, on both upstream and 

downstream test sections.  Therefore one 50 psi static pressure transducers is also installed 

individually on the upstream manifold and the downstream manifold.  The differential pressure 

data can be read by the acquisition unit. 

 Normally, pressure drop is getting small when the diameters of the channel become small.  

However these three DP transmitters are going to be inaccurate for pressure drop measurement 

when the larger diameter channels were applied.  Because the DP transmitters could not receive 

the accurate value when the larger diameter was used, the 50 psi static pressure transducers are the 

reliable and accurate measuring transducers. 

 

Figure 38: Rosemount differential pressure transmitters  
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3.1.7 Heat exchanger 

 The heat exchanger is used to keep the temperature of fluid same during the entire 

experimental period.  In our case, two heat exchangers are applied in our flow system.  One is set 

up before the inlet test section in order to guarantee the isothermal process when the fluid flows 

through the test section.  The other one is placed at outlet downstream section for removing the 

extra heat which are generated by the flowing fluid through the test section.  

3.1.8 Gas flow mass controller 

Since the flow rate of the liquid is controlled by gear pump regulator, Alicat flow mass 

controller is used for operating the gas flow.  Figure 39  shows the outward appearance of the 

controller.  The range of the volumetric flow rate can be applied the minimum flow rate from 0.025 

to maximum flow rate 5 standard liter per minute (slpm).  In our experiment, nitrogen was used as 

the gas portion in this two phase flow experiment.  The volumetric flow range was operated 0.025 

to 1 slpm for each test section.  The reading data from the experiment can be collected by RS -232 

terminal program on Microsoft Windows operating system in the acquisition system.  Pressure, 

temperature, volumetric flow rate and mass flow can be read and collected in the system.            
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Figure 39: Alicat MC5 slpm full scale flow mass controller 

3.1.9 Data acquisition system  

 This system consists of two major devices, one is an Agilent 34972 and the other one is a 

computer center.  This system will read and collect the data from the CMFS010M model micro 

mass flow meter, TMQSS-020U-6 quick disconnect thermocouples and pressure transducers 

including three Rosemount meters and two static pressure transducers in an excel format.  Yet we 

can organize, analyze and plot the data easily on the computer screen.  Figure 40 is the Agilent 

acquisition.    
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Figure 40: Agilent/HP 34972A LXI data acquisition switch unit 

3.2 Experimental procedure  

 Leakage free checking in the flow loop is a first step and a necessary procedure in the 

beginning of the experiment, in order to guarantee the entire experimental test data are effective 

and usable. DPG-107 Dwyer digital pressure gauge and A T-970 Ametek pneumatic hand air 

calibration pump are used for preventing and calibrating the possibility of the flow loop leakage.  

The pressure range of the digital pressure gauge can be applied up to 300 psi (20.69 bar) and the 

hand pump allows pressure range from 0 to 580 psi (0 to 40 bar).  Figure 41 shows the gauge and 

the hand pump combination.  In this step, the inlet valve, which was setup after the mass flow 

meter and before the test section, and outlet valve, which was located after the test section and 

before the heat exchanger, were closed.  Therefore the hand pump was connected the gas inlet 

entrance and continually giving the pressure by press and unlash the handle until the pressure reach 

the maximum which the handle was hardly to apply the pressure anymore.  In this moment the 

pressure vent valve was closed, the whole test section acted as a close system, and the gauge was 
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observed in few minutes.  If the pressure reading doesn’t change on the gauge display means the 

leakage test is successful, otherwise to check and replace leakage parts are necessary.              

