

University of North Dakota [UND Scholarly Commons](https://commons.und.edu/)

[Theses and Dissertations](https://commons.und.edu/theses) [Theses, Dissertations, and Senior Projects](https://commons.und.edu/etds)

January 2015

Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis

Blaise Frenzel

How does access to this work benefit you? Let us know!

Follow this and additional works at: [https://commons.und.edu/theses](https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Frenzel, Blaise, "Characterization Of Newly Synthesized Cobalt Polypyridine Complexes Using NMR, X-Ray, Electrochemistry, And UV-Vis" (2015). Theses and Dissertations. 1771. [https://commons.und.edu/theses/1771](https://commons.und.edu/theses/1771?utm_source=commons.und.edu%2Ftheses%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

CHARACTERIZATION OF NEWLY SYNTHESIZED COBALT POLYPYRIDINE COMPLEXES USING NMR, X-RAY, ELECTROCHEMISTRY, AND UV-VIS

by

Blaise Frenzel

Bachelor of Science, Bemidji State University, United States of America, 2011

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May

2015

Copyright 2015 Blaise Frenzel

This thesis, submitted by Blaise Frenzel in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Name of Chairperson

Name of Committee Member

Convodonz

Name of Committee Member

Name of Committee Member

Name of Committee Member

This thesis is being submitted by the appointed advisory committee as having met all of the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.

Dean of the School of Graduate Studies

04/30/2015
april 30, 2015

Date

PERMISSION

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Ble Fren

Blaise Frenzel Signature

04/30/15 Date

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

Coordination of the 2,6-bis(8′-quinolinyl)pyridine (**bqp**) ligand to a cobalt (Co) core and its influence to electron spin and configuration on the structures and properties of the resulting complexes has been investigated. The homoleptic complexes [Co(*mer***bqp**-κ³*N*,*N'*,*N''*)₂][PF₆]₂ (1) and [Co(*mer*-**bqp**-κ³*N*,*N'*,*N''*)₂][Br₃]₃ (2) were prepared and characterized. X-ray structure determinations of complexes **1** and **2** revealed twisted, near-octahedral arrangements relative to the cobalt center. The magnetic data for **1** is typical of those for distorted octahedral (i.e., D_{4h} symmetry) high-spin d^7 species despite the near-ideal octahedral coordination of the **bqp** ligand around the Co(II) core. Electronic spectra for **1** and **2** have been investigated and assigned. Both complexes exhibit intense $\pi-\pi^*$ bap ligand centered transitions in the UV region and low intensity mixed charge transfer transitions in the visible region. Neither complex strongly absorbs in visible spectral region. The electrochemistry of these compounds has been studied and compared to that of similar cobalt terpyridine compounds. A metal-centered $Co^{2+/3+}$ redox wave and ligand-based reduction processes were observed for **1** and **2** in acetonitrile. The metal-centered redox potentials were reversible with potentials more positive than comparable cobalt-terpyridine complexes. Density functional theory (DFT) calculations of the electronic and ground state properties are in good agreement with the experimental data.

CHAPTER 1 1. INTRODUCTION *1.1 A Brief History*

The first reported transition metal terpyridine complex was developed by Morgan and Burstall in the 1930s. The complex was synthesized using using iron and 2,2′:6′,2″ terpyridine (tpy), which produced $[Fe(tpy)_2]^{2+1,2}$ Since then there have been a tremendous amount of studies looking into using these complexes that have polypyridine ligands attached to transition metals. Currently, these polypyridine ligands, bound with early transition metals and actinide metals, have been investigated thoroughly. As a result, there is reason/precedent to synthesize and research late transition metal complexes, particularly those of d^6 , d^8 , and d^{10} groups. The stability and rich photophysical and electrochemical properties for many polypyridine complexes have been evolving into applications in emerging fields of catalysis, optoelectronics, and life sciences.

One example is $[Ru(4,4,4,-(COOH))₃-terpy)(NCS)₃$, also known as the "black" dye," as a sensitizer in dye-sensitized solar cells (DSSCs)3. Another example would be that of [Pt(tpy)Cl][Cl] as a potent anti-tumor drug that attacks malignant cancers. A complete study of these complexes would be beyond the work of this thesis. Herein will be described the findings of both homoleptic and heteroleptic complexes.

1.2 Homoleptic Complexes

Multi-dentate polypyridine ligands, such as 2,2′:6′,2″-terpyridine (**tpy**), 2,2′ bipyridine (**bpy**), and 1,10-phenanthroline (**phen**), are attractive ligands for constructing various catalytic, photo- and redox-active structures.^{5a} Among these, tridentate terpyridine derivatives are particularly unique from the viewpoint of synthetic and structural coordination chemistry6. Synthetic modification of the 4′-site on the **tpy** ligand is attractive as it does not result in isomeric complexes due to the existence of a twofold axis of symmetry in the **tpy**- $\kappa^3 N$, N' , N'' chelate^{2c}. This leads to the formation of welldefined structures where directionality is desirable, such as surface attachment and polymerization applications5,6,7. Because of their planar nature, terpyridine derivatives coordinate almost exclusively as meridional tridentate ligands, and structural changes are restricted when the oxidation state of the center changes^{2c}. In this context, bis(terpyridine) metal complexes of the type $[M(tpy)_2]X_2$ ($tpy = 2,2$ ';6',2"-terpyridine; X⁻ is, commonly, Cl⁻, ClO₄⁻, or PF₆⁻) have been widely investigated due to their inert character and catalytic activity applied to the fields of light-into-energy conversion⁸ and artificial photosynthesis⁹. Recently, materials have even been developed based on bis(terpyridine) cobalt(II) spin crossover systems¹⁰.

Recently, researchers have used 2,6-bis(8′-quinolinyl)pyridine (**bqp**) ligand to produce homoleptic six-membered chelate rings instead of the traditional five-membered metallocycle rings formed in $[M(tpy)_2]X_2$ complexes¹¹. The result of this design is to optimize the N–M–N intraligand and bite angles towards idealized octahedral values of 90° and 180° , respectively, and thereby strengthening the ligand field¹¹. This strategic

design has led to improved quantum yields and prolonged excited state triplet lifetimes for the $\left[\text{Ru}(\text{typ})_2\right]^{2+}$ complexes. Johansson and co-workers showed that when coordinated to a RuII center, the **bqp** ligand's bite angles were increased and its steric strain reduced, compared to normal terpyridines^{11,12}. As a result, the Ru^H bistridentate **bqp** complex exhibited significantly increased emission lifetimes due to a stronger ligand field and a lower rate of population of the ${}^{3}MC$ state^{6,11}.

1.3 Heteroleptic Complexes

Polypyridine ligands are particularly attractive for constructing various catalytic, photo- and redox-active structures.5 Among those ligands 2,2′:6′,2″-terpyridine (**tpy**) and 2,6-bis(8′-quinolinyl)pyridine (**bqp**) are particularly unique because of their planar nature, which results in meridional tridentate coordination. Because of this unique coordination, an effective use of these ligands is to combine them with bidentate auxiliary ligands such as 2,2′-bipyridine (**bpy**), and 1,10-phenanthroline (**phen**) and developing mixed ligand (heteroleptic) complexes.

These mixed ligand terpyridine complexes have been synthesized previously by utilizing various 4d and 5d metal ions such as ruthenium, rhodium, osmium, and iridium13. However, these metals are rare and costly; therefore, more abundant transition metals are desirable. As such, the 3d metal cobalt would be an attractive alternative. Unfortunately, 3d metal complexes are significantly more difficult to isolate because of the high tendency for ligand substitution.

Even though these complexes are difficult to prepare and isolate, research concerning heterolytic complexes is still promising. Complexes of the type [M(**tpy**/**bqp**) $(bpy/phen)X]^{n+}$ (X being a halogen) are valuable. These complexes have mixed ligands which employ either the **tpy** or **bqp** as the tridentate ligand and use an auxiliary bidentate ligand, such as **bpy** or **phen.** The remaining site is occupied by a halide ligand which can be removed in a straightforward manner. This, in essence, leaves a "vacant" site. This vacant octahedral coordination site can then be utilized as a site for catalytic reactions.

1.4 Statement of Purpose

 This thesis describes the synthesis, structural, spin state and electronic properties of two homoleptic bis(2,6-bis(8′-quinolinyl)pyridine) cobalt complexes [Co(*mer*-**bqp**κ³*N*,*N*′,*N*″)2][PF6]2 (**1**) and [Co(*mer*-**bqp**-κ³*N*,*N*′,*N*″)2][Br3]3 (**2**) which differ only in the oxidation state of the central metal. Also described are three heteroleptic species including $[Co(mer-tpy-κ³N,N',N'')$ (phen-κ³N,N')Cl][PF₆]₂ (3), $[Co(mer-tpy-κ³N,N',N'')$ $[Opv - \kappa^3 N$,*N'* $)$ Cl][PF₆]₂ (4), and $[Co(mer-bqp - \kappa^3 N$,*N'*,*N''*)(*phen-* $\kappa^3 N$ *,N'*)Cl][Br₃]₂ (5). Spectroscopic, magnetic and electrochemical properties of the compounds are obtained, and crystal structures of them, are discussed. Coordination of the **bqp** ligand was expected to change the ligand bite angles to near-ideal octahedral symmetries as well as the stability, flexibility, electronic and redox behavior of the resulting complexes. These features of ligand coordination can potentially play a role in the stabilization (or destabilization) of particular spin states, electronic states, or redox states in the resulting complexes, providing valuable information for further developments, in particular for the design of ligands capable of generating mixed-spin states, mixed-valent multi-nuclear compounds or redox mediators in dye-sensitized solar cells.

CHAPTER 2 2. HOMOLEPTIC COMPLEXES 2.1. General remarks

 Cobalt(II) acetate tetrahydrate, Co(CH3COO)2·4H2O, ammonium hexafluorophosphate (NH_4PF_6) and bromine (Br_2) were purchased from Aldrich and used without further purification. The 2,6-bis(8′-quinolinyl)pyridine (**bqp**) ligand was prepared in accordance to a previous literature report¹².

 All solvents for synthesis were of reagent grade and used as received, unless otherwise specified. Anhydrous methanol (CH_3OH) and acetonitrile (CH_3CN) were distilled from Na/benzophenone⁹. For UV–vis spectroscopy and electrochemical studies HPLC grade or reagent grade solvents were used. The reagent grade acetonitrile was first dried over silica gel for a minimum of 24 h. The silica gel was then filtered off and the acetonitrile was distilled over anhydrous calcium hydride¹⁴.

2.2. Physical measurements

 UV/vis spectra were recorded using a Cary 50 UV–vis spectrophotometer with a xenon flashlamp. Room temperature emission spectra were measured on a Cary Eclipse fluorescence spectrophotometer. Low temperature excitation and emission spectra were obtained with a Photon Technologies International QuantaMaster Model C-60 spectrometer equipped with a xenon flash lamp and digital emission photon multiplier tube using a band pathway of 5 nm for excitation and 2 nm for emission. Voltammetry of the complexes was measured using acetonitrile as the solvent and tetra-*n*-butylammonium hexafluorophosphate (TBAP F_6 , 0.1 M) as the supporting electrolyte. The electrolyte was recrystallized in absolute ethanol and dried under vacuum in a desiccator for a minimum of 24 h prior to use¹⁵. Cyclic voltammograms were recorded using a PINE WaveNow potentiostatic analyzer in a three-electrode configuration. A glassy-carbon disk working electrode (3 mm diameter), a non-aqueous Ag+/AgCl wire quasi-reference electrode, and a Pt disk counter electrode were used for all measurements. Recorded potentials were referenced using the ferrocene/ferrocenium couple (vs. SCE) as an internal standard usually added at the conclusion of the experiment¹⁶. ¹H and ¹³C NMR spectra were measured with a Bruker AVANCE 500 high-field superconducting NMR spectrometer. Electrospray ionization (ESI) mass spectra were obtained with an Agilent Time-of-Flight MS G1969A Series 6200 in positive ionization mode using 1 ppm of the complexes in a 50% acetonitrile/water (LC/MS) with 10 µM of acetic acid (ionization agent). Magnetic susceptibility measurements in the solid state were carried out on a Johnson Matthey Mark 1 magnetic susceptibility balance. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA.

