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ABSTRACT 

 

  Continued observation of double stars is necessary for confirmation of binarity and to 

provide updates to astrometric data used to compute accurate binary orbital parameters, thereby 

more accurately informing stellar mass estimations – the critical parameter from which stellar 

models are derived.  In October of 2013, six double stars from the Washington Double Star 

(WDS) catalog exhibiting close separations, as well as significant deviations from previously 

published orbits, were observed and imaged using the speckle interferometric technique on the 

2.1-meter telescope at Kitt Peak National Observatory (KPNO) in Arizona.  The observations of 

the six double stars occurred as part of large, collaborative, eight-night, student-learning-centered 

observing run organized by principal investigator Genet of California Polytechnic Institute.  The 

run produced in total roughly 1000 raw speckle images for each of the more than 1000 double 

stars and single reference stars observed, resulting in a total database of 1.4 terabytes.  The 

speckle images for the targets, including the six targets investigated in this thesis, were taken 

using a relatively low-cost, portable speckle interferometry camera system developed by Genet, 

the heart of which is a lightweight, high speed, high signal to noise ratio (SNR) Andor electron 

multiplying CCD (EMCCD) camera capable of exposures on the order of tens of milliseconds.  

Exposures of 10-20 milliseconds are faster than atmospheric coherence timescales, and allow for 

the implementation of the speckle interferometry – the obtainment of diffraction-limited image 

information of binary stars defined by the full aperture of the telescope from the autocorrelation 

and Fourier analysis of randomly distributed, isoplanatically correlated speckle pairs, which 

represent the diffraction-limited images of the associated coherence cells above and



xi 
 

 within the atmospheric area of the primary aperture (sub-apertures).  Following the Oct. 2013 

observing run, reduction and analysis of the speckle images for the six target binary stars (as well 

as five calibration binaries) and determination of the new astrometry was completed using the 

general purpose astrometry software program PlateSolve3 (PS3), written and developed by Rowe 

& Genet (2014).   

Using the new astrometric data derived from the Oct. 2013 2.1-meter speckle 

observations, the previously published United States Naval Observatory (USNO) orbital plots for 

the six target doubles were updated to reflect the new, and in some cases missing measurements.  

Target double star orbits were reevaluated in light of the updates in order to draw conclusions 

about the characteristics of each proposed binary system.  In all six target cases, continued trends 

in significant astrometric deviations from published orbits and ephemerides have been 

demonstrated by the new observations, indicating the need for orbital revisions of these binaries.  

Analysis of systems WDS22357+5413, WDS02231+7021, and WDS06256+2227 indicate 

rectilinear rather than Keplerian motion, and are concluded to likely be optical doubles.  As a 

result of this work, two observations of WDS05153+4710 were shown to be erroneous and have 

been scheduled to be removed from this binary’s WDS observational record (Mason, private 

communication, 2015).   

Complementary to the central goal of investigating the six target close visual double stars 

via speckle interferometry, the entire effort demonstrated the applicability and utilization of 

relatively low-cost portable speckle camera systems on large telescopes, as well as the value and 

advantages of student participation and contribution within the realm of a large-scale observing 

run at a major observatory and the resulting peer reviewed scientific works that follow.
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CHAPTER I 

OVERVIEW 

 
Introduction 

 
 From the Earth’s perspective, one can survey a reasonably unpolluted night sky and 

observe many stars as close pairs, having separations much smaller than the diameter of the full 

moon.  Many of these stars, termed double stars, are gravitationally bound, and more specifically 

referred to as binary stars.  The two components of a binary star, the primary and secondary, 

orbit a common center of gravity and share a similar physical location in the galaxy.  Other 

double stars are merely illusions called optical doubles.  Optical doubles appear very near each 

other from the observer’s perspective, but may actually be largely separated along the line of 

sight and are not considered to be gravitationally associated, apart from residing in the same 

galaxy. 

Observational measurements of double stars, specifically the apparent position and 

separation of the two stars relative to one another, can be obtained using a variety of techniques 

such as visual micrometry, photometry, lucky imaging, and speckle interferometry.  From these 

relative apparent position measurements, it is possible to obtain further information about the 

observed stars, such as the true orbital parameters, and in turn the masses of the components 

provided accurate parallax data is available (Argyle 2012).  Coupled with accurate parallax data, 

binary star observations and orbit computations resulting from a record of visual astrometric 

measurements (or radial velocities determined from shifting spectral lines in the case of eclipsing 

spectroscopic pairs), remain the only current, reliable, and direct methods of stellar mass 
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determination (Massey & Meyer 2001).  Accurate stellar mass estimates allow for better 

constraints of the empirical mass-luminosity (M-L) relationship (discovered by Hertzsprung and 

Russell in 1923), considered to be one of the fundamental descriptions of stellar properties, and 

the basis of modern developed stellar interior and evolution models, underscoring the great 

importance of accurate stellar mass determination through binary star observations (Heintz 1978, 

Couteau 1981, Massey & Meyer 2001, and Argyle 20122).   

Chapter 1 of this thesis will serve as an overview of double stars and double star science, 

including a review of the major milestones and developments related to the field over the past 

four decades, a discussion of the importance of double star science, and a theoretical description 

of the speckle interferometric technique which flows from the well-known interference 

phenomena of light.  Chapter 2 describes the observations, including details of the 2.1-meter 

telescope, observational techniques, target selection, and specific data obtained during the 

October 2013 KPNO I speckle observing run.  Chapter 3 reviews the methodology, including 

explanations of how the obtained data were reduced, analyzed, and interpreted, concluding with 

a discussion regarding the calibration, precision, and accuracy of the observations.  The final 

chapter presents the findings, discussions, and conclusions regarding the work.     

Statement of Problem and Experimental Hypothesis  

The officially stated problem related to this thesis holds that many binary star systems 

remain unconfirmed, or are astrometrically poorly described.  These problematic binaries, having 

prematurely published preliminary orbits of poor accuracy, necessitate the need for additional 

quality observations to help constrain the relative astrometry of the binary systems, leading to 

revised orbits and therefore improved stellar mass estimates.  The experimental hypothesis of 

this current thesis states that one additional speckle interferometric observation of a poorly 
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described binary star system possessing a preliminary, low grade orbit, will contribute to the 

understanding of the system and provide further information necessary for the confirmation of 

binarity, or revision of the described preliminary orbit. 

Double Stars  

Observations and surveys of the night sky from the middle to late 20
th

 century have 

shown that it is just as common, if not more so, for stars to exist in pairs or multiples, as it is for 

single stars to exist, as is the case with the Sun (Couteau 19812).  Mason & Hartkopf (2003) 

suggest that two thirds of the stars visible from our terrestrial perspective are binaries or 

multiples.  Heintz (19782) also offered disparity among multiple and single star systems, stating 

the observed area around the Sun shows clearly that single star systems are the minority.  More 

specifically, Heintz (19782) stated that 85% of observable stars are members of double or 

multiple systems, and held that some 20
th

 century studies indicate 85% is likely a conservative 

estimate.  The results of numerical studies by Jaschek & Gomez (1970), Abt & Levy (1976), and 

Duquennoy & Mayor (1991) indicate very high duplicity and multiplicity frequencies for stars 

within the galaxy.  Argyle (20123) agrees that multiple star systems are the rule, rather than the 

exception, in the solar neighborhood, and probably beyond.  Such conclusions are quite logical if 

one considers that many stars are often born simultaneously and out of the same stellar nebula, in 

close proximity, according to current stellar formation and evolution models (Argyle 20124).   

However, more recent studies concerning the frequencies of single, double, or multiple 

star systems (hereafter referred to as multiplicity studies) have incorporated improved data 

constraints, such as those informing the initial stellar mass function (IMF) which indicates most 

stars in the galaxy are of spectral class M (relatively cool and low mass stars – red dwarfs).  

Recently, improved understanding of the relationship between multiplicity and spectral class has 
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suggested multiplicities very different than previously thought (Lada 2006).  For example, 

surveys completed by Leinert et al. (1997), Reid & Gizis (1997), Delfosse et al. (2004), and 

Siegler et al. (2005) have indicated that binary frequency declines sharply from the G class 

value, being only around 30% for M class stars, and even lower for L and T class dwarfs – 

objects near or below the hydrogen burning limit of <.08 solar masses (Mʘ) (Gizis et al. 2003; 

Massey & Meyer 2001).  Raghavan et al. (2010) conducted a survey of 454 solar-type stars via 

long-baseline interferometry and speckle interferometry, among other techniques, at the Center 

for High Angular Resolution Astronomy Array (CHARA), and concluded that the majority (54% 

± 2%) of solar-type stars are single, in contrast to the results of prior multiplicity studies which 

suggested much lower percentages for unassociated solar-type stars.  These recent efforts imply 

that if the galactic stellar population is primarily composed of M class stars, and that the 

multiplicity of M class stars, as well as G class stars, is comparatively low, then previously 

accepted ideas about the frequency of double and multiple star systems in the galaxy and beyond 

may be grossly overestimated, and that single stars are actually the majority (Lada 2006).  

Regardless of the possible erroneous estimates of multiplicity made in the past, the 

galaxy undoubtedly still contains many double and multiple star systems that remain to be 

discovered, confirmed, and studied.  Iconic examples of confirmed star systems which 

demonstrate multiplicity include systems such as the Trapezium within M42 (Orion) and the 

complex system of Alpha Geminorum (Gemini) as shown in Fig. 1.  Although no binary star 

system has been observed in the act of formation, it is thought that binary stars typically come 

about when two stars are born in close proximity and become gravitationally bound about a 

common center of gravity, each star revolving around the Barycenter as a system under the 

influence of centripetal force due to the force of gravity, i.e. Keplerian motion (Argyle 20125).  
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The specific mechanics of binary star formation are still not completely understood, but most 

experts agree that formation involves stages of early fragmentation resulting in condensing cores 

that become the components of the binary, followed by evolution via accretion and migration, 

thereby fixing the final masses of the components and the orbital parameters of the system 

(Halbwachs et al. 2003).  

 
Fig. 1 – α Geminorum – the Castor sextuplet system.  The estimated orbit of the Castor C and 

Castor AB system is greater than 10,000 years.  The orbit of the smaller Castor B and Castor A 

system has been estimated to 476 years (Heintz 1988).  Figure adopted from an infographic created 

by NASA’s Jet Propulsion Laboratory. 

http://www.jpl.nasa.gov/infographics/infographic.view.php?id=10884.  

 

As previously stated, gravitationally bound double star systems are more specifically 

referred to as binary stars (Heintz 19783).  This distinction exists currently as the term double 

star has become a more general term referring to binary stars and also to optical doubles.  

Optical doubles, although relatively few in number compared to binary stars according to 

Couteau (19813), are chance orientations, more accurately understood by applying the expression 

of two ships passing in the night (whether Couteau’s conclusion regarding the frequencies of 

binaries vs. optical couples is correct remains to be seen).  One star in an optical double may be 

http://www.jpl.nasa.gov/infographics/infographic.view.php?id=10884
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located light years away from its partner along the Z-axis, or line of sight relative to the observer, 

and thus the stars are not gravitationally bound about a common center. 

Binary pairs which are truly gravitationally bound, however, may have such small 

physical separations that the surfaces of the components nearly touch – so called contact systems 

(Argyle 20126).  Normally, binaries so closely separated cannot be distinguished visually using 

normal ground-based telescopes and necessitate the application of advanced techniques to 

distinguish the stars, including spectroscopy (based on radial velocities and movement of 

observed spectral lines), astrometry (based on cyclical proper motion changes of a star compared 

to faint background stars due to the presence of an unseen orbiting companion), and photometry 

(based on eclipsing binaries and changes to measured light curves – see Fig. 2) (Argyle 20127).   

 
Fig. 2 – Diagram representing differential photometry typical of eclipsing binary systems.  The 

system luminosity decreases slightly as the secondary eclipses a portion of the primary (A) and 

drastically as the primary completely eclipses the secondary (B).  Eclipsing binary systems are only 

seen as such when the orbit appears at least slightly edge on as viewed by the observer.  Source: 

http://ircamera.as.arizona.edu/astr_250/Lectures/Lecture_15.htm.  

 

Thus, the major classes of binary stars (visual, spectroscopic, photometric, and 

astrometric) are derived from the various detection methods that exist – see Fig. 3.  Recently 

developed advanced amplitude optical interferometry arrays such as CHARA on Mt. Wilson, 

which employs six 1-meter optical telescopes in a Y-configuration interferometer, can provide 

milliarcsecond (mas) resolution, allowing close binaries with orbital periods of just one day to be 

http://ircamera.as.arizona.edu/astr_250/Lectures/Lecture_15.htm
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resolved (McAlister 1999).  More on the developmental history of binary star observing 

techniques and current capabilities will be provided later in this chapter.  Many double stars have 

larger separations, allowing the observer to distinguish the components using simple 

instrumentation such as binoculars or small telescopes, and are aptly named visual double stars.  

There are even a few double stars that can be distinguished using the naked eye, such as Alcor 

and Mizar (Ursa Major), and the more challenging ε
1,2 

Lyrae (Lyra), nicknamed the Double-

Double.  The majority of naked eye doubles, however, are only optical doubles (King 2014).  

This thesis deals exclusively with close visual double stars, best resolved and measured using 

large aperture telescopes. 

 
Fig. 3 – A simple schematic describing the major types of binary stars and their characteristics as 

seen from Earth. Schematic credit: https://quantumredpill.wordpress.com/2013/02/14/binary-stars/.   

 

History of Double Star Science 

Astrometric observations and measurements of double stars, consisting of position angle 

(θ) measured in degrees (°), angular separation (ρ) measured in arcseconds (”), and epoch or date 

of the observation (in fractional Besselian years) (see Fig. 4 for definitions), have been 

meticulously kept by double star observers over the last two centuries.  Published observations 

and measurements have also been assembled into many catalogs over the same span of time, 

mainly by the observers themselves – the first by Mayer in 1781 containing just 80 entries 

https://quantumredpill.wordpress.com/2013/02/14/binary-stars/
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(Heintz 19784).  The most up to date and widely accessed catalog is currently the United States 

Naval Observatory’s (USNO) Washington Double Star (WDS) catalog.   

 
Fig. 4 – The principle double star position measurements: Position Angle (PA or θ) is the 

angle between celestial north (representing 0° and 360°) and the line joining the components, 

represented here by the dotted line, in this case 135°; Angular Separation (ρ) is the apparent 

separation of or distance between the components measured in arcseconds or fractions thereof. The 

large black center circle is the primary star taken as the origin, and the red circle is the secondary 

star. Credit: Breit (2007).  Source: http://www.poyntsource.com/Richard/double_stars_video.htm.  

 

According to the WDS, over 120,000 double stars have been identified as of 2015.  Of 

these systems, 18,624 are confirmed physical binaries, 4,293 are optical couples, and 106,389 

remain unconfirmed (USNO 2015a).  Since its inception and official adoption as the double star 

field’s principal catalog in 1964, the WDS has grown considerably as observing techniques 

mature, diversify, and produce higher quality data (see Fig. 5).  Several generations of 

 

 
36. Fig. 5: Growth of Washington Double Star catalog & comparison of major double star  

Catalogs of the 20
th

century. (left) Growth in the number of measures in the Washington Double 

Star catalog since its inception in the early 1960's. The 1984.0, 1996.0, 2001.0, and 2006.5 editions of 

the WDS are indicated as well as more recent dates. (right) Comparison of major double star 

catalogs of the 20
th

 century. Credit: USNO.  Source: 

http://ad.usno.navy.mil/wds/wdstext.html#unpublished. 

http://www.poyntsource.com/Richard/double_stars_video.htm
http://ad.usno.navy.mil/wds/wdstext.html#unpublished
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astronomers keeping detailed records of their observations and measurements of double stars 

were necessary to arrive at such a catalog, as well as the current catalog of published binary star 

orbits – the USNO’s 6
th

 Orbital Catalog containing 2,518 orbits of 2,413 systems (as of 

September 2014).  It can be seen then, that the history of this specific astronomical field is vital, 

and although not the focus of this thesis, a brief historical review of double star science is 

warranted.   

Double star science offers a relatively short history, spanning slightly more than two 

hundred years, compared to the long history of astronomy in general, which likely began with 

mankind’s first pensive views of the heavens tens or perhaps even hundreds of thousands of 

years ago.  Much of the historical literature on the subject of double stars considers the 

observations of William Herschel in the late 18
th

 century to be the formal inception of double 

star astronomy (Couteau 19814).  However, more detailed historical records reveal observations 

of celestial objects, akin to what would be considered today a double star, dating back to the 

observations of Claudius Ptolemy in the 2
nd

 Century AD (Heintz 19785).  Considering the 

significance placed on celestial observation in the ancient world, it is reasonable to conclude that 

ancient observers, prior even to the celestial minded Ancient Greeks, Egyptians, and 

Babylonians, would have noted certain pairings observable to the naked eye, such as the pair of 

Alcor and Mizar in today’s Ursa Major.   

