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ABSTRACT 

 Regolith transport within the uppermost 30-50 cm of Earth’s surface is responsive 

to shifts in climate. Rates of surface change affect accumulation rates of sediment and 

nutrients, thereby affecting ecology, surface stability, and the ability to date landform 

surfaces. However, little is known about the quantitative effects past climates have had 

on the long term evolution of the landscape. A space-for-time substitution method was 

used to study this knowledge gap. Known degradation rates from widely varying climates 

were used to generate a transfer function where published paleo-temperature records 

from the Death Valley sediment core (DV93-1) were applied to derive paleo-degradation 

rates at Mono Basin moraine, CA. Together with a published glacial chronology for 

Mono Basin, CA for the approximately last 100 kyrs, the method related past climates to 

varying rates of landform degradation.  

In conventional applications, landscape evolution models use a diffusion 

equation, based on a transport law, to describe a linear relation between degradation and 

slope. In the transport equation, q = κ (dz/dx), a topographic diffusivity coefficient, κ, 

expresses all the combined effects other than slope on landform degradation. However, as 

it has been used, κ does not express the diverse responses of surface processes to shifts in 

climate. This study used numerical modeling to vary the coefficient of topographic 
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diffusivity in accordance with documented variations in climate to model the cross-

section profile of an 85 kyr old Mono Basin moraine. 

Results from hillslope profile modeling with various scenarios - an optimized 

constant κ, time-varying κ, and a current-time κ – were compared. In comparison with the 

time-varying value, an optimized constant κ, overestimated the surface elevation by up to 

10% during the first 60 kyrs and underestimated it by up to approximately the same 

amount during a 5 thousand year time span 20 to 15 kyrs ago. Application of the current 

κ value, assumed to reflect current interglacial climate, underestimated surface elevation 

by up to 32%. The results provide a first step in relating past climate shifts to variable 

erosion rates and surface processes through time, particularly with respect to the 

uppermost 1-2 meters of regolith mantling landforms.  
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

 Processes that erode and subsequently transport sediment across Earth’s surface 

and degrade the landscape have long been thought to follow regular quantifiable patterns 

based on topographic structures (Gilbert, 1909; Culling, 1960). Even before attempts to 

quantify surface changes were made, patterns of landform degradation were recognized 

to result from the long term breakdown and removal of material associated with the 

natural aging of landscapes (Davis, 1902). Hence, since the earliest observations, 

landform structures and their evolution have been central to the field of geomorphology – 

the science of landforms and the evolution of Earth’s surface.   

Early analytical work made a first-order assumption that the volume of 

unconsolidated sediment, called regolith, blanketing landform surfaces, follows a 

transport rate linearly related to surface gradient. Culling (1960) provided an idealized 

model based on this assumption and applied it to hillslope-shaped landforms that 

characterized generalized stream valley and ridge systems. Macroscopic processes 

recognized by Culling (1965) contributing to regolith transport rates and degradation, 

such as rain splash, surface wash, and weathering rate, were incorporated into the model 

as mobility factors independent of surface gradient. Since this early work, the field of 
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geomorphology has come to incorporate a framework where larger scale forces 

originating both from within the earth – endogenic, which include uplift and volcanism 

related to tectonism – and external to it – exogenic, which include climate – affect surface 

processes. In this framework, these larger scale inputs are recognized as providing energy 

that modifies regular patterns of degradation that are considered to have a slow and 

ongoing diffusive effect on eroding the landscape (Ritter et al., 2011). However, the 

effects of these inputs are not easily incorporated into the idealized quantitative models of 

landform degradation because the sources of energy act at different temporal and spatial 

scales.  

The present study focuses on the exogenic sources occurring at a temporal scale 

of thousands to tens of thousands of years. It assesses the differences in modeling results 

generated from employing different assumptions about the rate of landform surface 

mobility through time. One modeling application assumes an optimized constant (time 

averaged) to represent the mobility. An alternative application assumes a time varying 

climatic parameter represent the variability in regolith transport. The third alternative 

assumes that the present rates of sediment transport on a landform surface are close 

enough to the rates over the lifespan of a landform and applies a current rate of surface 

mobility taken from a measurement of sediment flux from the landform being modeled.  

The topic holds importance not simply as a modeling problem but as a problem in 

addressing erosion rates over time. This is a problem that is critical and at the foundation 

of analyses of past geologic and environmental processes and of their comparisons with 

processes in recent times. The present work does not address every place in the literature 
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where erosion rates are relevant for a reconstruction of past events over geological time 

or for predicting the effects of current climate change on soil erosion, for example. 

Instead, the purpose of the present study is to examine landscape evolution by focusing 

on the intermediate spatial scale of the landform and occurring over thousands to tens of 

thousands of years instead of the landscape scale of change measured in kilometers and 

which occurs over hundreds of thousands to millions of years. It also does not investigate 

landform processes occurring on an anthropogenic time scale of decades to hundreds of 

years. The intermediate scale of sediment transport is an area where research has focused 

less but which is important for understanding the effects of climate shifts on the 

landscape.  

This intermediate scale notably contrasts with the mountain range scale, occurring 

over the hundreds of thousands to millions of years during which mountain building 

processes are considered by geologists to occur. The landform scale also contrasts with 

the time scale in which agricultural plots are studied, where the human time scale of 

decades to hundreds of years is applied. Because the focus here is on the effects of past 

global climate fluctuations, which have occurred over thousands to tens of thousands of 

years, a single landform at a location where proxy records of past climate fluctuations 

provide evidence is taken as a case study in order to track the effects of past changes on 

sediment transport through time. The significance is that recognition of degradation 

processes and rates at the scale being considered may provide insight to physical 

relationships, such as with global climate, not considered before as having a significantly 

strong enough influence on the evolution of Earth’s surface. This study does not deny the 
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influences of exogenic forces occurring at the other spatial and temporal scales as 

contributors to landform evolution. The point stressed here is that a knowledge gap was 

recognized as relevant for a set of geologic events pertaining to global climate and a set 

of methods were employed to address it.  

While published investigations have quantified erosion rates at the other scales 

mentioned, one set of methods is used here to initiate an advance of the problem of 

quantifying the effects of past climate fluctuations on regolith erosion rates. The methods 

focus on landform degradation in order to contribute to the general geomorphic topic of 

hillslope processes, under which the case study investigated falls. While other scales and 

purposes are important for understanding the relation of tectonics, for example, to the 

response of surface processes (Molnar and England, 1990; Molnar, 2009) or land 

management practices in response to recent and future climate change (Pruski and 

Nearing, 2002; Nearing et al., 2004), the present focus is on a gap in landscape evolution 

models. The purpose is to show that a relationship exists, in this case, between a natural 

hillslope - a glacial moraine ~85 kyrs old in the eastern Sierra Nevada, CA - and global 

climate changes known to have occurred during that time. Evidence for the climate 

change in Mono Basin is given by the existence of glacial moraines, as well as other 

climate records. Mono Basin moraine was used as a case study in order to propose the 

possibility that similar relationships exist and may be quantifiable for other landforms, 

other landscapes, and other regions.  Further similar research in other regions may fill the 

gap and actually provide insights relevant to the other temporal and spatial scales and 
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potentially provide a basis for comparing rates of topographic change through time 

resulting from forces acting at the different scales.  

1.2 Background 

 Initial interest in landscape analysis centered on the observation of a slow 

reduction of landscape topography identifiable by reduction of landform gradient that 

was hypothesized to be driven by time, described by age cycles (Davis, 1902). 

Subsequent attempts quantified the unconsolidated mobile material mantling hillslope-

shaped landforms with equations that expressed how rates of sediment transport changed 

with the natural reduction of gradients (Gilbert, 1909; Culling, 1960; Culling, 1965). 

However, as discussed in section 1.1, known forces external to the landscape that 

fluctuate on time scales independently of the regular courses of degradation, such as 

global climate fluctuations, were considered as a part of the natural inputs and were not 

independently quantified or assessed in relation to landscape changes.  

The present study initiates an attempt to quantitatively incorporate known past 

climate fluctuations into a conventional diffusion equation long employed in 

geomorphology to model how landforms degrade. The equation is used to describe how 

sediment mantling landform surfaces is transported downslope and how the slope 

changes accordingly. Landforms, here, are understood to serve as elements of the larger 

landscape. Landscape evolution can be considered in various ways depending on the 

assumed temporal and spatial scales. The long term uplift, exhumation, and erosion at the 

mountain-range scale covering kilometers and occurring over spans of millions or 

hundreds of thousands of years reflect large spatial and long term scale change. However, 
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at a smaller scale, regional landscapes also respond to global climate. This study 

investigates how such response may be quantified.   

A lateral moraine, a hillslope-shaped landform deposited along the lateral edge of 

advancing alpine glacier, and left behind after the glacier has melted and receded, is an 

example of a response to cooling or warming temperatures that form or melt glaciers. The 

Sierra Nevada, California, USA, in particular, have exhibited sensitivity to shifts in the 

jet stream during glaciations in the Pleistocene (Benson et al., 1998; Gillespie and 

Zehfuss, 2004) as well as recorded lake level changes. The present study assumes that 

landform degradation and crest-lowering of sloping landforms can reflect much about 

regional modifications to the landscape on the time order of thousands to tens of 

thousands of years, a time scale that reflects the effects on the landscape of past glacial 

advances and retreats and the climates that drove that glacial activity.  

 While time scales on the order of hundreds of thousands to millions of years have 

been assumed be most relevant for landscape evolution models, the determination of 

whether critical processes occurring on smaller spatial scales and shorter time scales are 

resolvable and maintained in conventional modeling of landscapes is needed (Martin and 

Church, 1997). Difficulties in resolving data from geomorphic methods designed for 

incompatible resolutions must be addressed if processes occurring at different scales are 

going to be integrated in modeling (Martin and Church, 1997; Schrott et al., 2013). Due 

to the above mentioned difficulties of integrating different temporal and spatial scales, 

questions concerning the variability of degradation rates and hillslope processes on 

shorter time scales have been addressed much less frequently. As a result, the variable 
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effects of climate on landform degradation have been studied in less depth than the 

effects of tectonics on the landscape, which is associated with mountain building at the 

scale of lithospheric plates. As an initial first order treatment of these issues, this study 

addresses questions relating topographic change to climate driven transport on natural 

landforms. Transport data from natural hillslopes occurring in locations with various 

averaged temperatures were correlated with past transport rates related with past 

temperatures from a glacial chronology of glacial advances and retreats in the region.  

 A hillslope diffusion equation that employs a general sediment transport law has 

been used to quantify and predict the elevation loss and smoothing that is undergone 

during landform degradation (Culling, 1960; Carson and Kirkby, 1972; Hallet and 

Putkonen, 1994; Putkonen and Swansen, 2003; Putkonen and O'Neal, 2006), and which 

expresses the cumulative effects of all the factors causing it. Such a transport law is 

encountered in many fundamental equations of physics and chemistry, and it relates two 

components of a system – amount of material in flux on one side and a concentration 

gradient on the other side – with a proportionality constant between them that is 

dependent on conditions in the particular environment being analyzed. The transport law 

applied to the physical process of hillslope degradation,  

     qvol,x = κ(dz/dx)    (1.1) 

linearly relates a volume of material flux (regolith) (qvol,x [m²/yr]) with (dz/dx), its 

corresponding slope gradient, acting as the driver, and, κ (m²/yr), a constant coefficient 

expressing topographic diffusivity – how downslope sediment transport modifies 

topography. Topographic diffusivity is assumed to depend on the cumulative results of 
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climate and substrate together at any point in time at a location. As such, changes in the 

cumulative results may be compared over time in order to assess the parameter at a 

particular point. The diffusion equation that employs the transport law will be explained 

in the Methods section. 

The equation has been employed to numerically model the downslope mobility of 

sediment over the lifespan of a hillslope which results in its degradation (Hanks et al., 

1984; Hallet and Putkonen, 1994; Putkonen and Swansen, 2003; Putkonen and O'Neal, 

2006; Putkonen et al., 2008). The continual process of soil creep has been assumed to 

explain hillslope diffusion. The combined impacts of wind, rain splash, freeze-thaw 

cycles, and biotic activity, whose various influences depend on climate, are what the κ 

value represents (Hallet and Putkonen, 1994). Such influences are considered to act 

roughly continuously in contrast to other influences referred to as episodic, or 

“catastrophic,” in geology, that include events such as debris flows, landslides, or floods. 

Such events sometimes result from large episodic weather events, such as storms, and 

sometimes they result simply from the passing of a stability threshold that could result 

from any number of causes.  

This study assumes that sediment transport in similar climates on different slopes 

can be compared in order to make a first order assessment of how global climate changes 

on the scale of thousands to tens of thousands of years has affected sediment transport 

and thereby degradation rates. Local factors are assumed to have a cumulative effect over 

the time scale considered and on the single slope modeled through time. Examples of 

local factors include: slope aspect which, by affecting microclimate, can yield differences 
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in diffusivity (Pierce and Colman, 1986) and above and below ground biological activity, 

of which the sum of mechanical processes results in a volumetric loss of regolith at the 

hillslope crest e.g. Gabet et al. (2003). Also assumed is the homogeneity of the substrate 

throughout the landform. The assumptions made in the present study in no way deny the 

many ways sediment on landform surfaces are mobilized. However the selected focus of 

the present study was on how evidence of past climates provided by a glacial chronology 

and temperature proxy records – can be used to reveal the variable effects of climate on 

the landscape for thousands to tens of thousands of years.    

What has not been investigated in depth previously is the approach of a time 

varying topographic diffusivity that can be shown related to the past climates. Modeling 

hillslope processes is a common first step in modeling landscape evolution, from the 

earliest works (Davis, 1902; Gilbert, 1909; Culling, 1960; Culling, 1965) to the recent 

(Tucker and Hancock, 2010), although the techniques have changed. Given that κ is 

dependent on climate, expressed above as the cumulative effects on the substrate of the 

combined exogenic forces and the abundant evidence for past global climate changes, 

such an approach contributes a new perspective to consider for modeling hillslopes that 

represent natural landforms.  

The linear diffusion equation has been shown to model hillslope profiles at 

selected times (t) with use of a mean κ value in a time interval of [0, t] regardless of the 

temporal variability of κ (Skianis et al., 2008). Results of that study are promising for the 

objectives of the present one. Because the point here is to show how exogenic inputs 

driven by times of global climate change are associated with relative changes in hillslope 
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degradation rates, the results from the Skianis et al. (2008) study suggest that the 

application is sound even if the precise times when κ values change are uncertain.   

The focus of the Skianis et al. (2008) work was in determining whether a 

difference in cross profile form and morphology would result from applying a time 

averaged κ value and a time-dependent κ value. While the work showed that a significant 

difference in form and morphology did not result, the physical relevance of the 

differences at specific times was not addressed. While a numerical difference amounting 

to a meter, for example, at the million year scale might have been assumed to be 

insignificant in terms of mass balance, relevant chemical processes occur within the 

uppermost 1 to 1.5 meters. If diffusivity over a thousand year scale is increased or 

decreased the result is increased or decreased surface exposure. Chemical processes, such 

as decay of cosmogenic isotopes is affected by exposure time at the surface. Exposure 

also affects isotopic fractionation, thermal penetration by solar radiation, and infiltration 

of precipitation. In other words, the physical processes occurring at different rates 

through climate shifts contribute to a long term average, but potentially in significantly 

different proportions at different times. Diffusivities in various climates may differ 

enough to significantly vary degradation rates at various times. Also regions, even within 

similar climates, may respond differently to climate shifts. Such variability can be 

significant for landform evolution and is lost when a time averaged value is used. Even if 

overall shape and morphology appear to differ little when a constant or time varying κ 

values are used, the physical results can be relevant and significant for upper-most 

surface processes responding to shifting climates.   
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Field observations have provided evidence that as sloping landforms age, their 

cross-section profiles become smoother as matrix is eroded from upslope, then 

transported and deposited on lower slope positions (Hallet and Putkonen, 1994; Putkonen 

and O'Neal, 2006; Putkonen et al., 2008). Modeling the process with a linear diffusion 

equation, the rate of sediment lost to crest lowering is linearly related with reduction in 

slope over time. Crest elevations can then be related to landform age (Hanks et al., 1984; 

Hallet and Putkonen, 1994; Putkonen and O'Neal, 2006; Putkonen et al., 2008; Skianis et 

al., 2008).  

Similar observations have been used to relatively date glacial moraines in the 

eastern Sierra Nevada. Mono Basin moraine, located approximately 8 km south of the 

town of Lee Vining and Mono Lake and in a regional mean elevation of 2350 m asl, has 

been dated by cosmogenic isotopes and recognized as an older moraine, at least 60-80 ka, 

(Phillips et al., 1990; Phillips et al., 1996; Gillespie and Zehfuss, 2004; Phillips et al., 

2001), in comparison to the neighboring younger Tahoe II moraine. Located in the 

Walker Creek valley, Tahoe II moraine exhibits a sharper crest and is dated within a 

range of 50-42 ka (Phillips et al., 1996; Phillips et al., 2001; Gillespie and Zehfuss, 

2004). Mono Basin moraine was selected for modeling the evolution of its cross-section 

profile for this study because it exhibits the rounded crest characteristic of its older age 

(Gillespie and Zehfuss, 2004; Putkonen et al., 2008) and it thereby is assumed to have 

undergone the process that the hillslope model approximates.  

Regional and global climate records show evidence that climate has fluctuated in 

the past as a result of temperature changes that coincided with glacial activity in both the 
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Northern and Southern Hemispheres (Shackleton et al., 1984). Examples of known 

changes in paleoclimate that coincide with global cycles are changes in incoming solar 

radiation resulting from orbital forcing, i.e. Milankovitch cycles occurring at 23-, 41- and 

100 kyr intervals, advances and retreats of continental ice sheets, changes in sea surface 

temperature (SST) resulting from ice sheet instability (Hostetler and Clark, 1997; 

Licciardi et al., 2004; Clark et al., 2009), e.g. Heinrich events (Clark and Bartlein, 1995), 

and Dansgaard-Oeschger oscillations (Benson et al., 2003).   

Each type of cause drives changes in temperature on a regional scale by means of 

atmospheric and oceanic circulation changes (Galaasen et al., 2014) that then affect 

regional climate and local weather patterns that affect erosion rates and landform 

degradation through time (Tausch et al., 1993; Woolfenden, 1996; Heusser, 1998; 

Minnich, 2007).  Paleoclimatic proxies also indicate that large scale changes have 

themselves varied in duration and frequency, and that there is evidence for this globally 

and in the present study region (Rampino et al., 1987; Anklin et al., 1993; Dansgaard et 

al., 1993; Taylor et al., 1993; Smith and Bischoff, 1997; Lowenstein et al., 1998; 

Shackleton, 2000). Regional studies quantifying rates of topographic diffusivity related to 

different latitudes (Oehm and Hallet, 2005), as well as studies of ecological changes 

related to recent warming (Cannone et al., 2008; Field et al., 2011), provide evidence that 

small changes in regional temperatures over the scale of even decades can lead to 

significant ecological changes (Woolfenden, 2003). The present work relies on the 

overlapping evidence showing a relationship approximating an increase of topographic 

diffusivity with a decrease in temperature. By correlating past temperature changes in the 
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eastern Sierra Nevada with topographic diffusivities recorded elsewhere in current 

climates, the effects of past climates on landform degradation were examined through an 

application of space-for-time substitution to be discussed in the Methods section. 