 

Figure 41: The combination of DPG-107 Dwyer digital pressure gauge and A T-970 Ametek 

pneumatic hand air calibration pump 

3.2.1 Single phase flow experimental procedure 

3.2.1.1 Equipment and requirement setup  

The properties and behaviors of the single phase flow observation was a step before the 

application of the two phase flow.  In this step the gas entrance valve was turned off, the mass flow 

5, 10, 15, 17.5, 20, 22.5, 24.5, 26.5, 28.5 and 30 g/s were given sequentially for each contraction 

and expansion test sections.  The five pressure taps were located at upstream pipe and other five 

were set at downstream, the five pressure drop data were observed and collected by the acquisition 

system from these taps.  The static pressures were also considered to gather as the required data in 
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the experiment.  The operating fluid temperature was required as a constant value by the heat 

exchanger.  After a test section had been installed in the flow loop, the flexible plastic channels, 

which connect the pressure taps to valves that were installed on the pressure gauge manifold, had 

to be checked whether or not bubbles inside the channels before the beginning of the experiment.  

The bubble could cause an unwilling influence in the reading result.  Before start collecting the 

effective data in the acquisition, turn on the gear pump and let the fluid flow through entire flow 

loop for five minutes in order to reach stable condition of the mass flow rate.  After the five minutes, 

the data could be collected by different types of stop scanning.  The contraction experiment had 

been done, and yet reverse the test section in order to acquire the expansion data, furthermore 

replaced the next test section and so on so forth.             

3.2.1.2 Data reading setup 

The pressure drop, temperature and mass flow data reading setup were needed for the 

acquisition system.  There were five locations required for measuring the data.  Each location was 

applied by different type of stop scanning.  The first location stop scanning setup was after 100 

scans.  The second location stop scanning setup was 50 seconds elapsed time.  Third location stop 

scanning was set elapsed time for 40 seconds.  Fourth location stop scanning was after 150 scans. 

The final location stop scanning was 90 sec elapsed time.  Each experimental required flow rate 

was run three times in order to collect accurately reading data in the experiment.            

3.2.2 Two phase flow experimental procedure 

   The gas entrance valve was opened in order to pass the required nitrogen gas mass flow 

rate through the test section.  Five gas mass flow rates, which units is Standard liter per minutes 

(SLPM), were applied in the experiment: 0.025 (≈ 0.00048 g/s), 0.1 (≈ 0.0019 g/s), 0.5 (≈ 0.0095 

g/s), 1(≈ 0.019 g/s), 1.5 (≈ 0.028 g/s).  Each giving gas flow rate remained constant and run with 
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single water flow 5, 10, 15, 17.5, 20, 22.5, 24.5, 26.5, 28.5 and 30 g/s individually.  The data of 

the water behaviors were still collected and presented by Agilent software, the gas performances 

were received by HyperTerminal which menu on Microsoft windows.  After the whole data 

readings were acquired, flip the test section to receive the opposite section data for either 

contraction or expansion.  The test section changed one by one after the process was done, and so 

on so forth.            

3.3 Data analysis  

 The thousand data were measured in the experiment, the value of data could not be claimed 

as true value.  The experiment data are always contained and companied with errors of the outcome 

values.  To receive precision and accuracy experimental data, the experimental uncertainty and 

percent error are going to apply in the correction of the result.  The equations are shown as below 

and APPENDIX A is the estimation result:   

Standard deviation (SD): 

𝜎𝑥 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 

(3.1) 

where: 

𝑁 = Number of the measured values 

 𝑥𝑖 = The i-th measured value of 𝑥 

𝑥̅ = Meaning of the measured values 
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Standard error of mean (SEM) 

𝑆𝐸𝑀 =
𝜎𝑥

√𝑁
 

(3.2) 

The percent of error: 

% 𝐸𝑟𝑟𝑜𝑟 =
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒
 

(3.3) 
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CHAPTER IV 

RESULT AND DISCUSSION 

4.1 Minor loss coefficient observation 

 The Eq. 2.46 is used to predict the loss coefficient with contraction channels.  Assumption 

of turbulent flow not completely uniform velocity profiles and total uniform velocity profiles are 

made.  The result indicates the loss coefficient with not completely uniform assumption is around 

0.5 and the loss coefficient of the full uniform assumption is lower than 0.4.  In the lower Reynolds 

number situation the Eq. 2.47 is suggested for prediction.  However, the prediction equation 

suggest the loss coefficient should be 0.85 roughly, especially Reynolds number after 6000.  