The history of double star astronomy reveals a steady increase of formally published 

works related to the field from year to year beginning with Herschel’s first published works in 

the late 18
th

 and early 19
th

 centuries.  The history also suggests an overall rapid evolution of 

observational and analytical techniques beginning with visual observations through small 17
th

 

century telescopes by observers such as Riccioli, and the first thoughts of gravitationally bound 
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stars beyond the Sun occurring to Lambert as early as 1767 (Heintz 19786).  Since binary star 

observation allows for one of the only direct avenues through which the understanding of stellar 

physical parameters, other than those of the Sun, can be ascertained and refined, one can easily 

see how the evolution of double star science has significantly influenced the understanding of 

stars in general.  

Technological advancement, as with most sciences, has greatly enhanced our ability to 

observe and analyze double stars.  For example, the development of larger aperture telescopes, 

up to those of 3-10 meters, and optical interferometic arrays forming effective apertures of tens 

to hundreds of meters, has allowed for greater detection and resolution ability of faint light 

sources.  Charged couple device (CCD) and EMCCD (electron multiplying) cameras have all but 

replaced traditional film and photographic plate imaging in professional work, enabling much 

faster, more sensitive, more accurate and less subjective (compared to visual observations) 

imaging of celestial objects at a fraction of the labor and necessary material, and equipment 

resources.  CCD camera imaging also provides a permanent record of the observation, to which 

other astrometrists can refer as long as the image exists.  The application of speckle 

interferometry, devised by Labeyrie (1970), can enable the extraction of diffraction-limited 

image information, allowing for much more detailed resolution using large ground-based optical 

telescopes than would otherwise be possible.  Speckle interferometry, the technique at the heart 

of this current work, is applied in order to circumvent atmospheric distortion of incoming 

starlight, commonly referred to as seeing limitations, and allow for the obtainment of diffraction-

limited information of celestial targets with small angular size such as close double stars 

(Labeyrie 1970; Hoffmann 2000).  Today, the tools and techniques of double star observation 
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vary widely depending on the type and difficulty of the pair to be observed, as well as the 

resources of the observer.   

Typically, closely separated double stars are very challenging to resolve, and can only be done so 

using expensive non-visual spectroscopic, photometric, or astrometric techniques.  Thus, 

inherent to double star science is a so called resolution gap, which represents the gap between the 

resolution limits of various visual and nonvisual observation techniques.   

However, recent advances in speckle interferometry, namely the application of the 

technique on very large aperture telescopes with advanced adaptive optics systems such as that 

of the 3.5-meter telescope at the WIYN observatory at KPNO, as well as the application of long-

baseline optical interferometry like that of the Cambridge Optical Aperture Synthesis Telescope 

(COAST – Cambridge, UK), the Navy Optical Interferometer (NPI – Anderson Mesa, Arizona), 

and the CHARA array (Mt. Wilson, Southern California) have enabled closure of the resolution 

gap (McAlister 1988).  Indeed, resolutions of binaries only previously detectable using expensive 

and complex ground-based spectroscopic techniques, or space-based telescopic observation 

methods have been achieved using relatively inexpensive techniques like speckle interferometry, 

albeit on relatively large telescopes (Mason & Hartkopf 2003).  Optical interferometer arrays like 

COAST, NPI, CHARA, and the Sydney University Stellar Interferometer (SUSI – near Narrabri, 

New South Wales) have enabled visual resolutions on the order of milliarcseconds, and future 

interferometic array projects such as the Magdalena Ridge Optical Interferometer (MROI – 

currently under construction, South Baldy Ridge, New Mexico) will yield angular resolutions 

below 1 mas (Argyle 20128).   
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Significance of Double Star Science 

An enormous influx of double star observations and associated data has resulted from 

recent space-based astrometry missions such as the European Space Agency’s (ESA) Hipparcos 

mission (1989-93) and current missions such as ESA’s Global Astrometric Interferometer for 

Astrophysics (GAIA) mission (2013-2018).  Quality follow-up work including further 

observation and analysis of targets is needed (Perryman 2012).  However, close visual double 

star observing programs involving large telescopes which are powerful enough to resolve many 

of the close visual double stars observed during space-based astrometry missions are not very 

common, leaving large numbers of recently discovered double stars underobserved, 

unconfirmed, or otherwise neglected (Mason & Hartkopf 2003).  To be sure, the USNO currently 

maintains a sizeable list of so called neglected doubles, and one can observe that this list contains 

nearly forty thousand separate objects (USNO 2015b).  Visual observations of close double stars 

from ground-based observatories necessitate large aperture telescopes (Genet 2013a), which, like 

the close visual double star observing programs, are relatively few in number compared to the 

number of important astronomical research initiatives that compete each year for time on such 

large telescopes.  Many large-scale national observatories which maintain and operate large, 

expensive telescopes, such as KPNO, are federally subsidized, and are inclined to accept project 

proposals which correspond to Federal mandates, thus attracting Federal financial support 

(Genet, private communication, 2014).  Considering this, Genet (2013a, 2012b) offers that 

student-learning-centered double star observing runs at major observatories around the world 

organized and guided by experts in the field of double star science, and employing low-cost 

portable speckle camera systems, can help address and alleviate the plight of today’s data-

burdened professional double star astronomers. Such student-learning-centered observing runs at 
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major observatories with large telescopes would, at the same, time address national directives 

regarding science, technology, engineering, and math (STEM) education by providing invaluable 

learning experiences for students interested in the field of double star science and astronomy.   

Student-centered double star observing runs, such as that described in this thesis, provide 

a threefold solution to the aforementioned double star neglect issues:  (1) under the instruction 

and guidance of professionals, students participating in observing runs at major observatories 

with large telescopes can learn and gain significant hands-on experience in a specialized area of 

astronomy, while (2) making valuable and much needed contributions to the field of double star 

astronomy, addressing the inherent lack of follow-up work.  Lastly, (3) student-centered 

programs address the need for the development of the next generation of astronomers who will 

work with the multitude of data being acquired through advanced technologies – a need 

expressed in recent decadal recommendations by the National Academy of Science and National 

Research Council (Henry et al. 2009). 

 Aside from providing crucial hands-on instruction to the next generation of astronomers, 

double star science continues to be vital to the development of stellar formation and evolution 

models.  Observation and mathematical analysis of binary systems allows for the determination 

of physical properties of stars, in particular stellar mass (Argyle 20129).  Information about 

stellar masses, which can only be directly derived from computed binary star orbit parameters 

based on a record of astrometric measurements (or spectroscopic information), and accurate 

parallax data along with laws of Newton and Kepler (inferences of stellar mass can be made 

indirectly using stellar models), allows for testing and refinement of stellar models (discussed 

below), and in a larger context, influences current cosmological understanding in general (Argyle 

201210; Genet 2013a).  Couteau (19815) offers that, in the context of stellar mass determination, 
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orbital solutions from binary star measurements, along with accurate parallax and distance 

information, are the primary goal of double star astronomy.   

Conclusions by Mason & Hartkopf (2003) regarding stellar mass estimations also suggest 

that binary star measurements via speckle interferometry can provide: independent checks on 

proper motions of close double stars, verification or confirmation of close visual binaries found 

by other techniques (e.g. Hipparcos and Gaia), and information as to the multiplicity 

characteristics of a large sample of stars.  Mason & Hartkopf go on to further advocate for 

speckle interferometric investigations of double stars, proposing that such work can aid in the 

study of stars in planetary searches by removing from targeted searches stars unlikely to have life 

harboring planets, or ensuring spectroscopically detected exoplanets are not pole-on binary stars 

(Mason & Hartkopf 2003). 

Binary Stars and Stellar Mass Determinations  

Plotting a series of several binary star astrometric measurements (θ and ρ, see Fig. 4) 

against time for a true binary star would produce a curve indicating Keplerian motion (assuming 

a relatively short period binary or data series spanning a large amount of time).  Given a data 

series spanning the entire orbital period of a binary star, the observed curve would reveal an 

ellipse known as the apparent orbit of the binary (see Fig. 6).  This curve is the apparent path of 

the secondary star, which is often the fainter component, around the center affixed primary star 

(the primary and secondary actually orbit a common center of gravity, but to simplicity’s sake 

the primary is represented as fixed, leaving just the orbiting secondary) (Argyle 201211).  The 

apparent orbit is the projection of the true orbit onto the celestial sphere relative to the observer’s 

point of view.  
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Fig. 6 – Examples of USNO Orbital Plots. (Left) USNO orbital plot of WDS00310-1005, (Center) 

plot of WDS00546+1911 & (Right) plot of WDS00550+2338. In all plots, visual (usually 

micrometric) observations are shown as a green +, photometric as purple *, while speckle 

observations are shown as the blue • (USNO Speckle = blue star).  Red H and T reflect Hipparcos 

and Tycho measurements respectively. Lines connecting measurements to computed orbit (bold 

black ellipse) reflect observed minus calculated (O-C), based on computed ephemerides, for θ and 

ρ, for the respective epoch. The large black plus sign represents the location of the primary star. 

Celestial north and orbital motion is indicated by the figure in the lower right. Scales are in 

arcseconds. The left and center orbital plots demonstrate a record of astrometric measurements 

which cover only a fraction of the complete orbit, while the plot on the right reflects complete 

orbital coverage with no observational gaps. The left orbital plot is characteristic of poorly 

described binary systems, as deviation from computed orbit in this case can clearly be seen from 

the recent Hipparcos and speckle observations; while the other two plots represent well defined 

systems and orbits which would receive high orbital grades based on USNO standards.  (USNO 

2015d).  

 

With the apparent orbit known, elements of the true orbit can be ascertained.  According 

to Heintz (19787) the four descriptive elements for the true orbit are:  

P – the orbital period in years; alternatively the mean motion per year  

(n = 36/P or μ = 2π/P) is given  

 

T – the epoch of passage through periastron (the minimum separation between 

components) in Besselian years and fractions thereof 

 

a – semi-major axis of the true orbit in arcseconds 

 

e – the numerical eccentricity.  

Three additional descriptive elements determine the projection of the true orbit into the apparent 

orbit, and depend on the orientation of the orbit to the observer: 

Ω – the position angle of the ascending node or the position angle of the line of 
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                   intersection between the tangential plane of projection and the true orbital plane, 

                   there are two nodes differing by 180° which can only be determined from radial 

                   velocity data  

 

i  –  inclination, the angle between the plane of projection and that of the true orbit, which 

 ranges from 0°-180° 

 

ω – the argument of periastron or periapsis – the angle in the true orbit plane from the 

       node as given under Ω to the periastron, reckoned in the direction of motion, ranging 

       from 0° to 360°.   

 

Computation of both apparent and true orbital elements, a topic beyond the scope of this 

current thesis, involves complex geometric and/or analytic methods.  Presently there is no one 

method that can handle all the various types of observed binary star configurations (Argyle 

201212).  Classical geometric methods, the method of Thiele, Innes, and van den Bos, and 

iterative analytic methods such as the method of Danjon and Rabe, are typically used for orbital 

element computation or revision (Heintz 1978; Couteau 1981).  More recently developed 

methods include that of Hartkopf et al. (1989), which describes a grid search method of orbital 

calculation and orbital revision.   

Orbital solutions, combined with information regarding the binary star’s distance from 

our solar system ascertained through accurate parallax measurements, allow for an estimate of 

dynamical stellar mass sum to be made by way of Kepler’s third law.  For example, Newton’s 

version of Kepler’s 3
rd

 law, formulated for the total mass of a binary star system, can be used as 

follows: 

m1 + m2 =  
𝑎3

(𝜋3)𝑃2
  

In the above equation, m1 and m2 are the masses of the components in units of solar mass 

(Mʘ), a is the apparent semi-major axis (arcseconds), π is the absolute trigonometric parallax 

(arcseconds), and P is the period of the system (years).  From the equation, one can see that total 
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mass of a binary system is directly proportional to the cube of the semi-major axis, and inversely 

proportional to period squared, with both semi-major axis and period being derived from the true 

orbit solution.  Thus, a small change in the semi-major axis and period resulting from revised 

orbits, perhaps due to new and more accurate astrometric measurements, will result in a large 

change in the computed total system mass, rendering accurate astrometric position measurements 

and the orbits they inform critical.  Accurate parallax measurements have traditionally been the 

most limiting factor for accurate stellar mass estimations, but recent parallax measurements from 

the Hipparcos mission and GAIA mission have and will provide parallax data an order of 

magnitude more accurate for more than tens of thousands of binary stars (Genet 2013a; Massey 

& Meyer 2001).  This will provide many opportunities for stellar mass estimation revision.   

As mentioned earlier, stellar mass is the key component to our development of stellar 

models which are validated through testing against the empirical mass-luminosity relationship 

(MLR), discovered and described by Hertzsprung and Russell in 1923, and soon after 

theoretically demonstrated by the work of Eddington.  The MLR revolutionized mankind’s 

understanding of the stars in the universe, providing objections to previously established notions 

such as that stars evolved from giants to dwarfs (Heintz 19788).  Eddington’s approximation of 

the relationship between the measure of the total radiation of a star (the luminosity or L) and the 

mass of the star (M), L ~ M
 4

, was at first widely accepted, but as range of stellar mass became 

better defined, it became clear no single exponent would describe the dependence of luminosity 

on mass.  Presently, Massey & Meyer (2001) describe the following approximations of the mass-

luminosity relation for various stellar mass ranges: 

L ~ M 
1.6 

(M ≈ 100Mʘ) 

L ~ M 
3.1 

(M ≈ 10Mʘ) 
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L ~ M 
4.7 

(M ≈ 1Mʘ) 

L ~ M 
2.7 

(M ≈ 0.1Mʘ). 

Massey & Meyer (2001) also cite that other stellar properties are derived from the MLR, for 

example, main-sequence stellar lifetimes (τMS) are roughly proportional to the mass (amount of 

fuel) and inversely proportional to luminosity (how quickly the fuel is consumed), i.e. τms ~ M/L.  

Given the aforementioned M-L relations, more specific estimates for stellar lifetimes can be 

determined, such as τMS ~ M 
-3.7

 for solar-type stars.  Well defined estimates for stellar masses, 

and thus other stellar properties, are given for most stars across the known stellar mass range of 

0.08 – 150Mʘ, however it is still unclear what, if anything, limits how massive a star can be.  

Low mass stars have a clear temperature limitation required to burn hydrogen or deuterium in the 

stellar core, allowing for stars down to 0.015Mʘ (Massey & Meyer 2001).   

To further highlight the importance of accurate stellar mass determinations via 

observation and measurement of binary stars, one can consider how stellar models derived from 

the MLR are in turn used to indirectly approximate stellar mass, and it is through such means 

that the masses of most of the stars used to determine the initial mass function (IMF) are inferred 

(Massey & Meyer 2001).  The IMF is the distribution of stellar masses upon formation from 

clouds of gas and dust in space, and can give information regarding the number of stars 

representing the different mass ranges in the galaxy as well as clues to the processes of stellar 

formation.  According to the Russell-Vogt theorem, determination of stellar structure and 

evolutionary properties including luminosity, radius, temperature, density and the variance of 

these parameters as a function of time can occur only through knowledge of a star’s mass and 

chemical composition (Kahler 1978).  However, the range of possible stellar mass is much 
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greater than the range of chemical composition, thus it is a star’s mass at birth which is the 

principal determinant of its structure and evolution (Massey & Meyer 2001).    

The binary star parameters θ and ρ, which inform stellar mass determinations as 

described above, can be measured using several techniques including (from oldest to most 

recently developed): visual micrometry, interferometry, speckle interferometry, lucky imaging, 

lunar occultation, long-baseline optical interferometry, and space-based astrometry.  The 

following section will discuss the details of speckle interferometry, the technique applied in the 

current work.    

History of Speckle Interferometry 

Speckle interferometry, first devised by Labeyrie (1970), has been the principle method 

of binary star measurements for the past four decades, and is the modern offspring of a much 

older technique used for stellar observation and resolution known simply as interferometry.  

