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ABSTRACT 

Norepinephrine is a catecholamine neurotransmitter that signals through the 

adrenergic receptors (ARs), α1, α2, and β, each with three subtypes. There is little research 

on the function of α1AR subtypes, α1A- and α1BARs, in the brain. By using α1AR agonists, 

antagonists, and transgenic activation there appears to be a role for the subtypes in 

learning, memory, mood, adult neurogenesis, and cancer.  

α1AAR activation enhances learning and memory in the adult mouse. In the current 

study, we used α1A- or α1BAR knockout mice (α1AAR or α1BAR-KO mice) and behavioral 

testing to examine learning, memory, depression, and anxiety. We found that KO of each 

α1AR subtype impairs novel object recognition, but not spatial memory. KO of either 

subtype did not reliably affect anxiety behavior. α1BAR-KO mice had a significantly lower 

depression level than wild type mice.  

Activation of the α1AAR subtype increases proliferation of neural progenitor cells in 

the adult mouse dentate gyrus and in vitro work suggested a role in the differentiation 

stage. We used the α1AAR agonist, cirazoline, BrdU incorporation, and 

immunohistochemistry to determine whether activation of the α1AAR would direct cell fate 

toward an astrocytic phenotype in the adult mouse dentate gyrus. Cirazoline did not change 

the number or percent of new cells differentiating into neurons or astrocytes. The number 

of immature neurons was also not different.
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The α1BAR was proposed as a proto-oncogene based on in vitro and tumorigenesis 

studies. An age-related neurodegenerative disorder occurs when a constitutively active 

mutant form of the receptor is overexpressed in mice (CAM-α1BAR mice). We tracked CAM-

α1A- and CAM-α1BAR mouse lifespan, and performed gross pathology and histology to 

determine cancer occurrence. CAM-α1AAR mice had an increased lifespan and decreased 

cancer incidence. CAM-α1BAR mice had decreased lifespan but no change in cancer 

incidence.  

Further research should pursue the mechanism of the α1AR subtypes’ role in mood 

and cancer incidence. The use of α1AAR activation and of α1BAR blocking should be 

examined in a mouse model of depression to determine the benefit as treatments. 

Heterodimerization of the receptors is also a potential mechanism. 
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CHAPTER 1 

INTRODUCTION 

The Noradrenergic System 

Epinephrine, commonly known as adrenaline, and norepinephrine (noradrenaline) 

are signaling molecules synthesized and used in both the peripheral and central nervous 

systems. In the peripheral nervous system, synthesis occurs in the adrenal medulla where 

they are released into the bloodstream and act as hormones (von Euler, 1951; Outschoorn, 

1952). In the central nervous system, the hindbrain houses the cell bodies that synthesize 

both molecules.  

Adrenergic and noradrenergic neurons are located in the medulla and pons (Grzanna 

and Fritschy, 1991). The medullary nucleus includes both adrenergic and noradrenergic cell 

bodies that project to the spinal cord where they synapse onto preganglionic acetylcholine 

cells to regulate autonomic function (Swanson and Hartman, 1975). The medullary nucleus 

also has fibers that project to the limbic system. The locus coeruleus nuclei are located near 

the fourth ventricle in the dorsal pons and contain up to 50,000 neurons, including both left 

and right nuclei, in the human brain (Ohm et al., 1997).  

Norepinephrine derives from the amino acid L-tyrosine in three steps requiring the 

enzymes tyrosine hydroxylase, DOPA decarboxylase, and dopamine β-hydroxylase (Figure 

1). Intermediates in the process are L-DOPA and dopamine. Immunolabeling for dopamine  
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Figure 1. Synthesis of norepinephrine and epinephrine. 
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β-hydroxylase is one way to track noradrenergic projections in the brain. Almost every 

region contains some level of noradrenergic input based on dopamine β-hydroxylase 

studies (Swanson and Hartman, 1975). There are only a few areas of the brain that do not 

contain dopamine β-hydroxylase. These include the caudate-putamen, nucleus accumbens, 

globus pallidus, subthalamic nucleus, and substantia nigra (pars reticulata and compacta). 

Noradrenergic projections have also been characterized using autoradiology and axonal 

transport studies (Segal et al., 1973; Jones et al., 1977; Jones and Moore, 1977; Loughlin et 

al., 1986). These studies showed that specific areas of the locus coeruleus project to 

different brain regions. The rostral and medial portion of the locus coeruleus is comprised 

entirely of noradrenergic cell bodies, which project to the hippocampus, hypothalamus, and 

virtually all areas of the cortex (Loughlin et al., 1986) (Figure 2). The ventral area of the 

locus coeruleus contains both noradrenergic and adrenergic cells that project descending 

fibers to the spinal cord and cerebellum. Noradrenergic terminations in the spinal cord are 

important for sympathetic nervous system functions such as heart rate. Noradrenergic cells 

release norepinephrine, which bind to receptors for their effects. 

Characterization of the Adrenergic Receptors 

Pharmacological 

The adrenergic receptors were characterized using both pharmacological and 

genetic means, as better techniques became available. Prior to the advent of the term 

“receptor”, substances were applied to isolated tissues and the effects observed to 

characterize their function. Using this technique, Raymond Ahlquist showed that 
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Figure 2. Locus coeruleus subregions and projections. “A schematic diagram of a sagittal view of 
locus coeruleus indicating proposed subdivisions, with the predominant cell type and efferents for 
each. Dorsal is up and anterior is to the right. Cb, cerebellum; cx, cortex; hpc, hippocampus; hyp, 
hypothalamus; sp cord, spinal cord.” From Loughlin et al., 1986.   
 

isoproterenol relaxed smooth muscle, norepinephrine contracted it, and epinephrine could 

do both (Ahlquist, 1948). In 1967, two types of receptors were proposed to bind the 

substances Ahlquist had been using in order to enact relaxation and contraction of smooth 

muscle (Furchgott, 1967). The two receptor types were characterized by rank order of 

agonist potencies.  

For αARs, the potencies were: epinephrine = norepinephrine > isoproterenol. In 

contrast, βARs had an almost opposite profile: isoproterenol > epinephrine > 

norepinephrine (Lands et al., 1967). Radioligand binding studies using tritiated antagonists 

later confirmed the existence of at least two subtypes: α and βARs. In the early 1970s, the 

discovery of the receptors’ downstream effects was only beginning.  
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Early work with hormone receptors showed there was an intermediate step 

between ligand binding and the downstream effect of adenylyl cyclase activation. Martin 

Rodbell showed this was due to guanine nucleotides (Pohl et al., 1971). Previously, 

researchers had been using preparations that were not as purified as they thought. They 

had inadvertently been adding nucleotides that masked the guanine-dependence of 

downstream effects. The first purified preparation of what came to be known as G-proteins 

was completed by Alfred G. Gilman’s lab in 1976 (Northup et al., 1980; Maguire et al., 1976; 

Gilman, 1984). By this time, researchers knew the adrenergic receptors were coupled to G-

proteins but they did not know how many subtypes there were.   

In the late 1980s, the α1A- and α1BAR subtypes were proposed based on tritiated 

antagonist radioligand binding studies (Morrow and Creese, 1986; Minneman et al., 1988). 

Classification of the adrenergic receptors at this time only included two major families: α- 

and βARs. α1ARs were further classified into the α1- and α2AR subtypes, with the α1AR being 

postsynaptic and the α2AR presynaptic (Figure 3A). David Bylund proposed, based on the 

pharmacological differences, differential coupling to G-proteins, and molecular cloning of 

the α2AR subtypes, that the α1- and α2ARs were as distinct as each compared with βARs 

(Bylund, 1988). Thus, he proposed the classification should be α1-,α2-, and βARs (Figure 3B). 

After addition of these subtypes, Bylund’s classification was officially adopted and modified 

as other receptor subtypes were discovered (Bylund et al., 1994; Hieble et al., 1995, Figure 

3C). 
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Figure 3. Classification of adrenergic receptors. A) traditional, B) proposed, and C) final 
classifications. Adapted from (Bylund, 1988; Bylund et al., 1994; Hieble et al., 1995). 

 

Genetic 

The advent of molecular cloning spurred a flurry of research to clone and confirm 

each adrenergic receptor subtype between 1986 and 1994. The α1A- and α1BAR were the 

first of the α1AR subtypes to be cloned (Cottecchia et al., 1988; Schwinn et al., 1991). The 

only α1AR subtype determined first by cloning rather than pharmacologically was the α1DAR 
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(Perez et al., 1991). Soon after, the α1CAR was found to be a variant of the α1AAR (Perez et 

al., 1994). Thus, the final classification for the α1ARs is α1A, α1B, and α1D (Figure 3C). Another 

benefit of cloning the receptors’ amino acid sequences was the ability to model the 

structure of the receptors.  

α1 Adrenergic Receptor Structure and Signaling  

Structure 

The sequences determined by cloning were used to create potential structures of 

the receptors. The models confirmed that the adrenergic receptors were part of the GPCR 

family. GPCRs are a type of metabotropic receptor. GPCRs mediate their effects through 

conformational changes during ligand binding, which activates proteins within the cell. The 

n-terminus of GPCRs is located on the extracellular side of the membrane and the c-

terminus on the intracellular side. All GPCRs have seven transmembrane helix domains and 

it is to the helices the ligand binds.  

In the late 1980s, Robert Lefkowitz and Brian Kobilka isolated the β2AR and deduced 

its possible structure from the amino acid sequence (Dixon et al., 1986). Kobilka’s group 

confirmed the structure of the β2AR bound to its G-protein using x-ray crystallography in 

2007 (Cherezov et al., 2007). Later, Kobilka’s group crystallized the β2AR again, but bound to 

both a ligand and the G-protein subtype, Gs (Rasmussen et al., 2011). Because both the 

amino acid sequence and structure of the β2AR is known, it is possible to model the 

potential structures of the other AR subtypes.  