2.3. Computational methods

DFT calculations were carried out by using Gaussian 09, revision A.02¹⁷. For Gaussian calculations, Becke's three-parameter hybrid functional with the LYP correlation functional (B3LYP)¹⁸ was used with the Los Alamos effective core potential LANL2DZ19 basis set. Full geometry optimizations were performed using the B3LYP functional18. A double-ζ″ quality basis set consisting of Hay and Wadt's effective core potentials $(LANL2DZ)^{19}$ was employed for the Co(II and III) metal ions, and a

 $6-31G^*$ basis set²⁰ was employed for the rest of the atoms. The relativistic effective core potential (ECP) replaced the inner core electrons of the Co(II and III) metal ions, leaving only the outer core valence electrons $(4s^24p^63d^7and 4s^24p^63d^6$ for Co(II) and Co(III), respectively). A vibrational frequency analysis was carried out in order to confirm the minimum-energy geometries. Molecular orbital (MO) diagrams were constructed for the fully optimized geometries in Gaussian. The Franck–Condon vertical excitation energies and oscillator strengths were obtained with time-dependent DFT $(TD-DFT)^{21}$ as implemented in Gaussian. The acetonitrile solvent influence was treated using conductorlike polarizable continuum model (CPCM)²², as implemented in Gaussian.

2.4. Synthesis of the Homoleptic Compounds *2.4.1. Synthesis of [Co(mer-bqp-κ3N,N′,N″)2](PF6)2*

2,6-Bis(8′-quinolinyl)pyridine (0.05 g, 1.5×10^{-4} mol) was added to an anhydrous

methanol solution (30 mL) containing cobalt(II) acetate tetrahydrate (0.018 g, 7.2 × 10[−]5 mol). Once addition was complete, the reaction was stirred at room temperature for 2 h. Once stirring was complete, an excess of ammonium hexafluorophosphate (1.0 g, 6.1×10^{-3} mol) was added and immediate precipitation was observed. This was followed by the addition of water (distilled, 20 mL). The resulting brown precipitate was filtered, washed with cold water $(3 \times 10 \text{ mL})$ and diethyl ether $(3 \times 10 \text{ mL})$, and dried under vacuum. Yield: 93%. *Anal*. Calc. for C₄₆H₃₀CoF₁₂N₆P₂: C, 54.29; H, 3.17; N, 8.26. Found: C, 53.86; H, 3.15; N, 8.25%. Electronic absorption (CH3CN), *λ*max, nm (*ε*, M[−]1 cm−1): 203 (102374, sh.), 225 (85775), 282 (21152), 306 (19929), 315 (19521), 360 (5522), 460 (1076, br.). ESI MS: *^m*/*z* 363 (parent peak, [M], where M is $[Co(mer-bqp-\kappa^3N, N', N'')_2]^{2+}$.

2.4.2. Synthesis of [Co(mer-bqp-κ3N,N′,N″)2][Br3]3

Bromine (0.100 g, 1.25×10^{-3} mol) was added to a stirred solution of [Co(*mer***bqp**- $\kappa^3 N$, N' , N'')₂][PF₆]₂ (0.068 g, 6.7 × 10⁻⁵ mol) and acetonitrile (20 mL). Once the addition was complete, the reaction was stirred at room temperature for 5 h. The resulting solution was evaporated to dryness under reduced pressure. The resulting dark orange solid was collected, washed with water $(3 \times 10 \text{ mL})$, and dried under vacuum. The yield was quantitative (0.079 g). ¹H NMR (CD₃CN-*d₃*): δ 8.50 (dd, $J = 8.0$ Hz, 2H), 8.45 (t, *J* = 8.0 Hz, 1H), 8.08 (m, 4H), 8.03 (dd, *J* = 4.6 Hz, 2H), 7.92 (dd, *J* = 4.1 Hz, 2H), 7.68 (t, *J* = 8.0 Hz, 2H), 7.42 (dd, *J* = 8.1 Hz, 2H). 13C NMR (CD3CN-*d6*): δ 162.1, 154.5, 143.9, 143.3, 142.5, 133.2, 132.8, 129.7, 128.2, 128.0, 126.8, 124.1. *Anal*. Calc. for C46H30CoBr9N6: C, 43.11; H, 2.21; N, 11.17. Found: C, 42.59; H, 2.18; N, 11.09%. Electronic absorption (CH3CN), *λ*max, nm (*ε*, M[−]1 cm−1): 208 (138612), 218 (131456, sh.), 266 (67709), 330 (28168, sh.), 357 (31095), 380 (19101, sh.), 461 (506, br.), 626 (0.1, br.). ESI MS: ${}^{m}/_{z}$ 242 (parent peak, [M], where M is $[Co(mer-bqp-\kappa^{3}N,N',N'')_{2}]^{3+}$). Note: prior to electrochemical studies an excess of ammonium hexafluorophosphate (1.0 g, 6.1×10^{-3} mol) was added and immediate precipitation was observed. This was followed by the addition of water (distilled, 20 mL). The resulting orange precipitate was filtered, washed with cold water (3 \times 10 mL) and diethyl ether (3 \times 10 mL), and dried under vacuum.

2.4.3 X-ray crystallography

 Crystals of the complexes suitable for X-ray crystallography were obtained through slow evaporation in acetonitrile. Intensity data for a brown crystal of [Co(*mer*bqp- $\kappa^3 N$,*N'*,*N''*)₂][PF₆]₂ and a dark orange crystal of [Co(*mer*-bqp- $\kappa^3 N$,*N'*,*N''*)₂][Br₃]₃ were measured at 100 K with a Bruker APEX-II CCD diffractometer fitted with graphitemonochromated Mo K α radiation (0.71073 Å). The data were collected to a maximum 2*θ* value of 22.3° and processed using the Bruker software. Both structures were solved by direct methods and expanded using standard Fourier routines in the SHELX-97 software package²³. All hydrogen atoms were placed in idealized positions, and all non-

Scheme 1. Synthetic routes for *mer,mer*-[Co(bqp- $\kappa^3 N$, N', N''₂)²⁺ (1) and *mer,mer*-[Co(bqp-κ³ *N,N′,N″*)2] 3+ (**2**) .

hydrogen atoms were refined anisotropically.

2.5. Results and Discussion For Homoleptic Cobalt Complexes *2.5.1 Ligand Synthesis*

The 2,6-bis(8′-quinolinyl)pyridine (**bqp**) ligand was prepared by modification to

the route first described by Hammarström et al.¹² using Suzuki cross-coupling reaction

conditions following the procedures developed by Buchwald and coworkers²⁴. For the Suzuki cross-coupling reaction, a catalytic system including palladium(0)

Figure 2. Thermal ellipsoid view of *mer,mer*-[Co(bqp k^3 *N*,*N'*,*N''*₂]³⁺ (**2**) (50% probability, 100 K; H atoms omitted). Both crystallographic units shows as 2A and 2B respectively.

bis(dibenzylideneacetone) (Pd(dba)2) and 2-dicyclohexylphosphino-2′,6′-

dimethoxybiphenyl (P′) was implemented, which recently has been effective in coupling heterocyclic substrates^{25,26}. Reacting quinoline-8-boronic acid and 2,6-dibromopyridine with 1 mol% of Pd(dba)₂ and 2 mol% of P' in toluene at 110 °C gave **bqp** in 80% isolated yield ([Scheme 1\)](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22f0040).

Figure 1. Thermal ellipsoid view of *mer,mer*-[Co(bqp- $\kappa^3 N$, N' , N'')₂]²⁺ (1) (50% probability, 100 K; H atoms omitted).

 Syntheses of the complexes were prepared in analogy to a previous literature report by Constable et al.26. The homoleptic complex **1** was obtained by stirring a 1:2 mixture of Co(OAc)2·4H2O and the desired **bqp** ligand in deoxygenated, anhydrous methanol. The crude product was precipitated by addition of aqueous NH_4PF_6 . The resulting brown precipitate was filtered, washed with cold water and diethyl ether. This one pot approach proved to be a very convenient, high-yielding (>93%) route for the preparation of **1**.

 Oxidation of **1** was performed by adding Br2 to a stirred solution of **1** and CH3CN. The reaction was stirred at room temperature and the resulting solution was evaporated to dryness under a reduced pressure. The resulting dark orange solid **2** was collected, washed with water, and dried under vacuum. The yield was quantitative. The ${}^{1}H$ and ${}^{13}C$ NMR spectra of complex **2** were assigned by careful examination of the integration and splitting patterns, as well as by comparison to similar $Co(II)$ -terpyridine derivatives^{5c} and Ru(II)-**bqp**12 complexes.

2.5.1 X-ray crystal structure analysis

Crystals of $[Co(mer-bqp-κ³N,N′',N″')₂][PF₆]₂ (1) and $[Co(mer-bqp-κ³N,N′',N″')₂]$$ [Br3]3 (**2**) were grown by slow evaporation in acetonitrile. Structural analyses for **1** and **2** reveals a twisted, near-octahedral arrangement relative to the cobalt center. The 2,6-bis(8′-quinolinyl)pyridine ligands are coordinated in a tridentate fashion and are meridionally arranged about the cobalt core with resultant **bqp** ligand coordination planes lying perpendicular to each other. No evidence for facial isomers was found. This stands in contrast to previous reports where coordination of **bqp** to a ruthenium(II) core produced both facial and meridional isomers¹². It stands to reason, the cobalt core allows

$77 - 17$			
$Co1-N1$	2.000(3)	$Co1-N4$	2.182(3)
$Co1-N2$	1.936(3)	$Co1-N5$	1.963(3)
$Co1-N3$	2.011(3)	$Co1-N6$	2.187(3)
$N2$ – $Co1-N1$	89.75 (11)	$N5-C01-N4$	87.77(12)
$N2$ –Co 1 –N3	90.25(11)	$N5-Co1-N6$	87.61 (13)

Table 1. Selected bond lengths [Å] and angles [^o] for *mer,mer***-[Co(bqp-** κ **³***N,N',N ″)***)2]2+ [1].**

the **bqp** ligand to optimally orientate upon coordination resulting in the meridional arrangement.

The X-ray crystal structure for the dication of $[Co(mer-bqp-\kappa^3N,N',N'')\n]$][PF₆]₂ is shown in [\(Fig. 1\)](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22f0005), with selected bonds lengths and angles given in [Table 1.](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22t0005) The **bqp** ligands occupy different environments around the Co(II) core. As a result, two complementary dihedral angles of approximately 39° and 41° (for one **bqp** ligand) and 28° and 44° (for the second **bqp** ligand) exist between the quinolines (Qn) and central pyridine (Py) ring systems. All N–Co–N intraligand angles are near 90°. The bite angles between the ligands are 178° and 175°, respectively, which are indicative of the nonequivalent coordination environment around the Co(II) metal. As has been noted for complexes with tridentate terpyridine ligands of this kind with first row metal atoms²⁷, there is considerable tetragonal compression: the $Co-N_{Py}$ bond length being on average ~1.946 Å, which is shorter than the Co–N_{Qn} bond lengths by . As a result, the point group symmetry of **1** is lowered to pseudo *D*4h.

In contrast, the high-spin case for a tetragonally compressed $d⁷$ metal center of D_{4h} symmetry $(b_{2g}^2 \text{ eg}^3b_{1g}^1 a_{1g}^1)$ should only experience weak Jahn–Teller distortion while the ligand strain of the tridentate ligand should still be active²⁸. As a result, the

2A			
$Co1-N1$	1.956(2)	$Co1-N4$	1.964(2)
$Co1-N2$	1.947(2)	$Co1-N5$	1.946(2)
$Co1-N3$	1.964(2)	$Co1-N6$	1.965(2)
$N2$ – $Co1$ – $N1$	90.82(9)	$N5-Co1-N4$	90.74(9)
$N2$ -Co1-N3	90.77(9)	$N5-Co1-N6$	90.60(9)
$N1-Co1-N3$	178.38(9)	$N4$ -Co1-N6	178.65(9)
$N2$ – $Co1$ – $N4$	89.27 (9)	$N5-Co1-N3$	90.60(9)
$N2$ –Co 1 –N6	89.39(9)	$N5-Co1-N1$	88.89 (9)
$N2$ – $Co1$ – $N5$	179.71(10)	$N3$ –Co 1 –N4	92.84(9)
$N1-Co1-N4$	86.86 (9)	$N3-Co1-N6$	87.05(9)
$N1-Co1-N6$	93.29(9)		
N2-C10-C8-C9	35.6(4)	N5-C33-C31-C32	36.1(4)
N2-C14-C15-C20	34.9(4)	N5-C37-C38-C43	35.1(4)

Table 2. Selected bond lengths [Å] and angles [º] for *mer,mer***-[Co(bqp-³***N,N′,N ″***))2]3+ [2].**

high-spin state for the coordination octahedron is much less distorted than in the low-spin state28,29. The structural data obtained for **1** suggests a major contribution of low-spin species; however, contributions from high-spin species can not be ruled out solely on this data.