Interferometry, stemming from Young’s double slit experiment in 1803 and the  

Michelson-Morley experiment in 1887, was first used to measure widely separated double stars 

by Schwarzschild in 1895, shortly after Michelson himself used the technique to measure the 

angular diameters of the Galilean moons in 1891, and later the diameters of a handful of nearby 

bright stars in 1919 (Michelson 1891; Mason and Hartkopf 2003).  Today, interferometry and 

various related techniques such as speckle interferometry, intensity interferometry, heterodyne 

interferometry, and the recently established (within the past decade and a half) long-baseline 

optical interferometry, are some of the most advanced techniques applied to binary star 

measurement besides those involving space-based telescopes.  Many developments have been 

made in the field since Schwarzschild first applied the interferometric technique, and after more 

than a century of progress, diffraction-limited resolution (that is, resolution limited by the 
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telescope employed rather than atmospheric distortion limitations) and image information is now 

commonplace.  As mentioned previously, resolutions down to 1 mas have been achieved using 

optical interferometry with widely spaced telescopes (long-baseline optical interferometry) 

(Monnier 2003).   

Beginning with speckle interferometric observations made by Gezari, Labeyrie, & 

Stachnik (1972), Labeyrie et al. (1974), Beddoes et al. (1976), McAlister (1977), and Blazit et al. 

(1977), tens of thousands of speckle measurements have been made, and scores of new binary 

stars have been found or confirmed using the technique.  For example, McAlister (1988), the 

director and founder of Georgia State University’s Center for High Angular Resolution 

Astronomy (1985-present) and former director and chief executive officer of the Mount Wilson 

Observatory (2003-2013), along with colleagues, had by 1988 made over 6,000 measurements of 

nearly 1,200 binary stars via speckle interferometry using the 4-meter Mayall telescope at 

KPNO, representing at the time more than 85% of all speckle measurements.  Interestingly, the 

Hubble Space Telescope (HST) mission may well have been saved from a fate of uselessly 

observing hundreds of unsuitable guide stars found to be binaries through an emergency speckle 

interferometric investigation by McAlister.  The HST guide star list investigation was initiated 

by the work of Shara et al. (1987), formerly of the Space Telescope Science Institute, who 

accurately predicted an estimation error in binary star frequency among the HST’s selected guide 

stars.  Binary star observations and measurements made using speckle interferometry have been 

compared against data obtained using classical techniques, and it is clear that speckle 

interferometry can produce highly accurate binary star data, being in fact more accurate and 

precise by an order of magnitude than classical visual measurements, providing confidence for 

the measurements of close binary stars the speckle interferometric technique is most commonly 
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applied to (McAlister 1977).  Recent speckle interferometry applications include follow up of 

Hipparcos, Tycho, and GAIA observations obtained thus far, determination of globular cluster 

proper motion, extrasolar planet detection, and determination of asteroid duplicity detection 

limits (Mason and Hartkopf 2003).       

The Interference Phenomena of Light 

Speckle interferometry, like basic interferometry, flows from the principle of linear 

superposition, which describes the interference phenomena associated with light, including 

constructive and destructive interference, and Fraunhofer diffraction of plane-wave light.  These 

characteristics of light, regarding astronomy and specifically double star science, pose natural 

limits on resolution (see diffraction limit and Rayleigh criterion below), but also allow for 

imaging methods which circumvent atmospheric turbulence or seeing limitations which normally 

plague all ground-based optical telescope observations (see speckle interferometry below).   

 

Fig. 7 – Interference Phenomenon: When coherent, parallel plane wave (e.g. laser at particular 

wavelength) light passes through two very narrow, and very narrowly spaced slits, the result is two 

wave patterns that overlap and interfere both constructively and destructively, producing a series 

of bright and dark fringes on a detection screen downrange of the slits.  Credit: 

www.cronodon.com, BotRejectsInc (2015).  

 

When coherent electromagnetic wave fronts, or plane wave light like that of a laser or 

star, pass through a given point such as a thin slit defined on either side by opaque barriers, or 

http://www.cronodon.com/
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two slits as in Young’s famous double-slit experiment, the secondary wavelet wave fronts 

emanating from each of the infinite wave front points along the original wave front located at the 

slit(s) (as described by the Huygens’ principle), will diffract giving rise to distance differentials 

between these wave fronts created past the barrier, and thus interference of these wave fronts.  If 

a screen is placed downrange of the slit(s) at distance D, the interference will be visible as an 

interference pattern, or fringe pattern, made up of alternating bright and dark fringes, showing a 

symmetrical intensity decrease outward from the central bright fringe in both directions (see Fig. 

7 above).   

Different wave fronts emitted by the Huygens sources at the slit(s) which travel the same 

D to the screen, or those which maintain distance differentials (ΔD) corresponding to the source 

light wavelengths (λ0), or integer multiples thereof (i.e. ΔD = λ0, 2λ0, 3λ0, etc.) will arrive at the 

screen in phase – peak-to-peak and trough-to-trough – interfering constructively, producing a 

bright fringe.  Conversely, wave fronts with distance differentials corresponding to odd integer 

number of half wavelengths, or ΔD = 1/2λ0, 3/2λ0, 5/2λ0, etc., arrive at the screen 180° out of 

phase – crest-to-trough, interfering destructively, effectively canceling one another and 

producing dark fringes (Cutnell & Johnson 2004).  

Analogous to the fringe pattern observed from the single or double slit demonstrations 

described above, is the circularized Airy pattern formed when plane-wave light passes through a 

circular aperture having a sharp edge, such as that of a telescope.  The pattern, in the case of star 

light seen at the focal plane of a refracting telescope for example, appears as a series of faint 

concentric bright and dark circular fringes around a central star disk called the Airy disk (also 

known in astronomy as the Point Spread Function or PSF), which is composed of ~84% of the 

star light (see Fig. 8).  The Airy pattern is the diffraction pattern created by the same 
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Fig. 8 – Airy Patterns: (a.) The Airy pattern consisting of bright central (maximum intensity) fringe 

and concentric dark and bright fringes. (b.) Two closely spaced Airy patterns still easily 

distinguishable but approaching the diffraction limit where the zeroth fringes would be difficult to 

distinguish.  From Cutnell & Johnson, Physics 6
th

 ed., 2004.  

 

aforementioned interference phenomena, and creates the natural resolution limit for any optical 

instrument utilizing a circularized aperture to distinguish between two closely spaced objects.  If 

two Airy patterns, for example of a double star, are sufficiently close, then the theoretical angular 

resolution limit (θmin) in radians for the Airy disks is given by the Rayleigh criterion: 

θmin = (1.22) 
λ

D
 , 

where λ is the wavelength of the light in centimeters, and D is the diameter of the aperture in 

centimeters.  θmin can be converted to arcseconds, the unit more commonly used to expressed 

angular resolution limits in astronomy, by multiplying by 206,265 arcseconds/radian).  

The Airy pattern is rarely seen in large ground-based optical telescopes due to the 

destruction of the image from atmospheric turbulence (more on this subject below).  

Atmospheric turbulence, or seeing, imposes angular separation limits on telescopes that are 

orders of magnitude greater than theoretical resolution limits given by the Rayleigh criterion or 

by Dawes limit (not discussed here – see Argyle 2012, chapter 10).  For example, a 4-meter 

telescope should be able to resolve an angular separation down to approximately 0.025 

a

. 

b

. 
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arcseconds; however in practice that same telescope could only hope to resolve separations of 1-

3 arcseconds due to seeing limitations (Dainty 1981).   

The seeing limitations imposed by the atmosphere are problematic if one wishes to 

resolve fine detail like stellar diameters or closely separated binary stars using ground-based 

telescopes of large aperture.  Fortunately, through the development of interferometers, speckle 

interferometry, and related techniques such as lucky imaging, seeing limitations have been 

successfully surpassed.   

Using Interference Phenomena for High Angular Resolution 

The interference and diffraction phenomena associated with light can be employed in the 

field of double stars and other astronomical work that involves angular resolution of very distant 

celestial objects.  For example, one can imagine the first stereoscopic interferometer built and 

installed by Michelson & Pease in 1919 on the 100 inch Hooker telescope at the Mt. Wilson 

Observatory, in which two flat mirrors spaced twenty feet apart on a beam were used to collect 

light from a star.  The starlight was then directed into the telescope via a second pair of flat 

mirrors, and interfered at the focal plane, to form a fringe pattern (see Fig. 9).   

 

Fig. 9 – Schematic of the MWO Hooker telescope interferometer with two collecting 

mirrors A and B spaced 20ft. apart to form the interferometer.  Source 

http://www.mtwilson.edu/vir/100/20fti/index.html Credit: www.mtwilson.edu 

(2015). 

http://www.mtwilson.edu/vir/100/20fti/index.html
http://www.mtwilson.edu/
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Armed with the knowledge of the distance between the fringes, the distance between 

interferometer and fringe pattern, the distance to the light source, and the wavelength, Michelson 

& Pease successfully determined the diameters of six close, bright stars using the Hooker 

telescope interferometer.   

Designs of interferometers progressed in the first half of the 20
th

 century to use more 

manageable screen slits, like that used in Young’s double slit experiment (see Fig. 7), embedded 

within the telescope at the focus, or even between observer and eyepiece as Finsen (1964) had 

developed and used near the middle of the 20
th

 century.  Regardless of design however, early 

interferometric applications of the 20
th

 century were disadvantaged because the full aperture of 

the telescope could not be used owing to the employed slit screen or aperture mask, and because 

the long baselines needed to resolve close binaries were difficult to engineer.  Therefore the 

technique was limited to fairly bright objects, such as the brightest stars and the Galilean moons 

of Jupiter (Heintz 19789). 

Speckle Interferometry & the Speckle Pattern 

 
Fig. 10 – A single speckle image (WDS00101+3825) exposure typical of a 10-60 millisecond exposure 

using the Andor Luca-R EMCCD camera installed on the 2.1-meter telescope at KPNO during the 

Oct. 2013 observing run (see chapter 2 for a description of the observations).   

 

Like classical interferometry, speckle interferometry also takes advantage of the 

interference and diffraction phenomena of light to resolve distant, closely spaced celestial 
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objects, whose light is essentially coherent; but unlike the early interferometric methods of 

Schwarzschild & Michelson, speckle interferometry uses the full aperture of the telescope to 

observe the image of a star or double star, which in one instant at the focus of a large telescope 

(>.3m) appears as a random conglomeration of specks (hence the first term of speckle) – see Fig. 

10 (Labeyrie 1970; Dainty 1981).   

Using a sufficiently powerful eyepiece, a dynamic speckle image, similar to the static 

speckle image shown in Fig. 10, can be seen visually by an observer, albeit with considerable 

difficulty, which Couteau (19816) likened to a bunch of grapes.  The static speckle frame above 

is a product of atmospheric turbulence frozen over a very short time period, such as those of 

millisecond electronic imaging exposures.  To fully understand this image and the process of 

speckle interferometry, one must first recognize that within the column of air immediately above 

the primary telescope aperture in the direction of the target, there are many pockets of dynamic 

atmospheric cells, called isoplanatic patches or coherence cells, characterized generally by their 

average diameter (r0 – “the Fried parameter”) and duration (τ0) (Argyle 201214).   

These dynamic atmospheric cells, with r0 values on the order of 10 cm and τ0 of ~15 

milliseconds (ms), are the principle cause of telescopic image destruction (atmospheric seeing) 

over viewing times greater than the cells’ average lifetimes (> τ0).  Over short time scales, 

coherence cells appear, grow, disappear, and move about due to temperature and pressure 

gradients in the atmosphere, typically limiting angular resolution of telescopes to about 1 

arcsecond (Hoffmann 2000).  During the lifetime of the dynamic cell, the image as seen through 

a single cell of a close binary star (so close that the light from both components propagates 

through a single isoplanatic patch, i.e. ρ < r0), is the diffraction-limited image of the binary 
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visible on the focal plane as a speckle pair (Argyle 201215).  The diffraction limit of the 

coherence cells, or sub-apertures is defined by 

θ = 1.22(λ/r0). 

There can be hundreds or thousands of isoplanatic patches above the objective of a given 

telescope (D/r0)
2
, and thus as many diffraction-limited speckle pairs, with differences 

corresponding to cells of varying properties, which form the speckle frame of the binary – a 

complicated interference pattern called a speckle pattern or interferogram (see Fig. 10) 

(McAlister 1992).  The random distribution of individual speckle pairs over the seeing disk 

results from the refractive index differentials maintained over τ0 of many coherence cells of 

varying orientation, temperature (density), and size, thus producing constructive (and 

destructive) interference of the diffraction-limited images (see Fig. 11).   

 
Fig. 11 – Interferogram, or speckle pattern formation schematic:  incoming plane-wave light 

encounters coherence cells which attenuate the traversing light resulting in differential refraction. 

Corresponding coherence cells will produce constructive and destructive interference of the light, 

producing the speckled pattern.  Short exposures (<τ0) freeze the image, preserving diffraction-

limited information of the target.  Scale in speckle image is typical of current work on large 

aperture telescopes.  

 

Telescope aberrations can also contribute to the transformation of incoming starlight into 

speckle patterns (Argyle 201215).  Moreover, the entire speckle pattern changes over short time 
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periods corresponding to τ0; however, a very short exposure of less than 10-15 ms can essentially 

freeze the speckle pattern, preserving diffraction-limited, and thus high angular resolution 

information of the binary which can be extracted by assessing the frequency of spatial 

separations of the speckles via an autocorrelation function of the speckle frame or series thereof 

(Labeyrie 1970; Hoffmann 2012).    

Extracting Diffraction-Limited Astrometry from Speckle Images 

Although one speckle pattern frame may not appear particularly useful or even 

discernable, within the pattern there will exist a correlation among speckle pairs due to 

propagation of the close binary image through similar coherence cells, as described above.  This 

correlation is called isoplanicity, and is the critical property that allows for the speckle spatial 

separation frequency assessment by the way of Fourier analysis of an individual speckle frame in 

order to extract full-aperture diffraction-limited image information of a close binary star 

observed using a large aperture telescope (as before close is defined as ρ < r0) (Labeyrie 1970; 

Mason & Hartkopf 2003; Horch 2006). 

As described by Mason & Hartkopf (2003) and Argyle (201214), the essence of speckle 

interferometry is an assessment of the frequency of spatial separations and orientations of the 

speckles – each speckle from every other speckle, over the entire speckle frame.  In the case of 

binary stars, the phrase speckle interferometry represents the attainment of astrometric 

measurements using diffraction-limited (or nearly so) images of binary stars, defined by the full 

aperture of the telescope employed, from the Fourier analysis of isoplanatically correlated 

speckle pairs.  These speckle pairs represent the diffraction-limited images of the associated 

coherence cell sub-apertures within the atmospheric area above the primary aperture.  Due to the 

inconsistency of refraction between coherence cells, binary speckle frames will have many 



29 

 

speckle pairs appearing randomly distributed and separated over the speckle pattern; but, in fact, 

the speckle spatial separation and orientation frequency assessment of the speckle frame will 

show that the most frequent separation and orientation of speckle pairs will be representative of 

the observed binary star separation and position angle, though with a 180° ambiguity in position 

angle known as the phase problem (phase information is lost in the spatial assessment process 

because each speckle is assessed relative to every other speckle).  The autocorrelation and 

subsequent Fourier transform of one speckle frame will produce a picture frequently referred to 

as the power spectrum of the image (see Fig. 12a), which is the sum of the sub-aperture 

diffraction-limited images, or speckle pairs, from around the speckle pattern.  The power 

spectrum of the speckle image represents the power among the available spatial frequencies and 

orientations, and appears as a series of fringe pattern bands, the separation of which represents 

the separation of the binary star components (ρ), and the axis perpendicular to the fringe bands 

represents the position angle (θ) ±180°.   

   
Fig. 12.  (a) Power spectrum image: (average of 1000) of a series of speckle frames – the spacing of 

bands is inversely proportional to ρ, and the axis perpendicular to the bands reveals θ (180° 

ambiguity). (b) Autocorrelogram: created using general purpose astrometric software PlateSolve3 

developed by Rowe of PlaneWave Instruments, with  circle indicating solution to 180° position 

angle ambiguity determined by referencing previous astrometric measurements of the binary. 

 

a. b

. 
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The astrometric measurements of θ (±180°) and ρ could be determined from the power 

spectrum of the speckle frame (knowing the pixel scale and camera angle – see below), however 

to define the binary star further, a Fourier transform can be applied again.  The Fourier transform 

of the power spectrum of the speckle frame transforms the bands of the power spectrum into a 

sequence of three co-linear, circularized peaks with Gaussian profiles known as the 

autocorrelogram (see Fig. 12b).  The Gaussian profile of the peaks aides in reduction efforts and 

determination of peak centers (Argyle 2012 pg. 266).   