Pairwise sequence alignment of the amino acid sequences of the β2- and α1AAR, 

shows there are 120 identical, 86 conserved, and 30 semi-conserved residues (Collette, 
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2010). Computer modeling allows these domains to be placed on the β2-AR structure to 

visualize where the differences are located (Figure 4A). Using the amino acid sequences and 

theoretical binding pockets, site-directed mutagenesis was used to determine the residues 

required for endogenous ligand binding (Strader et al., 1987). Norepinephrine, the common 

endogenous ligand in the brain, has three functional groups that participate in binding. 

These include the amine and alcohol groups, and the aromatic ring (with meta- and para-

hydroxyl groups, Figure 4B, Easson and Stedman, 1933). For the α1AAR, this includes 

residues on the third, fourth, and fifth transmembrane helices. The α1BAR ligand-binding 

pocket does not include a residue on the fourth helix but does on the sixth. The residues for 

binding are the same for both subtypes on the amine and meta-hydroxyl groups. They differ 

by only four residue positions on the para-hydroxyl group. The largest differences are in the 

residues that bind to the catechol ring of the endogenous ligands.  

Activation 

All GPCRs have constitutive activity in the absence of an agonist. They spontaneously 

isomerize between the R (inactive) and R* (activate) states. Agonists bind with a higher 

affinity to the R* state and, when bound, stabilize the R* state. This is known as the ternary 

model of agonist binding. The extended ternary model states there is more than one active 

state, such as R1* and R2*, which can activate different G-proteins (Roberts and 

Waelbroeck, 2004). The idea that one receptor in unique states of activation can affect 

different G-proteins is called agonist trafficking. An example would be a ligand that binds to 

the α1BAR as a full agonist and to the α1AAR as a partial agonist. The extended ternary model 

theorizes activation of different G-proteins and thus different downstream effects. One 
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Figure 4. Receptor conservation and norepinephrine structure. A) β2AR model with residues 
identical (red), conserved substitutions (orange), semi-conserved substitutions (yellow), and 
non-conserved residues (green), in the α1AAR (Collette, 2010), B) Norepinephrine structure 
with labeled functional groups (Acdx, 2009).  
 

effect may be to internalize the receptor while the other would activate the standard Gq 

pathway (Finch et al., 2006). Adrenergic receptor signaling depends on G-protein activation. 

Signaling 

There are many different types of G proteins. The most common are Gs (stimulates 

adenylyl cyclase), Gi (inhibits adenylyl cyclase), and Gq (mediates another pathway). Each G-

protein is bound to the intracellular side of a receptor and consists of three subunits α, β, 

and γ. G-proteins are associated with guanosine di- and tri-phosphates (GDP and GTP), 

which provide energy for subunit activation. When a ligand binds the receptor, the 

transmembrane helices change conformation which exposes the phosphorylation area of 

the G-protein (Farrens et al., 1996). When phosphorylated, the protein is active and the α 

subunit, Gαq, dissociates from the β and γ subunits, Gβγ, and slips along the membrane. 

The effects of the Gα subunit depend on the type of G-protein bound to the receptor.  
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Figure 5. Signaling pathway of α1ARs. The α1ARs signal through the α subunit of the Gq protein. 
The downstream effects including increasing intracellular calcium and phosphorylation of 
proteins. (Figure created by Collette, 2015.) 
 

The α1ARs are coupled to Gαq, which activates a specific downstream cascade 

within the cell (García-Sáinz et al., 2000, Figure 5). The α designates the subunit mediating 

the main effect of G-protein activation. In some cases, the Gβγ subunits also activate 

downstream effectors. When a ligand binds to the α1ARs, the Gαq moves along the 

membrane to a phospholipase C (PLC) protein. Gαq activates PLC, which cleaves 

phosphotidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 

trisphosphate (IP3). DAG stays in the membrane and activates protein kinase C (PKC), which 

then phosphorylates other proteins. IP3 leaves the membrane and binds to IP3 receptors on 



11 
 

the endoplasmic reticulum. This releases free calcium ions into the cytosol, which mediate 

many downstream effects. An important part of GPCR signaling is signal amplification.  

Signal Amplification 

The downstream effect of activating receptors must be amplified to cause 

appreciable changes in cell function. Thousands of ligand molecules are released from the 

pre-synaptic terminal into the synapse where they bind to receptors on the post-synaptic 

cell. This is the first step of signal amplification. In the second step, one G-protein activates 

many of its direct downstream targets. In the case of α1ARs, the Gαq subunit can activate 

many PLC molecules that, in turn, cleave more than one PIP2 molecule. Thus, the signal is 

amplified at each step in the cascade.  

Deactivation 

Deactivation of the α1ARs includes 1) desensitization, 2) sequestration and 

internalization, and 3) downregulation (Finch et al., 2006). Desensitization is the quickest 

method of deactivation, taking seconds to minutes to occur, and involves uncoupling of the 

receptor from the G-protein. The α1BAR undergoes desensitization through phosphorylation 

by G-protein receptor kinases (GRKs) and PKC (Diviani et al., 1996). Once phosphorylated, β 

arrestin uncouples the receptor from the G-protein. α1BARs are constitutively internalized 

after ligand binding (Stanasila et al., 2008; Reviewed in Toews et al., 2003).  

After uncoupling, β arrestin sequesters the receptor by targeting it to clathrin 

adaptor complexes, such as AP2 (Stanasila et al., 2008). The receptor is internalized via 

endocytosis in clathrin-coated pits, taking minutes to hours. α1AARs are rarely internalized 

after ligand binding. When they are internalized, the process is slower than with α1BARs 
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(Chalothorn et al., 2002; Vázquez-Prado et al., 2000). The mechanism of α1AAR 

internalization is still elusive. It appears that GRKs and PKC can phosphorylate α1AARs prior 

to internalization but while PKC is sufficient for this, it is not necessary (Price et al., 2002). 

Furthermore, the carboxy tail of the α1BAR is the site of phosphorylation during 

internalization but PKC and GRK phosphorylation of α1AARs does not require the carboxy 

tail.  

Downregulation is the third mechanism of deactivation and is due to a decrease in 

the number of surface receptors. Downregulation can occur through internalization, 

increased degradation via the endosomal system, or reduced transcription of mRNA 

(Lefkowitz, 1998).  

The mechanisms of α1AR deactivation were studied in vitro, usually in cells 

transfected with the receptor in question (Stanasila et al., 2008). The process could be 

different in endogenous tissues and be tissue-dependent. The α1AR subtypes are expressed 

at different levels in tissues throughout the body.   

α1 Adrenergic Receptor Localization in the Brain 

Regional Expression 

Expression of the α1AR subtypes in the brain differs in distribution and expression 

level. Early work using tritiated antagonists showed α1AARs bind highly in the hippocampus 

and α1BAR mainly in the thalamus. Both subtypes were found in the cortex (Wilson and 

Minneman, 1989).   

Using in situ hybridization with a rat probe, α1AAR mRNA is expressed highly in the 

olfactory bulb, cortex, hypothalamus, and regions of the hindbrain (Domyancic and Morilak, 
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1997). The expression was moderate in the hippocampus but high in the granule cell layer 

of the dentate gyrus. The Allen Institute for Brain Science, also using in situ hybridization, 

showed α1AAR RNA in the cortex and olfactory bulb but little to none in the hippocampus 

(Allen Institute for Brain Science, 2014). This is in contrast to earlier comparative studies. 

The Allen Institute for Brain Science has not yet published data for the α1BAR subtype. 

However, another in situ experiment showed high expression in the cortex, reticular 

thalamic nucleus, and hypothalamus (Zuscik et al., 2000). The α1DAR is highly expressed in 

many regions of the brain, particularly the CA1 region of the hippocampus (Day et al., 1997; 

McCune et al., 1993; Pieribone et al., 1994). Using in situ hybridization, the Allen Brain 

Institute showed α1DAR expression high in the olfactory bulb, cerebellum, and mouse 

hippocampus (Allen Institute for Brain Science, 2014). In situ hybridization only shows that 

the gene is present in the cells and RNA expression is not well correlated with protein 

expression.  

Autoradiographic studies better imply protein expression because the radioligands 

must bind to the receptors. Autoradiography shows very high expression of α1ARs in human 

and primate hippocampus, especially the DG and CA3 regions, compared with rat brain 

(Palacios et al., 1987). The density of α1ARs in neocortex and thalamus are similar in rat, 

guinea pig, human, and non-human primate. These findings were comparable to other 

autoradiographic studies (Jones et al., 1985). The α1AAR mRNA is expressed in the dentate 

gyrus granule cell layer of the human hippocampus (Szot et al., 2005). Autoradiography is 

not helpful in α1DAR protein expression because of the receptors’ intracellular localization. 

In situ hybridization shows expression of α1DAR mRNA in the CA1, CA2, and CA3 regions. 
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α1BAR is not expressed in the human hippocampus. Currently, the most accurate way to 

determine localization is to use a promoter-based expression approach in transgenic mice.  

Mice with enhanced green fluorescent protein (EGFP) expressed under a large 

portion of the α1AAR endogenous promoter were created to localize protein expression in 

the brain (Papay et al., 2006). Promoter-specific mice show that the gene is being 

transcribed in the cell and the α1AAR subtype predominates in almost all regions (Papay et 

al., 2006, Table 1). Transgenic mice expressing both the endogenous mouse gene and a 

human α1BAR gene fused with EGFP were used to determine α1BAR localization (Papay et al., 

2004). These mice showed receptor protein expression in the cell rather than just 

transcribed RNA. α1BAR-EGFP mice confirmed expression of α1BARs in the thalamus though, 

in contrast to in situ studies, the level of expression was not specifically higher in the 

reticular thalamic nucleus (Papay et al., 2004; Zuscik et al., 2000). The α1BAR predominates 

in only the cerebral and piriform cortices and pontine nucleus of the hindbrain. In contrast 

to peripheral vessels, where the α1ARs regulate vasoconstriction, the cerebral blood vessels 

do not express either receptor subtype.  