 The X-ray crystal structure for the trication of [Co(*mer*-**bqp**-κ³*N*,*N*′,*N*″)2][Br3]3 is shown in [\(Fig. 2](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22f0010)), with selected bond lengths and angles given in [Table 2.](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22t0010) Structure analysis of **2** reveals that two crystallographically independent (2A and 2B, [Fig. 2](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22f0010)) but chemically equivalent units compose the asymmetric unit. In contrast to complex **1**, the coordination environment proximate to the Co(III)-**bqp** ligand core remains nearequivalent. As a result, for 2A and 2B one set of complementary dihedral angles of approximately 36° and 35° represent the quinolines and central pyridine ring systems for each **bqp** ligand. Likewise, the average resultant bite angle for both 2A and 2B is 179°.

Quinoline N_{Qn}Co^{III} and central pyridine ring system N_{Py}Co^{III} bond lengths are 1.960 Å (average) and 1.946 Å, respectively, for both 2A and 2B. Comparatively, tetragonal compression is minimized relative to 1 allowing assignment as a low-spin $d⁶$ complex of *O*h symmetry *viz.* absence magnetic susceptibility for this redox state as discussed further below.

 Of particular significance is how the geometry around the cobalt metal ions in 1 and 2 is closer to octahedral (O_h) geometry than their cobalt bis(terpyridine) analogs as a result of the larger bite angles of the **bqp** ligand (Appendix, Table S1). For [Co(*mer*tpy- $\kappa^3 N$, N' , N'')₂]²⁺, N–Co–N intraligand and bite angles are 85° and 157°, respectively. Those for Co(*mer*-tpy- $\kappa^3 N$, N' , N'')₂]³⁺ are 85° and 157° and 89° and 164°, respectively. The Co–N_{Py} and Co–N_{On} bond lengths are notably shorter: 1.913 Å and 2.083 Å for $[Co(mer-tpy-k^3N,N',N'')_2]^{2+}$ and 1.864 Å and 1.931 Å for $[Co(mer-tpy-k^3N,N',N'')_2]^{3+}$. The terpyridine ligands occupy equivalent coordination environments around the Co(II) metal core, in contrast to that of **1**.

 In comparison to other 3d metals, coordination of **bqp** to manganese generating the 5-coordinate $Mn(mer-bqp-\kappa^3N,N',N'')Cl_2$ has been reported³⁰. Similar to complexes **1** and **2**, the **bqp** ligand is coordinated in a tridentate fashion and is meridionally arranged about the manganese core. In addition, a twisted arrangement about the manganese core exists. However, a non-octahedral arrangement relative to the manganese center stands in contrast to that for complexes **1** and **2**. For the Mn(*mer*-bqpκ³*N*,*N*′,*N*″)Cl2, N–Mn–N intraligand and bite angles are 80° and 160°, respectively. The Mn–N_{Py} and Mn–N_{On} bond lengths are notably longer: 2.186 Å and 2.269 Å (average) for

 $\text{Mn}(mer\text{-}bqp\text{-}k^3N\text{-}N\text{-}N\text{-}N^{\prime})\text{Cl}_2$. As such, these measurements bear a closer resemblance to those for $[Co(mer-typy-k^3N,N',N'')_2]^{n^+}$ ($n = 2, 3$), than those for $[Co(mer-bqp-k^3N,N',N'')_2]^{n^-}$ $^{+}$ (*n* = 2, 3), complexes 1 and 2.

DFT calculations were used to optimize the doublet and singlet ground state geometries for both complexes **1** and **2**, respectively. A complete listing of spin related transitions, Mulliken population analyses, and optimized structural data can be found in the Appendix. In general, DFT results describe experimental data well. The optimized

Figure 3. DFT (B3LYP/LANL2DZ) optimized structures of high-spin *mer,mer*-[Co(bqp- $\kappa^3 N N' N' N''$)²²⁺ (left, Mulliken spin density at Co: 2.659), low-spin [mer, mer -[Co(bqp- $\kappa^3 N, N', N''/2$]²⁺(center, Mulliken spin density at Co: 0.938) and *mer,mer*-[Co(bqp- $\kappa^3 N$, N', N'')₂]³⁺(right) including a solvent model (CH₃CN).

structures for **1** and **2** show the twisted, near-octahedral arrangement relative to the cobalt core center ([Fig. 3](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22f0015) and Appendix). For structure **1**, the energy for the low-spin state is lower than the high-spin state by 25.3 kJ mol[−]1. Two complementary dihedral angles of approximately 42° (for both dihedral angles of one **bqp** ligand) and 37° (for both dihedral angles of the second **bqp** ligand) exist between the quinolines (Qn) and central pyridine (Py) ring systems. These angles differ somewhat relative to the characterized X-ray structure, but show the **bqp** ligands to be non-equivalent for the Co(II) low-spin complex.

The coordination environment proximate to the Co(III)-**bqp** ligand core remains nearequivalent. One dihedral angle of approximately 35° represents the quinolines and central pyridine ring systems for each **bqp** ligand. In contrast to **1**, calculated dihedral angles for **2** show excellent agreement relative to the characterized structure. For [Co(*mer*-**bqp**- $\kappa^3 N$,*N'*,*N''*)₂][PF₆]₂ (1, low-spin), calculated N–Co–N intraligand and bite angles are 89° and 179° and 88° and 176°, respectively. And for $[Co(mer-bqp-\kappa^3N,N',N'')_2][Br_3]_3$ (**2,** low-spin) are 89° and 177°, respectively. These N–Co–N intraligand and bite angles, on average, fall within hundredths of a degree (0.05°) compared to experimental. Calculated Co–N_{Py} and Co–N_{Qn} bond lengths are: 2.006 Å and 2.286 Å and 1.976 Å and 2.062 Å, respectively, for each **bqp** ligand for [Co(*mer*-**bqp**-κ3*N*,*N*′,*N*″)2][PF6]2 (**1,** lowspin), and 1.984 Å and 2.006 Å for $[Co(mer-bqp-\kappa^3N,N^{\prime},N^{\prime\prime})_2][Br_3]_3$ (2, low-spin) indicative of its near-equivalent environment. The calculated bond lengths are marginally larger than experimental by 0.03 Å (average). However, it has to be noted that calculations at this level of theory predict slightly elongated bond lengths underestimating the ligand-induced strain and, as a result, tetragonal compression is underestimated²⁷.

2.5.2. Magnetic susceptibility

 Magnetic susceptibility measurements were carried out at room temperature based on Evan's method³¹. Typically, the effective magnetic moment (μ_{eff}) , assuming only the spin angular momentum, for bis(terpyridine) Cobalt(II) low-spin systems range between 2.0 and 2.7 BM (Bohr Magnetrons), while high-spin systems exhibit between 4.3 and 5.2 BM32. The d7 bis(8′-quinolinyl)pyridine Co(II) complex **1** produced an effective magnetic moment of 3.8 BM. Comparatively, the d⁷ bis(terpyridine) Co(II) complex, complex 3, produced an effective magnetic moment of 3.1 BM $32a$. The μ_{eff} for both complexes are consistent with a predominantly high-spin configuration, however, the μ_{eff} for 1 suggests a higher proportion of the high-spin configuration relative to **3** and is similar in magnitude to other bis(terpyridine) $Co(II)$ high-spin systems^{32a}. This result combined with X-ray crystallography data allows us to assign a tetragonally compressed pseudo- D_{4h} geometry for [1](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22fn1) with the electronic configuration $b_{2g}^2 e_g^3 b_{1g}^1 a_{1g}^1$.

On the other hand, the d^6 bis(8'-quinolinyl)pyridine Co(III) complex, complex 2, produced no observable effective magnetic moment, consistent with a low-spin configuration. This was expected since bis(terpyridine) Cobalt(III), is known to exhibit a stable low-spin diamagnetic behavior at room temperature. This result, combined with Xray crystallography data allows us to assign an octahedral geometry for **2** with the electronic configuration t_{2g} ⁶.

2.5.3 Electronic spectra

 Electronic data were recorded for these complexes in acetonitrile and the prominent peaks are recorded in [Table 3](http://www.sciencedirect.com.ezproxy.library.und.edu/science/article/pii/S0277538714004999%22%20%5Cl%20%22t0015). (Figure 4) shows the electronic spectrum for complexes **1** and **2** plotted as molar absorptivity *versus* wavelength. This allows a direct comparison of transition energies plus a measure of oscillator strengths. For both complexes absorption in the visible spectral region is low. Both complexes exhibit intense absorptions in the 200–380 nm region, which are consistent with $\pi-\pi^*$ ligand centered transitions, as found with prior work for cobalt(III)-terpyridine complexes^{29,33}.

Absorptions between 400–550 nm are consistent with charge transfer transitions, as indicated by their low molar absorptivities and large full width half maxima (∼21 590 and 20 500 cm[−]1 for **1** and **2**, respectively).

 For the complexes investigated in this study, emission is not observed at room temperature or at 77 K. DFT and TD-DFT calculations have been widely used in the

Figure 4. Absorption spectra for *mer,mer*-[Co(bqp- $\kappa^3 N$, N' , N'' ₂]²⁺ (1; black, short dash) and *mer,mer*-[Co(bqp- $\kappa^3 N$, N' , N'' ₂]³⁺ (2; black, solid line) in acetonitrile at room temperature.

study of metal polypyridine complexes because of their utility and relative accuracy in providing insight into the structural and electronic properties of such systems³⁴. DFT and TDDFT have been performed on both complexes 1 and 2 at the B3LYP/6-31 $g^*(C,H,N)$ and LANL2DZ(Co) level of theory with an acetonitrile polarizable continuum solvent model. A complete listing of spin related transitions, Mulliken population analysis, and optimized structural data can be found in the Appendix. As an example, (Figure 5) illustrates the predominant molecular orbitals involved in the observed electronic $\text{trains itions for } [C \text{ o} (mer-b \text{ q p} - \kappa^3 N, N', N'')^2][Br_3]_3$ (2).

Table 3. Electronic absorption maxima.*^a*

Complex	λ_{max} (nm) (×10 ³ (M ⁻¹ cm ⁻¹))
[$Co(mer-bqp-\kappa^3N, N', N'')_2$][PF_6] ₂	203 (102.4), 225 (85.8), 282 (21.2), 306 (19.9) , 315 (19.5) , 364 $(5.1;$ br.), 460 $(1.1;$ br.)
[$Co(mer-bqp-\kappa^3N, N', N'')_2$][Br_3] ₃	204 (102.6), 206 (95.2, sh.), 225 (86.2), 282 (21.2) , 305 (20.0) , 314 (19.6) , 360 $(5.5, sh.)$, 461 (1.1, br.)

a In acetonitrile (CH₃CN) solvent; sh = shoulder, br = broad.

The molecular orbitals shown in Figure 5 provide a convenient visual descriptor for the calculated electronic transitions of [Co(*mer*-bqp-κ³*N*,*N*′,*N*″)2][Br3]3 (**2**) which show a composite of many molecular orbitals with varying contributions. In general, electronic transitions in the region 400–550 nm are best represented as ligand-to-metal and metalto-ligand charge transfers. By way of illustration, the transition calculated at 444.1 nm shows a significant (HOMO−1)-to-LUMO contribution with a percentage contribution to the electronic transition at 49%. From the (HOMO−1), it can be seen that the HOMO−1 character of this transition is predominantly **bqp** based. The LUMO is composed of 56% cobalt and 44% **bqp**. Electronic transitions in the region 200–400 nm are best characterized as ligand-to-ligand. The transition calculated at 298.8 nm shows a significant (HOMO−4)-to-(LUMO+6) contribution with a percentage contribution to the excited state at 40%. Both the (HOMO−4) and (LUMO+6) are ligand based. The

oscillator strengths are indicative of intraligand transitions. These results are consistent

Figure 5. Comparison of molecular orbitals for *mer,mer*-[Co(bqp $k^3 \overline{N}$, N' , N'' ₂]³⁺ (2) derived from DFT calculation at the B3LYP/LAN2DZ level. HOMO is orbital #181. The horizontal bars correspond to the orbitals as numerated on the left axis. The color codes define the sum of the squares of the molecular orbital coefficients of the total atomic contributions from the cobalt and both bqp-ligands as noted. In the case of the metal, the cobalt contributions includes, in addition to d contributions, very small s and p contributions so that the total sums to unity.

with the assignments of the experimental absorption spectrum described earlier. The

electronic transitions by TD-DFT using the B3LYP functional with inclusion of solvent CH3CN described by the conductor-like polarization continuum model (CPCM) correspond very well with the experimental data. As an example, the experimental UV– vis and corresponding simulated UV–vis absorption spectrum (both in acetonitrile solvent) for [Co(*mer*-**bqp**-κ³*N*,*N*′,*N*″)2][Br3]3 (**2**), are shown in (Figure 5). The simulation

Figure 6. Simulated absorption spectrum for *mer,mer*-[Co(bqp k^3 *N*,*N'*,*N''*)₂³⁺ (2), red bars) in acetonitrile and the experimental absorption spectrum measured in acetonitrile (solid line). Top right inset shows the region between 350–800 nm.

was performed using SWizard software³⁰. All calculated transitions are included. Bar heights are proportional to calculated oscillator strengths. A very similar spectrum is obtained (see Figure 6).