Occurring during a time range for which proxy records provided evidence of 

alpine glacial advances and retreats, Mono Basin moraine was used as a record of how 

hillslope degradation responded to past climate changes triggering those advances and 

retreats. Published ages indicate deposition of the moraine occurred after the start of the 

last glacial period approximately 126 ka (Shackleton, 2000; Shackleton et al., 2003). A 

minimum age range is 80-60 ka according to revised published accounts (Phillips et al., 

1990; Phillips et al., 1996; Gillespie and Zehfuss, 2004). The mid-latitude location at the 

boundary of the polar jet stream, considered to have shifted with the advances and 

retreats of the Laurentide ice sheet over the last glacial cycle (Clark and Bartlein, 1995; 

Benson et al., 1998), further supports the assumption that global climate changes drove 

the regional glaciations, thereby affecting landform surface processes.  That there is 

considerable consistency in glacial advance and retreat in northwestern California with 

glaciations in east central California  lends further support to the correlations of global 

and regional climate change patterns (James et al., 2002). 

The location of the Mono Basin moraine in Mono Lake Basin, which is thought to 

have shared in the paleohydrological system of Owens River connecting Mono Lake to 

other lakes in the region, provides a physiographic basis for comparing proxy climate 

records from lake sediment cores (Benson et al., 1996; Litwin et al., 1997; Smith and 

Bischoff, 1997; Bischoff and Cummins, 2001) (Figure 1.1). Proxy climate data from 
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Mono Lake sediment cores can be used to correlate times of changes in the regional 

climate with conditions that would have affected erosion rates of the moraine in Mono 

Basin. For example, lake sediment records can indicate low stands which are associated 

with warmer temperatures that evaporated the lake water and, therefore, would have 

caused glaciers to melt and retreat. High stands are associated with cooler temperatures 

that would have maintained or advanced glaciers (Benson et al., 1998). Therefore Mono 

Basin moraine provides a temporal link with a glacial advance and it is spatially related 

to a drainage system for which proxy climate data indicates changes in climate during the 

evolution of the moraine.  

1.3 Problem Statement 

 The diffusivity equation has been shown to closely model cross-section profiles of 

hillslopes (Putkonen and O'Neal, 2006; Putkonen et al., 2008). However, the coefficient 

of topographic diffusivity, κ, as it has been used as a time averaged constant, does not 

express the diversity of past climates that interacted with landform surfaces. Also, its use 

has thereby misrepresented variable degradation rates through the evolution of a 

landform. Given what is known about past climate fluctuations and the effect of 

temperature on current topographic diffusivities, this study addressed the problem by 

using numerical modeling to vary the coefficient of topographic diffusivity in accordance 

with documented variations in climate. With this approach, the cross-section profile of 

Mono Basin moraine was modeled and compared with models generated from the 

application of a constant topographic diffusivity.  

 Long term landform degradation has been modeled through application of the 
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hillslope diffusion equation to an initial profile with an initial angle of repose, the 

steepest angle that a mound of unconsolidated material will remain at rest without sliding, 

as the initial state (Putkonen and O'Neal, 2006; Putkonen et al., 2008). The free variable 

in the equation, a constant κ, a parameter reflecting the integration of climate and 

substrate, has not been temporally constrained to actually reflect conditions it is used to 

represent. Rather, as a free variable, it is generated to produce a cross-section profile that 

agrees with an observed form given an initial angle of repose and application of the 

equation (Hallet and Putkonen, 1994). If assumptions about initial conditions of the slope 

are correct, then the method has been assumed useful in dating moraine age (Hallet and 

Putkonen, 1994). However, the result is that the use of a constant κ through the life of the 

landform misrepresents or does not include the variable effects of past climate 

fluctuations on the landscape, and so the conventional use of κ described by the transport 

law in the hillslope diffusion equation is limited in its ability to model landform 

evolution. Also, while current diffusivities are readily accessible in Mono Basin, they are 

only applicable to the most recent geological period of a global interglacial time, when 

climate has been warmer, drier, and more stable than it was prior to the last 10 kyrs  

(Holocene) since the start of the last interglacial time (Woolfenden, 1996; Benson et al., 

1997; Benson et al., 1998; Mensing, 2001; Minnich, 2007). Therefore, use of present κ 

values are expected to misrepresent landform evolution as well.   

1.4 Objectives 

 Hillslope diffusion equations typically are used to date sloping landforms rather 

than to sequence short time scale processes and perturbations, such as soil creep or 
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landslides, during their evolution. Such smaller scale changes often are considered to lack 

relevance in quantifying long term geological processes because, for dating purposes, 

they are considered mainly for their contribution to the long term average erosion rate. 

This study focused on quantifying variable degradation rates in order to determine how 

past climates might have affected erosion and surface processes on time scales less than 

100 kyrs. The objective was to quantify the variations in degradation that result from 

applying topographic diffusivities that change over time in accord with variations in 

climate. Comparisons of this model with those generated from a constant and optimal 

value showed: 1) the sensitivity of κ to climate fluctuations resulting from changes in air 

temperature and 2) the degradation variability lost when a constant value is used. The 

results produced: 1) generation of time dependent κ values that best model the current 

profile and 2) an analysis of the potential errors that result from using a constant κ instead 

of a climate dependent κ.  

 1.5 Geological and Climatic Setting of Mono Basin and Moraines 

 Although the Sierra Nevadas have been at the center of research endeavors to 

understand the petrogenesis and plate tectonic setting since at least the 1960’s, interest in 

the geology of the mountain range and processes that modify its topography continues. A 

general summary has been published and is accepted as an introduction to the topic of 

Sierra Nevada geology in Hill (2006). A more complete compilation of the history of the 

research on which general scientific understanding is based has also been published in 

Moores et al. (1999). Since the 1980s and the advance of accelerator mass spectrometry 

(AMS), research specific to understanding glacial chronologies and the effect of 
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Pleistocene glaciations on the eastern Sierra Nevada landscape has been reexamined. 

Numerical age dating of moraine boulders using cosmogenic isotopes (Phillips et al., 

1990; Phillips et al., 1996; Gillespie and Zehfuss, 2004) has significantly refined the 

earlier glacial chronologies of Blackwelder (1931). The following provides a summary 

synthesized from the above sources.  

The eastern Sierra Nevada is an alpine environment shaped by the repeated 

advance and retreat of glaciers during a minimum of 9 recognized glacial/interglacial 

cycles occurring over the past 2.6 Ma (Gillespie et al., 1999; Gillespie and Zehfuss, 

2004). The mountain range formed during the Late Jurassic, approximately 150 million 

years ago, as a result of subduction of the oceanic Farallon plate beneath the North 

American plate that produced a magmatic arc extending southward into Mexico and 

northward into the area of the Klamath Mountains (Moores et al., 1999; Hill, 2006). 

Renewed uplift began during the Miocene, ~20 million years ago, by Basin and Range 

extension of the crust, causing a westward tilting fault block of mainly granitic rock 

(Moores et al., 1999; Hill, 2006). The start of the Great Ice Age in the Pleistocene epoch, 

2.6 Ma, marked the beginnings of glaciations occurring in the Sierra Nevada Mountains 

that carved mountain stream valleys into U-shaped valleys leaving behind long ridges of 

deposits as lateral moraines (Gillespie et al., 1999; Hill, 2006).  

Moraines studied in Mono Basin and Bishop, California (Figure 1.1), as well as 

others occurring in the eastern Sierra Nevada, have been the subject of previous research 

efforts attempting to date the timing of glacial advances and retreats in this region as 

consequences of Pleistocene climate change in western North America (Gillespie et al., 
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1999; Gillespie and Zehfuss, 2004). Early work relied on mapping the extent of moraines 

(Blackwelder, 1931). Further progress was made through the use of relative dating 

techniques (Burke and Birkland, 1979; Bursik, 1991; Bursik and Gillespie, 1993; 

Sampson and Smith, 2006) and subsequently by exposure age dating of boulders and 

depth profile dating using cosmogenic isotopes (Phillips et al., 1990; Phillips et al., 2001; 

Phillips et al., 2009; Rood et al., 2011; Morgan and Putkonen, 2012). Moraines in the 

region are estimated to range in ages from approximately 2.6 Ma to 600 years old 

(Gillespie and Zehfuss, 2004), although the current interglacial time began ~11,500 years 

ago. Published relative and radiometric ages begin with the McGee glaciation between 

2.7 -1.5 Ma, but records suggest that by circa 920 ka the landscape had become more 

continuous with the present landscape in terms of the preservation of moraines (Gillespie 

and Zehfuss, 2004). 

Glacial chronologies have also been augmented by supplementary chronologies. 

Age constraints based on correlations of paleomagnetic field intensity of volcanic ash 

records with GLOPIS (Global Paleointensity Stack) (Zimmerman et al., 2006) have 

refined ages further.   Age dating of other moraines in the broader region, extending from 

the Olympic Mountains in the northwestern United States to the Uinta Mountains along 

the Utah-Wyoming border (Thackray, 2008) to the far southwestern margin of California 

in the San Bernardino Mountains (Owen et al., 2003), indicate variable responses by 

regional glaciers to common forces that caused global climate fluctuations (Thackray, 

2008).  
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 Commonly, subsequent glacial advances remove previous deposits in their path or 

emplace younger deposits with older ones. For this reason, identifying some moraine 

deposits as distinct in age from others that might have been overridden or cross-cut 

during a glacial advance has been challenging and the subject of much debate. However, 

the latest published and cited ages distinguish the older Mono Basin moraine with dates 

ranging from 80-60 ka  from a younger Tahoe II moraine, argued to be 50-42 ka (Phillips 

et al., 1996; Gillespie and Zehfuss, 2004), which was deposited by a glacier that traveled 

down the same valley but took a more northerly course cross-cutting the earlier deposit 

(Gillespie and Zehfuss, 2004). In addition to these moraines, published ages of other 

moraines in the region and augmented with published times of Mono Lake low stands 

(Benson et al., 1998) were used as motivation to vary the κ value (thought to reflect 

different climatic conditions) in the degradation modeling used in the present study and 

further described in Methods. Table 1.1 lists those times selected. The citations given as 

notes for Table 1.1 provide more complete accounts of the glacial and lake level 

chronologies and the sources of those chronologies, as their focuses centered on dating of 

the moraines. The focus of the present study was on modeling the evolution of the Mono 

Basin moraine using the latest updates employed for estimating the ages of moraines in 

the Mono Basin region. 

 Current κ values derived in the present study at Mono Basin will be discussed in 

Methods. Two additional moraines near Birch Creek, located approximately 11 km SW 

of the town of Bishop, CA. also were sampled as a basis for comparative analyses of 

current κ values in the region. However published dates of the moraines at Birch Creek  
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are considerably older, between 150-130 ka (Phillips et al., 2009), than the moraines in 

the Mono Basin region and were not modeled in this study. The current diffusivity 

calculated for Mono Basin moraine was used together with other globally distributed 

values reflecting regional climates and related to an average air temperature reflective, 

though not necessarily definitive, of the location where the value was measured. The 

method of substituting geologically present diffusivities to a single location in the past 

under varying climates will be explained in the Methods section.  

Event
1

Time (ka)

Present 0

Recession 13

Transition 15

Tioga Start 25

ML LS 3 27

Tenaya 32

ML LS 4 34

Tahoe II 50

Mono 

Basin 80

1 Events are based on glacial advances reported as the latest updates referenced in 

Gillespie and Zehfuss (2004) and occurring after the deposition of Mono Basin 

moraine. ML LS 4 and 3 are supplemented to the list to support inferred glacial 

retreats during reported Mono Lake Low Stands (Benson et al., 1998). The 

glaciation times are based on published dates compiled and reference in Gillespie 

and Zehfuss (2004). The times of “Transition” and “Recession” were also 

supported by qualitative proxy records discussed in the Results Chapter. The 

times shown were selected to be run in the degradation modeling program and 

based on published chronologies referenced in Gillespie and Zehfuss (2004).  

Table 1.1 Times used in degradation model and based on 

published moraine ages and proxy records  
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Figure 1.1. Relative locations of Mono Basin and Birch Creek moraines. 

Red stars in index map show nearest towns to field sites. Proxy data 

from Death Valley core site is referenced in the study. The topographic 

map has been compiled from multiple sources (ESRI, 2014).  



22 
 

 

 

 

CHAPTER II 

METHODS 

2.1 Overview 

 Current topographic diffusivities and related surface processes of the Mono Basin 

region were calculated through measurement from the following field methods: sediment 

traps, pebble lines, and repeat photography that are discussed in earlier professional 

literature of Tricart and Macar (1967) and a terrestrial LiDAR (Light Detection and 

Ranging) scanner. Multiple methods were used in this study for purposes of comparison 

and assessment of what may be learned from the resulting data given by various field 

methods.  Present sediment transport was related to the current regional climate and 

assumed mode of sediment transport, which in a semi-arid alpine environment is 

considered to be surface wash (Leopold et al., 1966; Selby, 1993). Published data from 

studies on sediment transport on natural slopes in recent time and a similar arid climate 

supplemented measurements in the present study (Schumm, 1964; Kirkby and Kirkby, 

1974; Abrahams et al., 1984).  

 Measurements in the present study were made for the year 2010-2011. The 

results, while given as an annual rate, therefore reflect only a single year. Measurements 

averaged over multiple years, of three, five, or ten for example would have better 

represented annual transport rates. However, financial and time limitations did not allow 

for annual data campaigns. The training in the installation of the apparatus, the data 
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sampling, measuring, and collection and in the reconnaissance for assessing their 

suitability for future studies provided a foundation for more efficient campaigns in the 

future.  

Installation of field apparatus was made on different moraines for comparison and 

in order to test the feasibility of their performance for future study. The practice of 

collecting data on bare earth areas, as explained in the individual methods, was to 

characterize the mobility of the substrate at the surface unhindered by obstructions such 

as vegetation, deadwood, and large boulders. Such obstructions hinder downslope 

transport, and the objective was to investigate how the regolith making up the mobile 

surface moved, in order to assess how the sediment that was in flux contributed to the 

degradation of the landform.  

The method for studying past diffusivities in the region was a transference of 

present diffusivities in global locations that included Mono Basin with climates, 

identified by air temperature, to times in the past in the region of Mono Basin where 

proxy records indicate similar temperatures. The method will be described in section 2.7.  

In Chapter 3, Data, an overview includes the novel applications that the data 

generated from the following methods were used for. The field methods themselves cited 

above in Tricart and Macar (1967) have a long standing history in land management 

studies around the world, because they have been viewed as the most effective way of 

measuring natural sediment transport as a measure of surface change on the landscape.  

However earlier published studies have not typically performed uncertainty analyses with 
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these field methods. The studies compiled by Oehm and Hallet (2005), for example, 

provide no such analyses. Measurements are typically made to one or two significant 

figures depending on the sampling and measuring apparatus used. No assumed standard 

was used with which to compare field measurements and so analysis of uncertainty, 

rather than error, was performed. In the field of geomorphology field data of physical 

processes may be compared with model results with the assumption that the model results 

are limited to a restricted use of parameters that do not reflect the complexity and 

interactions occurring among the multitude of variables (Tucker and Hancock, 2010).  

2.2 Sediment Flux Rates from Sediment traps 

 Sediment flux, defined as a bulk volume of regolith moving past a representative 

unit width on the hillslope per unit of time, was collected in sediment traps from various 

mid-slope to near-crest locations on the moraines in Mono Basin and Birch Creek. 

Sediment traps have been used as a standard method by the United States Forest Service 

(Wells and Wohlgemuth, 1987)  and in recent sediment transport studies in Dry Valleys 

in Antarctica (Putkonen et al., 2007) to quantify the transport rate of volume of sediment 

that has moved past a point on a sloping land surface per unit of time. Dimensions and 

construction materials are often modified to adapt to environmental conditions to ensure 

sediment in transport has free entry into the trap and to minimize the loss of sediment by 

wind, water, or animals. For example, the traps in the present study were constructed with 

higher sides that those used in Antarctica. Due to an expected higher volume of material 

in transport in the Sierras than in Antarctica, where erosion rates have been measured to 
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be the slowest on Earth (Putkonen et al., 2007), higher sides helped to ensure that the 

larger amount of sediment was not removed (Figure 2.1 A and B).   

As the volume of mobile regolith moving down the hillslope surface, sediment 

flux is represented in the equation of the general sediment transport law as q, indicated in 

equation (1.1). When q is not directly measured, but derived from measures of elevation 

loss and an assumed landform age, the volume can be time-averaged and expressed as an 

annual rate. However, the transport law itself is not restricted to certain time units. It is 

given simply as an expression of the general parameters involved in mobilizing sediment 

down a slope. 

In this study, the volume of bulk regolith collected in the sediment trap was 

measured and used to assess the distribution of regolith sizes transported on the given 

B 

Figure. 2.1. Wooden sediment trap installed on hillslope surface. A. Oblique view 

shows pathway upslope (towards upper right) where sediment enters trap and back-end 

flush with surface. Front end does not need to be flush, as sediment only enters from 

up-slope. Sides are constructed higher in order to prevent sediment entering through 

the sides. B. View from above shows trap interior and relative dimensions with sample 

ID and metal ID tag attached at left for recovery if trap became covered with sediment. 

A 
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slope. The volume of material collected in each trap was calculated from measurements 

of substrate densities. Densities were determined by packing the sediment into a vial of 

known volume and measuring the mass of regolith filling it. The average density of 

surface substrate in Mono Basin was 1.958 g/cm³. In Bishop, the average density was 

2.122 g/cm³. The mass of the collected sample from the trap was then divided by the 

density to determine the volume of sample. Diffusivity was solved by substituting the 

tangent of the slope angle for the gradient in the equation (1.1) and presented in a similar 

form by Putkonen et al. (2007).  

The sediment traps were constructed of plywood of 1-cm thickness and with 

dimensions 12 cm x 32 cm with the sides an additional 4 cm higher than the front and 

back (6 cm each). They were buried so that the upper lip of the back side would be flush 

with the surface of the hillslope so as to collect regolith moving downslope. The 

downslope end of the box did not need to be flush with surface, as the purpose of the trap 

was to collect sediment from upslope that was transported into the box. The sides 

extended above the land surface in order to avoid sediment being jostled or blown out of 

the box. Once installed in the above manner, the inclination of the trap was measured by 

a clinometer reading along the long edges of the sediment trap which was approximately 

parallel with the downslope angle on the hillslope at that location. However, the slope 

angle recorded for the location of the trap was measured by a clinometer reading of the 

slope between two persons standing approximately 5 meters apart upslope and downslope 

from the trap location. This two-person method provided the measure of the hillslope 

rather than the local slope where the trap was positioned.  
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The sediment transport equation (1.1) expresses sediment mobility as compared to 

similar slopes in other regions where the combined effects of climate on the substrate 

transport sediment more or less easily. The state of vegetation, therefore, is assumed to be 

a result of those combined effects in this kind of study. Other kinds of studies may focus, 

for example, on the contribution of the variety and density of vegetation to a landform 

surface by comparing the vegetation on different landform surfaces as a single parameter. 

However the present study treated the cumulative effects of a climate on a substrate in a 

general way similar to other studies of its kind, e.g. those that have focused on modeling 

hillslope degradation over a relatively long time as compared with shorter time scales that 

are used in considerations of vegetation species and density changes. 