Cellular Expression 

Cell types with α1AR subtype expression. The promoter-specific α1AAR-EGFP and 

protein-specific α1BAR-EGFP mice were used to determine co-labeling of each subtype with 

specific cell types. The α1AAR is transcribed in the cortex in NG2 oligodendrocytes, 

GABAergic interneurons, and NR1-containing cells; NR1 is a subunit of the NMDA receptor 

(Papay et al., 2006). In the hippocampus, α1AAR EGFP co-localizes with NR1 in the CA2 and 

CA3 The α1AAR is transcribed in the cortex in NG2 oligodendrocytes, GABAergic 
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TABLE 1. Distribution of the α1A- and α1BARs in the Brain (Adapted from Papay et al., 2006). 

_________________________________________________________________________
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Interneurons, and NR1-containing cells; NR1 is a subunit of the NMDA receptor (Papay et 

al., 2006). In the hippocampus, α1AAR EGFP co-localizes with NR1 in the CA2 and CA3 

regions and with GAD 65/67 in the dentate gyrus. They are also functionally expressed in 

somatostatin interneurons of the CA1 region (Hillman et al., 2007, 2005). The α1BAR also co-

localizes with NG2 positive oligodendrocytes in the cortex but is also expressed in neurons 

and CC1 cells (Papay et al., 2004). α1BAR expression coincides with granular, Purkinje, and 

molecular layer cells of the cerebellum.  

Determining localization of the receptors on the plasma membrane or internal was 

examined using co-immunoprecipitation. For in vivo confirmation, mice were created with a 

human α1AAR and EGFP both under the endogenous promoter (Papay et al., 2006). 

However, the endogenous signal is quite faint and amplification with GFP antibodies has 

been difficult. Additional methods have been employed to determine α1AR function. 

Methods to Study α1 Adrenergic Receptor Function 

Pharmacology 

α1ARs have been studied using pharmacological agents for decades. Several non-

selective α1AR agonists are used clinically. Phenylephrine is used to dilate pupils for eye 

exams and in some pathological conditions. Oxymetazoline is used in a nasal spray to 

reduce congestion by constricting the blood vessels in the sinuses. An adverse effect is that 

it causes rebound congestion due to receptor downregulation.  

Prazosin and doxazosin are non-selective α1AR antagonists used to reduce lower 

urinary tract symptoms in men with benign prostatic hyperplasia. Both are also sometimes 

used as a treatment for hypertension but only if the patient also suffers from lower urinary 
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tract symptoms. The adverse effects, mainly lightheadedness and faintness due to 

vasodilation preclude them from being front-line treatments for hypertension. 

Furthermore, non-selective α1AR antagonists given to patients with heart failure had worse 

outcomes in a clinical trial, forcing patients to be removed from that arm of the trial 

(ALLHAT, 2000). To circumvent the adverse effects caused by α1BAR blocking, selective 

α1AAR antagonists were created. These include siludosin and tamulosin and are the first line 

treatment for benign prostatic hyperplasia and lower urinary tract symptoms. All of the 

currently available clinical α1AAR agents are either too large or too hydrophilic to cross the 

blood brain barrier. Cirazoline is a full agonist at α1AARs and a partial agonist at α1B- and 

α1DARs (Horie et al., 1995). This provides a 5-8-fold selectivity for the α1AAR over the α1B- 

and α1DARs. However, cirazoline is not ideal because it also has α2AR antagonist properties 

(Ruffolo et al., 1982). Researchers addressed the lack of subtype-selective research drugs by 

creating transgenic animals to study the subtypes’ function. 

Transgenic 

Adrenergic receptor cloning allowed researchers to use cDNA to create mutant cells 

and transgenic animals, moving the field toward a better understanding of adrenergic 

receptor function. Transgenic models were created either without the receptor expressed 

(knockout, KO) or with a mutated form of the receptor holding it in its active conformation, 

mimicking an agonist effect.  

Knock-out models. The knock-out mice for all α1AR subtypes were originally created 

to study hypertension. The Antihypertensive and Lipid-Lowering Treatment to Prevent 

Heart Attack Trial (ALLHAT) showed that non-selective α1AR treatment worsens heart 
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failure in hypertension (ALLHAT, 2000). Further work using the following transgenic mouse 

models is helping to clarify the differing roles for each subtype in the peripheral and central 

nervous systems.  

The α1AAR gene was cloned from a 129/SvJ cDNA library (Rokosh and Simpson, 

2002). The Escherichia coli β-galactosidase gene, LacZ, and the neomycin-resistance gene 

replaced a large part of the gene’s first exon and part of the intron. The resulting mice were 

bred separately onto FVB/N and C57BL/6 backgrounds. α1AAR-KO have also mainly been 

used to study cardiac function and pathology (Reviewed in O’Connell et al., 2014 and Perez 

and Doze, 2011). Our lab is the only one to study central nervous system function using 

these mice. We showed α1AAR-KO is detrimental to learning and memory in the Barnes 

maze (Doze et al., 2011).  

α1BAR-KO mice were established using 129/Sv and BALB-c genomic libraries with 

hamster cDNA as a probe (Cavalli et al., 1997). Exon I of the α1BAR gene, derived from the 

129/Sv library, was replaced with the neomycin resistance gene, which codes for the first six 

transmembrane helices. The mice were originally bred as a 129Sv/ C57BL/6 hybrid but have 

since been backcrossed onto the C57BL/6 line, the most commonly used strain. α1BAR-KO 

mice have mainly been used to study cardiovascular and cardiac function (Reviewed in 

O’Connell et al., 2014 and Perez and Doze, 2011). One study thus far examined locomotion, 

learning and memory (Spreng et al., 2001).  

α1DAR-KO mice were generated using mouse cDNA (Tanoue et al., 2002). The α1DAR 

gene was replaced with the neomycin resistance gene and the resulting mice were a 129Sv/ 

C57BL/6J hybrid. The mice have been used to clarify the role of the α1DAR in 
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vasoconstriction and resulting effects on arterial blood pressure. Behavioral work shows 

that the α1DAR impairs working memory and attention but not spatial memory (Mishima et 

al., 2004). In addition, MK-801, an NMDA receptor antagonist, induces deficits in the 

acoustic startle reflex but this effect was blocked in α1DAR-KO mice.  

Double α1A/BAR-KO mice were created by breeding α1AAR-KO (FVB, 129Sv) mice with 

α1BAR-KO mice (C57BL/6, 129Sv) (O’Connell et al., 2003). F1 heterozygotes were bred to 

produce WT and A/B-KO; breeding pairs from the lines were established. The double A/B-

KO mice are used to study cardiac function including the role of the α1A in cardiac apoptosis 

(Huang et al., 2007).  

Double α1B/DAR-KO mice were produced by breeding of single α1B- and α1DAR-KO 

mice which were of mixed 129Sv and C57BL/6J backgrounds (Hosoda et al., 2005). These 

mice were also used to study blood pressure regulation. 

Activation models. Transgenic models of α1AR subtype activation were also 

established and utilized for the study of cardiac function. Activation models include low (2x) 

to high level (66x) overexpression with or without constitutive activity.  

CAM-α1AAR mice have a constitutively active mutant form of the rat α1AAR under the 

control of the mouse α1AAR promoter (Rorabaugh et al., 2005). Constitutive activity is 

conferred by two mutations: M292L and A271E, and results in 3.5-fold overactivity based on 

IP3 levels. CAM-α1AAR mice have improved survival due to heart failure after myocardial 

infarction in addition to other cardiac benefits (Du et al., 2006). Previously, we showed that 

CAM-α1AAR mice have lower levels of depression and anxiety, enhanced learning and 

memory, and live longer than WT mice (Doze et al., 2009, 2011).  
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An α1BAR model of activation was achieved by expressing a constitutively active 

mutant form of the hamster α1B-AR under the endogenous mouse α1BAR promoter (Zuscik 

et al., 2000). Constitutive activity was achieved by mutating three residues: 

C128F/A204V/A293E. The triple mutant receptor spontaneously couples to Gq without an 

agonist present conferring a 4-fold overactivity based on IP3 levels. These mice were initially 

called T1 mice but later changed to CAM-α1BAR mice to more easily identify the transgenic 

changes (Yun et al., 2003; Doze et al., 2009). In the cardiovascular system, CAM-α1BAR mice 

have faster progression to heart failure with pressure overload and a pathological cardiac 

hypertrophy (Wang et al., 2000; Zuscik et al., 2001). Surprisingly, CAM-α1BAR mice also have 

a synucleinopathy, progressive neurodegeneration, and locomotion impairments (Zuscik et 

al., 2000).  
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CHAPTER 2:  

ALPHA1A OR ALPHA1B ADRENERGIC RECEPTOR KNOCKOUT DOES NOT IMPAIR NOVEL 
OBJECT RECOGNITION, SPATIAL LEARNING AND MEMORY, OR PATTERN SEPARATION 

 
Abstract 

Norepinephrine, which binds to adrenergic receptors, has a clear role in arousal and 

vigilance, which can enhance performance on cognitive tasks. The role of the α1 adrenergic 

receptor subtypes in learning and memory, however, is unclear as research shows 

conflicting results. Chronic activation of the α1AAR subtype improves learning and memory 

performance in the Barnes and multi-t mazes. Knockout of the α1AAR impairs performance 

in the Barnes maze. The α1BAR subtype has rarely been studied in the context of cognition. 