2.5.4 Electrochemistry

 Cyclic voltammetry was recorded for both **1** and **2** dissolved in acetonitrile-TBAPF6 media. Representative voltammograms for [Co(*mer*-**bqp**-κ³*N*,*N*′,*N*″)2][PF6]2 (**1**) and [Co(*mer*-bqp-κ³*N*,*N*′,*N*″)2][Br3]3 (**2**) are shown in Figure 7. Complex **1** undergoes two one-electron reversible processes with redox potentials of +0.43 and −0.85 V (vs. SCE). The single reversible oxidation wave observed at $+0.43$ V (vs. SCE) corresponds to a

Figure 7. Cyclic voltammograms for *mer,mer*-[Co(bqp- $\kappa^3 N$, N' , N'')₂]³⁺ (2, $\sum_{i=1}^{\infty}$ and *mer, mer*-[Co(bqp-k³ N, N', N'')₂]²⁺ (1, bottom). Scan rate: 0.10 V s⁻¹. Direction of scan: oxidative-to-reductive. Potential (V vs. SCE).

Co(III/II) based redox couple and which is higher than the corresponding [Co(*mer*-tpy k^3N , N' , N'')₂]²⁺ complex ($E_{1/2}$ = +0.28 V vs. SCE)^{36,33}. Considering the similar p*K*a values for quinoline and pyridine, 4.94 and 5.20, respectively³⁷ this data implies more efficient π back-bonding in 1 relative to $[Co(mer-**tpy-k**³*N*,*N*′',*N*″')₂]²⁺$. In contrast, the Ru(III/II) couple of the $[Ru(mer-bqp-\kappa^3N,N',N'')2]^{2+}$ complex $(E_{1/2} = +0.71$ V versus SCE) is lower than in $\left[\text{Ru}(mer\text{-}typ\cdot\kappa^3 N, N', N'')_{2}\right]^{2+}(E_{1/2} = +0.92 \text{ V} \text{ versus SCE})$ indicating less efficient
π back-bonding^{14b}. The reversible reduction wave observed at -0.85 V (vs. SCE) is assigned as a ligand-based (**bqp**0/[−]) reduction and occurs at a more negative potential than the corresponding $[Co(mer-**typ**- $\kappa^3 N, N', N'')^2]^{2+}$ complex at $E_{1/2} = -0.77$ V versus SCE^{32} .$

For both complexes **1** and **2**, an additional irreversible reduction is observed at potentials −1.56 and −1.58 V (vs. SCE), respectively. These are defined as a ligand localized reduction in accordance with previous literature³⁸ and³⁹. For each of these complexes, sweeping through this second reduction lead to reductive degradation.

CHAPTER 3 3. HETEROLEPTIC COMPLEXES 3.1. General remarks

Cobalt(II) chloride, Co(Cl)₂·6H₂O, ammonium hexafluorophosphate (NH₄PF₆) and iodine (I2) were purchased from Aldrich and used without further purification. The 2,6-bis(8′-quinolinyl)pyridine (**bqp**) ligand was prepared in accordance to a previous

Scheme 3. Synthetic route for $[Co(mer-tpy-k^3N,N^2/N^2)]$ (phen- κ²N,N^{*'*})Cl][PF₆]₂

literature report¹².

 All solvents for synthesis were of reagent grade and used as received, unless otherwise specified, see Section 2.1.

3.2. Physical measurements

See Section 2.2.

Figure 8: Solid-state structure of [Co(*mer*-**tpy** $k^3 N$, N^{\prime} , $N^{\prime\prime}$)(**phen**- $k^2 N$, N^{\prime} , $N^{\prime\prime}$)Cl][PF₆]₂ with the perspective of the **tpy** plane (top) and the **phen** plane (bottom) for emphasis of the near octahedral geometry (hydrogens are omitted for clarity).

3.3. Synthesis of Heteroleptic Complexes *3.3.1 Synthesis of Co(mer-bqp-κ3N,N′,N″)(bpy-κ2N,N′)Cl][PF6]2 (5)*

 The heteroleptic complex (**5**) was obtained by stirring a 1:1:1 mixture of dry CoCl2 (1.6x10-4 mol) the desired **bqp** (1.6x10-4 mol) ligand, and the desired **bpy** (1.6x10-4 mol) ligand in deoxygenated, anhydrous ethanol for 6h (Scheme 2). The crude product was precipitated with Br_2 (1.9x10⁻⁴ mol) and collected via vacuum filtration. This was followed by purification using a neutral alumina column using hexane followed by dichloromethane, then methanol (impure by-product eluted here), and finally acetonitrile to elute the desired heteroleptic product.

The use of $Br₂$ as an oxidant in the latter reaction was done because $I₂$ simply wasn't a strong enough oxidant. The major products obtained by using I_2 were the $Co(bqp)2^{2+}$ and $Co(phen)3^{2+}$ complexes. By using Br₂ a high yield of byproducts was avoided and the heteroleptic complexes were synthesized successfully. 1H NMR (CD3CN-*d3*): *δ* 8.88 (dd, *J* = 6.43 Hz, 1H), 8.76 (dd, *J* = 5.06 Hz, 1H), 8.64 (dd, *J* = 4.41 Hz, 4H), 8.52 (m, 2H), 8.47 (t, *J* = 7.92 Hz, 2H), 8.36 (dd, *J* = 4.78 Hz, 2H), 8.09 (d, *J* = 7.91 Hz, 2H), 8.06 (dd, *J* = 3.45, 2 Hz), 8.03 (dd, *J* = 4.34, 2 Hz), 7.99 (m, 1 Hz), 7.94 (dd, *J* = 4.75, 2 Hz), 7.84 (dd, *J* = 6.43, 1 Hz), 7.70 (dd, *J* = 7.85, 3 Hz), 7.43 (dd, *J* $= 6.79, 3 \text{ Hz}$). ¹³C NMR (CD₃CN- d_6): δ 163.3, 155.8, 150.8, 145.1, 144.6, 143.8, 134.5, 134.0, 130.9, 129.5, 129.2, 128.5, 128.1, 125.3, 124.9, 123.5.

3.3.2 Synthesis of Co(mer-tpy-κ3N,N′,N″)(phen- κ2N,N′)Cl][PF6]2 (3) and Co(mer-tpyκ3N,N′,N″)(bpy-κ2N,N′)Cl][PF6]2 (4)

 The heteroleptic complex (**3**) was obtained by stirring a 1:1:1 mixture of anhydrous $CoCl₂$ (8.0x10⁻⁴ mol) the desired **tpy** ligand (8.0x10⁻⁴ mol), and the desired **phen** ligand (8.0x10-4 mol) in deoxygenated, anhydrous ethanol for 4h (Scheme 3). The crude product was precipitated with I_2 (1.02x10⁻³ mol) and collected via vacuum filtration which was followed by further purification using a neutral alumina column using hexane followed by dichloromethane, then methanol (impure by-product eluted here), and finally acetonitrile to elute the desired heteroleptic product. The acetonitrile fraction was then stirred with excess ammonium hexafluorophosphate to exchange the counterion. This was dried under reduced pressure and produced a 0.298g (0.374 mmol) 56% yield. ¹H NMR (CD3CN-*d3*): *δ* 10.23 (dd, *J* = 5.47 Hz, 1H), 9.32 (dd, *J* = 8.33 Hz, 1H), 8.91 (dd, *J* = 8.98 Hz, 4H), 8.84 (m, 2H), 8.63 (dd, *J* = 8.69 Hz, 2H), 8.69 (dd, *J* = 8.17 Hz, 2H), 8.63 (dd, *J* = 8.31 Hz, 2H), 8.56 (dd, *J* = 7.94 Hz, 2H), 8.52 (d, *J* = 8.86, 2H), 8.31 (d, J = 8.93 Hz, 1H), 8.20 (td, 2H), 7.64 (dd, *J* = 8.18 Hz, 1H), 7.44 (dd, *J* = 5.49 Hz, 3H), 7.34 (ddd, *J* = 7.43, 2H), 7.20 (m, 3H). 13C NMR (CD3CN-*d6*): δ 157.4, 157.1, 156.8, 156.2, 153.7, 153.2, 152.1, 148.4, 146.8, 146.6, 144.9, 144.0, 142.9, 142.8, 141.7, 133.2, 132.6,131.8, 130.7, 129.7, 129.4, 129.3, 128.7, 128.6, 128.1, 127.3, 127.1.

 The heteroleptic complex (**4**) was obtained by stirring a 1:1:1 mixture of anhydrous $CoCl₂ (2.0x10⁻³ mol)$ the desired **tpy** ligand $(2.0x10⁻³ mol)$, and the desired **bpy** ligand (2.0x10-3 mol) in deoxygenated, anhydrous ethanol for 4h (Scheme 3). The crude product was precipitated with I_2 (2.4x10⁻³ mol) and collected via vacuum filtration which was followed by further purification using a neutral alumina column using hexane followed by dichloromethane, then methanol (impure by-product eluted here), and finally

acetonitrile to elute the desired heteroleptic product. The acetonitrile fraction was then stirred with excess ammonium hexafluorophosphate to exchange the counterion. This was dried under reduced pressure and produced a 0.798g (1.03 mmol) 42% yield. Both 1H and ¹³C NMR matched previous data reported by Jackson et al³⁹.

3.4 Characterization of [Co(*mer***-tpy-κ³***N,N′,N″***)(phen- κ²***N,N′)***Cl][PF6]2** *3.4.1. Ligand Synthesis*

See section 2.5.1 for synthesis.

3.4.2. X-Ray Crystallography

 Crystals of **3** and **4** were grown by slow evaporation in acetonitrile. Structural analysis for **4** reveals a perpendicular, near-octahedral arrangement relative to the cobalt center. The 2,2′:6′,2″-terpyridine (**tpy**), and 1,10-phenanthroline (**phen**) are coordinated tridentate and bidentate, respectively, and are meridionally arranged about the cobalt core with resultant **tpy** and **phen** ligands coordination planes lying perpendicular to each other. No evidence for facial isomers was

Table 4: Selected bond lengths and angles for [Co(*mer***-tpy-κ²***N***,***N***′,***N***″)(phen-κ²***N***,***N* $^{\prime}$, $N^{\prime\prime}$)]²⁺

Bond	Length (\AA)	Bond	Length (\AA)
$Co1-N1$	1.946(2)	$Co1-N4$	1.950(2)
$Co1-N2$	1.855(2)	$Co1-N5$	1.953(3)
$Co1-N3$	1.933(2)	$Co1-C11$	2.2439(9)
Bonds	Angle $(°)$	Bonds	Angle $(°)$
$N2$ –Co 1 –N 1	82.9(1)	$N5-Co1-N4$	84.1(1)
$N2$ –Co 1 –N3	83.1(1)	$N5-Co1-C11$	177.89(8)
$N1-Co1-N3$	166.0(1)	$N4$ –Co 1 –Cl 1	93.87(8)
$N2$ –Co 1 –N4	177.2(1)	$N5-Co1-N3$	91.01(1)
$N2$ –Co1–Cl1	88.43 (8)	$N5-C01-N1$	90.1(1)

Table 4. Cont.

found. This stands in contrast to previous reports where coordination of **tpy**/**bpy** to a cobalt(III) core produced both facial and meridional isomers³⁹. It stands to reason, the cobalt(III) core allows the **tpy** ligand to optimally orientate upon coordination resulting in the meridional arrangement, which leaves one of the octahedral coordination sites vacant and can possibly be utilized for catalytic reactions.