Completing the spatial frequency autocorrelation function for a series of speckle frames, 

for example 1000 per target, and averaging the power spectra computed for each of the 1000 

speckle frames can further increase the reliability of the astrometric measurements θ and ρ.  

Additionally, deconvolution measures can be taken, including the incorporation of  speckle 

information from bright single reference stars within the reduction process of general astrometry 

programs such as Rowe’s PlateSolve3 (PS3) (Rowe & Genet 2014).  According to Rowe & 

Genet (2014) deconvolution using bright reference stars (dividing the Fourier transform of the 

speckle images by the Fourier transform of single reference stars) will almost always sharpen the 

autocorrelogram image, and also remove much of the SNR reducing effects from telescope 

optical aberrations, including the effect of the central obstruction.  Furthermore, if the imaged 

reference star and target binary maintain small spatial and temporal differentials, deconvolution 

will remove much of the atmospheric dispersion to the effects of seeing (see Fig. 13).  Proper 

setting of Gaussian Highpass/Lowpass interference filters within the PS3 reduction process, to 

remove as much as possible the unwanted noise interference from electronics and the broad tail 

of the PSF due to seeing and optics, can further optimize the measurement of a binary star by 

boosting the SNR (Genet 2014b).  
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Fig. 13 – Autocorrelogram after deconvolution using a single bright, nearby (to the target) 

reference star from the Hipparcos catalog, further boosting SNR and defining the 

autocorrellogram. 

 

Considerations of CCD Imaging &Speckle Interferometry Based Astrometry 

Accurate determination of θ and ρ using images of binaries taken with CCD or EMCCD 

cameras, such as in speckle imagining described above, depends on knowledge of the scale and 

orientation of the image relative to the sky.  The image or pixel scale (E) expresses the 

magnification of the image in arcseconds per pixel, and camera orientation angle (Δ) expresses 

the rotation of the CCD or EMCCD image relative to the celestial coordinate frame – the angle 

between celestial North and the X- or Y-axis of the image.  E and Δ are the two scalar quantities 

which allow for translation of θ and ρ in the pixel coordinate frame (x,y) to the celestial 

coordinate frame.  If the distance between two stars is R pixels, then their separation in 

arcseconds is: 

ρ = E*R, 

which is primarily a function of telescope focal length and the physical size of the CCD or 

EMCCD pixels.  Δ is primarily a function of the CCD or EMCCD camera in the telescope’s 

focus tube, and of the way the image is read, stored, and analyzed (Argyle 201216).  In general, 

most CCD or EMCCD software packages contain programs to view, reduce, and analyze 
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captured images, and these programs will enable the user to easily determine E and Δ either 

through the astrometric fitting method (matching image to a star catalog to determine RA and 

Dec of all stars in the image allowing for translation of pixel coordinate frame information to the 

celestial coordinate frame), or the method of pixel scale/image orientation (transformation of 

astrometric information between pixel and celestial frames using knowledge of image scale and 

camera orientation).  If the camera is not moved, E and Δ will change little, if at all, between 

nightly observing sessions within a multi-night run, however calibration images and reductions 

of those images should be taken at the start of each observing session to insure these critical 

parameters have not changed.  

Although speckle interferometry works well for resolving closely spaced celestial objects 

like binary stars, it does harbor observational limitations.  For example, because speckle patterns 

are wavelength dependent, narrow band pass filters which reduce the total irradiance must be 

used to maintain a high degree of coherence to the patterns observed on the image plane, giving 

rise to magnitude limits (Hoffmann 2000; Mason & Hartkopf 2003).  Speckle patterns are also 

subject to chromatic aberration (a function of zenith angle – see below) caused by the 

atmosphere, which can elongate speckles on the image plane, even with the incorporation of 

narrow band pass filters.  This color dispersion effect can be mitigated using two crossed, 

shallow-angle Risley prisms, whose own dispersions vectorially add to cancel the atmospheric 

dispersion (Genet 2013).  Moreover, to properly capture useable speckle pattern images, a 

sufficient high resolution, high speed, low noise imaging device is required, examples of which 

are traditionally very expensive, normally putting speckle techniques out of reach for ambitious 

amateurs.  However, developments in the field of CCD and EMCCD cameras have made for 

some more affordable options, enabling speckle for anyone who can afford to pay a few hundred 
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dollars for a small, quality CCD camera or several thousand dollars for a quality EMCCD 

camera.   

Horch (2006) describes the Δ magnitude (Δ mag.) problem – the difficulty in 

determination of the relative astrometry of the two stars in a very close binary system whose 

components have large magnitude differences.  A CCD or EMCCD image of a star is a discreetly 

sampled pixelated version of the intensity point spread function (PSF) at the focal plane which 

depends on the size of the pixels and where the star is registered on the CCD array (see Fig. 14). 

Unless the pixels are too large, accurate determination of an individual stars position 

from the intensity centroid of the samples PSF (near the brightest pixel) is not difficult (it is 

recommended that pixel size be smaller than the PSFs of stars to obtain well sampled images 

according to the Nyquist sampling principle).  However, with two closely spaced stars, the PSF 

may overlap, or the PSF of the brighter star may completely blend with the fainter star’s PSF, 

convoluting the centroid calculations and accurate determination of the stars’ positions, and 

likewise the relative astrometry – see Fig. 15 (Argyle 201217).  One solution to the Δ mag. 

problem is known as PSF image modeling, and involves creating a mathematical model of two 

overlapping PSFs, then determining values for θ and ρ which minimize the difference between 

the math model and the actual image intensity distribution (Buchheim 2008).  

 
Fig. 14 – CCD Image Formation and PSF: (Left) The CCD’s image of a star – the Point Spread 

Function (PSF) – is a blurred, discretely sampled intensity distribution, with random noise added.  

The center of the “brightest pixel” is not the best estimate of the star’s position (right) (Buchheim 

2008). 
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Fig. 15 – PSF formation of very close stars: Pairs of stars that are very close (right) do not display 

distinctly separate PSFs – the two stars become one merged image; whereas more separated stars 

form two distinct PSFs (right) (Buchheim 2008). 

 

The refractive index inhomogeneity of the atmosphere is most prevalent at lower altitudes 

where the atmosphere is denser; thus, optical telescopes located at lower altitudes will suffer 

greater image break-up into speckles due to turbulent atmospheric cells than a telescope at higher 

altitude (Monnier 2003).  The angle between the target and the zenith, representing the celestial 

target’s altitude above the horizon, will also influence the atmospheric refraction which can 

impact measurements of some wider double stars, and is often recorded as air mass (how much 

atmosphere the starlight must traverse prior to arriving at the focal plane of a telescope).  

However, for altitudes greater than 30° (i.e. zenith angle < 60°) the effects of atmospheric 

refraction can be neglected.  Closely spaced binaries will be even less affected by large zenith 

angles.  Dispersion refers to the differential chromatic refraction of the atmosphere which is also 

a function of zenith angle wavelength – blue light refracted more than red light.  This 

atmospheric effect can influence the astrometry of binary stars whose components exhibit greatly 

different peak emission wavelengths, as the refractive index will be different in magnitude and 

direction for each component.  Considering these atmospheric effects, binary star imaging and 

observing for the purpose of making astrometric measurements should be restricted to zenith 
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angles less than 60°, below which special correcting filters would need to be employed (Argyle 

201218).    

During the course of forming the autocorrelations from a series of speckle images and 

arriving at the full-aperture diffraction-limited fringe pattern of a binary, a 180° quadrant 

ambiguity regarding the secondary results from the loss of phase information.  This phase 

problem is resolved by referencing previous observations of the binary in question, or through 

more advanced interferometry methods, such as the bispectral analysis technique  

(Hoffmann 2000).   

Finally, the speckle interferometric method requires that the separation of the binary to be 

imaged must be on the order of 2-3 arcseconds or less for the entire image to fit within the 

isoplanatic patch.  If the binary is too widely separated, light from each component will pass 

through different coherence cells so that each component image is subject to different aperture 

functions, creating differentials in the binary’s θ and ρ values, which would not be suitable for 

autocorrelation analysis (Hoffmann 2000).
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CHAPTER II 

OBSERVATIONS 

 
Equipment Details and Observational Conditions 

Constructed in the early 60’s, the National Optical Astronomy Observatory’s (NOAO) 

2.1-meter (84-inch) Cassegrain telescope at KPNO (see Fig. 14 & Fig. 15) was employed in the 

first major speckle interferometry program from 1976 to 1980 (McAlister & Hendry 1982).  The 

2.1-meter is equatorially mounted with an axis at 32°, and has a focal ratio of f/2.63 allowing for 

a relatively fast Cassegrain focus.  With the f/7.6 secondary mirror in place, the effective focal 

length of the 2.1-meter during the Oct. 2013 observing run was 16,200 mm.  The minimum 

angular separation of the 2.1-meter according to the Rayleigh criterion (see Chapter 1 – The 

Interference Phenomena of Light) is ~0.059 arcseconds.  Considering the closest binary 

successfully resolved and accurately reduced during the Oct. 2013 run had an angular separation 

of just 0.074 arcseconds, it can be concluded that the employed speckle interferometry imaging 

system was effectively obtaining information near the diffraction-limit of the 2.1-meter. 

 
Fig. 16 – NOAO 2.1-meter telescope housing complex at KPNO: The multi-story housing complex 

of the NOAO 2.1-meter telescope at KPNO (center) and auxiliary 0.9-meter telescope housing (left) 

which formerly provided the feed for the Coude spectrograph instrument in the lower level of the 

building.
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Fig. 17 – The NOAA 2.1-meter Telescope at Kitt Peak National Observatory: pictured here with a 

KPNO staff member installing lead counterweights to balance the telescope.  Note black secondary 

mirror housing above and white flat screen in background used in calibration.   

 

Effective speckle interferometry of close binary stars requires the ability to obtain many 

short exposures, on the order of tens of milliseconds, of close binary stars using a telescope with 

resolution capabilities sufficient to separate the components of target binary stars.  To meet the 

requirements of fast, high SNR imaging, an EMCCD camera can be employed.  An EMCCD 

camera, through electron multiplication of the signal prior to the charge-to-voltage conversion, 

amplifies the signal noise by applying a high voltage to render insignificant the noise resulting 

from the device’s high speed frame-transfer capabilities (Genet 2013a).  A regular CCD camera 

would be able to make short exposures, but would prove highly inefficient in a situation where 

1000 short exposures of a target in series is the standard.    

During the observing run described in this thesis, an Andor Luca-R EMCCD camera-

based speckle imaging system (see Fig. 16 & 17) was interfaced with the 2.1-meter telescope.  

The Luca-R camera, with a 1004 X 1002 pixel array and 8 micron pixel size, in conjunction with 

a 2 inch x2 OPT Barlow in front of a Moonlite focuser, and a 2-inch x4 TeleVue PowerMate 

after the focuser to give a total magnification of x8, comprised Genet’s (2013a) portable speckle 
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imaging system.  An Orion 5-position filter wheel immediately preceded the Luca-R camera, and 

all observations were made through a Sloan i’ narrow band pass filter while targets were as close 

to the meridian as possible to reduce atmospheric dispersion.  The triangular Luca-R camera is 

small and relatively lightweight, being 40cm long (along each of the three long axes), 20cm 

wide, and roughly 3 kg.  Although back-illuminated EMCCD cameras, in which the CCD chip is 

not protected by gate structures which attenuate incoming radiation as in front-illuminated 

cameras, offer higher quantum efficiencies (QE ~ 90%), that is, the efficiency in which the CCD 

chip converts photons into electrons, the benefits of the front-illuminated Luca-R model 

EMCCD camera (QE ~50%) including lower cost (under 15K USD), much lighter weight, USB 

access, and overall better portability, were thought to be worth the loss of quantum efficiency 

(Genet 2013a & 2014b).  The Luca-R EMCCD camera was used to obtain multi-plane FITS data 

cubes of the target binaries, each consisting of 1000 20 ms exposure speckle images.  Given the 

quantity and exposure time, typical integrations were just a few minutes per target.   

 Interfacing Genet’s speckle imaging system to the 2.1-meter was relatively simple 

through the use of a previously used ½ inch thick aluminum back plate for instrumentation 

integrations with the 2.1-meter’s acquisition/guider unit (see Fig. 16).  The focuser on the Luca-

R camera was set to be parafocal with the acquisition/guider unit’s camera through the use of a 

Moonlite motorized focuser.  Control of the Luca-R camera and motorized filter wheel from the 

warm room was enabled through the use of a 50-foot Cat 5 Ethernet cable running from an Icron 

Ranger 2204 USB extender.  NOAO supplied instructions for interfacing guest computers with 

the 2.1-meter control computer so that direct logs of telescope pointing, truss temperature, and 

other information could be recorded alongside individual target observations.  Genet’s speckle 

camera system, with a total magnification of x8, provided an overall effective focal length of 
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about 129,600 mm, and a focal ratio of f/61.7 when integrated with the 2.1-meter.  With the 

Luca-R’s 8-micron pixel size, the pixel scale (E) was determined to be 0.0125 arcseconds/pixel 

(more on this determination in Chapter 3). 

 
Fig. 18 – Genet’s portable speckle camera system fully interfaced with the 2.1-meter telescope.  The 

speckle camera system consists of: a motorized Moonlite focuser, Hyperion Magnifier (in practice a 

series of x2 and x4 2-inch Barlow lenses), Orion seven-position motorized filter wheel, Andor Luca-

R EMCCD camera, and Icron Ranger USB extender.  The speckle camera system was controlled 

from the warm room via a 50ft CAT-5 Ethernet cable.  

 

 
Figure 19 – Genet’s portable speckle imaging system block diagram (Genet 2013a).
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Observational Targets 

The Oct. 2013 speckle run at the 2.1-meter produced a database of raw speckle images 

(stored as FITS files) totaling 1.4 terabytes composed of 1071 binary star multi-plane FITS data 

cubes, as well as 134 single reference star data cubes obtained for deconvolution within PS3 

speckle reduction.  Each individual close binary star FITS cube contained 1000 individual 

speckle images, each image representing a 20 millisecond EMCCD exposure of the target (some 

targets were imaged more than once).  The FITS cubes were organized into an Excel spreadsheet 

and Microsoft Excel CSV files by student co-investigator Teiche for use in subsequent PS3 

preprocessing and reduction (Teiche et al. 2014). 

Genet (2014b) describes the five classes of double stars which composed the initial target 

list of over 500 different double stars, calibration binaries, and deconvolution single reference 

stars for the entire nine-night Oct. 2013 speckle run on the 2.1-meter.  Most of the proposed 

targets for the run fell under the class titled Known Binaries with Published Orbits, including the 

six target binaries investigated in the current work.  The WDS identification, location, magnitude 

data, and near term ephemerides (2013-2015) for the six target stars pertaining to this thesis are 

summarized in Table 1 below.   

Table 1.  Summary of target binary stars: WDS identifier, location (RA Dec), component magnitudes 

(V1 = Primary Magnitude, V2 = secondary magnitude), and near term ephemerides (θ = position 

angle in degrees, ρ = angular separation in arcseconds). (USNO 2015a)  

 

WDS 

 

RA 

 

Dec. 

 

V1 

 

V2 

θ 

2013 

ρ 

2013 

θ 

2014 

ρ 

2014 

θ 

2015 

ρ 

2015 

19069+4137 190656.22 413719.6 9.1 9.1 292.8 0.183 284.1 0.176 274.7 0.168 

22357+5413 223539.4 541324.1 8.5 9.1 288.1 0.145 291.8 0.152 295.3 0.159 

05153+4710 51515.45 471014.6 7.2 9.1 99.1 0.44 99.8 0.444 100.6 0.448 

06256+2227 62534.2 222728.2 7.3 9.4 260.3 0.575 260.6 0.578 261 0.58 

02231+7021 22304.7 702035.6 8.4 8.7 140.5 0.473 139.6 0.459 138.7 0.444 

04505+0103 45027.32 10300.5 9.2 10 233.5 0.207 231.6 0.202 229.7 0.198 

 



41 

 

The six target binaries, classified by Hartkopf et al. (2001) as bad orbit binaries (USNO orbit 

grade 5.0), were selected from the  KPNO I run master target list compiled by Genet et al. 