In the current study, we examined the role of the α1AR subtypes, α1A- and α1BAR, on novel 

object recognition, spontaneous alternation in the t-maze, and spatial learning, memory, 

and pattern separation in the Morris water maze. We found that α1A- and α1BAR-KO mice 

may have impaired object recognition memory; however, preference for one of the objects 

may have confounded the results. Unreliable performance by wild type mice precluded 

definitive conclusions for the role of the subtypes in spontaneous alternation. In the Morris 

water maze, α1AAR-KO mice did not form an efficient path to the platform but were normal 

in latency and distance to reach the platform. All groups learned spatial strategies to solve 

the maze. Based on our previous work in α1AAR activation and knockout mice, and the 

potential confounding variables in the present study, we suggest further research into the 
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role of the α1AAR in cognition. Similarly, the role for the α1BAR receptor was not clarified in 

the current study and should be further examined.  

Introduction 

Noradrenergic fibers project from the locus coeruleus to virtually every region of the 

brain, where they release the neurotransmitter norepinephrine. Norepinephrine is well 

known for its enhancing effects on arousal and vigilance (Reviewed in Sirviö and 

MacDonald, 1999). It has a role in plasticity, memory formation, consolidation, retrieval, 

and working memory (Izumi and Zorumski, 1999; Segal et al., 1991; Sara and Devauges, 

1988; Murchison et al., 2004). However, the mechanisms are complex, partly due to 

multiple adrenergic receptors. Norepinephrine binds to three families of G-protein coupled 

adrenergic receptors (ARs), α1, α2, and β, each with three subtypes (Figure 6). The subtypes 

are expressed at different levels in various brain regions. Recent evidence suggests the 

involvement of norepinephrine in learning and memory is dependent on the receptor 

families and subtypes.  

The α1ARs are involved in learning and memory but whether the effect is an 

enhancement or detrimental is controversial. Norepinephrine, via α1ARs inhibits memory 

consolidation in the chick at high doses of the α1AR agonist methoxamine but enhances it at 

lower doses, potentially via astrocytic α1ARs (Gibbs and Summers, 2001; Gibbs and Bowser, 

2010). Arnsten’s group found that α1ARs impair performance on prefrontal cortex-

dependent tasks while α2ARs enhance it (Reviewed in Ramos and Arnsten, 2007). They also 

found impaired performance at a low dose of the α1AAR agonist, cirazoline, and enhanced 

performance at a higher dose known to block imidazoline and α2ARs (Arnsten and Jentsch, 
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Figure 6. Adrenergic receptor subtypes. 

 

1997). In contrast, microinjection of the α1AR agonist phenylephrine into the CA1 region of 

the hippocampus improves acquisition in the Morris water maze; the α1AR antagonist 

prazosin, an α1AR antagonist, had the opposite effect (Torkaman-Boutorabi et al., 2014). 

Prazosin impaired performance in the Morris water maze in one study but had no effect in 

another (Puumala et al., 1998; Riekkinen et al., 1996). The drug ST-587 was originally 

thought to be selective for the α1AR and improved learning in cognition-based experiments 

but was later found to be non-selective (Puumala et al., 1996; Puumala and Sirviö, 1997; 

Pussinen and Sirviö, 1998). Many studies examining the role of α1ARs used acute 

administration of non-subtype selective drugs.   

The generation of transgenic mice with α1AR subtype activation or knockout (KO) 

properties greatly enhanced the ability to study the role of the receptor subtypes in 

behavior. The α1AAR subtype, via transgenic or chronic pharmacological activation, 

enhances spatial learning and memory in the Barnes and multi-t mazes (Doze et al., 2011). 

Transgenic activation also enhances learning and memory in the Morris water maze and 

long-term potentiation in the CA1 region of the hippocampus. Knockout of the α1AAR 

subtype impairs performance in the Barnes maze. The lack of learning and memory studies 
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using α1AAR-KO mice is likely impaired by the incidence of seizures in these mice (Doze and 

Collette, unpublished observation). Therefore, seizure activity was taken into account in our 

study. Knockout of the α1BAR subtype enhanced novel object recognition and impaired 

spatial memory in the Morris water maze but no other reports on the α1BAR and learning 

and memory have been published (Spreng et al., 2001). 

Based on the conflicting results for the role of α1ARs in cognition, and the dearth of 

studies on the α1BAR subtype in learning and memory, additional research was warranted. 

Based on our previous results of α1AAR subtype activation, we hypothesized that α1AAR-KO 

mice would have impaired learning and memory for hippocampal-specific learning and 

memory tasks. Based on the Spreng et al. study, we expected α1BAR-KO to have enhanced 

object recognition memory and impaired spatial memory in the Morris water maze when 

compared with wild type mice.  

Methods 

Animals 

Mice were bred and genotyped at the Cleveland Clinic Foundation then transferred 

to the University of North Dakota at 3-4 mo of age. Mice were provided standard chow with 

5% fat (Teklad 22/5 Rodent Diet (W) 8640, Harlan, Indianapolis, IN) and water ad libitum, 

were maintained on a 12-hr light cycle (on at 0700), and provided veterinary care. α1A- and 

α1BAR-KO mice have been previously characterized (Rokosh and Simpson, 2002; Cavalli et 

al., 1997). Control animals (n = 13), were wild type (WT) littermates of the α1A- (n = 22) and 

α1BAR (n = 14) KO lines. α1AAR-KO mice were of the F7-F9 generation while α1BAR-KO mice 

were all of the F9 generation. There were approximately equal numbers of male and female 
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animals. All protocols conformed to the Guide for the Care and Use of Laboratory Animals 

and were approved by the Institutional Animal Care and Use Committee at the University of 

North Dakota. The facilities at the Cleveland Clinic Foundation and the University of North 

Dakota are both accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care.  

Seizure Incidence 

The incidence of seizures was noted anytime the mice were observed, mainly prior 

to and during behavioral testing. Seizures were identified as a binary (yes or no) outcome 

(McKhann et al., 2003). Seizures were not classified by stage. However, informal 

observation indicated that seizures included Stages 1-3, immobility, rigidity, and head 

bobbing. No notes indicate that seizures progressed to Stages 4-6, intermittent or 

continuous rearing and falling or whole body convulsions. 

Data for novel object recognition and t-maze were analyzed to determine if seizure 

occurrence affected performance in the tests. Handling of seizure occurrence during the 

Morris water maze is detailed in the Statistical Analysis portion of these Methods.    

General Health and Neurological Assessments 

The mice were assessed for general health and neurological reflexes as per a 

protocol provided by Dr. Maria Gulinello at Albert Einstein College of Medicine, which is 

based on the SHIRPA protocol (Rogers et al., 1997). General health was assessed by 

observing nesting and home cage activity, aggression, coat condition, piloerection, whisker 

quality, body weight, and body temperature. Most other parameters were assessed in a 

82.0 x 51.8 x 42.4 cm (31 gal) container (Newell Rubbermaid, Atlanta, GA) with a grid of 8 
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squares drawn across the bottom. Activity/ arousal was assessed by how fast the animal 

moved from its initial position to cross the first gridline (transfer arousal); number of 

gridline crossings, rearings, and stretch attend postures; response to touch; positional 

passivity; and a gross measure of startle response which involved snapping a mouse trap 

above the container. Motor and autonomic function assessment involved abdominal 

elevation, paw position (width and pronation), gait, righting reflex, ataxia, and balance 

beam slips. The balance beam consisted of a wooden dowel with marks 7.6 cm apart 

secured lengthwise in a second 31 gal container. The number of balance beam slips within 

passing 10 marks on the dowel was used to assess motor skills and balance. Also in the 

second container, a 0.48 cm diameter rope was secured across the box lengthwise, upon 

which the animals were placed holding the rope with their front paws. The time before the 

mice lost their grip and fell was measured three times and averaged. Sensory reflex function 

was assessed by response to toe pinch, negative geotaxis, vision, pinna, whisker, and 

provoked biting.  

Behavioral Testing 

Behavioral testing of learning and memory occurred between 0800 and 1230. The 

experimental timeline includes the zero maze, which took place between 1200 and 1700, 

but the results were reported elsewhere (Figure 7). Testing for each mouse was set at least 

24 hr apart. Mice were approximately 5 mo of age at the start of behavioral testing. Mice 

were acclimated to separate cages for 30 min prior to all tests except the general health and 

neurological assessment, which was performed directly from the home cage. Equipment 

was cleaned with 10 percent ethanol between each mouse. 
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Figure 7. Behavioral testing timeline. The zero maze results were reported in a separate study. 
Testing began when mice were 4 mo of age.  
 

Novel object recognition. In the first phase of the novel object recognition test, 

habituation, the animals were placed in an empty 40 x 40 x 35 cm open field box for 5 min 

(Stoelting, Wood Dale, IL). After one hour, the mice were returned to the open field for a 5 

min familiarization phase. During this second phase, the open field contained two identical 

objects, which were counterbalanced to avoid object bias. The objects were 5.08 cm tall 

white pointed columns with a black stripe near the top or 4.13 cm black spheres (Figure 8, 

Lahud Craftsmen LLC, Fertile, MN; Stoelting, Wood Dale, IL). After another hour, the testing 

phase began. Mice were placed back in the open field with their respective original object 

(OO) and the novel object (NO). The time spent with each object was used to calculate the 

discrimination index and the percent of exploration time spent with the novel object. The 

discrimination index used the equation: [(time with OO - time with NO)/ (time with OO + 

time with NO)]. Habituation to the objects was determined by comparing the time spent 

exploring the original object during the familiarization phase and testing phase.   
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Figure 8. Novel object recognition objects. The objects used in the novel object recognition test 
included a black sphere and a white pointed column with a black horizontal stripe near the top.  
 

T-maze. The t-maze was used to test for spontaneous alternation, a form of short-

term memory. The t-maze apparatus was made with white melamine particle board with 

removable walls 12.7 cm in height (Figure 9). Mice were placed on the maze at the bottom 

of the T and were allowed to choose the left or right arm. The walls of the maze were lifted 

and the animal was placed back at the starting point. Each mouse received 5 trials and the 

percent of alternations was used for analysis. 