\mathcal{F} \mathcal{F}				
Bond	Length (\AA)	Bond	Length (\AA)	
$Co1-N1$	1.937(4)	$Co1-N4$	1.946(4)	
$Co1-N2$	1.850(4)	$Co1-N5$	1.934(5)	
$Co1-N3$	1.958(4)	$Co1-C11$	2.240(2)	
Bonds	Angle $(°)$	Bonds	Angle (°)	
$N2$ -Co1-N1	82.8(2)	$N5-Co1-N4$	82.8(2)	
$N2$ – $Co1$ – $N3$	82.6(2)	$N5-Co1-C11$	177.3(1)	
$N1-Co1-N3$	165.3(2)	$N4$ – $Co1$ – $Cl1$	94.5(1)	
$N2$ –Col–N4	175.8(2)	$N5-Co1-N3$	88.7(2)	
$N2$ –Col–Cl1	89.3(1)	$N5-C01-N1$	92.6(2)	
$N2$ –Co 1 –N5	93.4 (2)	$N3$ –Co 1 –N4	95.6(2)	
$N1-Co1-N4$	99.0(2)	$N3-Co1-C11$	91.6(1)	
$N1-Co1-C11$	87.8(1)			

Table 5: Selected bond lengths and angles for $[Co(mer-tpy-\kappa^2N, N', N'')$ **(bpy-** κ^2N, N **)** (N'') ²⁺

 The X-Ray crystal structure for the dication of **3** is show in Figure 8, with selected bond angles and lengths given in Table 3. The **tpy** ligand occupies a planar meridional chelation around the Co(III) core, which leaves the chlorido ligand pointing linearly away from the cobalt(III) core to reduce steric hindrance. The bite angles for the **tpy** and **phen** ligands are 166.0◦ and 84.1◦ respectively. Similarly to [Co(*mer*-**bpy**-κ³*N*,*N′*,*N″*)3]2+ 40 the **phen** complexes show a small increase in Co-N bond lengths, being on average 0.0115Å larger for the **phen** ligand than the **bpy** ligand (Table 4).

3.4.3. NMR Spectroscopy

 Both [Co(*mer*-**tpy**-κ²*N*,*N*′,*N*″)(**phen**-κ²*N*,*N*′,*N*″)Cl][PF6]2 (**3**)and [Co(*mer*-**tpy**κ²*N*,*N*′,*N*″)(**bpy**-κ²*N*,*N*′,*N*″)Cl][PF6]2 (**4**) complexes can exist in three isomeric forms *mer,*

Figure 9: [Co(*mer*-tpy-κ³*N,N',N''*)(phen- κ²*N,N'*)Cl][PF₆]₂

sym-fac, or *unsym-fac*. X-ray analysis shows our structure to be the *mer* isomer. NMR data for 4 has been assigned³⁹. As for complex 3 a plane of symmetry exists, thus for the 27 carbon atoms in the molecule, the number of peaks expected in the 1D 13C NMR spectrum should be 21(5 x 2 (C-H)) and (9 x 1 (C-H)), and (8 x 1 (C)). The ¹³C NMR shows that there are 21 resonances, five of these peaks are double the height of the others.

The missing peaks are thought to be the quaternary carbons found in this complex. This data is consistent with previous similar complexes indicating that it is the *mer* isomer.

Figure 10: Spectra of $[Co(mer-tpy-k^3N,N',N'')$ (phen- κ^2N,N')Cl²⁺. Top ¹³C NMR Spectrum. Bottom ¹H NMR Spectrum.

This *mer* symmetry is also supported by the 1H NMR spectrum. Fourteen C-H resonances are expected and observed; five of intensity of two and nine of intensity one, with the

Figure 12: Spectra of $[Co(mer-bqp-k^3N,N',N'')$ (bpy- κ^2N,N')Cl][Br₃]₂. Top ¹³C NMR Spectrum. Bottom ¹H NMR Spectrum.

outer aromatic signals appearing as doublets and the inner as triplets. The four groups of **tpy** and **phen** are defined by the 1H NMR spectra (Figure 9/10) . The resonances at 7.20, 7.34, 7.44, and 7.64 ppm represent a, b, c, and d; 8.52, 8.56, 8.63, and 8.69 ppm represent h, g, f, and e. The resonances of 8.20, 8.31, 8.84,8.91, 9.32, and 10.23 ppm have been identified and are represented as such n, m, k, l, j, and i respectively. The i and j hydrogen peaks are further downfield due the ligand bite angle which provides a close proximity to the chlorine ligand off of the cobalt, this data is similar and supported by previous Co(*mer*-**tpy**-κ³*N,N',N''*)(**bpy**-κ²*N,N'*)Cl][PF₆]₂ research³⁹. The carbon peaks for this

Figure 11: Marked [Co(*mer-*bqp-κ³ *N,N′,N″*)(bpy- κ² *N,N′*)Cl][Br3]2

complex are again easily identified. The resonances at 132.56, 133.18, 146.82, and 148.39 ppm represent C₁₇, C₂₃, C₁₈, and C₂₂; the resonances at 128.14, 128.59, 131.82, 143.99, 146.57, 153.20, and 156.78 ppm represent C4, C6, C7, C8, C5, C20, and C9; the resonances at 128.69, 129.36, 129.42, 129.69, 141.70, 144.93, 152.09, 156.17, 157.11, and 157.42 ppm correspond to C_{15} , C_{19} , C_{21} , C_{25} , C_{16} , C_{24} , C_{3} , C_{10} , C_{11} , and C_{2} ; the

resonances at 127.14, 127.30, 130.70, 142.87, 142.89, and 153.66 ppm represent C1, C14, C_{26} , C_{13} , C_{27} , and C_{12} .

The $[Co(mer-bqp-\kappa^3N,N',N'')$ (bpy- κ^2N,N')Cl][Br₃]₂(5) complex can exist in three isomeric forms *mer, sym-fac,* or *unsym-fac*. Previously synthesized complexes have been shown to be the mer isomer through X-ray analysis, as such our structure is also thought to be the *mer* isomer. Unfortunately this complex starts to degrade in solvent almost immediately, therefore the spectra and figure shown are for an immediately purified sample. A plane of symmetry exists, thus for the 33 carbon atoms in the molecule, the number of peaks expected in the 1D¹³C NMR spectrum should be 23(7 x 2 (C-H)) and (9 $x \in (C-H)$. The ¹³C NMR shows that there are 16 resonances, seven of these peaks are double the height of the others. The missing peaks are the quaternary carbons found in this complex. This data is consistent with previous similar complexes indicating that it is the *mer* isomer. This *mer* symmetry is also supported by the 1H NMR spectrum. Fourteen C-H resonances are expected and observed; six of intensity of two and six of intensity one, and two with an intensity of three, with the outer aromatic signals appearing as doublets and the inner as triplets. The four groups of **bqp** and **bpy** are defined by the 1H NMR spectra (Figure 11/12) . The resonances at 7.84, 7.99, 8.36, 8.64, 8.75, and 8.87 ppm represent f, g, a, d, e, and h. The resonances of 7.43, 7.70, 7.95, 8.04, 8.05, and 8.48 ppm have been identified and are represented as such l, k, n, o, i, and b/c overlap respectively. The carbon peaks for this complex are again easily identified. The resonances at 125.29, 129.47, 130.90, 134.04, 134.46, 144.62, and 163.32 ppm represent C21, C17, C16, and C15, C13, C12, and C11; the resonances at 123.49, 124.96, 128.09,

128.54, 129.24, 143.76, 145.12, 150.79, and 155.75 ppm represent C₁, C₂, C₂₂, C₃, C₄, C₇, C_8 , C_9 , and C_{10} .

3.4.4. Electrochemistry

 Cyclic voltammetry was recorded for complexes **3**, **4**, and **5** which were dissolved in an acetonitrile-TBAPF6 media. Representative voltammograms are shown for **3** and **4,** and **5** in Figure 13 and Figure 14, respectively. Figure 13 shows the measurements of four

Figure 13: Selected voltammograms for [Co(*mer-***tpy**-κ3*N*,*N*′,*N*″)(**bpy**- $\kappa^2 N$,*N'*)Cl][PF₆]₂, top, and[Co(*mer*-tpy-κ³*N*,*N'*,*N''*)(phen-κ²*N*,*N'*)Cl] $[PF_6]_2$, bottom, in acetonitrile-TBAPF₆ media.

one-electron reversible processes for complex **3** with the $E_{1/2}$ (ΔE_p) redox potentials at – 1.89(0.02) V, -1.38(0.04) V, and -0.74(0.16) V, and +0.39(0.04) V (*vs.* SCE). These redox processes are assigned as ligand-based (phen^{0/-}), Co^{I/II}, Co^{II/III}, and Co^{III/IV} couples, respectively41,42. The potentials for complexes **3** and **4** are similar, as expected due to the structural (and electronic) similarities. For complex **4**, exchanging the **phen** for **bpy** results in a slight shift in the reduction potentials. These $E_{1/2}$ (ΔE_p) reduction potentials

are observed at –1.91(.04) V, –1.55(.03) V, and –0.67(.03) V (*vs.* SCE) and are assigned as ligand-based ($try^{0/-}$), $Co^{1/II}$, and $Co^{II/III}$ respectively. The oxidation peak at +0.39 V, which is the same potential as that found for complex 3, and is assigned to the $Co^{H/IV}$ couple. As shown in Figure 13, complex **3** lacks the reversibility demonstrated with complex **4**. The larger ΔE_p values of the reductive peaks are indicative of quasiirreversible reactions. This larger ΔE_p value also corresponds to a slower electron transfer

Figure 14: Selected voltammogram for [Co(*mer-***bqp**-κ 3 *N*,*N*′,*N*″) (**bpy**- $\kappa^{2} N$,*N'*)Cl][Br₃]₂ in acetonitrile-TBAPF₆ media.

caused by the large structural change. This implies there is a slight decomposition resulting from the redox reaction not going to completion.

 Nagata *et al*. did similar work with [Co(*mer*-**tpy**-κ³*N,N′,N″*)(**bpy**-κ²*N,N′)*Cl][PF6]2 , although in their case the **tpy** and **bpy** ligand were linked together with poly-methylene chains¹³ with E_{1/2} (ΔE_p) redox potentials at $-1.72(0.07)$ V, $-1.40(0.11)$ V, and $-0.18(0.20)$ V, and +0.39(0.04) V (*vs.* SCE). Because of this poly-methylene chain, the reductive potentials are shifted, compared to **3**, due to the low lying electrons from the ester and carbonyl groups. Comparatively the ΔE_p values are higher, this is due to the the polymethylene linking chain, and as the larger the chain gets the larger the ΔE_p values get. This is indicative of a lesser stability and much slower electron transfers.

 Complex **5**, which has a **bqp** ligand chelated to the cobalt instead of **tpy**, was investigated using cyclic voltammetry. Figure 14 shows a representative voltammogram.

Figure 15: Selected voltammogram for the oxidation and second reduction of $[Co(mer-bqp-κ³N, N', N'')$ (bpy-κ² N,N')Cl][Br₃]₂ in acetonitrile-TBAPF $_6$ media. Top; Oxidation with first reduction, Bottom; Oxidation with second reduction.

This voltammogram shows four redox processes for **5** with $E_{1/2}$ (ΔE_p) redox potentials at -1.93 V, -1.50 V, -0.86 V (25.0 mV), and +0.45 V (30.0 mV) (*vs.* SCE). Based on similar structural characteristics, these redox processes are assigned in analogy to complexes **3** and **4** as ligand-based ($bqp^{0/-}$), $Co^{1/11}$, $Co^{11/11}$, and $Co^{11/11}$ couples, respectively^{41,42}. Relative to complexes **3** an **4**, complex **5** shows its oxidation potential at +0.45 V (30.0 mV) which is a $+0.06$ V shift in the oxidation potential. This positive shift can be

ascribed to the different geometry about the cobalt center due to the coordination of the **bqp**. The reduction potentials for complex **5** are similar to complexes **3** and **4** but shifted to more reductive values. As seen in Figure 15, the first reduction at -0.86 V is quasireversible with a small shoulder peak at which is suggestive of decomposition, and subsequent scanning shows that the complex starts to decompose after the second reduction (Figure 14). Compared to complexes **3** and **4** where the **tpy** ligand is rigid, the **bqp** ligand on complex **5** has an extra methylene unit which allows for extra conformation flexibility. This conformation flexibility appears to result in decomposition of complex **5** based on structural similarity to complexes **3** and **4**.