The current hillslope surface of Mono Basin moraine exhibited regular spatial 

patterns of sagebrush and bare earth and grass. A bare earth pathway was assumed to 

reflect areas where sediment on the slope was being transported. Areas containing brush, 

woody debris, and large rocks and boulders were assumed to be areas where sediment in 

transport might be obstructed and stored. If the climate had been such that there was less 

vegetation then, everything else being equal, it was assumed the sediment would have 

been transported more easily. The sediment that traveled through the pathway without 

obstruction represented the rate that sediment was transported in the particular 

environment, which was assumed to be a cumulative result of the climatic conditions on 

the substrate. The above, therefore, dictated where the traps were installed, which were 

locations of un-vegetated areas with an upslope pathway leading to the trap, the distance 

of which also approximated a downslope distance from the bottom edge of the trap, so 
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that the slope where the trap was installed reflected the location on a hillslope, rather than 

a localized depression or mound. The trap was oriented perpendicular to the slope 

contour as closely as possible. The methods for recording slope were described above.  

The top few centimeters of soil were sampled, not only to determine an average 

density of the substrate, but also to compare the relative proportions of regolith making 

up the surface layer of the landform with what had been collected in the traps as annual 

transport. The purpose of comparing the two was to assess the size of regolith that had 

not been transported into traps. This, together with data on transport distances, discussed 

in the next section, indicated how far various grain sizes were travelling downslope in a 

given year. This was done simply as a way of characterizing the mobile surface in more 

detail than simply sampling at a point source.  

Collected samples were weighed first as bulk masses. Each, then, was sieved, 

according to the Udden-Wentworth scale, a commonly used geometric scale in 

sedimentology, where each value is twice as large as the one preceding. The scale 

extends from 1/256 mm to >256 mm, and is divided into three major categories (mud, 

sand and gravel).  Each category is subdivided. The present study used the following 

millimeter divisions for sieving: 1.19 – 1.68 (very coarse sand), 2.83 (granule), 4-32 

(pebble), >32 (cobble) (Boggs, 1995). For the purposes of the present study, fines were 

considered all sediment smaller than granule size. The different grain sizes were 

compared as percentages of the total bulk mass of each sample collected in a trap. These 

relative comparisons were also compared with bulk masses of the grain sizes collected 

from the top 3 cm of substrate.   
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2.3 Pebble Transport Distance from Pebble Lines 

Pebble lines were used to measure annual transport of pebbles. Published 

accounts include similar uses of painted pebble tracking (Persico et al., 2005) as well as 

adaptations referring to erosion-monitoring lines (Kirkby and Kirkby, 1974; Abrahams et 

al., 1984).  

Pebble lines were located at sites with continuous bare earth that extended an 

ample distance downslope in order to determine how far pebbles would be capable of 

travelling in one year on a representative surface of a landform. To measure the average 

distance travelled by pebbles on the slope, native pebbles 2 to 3 cm in diameter were 

labelled and placed in a row along a horizontal line along the slope contour. A typical 

row was 4 to 5 meters in length with 25 pebbles at 20 cm intervals (Figure 2.2 A and B). 

Rebar stakes were installed at the ends as bench markers. During the subsequent year 

Figure 2.2. Pebble lines installed on hillslope surface. A. View shows pebble line, 

with downslope towards the right. B. View shows how pebbles were placed on the 

surface (down slope is down).  

A 

B Downslope  

Downslope 
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pebbles from the line were measured with a measuring tape from their point of origin to 

their destination position.  

2.4 Transport Distance from Repeat Photography and Frequency Analysis 

 Tracking annual displacement of regolith in repeat photography is an additional 

way to measure transport rates of pebbles. The method was used together with the 

measure of pebble frequency over a square meter of bare earth surface. By using 

distances measured in pebble-line transport and pebble frequency determined in photo 

analysis, the average travel distance of a volume of pebble-size regolith was determined. 

Using the transport equation discussed earlier, this volume was used to calculate a 

topographic diffusivity that was compared with those calculated from sediment traps and 

terrestrial LiDAR repeat scans, discussed in the following section. The comparisons were 

made to assess how the rates at which annual surface transport measured to have occurred 

were related to regolith size variations. They were also used to compare how κ varied 

with grain size.  

The use of photographs to track regolith broadened the range of pebble sizes that 

could be tracked. Whereas pebbles used in the pebble lines were restricted to 2-3 cm and 

were placed by hand at initial positions, displaced regolith in photos ranged in size from 

0.85 to 8.5 cm and they travelled from natural positions, rather than having been placed, 

as the pebbles in the pebble line had been. Photographs were also used to assess a size of 

rock that appeared to have remained stationary. A stationary size of 12 cm was used to 

generate a curve relating grain size to transport rate. The curve generated from data in 
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this study was then compared with curves generated from published travel distance data 

of similar sized regolith on shallower slopes. Similarity in appearance with sites used for 

neighboring sediment trap and pebble-line installations was used as a basis for photo site 

selection. Rocks observed to have moved a measurable amount were identified in photos 

taken the second year. Their distances were measured in Adobe Photoshop by 

determining the displacement of the long axis center.  

The frequency of occurrence of pebbles 2-3 cm, determined through photo 

analysis, was used to calculate the volume of pebbles at field sites where pebble lines 

were used to determine travel distance. The method correlates two characteristics – size 

and frequency – by relating them to the third feature – transport rate – to calculate the 

volume of pebbles in annual transport per unit width. The volume was used to calculate 

and compare a topographic diffusivity for the pebble line and repeat photography 

methods with the other discussed methods, as illustrated in the Results.  

A published method for determining the volume of a certain rock size transported 

over a designated reference area was adapted to this study (Putkonen et al., 2007). In the 

equation, 

                                    
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    (2.1)   

total volume of sediment flux (q) (in this case of pebbles) equals the sum of all pebbles of 

a certain size (V= m³) multiplied by the distance per unit width they travelled over time 

and divided by A (the reference area) in units of m²/yr. With this equation, the q for 2-3 



32 
 

cm pebbles, was used in the transport equation (1.1) given in section 1.2 to calculate a κ 

value for the pebbles only. Equation 2.1 differs from 1.1 in that the flux rate is defined by 

a measured distance in 2.1. However, equation 1.1 was used to calculate the κ value from 

the volume of sediment collected in a sediment trap where the combined mix is assumed 

to represent the mobile surface. Equation 2.1 was used to determine the volume of a 

certain regolith size traveling a measured distance in order to calculate a transport rate for 

a grain size.  The grain sizes and their relative proportions together constitute the 

substrate of the moraine and, for the purposes of modeling, were assumed to be constant 

over the surface.  

 In order to incorporate grain sizes smaller than pebbles that could not be 

physically tracked like the larger regolith into the descriptive curve of size versus 

transport distance, a theoretical determination was made, intended to reflect an 

intermediate value discussed below. The theoretical value was derived from calculating a 

length of assumed volumetric dimensions measured from the average topographic 

difference between LiDAR repeat scans (see explanation in section 2.5), the width of a 

sediment trap, and the volume of fines collected in the trap. The average topographic 

difference of the scan area is here assumed to represent an amount of flux in transport 

that occurred when sediment entered the sediment trap. For this to be true, the slopes 

would need to have been comparable and the average topographic change collectively 

would need to have been generated predominantly by fines. Given the caveats and 

uncertainties, this theoretical value was employed to reflect an intermediate value. A 

minimum value would result from fines that were transported into the trap from the edge 
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of the trap opening, while a maximum distance value would originate from some 

unknown point near the crest of the slope. Given that the start of the pathway was not at 

the crest top but, rather, downslope from sagebrush, the maximum distance possible for a 

fine likely did not occur on the landform under study. The calculated distance for fines 

was at a reasonably greater distance than those reported for pebbles. This theoretical 

calculation was interpreted to reflect the historical experiments that produced a classic 

curve showing the velocity needed to transport various grain sizes. It illustrated that for 

sand-sized and larger grains, the larger the average diameter, the higher the velocity 

required to initiate transport (referred to as critical current velocity) (Sundborg, 1957). 

Here, the principle is used to illustrate that given a transport event, the smaller the grain 

size, the further the movement, all else equal, i.e. no obstructions.  

2.5 Topographic Change Detection with Terrestrial LiDAR 

 In the present study terrestrial LiDAR (Light Detection and Ranging), also 

referred herein as terrestrial laser scanning (TLS), annual repeat scans were used to 

observe and document, each year, the topography over approximately 1 square meter of 

bare earth on the moraines in Mono Basin and Bishop. A set of annual repeat scans taken 

of approximately 1 square meter of bare earth surface patches on the moraines in Mono 

Basin and Bishop were taken using a Leica ScanStation (Figure 2.3). The scanner was 

programmed to emit laser pulses at 2 millimeter spacing with an electromagnetic 

wavelength documented to be emitted by laser scanners of 10-3-103 (eV) (Heritage and 

Large, 2009). The instrument is capable of 2 millimeter modeled surface precision during 
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scanning with a 6 millimeter accuracy of position and 4 mm accuracy of distance 

according to the instrument specifications. 

Mid-slopes and near-crest areas were scanned by transporting the LiDAR and 

setting it up on a tripod positioned to face upslope. The distance between the scanner and 

the area scanned typically ranged from 1 to 3 meters, appropriate for the scale of square 

meters under study. A typical range for studies in geology and geomorphology are on the 

scale of 10s to 100s of meters with errors that scale with those distances, centimeters to 

10s of centimeters. However, those studies typically are not designed to measure 

sediment transport rates at a fine scale, which is a unique feature to measure with repeat 

scanning in the field of geomorphology. The laser was programmed to emit pulses that 

interfaced with the surface at 2 millimeter spacing with use of the Cyclone software 

which accompanies the instrument.    

Figure 2.3. View of LiDAR set-up on hillslope. All 

set-ups have instrument facing upslope to minimize 

distance between scanner and area scanned.  
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Decreasing the distance between the scanner and scan area increased precision by 

minimizing interference and increasing the likelihood of returns, hence increasing the 

signal to noise ratio (Heritage and Large, 2009). Vegetation between the scanner and the 

bare surface could cause interference with the emitted pulses. Also, the higher the density 

of return points, the more accurate will be the triangulations between points used in 

creating a digital surface once the points are downloaded (Heritage and Large, 2009). 

Further, the better the precision for each scan, the better the precision between repeat 

scans of the same area. The scanner recorded the digital returns as point clouds with each 

point carrying coordinate information relative to an arbitrary reference point – x-, y-, z- 

distances – and intensity information – a measure of the  reflectance of the surface 

(Reshetytuk, 2009).  

 The scans were aligned with the help of targets with which subsequent scans were 

rectified in the instrument’s software. Three to four targets were drilled with bolts into 

large boulders around the periphery of the scan areas. Initial processing of the LiDAR 

scan data entailed rectifying the scans with alignment to target scans. The software used 

the target coordinates as tie points recorded within the instrument’s internal frame of 

reference. Upon return the following year, the LiDAR was set up over a nail used as a 

benchmark placed in the ground the previous year. With the targets in the same place, the 

second year scans had the same tie points in the first year’s frame of reference. Several 

swath areas were scanned each year. Because overlap of all of them was not possible, 

only those areas that did overlap were selected for analysis.  
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 Because the purpose of the scanning was to quantify topographic change related 

to the natural removal and deposition of sediment, the area within the periphery of the 

targets was bordered off to restrict any human disturbance of the sediment during the 

campaign itself.  For this reason, vegetation or other obstructions could not be 

approached and removed. Therefore, Cyclone software was used to remove those point 

clouds whose intensities were produced from sources other than bare earth, such as from 

vegetation returns. The coordinate data were then imported into MatLab.  MatLab code 

was written to create continuous surfaces from non-uniformly distributed data points, 

which produced DEMs of the surfaces scanned. Surfaces were created from the TLS data 

from each field season. The differences between elevations generated from the surfaces 

of the two field seasons – 2010 and 2011 – were calculated and superimposed as an 

independent matrix over one of the previous year’s surfaces showing where there was net 

deposition, erosion, or no change. The difference surface gave a measure of overall loss 

(erosion) or gain (deposition) in elevations over the selected swath study area.  

 By mapping the topographic differences, not only was cumulative difference of 

the topography quantified, but distribution of the differences was quantified. The purpose 

in so doing the latter was to assess potential areas for sediment storage, flow routes, and 

spatial patterns relating the two surfaces. Topographic highs, defined by elevations higher 

than the average, of each year were mapped. The mapping scheme used a sliding window 

of approximately 5 cm by 5 cm to determine an average elevation as the datum for each 

window. Spatial patterns of the highs were used to locate storage areas in relation to the 

high areas of the first year.   
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 The above discussed methods were performed as means to quantify observations 

of surface changes that otherwise are extremely difficult to make and to quantify as they 

occur naturally in the landscape. Limiting the controls contributing to natural transport 

means that many factors involved in the regolith mobility and degradation of the 

landforms are unknown. Therefore, as mentioned earlier, documentation of surface 

change was limited to what could be measured and observed after one year. Use of 

multiple methods provided a way to compare results and to assess the suitability of the 

locations of the apparatus for considerations of future study.  

2.6 Modeling Hillslope Diffusion 

While present-day diffusivities and erosion rates were quantified from regional 

measurements, degradation modelling was used to analyze the effects of past climate on 

the topography.  Degradation of Mono Basin moraine was quantified by modeling 

hillslope diffusion and evolution of its profile cross-section. A diffusion equation 

expressed by a basic law of sediment transport (1.1) was used to model the effects of 

fluctuating climate over the age of the moraine. As indicated in section 1.2 (Hallet and 

Putkonen, 1994), soil creep and, in addition, surface wash, round out the crest and 

smooth the edges so that the resulting profile follows a gradual reduction in hillslope 

gradient over time (Selby, 1993). However, because rates of soil creep were shown to be 

influenced by climate (Oehm and Hallet, 2005), this study employed degradation 

modeling to test whether known variability, tracked as regional air temperatures in a 

climate record and assumed to be affected by glacial activity that altered past global 



38 
 

climates during the last glacial period, could be shown to significantly affect regolith 

erosion rates through time.  

One of two other possibilities are that global climate change did affect regional 

climates and, therefore, land surfaces, but that such correlations cannot be determined 

through the climate records. In other words, no physical evidence of past effects on the 

landscape by those climates can be used for numerical modeling. The other possibility is 

the global climate changes triggered by glacial activities of past glaciations, of ice sheets 

for example, did not significantly alter all regional climates enough to affect rates of 

surface processes. In other words, in such a case, climate is not a significant factor in the 

long term degradation of the landscape. Results from the modeling employed in the 

present study were used to address such possibilities.  

For the purpose of modeling hillslope degradation using the transport law (1.1), 

an initial hillslope angle was assumed and assigned the angle of repose for the initial 

cross-section profile. A required initial angle is intended to represent starting conditions 

when the landform was deposited. The maximum slope angle at which the hill-shaped 

landform, in this case a moraine consisting of glacial till, remains stable, i.e. where the 

grains would not slide, called the angle of repose, is a subject little examined in natural 

environments, particularly for such a complex medium. Published works modeling 

natural landforms have cited and employed values ranging from 31° - 35° to generate 

model profiles that conform to observed profiles (Hanks et al., 1984; Hallet and 

Putkonen, 1994; Putkonen and O'Neal, 2006; Putkonen et al., 2008). The values also fall 

within ranges found through laboratory experiments where the deposition angle was 
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measured for mixed shape and angular gravel (Deganutti et al., 2011). The behavior of 

the sediment transported appeared to follow observations of grains sliding over a thin 

boundary layer at the surface studied experimentally and reported in Jaeger and Nagel 

(1992) and Deganutti et al. (2011). Given that Mono Basin moraine had a high sand 

content and former modeling of the landform profile employed an initial angle of 31° 

(Hallet and Putkonen, 1994), a 31° angle of repose was employed in the present study as 

well.   

The sediment flux per unit width down slope is linearly related to slope (dz/dx). 

The κ, measured in m²/yr, parameterizes the integrated effects of climate and substrate 

(discussed in the Introduction) by expressing a rate of degradation that is independent of 

slope. The transport equation generates a flux proportional to the decrease in slope angles 

as regolith is eroded (removed) from the crest, sent into transport (mobile state) and 

deposited (settled state) down slope. As regolith is transported from upslope and 

deposited down slope, the slope profile changes as a function of curvature or the second 

derivative of the slope. The cumulative sum of the change is represented as a volume of 

material at a particular point on the slope at a corresponding time. The slope is multiplied 

by the diffusivity coefficient κ which the model assumes to expresses the cumulative 

exogenic effects of climate on degradation irrespective of slope. While local features may 

affect κ, in the application of the degradation model in the present study and in the time 

scales of thousands to tens of thousands of years used in the model, such effects were not 

factored into modeling independently. Rather, any such local factors were integrated 
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through time, so that long term effects were compared relatively at times associated with 

climate records indicating glacial activity, as will be discussed in the following section.    

The physical descriptions above are formalized in equations: The transport 

equation (1.1), given in section 1.2, expresses that a volume of material passing a line 

parallel to a slope contour is quantifiable as a linear relation to slope gradient. The basic 

parameters are: q (volume of flux/year), z (local elevation difference in meters), x 

(horizontal unit distance in meters), and κ (topographic diffusivity in m²/year). By the 

principle of conservation of material, where the loss of elevation (z) over time (t) is 

proportional to the volume of material (q) transported over a horizontal distance (x),    

    )/()/( dxdqdtdz      (2.2) 

the continual transfer of material from up slope toward down slope positions 

approximates a linear differential equation, which follows:   

    dz/dt = κ(d²z/dx²)     (2.3) 

Diffusive processes thereby are said to shape the moraine profile to conform to the 

diffusion equation, a second order derivative of the combined transport and conservation 

equations. Progression from the initial conditions to the current profile as it results from 

degradation as defined by the diffusion equation described above is illustrated in Figure 

2.4. The MatLab code written and used to generate elevation profiles applying the 

transport law and different scenarios for κ is in the Appendix.   
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In order to examine the effect of past climate fluctuations on hillslope degradation 

over the age of Mono Basin moraine, three versions of the model using different κ values 

were compared. All models use the maximum age of the moraine as 85 ka, which was 

selected on the basis of the most recent published ages and recent publications of the 

same author on considerations of updated calibrations and error limits related to exposure 

age dating of boulders using cosmogenic isotopes (Phillips et al., 1996; Phillips et al., 

Figure 2.4. Assumed initial profile of a hillslope at angle of repose, 31° 

(blue), and current hillslope profile of Mono Basin moraine (diamonds) 

based on elevations measured in the field. Differences in profiles, i.e. the 

differences in elevation and in curvature, exemplifies the underlying 

processes of diffusion expressed by the degradation equation. Initial crest 

elevation would be 106.8 m above an arbitrary base level. 
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2001; Phillips et al., 2009; Marrero et al., submitted 2014). While studies have employed 

degradation modeling to date fault scarps for example (Hanks et al., 1984), radiometric 

age dates typically are used when they have been published because they are considered 

absolute chronological markers. Therefore, modeling was not used here to explore ages 

that would generate an improved fit given constant κ values. Rather, the purpose was to 

test and compare the constant κ value, assuming a given age, with a time-varying 

sequence of values. Each model starts with the same initial conditions of the angle of 

repose discussed earlier in this section. In the first case, a constant κ optimized to 

generate a cross-section profile closely approximating the current moraine profile was 

used to model the evolution of the landform from initial conditions to the present 

morphology. In the second, κ was held constant and defined by present-day degradation 

values. In the third, κ varied with time based on current climate-related diffusivities and 

the documented variation in the paleoclimate. Determining the κ values that correspond 

with paleoclimate required a series of steps described in the following section. 