Morris water maze. The Morris water maze was used to test spatial learning and 

pattern separation, via a reversal paradigm. The maze consisted of a circular tank 122 cm in 

diameter and 76 cm in depth (San Diego Instruments, San Diego, CA). The top of a 10 cm 

square platform was 25 cm from the top of the tank and room temperature water tinted 
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Figure 9. T-maze dimensions. The t-maze was used to test spontaneous alternation. 

 

with Art Minds white non-toxic tempera paint covered the platform by 1 cm (Michaels 

Stores Inc, Irving, TX). The tank was enclosed within a 152 x 152 cm grey tent (Ace Canopy, 

Palmdale, CA). Distal spatial cues included a folded step ladder, a black cardboard circle 21.5 

cm in diameter taped to a wall of the tent, a white lamp, and one side of the tent open to 

the room. The experimenter was blocked from view of the mice during all trials. The search 

area:target area ratio was 117:1, ideal for testing mice (Vorhees and Williams, 2006). The 

platform location was counterbalanced equally within groups. 

Mice were trained for 6 trials per day over 3 days. On Day 4, the platform location 

was reversed and stayed in the reversal position on Day 5. Starting positions were chosen 

using a pseudorandom algorithm and changed for each trial. AnyMaze software and a 
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Logitech web camera were used to digitally control and record the trials (Stoelting Co., 

Wood Dale, IL). The maximum allotted time for each trial was 120 s and mice were 

considered by the software to have arrived on the platform if they were in the platform 

zone for 2 s. They were allowed to remain on the platform for 30 s. If mice did not find the 

platform, they were guided there using a plastic ruler and allowed to remain for 30 s. 

Following each trial, mice were lightly dried with a towel and placed under a heat lamp until 

the next trial, while other mice were tested. The inter-trial interval ranged from 5-10 min. 

On Day 4, the platform location was reversed to test pattern separation. The platform 

remained in this second location on Day 5. Qualitative strategies were analyzed using a 

modified MATLAB script generously provided by Gerd Kempermann and Alexander Garthe 

(Garthe et al., 2009).  

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 5.04 (GraphPad Software, 

San Diego, CA). Normality was assessed using the Kolmogorov-Smirnov test. Variances were 

assessed using the Bartlett’s test and non-parametric tests were used if the variances were 

significantly different. Significant outliers, found using the Grubb’s test, were excluded. One 

way ANOVA, with a Tukey post-hoc test, was used to assess differences between groups 

even if the data were non-normal because ANOVA is robust for violations of normality. One-

sample t-tests were used to assess significant deviations from chance levels in the novel 

object recognition and t-maze tasks. Sex differences were assessed with a 2 way ANOVA 

with genotype X sex and a Bonferroni post-test for paired comparisons. Trial data missing 

due to technological error or, in the case of α1AAR-KO mice a seizure in the maze, were 
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interpolated by taking the mean of the previous and next trial. Two mice were excluded 

from the study early due to a high number of seizures in the maze. Morris water maze data 

were analyzed using 2 way ANOVAs of genotype X day, genotype X trial, and trial X 

genotype, and day X genotype. 

Results 

General Health and Neurological Assessments 

There were no group differences in any of the general health assessment 

parameters, including body weight and temperature, transfer arousal, grid crossings, 

rearings, or stretch attend postures. In another study, there were no differences in basal 

locomotion in the open field test (Chapter 2).There were no obvious differences in the 

qualitative assessment of neurological reflexes.  

Novel Object Recognition 

The variances between group means in the time spent with the NO differed 

significantly; therefore, the non-parametric Kruskal-Wallis test was used for analysis. There 

was a main effect of time spent with the NO (χ2(2) = 8.74, p = 0.01). A Dunn’s post-hoc test 

revealed that α1AAR-KO mice spent less time with the novel object than α1BAR-KO mice (p < 

0.05) but not less than WT mice (p > 0.05).  

When taking into account the total time spent exploring objects, there was no 

significant difference between groups in the percentage of time spent with the NO [F(2, 38) 

= 0.47, p = 0.62, Figure 10A]. There were no sex differences in the percent of time spent 

with the NO [F(1, 35) = 1.09, p = 0.30]. There was also no difference between α1AAR-KO 

mice that did not have seizures (n = 7) and mice that did (n = 9), [t(14) = 1.17, p = 0.25]. 
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Figure 10. Novel object recognition. A) α1AAR-KO mice spent less time with the NO then α1BAR-KO (p 
< 0.05) but not WT mice (p > 0.05). B) WT mice spent a higher than chance level percentage of time 
with the NO (p < 0.05), while α1AAR-KO and α1BAR-KO mice did not. C) All groups spent a higher than 
chance level percentage of time with the pointed column. D) All groups habituated to the black 
sphere as an original object but not to the pointed column. *p < 0.05 

 

A one-sample t-test showed that WT mice spent a higher than chance percentage of 

time with the NO (50 percent) (p = 0.01), while α1AAR-KO (p = 0.05) and α1BAR-KO (p = 0.32) 

mice did not (Figure 10B). This shows that WT mice remembered the NO while the KO mice 

did not. 

Further analysis revealed that each group spent a higher than chance percentage of 

time with the pointed column (Figure 10 C). All groups habituated to the black sphere when 

it was the original object, WT (p = 0.01), α1AAR (p = 0.01), and α1BAR-KO (p = 0.03) (Figure 

5D). However, when the pointed column was the original object, WT (p = 0.44), α1AAR (p = 
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0.25), and α1BAR-KO (p = 0.94) mice spent a chance level of time with it during the testing 

phase, suggesting no habituation (Figure 10D). This implies all groups preferred the pointed 

column during the testing phase, even when it had been the original object. Two way 

ANOVAs for this data showed no main effect of genotype, a main effect of object, but no 

post-hoc differences (Genotype: F(2, 35) = 0.65, p = 0.52, Object: F(1, 35) = 13.29, p 

<0.0009). 

T-maze 

In the t-maze for spontaneous alternation, there was no difference between groups 

for the percent of alternations [F(2, 43) = 0.73, p = 0.48, Figure 11]. The Wilcoxon signed 

rank test, for non-normally distributed data, showed that no group performed better than 

chance levels (50 percent correct). There were no differences in the percentage of 

alternations between mice that had seizures and mice that did not [t(17) = 0.68, p = 0.50]. 

Mice that had seizures and mice that did not have seizures performed at chance levels. 

Morris Water Maze 

Learning, Days 1-3. For latency to reach the platform, there was a main effect of 

training days [F(4, 140) = 30.25, p < 0.0001] but no effect of genotype [F(2, 140) = 1.10, p = 

0.34, Figures 12A and 12B]. All three groups decreased the latency to reach the platform by 

Day 2: WT (p < 0.001), α1AAR-KO (p < 0.0001), and α1BAR-KO (p < 0.001).  

Distance to reach the platform also showed a main effect of days, [F(4, 140) = 29.00, 

p < 0.0001] but no effect of genotype [F(2, 140) = 2.78, p = 0.07, Figures 12C and 12D]. All 
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Figure 11. T-maze. In the t-maze, none of the groups alternated a higher than chance percentage of 
times (p > 0.05). There were no group differences in the percentage of alternations.  

 

groups decreased the distance it took to reach the platform by Day 2: WT (p < 0.001), 

α1AAR-KO (p < 0.01), and α1BAR-KO (p < 0.001).  

Path efficiency showed a main effect of training days [F(4, 140) = 11.69, p < 0.0001]; 

however, no effect of genotype was found [F(2, 140) = 0.81, p = 0.44, Figures 12E and 12F]. 

Post-hoc testing revealed that WT (p < 0.05) and α1BAR-KO mice (p < 0.01) increased  

efficiency to the platform by Day 3. α1AAR-KO mice did not significantly increase path 

efficiency until Day 5 (p < 0.001). For swim speed, there was no main effect of days [F(4, 

140) = 0.99, p = 0.41]; however, there was an effect of genotype [F(2, 140) = 3.97, p = 0.02, 

Figures 12G and 12H]. Post-hoc testing showed that α1AAR-KO mice swam slower when 

compared with WT mice on Day 1 (p < 0.05) and Day 2 (p < 0.05). However, there was also 

an interaction between genotype and day of testing [F(8, 140) = 3.30, p = 0.001], which 

makes this result difficult to interpret. The slight differences between swim speed (0.02 m/s 
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or 2 cm/s) likely were not relevant to interpretation of other factors based on speed, such 

as latency. 

The combined results suggest that all groups learned the location of the platform by 

Day 2. However, α1AAR-KO mice did not learn to use a more efficient path to the platform 

during the three-day training period.  

Reversal learning, Days 4-5. The α1AARs are highly expressed in the dentate gyrus, 

an area of the hippocampus important for pattern separation, which can be tested in a 

reversal paradigm of the Morris water maze (Sahay et al., 2011; Aimone et al., 2011; Piatti 

et al., 2013; Garthe et al., 2009). In this protocol, the location of the platform is changed but 

the spatial cues remain the same. The mice must learn the new location of the platform by 

using spatial information learned in the first phase of training.  

As reported in the previous section, there were no main effects of genotype on any 

of the days of testing for latency, distance traveled, or path efficiency to the platform. There 

was a main effect of swim speed, reported above; however, it was limited to Day 1 and Day 

2 of testing between WT and α1AAR-KO.  

Overall, the reversal protocol did not significantly change pattern separation in any 

of the groups. Interestingly, the α1AAR-KO mice improved path efficiency by Day 5. One 

reason the path efficiency may not have improved in this group could be due to the use of 

non-spatial search strategies.  