CHAPTER 4 1. CONCLUSION

 Homoleptic, meridionally-coordinated tridentate 2,6-bis(8**'**-quinolinyl)pyridine (**bqp**) cobalt complexes [Co(*mer*-**bqp**-κ³*N*,*N*′,*N*″)2][PF6]2 (**1**) and [Co(*mer*-**bqp**-κ³*N*,*N*′,*N* ″)2][Br3]3 (**2**) have been synthesized and characterized. X-ray diffraction shows that the **bqp** ligand adopts a twisted, near-octahedral arrangement relative to the cobalt center. For cobalt(II), complex **1**, coordination of the **bqp** ligand gives a tetragonally compressed Co-N6 coordination geometry having pseudo D4h symmetry. Coordination of **bqp** to Co(III), complex **2**, produced two crystallographically independent asymmetric units having Oh symmetry. Magnetic susceptibility measurements revealed that **1** produced an effective magnetic moment of 3.8 BM, consistent with a high-spin configuration. Complex **2** revealed no observable magnetic moment, which is consistent with a low-spin configuration. These results combined with X-ray crystallography data have allowed us to assign the electronic configuration as $b_2^2g e_g^3 b_1^1g a_1^1g$ and t_2^6g for complex 1 and 2, respectively. Electronic spectra display intense **π-π*** ligand centered (**bqp**) transitions in the 200–380 nm region and low intensity mixed charge transfer transitions between the 400–550 nm region. The electrochemistry of these compounds has been studied. Cyclic voltammetry measurements have shown that the first oxidation scan for both complex **1** and **2** are reversible with potentials more positive than comparable cobalt-terpyridine complexes. Subsequent reductive sweeps indicate decomposition.

 Similarly heteroleptic, meridionally-coordinated tridentate 2,2';6',2"-terpyridine, (**tpy**) and bidentate 2,2-bipyridine (**bpy**) and 1,10-phenanthroline (**phen**) cobalt chloride complexes [Co(*mer-***tpy**-κ³*N,N′,N″*)(**phen**-κ²*N,N′*)Cl][PF6]2 (**3**), [Co(*mer-***tpy**-κ³*N,N′,N″*) (**bpy**-κ²*N,N′*)Cl][PF6]2 (**4**) have been synthesized and characterized. X-ray diffraction of **3** and **4** show that the ligands adopt similar linear bite angles and bond lengths. The x-ray data also showed that along with a chlorine ligand allows these two (**tpy)** complexes to adopt a octahedral arrangement around the cobalt core. Cyclic voltammetry measurements have shown that the first oxidation scan for both complexes **3** and **4** are reversible with potentials more positive than comparable cobalt-terpyridine complexes.⁴⁰ Additionally **3** and **4** show remarkable stability under these harsh conditions similar to previously synthesized complexes⁴⁰.

 Complex **5** was prepared using a synthetic method as previously discussed in this thesis. The electrochemical data shows similar redox values relative to previous (**tpy**) complexes, where in the first oxidation scan for complex **5** is reversible with a potential more positive than comparable cobalt-terpyridine complexes. Despite numerous attempts the (**bqp**) complex could not be characterized by x-ray or NMR because it appears to decompose readily in solution, which is proven throughout numerous cyclic voltammetric scans.

 In summary, electrochemical data for the homoleptic [Co(*mer*-**bqp**-κ³*N,N′,N″*)2]n+ (where n is 2^+ or 3^+) system suggests that it will provide a platform for applications such as redox mediators in dye-sensitized solar cells (DSSCs) and catalysis. Regarding the stability for complexes [Co(*mer-***tpy**-κ3*N,N′,N″*)(**bpy**-κ2*N,N′*)Cl]2+ (**3**) and [Co(*mer-***tpy**- κ³*N,N′,N″*)(**phen**-κ²*N,N′*)Cl]2+ (**4**), further work will focus on the spectrochemical series development, catalysis, and characterization. Concerning similar $Co³⁺$ complexes incorporating the **bqp** ligand, complex **5**, it appears the conformational flexibility destabilizes ligand coordination to the point of decomposition.

APPENDIX

Supplementary Information: Table of Contents

$[Co(mer-typ-x^3N, N', N'')_2]^{2+}$					
$Co1-N2G$	2.0827 $Co1-N2B$		2.0827		
$Co1-N1E$	1.9131	$Co1-N1$	1.9131		
$Co1-N2E$	2.0827	$Co1-N2$	2.0827		
$N2G-C01-N1E$	79.40	$N1-Co1-N2B$	79.40		
$N2E$ -Co1-N1E	79.40	$N1-Co1-N2$	79.40		
$N2G-Co1-N2E$	158.81	$N2B-Co1-N2$	158.81		
$N1-Co1-N2B$	79.40	$N1-Co1-N2E$	100.6		
$N1-Co1-N2$	79.40	$N1-Co1-N2G$	100.6		
$N1-Co1-N1E$	180.0	$N1E-Co1-N2G$	79.40		
$N1-Co1-N2E$	91.94	$N1E-Co1-N2E$	79.40		
$N1-Co1-N2G$	100.3				
		$[Co(mer-typ-x^3N, N', N'')_2]^{3+}$			
$Co1-N2$	1.9310	$Co1-N5$	1.9360		
$Co1-N1$	1.8639	$Co1-N4$	1.8531		
$Co1-N3$	$Co1-N6$ 1.9260		1.9200		
$N1-Co1-N2$ 81.71		$N4$ –Co 1 –N5	82.42		
$N1-Co1-N3$	82.54	$N4$ –Co 1 –N6	82.05		
$N2$ –Co 1 –N3	164.45	$N5-Co1-N6$	164.45		
$N1-Co1-N5$	98.44	$N4$ –Co 1 –N6	82.05		
$N1-Co1-N6$	97.11	$N4$ –Co 1 –N5	82.42		
$N1-Co1-N4$	178.94	$N5-Co1-N3$	90.79		
$N2-Co2-N4$	97.68	$N5-Co1-N2$	90.36		
$N3-Co2-N4$	98.09				

Table S1. Selected bond length [Å] and angles [º] for [Co(*mer*-tpy $k^3 N$, N' , N'')₂]³⁺ and $[Co(mer-tpy-k^3N, N', N'')₂]$ ³⁺.

$[Co(mer-bqp - \kappa^3 N, N', N'')_2]^{2+}$ (high spin)			$E(UB3LYP) = -2244.39629091$		
$Co1-N1$	2.07659	$Co1-N4$	2.17752		
$Co1-N2$	1.93879	$Co1-N5$	1.95214		
$Co1-N3$	2.07545		2.18147		
N2–Co1–N1	89.230	$N5-Co1-N4$	87.911		
$N2$ –Co 1 –N3	89.359	$N5-Co1-N6$	87.834		
$N1-Co1-N3$	178.574	$N4$ –Co 1 –N6	175.736		
$N2$ –Co1–N4	92.134	$N5-Co1-N3$	90.761		
$N2$ –Co1–N6	92.122	$N5-Co1-N1$	90.651		
N2–Co1–N5	179.876				
N2–C9–C8–C7	37.842	N5-C13-C14-C15	39.995		
N2-C10-C11-C12	37.349	N5-C16-C17-C18	39.372		
$[Co(mer-bqp - \kappa^3 N, N', N'')_2]^{2+}$		$E(UB3LYP) = -2244.39629091$			
(low spin)					
$Co1-N1$	2.28678	$Co1-N4$	2.06268		
$Co1-N2$	2.00604	$Co1-N5$	1.97632		
$Co1-N3$	2.28504	$Co1-N6$	2.06262		
$N2$ –Co 1 –N 1	87.633	$N5-Co1-N4$	89.433		
$N2$ –Co 1 –N3	90.524	$N5-Co1-N6$	89.525		
N1–Co1–N3	174.088	$N4$ –Co1–N6	178.946		
N2–Co1–N4	90.518	$N5-Co1-N3$	92.979		
N2–Co1–N6	90.524	$N5-Co1-N1$	92.931		
N2–Co1–N5	179.936				
N2–C9–C8–C7	42.233	N5-C13-C14-C15	37.108		
N2-C10-C11-C12	41.982	N5-C16-C17-C18	36.970		
$[Co(mer-bqp-\kappa3N,N',N'')2]3+$		$E(B3LYP) = -2244.20766539$			
$Co1-N1$	2.00182	$Co1-N4$	2.00508		
$Co1-N2$	1.98406	Co1–N5	1.98440		
$Co1-N3$	2.00601	$Co1-N6$	2.00514		
$N2$ –Co 1 –N 1	90.322	$N5-Co1-N4$	90.329		
N2–Co1–N3	89.686	N5–Co1–N6	90.328		
$N1-Co1-N3$	179.354	N4–Co1–N6	179.952		
N2–Co1–N4	89.656	$N5-Co1-N3$	89.729		
N2–Co1–N6	89.686				
N2–Co1–N5	179.952	$N5-Co1-N1$ 89.633			
N2–C9–C8–C7	35.167	N5-C13-C14-C15	35.295		
N2-C10-C11-C12	35.360	N5-C16-C17-C18	35.284		

Table S2. Density functional Theory Calculations. Selected bond length [Å] and angles [^o] for $[Co(mer-bqp-\kappa^3N,N',N'')_2]^{2+}$ (low and high spin) and $[Co(mer-bqp-*k*³*N*,*N*′,*N*″)₂]³⁺.$

Table S3-A. Optimized Geometry of $Co(mer-bqp-\kappa^3N,N^{\prime}/N^{\prime\prime})_2]^{2+}$ (1) in the Doublet Ground State with E(B3LYP) = -2244.39629091 au.

	$E_{VER}^{\qquad b}$				
$\#^a$	nm	1000 cm^{-1}	eV	f^{ϵ}	Assignment; $MO# \rightarrow MO#^d$
$\mathbf{1}$	1837.4	5.4	0.67	0.0000	$175 \rightarrow 187\alpha (+49\%) 177 \rightarrow 192\beta (24\%)$ $175 \rightarrow 184\alpha (+9\%)$
$\boldsymbol{2}$	1623.5	6.2	0.76	0.0000	$172 \rightarrow 187\alpha (+37\%) 176 \rightarrow 192\beta(19\%)$ $179 \rightarrow 192\beta(+11\%)$
3	1127.2	8.9	1.10	0.0002	$182 \rightarrow 187\alpha (+64\%) 182 \rightarrow 184\alpha (+17\%)$
$\overline{4}$	1124.5	8.9	1.10	0.0000	$170 \rightarrow 187\alpha (+25\%)$ $171 \rightarrow 192\beta(19\%)$
5	741.5	13.5	1.67	0.0000	$177 \rightarrow 195\beta(+50\%)$
6	670.5	14.9	1.85	0.0001	$176 \rightarrow 195\beta(22\%) 172 \rightarrow 187\alpha(+13\%)$ $179 \rightarrow 195\beta(+12\%)$
7	560.5	17.8	2.21	0.0001	$170 \rightarrow 187\alpha (+22\%) 171 \rightarrow 192\beta (+13\%)$
8	498.8	20.0	2.49	0.0000	$181 \rightarrow 184\alpha (+17\%) 178 \rightarrow 183\alpha (15\%)$ $181 \rightarrow 183\beta(14\%) 180 \rightarrow 183\beta(11\%)$ $178 \rightarrow 182\beta(+11\%)$
9	495.4	20.2	2.50	0.0001	$181 \rightarrow 183\alpha (+21\%) 181 \rightarrow 182\beta(16\%)$ $180 \rightarrow 182\beta(14\%) 178 \rightarrow 184\alpha(11\%)$
10	483.7	20.7	2.56	0.0000	$179 \rightarrow 185\alpha (+14\%) 180 \rightarrow 186\alpha (+11\%)$ $179 \rightarrow 184\beta(11\%) 181 \rightarrow 185\beta(+11\%)$ $180 \rightarrow 185\beta(11\%)$
11	482.6	20.7	2.507	0.0009	$182 \rightarrow 185\alpha (+15\%) 180 \rightarrow 185\alpha (+11\%)$ $180 \rightarrow 184\beta(11\%) 181 \rightarrow 184\beta(+11\%)$ $179 \rightarrow 186\alpha (+10\%)$
12	478.2	20.9	2.59	0.000	$177 \rightarrow 192\beta(+24\%)$ $175 \rightarrow 187\alpha(+21\%)$
13	460.7	21.7	2.69	0.0024	$182 \rightarrow 183\alpha (+62\%)$
14	449.0	22.3	2.76	0.0007	$182 \rightarrow 183\alpha (+22\%) 176 \rightarrow 195\beta (+14\%)$
15	427.1	23.4	2.90	0.0072	$182 \rightarrow 185\alpha (+78\%)$
16	422.4	23.7	2.97	0.0003	$182 \rightarrow 184\alpha (+77\%)$ $182 \rightarrow 187\alpha(16\%)$
17	405.4	24.7	3.06	0.0003	$171 \rightarrow 195\beta (+28\%) 179 \rightarrow 195\beta (+9\%)$
18	399.6	25.0	3.10	0.0000	$182 \rightarrow 186\alpha (+85\%)$
19	372.0	26.9	3.33	0.0000	
$20\,$	370.9	27.0	3.34	0.0100	$180 \rightarrow 182\beta(+17\%)$ $177 \rightarrow 182\beta(+17\%)$ $181 \rightarrow 182\beta(16\%) 181 \rightarrow 183\alpha(+13\%)$
21	368.3	27.2	3.37	0.0788	$181 \rightarrow 182\beta(+49\%)$ $181 \rightarrow 183\alpha(+45\%)$
22	365.1	27.4	3.40	0.0007	$179 \rightarrow 182\beta (+14\%)$

Table S3-B. Calculated doublet excited states of for $[Co(mer-bqp-κ³N,N',N'')₂]²⁺ (1)$ in acetonitrile (CH_3CN) .