2.7 Past Degradation and Climate from Space-for-Time Substitution 

 A physical quantifiable basis for varying κ through time was needed, but past 

climate features, such as temperature, cannot be measured directly. Published 

diffusivities compiled in Oehm and Hallet (2005) provided a physical starting point for 

relating temperatures broadly related to regional climates that could be identified with an 

average air temperature. The authors had organized diffusivities by latitude with a goal of 

assessing how much surface mobility was affected by climates as they approached higher 

latitudes. Their work was more focused on determining how rates of soil creep, the slow 
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downslope movement of hillslope surfaces, differed across broad stretches of climates 

found in different latitudes, from the tropics to the polar regions. The authors found only 

two other earlier publications that examined the relationship between global climate and 

the mobility of the surface layer, and those focused on the periglacial processes of 

solifluction and gelifluction, soil flow associated with the melting of frozen ground 

(Kirkby, 1995; Matsuoka, 2001). The compilation in Oehm and Hallet (2005) was 

intended to increase attention to the effects of climatic factors (in the broad exogenic 

sense explained earlier) on the mobility of hillslope surfaces.  

The two earlier works focused on surface mobility in periglacial environments, 

those regions either located near glaciers or that undergo freeze-thaw conditions due to 

seasonal variations in temperatures. The Oehm and Hallet (2005) work, in particular, 

assessed typical rates of soil creep in order to compare if and how soil creep operated 

across different climates and environments. In the compilation the authors examined how 

such regions across the globe might undergo changes during times of future climate 

change that might accelerate the release of CO2 when the mobility of the active layer 

increased as a result of increased temperatures. The present work focuses on the mobility 

of a particular landform surface and how that mobility might have changed through times 

in the past as a result of the cumulative changes in climate and expressed through a 

temperature proxy. The purpose of using a temperature proxy was to produce numerical 

results that could be compared through time, as an improvement on comparing results 

from qualitative proxies.  



44 
 

Many workers have investigated relative changes in past temperatures for the 

Sierra Nevada through the use of proxy records that include pollen in packrat middens 

and lake cores, cosmogenic exposure age dating of moraines, mineralogy of rock flour, 

and chemical analysis of lake cores (Koehler and Anderson, 1995; Woolfenden, 1996; 

Litwin et al., 1997; Benson et al., 1998; Heusser, 1998; Litwin et al., 1999; Minnich, 

2007; Street et al., 2012). However these provided largely qualitative assessments of past 

climates, e.g. in terms of being warmer or colder, wetter or drier than the present. 

Although relevant and important, qualitative information was not applicable for 

executing the modeling technique of the present study. However, some of the above 

works were referenced for comparative purposes.  

Space-for-time substitution, as applied in the present study, related present 

topographic diffusivities and the current air temperatures in which they were measured, 

with Mono Basin’s past air temperatures, and derived past diffusivities for Mono Basin 

from a transfer function. The application is a case of the geological principle of 

Uniformitarianism, the foundational principle in Geology that processes and rates 

operating in the present are the same as those operating in the past. The method also has 

been widely used, although highly debated, in the field Ecology (Pickett, 1989). While 

space-for-time analyses have been shown to pose problems for ecological data, where 

species and community changes can occur on much shorter time-scales than those applied 

in the present study (Blois et al., 2013), long-term applications on the scale employed in 

the present study, have been accepted in ecology, particular with respect to studies 

examining long term climate changes (Blois et al., 2013).  
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The resolution of the ecological sensitivities associated with small spatial scales 

combined with short time scales were not considered as part of the scope of the present 

study. In relative terms, small scale effects on the landscape resulting from climate and 

expressed through ecological variations, were considered cumulatively when time scales 

of thousands to tens of thousands of years were compared. Although, future studies could 

focus on the effects of short time scale vegetation changes brought about by episodic 

events (related to climate, fire, mass movements) on the spatial extent of erosion, for 

example. The relevance of the method for the present study was simply of using a set of 

known κ values related spatially by temperature, and applying those values to past 

temperatures. While the goal was to address larger temporal scales than those often 

investigated in ecological studies, the scale of thousands to tens of thousands of years is 

relatively smaller than what has been addressed by landscape evolution studies that often 

quantify at the scale of hundreds of thousands to millions of years. The purpose here was 

to show that if the given knowns could be accepted, or be shown to have firmer ground 

than qualitative measures, then the method would be better able to quantify variability in 

long term degradation than the application that assumes a constant κ value, where no 

variability can be derived.  

As far as the acceptability of space-for-time in geological studies, the general 

form of reasoning has been used most recently by Hilley and Arrowsmith (2008) to 

associate periods of erosion in assumed tectonically-related drainage basins to slip rates 

along a pressure ridge along the San Andreas Fault Zone. Their study substituted 

measures within the same geologically related area, whereas the present study used 
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globally diverse areas in transferring measured rates. While the application of the 

substitution method used in the present study could be questioned because of underlying 

variability in the different landscapes, the physical bases for measured κ values given by 

temperatures was viewed as an advance on the common application of a constant value 

with no physical basis.   

Published diffusivity values from field areas compiled in Oehm and Hallet (2005) 

included data from several sites at each latitude represented and, therefore, the minimum 

and maximum values from each region were used to derive transfer functions relating κ 

values with air temperatures at the location of the sites (see explanation below). The 

transfer function generated from maximum values was selected for modeling, because the 

maximum values were more reflective of a climatic zone than the minimum values, 

which spanned multiple latitudes and could reflect multiple climatic zones. Reports from 

the compiled sites were selected based on criteria explained below. The sites compiled in 

Oehm and Hallet (2005) whose current average April/May temperatures (see explanation 

below) fell within an approximate range of the paleotemperatures of Mono Basin 

originally were published in:  Rudberg (1964), Finlayson (1981), Mackay (1981), 

Gamper (1983), Smith (1988), Jahn (1991), Price (1991), Smith (1992), Matsuoka et al. 

(1997), Matsuoka (1998). The references are listed in Table 2.1 with corresponding 

climate zones and diffusivities. The compiled diffusivities were published as illustrating a 

relationship between latitude and diffusivity. The present study used the compiled 

findings to generate a transfer function relating κ values with temperature as a basis for 

relating past diffusivities with temperatures ascertained to have occurred in the past in the 



47 
 

region of Mono Basin moraine. The transfer function also included the current diffusivity 

measured for Mono Basin moraine as a data point. The purpose of using a transfer 

function was to broadly quantify the temperature and diffusivity relationship in the 

presence of a scattered set of points with each based on non-uniform methods and 

landforms. Use of the function provided uniformity to the application of the relationship. 

 

By quantitatively relating diffusivity with temperature, the transfer functions were 

generated from the current global distribution of diffusivity measurements. A log scale 

for the y-axis (κ) of the graph was generated in Excel and the choice of function was 

selected by visual inspection of a line produced by a function that spatially divided 

maximum values equally. The function was exponential, but it does not reflect a 

numerical average or a minimal least square difference. The Oehm and Hallet (2005) 

work did not provide a formal assessment of a numerical correlation between latitude and 

diffusivity, but rather an observation about the spatial distribution of diffusivities. The 

Location Lat Lon Climate Zone k-min k-max Reference 

Mackenzie Delta, Garry Is, NWT 69.50 -135.71 subpolar-polar 1.19E-01 1.19E-01 Mackay (1981)

Tarfala Valley, Sweden 67.92 18.60 subarctic-alpine 2.00E-04 8.23E-02

Jahn (1991), Rudberg 

(1964)

Ruby Range, Yukon Territory 61.74 -137.59 subarctic-alpine 4.80E-03 3.63E-02 Price (1991)

S. Rockies, Mt. Rae 50.66 -115.20 temperate 1.00E-04 1.10E-02 Smith (1988, 1992)

Engadine Valley, Switzerland 46.50 10.00 subarctic-alpine 3.00E-04 4.70E-03

Matsuoka et al. 

(1997),             

Gamper (1983)

Karkonosze Mts, Poland 50.79 15.60 temperate 6.00E-04 9.30E-03 Jahn (1975)

Mt. Ainodake, Japan Alps 35.65 138.23 subtropics 3.60E-03 1.35E-02 Matsuoka (1998)

Mendips, UK 51.30 -2.73 temperate 7.00E-04 3.89E-02 Finlayson (1981)

Table 2.1. Selected References Compiled in Oehm and Hallet (2005) for Diffusivities 
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authors suggested a subtle correlation, though not tight, between higher diffusivity values 

and higher latitudes. The function selected conformed best to that observation.  

Paleotemperatures, starting with the age of the moraine to the current temperature 

reported in regional climate records, were then substituted in the transfer function to 

derive diffusivities occurring in the past.  Because the present time was included in the 

overall chronology used in modeling, the diffusivities derived from transfer function also 

included diffusivities for the present time, which differed from those measured (further 

discussed in Discussion). The paleotemperatures were derived from halite fluid 

inclusions in the ephemeral lake sediment core of Death Valley, DV93-1, Figure 1.1, a 

200 kyr proxy record that provided absolute temperatures at the times in the past 

(Lowenstein et al., 1999) that also correlated with evidence for glacial advances and 

retreats in the present study. Studies on the halite inclusions found that the maximum 

homogenization temperatures of salt crystallized in fluid inclusions in saline lakes 

conform to late April through early May air temperatures (Li et al., 1996; Lowenstein et 

al., 1998; Lowenstein et al., 1999). For this reason, only April/May average temperatures 

were assigned to the current locations compiled in Oehm and Hallet (2005). The relevant 

temporal portion of the plot relating maximum homogenization temperature from the 

Lowenstein et al. (1999) study is shown in Figure 2.5.  

Glacial advance requires temperatures that accumulate enough snow to permit an 

alpine glacier to move down a mountain valley and thereby erode and deposit the 

sediment that will be deposited as lateral moraines. The ages of such preserved moraines 

The ages of such preserved moraines in the region of Mono Basin were taken as evidence 
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for the times significant for temperature fluctuations relative to times for which there was 

other evidence of warmer conditions, such as the Mono Lake low stands (Benson et al., 

1998).  

Times at which salt homogenized were interpolated from uranium series ages of 

tufas dated on the eastern side of Death Valley, which provided the 200 ka paleoclimate 

record. While Death Valley is over 400 km from Mono Lake, it is considered 

climatologically related. Mono Lake adjoins the northern edge of the Owens River 

catchment system, which was hydrologically connected to a chain of lakes that, during 

high stand, fed into Death Valley (Smith and Bischoff, 1997). Based on this shared 

drainage routing with Mono Lake and Owens Lake, the times of temperature changes, as 

indicated by the advance and retreat of glaciers in the eastern Sierra Nevada, are 

considered to have affected all the lakes in the drainage system. Therefore, the 

displacement between absolute April/May average differences of present air temperatures 

Figure 2.5. Maximum homogenization temperatures ThMAX of 

halite fluid inclusions in DV93-1 and corresponding times (ka) 

(lower-most numbers) in the past from Lowenstein et al. 

(1999). Displacement with current value of 34°C was applied 

to current April/May average in Lee Vining, CA. 
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with paleo-temperatures at Death Valley were applied to current temperatures at Lee 

Vining, California given by the Western Regional Climate Center (WRCC, 2010). 

Paleotemperatures for Lee Vining, then, were derived and applied in the transfer 

function.  

The air temperatures assigned to current locations cited in Oehm and Hallet 

(2005), from which the transfer functions were generated, were based on the average long 

term, from 1900 to 2008, mean air temperatures of April and May. These months 

correspond to the season from which the proxy temperatures were taken. However 

because the compiled sites did not include weather data, the long term mean temperatures 

were taken from reanalysis data through NOAA’s Earth Systems Research lab, Physical 

Sciences Division, from the University of Delaware’s global climate data sets (Matsuura 

and Willmott, 2010) (Figures 2.6 and 2.7). Reanalysis data is produced by integration of 

real time weather data by using climate models. Available station observations every 6-

12 hours over the time period analyzed are used in the assimilation models. While 

specific data values are products of the model and are not real for a particular location, 

they are based on a systematic and consistent application of weather patterns derived 

from real data (Dee and Fasullo, 2014). Gaps in in coverage of local variability of air 

temperature measurements were spatially interpolated and corrected for elevation as 

explained in Matsuura and Willmott (2012). Recent, from 1981-2010, mean April and 

May temperatures and precipitation for Lee Vining and Bishop were taken from the 

Western Regional Climate Center (WRCC, 2010).  
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While long term monthly means for air temperature and precipitation are 

available for the most geologic recent times of approximately 100 years, comparable 

direct measures of absolute precipitation do not exist in the same way for the past 100 

thousand years in the study area. States of precipitation are complex and sensitive to 

numerous factors. They vary between the land surface and subsurface, they vary 

seasonally, and with changes in temperature. For the purposes of the present study, which 

relied on a specific chronology based on the time scale that glaciers in the region would 

have advanced and retreated and for which moraine records were preserved, the paleo-

temperature record was more effective for modeling hillslope degradation. The 

degradation effects from the kinds of precipitation states that might have coincided with 

the past temperatures were generated through the transfer function by application of the 

substitution method explained earlier. This means that whatever precipitation and its state 

accompanied the soil creep measured in the accounts compiled by Oehm and Hallet 

(2005) also coincided with an average April/May air temperature that was part of a 

climate state which, when integrated with the substrate cumulatively, resulted in a 

measured diffusivity. 
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Even though surface runoff is often considered responsible for sediment transport, 

it would not have accounted for all of the surface lowering that might have occurred in 

the past, particularly under climate regimes more comparable to periglacial or glaciated 

environments that the proxy records indicate. Also, the field of geomorphology considers 

the drivers of landscape change – climate, gravity, and heat generated inside Earth – 

interacting with resistance forces - lithology and structure of the geology - as the broader 

framework for understanding an Earth surface process such as degradation and 

quantifying erosion (Selby, 1993; Ritter et al., 2011). In this framework, the distribution 

of heat energy originating from the sun varies greatly with latitude (Ritter et al., 2011). 

This was the reason that Oehm and Hallet (2005) used latitude to organize topographic 

diffusivity measurements. Their study investigated global rates of soil creep, and they 

found certain latitudinal trends that were associated with temperature differences between 

the equator and the poles. The present study adopted the assumption and used the 

reanalysis data associated with geographic coordinates of the field sites where the 

diffusivities were recorded. Also, because precipitation here is assumed to be controlled 

by the same processes that distribute temperature, and patterns of precipitation generally 

follow zones of atmospheric temperatures (Ritter et al., 2011), it is assumed that the 

transfer function relating κ and temperature is acting to represent in a general way those 

combined conditions that would produce a certain range of diffusivities, assuming a 

constant substrate.  

The temporal scale is stressed here because the specific chronology is employed 

for the purpose of illustrating the effects that past climates as they were tracked through 
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times for which there is evidence of glacially driven temperature changes. The presence 

or absence of numerous factors may contribute to climate, from what are considered part 

of large spatial scale cyclic patterns, such as El Nino, and changes in atmospheric-ocean 

circulation patterns and sea surface temperature (SST), which have been modeled for 

climates in the past, such as the Miocene (23-5.3 Ma) and Pliocene (5.3 – 2.6 Ma) 

(Goldner et al., 2011). While important to consider, such models do not focus on how 

regional responses to ice sheet activity, for example, can affect a region’s climate.  As 

with all models, comparisons with physical bases are needed for them to be informative 

about physical features they are being purported to affect. Late Pleistocene megafaunal 

extinctions have been used in climate modeling to test the potential impact of 

biogeographic changes on the land-atmospheric CO2 exchanges and the resulting effect 

on global climate, modeled in (Brault et al., 2013). However, the focus of the present 

study was not to examine the causes and effects of past climates. The focus, as part of 

geologic study, essentially was on a sedimentary record, not on a climate record. The 

climates were inferred from the use of the discussed proxy records and how they 

correlated with a glacial chronology obtained through published moraine ages that 

employed absolute age dates using geochemistry. In fact, the purpose of landscape 

evolution modeling, as practiced in the present study, is to understand something about 

how past climates, however they were generated and however they were expressed 

regionally, in terms of regional temperatures and precipitation, affected the land surface. 

So, a physical basis was employed through substitution and related to past temperatures 

by means of a chronology to propose physically based degradation model as an 
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improvement over a degradation model based on a constant parameter optimized to fit a 

shape and morphology, not to track the variability in form over time.   

Although a landscape, or a landform, evolution model is not a climate model, it 

depends on climate-based parameters and, as the present study argues, how those 

parameters might have varied in the past will affect our understanding of how Earth’s 

surface has changed and can change in the future if those parameters change. As a 

geologic study, use was made of sedimentary records and glacial chronologies, but it did 

not rely on results from climate modeling, except for the reanalysis data, for the purpose 

of assigning locally relevant temperatures to locally measured diffusivities. Climate 

models that have been generated and cited in the field of geomorphology and that 

incorporate physical based parameters include Hostetler and Benson (1990), Hostetler 

and Clark (1997) who used coupled modeling.  Examples of such parameters include 

glacial mass balance or lake level stands and the temperature and precipitation required to 

achieve those measures that correlated with evidence of past glaciations or with lake 

sediment cores. However, the objective of the present study was to show a legitimate 

physical basis for variable diffusivities through the course of time for which landform 

degradation was modeled. The focus was on how sediment transport rates could have 

varied through time on a scale relevant for exploring the effects of past climates as the 

results of past glacial times. Although many might have speculated that they had varied, 

and even varied as result of past climates, a physical basis had not been shown. Future 

work may involve improvements on parameterizing κ. Other, more focused work, might 
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employ coupled modeling of temperature and precipitation with specific processes or 

with specific kinds of landforms.  

Qualitative assessments of climate also often are made with proxy records, such 

as vegetation speciation, which is both an important climatic indicator and a significant 

factor in surface processes. Past climates are often interpreted with the use of regional 

pollen records. Two well documented lake cores in the region from Owens Lake (OL-92) 

and Searles Lake (LDW-6) are referenced in literature on the topic for their age controls 

and length of record and their correlation has been used for interpreting late Quaternary 

climate signals in the region, and their locations are shown in Figure 1.1 (Smith and 

Bischoff, 1993; Litwin et al., 1997; Litwin et al., 1999).  

In the eastern Sierra Nevada, lake sediment cores have been correlated intra-

regionally with other sediment cores and paleobotanical records on the basis of organic 

and inorganic material (Heusser, 1995; Koehler and Anderson, 1995; Litwin et al., 1997; 

Heusser, 1998; Litwin et al., 1999; Mensing, 2001; Street et al., 2012), as well as 

globally, such as with ice cores and ocean sediment cores, in order to assess the timings 

of climate changes and events that might have triggered them (Adam et al., 1981; Benson 

et al., 1998; Bischoff and Cummins, 2001; Woolfenden, 2003; Potito et al., 2006; 

Jimenez-Moreno et al., 2010). For this reason, also, relative vegetation zoning patterns 

found in the pollen records are used to further qualitatively support temperature changes 

over certain past time intervals.  
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Previous climate reconstructions based on pollen assemblages compared modern 

analogues to lake core sediments (Adam et al., 1981; Mensing, 2001; Woolfenden, 2003) 

or to packrat middens (Koehler and Anderson, 1995) and used radiocarbon to date the 

changes in assemblages. Published literature on vegetation change related to past climate 

cycles contain overlap on distinctive patterns and types: cold glacial phases are 

characterized by maximum TCT (Taxodiaceae, Cupressaceae, and Taxaceae) – pollen 

grains, typically of juniper, combined together due to difficulty in distinguishing the 

different taxa; cool transitional times are associated with Greasewood (Sarcobatus), big 

sagebrush (Artemisia), and oak (Quercus); and warm (interstadials) by increase in pine 

pollen frequency (Litwin et al., 1999). Important to note is that vegetation continued to 

adapt individually and as communities as climate changed, so quantifying frequencies of 

pollen occurrences and using modern analogues is limited as a method for relating 

temperatures and precipitation to past time intervals. Present day assemblages are only a 

consequence of adaptive and dynamic interactions to past environments; they are not 

especially indicative of a particular temperature (Tausch et al., 1993; Woolfenden, 1996). 