Search strategies. Rodents use both non-spatial and spatial search strategies while 

learning the location of a platform in the Morris water maze. Initially, searching is through 

non-spatial means which tend to follow a pattern. Garthe, Behr, and Kempermann
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Figure 12. Morris water maze. A) WT (p < 0.001), α1AAR-KO (p < 0.0001), and α1BAR-KO mice (p < 
0.001) reduced the latency to reach the platform by Day 2 of training but B) there were no 
differences between genotype. C) WT (p < 0.001), α1AAR-KO (p < 0.01), and α1BAR-KO mice (p < 
0.001) reduced the distance traveled to the platform by Day 2 of training but D) there were no 
differences between genotype. E) WT (p < 0.05) and α1BAR-KO mice (p < 0.01) increased path 
efficiency to the platform by Day 3 while α1AAR-KO did not even after 5 days (p > 0.05) and F) there 
were no between group differences. G/H) α1AAR-KO mice swam slower than WT mice on Day 1 (p < 

0.05) and Day 2 (p < 0.05).  Platform reversal, *p < 0.05, **p < 0.01, ***p < 0.001), ****p < 0.0001 
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developed an algorithm to assess search strategies (Garthe et al., 2009, Figure 13). Mice 

often begin searching by hugging the walls of the maze, a tactic called thigmotaxis. Mice 

also search randomly then progress to searching in the general area of the platform. After 

several trials, the strategies begin to follow spatially oriented patterns including chaining, 

which is when the mouse swims at a distance from the wall equal to the diameter of the 

platform location. In the last part of learning, mice use spatial approaches such as directed 

search, focal search, and direct swimming to the platform. During a platform reversal 

paradigm, mice will persevere at the original platform location then default to non-spatial 

strategies but quickly switch back to spatial strategies by the second day of training. We 

utilized a MATLAB script kindly provided by the Kempermann lab to assess search 

strategies. Mice performed as expected, first using non-spatial strategies and gradually 

switching to spatial strategies (Figure 14A). 

There was a main effect of days [F(4, 140) = 14.90, p < 0.0001] but not genotype 

[F(2, 140) = 0.91, p = 0.41] for the percent of spatial strategies used (Figure 14B). Post-hoc 

testing showed that α1BAR-KO mice significantly increased the use of spatial strategies by 

Day 2, while WT and α1AAR-KO mice did not do so until Day 3. As expected on Day 4 after 

platform reversal, WT mice significantly decreased the use of spatial strategies (p < 0.001). 

Surprisingly, α1AAR-KO (p > 0.05) and α1BAR-KO mice (p > 0.05) did not show a significant 

decrease in spatial strategy use upon platform reversal. None of the groups showed a
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Figure 13. Search strategies in the Morris water maze. Adapted from (Garthe et al., 2009). A) The 
Morris water maze was divided into a wider wall zone closest to the wall of the maze, a closer wall 
zone, an annulus zone around the diameters of the inner and outer platform corners, and a center 
zone. A MATLAB algorithm was used to determine search strategies.  
 

significant increase in the use of spatial strategies on Day 5. All groups showed 

perseverance to the original platform location on Day 4 but there was not a significant 

decrease in perseverance on Day 5 [F(1, 35) = 3.95, p = 0.05, Figure 14C]. In the cued trial on 

Day 5, there were no differences in latency [F(2, 31) = 8.71, p = 0.61], distance traveled [F(2, 

32) = 0.79, p = 0.36], or swim speed [F(2, 34) = 0.002, p = 0.15].  

Overall, WT mice performed as expected in the Morris water maze with regards to 

search strategies but there were no differences between genotypes in either search 

strategy or perseverance.  
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Figure 14. Spatial and non-spatial strategies in the Morris water maze. A) WT, α1AAR-KO, and α1BAR-
KO mice followed a typical progression from non-spatial to spatial search strategies while learning 
the location of the platform. B) WT mice significantly increased the use of spatial strategies by Day 3 
of training (p < 0.01) and decreased the use of spatial strategies on platform reversal Day 4 (p < 
0.001). α1AAR-KO mice increased the used of spatial strategies by Day 3 of training (p < 0.001) but 
did not significantly decrease their use upon platform reversal. α1BAR-KO mice increased the use of 
spatial strategies by Day 2 of training (p < 0.05) but did not decrease their use on platform reversal 
Day 4. C) All groups persevered at the previous platform location on Day 4 but did not significantly 
decrease the amount of perseverance by Day 5.
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Discussion 

The current study found no difference in general health or neurological reflexes 

between groups. A previous experiment from our lab showed no difference in locomotion 

in the open field test (Chapter 2). 

Previous studies of the α1ARs found conflicting results in learning and memory tasks, 

likely due to differential effects of the α1AAR and α1BAR subtypes. Our lab showed that 

α1AAR stimulation via pharmacological or transgenic means enhances spatial learning and  

memory (Doze et al., 2011). In the same study, α1AAR-KO impaired both learning and 

memory in the Barnes maze. The only published research regarding the role of the α1BAR 

subtype in cognition showed that transgenic mice lacking the α1BAR have enhanced novel 

object recognition but impaired performance in the Morris water maze (Spreng et al., 

2001).  

In the novel object recognition test, α1AAR-KO mice spent less time with the NO 

impaired when compared with α1BAR-KO but not WT mice. WT mice were the only group to 

spend a greater than chance percentage of time with the novel object but there were no 

differences between groups. Comparing performance to chance levels is an indicator of 

whether the test worked because WT mice should do better than chance levels at 

recognizing the NO. That neither KO group did better than chance suggests impaired 

memory in both groups but the results could be confounded by the preference for a 

particular object. The objects used were counterbalanced but none of the groups 

habituated to the pointed column, suggesting they preferred it whether it was the original 
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or novel object. In order to avoid object bias, a greater number of animals or objects should 

be assessed with cohorts of WT mice prior to use in the novel object recognition test.   

In the spontaneous alternation version of the t-maze, WT mice generally show 

greater than 80 percent alternation (Deacon and Rawlins, 2006). In the current study, WT 

mice did not alternate at a level higher than chance (50 percent). This could be due to the 

short (0 s) intra-trial interval, the amount of time mice were confined to the chosen arm 

prior to the next trial (Lalonde, 2002). The intra-trial interval is when memories are 

encoded; therefore, a longer interval may have enhanced the memory of the previously 

chosen arm. Typically, each trial should take less than 2 min; however, some mice took 

much longer. It is possible the short intra-trial interval increased anxiety leading to 

hesitancy to explore.  

Previous research on the α1AR showed that prazosin, a non-subtype selective α1AR 

antagonist, can either impair or improve cognitive performance in the Morris water maze 

(Riekkinen et al., 1996). In the Morris water maze, all mice decreased the latency and the 

distance traveled to the platform by Day 2. WT and α1BAR-KO mice increased their path 

efficiency by Day 3 but α1AAR-KO did not, even by the final day of testing. The platform 

reversal did not significantly increase difficulty for mice to solve the maze on Day 4. 

However, WT mice did significantly reduce the use of spatial strategies on Day 4.   

A high dose of prazosin can increase the time to complete a cued trial, suggesting a 

slower swimming speed (Riekkinen et al., 1996). In another study, α1BAR-KO mice had 

decreased swimming speed (Spreng et al., 2001). Surprisingly, in the current study α1AAR-KO 

but not α1BAR-KO showed a decreased swim speed during testing but all groups swam the 
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same speed during the cued trial. The decrease in swim speed during testing was significant 

but not large therefore it is not necessarily biologically relevant. 

These results combined suggest there may be deficits in novel object recognition for 

both α1AAR-KO and α1BAR-KO mice but spatial memory impairment only in α1AAR-KO mice 

based on a lack of increased path efficiency. Further research is important because α1AAR-

KO mice performed well on all other measures in the Morris water maze. Future testing 

should include another measure of spatial memory, such as the radial arm maze or a spatial 

cue version of the t-maze, both of which require food restriction. It appears that the α1AAR 

is important for spatial memory based on our CAM-α1AAR mouse studies so it is interesting 

but not wholly unexpected that knock-out did not cause severe impairments. Compensation 

in KO mice is a common limitation and can be avoided using the Cre lox system for 

conditional KO. Barring that, the use of an α1AAR antagonist via a cannula could also help 

clarify the role of the α1AAR in learning and memory.  
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CHAPTER 3  

ALPHA1B ADRENERGIC RECEPTOR KNOCKOUT DECREASES DEPRESSION-LIKE BEHAVIOR 

WHILE KNOCKOUT OF EITHER THE ALPHA1AAR OR ALPHA1BAR DO NOT RELIABLY AFFECT 

ANXIETY 

 

Abstract 

Blocking neurotransmitter uptake via the norepinephrine transporter has long been 

a target of antidepressants. The role of the adrenergic receptors in the treatment or 

etiology of depression and anxiety has not been clearly defined. Previous research showed 

that chronic activation of the α1AAR subtype leads to a lower level of depression-like 

behavior in the tail suspension test while activation of the α1BAR subtype leads to a higher 

level. In the present study, we further investigated the involvement of the α1AR subtypes, 

α1AAR and α1BAR, in depression and anxiety-like behavior in the adult mouse. We used two 

cohorts of subtype-specific receptor knockout (KO) mice. Group 1 mice began testing at 155 

d and Group 2 at 90 d of age. Because α1AAR-KO mice have seizures, we addressed seizure 

occurrence in the analysis. We found that α1AAR-KO mice had higher levels of anxiety in 

Group 1 mice compared with wild type (WT), after accounting for seizure incidence. 

However, there was no change in Group 2 α1AAR-KO mice in either anxiety or depression 

compared with WT mice. Lack of α1BAR showed a lower depression-like phenotype 

compared with WT mice but had no change on anxiety in Group 1 mice and unclear results 

in Group 2 mice. We conclude that the role of the α1AR subtypes in anxiety behavior is
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complex. Combined with our previous results regarding α1AR subtype activation, it is likely 

the α1AAR is involved in alleviating depression. Based on previous and the current results, 

the α1BAR subtype is clearly involved in depression-like behavior in the mouse. These results 

suggest the α1AR subtypes may be therapeutic targets for depression. A drug with α1AAR 

agonist and α1BAR antagonist properties may be ideal. 