α # is the state. ^{*b*}_{VER} is the energy of the vertical transition. *cf* is the oscillator strength. ^{*d*}Assignment; MO# \rightarrow MO# is the occupied and the virtual orbitals that define the transition. The absolute value of the transition coefficient for each transition is given in parentheses.

Table S3-C. Fragment Analysis Based on Mullikan Populations for [Co(mer-bqp-k³N,N',N")2]²⁺ (1) in the Doublet Ground State (Alpha-Spin).^a

Table S3-D. Fragment Analysis Based on Mullikan Populations for [Co(mer-bqp-k³N,N',N',N')2]²⁺ (1) in the Doublet Ground State (Beta-Spin).^a

 $\overline{}$

The other occupancy source is given in parameters $\langle \cdot \rangle$ – occupied, γ – γ matrix λ – λ and λ an adod s j aarm am j rogen, twenty-one Table S4-A. Optimized Geometry of $[Co(mer-bqp-\kappa^3N,N',N'')_2]^{3+}$ (2) in the Singlet Ground State with E(B3LYP) = –2244.20766539 au.

		$\mathbf{E}_\mathrm{VER}{}^b$			
$\#^a$	nm	1000 cm^{-1}	eV	f^{ϵ}	Assignment; $MO# \rightarrow MO#^d$
$\mathbf{1}$	527.4	19.0	2.35	0.0004	$180 \rightarrow 182(+47\%)$ $165 \rightarrow 182(14\%)$ $173 \rightarrow 182(8\%) 162 \rightarrow 182(+8\%)$ $159 \rightarrow 182(6\%) 155 \rightarrow 182(6\%)$ $151 \rightarrow 182(+5\%)$
$\sqrt{2}$	496.2	20.2	2.50	0.0016	$179 \rightarrow 183(+30\%) 160 \rightarrow 183(+18\%)$ $171 \rightarrow 183(+11\%) 161 \rightarrow 182(+9\%)$ $152 \rightarrow 183(+7\%) 169 \rightarrow 183(+6\%)$ $178 \rightarrow 182(+3\%)$
\mathfrak{Z}	492.2	20.3	2.52	0.0000	$179 \rightarrow 182(+40\%)$ $161 \rightarrow 183(+16\%)$ $160 \rightarrow 182(+11\%) 171 \rightarrow 182(+7\%)$ $152 \rightarrow 182(+4\%) 169 \rightarrow 182(+4\%)$ $178 \rightarrow 183(+3\%) 167 \rightarrow 183(+3\%)$ $153 \rightarrow 183(+2\%)$
$\overline{\mathcal{A}}$	488.7	20.5	2.54	0.0000	$181 \rightarrow 182(+99\%)$
5	449.7	22.2	2.76	0.0003	$181 \rightarrow 183(+92\%) 180 \rightarrow 182(+3\%)$
6	444.1	22.5	2.79	0.0020	$180 \rightarrow 182(+49\%) 165 \rightarrow 182(+11\%)$ $173 \rightarrow 182(+9\%) 181 \rightarrow 183(6\%)$ $162 \rightarrow 182(6\%) 151 \rightarrow 182(5\%)$ $155 \rightarrow 182(+5\%) 159 \rightarrow 182(+4\%)$
7	442.0	22.6	2.81	0.0000	$180 \rightarrow 183(+96\%)$
8	414.6	24.1	2.99	0.0053	$178 \rightarrow 182(+87\%) 179 \rightarrow 183(6\%)$ $161 \rightarrow 182(+3\%)$
9	408.9	24.5	3.03	0.0000	$179 \rightarrow 182(+44\%)$ $178 \rightarrow 183(21\%)$ $161 \rightarrow 183(20\%) 167 \rightarrow 183(4\%)$ $153 \rightarrow 183(2\%) 161 \rightarrow 186(2\%)$
10	385.6	25.9	3.22	0.0401	$181 \rightarrow 184(+98\%)$
11	375.6	26.6	3.30	0.0097	$181 \rightarrow 185(+72\%)$ 180->184(24%)
12	373.3	26.8	3.32	0.0001	$178 \rightarrow 183(+67\%) 179 \rightarrow 182(+8\%)$ $161 \rightarrow 183(4\%) 180 \rightarrow 185(3\%)$ $171 \rightarrow 182(3\%) 160 \rightarrow 182(3\%)$ $175 \rightarrow 182(2\%)$
13	370.3	27.0	3.35	0.4478	$180 \rightarrow 184(+73\%) 181 \rightarrow 185(+23\%)$
14	368.2	27.2	3.37	0.0197	$179 \rightarrow 183(+42\%) 161 \rightarrow 182(18\%)$ $176 \rightarrow 182(+9\%) 178 \rightarrow 182(+6\%)$ $167 \rightarrow 182(4\%) 170 \rightarrow 182(+3\%)$ $153 \rightarrow 182(3\%)$
15	366.4	27.3	3.38	0.0000	$177 \rightarrow 182(+99\%)$
16	364.9	27.4	3.40	0.0821	$180 \rightarrow 185(+95\%) 178 \rightarrow 183(+3\%)$
17	363.9	27.5	3.41	0.0109	$176 \rightarrow 182(+89\%) 179 \rightarrow 183(5\%)$ $161 \rightarrow 182(+2\%)$

Table S4-B. Calculated singlet excited states of for $[Co(mer-bqp-κ³N,N',N'')₂]³⁺$ (2) in acetonitrile (CH_3CN) .

 α # is the state. b E_{VER} is the energy of the vertical transition. *cf* is the oscillator strength. ^{*d*}Assignment; MO# \rightarrow MO# is the occupied and the virtual orbitals that define the transition. The absolute value of the transition coefficient for each transition is given in parentheses.

		E_{VER}^b			
$\#^a$	nm	1000 cm^{-1}	eV	f^{ϵ}	Assignment; $MO# \rightarrow MO#^d$
$\mathbf{1}$	793.1	12.6	1.56	0.0000	$165 \rightarrow 182(26\%)$
$\sqrt{2}$	751.2	13.3	1.65	0.0000	$160 \rightarrow 182(+25\%)$ 179 $\rightarrow 182(+19\%)$
3	732.4	13.7	1.69	0.0000	$160 \rightarrow 183(+22\%)$
$\overline{4}$	599.8	16.7	2.07	0.0000	$161 \rightarrow 182(44\%)$
5	587.0	17.0	2.11	0.0000	$161 \rightarrow 183(+48\%)$
6	565.4	17.7	2.19	0.0000	$165 \rightarrow 183(21\%)$
7	508.7	19.7	2.44	0.0000	$181 \rightarrow 182(+52\%)$
8	507.2	19.7	2.44	0.0000	$181 \rightarrow 183(+19\%)$
9	503.9	19.8	2.46	0.0000	$181 \rightarrow 184(+36\%) 180 \rightarrow 185(+31\%)$
10	503.5	19.9	2.46	0.0000	$180 \rightarrow 184(+34\%) 181 \rightarrow 185(+32\%)$

Table S3-C. Calculated triplet excited states of for $[Co(mer-bqp-\kappa^3N,N',N'')_2]^{3+}$ (2) in acetonitrile (CH₃CN).

 α # is the state. b E_{VER} is the energy of the vertical transition. *cf* is the oscillator strength. ^{*d*}Assignment; MO# \rightarrow MO# is the occupied and the virtual orbitals that define the transition. The absolute value of the transition coefficient for each transition is given in parentheses.

	molecular orbital E, eX					-16.25 -15.77 -15.01 -14.91 -14.91 -14.91					-14.52	-14.03														គ្រូ ខេត្ត គូ គូ គូ គូ គូ គូ ខេត្ត គូ គូ គូ គូ គូ គូ គូ គូ ខេត្ត ខេត្ត ខេត្ត 8.57
	Ù.	$\frac{8}{2}$	000	0.04	$\overline{0.00}$		$\frac{0.04}{0.00}$		0.0000				0.00		$\tilde{8}$											0.00
	p	$\frac{6}{2}$	$\frac{6}{2}$	000	0.04		$\begin{array}{c} 0.00 \\ 0.05 \end{array}$		ទី ទី						PO.04	≈ 0	$\frac{6}{2}$	$\frac{6}{14}$			0.3000					0.13
	P	$\tilde{\mathbb{R}}$	$\frac{6}{2}$	$\frac{6}{2}$	0.03		0.00 0.06		0.03 0.01	$rac{0.00}{0.00}$		$\frac{6}{2}$	0.17		$\frac{6}{2}$	$\frac{0}{2}$	$\frac{6}{2}$		0.21 0.00	0.33				0.14		0.14
	Þ	600	500	$\frac{0}{2}$	000	$\overline{00}$	60.09		$\frac{0.06}{0.00}$	0.05	$\overline{6}$	0.00	0.00	HOMO-LUMO gap: 3.199	0.00	000	0.02	6.44						000	$\frac{1}{2}$	
δ	ę,	0.00	0.03	ဋ	ິ	0.03	$\frac{1}{2}$	$\frac{0}{2}$	$\frac{8}{2}$	$\frac{0}{2}$	$\tilde{\mathbf{5}}$	$\frac{6}{2}$	0.02		$rac{1}{2}$	13.97	$\frac{6}{2}$	$\frac{6}{2}$	īΣ	3.01	$\frac{6}{2}$		$\frac{0.00}{0.04}$	នី ដ		$\frac{8}{6}$
	ę	0.43	2.87	2.08	0.00		0.01 0.06				$\frac{0.10}{2.71}$	Ξ	0.00	aX (25803.7 cm ⁻¹	99.0	0.01	0.30	$\overline{0.01}$	0.26		010				80.0	
	ę	0.40	$\overline{3}$	2.64	$\frac{6}{2}$	0.02	0.04	$\frac{6}{2}$	$\overline{00}$	60.09	$(1 + 1)$	970	$\frac{0}{2}$		8110	850	020	$\frac{6}{2}$	600	10.01	60'0	$_{\rm 50}$	Ξ	$\frac{6}{2}$	0.13	
	\mathbf{d}^2 , \mathbf{d}	$\overline{5}$	3.69	$\frac{6}{2}$	000			$\frac{1}{2}$	000		0.25	$\overline{00}$	$\frac{8}{2}$		970	6.65	66.0	0.03			$\frac{0.07}{0.23}$					
	ę		e e	Ξ	$\frac{6}{2}$		$\frac{0.07}{0.00}$				$\frac{0.00}{0.03}$	80.0	$\overline{0.01}$			13.83 39.13	$\frac{6}{2}$								80.0	
$\log_{10} \#1$	معملا	48.93		45.66	sr:15	49.91 49.85		49.94				49.15 49.17 50.25														0000
$\log \frac{\#2^b}{\#2^b}$	يمملك	10.04	45.60	48.76	48.73	16'61	49.77	49.93	50.03	50.32	48.36	50.09 49.33				22.17 22.66	40.24 40.36 40.36 40.36 40.36 40.36 40.36									49.49

Table S4-D. Fragment Analysis Based on Mullikan Populations for [Co(mer-bqp-k³N,N',N'')₂¹⁺ (2) in the Singlet Ground State.^a

Figure S2. Cobalt-Bis(8′-quinolinyl)pyridine (bqp) Configurations.

Figure S3. Overlay of the x-ray structures at 100 and 290 K for the dication of [Co(*mer*-bqpκ3 *N,N′,N″*))2].