 

Figure 42: Multiple predictions for σc = 0.0784, ṁL (g/s) =5.63-30 
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Figure 43 shows loss coefficient against velocity from experimental data and previous 

experimental result from Yoda’s [1] report.  The previous data expresses that the loss coefficinet 

seems decreasing when the velocity is increased.  In our experiment, the loss coefficeint is also 

reducing when the velocity is getting faster.  To neglect the singularities, the loss coefficient of the 

experimental data can be expected affirmatively that the loss coefficient is inversely proportional 

to the velocity. 

 

Figure 43: Velocity influence on loss coefficient for exp. v (m/s) = 0.56-3.03 and previous v 
(m/s) = 1.25-6.67 
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The minor loss coefficient is suggested around 0.67 in this case which shows in Figure 44.  

The turbulent flow not completely uniform prediction in this area ratio 0.1444 will be 0.47.  The 

uniform prediction is 0.34 at this time.  All result indicates that the loss coefficient is reduced when 

area ratio is increased.  The experimental data of the loss coefficient becomes flat and predicable 

after Reynolds number equals 6000. 

 

Figure 44: Multiple predictions for σc = 0.1444, ṁL (g/s) =5.74-30.16 

The loss coefficient performance in our experiment can be predicable at higher velocity 

which is great than 1.5 m/s.  The experimental data begins decreasing slowly and the slop of the 

loss coefficients are getting flat and constant when Reynolds number after 6000.   

 

 

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2000 4000 6000 8000 10000

K
 

Re

K vs Re

exp.

pred. turbulent flow not
completely uniform (eq.2.46)

pred. uniform (eq.2.47)

pred. lower Re (eq.2.48)

suggestion k≈ 0.67



73 

 

4.2 Pressure drop observation 

4.2.1 Single phase performance 

  The pressure drop can be estimated from the point of the upstream trend line where the 

distance equals to zero subtracts the point of the downstream trend line where the distance. 

 

Figure 45: Pressure drop performance for σc = 0.1444, ṁL (g/s) = 5.74 
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Figure 46: Pressure drop performance for σc = 0.1444, ṁL (g/s) = 30.16 

 The comparison of these three flows illustrates the slop of the pressure drop is elevated 

gradually and the slop of the pressure differences can be expected to reach the maximum when 

the highest of the experimental mass flow rate is operated. 

 

Figure 47: Pressure drop performance for σc = 0.1444, ṁL (g/s) = 5.74, 9.46 and 14.89 
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Figure 48: Pressure drop performance for σc = 0.1444, ṁL (g/s) = 5.74 and 30.16 

To ensure the formula of prediction can perfectly work on our data, the equation check is 

definitely needed from the previous data which obtained from Yoda’s [1] report.  The checking 

result seems fine when the range of Reynold number from 1000 to 6000 and pressure drop up to 

45 kPa. Figure 49 shows the result of the formula checking. 

 

Figure 49: Pressure drop performance for σc = 0.1444, ṁL (g/s) = 5.74 and 30.16 and previous 
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Figure 50 illustrates the multiple pressure drop behavior predictions.  According to Eq. 2.8, 

laminar flow prediction, shows better agreement than other predictions.  Figure 51 demonstrates 

the data can be predicted within ± 20%. 