(2014b).  The targets were purposely selected based on their respective USNO orbital plot 

diagrams, where recent clear deviation from the previously published orbit was evident from 

recent speckle observations, and perhaps an additional speckle observation might resolve 

whether the recent observations were anomalous or indicative of a developing trend, signifying a 

need for orbital revision or even reconsideration of binarity altogether in certain cases.  The six 

targets are not unique in this respect among stars in the WDS.  Indeed, as of 2015 according to 

the USNO, 18,624 WDS double stars are known to be physical binaries, while 4,293 are known 

to be optical pairs, representing ~15% and ~3.5%, respectively, of the entire catalog.  Thus, the 

true natures of the vast majority of systems in the WDS are still undetermined (USNO 2015a). 

The current USNO orbit grading scheme is a modification of the evaluation scheme used 

by Worley & Heintz (1983) in the Fourth Catalog of Orbits of Visual Binary Stars (hereafter 

Fourth Catalog).  The Fourth Catalog orbit grading scheme was based on orbital coverage, 

number of observations, and the overall quality of the observations.  The Fourth Catalog grade 

was presented on a numerical scale (1=definitive to 5=indeterminate).  Worley & Heintz (1983) 

used their collective double star experience of over six decades to make their qualitative 

assessment of individual observers, and thus their grading system was quite subjective.   

Within the most recent orbit catalog, the Sixth Catalog of Orbits of Visual Binary Stars 

(hereafter Sixth Catalog), Hartkopf et al. (2001) have developed a more objective grading 

scheme based on the same grading criteria used for the Fourth Catalog.  Using a very large 

sample size of observations corresponding to well-known orbits, Hartkopf et al. (2001) evaluated 

the observations, considering factors such as telescope aperture, number of nights of observing, 
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expertise of the observer, technique, and other factors.  These evaluations of observations were 

then used to help assess many of the same orbits from the Fourth Catalog.  Factors considered in 

the Sixth Catalog grading include total number of observations, position angle coverage, and 

number of revolutions from first to last observation, among others.  The modified grading 

scheme for the Sixth Catalog consists of grades on a numerical scale from 1.4 – 5.0.  

Descriptions associated with orbit grades remain as they did in the Fourth Catalog.  For example, 

a Sixth Catalog orbit grade of 1.4 corresponds to an orbit described as having well-distributed 

coverage exceeding one revolution; no revisions expected except for minor adjustments (Worley 

& Heintz 1983).  All six targets of the current study correspond to Sixth Catalog orbital grades of 

5.0, and are described as an orbit whose elements may not even be approximately correct, the 

observed arc is usually too short, with little curvature, and frequently there are large residuals 

associated with the computations (Worley & Heintz 1983).   

Table 2.  Most recent WDS observational data for the observed target stars.  

Observational Technique Codes: S = speckle interferometry, Su = USNO speckle. 

(USNO 2015a)  

WDS Epoch 
θ 

(°) 

ρ 

('') 

Telescope 

Aperture 

(m) 

Author 
Observation 

Technique 

02234+7021 2010.053 140.1 0.651 1 Pru2012 S 

04505+0103 2010.0653 252.3 0.294 3.8 Msn2011d Su 

05153+4710 2008.066 97.6 0.368 2.1 Gii2012 S 

06256+2227 2008.8882 256.7 0.72 1 Orl2009 S 

19069+4137 2008.563 348.1 0.211 0.7 Gii2012 S 

22357+5413 2008.639 180.3 0.254 0.7 Gii2012 S 

 

Mason (private communication, 2014) of the USNO, has supplied all WDS and Sixth 

Catalog data for the six target binaries (see Table 13 in Appendix C), and agrees that recent 

observations show significant deviations from published orbits, indicating that the published 

orbits are in need of revision.  The USNO orbital plots for the six target binaries can be found in 

Fig. 37 in Appendix B.  Within the plots, the dashed line indicates the line of nodes, all scales are 
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in arcseconds, the plus sign at the origin indicates the location of the primary star, the bold black 

line represents the computed orbit, and the curved arrow at lower right indicates the direction of 

celestial north and orbital motion of the secondary star.  Identifiers and the reference codes for 

the orbit computation work are also shown on these diagrams.  See Fig. 6 on page 14 for further 

explanation of USNO orbital plots.  The computed orbital elements for each target binary are 

given in Table 13 in Appendix C.
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CHAPTER III 

METHODS 

 

PS3 Data Reduction  

 The entire 1.4 terabyte collection of 1071 multi-plane FITS cubes, each containing 

approximately 1000 raw 20 millisecond exposure speckle images for each target observed 

throughout the Oct. 2013 KPNO I speckle run, was reduced exclusively using the general 

astrometry software program PlateSolve3 (PS3) (Rowe & Genet 2014).  PS3’s automatic 

preprocessing feature was utilized to reduce the large 1.4 terabyte dataset into a more 

manageable 1.5 gigabytes.  Preprocessing was completed in approximately 24 hours using a 

Windows-7 machine with a 2 GHz processor.  The preprocessing of one typical FITS data cube 

of 1000 raw speckle images is completed in approximately two minutes, during which time the 

Fourier transforms of all 1000 speckle images that comprise a data cube are obtained, followed 

by the averaging of these transforms to produce one average power spectrum image as described 

in Chapter 1.  A single power spectrum image is referred to as the power spectral density fringe 

pattern, or PSD, within the PS3 program, and corresponds to a file size of approximately 1 

megabyte.  Aside from creating a more manageable dataset, preprocessing the raw speckle image 

data cubes also allowed for faster reduction of the target binaries within the PS3 speckle 

reduction process. 

 As described in Chapter 1, the Fourier transform of the power spectrum image results in 

the autocorrelogram image, which can be focused and sharpened using the Gaussian Lowpass 

and Highpass filter features and reference star deconvolution features of the PS3 program.  The 
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Gaussian Lowpass filter is applied to the PSD, with a cutoff proportional to the spatial frequency 

of the Airy disk (see Chapter 1), fc (in pixels) given by: 

fc = (hN) / (2.44 λ F/D), 

where h is the pixel dimension in microns, N is the size of the image in pixels, and F/D is the 

focal ratio of the optical system (focal length of telescope in mm divided by aperture diameter in 

mm).  This allows for improved SNR and reduction of unwanted interference from the 

electronics, the sky background, and from photon shot noise of the object – see Fig. 19.  Use of 

the Gaussian Highpass filter, although not usually needed if reference star deconvolution 

measures are taken, removes the lowest-frequency information of the image to diminish the 

broad tail of the PSF which is due to seeing and optics – see Fig. 20 (Genet et al. 2014b).   

   
Fig. 20 – PSD Gaussian Lowpass Filter Setting.  Left – the Gaussian Lowpass filter cutoff is set 

beyond fc, allowing high frequency noise to be included.  Right – setting is too narrow, cutting off 

useful signal information.  Center – the filter is set effectively, cutoff being slightly larger than the 

Airy disk spatial frequency imposed by the telescope’s aperture.  (Genet et al. 2014b) 

 

  
Fig. 21 – PSD Gaussian Highpass Filter Setting.  Left – the Gaussian Highpass filter is set too wide, 

not only cutting out the bright central peak, but also much of the fringe pattern.  Right – the filter 

is set too narrow, allowing the bright central peak to shine through. The center setting is effective. 
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Use of the Gaussian filters, when set effectively, can optimize the detection and measurement of 

a target double star.  The Gaussian Lowpass and Highpass filter settings for the PS3 reductions 

of the Oct. 2013 speckle observations, including the six target binaries of the current work, were 

set at 35 pixels and 2 pixels respectively. 

 Deconvolution using reference star speckle images taken periodically throughout an 

observing run can also aid in sharpening the autocorrelogram by removing much of the 

telescope’s optical aberrations, the atmospheric dispersion, and broad tail due to the effects of 

seeing.  PS3 uses speckle images of single reference stars to estimate, in Fourier transform space 

averages, the image degradations from the telescope and instantaneous atmosphere characteristic 

of a given time and observing region in the sky, which are then divided into the actual image 

recorded to produce an image with telescope and atmospheric distortions removed - 

symbolically: 

<O> = <I> / <T>, 

where <O> is the average of the Fourier transform of the image without telescope and 

atmospheric distortions, <I> is the average of the Fourier transform of the recorded image, and 

<T> is the average Fourier transform of the PSF of the telescope plus instantaneous atmosphere. 

Table 3.  WDS identifiers of the six target binaries 

and associated reference star HIP numbers.  

Reference stars were observed often throughout the 

run to preserve small spatiotemporal differentials 

relative to target binaries for optimal deconvolution 

with PS3. RA diff. given in 0hr:00min:00.00sec. 

Target 

Binary 

Associated 

Ref. Star 

RA 

Differential 

Dec 

Differential 

19069+4137 HIP100587 1:17:35.40 9°26'35''.00 

22357+5413 HIP113498 0:24:09.60 5°35'28''.70 

05153+4710 HIP31665 1:22:22.94 9°41'12''.50 

02231+7021 HIP2599 2:30:44.71 8°05'21''.20 

04505+0103 HIP7884 3:09:01.43 4°26'14''.90 

06256+2227 HIP19205 2:18:33.74 7°13'16''.60 
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Optimally, the single reference stars to be used in the deconvolution process described by Rowe 

& Genet (2014) should be bright enough to maintain high SNR after speckle preprocessing, and 

be as near as possible to the target double star in both time and space (Genet et al 2014).  As can 

be seen in Table 3 above, which lists the six target binary stars along with the associated single 

reference stars, no reference star used for deconvolution was more than approximately 45.15° 

away from a target binary (1hr RA = 15°).  The mean RA and Dec position differentials for 

reference stars relative to target binaries were calculated to be approximately 28° and 7.4° 

respectively.     

    

   
Fig. 22 – Autocorrelograms for the six target binary stars.  (Read top to bottom, L to R): 

WDS02231+7021, WDS04505+0103, WDS05153+4710, WDS06256+2227, WDS19069+4137, and 

WDS22357+5413.  Note well-structured Airy disks of primary stars in center of autocorrelograms, 

red circles indicating solution of 180° phase ambiguity, as well as pink circle with radials 

representing PS3 centroid lock-to-peak astrometry tool. 

 

As a solution to the phase problem inherent to speckle interferometry, PS3 incorporates 

the expected values for secondary position angle based on projected θ and ρ ephemerides or the 

last observed position angle on record, and indicates this solution by placing a red circle which 

may partially encompass or at least fall near the correctly located secondary in the 
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autocorrelogram image.  Following satisfactory production of the autocorrelograms of the six 

target binaries (see Fig. 22 above), the astrometric measurements (θ and ρ) for each system were 

obtained using the PS3 Astrometry control panel within the speckle reduction suite (see Fig. 23).   

 
Fig. 23 - The speckle reduction GUI control panels of PS3 displayed during reduction of 

WDS02231+7021.  The panel on the left allows the user to input data files for reduction in manual 

or semi-automatic modes, set Gaussian highpass/lowpass filters, and deconvolution parameters.  

The panel on the right allows the user to control the size of the centroiding circle among other 

parameters, adjust camera angle and pixel scale if necessary, and displays the astrometric 

solutions.    

 

With the bright primary star at the exact center of the image when viewing the 

autocorrelogram, PS3 can automatically detect and lock-on to the pixel locations of the centroid 

of the appropriate secondary image, or allow the user to manually accomplish this if the 

automatic solution is not satisfactory.  Once the secondary centroid has been effectively locked, 

the relative astrometry of the binary as viewed in the image plane is trigonometrically 

determined.  With accurate camera angle and pixel scale information, the image plane astrometry 

(θ and ρ) is converted to that of the celestial plane – the true observed astrometry of the target 

binary.  To arrive at the true position angle, the camera angle, which is determined by observing 

and reducing calibration binaries outside of the general reduction process (described below), is 

subtracted from the image frame position angle.  To arrive at the true separation, the image frame 
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separation in pixels is multiplied by the pixel scale constant (arcseconds/pixel), which has also 

been determined through a previously executed calibration process.  Below, Table 4 summarizes 

the newly determined astrometric measurements for the target binaries, as well as the most recent 

cataloged astrometric measurements and the predicted measurements based on published 

ephemeris.  

Table 4.  Summary of PS3 reduction data for the six target binaries.  Columns from left to right 

are: WDS Identification, the observed position angle, the most recent cataloged position angle, the 

predicted position angle based on published ephemerides, the difference between the observed 

position angle and the predicted position angle, the observed separation, the most recent 

cataloged separation, the predicted separation based on published ephemerides, and the 

difference between the observed and predicted separations. 

WDS 

Target 

θObs. 

(°) 
θCat. 

(°) 
θEphem. 

2013 

θO-Ephem. 

(°) 
ρObs. 

('') 
ρCat. 

('') 
ρEphem. 

2013 

ρO-Ephem. 

('') 

19069+4137 325.49 348 292.8 32.69 0.225 0.2 0.183 0.042 

22357+5413 177.04 180 288.1 -111.06 0.306 0.3 0.145 0.161 

05153+4710 106.31 98 99.1 7.21 0.390 0.4 0.44 -0.050 

02231+7021 139.03 140 260.3 -121.27 0.684 0.7 0.575 0.109 

04505+0103 249.83 252 140.5 109.33 0.298 0.3 0.473 -0.175 

06256+2227 256.06 257 233.5 22.56 0.738 0.7 0.207 0.531 

 

The new astrometry data for the six target binaries is in good agreement with the most 

recent, or last cataloged astrometric observations and measurements, which for all targets was a 

previous speckle observation (see Figure 37 in Appendix B; Table 2 on page 41).  This 

agreement preliminarily indicates good accuracy of the new astrometric measurements, as the 

recently published speckle measurements, especially that of USNO are typically considered to be 

highly accurate.  Large differences between the observed and predicted values for both θ and ρ 

are likely the result of prematurely published ephemerides computed from preliminary orbits 

which inaccurately describe the systems of the targets.  Previously unresolved quadrant 

ambiguities in the cases of targets with very similar component visual magnitudes could also 

account for some of the very large observed-predicted θ values.  
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Calibration Process 

As described previously, accurate determination of the speckle imaging system camera 

angle (Δ) and pixel scale (E) values are necessary to transform the image frame separation and 

position angle in pixels to the true observed separation in arcseconds and position angle in 

degrees within the celestial plane.  A few methods exist for such determinations, including for 

example the use of a full-aperture slit mask to produce a fringe pattern of a bright star whose 

fringe spacing can be translated to the image scale in arc seconds per pixel, assuming split 

spacing, distance between the focus and mask, wavelength and f/number are known (Hoffman 

2000).  A common and well-attested method for determination of camera angle, known as the 

drift or star trail method, involves pausing the telescope drive and allowing a star to drift 

diurnally across the field of view such that an east-west line is evident, allowing the direction of 

celestial north to be found and the image orientation determined when the image is compared to 

a calibration binary image with well-known θ and ρ.  Moreover, if the field of view includes 

enough stars, then one could choose from a host of different astrometry programs which employ 

astrometric fitting methods to determine Δ and E.  Astrometric fitting involves comparing the 

RA and Dec coordinates of every star in the image to known values published in recent stellar 

atlases and position catalogs.  If a well populated globular cluster could be viewed, then one 

could determine the camera angle and pixel scale by imaging the globular cluster and comparing 

against a matching astrometry image taken by the HST.   

For various reasons, none of the above methods were chosen to determine the Δ and E 

values for the Oct. 2013 KPNO I speckle run observations.  A full-aperture slit mask was 

considered and rejected due to manufacturing and transporting difficulty.  Likewise, a sub-

aperture slit mask for the secondary mirror was also considered and rejected because the 
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telescope’s dimensional uncertainties would have been too great (Genet 2013a).  The drift 

calibration method was attempted during the engineering checkout night prior to the official start 

of the run, but due to the very narrow field of view characteristic of Genet’s speckle camera 

system integrated with the 2.1-meter (12.6 x 12.5 arcseconds), the drift method was not practical 

as stars passed through the field of view much too quickly (approximate .8 sec) to provide usable 

calibration data.  The astrometric fitting method was also not an option due to the very narrow 

field of view, as no other stars appeared in the image plane except the target.  The globular 

cluster plate solve method was attempted during a speckle run six months after the Oct. 2013 run 

during KPNO II, but without success, because locating and matching a suitable cluster proved 

too time consuming.   

Prior to the run, it was decided to follow in the footsteps of McAlister & Hendry (1982) 

and use observations of binaries with published orbits and ephemerides in a comparative analysis 

against observed measurements of position angle and separation to determine Δ and E.  This 

analysis was performed initially as a quality check near the beginning of the run, using the 

astrometry program REDUC to reduce the initial observed binary star data and determine the 

observed position angle and separation.  Position angle and separation observed minus calculated 

(O-C) values were determined, and initially theses values showed large distribution from one 

binary to the next.  After some thought, it was soon realized that such distribution, which would 

typically indicate something was wrong within the imaging system or reduction process, was 

normal and even expected, as many of the initial observed binaries reduced for the quality check 

had poorly described orbits by USNO standards, thus the observations were not necessarily off.  