Introduction 

Major depressive disorder affects 16 percent of the United States population at least 

once in their lifetime and has an economic burden of $80 billion per year (Kessler et al., 

2003; Wang et al., 2003).  According to the 2012 National Survey on Drug Use and Health, 

almost 7 percent of adults in the US had at least one depressive episode in the previous 

year (Hedden et al., 2013). Yet currently available treatments are not ideal. Fifty percent of 

patients with major depression have only a moderate response to currently available 

antidepressants and just 30 percent find full remission (Trivedi et al., 2006). Norepinephrine 

(NE) and serotonin (5-HT) were the first neurotransmitters found to alleviate depressive 

symptoms and are still the leading targets for current antidepressants. Most treatments are 

based on blocking reuptake of 5-HT and/or NE; however, many of these antidepressants 

also have antagonist actions at 5-HT, α adrenergic, and dopamine receptors. Despite this, 

the evidence for an antidepressant effect based on agonist activity at an α1 adrenergic 

receptor (α1AR) subtype, the α1AAR, has been mounting.  

Many serotonin selective reuptake inhibitors (SSRIs) and serotonin norepinephrine 

reuptake inhibitors (SNRIs) are used clinically for both depression and anxiety, which are 

often comorbid (Kessler et al., 2003). Milnacipran, an SNRI, activates the α1AR in rat 
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organotypic raphe slice cultures in addition to its blockade of NE and 5-HT reuptake 

(Nagayasu et al., 2013). α1AR antagonists can block anxiety and depressive behavior in 

animal models (Kitada et al., 1983; Danysz et al., 1986; Cunha et al., 2013; Stone et al., 

2011; Kakui et al., 2009). The α1AR inverse agonist prazosin reverses the anti-immobility 

effect of paroxetine and citalopram, both SSRIs, in the forced swim test (Sugimoto et al., 

2011; Izumi et al., 1997). α1- and α2AR antagonists show a similar effect with the mood 

stabilizer lamotrigine (Kaster et al., 2007). When the α1AR agonist phenylephrine and 

lamotrigine were given at sub-effective doses the antidepressant action was potentiated. 

Prazosin also increases latency to enter the dark compartment in the passive avoidance task 

suggesting α1ARs are involved in anxiety as well (Puumala et al., 1996). A  blockade of 

antidepressant behavior was not seen in other studies using α1AR antagonists with 7 d of 

treatment with desipramine, a tricyclic antidepressant blocking reuptake of NE (Borsini et 

al., 1984; Pulvirenti and Samanin, 1986). However, these studies used non-subtype selective 

agonists and antagonists. Recent evidence from our lab suggests subtype selective 

activation is critical for behavioral effects.  

The α1AAR subtype is affected by chronic antidepressant treatment and 

electroconvulsive therapy (Nalepa et al., 2002). Both increase the density and activity of 

α1AARs in the frontal cortex and hippocampus without changing mRNA levels. Increased 

density of receptors can cause increased sensitivity to the ligand translating into an 

enhanced downstream effect. Desipramine increases the α1AAR to α1BAR ratio in rat 

cerebral cortex (Hanft and Gross, 1990). Repeated electroconvulsive therapy also increases 

binding to the α1BAR in the cortex, thalamus, and amygdala; however, most of the binding 
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in the lateral amygdala was to α1AARs (Perry et al., 1990). Creation of transgenic mice either 

overexpressing or knocking out the α1AAR and α1BAR subtypes has provided the opportunity 

to further define the role of the subtypes in mood behavior.  

Our lab found that activation of the α1AAR and α1BAR has differential effects on 

depressive-like behavior in the mouse (Doze et al., 2009). Mice with a constitutively active 

mutant form of the α1AAR (CAM-α1AAR) have increased agonist affinity and activation of the 

receptor. This provides an antidepressant and anxiolytic effect. However, CAM-α1BAR mice 

have higher depression-like behavior but no change in anxiety (Doze et al., 2009, 2011).  

We hypothesized that α1AAR-KO mice would exhibit greater depression and anxiety-

like behaviors than wild type (WT) mice. We also hypothesized that α1BAR-KO mice would 

have a lower level of depression-like behavior but not anxiety behavior when compared 

with WT mice. To test this, we examined depression and anxiety behavior using the tail 

suspension test, elevated zero maze, marble burying test, and light dark exploration in 

Group 2 mice. Due to seizure activity appearing to be age-related, we also investigated 

anxiety behavior in Group 1 mice in the open field (center time) and the elevated zero 

maze.   

The current study is the first to examine the effect of α1AAR-KO and α1BAR-KO on 

anxiety and depression-like behavior. Mice lacking each receptor subtype have been 

previously studied in the context of cardiac function, learning, and memory. In addition, 

seizure activity in the α1AAR-KO mice has not been reported. The lack of behavioral studies 

is potentially due to this seizure activity, which makes analysis challenging (Doze et al., 



48 
 

unpublished observation). Thus, we considered the incidence of seizures in our analysis and 

found interesting results. 

Methods 

Animals 

All animals were bred and genotyped at the Cleveland Clinic Foundation and 

transferred to the University of North Dakota at 2 or 4 mo of age. Both facilities are 

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. 

The 4 mo old mice comprised Group 1 and included 15 WT, 17 α1AAR-, and 11 α1BAR-KO 

mice with approximately equal numbers of male and female animals. The 2 mo old mice 

comprised Group 2 and included 13 WT, 22 α1AAR-, and 14 α1BAR-KO mice also with 

approximately equal numbers of male and female mice. Mice received pelleted food with 

5% fat (Teklad 22/5 Rodent Diet (W) 8640, Harlan, Indianapolis, IN) and water ad libitum, 

were maintained on a 12-hr light cycle (on at 0700 hrs), and provided veterinary care. All 

protocols conformed to the Guide for the Care and Use of Laboratory Animals and were 

approved by the Institutional Animal Care and Use Committee at the University of North 

Dakota. The transgenic mice were created as previously described and littermates were 

used as controls (Cavalli et al., 1997; Rokosh and Simpson, 2002). Group 1 α1AAR-KO mice 

were of the F7-8 generation and α1BAR-KO mice of the F9 generation. Group 2 α1AAR-KO 

mice were of the F3, F5, and F9 generation and α1BAR-KO mice the F5 and F11 generation. 

Seizure Incidence 

The incidence of seizures was noted anytime the mice were observed, mainly prior 

to and during behavioral testing. Seizure occurrence was identified as “seizure” or “no 
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seizure” (McKhann et al., 2003). Seizures were not classified by stage. However, observation 

indicated that seizures included Stages 1-3, immobility, rigidity, and head bobbing. No notes 

indicate that seizures progressed to Stages 4-6, intermittent or continuous rearing and 

falling or whole body convulsions. 

Behavioral Testing 

Testing for Group 1 started at 160 d of age (Figure 15A). Group 2 testing began when 

mice were approximately 90 d of age (Figure 15B). Testing was completed between 1200 

and 1700 hrs except open field which was performed between 0730 and 1200 hrs. 

Following locomotor and mood testing, Group 1 was involved in a learning and memory 

study not reported here. Mice were acclimated to individual cages in the testing room 

without food and water for 1 hr prior to testing, except for zero maze and open field when 

acclimation was 30 min. Lighting was adjusted using a LX1010B digital lux meter 

(Amazon.com, Seattle, WA). The tests and analysis were performed blind to genotype. 

Open field test. The open field test was used to assess basal locomotor activity in 

Group 1 mice. Mice were placed in a 43.2 x 43.2 cm open field equipped with infrared 

beams every 2.54 cm above the floor of the field. Mice were allowed to roam freely for 20 

min while activity was recorded. The data were analyzed using Activity Monitor 6.0 and 

Activity MDBtoExcel for distance traveled each min, total distance traveled, and time spent 

in the center zone (MedAssociates, St. Albans City, VT). The center zone was defined as a 

center square of 29.12 x 29.12 cm. Light was ambient room lighting at approximately 250 

lux. 
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Figure 15. Behavioral timelines. A) Group 1 mice were tested for anxiety in the elevated zero maze, 
underwent a general health assessment, and were tested in the open field for locomotion (distance 
traveled) and anxiety (time spent in the center of the field). B) Group 2 mice were tested for anxiety 
in the elevated zero maze, marble burying test, and light dark exploration and for depression in the 
tail suspension test. 

 

Zero maze. The zero maze was used to test anxiety (Stoelting, Wood Dale, IL). The 

maze consisted of an elevated circular walkway with a diameter of 59.7 cm and a lane width 

of 5 cm. Due to previous trials where mice jumped off the maze to the floor; the maze was 

placed on a table 72.4 cm in height. The maze was divided into 4 quadrants: two open and 

two with 15.4 cm high walls. Light was held constant across the maze at 40 lux to mimic a 

mouse’s ethological environment. Mice were placed on the maze facing a closed area and 

were allowed to explore for 10 min. The time spent in each area, open or closed, was 
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determined when all four paws entered. The tests were recorded from an overhanging 

camera and used to analyze the time spent in and entries into the open areas. 

Light Dark Exploration. Light dark exploration was used to test anxiety using a 

modified open field box (Stoelting, Wood Dale, IL). The 40 x 40 x 35 cm box was divided by 

an opaque plexiglass insert into a light side (40 x 26 x 35 cm) and dark side (40 x 14  x 35 cm) 

connected by a 7.5 x 7.5 cm opening. The dark side was kept at 0 lux by addition of an black 

opaque plexiglass lid. The light side was illuminated by overhead fluorescent lighting, 

approximately 220 lux within the box. Each mouse was placed in the light facing away from 

the opening to the dark section and allowed to explore for 10 min. A mouse was considered 

to have entered a side of the box when all four paws entered. The trials were digitally 

recorded and later analyzed for the latency to enter the dark side, time spent in the light 

side, and the number of entries into the light side.  