For this reason, proxy records that could only provide relative comparisons with other 

records were used to support the temperatures derived from the maximum 

homogenization temperatures of the halite fluid inclusions from the Death Valley core 

that were applied in the transfer functions.   

In order to model degradation with temporally-varying diffusivities, specific times 

were used through which a given κ would run. As given in Table 1.1 and explained 

earlier, the time periods were based on the latest revised 36Cl dates of moraines in the 
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region (Phillips et al., 1990; Zreda et al., 1990; Phillips et al., 1996; Gillespie and 

Zehfuss, 2004) as well as on recent calibration and error analysis limits cited earlier. 

They were assumed to represent times of glacial advances starting with Mono Basin 

moraine and followed by revised age dates for other moraines in the region. Published 

dates for Mono Lake low stands (Benson et al., 1996; Benson et al., 1998), based on δ18O 

of low-magnesium calcite of Mono Lake sediments from the Wilson Creek Formation, 

Mono Basin, CA and 14C dating of Owens Lake Core OL-92, are assumed to reflect short 

periods of warming and glacial retreats. Boulder erosion can complicate 36Cl and may 

decrease its concentrations thereby causing younger apparent ages. Regional boulder 

erosion rates were published after the revised published dates for Mono Basin moraine, 

and so the age of 85 ka was used in the degradation modeling based on recalculation with 

3.3 mm of boulder erosion using the CRONUS 36Cl Exposure Age Calculator (Phillips et 

al., 2009; Marrero et al., submitted 2014).  
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CHAPTER III 

DATA 

3.1 Overview 

The present study examined sediment transport on a naturally occurring landform 

in order to quantify sediment mobility as the cumulative effect of climate on the 

substrate. Direct measurements of regolith transport using sediment traps, pebble lines, 

repeat photos, and terrestrial LiDAR were collected and recorded in 2011, with the field 

apparatus installation, described in Methods, made in 2010. Laboratory experiments, 

while better able to establish controls, are less able to characterize natural environments. 

Optimal physically based landscape models can only be substantiated by field data and 

understanding of field processes (Tucker and Hancock, 2010).   

The methods applied in the present study, although not new by themselves, were 

synthesized to integrate the resulting data in a novel way for the field of landscape 

evolution modeling.  Volumes of regolith were used for calculating diffusivities. 

Transport distances were used to characterize the contribution of various regolith sizes to 

erosion and degradation of the hillslope. While the data reflects smaller areas than the 

catchment-size scale landscape models have used, the data also reflects measures of 

actual processes. Published records of paleo-temperatures, both absolute and qualitative, 



61 
 

were organized according to time periods noted in the literature. The collected data were 

quantified in ways described in Chapter II, Methods. However, present and paleo-

ecologies were identified and associated with published data on the basis of relative 

climatic trends with related vegetation records. Although the current diffusivities were 

calculated for the field sites in the present study, the diffusivities used in modeling were 

derived from a transfer function that also included as points the current measured 

diffusivity and corresponding average April/May temperature for Mono Basin.  

The substitution method described in Methods and the use of proxy records were 

used as a first attempt in landscape evolution modeling to relate field based data and 

sediment transport processes to a degradation model. Use of the method was not intended 

to establish one-to-one correspondences between past and present processes or 

parameters. The application used parameters based on the occurrence and rates of surface 

processes measured to have occurred naturally and to relate them to modeling similar 

processes and rates in the past on the basis of a reasonable point of comparison, with that 

being temperature. How temperature was considered to relate to surface processes has 

been discussed in earlier chapters. However, such parameterization could be further 

refined and improved, and that is the task of field based modeling.  

3.2 Paleoecologies 

The present vegetation in Mono Basin was compared with paleo-pollen records to 

provide a qualitative framework to check against the changes in climate that were based 

on quantitative records.  The current vegetation on the eastern slopes include upper-
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montane sub-alpine forest (Abies-Pinus) with Red Fir at lower elevations, dense 

graminoid communities (grasses) that decrease in height to 10 cm with decrease in 

elevation, and sagebrush steppe (Barbour and Major, 1977). The primary vegetation on 

the moraines is sagebrush. Bare earth patches with varying densities of grasses occurred 

regularly between the sagebrush. The above described vegetation conditions are assumed 

typical for what is considered the warm dry pattern beginning with the last interglacial at 

the start of the Holocene 10 ka, as noted in Chapter 1.3. This vegetation pattern is often 

inclined to higher pine frequencies and contrasted with colder wetter times of glaciations 

when juniper prevailed, or with cooler transitional times associated with sagebrush 

(Litwin et al., 1999).  

3.3 Sediment Flux 

Regolith transport rate, or sediment flux, is an essential element in calculating the 

topographic diffusivities for the moraines. The bulk mass of the regolith as well as of the 

various grain sizes sieved from the samples – fines, granules, and pebbles - were 

measured.  Table 3.1 lists the data associated with sediment trap samples (ST): GPS 

locations, slopes, and masses. Slopes represent the general hillslope over several meters 

upslope and downslope from the trap.  Sediment traps were installed at all sites. The flux 

transported into the traps was assumed to represent the regolith transport of the hillslope, 

and so ST samples were used to measure the present day κ values of the region. In 

addition to measuring the volume of flux, comparative assessment was made between the 

relative proportions of grain sizes that the surface is composed of and of the relative 

proportions in a transport year, inferred from sediment trap collection and the sieved 
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quantities of the grain sizes. This comparison provided some indication of the sizes that 

moved too slowly to have been transported into the trap at the end of one year and how 

this compared with sizes measured in the repeat photos. Such data provides 

compositional characteristics of the mobile layer and how it moves.  Figures 3.1-3.4 plot 

the relationships between grain sizes and their bulk masses collected in the traps and 

sampled at the surface. Comparisons of the graphs between the sediment trap samples 

and the surface samples indicate that 50 mm -140 is a significant size range, because it   

 

appears in the surface samples, but the appearances of sizes within that range vary in their 

proportions in the sediment trap cases when compared with the surface samples. In the 

younger Tahoe moraine the significant size that is represented at the surface, but not in 

transport, is 140 mm. The plots also show that the bulk mass of fines is higher than the 

GPS coordinates

decimal degrees

ID N W Slope (°) Mass (g)

ST-MB-1-2010 37.909 119.124 26.2 360.4

ST-MB-2-2010 37.9091 119.124 20.9 45.1

ST-MB-3-2010 37.9014 119.131 22.0 308.4

ST-MB-4-2010 37.9015 119.131 17.0 86.5

ST-MB-5-2010 37.8974 119.131 26.2 52.8

ST-BC-1-2010 Missing Data 15.0 261.5

ST-BC-2-2010 37.3207 118.513 19.0 91.7

ST-BC-3-2010 37.3204 118.514 19.0 2278.1

ST-BC-4-2010 37.3257 118.517 8.0 79.3

ST-BC-5-2010 37.3257 118.516 0.5 57.9

Table 3.1. Sediment Traps ID, Location, Slope, Mass 

ST = Sediment Trap; MB = Mono Basin; BC = Birch Creek  
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bulk mass of other grains smaller than 50 mm in the surface samples. Also in the 

sediment traps, while the bulk mass of fines never reached the amounts of that in the 

surface samples, the bulk mass of fines in the traps were higher than the bulk mass of the 

Figure 3.1. Mid-slope ST (sediment trap) sample and SS (surface 

substrate) sample bulk masses of grain sizes collected on Mono 

Basin moraine. Comparisons between bulk masses of fines and 50 

mm and higher in the SS and ST show that 50 mm is a significant 

size that distinguishes what is mobilized downslope in one year and 

what is moving at a slower rate or remaining stationary.  

 

Figure 3.2. Mid-slope ST (sediment trap) sample and SS (surface 

substrate) sample bulk masses of grain size fractions collected on 

Tahoe moraine. Bulk mass for fines and pebbles in both SS and ST 

are higher than sizes between them and 140 mm is the significant 

size represented at the surface, but not in transport.   
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other sizes smaller than 50 mm. If the fines are indeed moving at a faster rate during 

transport events, this would explain their representative proportions in the surface 

Figure 3.3.  ST (sediment trap) and SS (surface substrate) from 

Birch Creek moraine 1. Fines represent the majority of bulk 

mass in annual flux. ST sample exhibited similar relationship 

of a higher representation of fines 1.19 mm and less as the 

other ST sample at BC 1.  10 mm – 140 mm were represented 

at the surface.  

Figure 3.4. Mid-slope ST (sediment trap) sample and SS (surface 

substrate) bulk masses of grain size fractions collected on Birch 

Creek moraine 2 (~0.6 km northwest of BC moraine 1). Fines 

(<2.83 mm) represent the majority of bulk mass in annual flux. 

Proportions of regolith transported is similar to proportions in 

surface substrate, except that the surface substrate had a higher 

proportion of 140 mm or higher.   
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samples and in the traps. Other factors might explain their occurrence as well. For 

example, the substrate could have higher percentage of fines, giving a higher probability 

that more would enter the trap and that more occur on any point on the surface at any 

point in time than other sizes smaller than pebbles.  

Further in depth analyses of sediment size and their relative proportions and 

masses were not performed for this study. The data was interpreted as suggesting that, in 

general, regolith in annual flux in the region sampled in sediment trap collections 

resembled surficial composition of the hillslope for sizes from fines to 10mm to 50 mm 

(depending on the moraine). However, the components of the mobile layer of regolith are 

not moving at the same rates between the moraines. The regolith sizes in the mobile layer 

are moving at different rates between the older Mono Basin moraine and the younger 

Tahoe moraine. Therefore, the relative proportions of material in annual flux for a mixed 

granular till in a comparable arid to semi-arid climate depends largely on transport rates 

of grain sizes ranging from fines to large pebbles, which are the sizes with the highest 

percentages represented in flux in this study. Specific percentages depend on additional 

factors. Moraine age may be one factor in addition to other local differences that were not 

investigated in the present study. The relevant point is that the mobility of the surface is 

determined by the transport rates of grain sizes fines through 50 mm when they have a 

free path to move. Whatever climatic conditions produce events capable of moving these 

sizes, besides the hillslope gradient, are the predominant factors controlling sediment 

transport and hence degradation. Such factors are likely surface wash and snowmelt 

runoff in the present climatic regime. However, variability of past diffusivities would 
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support the occurrence of variability of predominantly controlling factors on sediment 

transport. Future studies could advance the topic by quantifying the various contributions 

of such processes to annual sediment transport, perhaps by investigating in greater depth 

particular processes, their associated climates, and their mechanics.  

The rates of movement will depend on the cumulative effects that the results of 

the climatic conditions have on the substrate. Such effects include infiltration and 

compaction, which effect the mobility of the grains. Certainly vegetation density is a 

factor that could hinder transport, and it also results from climate, but it is not a primary 

control on regolith mobility; it is a secondary factor in overall transport. Mobility was the 

feature of the hillslope surface that the present study was investigating. A more in depth 

study of the sediment transport would include measures of all the above mentioned 

features, how they change over the year, and the surface activity, which may be 

monitored with weather stations and specified control points.  

As part of the overall objective of examining relationships between climate and 

sediment mobility, the transport data measured in the present study was related to average 

April/May temperatures given by the Western Regional Climate Center for Lee Vining. 

Because transport rates also depend on climate as well as slope, the data reflects the 

current climatic regime. The current climate overall, occurring in an interglacial time 

(Holocene), is interpreted as warm and dry as compared with glacial times, as referenced 

in section 1.3. The current climate of the region is considered semi-arid alpine (Barbour 

and Major, 1977; Litwin et al., 1999), with an average of ~40 cm/yr of precipitation with 

the majority, ~35 cm, as rain (NOAA, 2014). The assumption that rain is the primary 
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transport agent in this climate, by generating surface wash, is consistent with the 

professional literature (Selby, 1993) and with the field observations that indicated a range 

of grain sizes in annual transport that included fine sand through pebbles (Figures 3.1-

3.4). Their annual transport on slopes that averaged 20°, as exhibited in the sediment trap 

samples and the average distances traveled by pebbles in the pebble line, was assumed to 

be explained primarily by surface wash.  

3.4 Transport Distances 

 Regolith transport rates were used to characterize degradation of the hillslopes. A 

travel distance curve relates grain size, as defined by the intermediate axis of regolith, 

and the annual distance measured to have been travelled by that size. The densities of the 

various regolith size fractions are assumed to be the same, so their intermediate axis size 

is the variable tested with respect to their transport rate. Pebble travel distances that were 

measured from pebble lines (PB), as well as those measured through photo analysis, were 

compiled in a graph of travel distance curves (Figure 3.5). Included also are travel 

distances theoretically extrapolated for the fines in the study as noted in Methods, 

Chapter 2.  

The shift between curves correlates with different slope angles on which pebbles 

were measured. Published data from earlier work in a semi-arid environment (Kirkby and 

Kirkby, 1974) are shown by curves interpolating red-colored data points, which show 

overall lower transport rates than the curve interpolating the other colored data points. 

However, as the legend shows, the shallower slopes are associated with lower transport 

rates. On steeper slopes occurring in the present study, pebbles travelled at higher rates. 
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The trend lines generated in Excel were power equations for all the curves. The green 

points identified as “observed pebble travel,” were all recorded with lower rates than the 

pebbles measured from pebble lines. One reason could be the observed pebbles had been 

left in their natural place and reflect original motion, whereas pebble line pebbles, 

although representative of the size of pebbles at their location, had been hand-placed 

along a pebble line. A proposed explanation is that the pebble line pebbles experienced 

less initial resistance to removal and travelled further in the same time.  
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3.5 Topographic Change 

A second element in surface characterization is the rate of surface lowering. As 

such, transport rates and sediment flux may be compared with landform degradation. For 

the purposes of physical based modeling, data from sediment flux was compared with 

average topographic change – gain or loss – measured at a surface. The average of 

difference between the terrestrial LiDAR repeat scans was calculated and modeled 

(Figure 3.6). In the figure, the color bar indicates where sediment was added in 

deposition or lost in erosion in the first year.  

Visual inspection of Figure 3.6 also offers some insight into how sediment was 

transported. The difference overlaid on the first year’s topography shows that material is 

being deposited or “filling in” micro-lows in a pattern that crosses the downslope 

direction, suggesting transport is down slope as well as across slope. This cross-grading 

has been attributed to the formation of rills, micro-channels with cross-sections of a few 

centimeters to a few tens of centimeters, typically obliterated between storms and with 

parallel rills becoming integrated and draining into a deeper rill (Selby, 1993). Cross-

grading has been considered as a process that accompanies surface wash.  Such a process 

suggests that the mobility of regolith on this landform was primarily controlled by the 

cumulative effects of climate on uppermost surface of the mobile layer. This contrasts 

with mobility that could occur as a result of freeze-thaw conditions occurring within 30-

50 cm beneath the surface and which is more common in colder or periglacial climates. A 

more complete study in the future could investigate the variety and predominance of 
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patterns of surface transport and what they suggest about surface processes and 

degradation rates.  

Because sediment transport data from this study are comparable with published 

sediment transport data in Kirkby and Kirkby (1974), and the evidence from field data 

shows that transport processes appear to follow trends that are typical for a semi-arid 

climate indicated in Selby (1993), diffusivities calculated for the site were assumed to be 

reliable for an annual time scale at the present time for the current climate. Although 

certainly the inclusion of more years would have provided a more comprehensive 

characterization of the mobile surface in the present climate.  

 

 

 

Figure 3.6.  LiDAR surface (2010) of Mono Basin moraine with annual 

scan difference superimposed.  Difference is superimposed on first 

year’s surface.  Positive values on the color bar are areas of addition or 

deposition; negative values areas of removal or erosion. The average 

difference was calculated of the combined loss and gain as 2.65 mm/ 

m². 
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3.6 Space-for-time Substitution  

 Data were compiled from published accounts of proxy temperature records for 

use in the space-for-time substitution method used to model hillslope degradation with 

different scenarios for diffusivity. The scenarios relied on 1) published diffusivities 

measured globally and used to generate transfer functions from which diffusivities related 

to past climates in the region were derived, 2) documented surface exposure ages, and 3) 

absolute proxy records of paleo-temperatures occurring during the recorded times.   

Time periods used for establishing when a different range of diffusivities would 

be selected from in the program were based on glacial advances and retreats reported in 

the literature (Gillespie and Zehfuss, 2004). The time periods were assumed to represent 

the effects of a change in regional temperatures, as evidenced by dated glacial deposits.  

Published data from Mono Lake core sediments that showed two significant low stands, 

suggesting a climate warm enough or dry enough to cause enhanced lake evaporation, 

were also used for selecting times of glacial retreats (Benson et al., 1998). These time 

periods, then, were used to select temperatures for which halite inclusions from DV93-1 

(a sediment core from a perennial saline lake in Death Valley) have been identified. The 

method for transferring the displaced temperatures has been explained in Methods.   

The laboratory studies of halite inclusions exhibiting maximum homogenization 

temperatures of the brine from which halite crystals formed, which equilibrated with air 

temperature, supported correlation of the paleotemperature record from the last 100 ky in 

Death Valley with other proxy records in the Great Basin, as well as another continuous 
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proxy climate record for the past 160,000 years in the Vostok ice core (Lowenstein et al., 

1998; Lowenstein et al., 1999). So by correlating the difference between the current air 

temperature and the homogenization temperatures at Death Valley with the present air 

temperature at Mono Basin, the paleo-temperatures of the Mono Basin area were derived 

and used in the transfer function. When the transfer function was applied and minimum 

and maximum κ values generated for the paleo-temperatures, paleo-κ values were 

generated for the time intervals when there were known glaciations in the region. 

Table 3.2 summarizes the times compiled from published sources giving the latest 

revisions and the temperatures adjusted to the Mono Lake region from the Death Valley 

drill core (DV93-1), as explained in Methods 2.7 and summarized above. The additional 

qualitative climate records provide supporting evidence for the timing of past changes in 

glacial activity and associated climate changes. The qualitative records were taken from 

regularly referenced sources often cited in paleoclimate research in the region for the 

time under study. The times and the corresponding paleo-temperatures were the values 

employed in generating final degradation models that could be compared with 

degradation models using three different κ values based on 1) past climate change, 2) 

evolution based on an optimized value that closely approximates the current moraine 

profile, and 3) measured diffusivities of the current landform from the present study. 
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Event
1

T(°C)
4   

ThMax salt 

inclusion   

Present 0 0 9.5 30

Recession 13 5.2 7.5

Transition 15 4 65 4.5 transition

reversal to 

pine 

expansion

Tioga Start 25 20 -5.5 70

full glacial        

(26 -23.5 

ka)

juniper 

increase 

(20-25 ka) 

ML LS 3 27 2 65

Tenaya 32 0.5 40
warm 

interstadial

ML LS 4 34 1.5 30.5

Tahoe II 50 42 1 75

Mono 

Basin
80 60 3 20-50.5

decrease 

in pine

Vegetation 

Record
8Time

2
  (ka) End

3
Rock 

Flour %
5

T (°C)
6 

from 

Pollen 

(modern 

analogues)

Qualitative 

from 

Pollen
7

1 Glacial events cited from Gillespie and Zehfuss (2004), ML LS (Mono Lake 

Low Stand) cited in Benson et al. (1998) indicate warming and glacial 

recessions in the region.  2 Times (ka) are given as cited maximum start times 

and 3 some of the end times of ranges based on 36Cl exposure age dating 

(Phillips et al., 1996; Gillespie and Zehfuss, 2004). 4 Homogenization 

temperatures of salt inclusions from Death Valley 93 -1 sediment core 

(Lowenstein et al., 1999) at maximum age shown in 2. 5Rock flour % 

indicative of glacial advances at maximum times given in 2 (Bischoff and 

Cummins, 2001). 6 Modern pollen analogues used to infer paleo-temperatures 

(Mensing, 2001). 7 and 8 inferred from multiple sources cited above and used 

to describe relatively timed glacial landscape (7) and vegetation (8) features. 