Indeed, even the five calibration binaries chosen (see Tables 11 and 12 in Appendix A) had an 

average USNO orbit grade of 4.2 – a grade that represents a preliminary orbit due to orbits with 
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less than half the ellipse defined by the observational records, weak or inconsistent data, or 

evidence of orbits showing deteriorating representations of recent data.  Specifically, four of the 

calibration binaries (WDS01532+1526, WDS23595+3343, WDS04041+3931, and 

WDS03122+3713) maintain observational records that span less than half of the computed orbit.  

It should be noted however, that the data thus far for these systems fit relatively well to the 

computed orbits (see Fig. 36 in Appendix A), and thus they were deemed acceptable for 

calibration.  Use of binaries with much better USNO orbit grades for calibration would have 

been preferable; however such binaries which have observational histories covering the full orbit 

are typically extremely close pairs with orbital periods on the order of tens of years, and as such 

were beyond the resolution limits of the KPNO I system.  A more refined and robust camera 

angle and pixel scale calibration process then the previously mentioned initial attempt was 

carried out after the Oct. 2013 observing run by the author, using a total of 274 speckle 

observations of the five calibration binaries to determine the differences between the observed 

and predicted ephemeris values for position angle and separation.  From this calibration process, 

Δ and E were determined to be -11.013° and 0.0117 arcseconds/pixel respectively.  The averages 

of observed position angles in image frame pixels and observed separations in image frame 

pixels for each calibration binary were used along with the respective published ephemerides to 

determine the camera angle (equation 2) and pixel scale (equation 1) according to the following 

equations: 

∑ (ρEphem.i − ρObs.i * E)5
𝑖=1 = 0.....................................................(1) 

1

5
∑ (θObs.i − θEphem.i )5

𝑖=1 ...............................................................(2) 

Following the Oct. 2013 run, reconsiderations regarding the use of ephemeris data based 

on published orbits to determine Δ and E through comparative analysis means, as well as 
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perform general calibration analysis described below, led to consideration of an alternate 

calibration method involving maximum likelihood predictions (MLP) for θ and ρ, calculated 

from a least squares fit to recent speckle observations from the USNO 4
th

 Interferometric Catalog 

(hereafter 4
th

 catalog).  The argument for the MLP calibration method can be understood when 

one considers that there is an inherent conflict between a mathematically derived orbit that best 

fits the entire observational record versus a mathematical prediction of θ and ρ of a single 

observation not far in the future.  Perhaps one would be better off not using published 

ephemerides for calibration, but some other analytic technique to forecast θ and ρ values for the 

night of observation.  It was decided then to take the four most recent speckle observations for 

each calibration binary from the 4
th

 catalog, and use these to create artificial ephemeris values, or 

MLP values for use in calibration.  The author has determined the MLP values for the calibration 

binaries corresponding to the median observation night date (2013.8027) and compared these to 

all observed position angle and separation values of the calibration binaries.  The O-C position 

angle and separation mean values for all 234 observations representing four calibration binaries 

using the MLP method described above produced new Δ and E values of -11.226° and 0.01224 

arcseconds/pixel.  It should be noted that in the original calibration method using ephemeris data, 

274 observations were used, representing five different calibration binaries; however 

observations of calibration binary WDS01523+1526 were ignored within the MLP method due 

to position angle O-C values which were largely inconsistent with the same values from the rest 

of the calibration binary observations.   

Application of the MLP method determined calibration values to the observed calibration 

binary measurements in image frame pixels to arrive at the true observed position angles and 

separations yielded mean O-C values for position angle and separation of 0.5038° (σ = 0.334°,  
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σx̅ = 0.0218°) and 0.0404” (σ = 0.0315’’, σx̅ = .0021’’) respectively.  The MLP values for camera 

angle and pixel scale were expected to be more accurate and thus produce smaller mean O-C 

values for position angle and separation than those produced using the published ephemeris data, 

as they represented a camera angle and pixel scale calibrated to predicted values from recent 

speckle observations in which calibration was carried out using more accurate methods (slit 

mask, etc.), rather than calibration against ephemerides stemming from published orbits intended 

to be a best fit to all recorded observations, including lower accuracy observations.  However, 

comparison of all calibration binary O-C values, including σ and σx̅ values, revealed that the 

camera angle and pixel scale values determined using the published ephemerides yielded slightly 

more accurate results than those determined using the MLP method.  Specifically, application of 

the original ephemerides method determined calibration values to the observed calibration binary 

measurements yielded mean O-C values for position angle and separation of 0.4138° (σ = 

0.2333°, σx̅ = 0.0141°) and 0.0147” (σ = 0.0087’’, σx̅ = .0005’’) respectively.  There is an ongoing 

investigation by the author and Genet as to the best method and treatment of data for the 

determination of camera angle and pixel scale calibration values.   

The 274 calibration binary observations were obtained by imaging each calibration 

binary (see Appendix A Tables for WDS identifiers of the four calibration binaries) close to the 

meridian approximately ten times in an uninterrupted series during nearly every night over the 

course of the run.  Observing the calibration binaries near the start of the run and several times 

per night throughout the run in this manner provided the necessary data to estimate the 

aforementioned camera angle and pixel scale, and also for the statistical assessment of the 

within- and between-night internal precision and overall precision of the observations, as well as 
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an estimate of the overall accuracy of the observations as compared to the ephemeris θ and ρ 

values.   

To assess the overall precision of the current work’s observations and those of the entire 

Oct. 2013 observing run, the mean (μ), standard deviation (σ), and standard error (σx̅) of the 

mean were found for all observed θ and ρ values in image frame pixels of the five calibration 

binaries made throughout the entire run.  An estimation of the precision of observations within 

and across nights was also determined using standard deviation values of θ and ρ measurements 

in image frame pixels within specific nights and across nights.   

To provide an estimate of the overall accuracy of the observations, as well as an estimate 

of the within and between night accuracies, the same statistical analysis methods were applied to 

all θO-C, and ρO-C values; but there is, of course, a degree of circularity in using the same set of 

binaries to not only determine the camera angle and pixel scale, but to also make an external 

accuracy estimate (regression toward the mean).  The accuracy estimate may thus be an 

underestimate.  On the other hand, since the accuracy estimate includes both observational errors 

and errors in the orbital position predictions, it may be an over-estimate (Genet, private 

communication, 2014).  Based on a sample of 274 speckle observations (each containing 1000 

individual speckle frames) split between the five calibration binaries, the overall internal 

precision (σ) of θ and ρ observations made during the Oct. 2013 KPNO I speckle run was 

determined to be 0.027° (σx̅ = 0.0116°) and 0.00226 arcseconds (σx̅ = 0.00068’’) respectively.  

Within and between night precision (σ) for position angle observations was determined to be 

0.013° and 0.026° respectively.  Within and between night precision (σ) for separation 

observations was determined to be 0.00197 arcseconds and 0.00228 arcseconds respectively.  
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Better precision within nights was expected as temperatures and other factors change slightly 

between nights.   

The overall accuracy (σ) of θ and ρ observations made during the Oct. 2013 KPNO I 

speckle run was determined to be 0.4138° (σ = 0.2333°, σx̅ = 0.0141°) and 0.0147” (σ = 0.0087’’, 

σx̅ = .0005’’) respectively.  Within and between night accuracy (σ) for position angle 

observations was determined to be 0.013° and 0.0262° respectively.  Within and between night 

accuracy (σ) for separation observations was determined to be 0.00064 arcseconds and 0.00213 

arcseconds respectively.  As with precision, within night accuracies were expected to be better 

than between night accuracies.  The statistical analysis of the five calibration binaries from 

which the precision and accuracy estimations were derived is summarized in Tables A.1 and A.2 

of Appendix A.
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CHAPTER IV 

RESULTS & DISCUSSIONS 

 

Analysis  

 Observations of the relative astrometry of visual binary stars over time are necessary for 

effective interpretation of the system, calculation of the apparent orbit, and derivation of the true 

orbital parameters.  In its most basic sense, orbital analysis consists of confirming the binary 

nature of a system based on a record of observations that reflect the movement of the double star 

components relative to each other.  For example, a plot of obtained astrometric measurements for 

θ and ρ against time which exhibits a good fit to a parabolic curve or fraction thereof could 

indicate binarity (Keplerian motion).  However, if the same type of data plot showed a better fit 

to rectilinear motion, then the components may not actually represent that of a gravitationally 

bound binary, although alternate conclusions based on the same plot could be a binary system 

observed edge-on, as is the case with ε Aurigae – an eclipsing binary that exhibits eclipses ever 

27 years, or a very long period binary system where the small fraction of observed orbit is so 

small it appears as basically a straight line.  In the case of an edge-on system, visual observations 

spanning at least half of the orbit, showing movement of the secondary along the axis tangent to 

the line-of-sight, or photometric observations of periodic dimming indicating an eclipsing binary, 

or spectroscopic observations would be necessary to confirm binarity.  Observations and 

measurements of binaries throughout a complete orbit are not necessary to complete this most 

simple of orbital analysis; however most astrometrists stress the importance of a significant 

portion of the orbit being observed prior to making any definite conclusions.  This point is moot 



58 

 

regarding widely separated binaries with very long orbits whose entire observational history may 

only cover a small fraction of the possible orbit.  Indeed, the geometry of many binaries has 

changed little in the past two centuries.  Presented below are the USNO WDS observational data 

records (including the author’s new speckle measurement) for the six target binaries and the 

associated plots of position angle and angular separation vs. epoch for each target (see Tables  

5 – 10 and even-numbered Figs. 24-34).  Within the observational records were photometry 

observations which contained no θ and ρ values, and thus were ignored during interpretation of 

the data.  Data with incomplete astrometric measurements were also not considered in this 

investigation. 

 Also presented below are the updated USNO orbital plots for each of the six target stars, 

which have been revised to reflect the new astrometric measurements of the current work, along 

with O-C lines, observational method keys, primary and secondary magnitudes, and the period, 

semi-major axis, and approximate computation date of the previously published orbit (see odd-

numbered Figs. 25-35).  The descriptions and interpretations of these plots remains as previously 

explained in chapters 1 and 2.  In the case of WDS19069+4137, the previous observations were 

identified in order to simplify interpretation of this binary.   

WDS19069+4137 

An orbit of 41.6 years was published for WDS19069+4137 by Couteau (1999), after 

eight visual measurements and three interferometric-type measurements.  These interferometric 

measurements appear to be outliers, made using a so-called photoelectric phase-grating 

interferometric technique described by Tokovinin (1985).  Regarding this system, the author of 

the calculated orbit commented at the time of his orbital calculation, “Measures scattered and 

impossible to interpret” (Couteau 1999).  It seems strange then, that Couteau continued with a 

preliminary orbit calculation in light of that comment.  The observational history of this binary is 
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relatively short, and the techniques used for astrometric measurement consist mostly of visual 

micrometry, supplemented by just the three photoelectric phase-grating interferometry 

observations and the two recent speckle interferometry observations.  The 2008.563 speckle 

observation of Gili & Prieur (2012) recorded in the WDS record (see Table 5) does not appear on 

the original USNO orbital plot, which was published prior to the work of Gili & Prieur.  This 

issue has also appeared in two of the other targets of the current work (WDS22357+5413 and 

WDS05153+7410).  The author has used the 2008.563 speckle observation measurements from 

the WDS record to add a representation of this observation to the USNO orbital plot, which falls 

nearly on the calculated orbit.  The same calculations and additions were performed for the other 

USNO orbital plots which did not included the observations of Gili & Prieur.   

Table 5.  All published astrometric observations of WDS19069+4137: 

including the most recent observation data of the current work.   

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1984.48 102.9 0.16 0.5 Cou1985a Ma 

1985.744 177 0.07 1 Tok1988 Ig 

1988.5255 168.4 0.054 1 Ism1992 Ig 

1988.58 91.9 0.13 0.6 Hei1990b Ma 

1990.4432 170.3 0.077 1 Ism1992 Ig 

1990.507 77.6 0.213 2 Cou1991a Mb 

1991.6 71.5 0.12 0.6 Gii1994 Ma 

1992.553 54.4 0.192 2 Lin1993b Ma 

1992.553 52.2 0.218 2 Doc1993f Ma 

1992.556 60.1 0.178 2 Cou1993d Ma 

1997.714 33 0.2 0.7 Cou2002 Ma 

2008.563 348.1 0.211 0.7 Gii2012 S 

2013.7967 325.49 0.225 2.1 Wallace2015 S 

 

The position angle and separation values obtained using the phase grating interferometric 

technique in 1985.744, 1988.5255, and 1990.4432 are not in good agreement with the visual 

observation values made in similar epochs.  This leads one to conclude that either the visual 

observations are grossly erroneous, or the phase-grating interferometric observations of 
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Tokovinin & Ismailov (1988) and Ismailov (1992) are erroneous.  This binary is also 

complicated by the small delta magnitude issue, in that both the secondary and primary are of the 

same visual magnitude (9.1 according to the WDS and SIMBAD).  It is possible that the phase-

grating interferometric observations are off due to the primary being mistaken as the secondary 

and vice versa; however, this author could not reconcile the observations to the visual 

observations of similar epochs by adjusting the position angles by 180° as is common practice 

for observations suspected to be confounded by the small Δ mag. issue.  The authors have 

indicated in their work a very large uncertainty regarding the 1985.744 observation, with an error 

in measured separation larger than 0.02” (Tokovinin & Ismailov 1988).  Similar uncertainty is 

associated with the measured separation of the 1988.5255 observation, however no observational 

notes regarding any of the three specific outlying observations can be found within the authors’ 

published works.  Thus, it is this author’s opinion that these three apparent outlying 

measurements should be ignored based on the associated uncertainties and the rarity related to 

use of the photoelectric phase-grating interferometric observational technique, possibly 

indicating that astrometrists find the technique to harbor too much uncertainty.  In support of this 

conjecture, it can be noted that 18 out of 172, or ~10.5% of the observations of Tokovinin & 

Ismailov (1988) from 1985-1986 are associated with large uncertainties.    

Whichever the case, the error with either group seems to be consistent across the two 

groups of observations based on the distribution of group population.  Moreover, both the visual 

and interferometric measurement groups could form reasonable arcs with the author’s new 

speckle observation of 2013.7967 and the speckle observation from 2008.563; but it appears a 

better fit to the data would result if the three phase-grating interferometric observations were 

ignored.  It is not clear from the work of Couteau (1999) if the three phase-grating measurements 
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were considered or ignored at the time of orbit calculation.  Whether or not the three 

photoelectric phase-grating interferometric observations can be ignored must be determined in 

order for this system to be properly understood.  Contact with the authors of these three outlying 

observations should be initiated, but was not done so prior to the publishing of this work due to 

time constraints.  The new speckle measurement shows deviation from the calculated orbit, but 

perhaps the new speckle measurement would agree more with an orbit calculated using primarily 

the interferometric measurements, de-weighting the visual observations.  Although the calculated 

orbit does not appear to be accurate, as can be seen by the very large O-C line connecting the 

new speckle observation to the published orbit, it is possible that the new speckle observation is 

not accurate when one considers the strong agreement between the 2008.563 speckle 

observations and the published orbit.  To resolve this case, future speckle observations will need 

to be made.  Future observations should confirm whether the author’s observation accurately 

indicates a deviation from the calculated orbit, and perhaps indicate if a separate orbit calculation 

attempt should be made using primarily the interferometric measurements.  This system is likely 

a true binary as Keplerian motion is evident in all possible interpretations of the system based on 

the observational record, however many possible orbital solutions still exist.   

 
Fig. 24 – Data plots of WDS19069+4137: (Left) Plot of position angle vs. time, (Right) plot of 

angular separation vs. time for WDS19069+4137. 
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Fig. 25 – Updated USNO orbital plot of WDS19069+4137. Three IG observations (circles) differ 

drastically from the published orbit and visual observations. The new speckle observation 

(diamond) indicates nearly a 180° secondary θ translation since the initial visual observation.  Orbit 

appears to be opening.  The published orbit (bold) period and semi-major axis are likely too short. 