 

Figure 50: Pressure drop performance and predictions for σc = 0.1444, ṁL (g/s) = 5.74-30.16 

 

Figure 51: Pressure drop performance with ± 20% for σc = 0.1444, ṁL (g/s) = 5.74-30.16 
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Figure 52: Pressure drop standard deviation for σc = 0.1444, ṁL (g/s) = 5.74-30.16 

 

Figure 53: Pressure drop performance for σc = 0.0784, ṁL (g/s) = 14.89 
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Figure 54: Pressure drop performance for σc = 0.0784, ṁL (g/s) = 30 

 

Figure 55: Pressure drop performance for σc = 0.0784, ṁL (g/s) = 5.63, 9.68 and 14.89 
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Figure 56: Pressure drop performance for σc = 0.0784, ṁL (g/s) = 5.63 and 30 

 

Figure 57: Pressure drop performance and predictions for σc = 0.0784, ṁL (g/s) = 5.63-30 
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Figure 58: Pressure drop performance with ± 20% for σc = 0.0784, ṁL (g/s) = 5.63-30 

 

Figure 59: Pressure drop standard deviation for σc = 0.0784, ṁL (g/s) = 5.63-30 
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agreements with our experimental data.  The experimental data might much more close to laminar 

flow than the fully turbulent flow. 

4.2.2 Two phase performance 

4.2.2.1 Pressure drop in contraction channels 

 For estimating the two phase flow pressure drop, many assumptions are made.  The fluid 

is incompressible to ensure the density of the fluid keeps same everywhere in the test section.  

Homogeneous flow in the two fluids assumption is for keeping either liquid velocity and gas 

velocity are same all the time which makes slip ratio equals to one.  The phase flow in contraction 

usually relates with vena contracta, therefore the consideration about whether or not vena contracta 

in the fluids flow for testing the experimental data become the critical and essential condition.  

Figure 60 gives the general prediction concepts as below.     

 

Figure 60: Pressure drop performance and predictions for σc = 0.1444, ṁL (g/s) = 4.97-30, ṁG 
(g/s) = 0.0019 
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In the Zivi’s slip ratio model (Eq. 2.25), the pressure drop prediction in contraction can be 

received better estimation since Reynolds number larger than 4000.  The pressure drop can be 

obtained from the experiment as the known value.  The void fraction (α) can be calculated back 

and found it.  However the new prediction formula of the pressure drop, which Reynolds number 

less than 4000, should be generated in the future.   

 

Figure 61: Pressure drop performance with ± 20% for σc = 0.1444, ṁL (g/s) = 4.97-30,                 
ṁG (g/s) = 0.0019 
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Figure 62: Pressure drop standard deviation for σc = 0.1444, ṁL (g/s) = 4.97-30,                         

ṁG (g/s) = 0.0019 

  

 

Figure 63: Pressure drop performance and predictions for σc = 0.3844, ṁL (g/s) = 5.03-29.97,     
ṁG (g/s) = 0.0019 
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Figure 64: Pressure drop performance with ± 20% for σc = 0.3844, ṁL (g/s) = 5.03-29.97,           
ṁG (g/s) = 0.0019 

 

 

Figure 65: Pressure drop standard deviation for σc = 0.3844, ṁL (g/s) = 5.03-29.97,                      
ṁG (g/s) = 0.0019 
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Figure 66: Pressure drop performance and predictions for σc = 0.5625, ṁL (g/s) = 5.12-30.1,      
ṁG (g/s) = 0.0019 

 

 

Figure 67: Pressure drop performance with ± 20% for σc = 0.5625, ṁL (g/s) = 5.12-30.1,             
ṁG (g/s) = 0.0019 
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Figure 68: Pressure drop standard deviation for σc = 0.5625, ṁL (g/s) = 5.12-30.1,                         
ṁG (g/s) = 0.0019 
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as single phase flow.  Nevertheless, the most of the pressure drop will no long be affected 

apparently by Reynolds number changing.   