Pine/juniper frequency ratios are used to infer warming or cooling, where 

higher pine occurrence is associated with relative warming and higher juniper 

with relative cooling (Litwin et al., 1997; Woolfenden, 2003).  

 

Table 3.2. Compiled paleo-temperatures and associated glacial chronology 

with supplementary proxy records  
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CHAPTER IV 

RESULTS 

4.1 Overview 

The main objective of the present study was to show with numerical modeling 

relative effects of past climates on landform degradation using Mono Basin moraine as a 

case study. Numerical modeling provided a means for quantifying regolith erosion rates 

and, by chronological association, the possible effects of global climate change on 

hillslope degradation. To stress, however, the purpose was not to propose particular 

erosion rates or κ values for certain times in the past. The purpose was to provide a 

physical basis that could be quantified for variability of past degradation rates that a 

constant diffusivity parameter could not be relied upon to express.  

The model that describes the hillslope degradation is based on a diffusion 

equation. The parameter, κ, in the hillslope diffusion equation that expresses the effect of 

climate interacting with substrate on hillslope degradation was derived for the present 

time in the eastern Sierra Nevada. The cumulative effects occurring in the geologically 

present interactions between the climate and substrate were assumed to produce the 

surface processes from which sediment transport measurements were recorded and 
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calculated. However, the complex physical and chemical processes that cause various 

surfaces to degrade under certain climatic regimes or erode in certain ways were not the 

focus of this study. Current records of global climates and published values of 

topographic diffusivity were used to compare and analyze what could be discerned about 

past climates from proxy records in the study region.  

4.2 Current Sediment Transport and Diffusivity 

As noted in the Methods section, observations and data collected from the field 

sites were made in order to characterize the sediment transport of the mobile surface. The 

point in doing this was to assess whether use of the methods could produce data that 

reflected sediment transport. While no single method could be used to ensure an expected 

standard rate, using multiple methods that could measure the travel distance of similar 

sized regolith, for example, provided a means for assessing whether the data could be 

used as reflective of the surface mobility. Additional comparison with published rates 

using a similar method, in a similar climate further supported the relevance of the data.  

Sediment traps, pebble lines, repeat photos, and repeat scans from the terrestrial 

LiDAR were used to measure how regolith transport contributed to topographic change in 

terms of flux, transport distances, and surface lowering, or erosion. Current diffusivities, 

derived by calculating volumes of sediment flux, pebble frequency, and erosion were 

used to quantify sediment transport and to calculate a current diffusivity value for use in 

generating the transfer function. Table 4.1 lists the calculated volumes and diffusivities 

for each site where the data was gathered for each method.   
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The κ values from Table 4.1 were derived through use of the sediment transport law 

where the volumes of regolith were calculated from each method.  

Uncertainty analyses for measurement related to Mono Basin moraine are shown 

in Table 4.2. Upper-lower limits of κ, based on the uncertainty of each measurement, are 

shown in the table. Also shown are percent of relative uncertainties for each measurement 

and their propagation calculated from the square of the sum of squares of each 

uncertainty (Deardorff, 2000). Only the largest relative uncertainty is shown for repeat 

photos because when a relative uncertainty is significantly higher the propagation of 

uncertainty is approximately equal to it. The relative uncertainty for slope was shown to 

be much smaller in the other methods. The primary uncertainty for the LiDAR data was 

the distance between the scanner and the point measured which gives the elevation at a 

point, so it is shown as the only relative uncertainty for that method.  

For the purpose of illustrating the typical uncertainty for each method and the 

effect on κ, the propagated uncertainties of the methods measuring sediment transport 

rates for Mono Basin moraine were applied to the calculated κ values at all sites where 

measurements were taken (Figure 4.1). The small uncertainties reflect that the margins of 

error for the measurements with the apparatus used were not large sources of error. The 

use of photos to determine a volume of pebble size regolith had the highest uncertainty 

because the pebbles selected in the photos were 2-3 cm, so each measurement included in 

equation (1.2) had up to 1 cm of uncertainty. Equation (1.2) that used pebble frequency to 

calculate a volume q used an intermediate axis of 2 cm. Error could be reduced in future 
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studies if more accurate measures were recorded and used in each application of the 

equation.  

 

 

 

 

 

Bounded 

Uncertainty κ

% Relative 

Unceratainty

ST

Box Opening 3.71E-05 8.33E-01

Scale Measure 1.24E-06 2.77E-02

Slope 2.53E-05 2.77E-02

9.86E-01

STPB

Box Opening 3.71E-05 8.33E-01

Slope 1.88E-07 5.26E-01

Scale Measure 1.21E-07 3.65E-01

1.05E+00

RPT

Slope 1.88E-07

Size 1.54E-04

5.00E+01

LiDAR

Distance 4.99E-01

2.54E-01

Table 4.2. Bounded and % of relative 

uncertainties of κ and methods 

ST=sediment trap; STPB= sediment trap 

pebbles; RPT=repeat photos; LiDAR= 

terrestrial LiDAR 
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The values from each method, although varying between sites, show some spatial 

trend in alignment. For example, the sediment trap, and the LiDAR values that employed 

the mass from the sediment traps, are mostly higher than the diffusivity derived from the 

pebbles transported into the trap and that calculated from the frequency analysis. So when 

direct comparison are made, the fines with a higher mobility rate are contributing to the 

Figure 4.1. Derived kappa values from all sites for all methods shown by legend 

markers and applied % uncertainties from Mono Basin.  Overall, relative 

comparison of values shows that grain size affects diffusivity. Sediment trap κ 

values represent best the range of diffusivities of the granular mixed regolith in 

annual transport, because sediment in flux most closely resembles the landform 

surface. Bounded uncertainty intervals representing percent uncertainty is the 

square of the sum of squares of the uncertainty for each method. Uncertainties 

were calculated for Mono Basin moraine and applied to all sites as they were 

within the bounds of the other sites and Mono Basin moraine was the one 

modeled. Relatively small uncertainties for the methods indicate that the 

measuring methods were not a large source for error.  
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mobility of the surface. While not surprising, the characterization provides insight with a 

quantitative basis into the transport of the mobile layer, showing that the fines have 

higher mobility, while the mobility of pebbles is 1-2 orders of magnitude less. This also 

indicates that the larger cobbles and boulders beneath the uppermost surface are being 

unearthed by the transport of fines and pebbles as they move over and around them. This 

observation, too, is not new and has been cited in (Hallet and Putkonen, 1994). However, 

the observed mobility and its measurements confirm that the methods used follow 

expected processes that have been documented in the professional literature.  

By a broadly accepted definition discussed in earlier chapters, κ expresses the 

effect of climate interacting with a given substrate as independent of slope on the 

mobility of sediment, which results in degradation. In this study, the substrate is 

composed of a mixture of various grain sizes that were shown earlier to have different 

transport rates (Figure 3.5).  So the transport rate measured from the sediment trap 

determines the flux and approximate travel distance for a given climate, whatever the 

combined effects of temperature and precipitation might have been to produce the 

transport results. Also, because large sizes will move slower than the fines, a certain 

percentage of larger pebbles and larger regolith will act as barriers behind which fines 

will be stored.  In other words, given a diffusivity, a climate, and transport rates of grains 

in a regolith substrate, surface processes will result that coincide with corresponding 

erosion rates. However, an erosion rate, the rate at which a volume of sediment is 

removed from a point, is not the defining cause of sediment transport, it is a result of how 

the surface regolith is mobilized.  Therefore, increases or decreases in erosion rates are 
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not the telling factors for the effect of climate on landform degradation.  The factors that 

inform about degradation are diffusivities of the substrate and surface processes that 

result and, because these do depend on climate, their quantified changes are what are 

used to correlate past climates with landform degradation rates.  

Variable diffusivities of regolith combine during transport events, based on the 

above discussed evidence relating diffusivities to grain size, to generate topographic 

change. While the total effect of this change is crest lowering, the surface processes, 

which are the result of variable diffusivities, are storage and transport. The ratio between 

storage and transport is what ultimately determines the rate of degradation. Therefore, the 

combined effects of climate, which include both the mechanisms contributing to storage, 

such as vegetation species and density and surface stability, and also the forces driving 

transport, result in processes that cause rates of degradation.  

The ratio of storage to transport in the current relatively warm dry time at the sites 

in the present study resulted in diffusivities lower than those found to occur in colder 

wetter climates. The latter exhibited broader ranges that contained higher diffusivities in 

the Oehm and Hallet (2005) compilation. The ratio of storage to transport was quantified 

in the present study and is illustrated in Figure 4.2.  The figure is a map of the change in 

topographic highs of the second year with the respect to the first year. The change covers 

an approximate square meter located several meters downslope from the crest. The small 

topographic changes indicated in the figure quantitatively show that up to three-quarters 

of regolith transported by the end of the year was either re-deposited adjacent to or 

overlying the topography of the previous year. Hence this scan area may be characterized  
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by a diffusivity represented by the flux sampled in a nearby sediment trap, as well 

as by mobility of pebble sized grains given by κ values and transport rates, and by a 

degrading or mobile surface where up to three quarters of the regolith in a transport year 

is stored by the topography generated by the stationary or slower moving regolith of the 

previous year. Results of the characterization suggest a relatively stable surface that may 

be interpreted as resulting from a climate relatively drier and limited in the precipitation 

rate needed to move a higher percentage of the regolith that is winding up in storage. 

Certainly, a higher number of scan areas on the same moraine, on different locations, and 

over more years would lend more support for such an interpretation.  

Figure 4.2. Relative spatial distribution of topographic highs 

(sediment accumulation) between second- and first- year. The 

first year (blue), second year (yellow/orange), and second year 

on top of first (red) shows how annual transport results in 74 % 

adjacency.  This adjacency is interpreted as storage that is 

contributing to slower degradation.  
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When compared with published diffusivities for landforms degrading by 

landslides, for example Martin (2000), the current surface characterized in Mono Basin 

shows relatively slow degradation with shallow topographic changes. The small isolated 

topographic changes at the sub-centimeter scale are both depositional and erosional and 

dot the surface. However, the average change for the measured surface is at the 

millimeter scale and is a net gain of 2.65 mm over the particular area shown in Figure 

4.2. These results are consistent with findings that in arid climates it is the “upper soil 

zone” that drives downslope movement and which contrasts with soil transport in high 

latitudes and humid regions where soil creep plays a larger role (Schumm, 1964). This 

again suggests that degradation is not a measure of surface loss, or simply erosion, but 

the depth to which the cumulative effects of climate are interacting with the substrate to 

result in its mobility at and/or near the surface.  

Soil creep, described as the progressive and intermittent downslope soil motion 

arising from the combined actions, of wind, rain splash, freeze thaw cycles, and biotic 

activity (Hallet and Putkonen, 1994), was measured globally in a study that found that 

higher latitudes exhibited a broader range of diffusivities (Oehm and Hallet, 2005). While 

that range may include the lowest diffusivities, as reported by others, e.g. Martin (2000), 

the implication interpreted here is that it is the depth to which climate can affect transport 

that dictates the effect of climate on degradation. In warm arid climates the depth is 

shallow, on the order of millimeters to centimeters. In cold wet climates, the depth has a 

broader range, on the order of centimeters to a meter, due to the variability of insolation 

over the year (Anderson and Anderson, 2010). This partly explains why higher latitudes 
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exhibited a larger range of diffusivities in the Oehm and Hallet (2005) work.  The results 

and implications lend support for the occurrence of variable diffusivities in the past, as a 

result of temperature fluctuations, i.e. that they reached higher values in colder and wetter 

climates related to the activity of past glaciations, and that an active layer or upper soil 

zone was deeper and exposed at a higher rate than during relatively warmer and drier or 

interglacial times.   

4.3 Past Temperatures and Diffusivities 

As noted in Chapter III, Methods, the compiled global topographic diffusivities in (Oehm 

and Hallet, 2005) were organized by latitude in order to relate a climatic region, such as 

tropical, polar, or temperate, to rates of soil creep. Because soil creep occurs in polar as 

well tropical latitudes, globally distributed records were used to serve the purpose of 

broadly comparing global diffusivities in terms of regional climate, but not to causally 

assign a latitude limit to a diffusivity. Using the substitution method, (described in 

Methods), current average air temperatures of April and May at globally distributed 

locations given by reports cited in Oehm and Hallet (2005) were used to generate a 

numerical relationship, or transfer function, between current climate, based on the air 

temperatures at those locations, and diffusivities measured at those locations (Figure 4.3). 

Included also as a point used to generate the function was the current relationship for 

Mono Basin moraine.  

The functions then were used to calculate the diffusivities that correspond with 

the past climates, derived from applying the halite inclusion temperature proxy record, 
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explained in section 2.7. The paleotemperatures for the region were only selected for the 

discrete times given in the published literature for which dated moraines provide 

evidence of significant and preserved glacial advances in the region, indicating times 

when climate conditions allowed for the formation and advance of glaciers. The 

temperatures are not assumed to reflect continuous conditions, but those diffusivities 

derived from them at those times selected were used to model degradation of the model 

profile between times of assigned temperatures.  

 

The results from applying the transfer function to the times of past temperatures is 

illustrated in Figure 4.4 which relates past temperatures with derived maximum κ values. 

The plot shows past variability in diffusivity, previously not shown with application of a 

Figure 4.3. Transfer function based on reanalysis April/May average temperatures for 

current site locations where κ values were recorded (Oehm and Hallet, 2005). Points 

shown are the set selected to represent the range of paleo-temperatures and does not 

include the full global set. This transfer function produced the closest fitting cross-section 

profile to the current observed profile, with an underestimation of 0.9 m.  

κ = 0.0255e-0.0255(T)
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constant optimized κ, and it shows the times when the temperature has produced a 

relatively large increase or decrease in κ, which is relevant for understanding the effects 

of past global climate change and glaciations on landform degradation.  

A set of three transfer functions were assessed for performance in modeling the 

climate driven degradation through time: 1) The first one was based on every location 

cited in Oehm and Hallet (2005) (Global κ), 2) in the second function the selection is  

 

limited to sites that fall within the limits of the actual documented paleo-temperatures 

(Paleo-T-Range κ), and 3) the third function, is a compromise between the two previous 

versions (Partial-Global κ). The transfer function based on the locations with 
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Figure 4.4. Maximum derived paleo-diffusivities (orange) and their associated average 

April/May temperatures from halite inclusion proxy record (blue) plotted against the 

times from the glacial chronology. If the transfer function reflects an accurate 

relationship between temperature and diffusivity and the chronology of past temperatures 

at Mono Basin is accurate then the relationships can be used to assess degradation rates in 

climates with related temperatures in the past and the present.  
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temperatures that fell within the range closest to the paleotemperatures generated a cross-

section profile with the minimal least square difference. An additional reason for 

choosing this transfer function was that the other two were based on locations whose 

temperatures fell well outside the paleo-range, suggesting that the processes at those 

locations were not reflective of the processes occurring in the past. Table 4.3 lists the 

diffusivity results of applying the three different transfer functions. It also lists, 

separately, the set of chronologies based on calibration updates and considerations in 

selecting ages for the degradation model. Explanation was given as to how the selection 

decisions were made.  

 However, application of the substitution method in this study was not constrained 

by use of transfer functions or ages given with a least uncertainty or error. Other 

selections are possible. The amount of difference between the model profile and the 

observed profile, while shown as a difference in the application of parameters, may also 

be the result of missing chronologies, missing points and temperatures in the transfer 

function, and episodic events whose effect on degradation were not represented. The 

difference between, for example, the current measured diffusivity on Mono Basin 

moraine and the result of the current time diffusivity generated from the transfer function 

may result from any one or multiple issues – a common discrepancy between localized 

measurements and those generated from averaging between points being fit by a curve, 

points contributing different weights and generating a curve that does not equitably 

represent various points, gaps in representation between climate/diffusivity data points 

also causing a curve to misrepresent the relationship.  
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 When the maximum Paleo-T transfer function was applied together with the 

selected ages, the cross-section profile with minimal least square difference was 

generated, underestimating the current profile by only 0.9 meters (discussed in the 

following section). The selections made are offered both as alternative sets of criteria to a 

constant optimized κ in the application of the degradation model and as a suggestion for 

how to integrate disparate data according to understandings of naturally occurring 

physical processes. The profiles were based on modeling, but the time-varying 

parameters used in modeling were based on physical measurements that were integrated 

to generate the physical process of degradation.  

Based on the methods and evidence used, the purpose of the above selection was 

to have a basis for replicating whatever conditions might have prevailed in past climates 

that together would have generated the current observed profile. Achieving the objective 

also required applying shifts to climate conditions at times for which there was some 

physical evidence for doing so. Certainly other climate conditions might have prevailed 

that are not being considered which might have accelerated or decelerated the mobility of 

the surface at times not included. A different study could focus on considering the many 

modeling scenarios that employ different combinations of climatic indicators and how 

they could possibly affect erosion. However such a focus is outside the topic and scope of 

the present study.  
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Glacial 

Activity Error Transfer Function Transfer Function

Age Min K Max K

0 Globak K Globak K

Present 0 8.74E-04 1.11E-02

Recession 13 1.21E-03 1.57E-02

Transition 15 1.33E-03 1.73E-02

Tioga Start 25 2.73E-03 3.73E-02

ML LS 3 27 1.55E-03 2.03E-02

Tenaya 32 1.73E-03 2.30E-02

ML LS 4 34 1.61E-03 2.12E-02

Tahoe II 50 1.67E-03 2.20E-02

Mono Basin 80 1.43E-03 1.87E-02

12 ka Paleo-T-Range Paleo-T-Range

Present 0 3.47E-04 8.80E-03

Recession 13 6.93E-04 1.42E-02

Transition 15 8.40E-04 1.63E-02

Tioga Start 25 3.88E-03 4.72E-02

ML LS 3 27 1.16E-03 2.04E-02

Tenaya 32 1.48E-03 2.41E-02

ML LS 4 34 1.26E-03 2.16E-02

Tahoe II 54 1.36E-03 2.28E-02

Mono Basin 92 9.87E-04 1.82E-02

4 ka Partial-Global Partial-Global

Present 0 8.08E-04 1.02E-02

Recession 13 1.19E-03 1.47E-02

Transition 15 1.33E-03 1.63E-02

Tioga Start 25 3.12E-03 3.65E-02

ML LS 3 27 1.59E-03 1.93E-02

Tenaya 30.4 1.82E-03 2.19E-02

ML LS 4 34 1.66E-03 2.02E-02

Tahoe II 47.5 1.74E-03 2.10E-02

Mono Basin 76 1.45E-03 1.77E-02

Table 4.3. Three scenarios of ages and transfer function - 

derived paleo-κ values 
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4.4 Varying Diffusivities through Time 

Also shown in Table 4.3 are the ages for the times in the varying κ degradation 

model. Several criteria were considered when modeling and selecting times to ensure 

accurate representation of the most updated records and to understand their effects on 

optimization of model results. Selection of times was based primarily on the latest 

published data for evidence of glaciations and glacial retreats in the region compiled in 

(Gillespie and Zehfuss, 2004) for glaciations and in Benson et al. (1998) for retreats 

identified by Mono Lake low stands. The oldest glaciations provided the oldest times and 

were considered significant contributions to long term degradation. The latest revised 

published age for Mono Basin moraine was given as a range 80-60 ka. Based on earlier 

published dates, the range implies an average of 70 ka with 10 ka margin of error. For 

Tahoe II, the age range given was 50-42 ka, which likewise implies a 4 ka year margin of 

error. However, the oldest in the ranges were selected for use in modeling, because 

reports have documented that degradation can make cosmogenic isotope dates appear to 

be younger than the true ages (Hallet and Putkonen, 1994; Putkonen and Swansen, 2003; 

Putkonen et al., 2008). This is why choosing the oldest possible age within a distribution 

of ages is a common practice and was followed in the published revised dates of Phillips 

et al. (1996).    