 

WDS22357+5413 

The new speckle observation for WDS22357+5413 agrees well with the preceding three 

speckle observations of Hartkopf & Mason (2009) and Gili & Prieur (2012) (originally unplotted 

– the author has calculated position and updated USNO plot with this speckle measure, which 

appears in the cluster of three speckle observations preceding the new observation of the current 

work).  These speckle observations, made after the premature orbit of 109.49 years (see Fig. 26) 

was published by Mason & Hartkopf (2001), along with the new observation indicate that the 

assumed double star WDS22357+5413 is most likely an optical pair; however there is still an 

outside chance that this system could be a binary.  Mason (private communication, 2104) has 

commented that unless large errors are attributed to the measures, some curvature is apparent, 

indicating a physical pair.  Multiple quadrant adjustments have apparently been applied 

throughout the data set (1953.7-1964.81, 1995.77, 1996.53, and 1996.7).   
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Table 6.  All published astrometric observations of WDS22357+5413: including the most 

recent observation data of the current work. Note: 7 WDS observations omitted due to 

incomplete astrometric data. 

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1953.7 167.9 0.39 0.9 Mlr1954a Mc I 

1957.89 170.1 0.39 0.4 Cou1958c Ma 

1960.94 164.8 0.32 0.4 Cou1962a Ma 

1964.81 172.3 0.43 0.3 Hei1967b Ma 

1983.81 3.8 0.15 0.5 Mlr1984 Ma 

1983.88 34 0.16 0.5 Mlr1984 Ma 

1995.7705 10.6 0.107 2.5 Hrt1997 Sc 

1996.5321 9.8 0.119 2.5 Hrt2000a Sc 

1996.6962 9.3 0.126 2.5 Hrt2000a Sc 

2006.5616 178.8 0.243 2.5 Hrt2009 Su 

2007.7985 180.1 0.249 2.5 Hrt2009 Su 

2008.639 180.3 0.254 0.7 Gii2012 S 

2013.7967 177.04 0.306 2.1 Wallace2015 S 

 

Through investigation of the 1983.81 and 1983.88 observations of Muller (1984), the 

author has discovered that there is a chance Muller mistakenly observed WDS22342+5405 (also 

known as ADS16073 and A1468).  A1468 appears very close to WDS22357+5413, and Muller 

himself admits that he has no notes regarding his 1983.81 and .88 observations, and that 

observers would often confuse the two similar magnitude pairs.  Despite lacking observation 

notes regarding a system that is often mistaken as A1468, Muller (1984) writes that he is certain 

he observed WDS22357+5413.  Unfortunately, personal certainty may not be good enough in the 

case of this double star.  If the two visual observations of 1983 are assumed erroneous, which 

cannot be ruled out as there exists no record other than the measurements themselves and 

Muller’s personal certainty, then a linear trend to the data emerges (see Fig. 26 and 27).  No 

proper motion data exist for the secondary, which would provide useful information regarding  
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a possible difference in proper motion between the components and add further evidence against 

binarity.   

 

 
Fig. 26 – Data plots of WDS22357+5413: (Top Left) Plot of position angle vs. time, (top right) linear 

fit to data emerges if observations from 1983 are ignored and (bottom) plot of angular separation 

vs. time for WDS22357+5413. 

 

  
Fig. 27 – Updated USNO orbital plot of WDS22357+5413.  Original plot updated with new speckle 

measurement of the current work and previously unplotted speckle observation from 2008.639, as 

well as linear fit line to data.  Linear fit assumes 1983.81 and .88 are erroneous.  The previous 

speckle observations (circles) have deviated significantly from published orbit (bold).  The new 

speckle observation (diamond) indicates a continuation in linear trend.  Binarity is unlikely, but 

further observations of this system will be needed for confirmation of nature. 
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WDS02231+7021 

The new speckle observation for WDS02231+7021 agrees well with the preceding 

speckle observations of Mason et al. (2011) and Prieur et al. (2012).  When all observations of 

WDS02231+7021 (see Table 7) are taken into account, it appears that a linear fit can more 

appropriately describe this system, which suggests an optical pair rather than a true binary.  The 

author has calculated rectilinear solutions based on position angle and separation data for this 

target, which support this idea, shown below in Fig. 28.  The prematurely published orbit of 

Pavlovic & Todorovic (2005) was computed prior to the most recent speckle observations, 

including that of the current work.     

By the year of the published orbit in 2005, the recorded observations were likely 

concluded to represent a small portion of the proposed nearly edge-on orbit.  It is not clear 

whether Pavlovic & Todorovic had considered the possibility of WDS02231+7021 being an 

optical double.  The orbit produced very large differences between calculated dynamical parallax 

and Hipparcos measured parallax typically held as quite accurate, which Pavlovic & Todorovic 

(2005) accounted for as follows:  

Our (orbital) elements provide a better fit to the observations; however the 

obtained dynamical parallax (15.46 mas) is several times that of (pre-updated) 

Hipparcos (3.39 mas). This can be accounted for by the fact that the 

measurements cover a short orbit arc (only 15°) and, therefore, the orbital 

elements are determined with large errors. The discrepancy between πdyn and πHIP 

is due to the large errors of the values of period and semi-major axis. 

If this system is not a system viewed edge-on, but an optical pair as the recent 

measurements suggest, then the previous assumption for the parallax discrepancy is  
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incorrect, and thus so are the calculated masses of these stars: MA = 1.079, MB = 1.026 (masses 

in units of solar mass).   

Table 7.  All published astrometric observations of WDS02231+7021: including 

the most recent observation data of the current work. 

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1972.66 162.4 0.48 0.7 Mlr1973a Ma 

1973.76 160 0.61 0.5 Mlr1978b Ma 

1976.51 161.7 0.7 0.5 Mlr1978b Ma 

1979.88 157.6 0.59 0.6 Hei1980a Ma 

1982.22 157 0.68 0.5 Mlr1984 Ma 

1983.0663 154.2 0.584 3.8 McA1987b Sc P 

1983.7107 154.1 0.585 3.8 McA1987b Sc P 

1984.9967 153.9 0.611 3.8 McA1987b Sc P 

1985.8541 153.5 0.602 3.8 McA1987b Sc P 

1988.76 157.3 0.75 0.5 Mlr1990 Ma 

1991.25 150.2 0.621 0.3 Fab2000a Hh 

1991.64 151.6 0.61 0.3 TYC2002 Ht 

1991.9017 149.5 0.625 0.3 Hrt1994 Sc 

1992.47 151.5 0.6 0.5 Mlr1993 Ma 

1994.99 146.3 0.68 0.6 Hei1996a Ma 

1999.7286 145.3 0.659 1.5 Doc2001c S 

1999.745 144.7 0.62 1.5 Lin2000a Mb 

1999.745 147.1 0.64 1.5 Pri2000a Mb 

2000.98 147.9 0.64 0.3 Alz2003b Mb 

2001.9882 147.7 0.56 0.7 WSI2002 Su 

2005.111 142 0.656 1 Sca2007a S 

2007.6022 140.5 0.674 3.8 Msn2011d Su 

2010.053 140.1 0.651 1 Pru2012 S 

2013.8104 139.03 0.684 2.1 Wallace2015 S 

 

Currently, no data exist regarding radial velocity or proper motion of the secondary 

component, which is unfortunate as such data would likely add much clarity to the case of this 

double star.  According to the SIMBAD astronomical database, the radial velocity for the 

primary is +7.40 km/s (±2.1), the proper motion in RA/Dec is +24.36/-8.41 mas (±1.35/1.49), 

and the most up to date Hipparcos parallax is 4.64 mas (±1.36).  Based on the entire 
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observational record including the most recent speckle observations, it is unlikely this target is 

actually a physical binary. 

 
Fig. 28 – Data plots of WDS02231+7021: (Left) Plot of position angle vs. time, (Right) plot of 

angular separation vs. time for WDS22357+5413.  As the data seems to indicate an optical double, 

linear trend lines and equations have been added to each plot. 

 

 
Fig. 29 – Updated USNO orbital plot of WDS02231+7021.  The previous speckle observations 

(circles/stars), are indicating a deviation from published orbit (bold) in a linear manner.  The new 

speckle observation (diamond) agrees with this trend.   

 

  A very long period binary, one in which only a small fraction of the orbit has been 

observed thus far cannot be completely ruled out.  Likewise, a system whose orbit is nearly edge-

on relative to our line of sight cannot yet be undoubtedly ruled out.  Such systems would, given 

the observed change in position angle and separation over time, exhibit a linear movement 

pattern similar to that shown by the observational record.  Romero (private communication, 
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2014) has performed an astrophysical study of this system, and has tentatively concluded a 38% 

maximum probability of binarity based on the dynamic parameters used in Monte Carlo 

simulations.  For certain, the latest speckle observation (shown below in Fig. 29 as the diamond) 

clearly shows continued deviation from the most recently calculated orbit of 161.259 years, and 

thus this orbit would be a prime candidate for revision.  An orbit should not be reattempted for 

this system until future observations either confirm or rule out binarity.   

WDS04505+0103 

 The new speckle observation of WDS04505+0103 agrees with the two preceding speckle 

observations of Mason et al. (2011) and Tokovinin et al. (2010).  Recent speckle observations, 

including that of the author, indicate a deviation from the previously published orbit of 158.4 

years computed by Scardia (2003), but offer good evidence of binarity as they exhibit 

characteristic curves of rectilinear coordinates X & Y vs time.  Recent speckle observations 

indicate an opening of the orbit suggesting that the calculated orbital period and semi-major axis 

are likely too short.  No proper motion or radial velocity data is given for the secondary.  This 

data could prove useful if common proper motion and radial velocities for the components could 

be shown.  Quadrant ambiguity does not seem to have been an issue in the observational history 

of this system. 

Table 8.  All published astrometric observations of WDS04505+0103: including the 

most recent observation data of the current work. 

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1913.71 84 0.26 0.9 A__1914a Ma 

1921.72 74.7 0.27 0.9 A__1932a Ma 

1930.99 58.4 0.24 0.9 A__1933d Ma 

1937.84 48.8 0.17 0.6 Vou1947b Ma 

1961.94 334.4 0.12 0.9 B__1962d Ma 
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Table 8 cont. 

1963.107 319.3 0.26 0.7 Wor1971 Ma 

1966.88 308.7 0.1 1.5 Wor1972a Mb 

1981.93 243.3 0.12 0.6 Hei1983a Ma 

1989.9332 88 0.239 4 Hrt1996b Sc 

1990.9216 84.1 0.24 4 Hrt1996b Sc 

1990.9242 85.2 0.243 4 Hrt1996b Sc 

1993.0924 83.4 0.248 4 Hrt1996b Sc 

2008.7703 252.4 0.2917 4.1 Tok2010 S 

2010.0653 252.3 0.294 3.8 Msn2011d Su 

2013.8022 249.83 0.298 2.1 Wallace2014 S 

 

 
Fig. 30 – Data plots of WDS04505+0103: (Right) Plot of position angle vs. time, (Left) plot of 

angular separation vs. time for WDS04505+0103. 

 

 
Fig. 31 – Updated USNO orbital plot of WDS04505+0103.  Recent speckle observations 

(circles/star) indicate deviation from published orbit (bold).  The new speckle observation 

(diamond) shows agreement with previous speckle observations and deviation from published orbit, 

indicating the need for orbital revision.   
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WDS05153+4710 

The new speckle observation for WDS05153+4710 demonstrates deviation from the 

previously published orbit of 513.48 years computed by Zirm (2008) suggesting the need for 

orbit revision.  The 2008.066 speckle observation was not found originally on the USNO orbital 

plot, but the author has calculated its position and updated the orbital plot with this measurement 

(see Fig. 33).  The deviation of the two recent speckle observations suggest that the computed 

orbit for this system is too large.  The 1999.8371 USNO speckle observation (Mason et al. 

2001b) and the nearby 2003.99 visual observation (Alzner 2005) seem to be outliers when 

compared with observational history of this system.  These observations could not be reconciled 

to this system by the author of this investigation through consideration of quadrant ambiguity. 

Table 9.  All published astrometric observations of WDS05153+4710: 

including the most recent observation data of the current work. 

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1905.82 349.2 0.45 0.9 A__1906a Ma 

1916.66 353.6 0.39 0.9 A__1929a Ma 

1919.71 1.2 0.45 0.9 A__1929a Ma 

1933.89 6.8 0.47 0.9 A__1937a Ma 

1943.92 19.9 0.38 1 VBs1954 Ma 

1951.08 29.9 0.33 2.1 VBs1954 Mb 

1965.99 43 0.33 0.4 Cou1967b Ma 

1969.53 29.3 0.37 2.1 VBs1974 Mb 

1970.98 58.6 0.26 0.7 Wor1978 Ma 

1991.25 80 0.358 0.3 HIP1997a Hh 

1991.56 73.6 0.4 0.3 TYC2002 Ht 

1999.8317 143.1 0.736 2.1 Msn2001 Su 

2003.723 91.4 0.4 0.5 Slm2005 C 

2003.99 319.4 0.75 0.3 Alz2005b Mb 

2008.066 97.6 0.368 0.7 Gii2012 S 

2013.8022 106.31 0.390 2.1 Wallace2014 S 
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The author has communicated directly to Mason and Alzner (private communication, 

2015) and both Mason and Alzner conclude their measures to be erroneous.  Upon investigation 

of his own observations, Mason has shown that the 1999.8371 measure was actually of object 

STT 98 (Shioya-Taniguchi-Trentham 2001), and Alzner (2005) comments, in 2004.94, I could 

not confirm my measurement from 2003.99.  Alzner’s comment, along with recent discussion 

with this author regarding the uncertainty of the 2003.99 measurement strengthens the conjecture 

that this measurement is also erroneous.  It is also unclear as to whether or not Zirm (2008) 

considered these observations in his preliminary orbit calculation.  Future observations will be 

needed to confirm deviation from the published orbit.  When the 1999.8371 and 2003.99 outliers 

are ignored, then the observational record demonstrates Keplerian motion that suggests binarity, 

however it appears the calculated orbit is not a good fit considering recent observations. 

 

 
Fig. 32 – Data plots of WDS05153+4710: (Top) Plot of position angle vs. time, (bottom) plot of 

angular separation vs. time for WDS05153+4710. 
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Fig. 33 – Updated USNO orbital plot of WDS05153+4710.  The previous USNO speckle observation 

(blue star), and nearby visual observation (green plus sign) deviated significantly from previous 

visual observations and published orbit (bold).  The new speckle observation (diamond) has 

deviated from published orbit, possibly indicating the need for orbital revision.  

 

WDS06256+2227 

The new speckle observation for WDS06256+2227 agrees well with the previous speckle 

observation of Orlov et al. (2009).  These lone speckle observations agree generally with the 

observed deviation from the published orbit of 360.3 years computed by Scardia (2001).  

Interestingly, this orbit was described after publishing of the Hipparcos and Tycho observations, 

which also do not agree with the computed orbit.  A time-lapse of approximately 50 years 

occurred where no observations of this system were made – a truly unfortunate situation, as it 

appears that during this time the secondary passed through the critical periastron point.  

However, one must ask if the apparent 180° translation of the secondary in its orbit over a 50 

year period is consistent with the proposed total orbital period of 360.0 years.  Certainly the 

secondary would pass through periastron and surrounding orbital points much faster than 
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opposite points on the orbit near apastron according to Kepler’s laws, but would 50 years be 

enough time to account for this?  The large amount of orbit not covered by observations also 

tempts one to conclude a possible quadrant ambiguity issue for this system early on its 

observational record, as it appears that linearity would be evident if the early visual observations 

of position angle were adjusted by 180°.  Adjusting the position angles of the early observations 

would place the initial eight micrometric observations relatively in-line with the measurements 

starting in 1950.  The author has calculated the adjusted positions for the eight early visual 

observations, which are shown as brown crosses below in Fig. 35 (right).   

A good linear fit to the observational record with adjustments to early position angle data 

provides some evidence for the system being an optical double rather than a true binary.  The 

plot of position angle vs. time in Fig. 34 has also been shown with the early visual measurements 

adjusted, and a rectilinear solution has been provided.  Although the linear solutions seem 

promising, one must also consider that the difference in magnitude between the primary (+7.3) 

and secondary (+9.4) is not very small compared to many other double stars.  Indeed, based on 

the difference in visual magnitude, the primary would appear 6.85 times brighter than the 

secondary, and it would seem to be difficult to mistake the two in visual observations.  

Moreover, the WDS catalog and SIMBAD indicate common proper motion for the secondary 

and primary of RA 9.63 mas/yr  (±1.05) and Dec -15.54 mas/yr(±0.69), which is further evidence 

for binarity (van Leeuwen 2007).  Thus, there appears to be evidence for the system regarding 

both binarity and being an optical double.  If future observations begin to indicate an arc back 

towards the original unadjusted positions, then the system is likely a true binary and the orbit 

will need to be revised.  However, if future observations show continued linear trend then the 

system will likely be republished as an optical pair. 
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Table 10.  All published astrometric observations of WDS06256+2227: including the most recent 

observation data of the current work. 