 

Figure 69: Pressure drop performance for σe = 0.5625, ṁL (g/s) = 15.01                                          
ṁG (g/s) = 0.00954 

 

 

Figure 70: Pressure drop performance for σe = 0.5625, ṁL (g/s) = 28.5                                              
ṁG (g/s) = 0.00954 
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Figure 71: Pressure drop performance and predictions for σe = 0.5625, ṁL (g/s) = 4.96-30.04     
ṁG (g/s) = 0.00954 

 

 

Figure 72: Pressure drop performance with ± 20% for σe = 0.5625, ṁL (g/s) = 4.96-30.04            
ṁG (g/s) = 0.00954 
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Figure 73: Pressure drop standard deviation for σe = 0.5625, ṁL (g/s) = 4.96-30.04                        
ṁG (g/s) = 0.00954 

 

 

 

Figure 74: Pressure drop performance and predictions for σe = 0.3844, ṁL (g/s) = 5.06-30.09     
ṁG (g/s) = 0.0019 
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Figure 75: Pressure drop performance with ± 20% for σe = 0.3844, ṁL (g/s) = 5.06-30.09            
ṁG (g/s) = 0.0019 

 

 

Figure 76: Pressure drop standard deviation for σe = 0.3844, ṁL (g/s) = 5.06-30.09                       
ṁG (g/s) = 0.0019 
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Figure 77: Pressure drop performance and predictions for σe = 0.1444, ṁL (g/s) = 5.09-30.04     
ṁG (g/s) = 0.0019 

 

 

Figure 78 Pressure drop performance and predictions for σe = 0.1444, ṁL (g/s) = 5.09-30.04      
ṁG (g/s) = 0.0019 
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Figure 79: Pressure drop standard deviation for σe = 0.1444, ṁL (g/s) = 5.09-30.04                       
ṁG (g/s) = 0.0019 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The application of the single and two phase flow across abrupt contraction and expansion 

channels have been increasing dramatically in recent years.  The most two phase studies are 

investigating for larger channels and the correlation equations normally can be proper used in their 

own experimental data.  However, this studying are going to figure out the pressure drop behaviors 

and better prediction formulas for them.  Loss coefficients are also the significant factor for 

observing the effect with test section geometrical changing and mass flow differences. 

In order to gain the accurate and precise data result.  The devices reliabilities and accuracies 

understanding are significantly important before the experimental data collecting.  Also, the 

uncertainties estimation after the experimental data have been collected are necessary for precise 

and accurate true values.  The experiment data results were received directly from the data 

acquisition system.  The accuracy of the devices and instruments were significant affected the data 

result.  For collecting static pressure transducers was with the ±0.02% accuracy.  The flow meter 

sensor is ±0.05% accurate for mass flow rate and volume and ± 10°C for the temperature 

measurements.  The gas mass flow controller was 0.8% of reading + 0.2% of full scale accuracy.  

Therefore the experimental data accuracy analysis was by describing in standard error, standard 

deviation and percent error.  However, the pressure difference was the major factor for observation 

in the studying.  The uncertainty of the pressure drop result, from appendix A, demonstrates that 
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most of the uncertainties are under 5 % and the uncertainties for gas mass flow, even better, are 

approximate below 2%.   

From the experimental result approximate same water mass flow operating in various 

contraction channels for single phase flow, Reynolds number is going to be fully turbulent flow 

but not yet when area ratio as small as possible. Reynolds number is inversely proportional to the 

area ratio in our experimental result.  The pressure drop becomes larger when area ratio is smaller 

with faster mass flow rate.  The pressure drop is proportional to Reynolds number in this case.  To 

estimate the better pressure drop prediction formula in this experiment, the turbulent, but not 

complete, flow model and flat velocity flow are applied at this time.  The data points result 

demonstrates that the points are generally higher than these prediction loss coefficients.  The 

performance of the loss coefficient is also suggested, approximate 0.85, in the result.  The loss 

coefficient can be figure out by using Eq. 2.45.  While the area ratio is getting larger, then Reynolds 

number is becoming smaller which the flow regimes local between the laminar and transition 

which are indicated in the experimental result.  Also the pressure drop is reduced by increasing 

area ratio and the pressure drops don’t significantly affect by increasing Reynolds number when 

the larger area ratio is applied.   The prediction formulas for the pressure drops do not worked well 

for the turbulent not complete profiles model, the flat velocity profiles model or vena contracta 

model assumptions.  The loss coefficients are generally recommended higher than the incomplete 

turbulent model and flat velocity model in the contraction channels.   