However, in the selection process, unpublished ages falling within uncertainties 

cited by recalibration studies (Phillips et al., 2001) and the original reported geochemistry 

of the two oldest ages associated with Tahoe II and Mono Basin age moraines (Zreda et 

al., 1990; Phillips et al., 2001; Marrero et al., submitted 2014) were used by the 
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CRONUS calculator, introduced at the end of section 2.7. Uncertainty findings on 

recalibration studies reported in Phillips et al. (2001) were incorporated so that the 

maximum age used for modeling degradation was 85 ka. This age has not been published 

and the recalibration studies had not been applied to Mono Basin moraine in updated 

glacial chronologies in Phillips et al. (1996), so 85 ka remains speculative. However, 

because it was within the maximum uncertainty generated with the CRONUS calculator 

derived as the 92 ka age shown in Table 4.2, which considered the latest calibration 

studies (Marrero et al., submitted 2014) and boulder erosion (Phillips et al., 2009),  85 ka 

was used for modeling, because it improved the results by reducing the least square 

difference in profile elevation compared to the modeling results that had applied the 

published age of 80 ka, and because it reflects a relatively conservative estimate 

considering the updated parameterizations. Because age determination was not the focus 

in the present study, published and experimental results of recent sources (Phillips et al., 

2001; Marrero et al., submitted 2014) were selected and applied for age parameters in 

order to test model scenarios. The focus was not on testing the degradation model with 

different ages falling within the margins of error. The objective in the selection of ages 

was to represent the documented age of the moraine within limits warranted by 1) latest 

published ages, which were based on 36Cl concentrations in cosmogenic isotope dating of 

exposed boulder surfaces and 2) representation of possible boulder erosion included in 

the recalibrated ages, given in the latest documentation (Phillips et al., 2009).  

The CRONUS-Earth calculator was used to determine oldest possible ages given 

by uncertainties, which increased with older ages. The oldest age with uncertainty of 12 
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ka on the 80 ka for the recalibrated age of Mono Basin moraine was 92 ka. When boulder 

erosion of 3.3 mm was incorporated, the exposure age decreased to 74 ka. So if erosion 

occurred then the exposure ages are younger than the actual age of the moraine. 

Therefore the age of 92 ka is a minimum, but it is uncertain how much so. A recalibration 

gave an absolute error of 5% for granodiorite in the region (Phillips et al., 2001). A 5% 

error on the 80 ka, gave a lower age of 76 ka. This age was used as the lower age limit, 

assuming no erosion, because it was within the negative uncertainty of the published age 

calculated by CRONUS.  

The same approach was applied to the Tahoe II age moraine. However, as the 

moraine ages decreased, so did the uncertainty. Ages younger than Tahoe age moraine of 

50-54 ka, gave uncertainties 2.8 ka or less. These low uncertainties were not applied 

because applying them pushed a documented glacial event into the previous or next 

interstadial, which were deemed important to include. Also, the adjusted ages with low 

uncertainties did not contribute significantly to changing degradation rates when 

modeled.  The resulting three age representations shown in Table 4, include 1) the oldest 

revised ages published assuming no new error recently calculated by CRONUS and no 

erosion, 2) the oldest ages given the highest positive uncertainties calculated by 

CRONUS, and 3) lower ages given a low 5% error on the published dates of the high end 

range. The age extents were combined with the three sets of κ values generated by the 

three transfer function described above.  

 Results from degradation modeling and application of a least square difference 

between the modeled cross-section profile and the observed profile gave a 0.9 m 
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underestimation of the crest elevation even with the optimal set of conditions (Figure 

4.5). The figure shows profile results when the time varying κ value was applied in the 

diffusion equation for an optimal age of 85 ka. The set of time-varying κ values was 

based on selection of the transfer function restricted by paleo-temperature ranges, where 

the restriction did not exceed more than one temperature higher than the warmest (current 

temperature) or lower than the coldest paleotemperature. The age of 85 ka was used and 

justified by falling between the maximum published age with no recalibration error (80 

ka) and the maximum published age with the maximum recalibration error (92 ka). 

Application of boulder weathering rate of 3.3 mm as a potential occurrence cited in 

Phillips et al. (2009) generated the final CRONUS calculator age of 85 ka. Therefore, 85 

ka, which was the age that yield the lowest least square difference with optimized κ was 

the age employed for the age of the moraine and, therefore, the time in years used in 

profile modeling of the degradation of Mono Basin moraine.  
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4.5 Diffusivities and Degradation Modeling 

Three scenarios, each modeling degradation through the age of Mono Basin 

moraine, applied different κ values: 1) the first, a diffusivity based on sediment flux at the 

current time in the region, 2) the second, a value generated to optimally model the current 

elevation profile, and 3) the third, multiple κ values derived from the substitution method 

and transfer functions, as discussed earlier. The κ values resulting from application of the 

transfer function are shown in Figure 4.6 to illustrate their variability against time.  

Except for the current time and the last 10 ka, which exhibit the lowest diffusivities, 

Figure 4.5. Degradation model with application of a time varying κ value. 

The profile in green differs in crest elevation from the observed profile by 

0.9 m.  
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degradation is shown to have been higher during past times with the highest occurring 

approximately 25 ka during the Last Glacial Maximum, when the Laurentide ice sheet 

was at its furthest extent. Compared to the present, considered an interglacial time, 

previous glacial periods need to have been wetter and colder for the existence and 

advance of the glaciers that deposited the moraines that provided the dates for the glacial 

chronology and for which proxy climate records provide supporting evidence. Measured 

global diffusivities showed that higher latitudes, which generally support climatic 

conditions that produce glaciers or periglacial regions, those areas of intense frost action 

Figure 4.6. κ values varying through time and illustration of temperature 

based chronology bins. The current value is shown as the lowest overall and 

the last 13 ka also the lowest in comparison to the past. The highest value at 

~25 ka corresponds to the LGM. Blue dotted lines divide the bins in which 

individual κ values were applied in the degradation model, starting with the 

earliest after deposition and changed to a temperature based diffusivity at 

the start of the subsequent time based on glacial chronology. 
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and a ground surface free of snow cover for part of the year (Ritter et al., 2011), exhibited 

relatively higher maximum diffusivities. Therefore, the results of the diffusivities through 

time follow a pattern for which there is evidence, both in the past and the present. The 

significant point is not when precisely certain degradation rates occurred, but rather 1) 

that there is a strong basis that they did vary and 2) that their variability was driven by 

changes occurring globally as a result of glacial activity.  

When the varying diffusivities are used to track crest lowering or degradation 

through time, comparisons can be made showing the consequences from modeling with 

the different κ values (Figure 4.7). While the occurrence of variability in the values of the 

diffusivities through time may not be surprising, what is revealing is both the ability of 

the model to reveal any noticeable elevation changes resulting from varying the 

parameterization of κ and the order of magnitude of its variability at corresponding times. 

While κ was defined from the beginning as reflecting climate, the quantified effects of 

changing climate, with respect to temperature, on topographic diffusivity had not been 

apparent, and therefore the effects of past climates on landform degradation had not been 

quantified.  

Transfer function derived diffusivities for the current time using the paleo-

restricted temperature set and reflecting the lowest throughout the age of the moraine, 

generated a profile that underestimated the current moraine profile by up to 32%. When 

compared with degradation modeling that used an optimized value (constant κ), which 

generated a close approximation to the current elevation profile, using the constant value 
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generated a profile that overestimated degradation by up to 10% during the first 60 

thousand years and underestimated it the same amount during a 5 thousand year time 

span 15 to 20 thousand years ago. When viewed on a long time scale, the differences may 

not seem significant enough to warrant using varying κ values. However, the quantified 

differences support 1) a physical basis for diffusivity variability through time on a scale 

of thousands to tens of thousands of years, 2) quantified rate differences over time and 3) 

a link of the rate differences to past climates, whose mechanisms and causes can be 

assessed by climate records or climate modeling. Also, the differences can be significant 

Figure 4.7. Degradation through time of three cases, where each uses a 

different value for topographic diffusivity. The current value, κ=8.8 x10-3, 

generates a model that underestimates degradation by up to 32% of the 

current moraine profile. Use of a constant optimized κ=2.2x10-2 generates 

a model that overestimates degradation by up to 10 % during the first 60 

kyrs and during a 5 thousand year time span 20 to 15 kyrs ago.  
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with respect to the exposure of the upper-most millimeters to centimeters for drier 

climates and for the uppermost 50 cm in periglacial environments. Variability of the rates 

at which these depths are exposed, which depends on κ values varying through time, is 

critical for extrapolating cosmogenic isotope exposure ages, the dating of moraines and, 

hence, for determining the timing of past climate fluctuations.  

Because the error between the optimized degradation model and the degradation 

model applying varying diffusivities is determined by a least square difference with the 

observed moraine profile, the overestimation and underestimation includes the 

cumulative error along the entire length of the slope, not merely the crest. The three 

different scenarios employ κ values throughout the degradation of the landform profile 

during modeling. Given that the present landform, like other landform surfaces in the 

region, appears unchanged for at least 80 years when compared with historical photos, no 

other surface processes, such as debris flows and landslides, were considered to have 

occurred during the last 10 thousand years. The occurrence of such events prior to that 

could not be assessed.  

Further illustrating the relative elevation differences in moraine profiles produced 

from employing the optimized κ value and the time varying κ values, Figure 4.8 plots the 

relative differences between the two curves and shows when those differences occurred. 

The first 35 thousand years reflects the time span when greatest difference between a κ 

that reflects a long term average and the κ reflecting the earliest degradation of the 

moraine. While both steeper slopes and the cumulative effects of a colder wetter climate 

than the both contributed to early degradation, the degradation model from time varying κ 
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values still produce higher elevations (less degradation) than the degradation model from 

the time averaged κ. Also, for the past 15 thousand years, the difference has been 

decreasing, and so it is a time range when application of an optimal constant κ would 

most closely reflect the conditions associated with a degrading the hillslope.  

 

 

 

 

Figure 4.8. Difference between moraine crest elevation profiles generated 

with time varying κ values and with a constant optimized κ through age of 

the moraine. Assuming the same initial elevations, differences express how 

the different applications of diffusivity affect degradation modeling of the 

current profile through time in units of meters.  
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CHAPTER V 

DISCUSSION 

5.1 Overview 

Results from degradation modeling quantified the effects of applying a time 

varying diffusivity parameter in the hillslope degradation model. The results of applying 

an optimized constant and a present day constant were quantitatively compared. As 

sediment transport rates were quantified according to grain size and the diffusivities of 

respective sizes were found to vary accordingly, the resultant effect on topographic 

change was mapped. The results, based on current field data, demonstrated the relative 

cumulative effects of the present climate on sediment transport and, hence, on the 

degradation rate of Mono Basin moraine. When compared with results based on proxy 

records of past climates, the variability of degradation rates over time was revealed and 

contrasted with the present rate and with the rate given by an optimized constant. The 

present degradation rate was based on diffusivity found to be an order of magnitude 

lower than climates occurring prior to recent geologic time of the Holocene. Also, the 

optimized constant diffusivity that produced a cross-section profile fitting the current 

moraine profile was found to only incidentally correlate with a time dependent 

diffusivity. Otherwise the generated profile using a constant optimized κ misrepresented 

degradation occurring during past climates.        
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5.2 The Effect of Climate on the Magnitude of Diffusivity 

In conventional usage, the topographic diffusivity parameter is the free variable in 

the hillslope diffusion equation. As such, it is adjusted to produce the best fit model to the 

current hillslope profile. The aspect of climate that κ represents in such usage amounts to 

whatever the resulting optimal value happens to be. However, given that the climate 

dependent diffusivities were based on documented accounts of actual climatic conditions 

and numerical temperatures, not qualitative accounts and, further, that they produced a 

model profile that underestimated the current one by less than 2% shows that climate is a 

stronger force on erosion than is expressed in its typical application in the hillslope 

diffusion equation. The results suggest that climate fluctuations that have generated 

glacial and interglacial events in the past have affected erosion rates accordingly.  

Through the modeling approach taken in the present study, where the variability 

of κ was related to relative changes in temperature that were assumed to follow past 

glacial advances and retreats, landform degradation rates were shown to vary in accord. 

With diffusivities derived from functions associating climates, defined in the present case 

by air temperatures at known locations, variations of degradation through time were tied 

to a physical basis that otherwise is unobservable. While the modeled profile employing 

time varying κ exhibited slightly more error than the optimized κ value, the varying κ is 

more reflective of conditions that occurred in the past that are not represented otherwise. 

This variability is not reflected or even accounted when an optimized, constant, value is 

applied.  
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The results are interpreted to indicate that slope is not the driving factor for 

degradation rates through time at all scales and in all cases, unless an average climate 

over thousands of years is approximately constant throughout that time. The temperature 

changes that result in climates that generate glacial advances or retreats affect the 

conditions controlling how sediment is transported and, therefore, the rates at which 

hillslopes degrade. Conditions referred to include the cumulative results of that would 

follow from temperature changes, such as precipitation, whether in terms of rain, snow 

melt, or thaw, as well as all the responses of the substrate and its ability to sustain biota in 

those conditions. While such conditions occur seasonally and annually, at the time scales 

employed in the present study, such conditions were considered as cumulative and 

compared relatively over thousands of years in terms of sediment transport. This was 

done through the use of the substitution method described in earlier sections.  

The observation resulting from the application in the present study forces the 

reconsideration of 1) low degradation rates that may appear to result from age and lower 

slopes, may be the result of a climate 2) likewise, high degradation rates may not 

necessarily occur during the earliest times or even during brief episodic transport events, 

but rather result from global climate changes that are linked in complex ways to 

modifying the climate that effects rates of sediment transport. The point has been 

established in previous sections that the focus of this study was not to attempt to unravel 

those complex links. Rather, the focus was on establishing a physical basis for which 

evidence could be tied to show how diffusivity varied through thousands to tens of 
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thousands of years when climate is known to have been modified by the climate forcing 

of ice sheet activity, for example.  

The transfer function generated from a compilation from data collected in the 

Oehm and Hallet (2005) work indicated some trend relating temperatures at higher 

latitudes with higher diffusivities. Assuming the validity of the trend used and given the 

accompanying scatter likely resulting from the contribution of other local factors, such as 

elevation, varied substrates, varied landforms, varied precipitation, varied soil properties 

and vegetation, the small percentage of error between the model profile and the observed 

profile may be interpreted in two ways. One, the small error may be coincidental and the 

diffusivities used in the program do not actually reflect the relative changes in climate 

from one time to the next. In other words, the climate dependent κ values that were 

selected may be too scattered to have produced a reliable and relevant transfer function. 

Two, the physical evidence and its associated chronology is reflected in the relative 

sequence of time varying diffusivities. Certainly a function with less scatter would 

provide stronger support for a resulting profile with low error. Higher resolution could 

show more continuity between diffusivities, possibly revealing small degradation 

differences caused by the above factors contributing to the scatter in the transfer function.  

Another limitation with the methods in the present study may lie with the 

chronological resolution. As indicated in Results section 4.3, the chronology used in the 

model employs discrete time periods, but the modeling requires that κ values be applied 

in the degradation model as constants until the following time when the value changes to 

reflect a change in climate evidenced by the halite homogenization temperatures from 
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DV93-1.  The hillslope diffusion model is modeling in the same way as when an 

optimized constant κ was used. The only difference is that different κ value constants are 

used over different times to reflect corresponding changes in climate assumed to have 

occurred from glacial advances and retreats. However, chronological resolution is limited 

by the preservation of the glacial record. Because this study has focused on variability in 

degradation through time as resulting from past glacial activity, an indicator of global 

temperature changes, analyses of hillslope degradation of other moraines in this region as 

well as in comparison with other neighboring regions where timing of past glaciations 

was similar might lend further support to the methods employed in this study.  

The current κ value is based on an interglacial climate that is warmer and drier 

than climates occurring during prior glacial times. When the current κ value is applied in 

the diffusion equation degradation rates underestimate degradation throughout the age of 

the landform. Evidence that the present landscape has changed little, as seen in 80 year 

old historical photos, lends further support to the present landscape reflecting relative 

stability associated with conditions of an interglacial. In other words, low diffusivities 

measured from the present landform are not simply reflective of the landscape today, and 

the results of recent effects of fire suppression for example, possibly allowing vegetation 

density to increase and decrease erosion. They are interpreted here as reflective of an 

interglacial time that can be shown to contrast with known past glacial times, in terms of 

the effects of diffusivity and therefore landform degradation.  

The methods carried out in the study where sediment transport was measured over 

bare earth patches or pathways allowed measurement to reflect how sediment has been 
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transported regardless of the vegetation. While vegetation density will affect overall 

degradation, the derived κ value from a volume sediment transported over bare earth will 

reflect a relative mobility that can be compared with other such rates in the past or in the 

present. As mentioned previously, the substitution method provided a physical basis to 

which chronologically-based evidence could be tied. So that even though precise 

diffusivities should not be assumed to correlate exactly with the time selected and used in 

the degradation model, the physical basis for their temporal variability provides a basis 

for when in the past degradation rates should be assessed against the optimized κ value or 

compared with current κ values. Even with the given limitations in the paleoclimate data 

and the scatter from a relatively low distribution of global diffusivities, the substitution 

method generated a degradation model that closely approximated the present landform 

when κ values based on actual climate conditions were used.   

5.3 Correlation with Past Times 

 Modeling results from the application of hillslope diffusion showed that the 

selected time periods, together with the selected κ values applied to each time, produced a 

profile that underestimated the current one less than 2%. So, given the uncertainties 

calculated by CRONUS for 36Cl cosmogenic exposure age dating and the error associated 

with the methods used for the revised ages, the degradation model based on time varying 

κ value produced a profile that approximated the current while reflecting past climate 

variability in doing so.  The evidence, therefore, strongly indicates that climate variability 

through the time scales defined by the chronology has been at least a significant, if not 

driving force, at some times in the past, controlling variable erosion rates in this region. 
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While other regions may have additional forces affecting erosion rates, such as 

earthquakes, mass movements, and anthropogenic activity, the effect of climate is 

ongoing everywhere, even though regionally responses differ. Because the variability 

accompanying climate during glacial and interglacial periods was shown in this study to 

contribute to degradation, whether it was by accelerating, decelerating, or maintaining it 

through time, the basic role is assumed to apply to all regions, although in various 

interactions with other forces relevant for a particular region.  