REFERENCES:

- [1] Morgan, G.T., Burstall, F.H, *J. Chem. Soc.*, **1932**, 20-30.
- [2] Morgan, G.T., Burstall, F.H, *J. Chem. Soc.*, **1937**, 1649-1655.
- [3] Gratzel, M., *J. Photochem. Photobiol. C*, **2003**, 145-153.
- [4] Eryazici, I., Moorefield, C.N., Newkome, G.R., *Chem. Rev.*, **2008**, 1834-1895.
- [5] a) V. Balzani, J. R. Schoonover and F. Scandola, in *Progress in Inorganic Chemistry: Molecular Level Artificial Photosynthetic Materials*, ed. G. J. Meyer, John Wiley & Sons, Inc., New York, **1997**, vol. 44, ch. 1, pp. 1–96; b) V. Balzani and F. Scandola, in Supramolecular Photochemistry, ed., T. J. Kemp, Ellis Horwood, London, **1991**, ch. 2–12, vol. V, pp. 25–394; c) U. S. Schubert, A. Winter and G. R. Newkome, in *Terpyridine-based Materials: Catalytic, Optoelectronic, and Life Sciences Applications*, Wiley-VCH Verlag GmbH & Co., Weinheim, **2011**, ch. 2–4, pp. 13– 197; d) L. Flamigni, F. Barigellentti, N. Armaroli, J.-P. Collin, I. M. Dixon, J.-P. Sauvage, J. A. G. Williams, *Coord. Chem. Rev.* **1999**, *190–192*, 671–682. e) C. Herrero, B. Lassalle-Kaiser, W. Leibl, A. W. Rutherford, A. Aukauloo, *Coord. Chem. Rev.* **2008**, *252*, 456–468. f) M. H. V. Huynh, T. J. Meyer, *Chem. Rev.* **2007**, *107*, 5004–5064. g) K. Sakai, H. Ozawa, *Coord. Chem. Rev.* **2007**, *251*, 2753–2766. h) G. F. Swiegers, T. J. Malefetse, *Chem. Rev.* **2000**, *100*, 3483–3538. i) E. Baranoff, J.-P. Collin, L. Flamigni, J.-P. Sauvage, *Chem. Soc. Rev.* **2004**, *33*, 147–155.
- [6] a) U. S. Schubert, A. Winter and G. R. Newkome in *Terpyridine-based Materials: Catalytic, Optoelectronic, and Life Sciences Applications*, Wiley-VCH Verlag GmbH & Co., Weinheim, **2011**, ch. 2–4, pp. 13–197.
- [7] Fallahpour R.A, *Synthesis*, **2003**, 155-184.
- [8] a) M. Beley, C.-A. Bignozzi, G. Kirsch, M. Alebbi and J.-C. Raboin, *Inorg. Chim. Acta* 2001, **318**, 197–200. b) M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, *J. Am. Chem. Soc.* **2001**, *123*, 1613–1624. c) N. D. McDaniel, F. J. Coughlin, L. L. Tinker, and S. Bernhand, *J. Am. Chem. Soc.* **2008**, *130*, 210–217. d) H.-W. Tseng, R. Zong, J. Muckerman and R. P. Thummel, *Inorg. Chem.* **2008**, *47*, 11763–11773.
- [9] a) J. J. Concepcion, J. W. Jurass, J. L. Templeton and T. J. Meyer, *J. Am. Chem. Soc.* **2008**, *130*, 16462–16463. b) S. Masaoka and K. Sakai, *Chem. Lett.* **2009**, *38*, 182– 183. c) T. Wada, K. Tsuge and K. Tanaka, *Inorg. Chem.* **2001**, *40*, 329–337. d) P.-W. Du, J. Schneider, P. Jarosz, J.-P. and R. Eisenberg, J. Am. Chem. Soc. **2006**, *128*, 7726–7727. e) M. Yagi and K. Narita, *J. Am. Chem. Soc.* **2004**, *126*, 8084–8085.
- [10] a) C. Förster, K. Mack, L. M. Carrella, V. Ksenofontov, E. Rentschler and K. Heinze, *Polyhedron*, **2013**, *52*, 576–581. b) Y. Komatsu, K. Kato, Y. Yamamoto, H. Kamihata, Y.H. Lee, A. Fuyuhiro, S. Kawata and S. Hayami, *Eur. J. Inorg. Chem.* **2012**, *16*, 2769–2775. c) S. Hayami, D. Urakami, Y. Kojima, H. Yoshizaki, Y. Yamamoto, K. Kato, A. Fuyuhiro, S. Kawata and K. Inoue, *Inorg. Chem.* **2010**, *49*, 1428–1432. d) P. Nielsen, H. Toftlund, A. D. Bond, J. F. Boas, J. R. Pilbrow, G. R.

Hanson, C. Noble, M. J. Riley, S. M. Neville, B. Moubaraki, and K. S. Murray, *Inorg. Chem.* **2009**, *48*, 7033–7047. e) S. Hayami, K. Murata, D. Urakami, Y. Kojima, M. Akita and K. Inoue, *Chem. Commun.* **2008**, *44*, 6510–6512. f) A. Galet, A. B. Gaspar, M. C. Muñoz and J. A. Real, *Inorg. Chem.* **2006**, *45*, 4413–4322. g) S. Hayami, R. Moriyama, Y. Shigeyoshi, R. Kawajiri, T. Mitani, M. Akita, K. Inoue and Y. Maeda, *Inorg. Chem.* **2005**, *44*, 7295–7297. h) S. Hayami, Y. Shigeyoshi, M. Akita, K. Inoue, K. Kato, K. Osaka, M. Takata, R. Kawajiri, T. Mitani and Y. Maeda, *Angew. Chem., Int. Ed.* **2005**, *44*, 4899–4903. i) A. B. Gaspar, M. C. Muñoz, V. Niel and J. A. Real, *Inorg. Chem.* **2001**, *40*, 9–10.

- [11] a) A. Breivogel, C. Förster and K. Heinze, *Inorg. Chem.* **2010**, *49*, 7052–7056. b) K. Mack, A. Wunsche von Leupoldt, C. Förster, M. Ezhevskaya, D. Hinderberger, K. W. Klinkhammer and K. Heinze, *Inorg. Chem.* **2012**, *51*, 7851–7858. c) L. Hammarström and O. Johansson, *Coord. Chem. Rev.* **2010**, *254*, 2546–2559.
- [12] Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson and L. Hammarström, *J. Am. Chem. Soc.* **2008**, *130*, 15533–15542.
- [13] T. Nagata and H. Kon, *Inorg. Chem.*, **2009**, *48*, 8593–8602.
- [14] W. L. F. Armarego and C. L. L. Chai, in *Purification of Laboratory Chemicals*, Butterworth-Heinemann, Burlington, 6th edn, **2009**, ch. 4, pp. 91–92.
- [15] N. G. Tsierkezos, *J. Solut. Chem.* **2007**, *36*, 289–302.
- [16] N. G. Connelly and W. E. Geiger, *Chem. Rev.* **1996**, *96*, 877–922.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09, (Revision A.02), Gaussian, Inc., Wallingford, CT, **2009**.
- [18] a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter* **1988**, *37*, 785– 789. b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648–5642.
- [19] a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 270–283. b) P.J. Hay and W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 284–298. c) P. J. Hay and W. R. Wadt, J. Chem. Phys. **1985**, *82*, 299–310.
- [20] a) P. C. Hariharan and J. A. Pople, *Mol. Phys.* **1974**, *27*, 209–214. b) C. Jamorski, M. E. Casida and D. R. Salahub, *J. Chem. Phys.* **1996**, *104*, 5134–5147. c) M. Petersilka, U. J. Grossmann and E. K. U. Gross, *Phys. Rev. Lett.* **1996**, *76*, 1212–1215. d) R.

Bauernschmitt, R. Ahlrichs, F. H. Hennrich and M. M. Kappes, *J. Am. Chem. Soc.* **1998**, *120*, 5052–5059. e) M. E. Casida, *J. Chem. Phys.* **1998**, *108*, 4439–4449.

- [21] R. E. Stratmann, G. E. Scuseria and M. J. Frisch, *J. Chem. Phys.* **1998**, *109*, 8218– 8224.
- [22] M. Cossi, N. Rega, G. Scalmani and V. J. Barone, *Comput. Chem.* **2003**, *24*, 669– 681.
- [23] G. M. Sheldrick, SHELXL-97, *Program for the Refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, **997**.
- [24] T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, *J. Am. Chem. Soc.* **2005**, *127*, 4685–4696.
- [25] M. Jäger, L. Eriksson, J. Bergquist and O. Johansson, *J. Org. Chem.* **2007**, *72*, 10227–10230.
- [26] E. C. Constable, T. Kulke, M. Neuburger and M. Zehnder, *New J. Chem.*, **1997**, *21*, 1091–1102.
- [27] A. T. Baker, D. C. Craig and P. Singh, *Aust. J. Chem.*, **1991**, *44*, 1659–1667.
- [28] P. E. Figgins and D. H. Busch, *J. Phys. Chem.*, **1961**, *65*, 2236–2240.
- [29] a) S.Hayami, Y. Komatsu, T. Shimizu, H. Kamihata and Y. H. Lee, *Coord. Chem. Rev.* **2011**, *255*, 1981–1990. b) I. Krivokapic M. Zerara, M. L. Daku A. Vargas, C. Enachescu, C. Ambrus, P. Tregenna-Piggott, N. Amstutz, E. Krausz and A. Hauser, *Coord. Chem. Rev.* **2007**, *251*, 364–378.
- [30] G. Berggren, P. Huang, L. Eriksson, M.F. Anderlund, *Appl. Magn. Reson*., **2009**, 9-24.
- [31] (a) E.W. Schubert, *J. Chem. Educ.*, **1992**, 62. (b) D.F. Evans, *J. Chem. Soc.,* **1959**, 2003-2005.
- [32] (a) J. Chambers, B. Eaves, D. Parker, R. Claxton, P.S. Ray, S.J. Slattery, *Inorg. Chim. Acta*, **2006**, 2400-2406. (b)B.N. Figgis, Ligand field theory, in: G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, vol. 1, Pergamon Press, Oxford, 1987 (Chapter 6).
- [33] a) S. Arounaguiri, D. Easwaramoorathy, A. Ashokkumar, A. Dattagupta, B. G. Maiya, *Proc. Indian Acad. Sci. (Chem. Sci.)* **2000**, *112*, 1–17. b) A. J. Bard, *J. Am. Chem. Soc.* **1989**, *111*, 8901–8911.
- [34] a) B. A. Frenzel, J. E. Schumaker, D. R. Black and S. E. Hightower, *Dalton Trans.* **2013**, *42*, 12440–12451. b) B. A. Frenzel, E. M. Nagel and S. E. Hightower, *Artificial Photosynthesis* **2013**, *1*, 16–23. c) H. C. Zhao, J. P. Harney, Y.-T. Huang, J.- H. Yum, M. K. Nazeeruddin, M. Grätzel, M.-K. Tsia and J. Rochford, *Inorg. Chem.* **2011**, *51*, 1–3. d) A. Cannizzo, A. M. Blanco-Rodríguez, A. E. Nahhas,J. Sebera, S. Zális, A. Vlcek Jr. and M. Chergui, *J. Am. Chem. Soc.* **2008**, *130*, 8967–8974. e) A. Vlcek Jr. and S. Zális, *Coord. Chem. Rev.* **2007**, *251*, 258–287. f) S. E. Hightower, R. C. Corcoran and B. P. Sullivan, *Inorg. Chem.* **2005**, *44*, 9601–9603. g) L. Yang, A.- M. Ren, J.-K. Feng, X.-J. Liu, Y.-G. Ma, M. Zhang, X.-D. Lui, J.-C. Shen and H.-X. Zhang, *J. Phys. Chem. A* **2004**, *108*, 6797–6808. h) D. M. Dattelbaum, R. L. Martin, J. R. Schoonover and T. J. Meyer, *J. Phys. Chem. A* **2004**, *108*, 3518–3526. i) D. M.

Dattelbaum, K. M. Omberg, P. J. Hay, N. L. Gebhart, R. L. Martin, J. R. Schoonover and T. J. Meyer, J. Phys. Chem. A **2004**, *108*, 3527–3536. j) L. Yang, A.-M. Ren, J.- K. Feng, X.-D. Liu, Y.-G. Ma and H.-X. Zhang, *Inorg. Chem.* **2004**, *43*, 5961–5972.

- [35] S. I. Gorelsky, *SWizard program*, http://www.sg-chem.net/, University of Ottawa, Ottawa, Canada, 2010.
- [36] D. Chen, P.-L. Fabre and O. Reynes, *Electrochimica Acta* **2011**, *56*, 8609–8610.
- [37] R.E. Lokhov, *Chem. Heterocycl. Compd.,* **1981**, 72-76.
- [38] E. C. Constable, *Coord. Chem. Rev.* **2008**, *252*, 842–855.
- [39] Zhu, T., Jackson W.G. *Chinese Journal of Inorganic Chemistry*, **2000**, 485-491
- [40] T. Nagata and H. Kon, *Inorg. Chem.*, **2009**, *48*, 8593–8602.
- [41] Papadopoulos, C. D., Hatzidimitriou, A. G., Voutsas, G. P., Lalia-Kantouri, M. *Polyhedron*, **2007**, *26*, 1077–1086.
- [42] Gaudiello, J.G., Bradley, P.G., Norton, K.A., Woodruff, W.H., Bard, A.B. *Inorg. Chem.*, **1984**, *23*, 3–10.