The small area ratio in the expansion channels has same influences with the pressure drop 

performance, Reynolds number value and loss coefficient.  The pressure drop stays higher when 

Reynolds number is also higher.   The pressure drop is proportional to Reynolds number as the 

small area ratio in contraction channels as well.  The pressure drop prediction can be a rough 
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agreement with experimental data.  And then the loss coefficient is to suggest to use Eq. 2.43.   The 

pressure drop is no long affecting by increasing Reynolds number in larger expansion area ratio.  

The prediction formulas don’t agree with the experimental data, a new equation should be 

generated in the future for accurate prediction in this situation.     

Two phase flow in the smaller area ratio contraction channels and lower gas mass flow rate, 

the pressure drop can be estimated highly accurate with experimental data by using Zivi’s slip ratio 

model prediction.  Reynolds number in this case is up to 7913 which means it’s behaviors might 

close to fully turbulent flow regime.  In the larger contraction test section and higher gas mass flow 

rate, the pressure drop can be predicted by using incompressible with Geiger’s vena contracta 

model and unchanged void fraction.  The estimation shows the fine agreement with the collecting 

data.   

For the smaller area ratio and lower gas mass flow rate in two phase flow expansion 

channels, the result indicates that the incompressible model is the best prediction for this case but 

the void fraction obtaining needs a new investigation and result.  In this situation, the void fraction 

is obtained by inverse method.  The pressure drops, qualities, slip ratio and densities have been 

collected and calculated.  The void fraction can be the only unknown value for calculating Eq. 2.19 

by trial and error the new void fraction can be found.  However even the new void fraction values 

have been found the new formula for void fraction should be investigated and generated in the 

future.  Kawahara correction, Figure 78, shows great agreement when Reynolds number greater 

than 6000 in the small area ratio.  The pressure drop experimental data are quite low compare to 

single phase pressure drop in this smaller area ratio condition.  Nevertheless, Reynolds number is 

raising with constant gas flow rate and increasing water flow rate, but the Reynolds number in this 

situation is lower than single phase flow.  The same situation occurred for two phase flow in the 
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larger expansion with lower gas mass flow rate.  However when gas mass flow is increasing in 

larger expansion channels, the pressure drop becomes unstable and unpredictable.        

5.2 Recommendations 

 Many prediction and correlation equations and formulas can be found from the previous 

works and studies for single and two phase flow with abrupt contraction and expansion.  The 

correct assumption making and right equations selecting are major works need to deal with it.   

Normally, the prediction equations are only proper for their own experiments, thus for obtaining 

the experimental data prediction formulas need to treat with caution.  In our experiment data, some 

prediction equation will be greatly agreed with the experimental data, some don’t.   Most equations 

with limit conditions and narrow ranges downward to particular cases.  In our studying, the 

equations are quite fitted with previous work in approximate same area ratio but different flow 

rates, the equations cannot be used directly.  The equations need to revise and give or take out new 

conditions or assumptions.  Some new equations are suggested after this experiment.  A new 

pressure drop equations or conditions for estimating the larger area ratio and faster gas mass flow 

should be generated and derived.  The void fraction equations need to obtain for two phase flow 

in expansion and contraction.  The proportion of water mass flow rate with gas mass flow rate are 

quite important.  The slow water mass flow cannot flow itself fluently due to the stronger gas flow 

rate injects into the flow system.  It might cause the water fluid counterclockwise drives the 

incorrect mass flow obtaining.    
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