 As indicated in earlier sections 2.7 and 4.3 this study, while the attempt was made 

to determine times of the climate variability that occurred over the life span of the 

landform, each κ value was not assumed to correspond continuously between times, 

except insofar as needed to be able to model the degradation that generated a model of 

the profile. During the intervals of selected times climate very likely varied on smaller 

time scales, from seasons to years. Precipitation likely varied, just as it varies in the 

current time. This study did not focus on variability at that scale, for the main reason 

being that proxy records, particularly those that can provide numerical data, do not exist 

at the annual and seasonal scales. Proxy records that could provide definitive values for 

precipitation do not exist at all. However, the state of climate that produced the numerical 

temperatures for which proxy records did exist was assumed to have also generated all 

the climatic conditions that resulted in the diffusivities that were measured. Also assumed 

was that those conditions accompanying the temperatures in the current time, generating 

the measured diffusivities, also accompanied those temperatures that were applied to the 

past in the Mono Basin region.   
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5.4 Significance of the Results for Degradation Modeling 

 Varying topographic diffusivity through time and using time varying values 

showed variability in degradation rates that application of a constant κ did not show. 

Designating κ values to times associated with different temperatures, reflecting climates 

modified by glacial activity, provided a physically based scenario for time varying 

degradation. Because glacial advances require relatively colder temperatures and enough 

precipitation to accumulate ice and to push an alpine glacier down slope, the time 

associated with a moraine deposit is also associate with a glacial advance and the needed 

climatic conditions. For this reason, relative to the present, times in the past with higher 

diffusivities were associated with colder and wetter climates. However, within the 

duration of past glacial times, climates were wetter or drier, colder or warmer compared 

to each other.  The halite fluid inclusions provided the only means for assessing the 

relative temperature differences in the past on any numerical scale. Together with the 

transfer function, relative differences in diffusivities were discerned.  

The results show, for example, that the climate subsequent to the one that resulted 

in the glacier that deposited Mono Basin moraine, such as the one that resulted in the 

glacier that deposited the Tahoe moraine, kept κ values even higher than when Mono 

Basin moraine was deposited. Evidence for this is shown in Figure 4.5. If conditions had 

been warmer than during Mono Basin time, Tahoe moraine would not have been 

deposited further out ahead of Mono Basin moraine. The results also show significant 

increase in κ at the time associated with the Last Glacial Maximum where the evidence 

shows a significant decrease in temperature and, as discussed in earlier sections, a 
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likelihood of increased precipitation in some regions. Again, the point here is not to 

explain causal connections, but to link the physically based evidence with a chronology 

and values, in this case of temperature, that can be assigned, in the least relatively, to 

times in the past, thereby providing grounds for temporally varying diffusivity and 

showing how degradation rates can vary through time.  

Considering the two scenarios for κ, one where it is a constant and optimized to 

closely approximate the observed profile and the other, based on time-dependent climate 

records, the parameter may be viewed in two ways. Used as an optimized constant to 

model the current profile, it functions to express all factors in a generic way that are not 

related to slope, with climate being primary. So it is expressing the contribution to the 

overall degradation by climate in a general sense. Used to express diffusivity related to 

past climates, it functions both to produce a model profile approximating the current as 

well to quantify degradation rates through the age of the moraine. In the latter case, the 

parameter contributes to the transport and erosional processes and how their rates might 

have varied through time and contributed to the current elevations. For understanding the 

rates at which surfaces became exposed through time, when using cosmogenic isotopes 

for exposure age dating for example, such parameterization is more relevant than one 

given by a constant κ. In such cases, knowing that erosion rates might have been 

significantly different for a duration of time might be useful in calculations. For simply 

generating a diffusion equation that provides a curve that fits a current landform cross-

section profile, use of an optimal κ value may be sufficient if, for example, one wanted to 

assign an approximate age to a landform or calculate an average long term erosion rate.  
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CHAPTER VI 

CONCLUSIONS 

As an exogenic force, climate acts on Earth’s surface directly and continuously. 

The rate of regolith transport within the uppermost 30-50 cm of hillslope surfaces 

responds to climate. So as climate changes through time the regolith transport rates 

change accordingly. Therefore the rates at which underlying regolith is exposed and the 

rates at which uppermost regolith is delivered downslope and into streams and rivers 

depend on climate as well. 

Regolith transport and hillslope degradation today and through the age of Mono 

Basin moraine (~80 kyrs) in the eastern Sierra Nevada were investigated for the purpose 

of understanding the effect of climate on landform degradation and erosion rates. 

Hillslope degradation was quantified with the sediment transport equation,   q=-κ(dz/dx), 

where (q), the volume of regolith per meter width of the slope that is transported, is a 

function of slope (dz/dx). Topographic diffusivity (κ) is a coefficient that expresses the 

effects other than slope on degradation. Besides slope, climate and substrate are typically 

considered the primary factors that determine the rate of sediment transport. Annual 

transport rates of glacial regolith, making up the substrate of Mono Basin moraine in the 

eastern Sierra Nevada, were measured in 2011. The data was used to determine current 
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hillslope processes and to quantify current regolith erosion rates. The field measurements 

were correlated with the climate records that span the past 30 years. 

The main objective of the research was to relate the variations in climate known 

to have occurred in the past to corresponding variations in degradation rates. This was 

accomplished both by comparing the present climate, which has been relatively stable 

since the end of the Last Glacial Maximum, with climatic conditions resulting from the 

cooling and warming related to past glaciations for 100 ka. Climate driven topographic 

diffusivity was calculated by making use of the published paleoclimatological data for the 

region and correlating it with current global topographic diffusivities. This climate driven 

and, therefore, time dependent topographic diffusivity was then used in a degradation 

model to resolve the past fluctuations in the hillslope degradation.   

Typically, in degradation analyses that are based on regolith transport laws and 

expressions of conservation of mass the topographic diffusivity is the free variable. In 

other words it is determined by fitting the results of the sediment transport equation to a 

present landform cross-sectional profile. However, given that κ is assumed to express the 

effects of climate on erosion rates, the question arises of whether its value is expressing 

what is intended if it has been derived on assumptions or records other than climate, such 

as erosion, elevations, and slope. To test how well the parameter is actually performing 

the role that is intended in the hillslope diffusion analyses, three scenarios were used to 

model the cross-section profile of Mono Basin Moraine, and the results of degradation 

modeling were compared with the current observed profile.  



113 
 

The first was a κ value based on current sediment transport records and, hence, 

reflective of the current climate, which is the warmest and driest over the last 100 ka. The 

second κ was generated as an optimal value to produce a profile fitting the current one 

based on observed elevations. The third was selected through the space-for-time 

substitution method and is a time-dependent κ based on past climate changes in the 

region. While the second case above is based on a best fit with the current profile, it is not 

the diffusivity responsible for degrading the moraine to its current shape and elevation. It 

will be the values truly reflective of their respective climates that provide the truest final 

profile when the diffusion-based degradation model is run. A constant κ value can never 

truly model the degradation of a landform because on the scale of tens to hundreds of 

thousands of years, a constant climate has not persisted.  

Results from modeling showed that the current diffusivity underestimated the 

degradation and resulted in a current profile that is taller than observed today by 32%. 

When considered together with current erosion rates of 2.65 mm/yr for Mono Basin and 

an average diffusivity for the region of 2.20 x 10-2m2/yr, the results are consistent with a 

moderate regolith transport processes quantified in the study, although relatively slow 

erosion, and correlated with the current warm dry climate. These results suggest that 

transport is likely related to surface wash related to seasonal rain events so that sediment 

on the slopes is replaced by sediment traveling downslope. This produces a slow rate of 

cumulative erosion.  

Modeling results based on diffusivities that applied varying diffusivities to past 

climates showed an underestimation (the modeled profile is taller than observed) of the 
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current and final profile by less than 2% with the use of varying κ. Comparisons between 

the degradation rates generated from an optimized constant κ and from variable κ show 

that there is overestimation of the optimized model of up to 10% during the first 

approximately ¾ of landform age and underestimation of approximately the same 

amount, but for a brief time during approximately the last third of the landform age. 

While such differences are not presented as results with high certainty occurring at 

certain times, the significance is that a relatively small difference can amount to 

cumulative differences over thousands of years, which may be significant, even if some 

error pertains in the results.  How well κ expresses the true value(s) that have led to the 

current profile depends on the frequency and magnitudes of changes in climate over the 

age of a landform. Given what is known from paleoclimate records and the correlation 

with current diffusivities, a time-varying κ best expresses the topographic diffusivity 

related to the erosional history of the landform. 

The main finding in this study is:  because topographic diffusivity is based on 

climate and climate is known to have fluctuated in the past on thousand, ten-thousand, 

and one-hundred-thousand year time scales, therefore also the topographic diffusivity 

varied with time in accord with the cumulative climate states. These variable climates 

impacted changes in interaction with landscape substrates and, hence, with the mobility 

of landform surfaces and, thereby, landform degradation rates. The climate conditions 

producing colder and wetter conditions that promoted glacier growth and advance are 

viewed akin to those conditions that produce similar temperatures in colder wetter 
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climates at current times. The affinity of climatic conditions supports a transference of 

diffusivities to past sediment transport.  

While the natural course of landform evolution therefore is variable degradation, 

assessments on the significance of the variability are not in agreement. Those who have 

been interested in a long term average of diffusivity have found that use of an optimized 

constant κ value sufficiently satisfies modeling results of the degradation profile. 

However physical processes occurring within the upper-most 1-1.5 meters of a landform 

surface that affect sediment transport within even a small percent of deviation from the 

optimized κ can affect regolith exposure time and depth. The findings in the present study 

identifies unaccounted variability resulting from application of the constant κ value. The 

finding is problematic for techniques that rely on surface exposure and surface stability 

for purposes of dating the landform or for determining the length of time the surface has 

been stable. Often, when a landform is assumed to have been stable for thousands to 

hundreds of thousands of years as a result of tectonic quiescence or an absence of 

catastrophic events its surface transport is also assumed to have been stable. However, as 

shown in this study, the rates of surface regolith transport can vary temporally in 

significant amounts on a time scale when global climate changes are known to occur.  

While the results in this study show the variability of landform degradation as an 

effect of climate variations through time for a particular landform, they are relevant for 

the landscape scale. The longer the time scale and the larger the spatial scale the worse 

the problem becomes. The further back in time is the record of the landform, the weaker 

are the environmental proxies for indicating when changes to the surface occurred. The 
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larger the spatial scale, such as kilometers for mountain ranges, the greater the difficulties 

in locating and quantifying variations in transport and storage. This problem makes 

environmental interpretations of the past difficult to make and to use as explanations for 

landscape evolution, even though factors in the environment, such as climate, are 

fundamental and continuous causes in the change. 

The rate of degradation is well known to be related to the climate. As the climate 

is known to have varied in the past so must the rates of degradation have varied. Here it is 

shown that either assigning a constant rate of degradation based on modern rates or an 

average rate based on total lifetime degradation leads to erroneous estimates of past 

degradation. Moreover, those rates almost never coincide with actual rates of 

degradation, and do so occasionally only incidentally. Furthermore it is shown that in the 

eastern Sierra Nevada study area the difference between time varying degradation and 

degradation modeled with an optimized constant can be up to ~10%. Even though these 

findings force us to reconsider commonly made assumptions in exposure age dating, i.e. 

where the exposure of a chemical system that is part of a landform surface is used to date 

the landform, or the general stability of landform surfaces, they also warrant a means for 

using sedimentary records together with Quaternary dating methods to improve 

assessments of how landscapes have evolved over time in response to past climates.  
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APPENDIX 

MatLab Code for Degradation Models and Observation Profile 

 

clear all 

  

%----------------------DATA FILES------------------------------------------------- 

load pub_dates_3er.txt%text file of publication dates, times when k changes 

load MB_profile.txt %Mono Basin moraine profile data 

load maxK.txt% max k values from Oehm and Hallet (2005) 

load maxKM.txt 

 

%--------USER CHANGABLE PARAMETERS---------------------------------- 

 runs=1;% Number of runs 

% slope_rise=slope angle expressed as this much rise over a 1 meter 

% horizontal distance 

    % slope_rise=0.6745;% tan 34 (optional) 

    % slope_rise=0.532;% tan 28 (optional) 

    slope_rise=0.60;% tan 31 

% initial conditions of hillslope profile, start slope needs to be adjusted 

% with angle of repose 

start_slope=223; 

mid_slope=400;% don't touch this 

end_flank=800;% total width 

end_slope=end_flank-start_slope;% don't touch this 

  

dt=1; % timestep 

k=2; % Change to 1(if modeling time varying k; paleo-restricted), to 2 

(kappa_field),select constant or optimized selections dependent on angle of repose;  

to 3 (if modeling time varying k; global data set) 

 

    % kappa_field=2.36E-3; % Mono Basin moraine current degradation 

    % kappa_field=2.6E-2;% k 34° (angle of repose) 

    % kappa_field=1.65E-2;% k 28° (angle of repose) 

    % kappa_field=2.10E-2;% k, 31° (angle of repose) 

    kappa_field=2.2E-2;% k, 31, to start with vary-k 

 

%-----------------------------Model Parameters-----------------------------------------  

 

maxtime=pub_dates_3er(end,1)*1000; % the max time steps that the program runs 

time1=maxtime; 

time2=pub_dates_3er(end-1,1)*1000; 

time3=pub_dates_3er(end-2,1)*1000; 

time4=pub_dates_3er(end-3,1)*1000; 
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time5=pub_dates_3er(end-4,1)*1000; 

time6=pub_dates_3er(end-5,1)*1000; 

time7=pub_dates_3er(end-6,1)*1000; 

time8=pub_dates_3er(end-7,1)*1000; 

time9=pub_dates_3er(end-8,1)*1000; 

  

time_file=[time9;time8;time7;time6;time5;time4;time3;time2;time1]; 

  

figure(1) 

clf %clear current figure window 

%  

tic 

for run_counter=1:runs; 

elevations=zeros(1,end_flank); 

elevationsr=zeros(1,end_flank); 

  

for counter2=start_slope:mid_slope; 

    elevations(counter2)=elevations(counter2-1)+slope_rise; 

    elevationsr(counter2)=elevationsr(counter2-1)+slope_rise; 

         

end 

for counter2=mid_slope+1:end_slope 

    elevations(counter2)=elevations(counter2-1)-slope_rise; 

    elevationsr(counter2)=elevationsr(counter2-1)-slope_rise; 

      

end 

figure(1) 

    plot(elevations) 

    hold on 

kappa_file(:,run_counter)=elevationsr(:); %collects final elevations in a file 

  

if k==1;%time varying k (paleo-restricted) 

ranu1=maxK(9,1); 

ranu2=maxK(8,1); 

ranu3=maxK(7,1); 

ranu4=maxK(6,1); 

ranu5=maxK(5,1); 

ranu6=maxK(4,1); 

ranu7=maxK(3,1); 

ranu8=maxK(2,1); 

ranu9=maxK(1,1); 

else k==2;% constant k 

ranu1=kappa_field; 

ranu2=kappa_field; 
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ranu3=kappa_field; 

ranu4=kappa_field; 

ranu5=kappa_field; 

ranu6=kappa_field; 

ranu7=kappa_field; 

ranu8=kappa_field; 

ranu9=kappa_field; 

 

else k=3;% time-varying k, global 

ranu1=maxKM(9,1); 

ranu2=maxKM(8,1); 

ranu3=maxKM(7,1); 

ranu4=maxKM(6,1); 

ranu5=maxKM(5,1); 

ranu6=maxKM(4,1); 

ranu7=maxKM(3,1); 

ranu8=maxKM(2,1); 

ranu9=maxKM(1,1); 

 

end 

  

ran_k(:,run_counter)=[ranu9;ranu8;ranu7;ranu6;ranu5;ranu4;ranu3;ranu2;ranu1]';%k list 

starts with youngest 

  

data_lengthr=length (elevationsr); 

  

%start plotting the figure with initial profile 

time_counter=maxtime; 

crest_file_counter=1; 

  

while time_counter>0 %loop through the time steps 

    

    if and(time_counter<time1+1,time_counter>time2);        

        ran_inpt_kappa1=ranu1; 

  

    elseif and(time_counter<time2,time_counter>time3); 

        ran_inpt_kappa1=ranu2; 

  

    elseif and(time_counter<time3,time_counter>time4);         

        ran_inpt_kappa1=ranu3; 

  

    elseif and(time_counter<time4,time_counter>time5);         

        ran_inpt_kappa1=ranu4; 
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    elseif and(time_counter<time5,time_counter>time6);         

        ran_inpt_kappa1=ranu5; 

    elseif and(time_counter<time6,time_counter>time7);         

        ran_inpt_kappa1=ranu6; 

  

    elseif and(time_counter<time7,time_counter>time8);         

        ran_inpt_kappa1=ranu7; 

  

    elseif and(time_counter<time8,time_counter>time9);         

        ran_inpt_kappa1=ranu8; 

  

    elseif (time_counter<time9);        

        ran_inpt_kappa1=ranu9; 

  

    end %end of elseif statements 

         

          step_counter=2; 

 

while step_counter<mid_slope+1; %loop through the elevation data array 

                

elevationsr(step_counter)=elevationsr(step_counter)+(((elevationsr(step_counter+1)-... 

elevationsr(step_counter))-(elevationsr(step_counter)-elevationsr(step_counter-

1)))*ran_inpt_kappa1)*dt; 

         

        step_counter=step_counter+1; 

                   

    end %end of elevation array loop 

  

    elevationsr(1)=elevationsr(2); 

     

    elevationsr(mid_slope+1)=elevationsr(mid_slope-1); 

     

    crest_file(crest_file_counter)=elevationsr(mid_slope); 

     

    time_counter=time_counter-dt; 

    crest_file_counter=crest_file_counter+1; 

  

lowering=crest_file(:,1:end)';    

     

end %end of time loop 

  

kappa_file(1:end,run_counter)=elevationsr(:,:);%File collects elevations of kappa inputs 

from each run 

run_counter=run_counter+1; 
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end 

%---------------------------------------Degradation Profiles-------------------------------------- 

 figure(1) 

     

    axes('Fontsize',18,'FontName','Arial','XTickLabel',[0,200,800]) 

    xlim([0 800]) 

    ylim([0 120]) 

     

    plot(elevations,'-k') 

    hold on 

  

    plot(elevationsr,'-ok','MarkerSize',7); 

    plot(MB_profile(:,1)+99,MB_profile(:,2),'dk'); 

     

    xlabel('horizontal distance (meters)','FontName','Arial','Fontsize',18); 

    ylabel('elevation (meters)','FontName','Ariel','Fontsize',18) 

    legend('Initial Profile','Model Profile','Observed Profile') 

    legend('Boxoff') 

  

DIF=MB(1:1:mid_slope-99,1:end)-kappa_file(100:1:mid_slope,1:end); 

LSD=sqrt(DIF.^2); 

LSDM=mean(LSD(1:end,:))'; 

 

%-------------------------------------------Observed Profile------------------------------------ 

x=MB_profile(1:end,1); 

  

Y=MB_profile(1:end,2); 

  

xi=1:1:mid_slope; 

  

yi=interp1(x,Y,xi)'; 

  

i=find(isnan(yi)); 

yi(i)=zeros(size(i)); 

[m,n]=size(kappa_file); 

MB=repmat(yi,1,n); 

MB=repmat(yi,[m,n]); 

%---------------------------------------------------------------------------------------------------- 

elapsed_time_in_minutes=toc/60; 
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