Epoch 
θ 

(°) 

ρ 

('') 
Ap. References 

Observation 

Technique 

1843.23 312.5 0.78 0.3 Mad1844 Ma 

1847.22 302.4 0.91 0.4 Stt1878 Ma 

1857.49 243.8 0.4 0.3 Se_1860 Ma 

1868.32 311.97 0.7 0.2 D__1870f Ma 

1870.38 314 0.7 0.2 D__1883 Ma 

1891.2 324.2 0.45 0.8 StH1901 Ma 

1899.5 329.2 0.4 0.9 Hu_1901a Ma 

1900.667 324.8 0.55 0.5 Doo1905a Ma 

1955.8 229.9 0.28 2.1 VBs1960 Mb 

1956.16 220 0.32 0.6 Mlr1956a Mc 

1958.03 235.8 0.28 2.1 VBs1960 Mb 

1959.15 238.2 0.39 2.1 VBs1960 Mb 

1959.151 238.2 0.39 1 VBs1965 Ma 

1960.198 242.6 0.41 2.1 VBs1965 Mb 

1961.2 232.2 0.34 0.3 Hei1963b Ma 

1961.21 234.5 0.4 0.4 Baz1964 Ma 

1961.25 238.2 0.4 0.9 VBs1965 Mb 

1961.84 229.4 0.34 0.9 Cou1962b Mb 

1962.18 235.2 0.4 0.3 Hei1963b Ma 

1962.757 232.7 0.32 0.7 Wor1967b Ma 

1962.9 234.4 0.34 0.9 B__1963b Ma 

1966.18 235.9 0.47 0.4 Baz1967 Ma 

1966.307 239.1 0.42 1.5 Wor1971 Mb 

1969.2 240 0.44 0.3 Hei1970b Ma 

1975.128 243.3 0.4 0.7 Wor1978 Ma 

1980 243.7 0.46 0.6 Hei1983a Ma 

1990.151 255.4 0.63 0.7 Wor1998 Ma 

1991.25 250 0.597 0.3 HIP1997a Hh 

1991.81 252.7 0.58 0.3 TYC2002 Ht 

1996.21 253.7 0.49 0.4 Alz1998b Mb 

1997.18 255.4 0.6 0.6 Hei1998 Ma 

1997.41 251.1 0.48 0.3 Alz1998b Mb 

2004.06 259.1 0.63 0.3 Alz2005b Mb 

2008.11 260.1 0.74 0.3 Alz2008 Mb 

2008.8882 256.7 0.72 1 Orl2009 S 

2011.05 257 0.736 ? OCC2012b O 

2013.7967 256.06 0.738 2.1 Wallace2014 S 
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Fig. 34 – Data plots of WDS06256+2227: (Top Left) PA vs. time, (Right) the same plot but with 180° 

adjustment to PA of early visual obs. made, (Bottom) separation vs. time for WDS06526+2227. 

 

  
 Fig. 35 – Updated USNO orbital plot of WDS06256+2227.  (Left) The previous 

speckle observation (blue circle), recent visual observations (green plus signs) and Hipparcos & 

Tycho observations (red H & T) indicate deviation from published orbit (bold).  New speckle 

observation (diamond) shows agreement with indicated deviation from published orbit. (Right) 

Brown crosses represent 180° PA flip of early visual observations.  Pink line indicates linear best fit, 

with recent observations more heavily weighted.  

 

Conclusions 

 The primary aim of this work has been to obtain, via speckle interferometry on the 2.1-

meter KPNO telescope, quality astrometric information of six purposely selected close visual 
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double stars whose recent astrometric data demonstrate deviation from published orbits such that 

one additional quality speckle interferometric observation, might resolve the deviation as 

anomalous or as a continued trend indicating the need for orbital revision or reconsideration of 

binarity.  Complementary to the main goal, the effort demonstrated the applicability, integration 

ability, and utilization of relatively low-cost portable speckle camera systems on large 

telescopes, as well as the value of student participation and contribution within the realm of a 

large-scale observing run at a major observatory and the resulting peer reviewed scientific works 

that follow.  The effort in its entirety demonstrates a multi-edged solution to various problems 

within the double star science field, such as the lack of quality ground-based close visual double 

star follow-up work due to the relatively low number of observers and programs, the highly 

competitive nature of obtaining time on large telescopes, and the flood of new double star data 

from recent space-based surveying projects.   

As a result of this investigation, several conclusions regarding the specific target double 

stars have been made.  In the case of WDS02231+7021, the author’s speckle observation has 

provided evidence against binarity and the latest calculated orbit of Pavlovic & Todorovic 

(2005).  Rectilinear solutions have been provided in further support of the conclusion of non-

binarity for this system.  Radial velocity and proper motion measurements of the secondary 

component would add much to the understanding of this pair, but it is likely that future speckle 

observations will indicate continued linear trend away from the prematurely published orbit.   

WDS19069+4137 is likely a true binary, as Keplerian motion is evident from the 

observational record including the observation of the current work; however the calculated orbit, 

likely being too short, will undoubtedly need revisions based on future speckle observations.  

The short observational history, coupled with the three outlying photoelectric phase-grating 
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interferometric observations make this system difficult to interpret at the moment.  It must be 

determined why the phase-grating observations differ so much from the visual observations 

made across very similar epochs, and also if they can be ignored or not.   

The conclusion that WDS06256+2227 may actually be an optical double rather than a 

physical pair is supported if one assumes the eight initial visual observations spanning 1843-

1900 fell prey to the small delta magnitude issue, and that for these observations the position 

angle should be adjusted by 180°.  However, the fact that the components do not exhibit a small 

difference in magnitude does not support the idea that previous visual observers would mistake 

the 6.85 times brighter primary for the secondary.  Future observations will either demonstrate 

continued linear trend or curvature back towards the original unadjusted early visual positions.   

All of the WDS04505+0103 observational data together demonstrate curvature regarding 

position angle and separation, thus the system is likely a binary.  However, the new speckle 

observation demonstrates continuation in the trend of deviation from the published orbit 

indicating the need for orbital revision.  The calculated orbital period and semi-major axis for 

this system are likely too short.   

WDS22357+5413 is likely an optical double star, as the new speckle observation seems 

to continue the recent linear trend exhibited by all the speckle data for this system.  Several 180° 

position angle adjustments are evident in the observational record.  The components of 

WDS22357+5413 differ by only .6 in magnitude, corresponding to a brightness difference of 

only 1.73, thus it is conceivable that visual observers in the past could have mistaken the 

originally identified primary for the secondary.  According to Muller (1984), the observations of 

1983.81 and .88 that fall in the middle of the observational record for WDS22357+5413 are not 
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of nearby A1468; however if Muller’s 1983 observations are ignored under the assumption of 

error, then a clear linear fit to the data emerges.   

Currently, WDS05153+4710 data include two outlying measurements – a USNO speckle 

measurement (1999.8371) and one visual measurement (2003.99) from just before the published 

orbit was calculated.  These measures could not be reconciled with the pervious observations or 

calculated orbit, and were shown to be erroneous.  As a result of this investigation, these 

measures will be removed from the record of WDS05153+4710.  It is unlikely that these outlying 

measurements were included in the orbit computation.  Regardless, the recent speckle 

observations including that of the current work show a deviation from the calculated orbit such 

that an orbit with shorter period and semi-major axis is likely.  Keplerian motion appears evident 

for this system, thus binarity is supported.    

 The investigated targets are typical of WDS problematic binaries, that is, those close 

visual binaries whose data show an emerging disagreement between recent speckle observations 

and the previously calculated orbits, and whose orbits are preliminary and tentative in nature 

because they are based on relatively sparse observational records dominated by older visual 

observations.  The common theme of previously published orbits not agreeing with recent 

speckle observations encountered in this investigation can be understood if one realizes that the 

premature orbits published for these double stars usually represent best-fit solutions to the 

observational records, which are primarily composed of older and less reliable visual 

micrometric observations.  While visual observations of more widely spaced stars can be highly 

accurate, visual observations of very closely separated stars, like the six targets investigated here, 

are subjective at best, and suffer greatly in the cases of double stars with very small differences 

in visual magnitudes, often resulting in a 180° quadrant ambiguity as successive observers 
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mistake the originally identified secondary for the primary or vice versa.  This can lead to visual 

technique dominated observational records of close visual double stars with very large 

differences among astrometric measurements, which in turn would negatively influence the 

calculated orbits causing the observed disagreement with recent high quality speckle 

observations.  Such speckle observations of close visual double stars are more accurate and 

precise than visual measurements on average by an order of magnitude, and thus it may be that 

the majority of close visual double star cases similar to the six targets of the current work will 

need follow-up work and revisions of orbits based mainly (largest weights) on recent speckle 

observations.  Assigning less significant weights to questionable visual observations can help to 

better inform the orbit, however in double star cases where the observational record includes 

only a handful of previous visual observations which cover a small fraction of the proposed 

binary orbit, the computed orbit will likely be a poor description unable to accurately predict 

future positions of the components.  In these cases, deviation of recent speckle observations from 

very tentative orbits computed based on little and uncertain data seems inevitable.   

In addition to the targets’ poorly descriptive orbits, erroneous observations were apparent 

in at least two of the investigated binaries – WDS05153+4710 and WDS19069+4137.  Such 

measurements may confound many similar problematic binaries throughout the WDS catalog, 

and it is important to determine if these observations should be removed from the records or not 

by referencing the observer’s notes, if any such notes exist, or by contacting the authors directly.  

In light of these conclusions and the flood of new double star discoveries pouring in from space-

based observing missions and new optical interferometer projects, the application of speckle 

interferometry follow-up work on large telescopes, and investigations of problematic binaries 

like that of this work will become ever more important.  From this effort, the most up to date 
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calibration values have been obtained for the observations of the KPNO I speckle interferometry 

run, which will serve as the comparative standard in future calibration refinements, and in turn 

estimations of accuracy.  There are currently a great many more problematic binaries within the 

WDS for which investigations like those carried out in this effort are needed.  Future work 

regarding methods used in this investigation include the application of portable speckle 

interferometry systems to larger ground-based telescopes to obtain new astrometric data of ever 

more close visual double stars.  Automation or at least semi-automation of the speckle 

interferometric method to observe close visual double stars is also desirable, and will likely be 

developed in the future.  Better constraints on duplicity and multiplicity, as well as stellar mass 

distribution regarding the observable galactic stellar population will result from continued double 

star observation and follow-up work.  Finally, obtainment of high angular resolution images of 

distant star systems via the application of speckle interferometry on extremely large telescopes, 

such as the planned Thirty Meter Telescope (TMT), could conceivably make the resolution of 

large exoplanets from the ground commonplace.  
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Appendix A 
Table 11: Summary of internal precision estimate data.  All position angle and separation values given in image frame pixels. 

WDS μ θObs. (°IF) 
σ θObs. 

(°IF) 

σx̅ θObs. 

(°IF) 

Within 

Nights 

σ θObs. 

(°IF) 

Between 

Nights σ 

θObs. (°IF) 

μ ρObs. 

(PixelsIF) 

σ ρObs. 

(PixelsIF) 

σx̅ ρObs. 

(PixelsIF) 

Within Nights 

σ ρObs. (PixelsIF) 

Between 

Nights σ 

ρObs. 

(PixelsIF) 

03122+3713 114.3077 0.0202 0.0072 0.0089 0.0191 242.2361 0.3750 0.0830 0.3750 0.3922 

01532+1526 248.9848 0.0288 0.0139 0.0152 0.0277 96.0698 0.0953 0.0287 0.0953 0.1036 

23595+3343 327.5824 0.0197 0.0063 0.0115 0.0167 198.8800 0.2287 0.0900 0.2287 0.2109 

03362+4220 332.9710 0.0353 0.0146 0.0128 0.0359 62.2580 0.1266 0.0402 0.0127 0.1260 

04041+3931 43.6908 0.0322 0.0158 0.0164 0.0316 128.9400 0.0778 0.0318 0.0778 0.0786 

 
Average 0.0272 0.0116 0.0130 0.0262 Average 0.1807 0.0547 0.1579 0.1822 

      
arcseconds 0.0021 0.0006 0.0018 0.0021 

 

Table 12. Summary of accuracy estimate data. All position angle (θ) values given in degrees, and all separation (ρ) values given in 

arcseconds.  Note: mean O-C values representing overall θ and ρ observational accuracy are slightly higher than quoted in chapter 3, as 

the values below are representative of grand averages. 

WDS 
μ θO-C 

(°) 

σ θO-C 

(°) 

σx̅ θO-C 

(°) 

Within 

Nights σ 

θO-C (°) 

Between 

Nights σ 

θO-C (°) 

μ ρO-C 

(arcsec.) 

σ ρO-C 

(arcsec.) 

σx̅ ρO-C 

(arcsec.) 

Within 

Nights σ 

ρO-C 

(arcsec.) 

Between 

Nights σ 

ρO-C 

(arcsec.) 

03122+3713 0.498736 0.020222 0.007230 0.008877 0.019129 0.015770 0.004389 0.001735 0.000971 0.004590 

01532+1526 0.562342 0.028756 0.013860 0.015227 0.027721 0.032091 0.001115 0.000606 0.000336 0.001212 

23595+3343 0.007244 0.019657 0.006308 0.011463 0.016690 0.015009 0.002677 0.000933 0.001053 0.002468 

03362+4220 0.642383 0.035291 0.014637 0.012824 0.035852 0.006197 0.001481 0.000602 0.000470 0.001475 

04041+3931 0.425228 0.032237 0.015805 0.016396 0.031609 0.007432 0.000910 0.000460 0.000373 0.000920 

Average 0.427187 0.027233 0.011568 0.012957 0.026200 0.015300 0.002114 0.000867 0.000641 0.002133 
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Appendix A cont. 

 

 

 

 

 

   

  
Fig. 36 – The orbits of the five calibration binaries for the Oct. 2013 2.1-metereter speckle run.  Most are based on 

observational records spanning less than half of the described orbit; however for most the data is well-fitting.  Reading from 

top left to bottom right, the calibration binaries and associated USNO orbital grades are: WDS01532+1526 (5), 

WDS23595+3343 (4), WDS03122+3713 (5), WDS03362+4220 (3), and WDS04041+3931 (4).   
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Appendix B 

 

 

 

 

  

   
Fig. 37 – USNO orbital plots for the six target binaries.  Deviations from computed orbits (bold), indicated by recent observations are 

obvious.  Some observations show trend which could indicate a different orbit than previously calculated (plot d), others seem to indicate 

the need for reconsideration of binary nature (plot e).  Orbital Plots: a.(19069+4137), b.(22357+5413), c.(05153+4710), d.( 02234+7021), 

e.(04505+0103), f.(06256+2227) (USNO 2015c).  

 

 

 

 

 

 

 

 

a. b

. 

c. 

d. e. f. 
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Appendix C 

 

 
Table 13.  Published orbital data for the six target binaries from the Sixth Catalog of Orbits of Visual Binary Stars, as well as useful dates 

and USNO orbit grades.  Orbital parameter codes: P (period), a (semi-major axis), i (inclination), Ω (omega), T0 (time of periastron 

passage), e (eccentricity), ω (longitude of periastron), EN (equinox of node), Elast (date of last observation), # (USNO orbit grade).  

Uncertainties given where available (USNO 2015c). 

WDS P (yr.) +/- a ('') +/- i (°) +/- Ω (°) +/- T0 (yr.) +/- e +/- ω (°) +/- EN Elast # 

19069

+4137 
41.6 

 
0.188 

 
160 

 
110  1979.51  0.25  276    5 

22357

+5413 
109.49 

 
0.276 

 
64.5 

 
177.8  2211.22  0.645  318.9  2000 1996 5 

05153

+4710 
513.48 

 
0.857 

 
69.8 

 
158.9  1875.32  0.564  133  2000 2004 5 

02231

+7021 

161.25

9 
83.563 0.587 0.195 104.33 15.43 154.1 21.9 1918.14 13.85 0.115 0.339 199.1 50.6 2000 2001 5 

04505

+0103 
158.46 

 
0.25 

 
123.8 

 
79.5  1988.44  0.022  163.4  2000 1993 5 

06256

+2227 
360.3 

 
0.674 

 
56.6 

 
183.8  1929.06  0.894  276.3  2000 1997 5 
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