Marble burying test. The marble burying test was used to assess obsessive 

compulsive-type anxiety behavior. A 17 x 28 x 13 cm polycarbonate box held 10 cm of 

sawdust bedding with 20 marbles placed on top. Lighting was held constant at 40 lux within 

each box. Each mouse was placed in a box and allowed to explore for 30 min then removed. 

Marbles were considered buried if more than two-thirds covered with sawdust bedding. 

Tail suspension test. The tail suspension test was a 29.2 x 21.6 x 24.1 cm box made 

of 1.27 cm white melamine-coated particle board with a hook in center top of the box. A 

tape loop was placed on the tail of each mouse, which was then suspended on the hook for 

6 minutes. Tail climbing was a frequent occurrence, as is common in the C57BL/6 strain 

(Mayorga and Lucki, 2001). Mice that tail climbed longer than 72 s (20 percent of the time) 
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were excluded. A subset of mice were tested a second time using a 3.8 cm long, 1.27cm in 

diameter hard plastic tube placed between the base of the tail and the tape loop to 

discourage tail climbing (Can et al., 2012).  

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 5.04 (GraphPad Software, 

San Diego, CA). The Kolmogorov Smirnov test was used to assess normality and the 

Bartlett’s test was used to determine if variances were equal. ANOVAs were still used when 

a set of data were not normally distributed because ANOVA are robust for violations of 

normality and the equal variances assumption was met. When the variances differed, the 

Kruskal Wallis test was used with a Dunn’s post-hoc test. Outliers were detected and 

excluded using the Grubb’s test. Differences between groups were assessed with one-way 

ANOVA and a Tukey post-hoc test. Sex differences were detected using a two way ANOVA 

with genotype X sex and Bonferroni post-test for paired comparisons. The effect of the tail 

tube on tail climbing was determined using a Mann-Whitney test because the data were not 

normally distributed. 

Results 

Seizure Incidence 

α1AAR-KO mice have an increased incidence of seizures. CAM-α1BAR mice, with a 

mutation that keeps the receptor in its active conformation, have an age-related seizure 

disorder (Zuscik et al., 2000). Knock out the α1BAR protects against seizures (Pizzanelli et al., 

2009). Due to this, we did not expect nor observe seizures in the α1BAR-KO mice. Similarly, 

no seizures were observed in WT mice. Group 1 α1AAR-KO mice had a seizure incidence of 
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50 percent while Group 2 α1AAR-KO mice had an incidence of 13 percent (2 mice). Seizure 

incidence was roughly equal in male and female mice. Due to the high level of seizure 

incidence, all behavioral tests for Group 1 were analyzed to determine if prior seizure 

activity had an effect on the parameters of each test. If so, the results were analyzed again 

separating α1AAR-KO mice that did not have seizures and those that did. 

Open Field 

α1A or α1BAR knockout did not affect basal locomotion in Group 1 mice. Changes in 

basal locomotion make behavioral results challenging to interpret (Crawley and Paylor, 

1997). Therefore, we examined basal locomotion in the open field test in Group 1. We 

previously showed that activation of the α1AAR does not change basal locomotion but 

activation of the α1BAR increases the total number of beam breaks in the open field 

compared with WT mice (Doze et al., 2009). Knauber and Müller. found that α1BAR-KO mice 

traveled shorter distances (Knauber and Müller, 2000). In contrast, another study showed 

that α1BAR-KO mice traveled longer distances in the open field (Spreng et al., 2001). In the 

current study, there were no differences in total distance traveled in the open field 

between groups [F(2, 44) = 2.32, p = 0.10, Figure 16]. There was a main effect of sex in the 

total distance traveled [F(1, 41) = 7.421) = p = 0.009] where female α1AAR-KO and α1BAR-KO 

animals traveled less distance than female WT mice (p < 0.05). There was also an interaction 

of sex [F(2, 41) = 3.834, p = 0.03]. There were no differences between α1AAR-KO mice that 

had seizures vs α1AAR-KO mice without seizures [t(20) = 0.03, p = 0.98]. These results show 

that in male mice locomotion was not affected by the lack of the receptor subtypes or by 

seizure incidence. Female α1AAR-KO and α1BAR-KO have decreased locomotion.  
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Figure 16. Open field test in Group 1. There was no difference between WT, α1AAR-KO, and α1BAR-
KO in the total distance traveled. Shown as A) distance traveled over time and B) total distance 
traveled (p = 0.10).  
 

In Group 1, knockout of either subtype did not affect anxiety in the open field; 

α1AAR-KO mice had higher levels of anxiety in the elevated zero maze after accounting for 

seizure activity; α1BAR-KO did not affect anxiety. α1AAR activation decreases anxiety 

behavior while α1BAR activation has no effect on anxiety (Doze et al., 2009). To further study  
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Figure 17. Anxiety in Group 1, Open field time in center. There were no main effects of A) time (p = 
0.35) or B) percentage of time (p = 0.35) spent in the center of the open field, a measure of anxiety.  
 

the effects of α1AR subtype function on anxiety behavior, the open field data from Group 1 

was analyzed for the time spent in the center zone. In addition, Group 1 mice were tested in 

the elevated zero maze. We hypothesized that α1AAR-KO would result in more anxiety-like 

behavior while α1BAR-KO would not affect anxiety. 

Open Field Time Spent in the Center Zone 

Time spent in the center of an open field is often used as a preliminary anxiety test 

(Crawley and Paylor, 1997). In Group 1 mice, there were no significant differences in the 

time spent in the center of the field [F(2, 44) = 1.07, p = 0.35] or in the percentage of time 

spent in the center [F(2, 44) = 1.04, p = 0.35] (Figure 17A and 17B). There was no effect of 

seizure incidence in the α1AAR-KO mice on the time spent in the center of the field [t(20) = 

0.066, p = 0.94] or the percentage of time spent in the center [t(20) = 0.04, p = 0.96]. There 

was no effect of sex in the time spent in the center of the open field [F(1, 41) = 0.43, p = 

0.51]. There was an interaction between sex and genotype [F(2, 41) = 5.36, p = 0.008] such 

that female α1BAR-KO mice spent less time in the center than female WT mice (p< 0.05).  
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Zero Maze, Group 1 

There were no significant differences in the time spent in the open areas of the 

elevated zero maze when seizure activity was not accounted for [F(2, 46) = 2.363, p = 0.10] 

(Figure 18A). There was a main effect of genotype in the number of entries made into the 

open areas [F(2, 45) = 9.58, p = 0.003] (Figure 18B). A Tukey post-hoc test showed that 

α1AAR-KO mice made fewer entries into the open areas compared with both WT (p < 0.001) 

and α1BAR-KO mice (p < 0.05). There was no effect of sex in the time spent in the open areas 

[F(1, 43) = 0.49, p = 0.48] or entries [F(1, 43) = 0.66, p = 0.41]. 

Reanalysis of the data after separating α1AAR-KO mice that had seizures and mice 

that did not, revealed a main effect in the time spent in the open areas [F(3, 35) = 4.746, p = 

0.0058] and confirmed the main effect on the number of entries into the open areas [F(3, 

35) = 5.343, p = 0.0031] (Figures 18C and 18D). Post-hoc testing showed that α1AAR-KO mice 

that did not have seizures spent less time in the open areas when compared with both WT 

(p < 0.01) and α1BAR-KO mice (p < 0.05). α1AAR-KO mice that did not have seizures also 

made fewer entries into the open areas when compared with both WT (p < 0.001) and 

α1BAR-KO mice (p < 0.01). These results show that Group 1 α1AAR-KO mice that did not have 

seizures have a higher level of anxiety in the elevated zero maze while α1AAR-KO mice that 

did have seizures and α1BAR-KO mice have anxiety levels similar to WT animals. 

Zero Maze, Group 2 

In Group 2, α1AAR-KO Mice had anxiety levels similar to WT; Lack of α1BAR subtype 

activity did not reliably affect anxiety behavior. For additional study on the effect of α1AR 

subtype function on anxiety behavior, Group 2 mice were also assessed in the elevated zero 
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Figure 18: Anxiety in Group 1, Zero maze. In the zero maze: there was no effect of genotype for the 
A) time spent in the open areas. There was a main effect of genotype in the B) number of entries 
into the open arms. A Tukey post-hoc test showed that the α1AAR-KO mice made fewer entries into 
the open arms when compared with WT (p < 0.001) and α1BAR-KO mice (p < 0.01). When mice with a 
history of seizures were separated from those that did not, a main effect was found for the C) time 
spent in the open areas. Post-hoc analysis showed that α1AAR-KO mice that did not have seizures 
spent less time in the open area when compared with WT (p < 0.01), α1AAR-KO (seizure) (p < 0.05), 
and α1BAR-KO mice (p < 0.05). There was also a main effect on the number of D) entries to the open 
areas of the zero maze. A Tukey post-hoc test revealed that α1AAR-KO mice that did not have 
seizures made significantly fewer entries into the open areas when compared with WT (p < 0.01) 
and α1BAR-KO mice (p < 0.05). * p < 0.05, ** p < 0.01, *** p < 0.0001 
 

maze as well as the light dark exploration and marble burying tests. The low number of 

Group 2 α1AAR-KO mice that had seizures (n = 2) precluded testing for the effect of seizure 

incidence in this group. Our hypothesis was the same as for Group 1 mice: that α1AAR-KO 
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would result in a higher level of anxiety-like behavior while α1BAR-KO would not affect 

anxiety. 

In the zero maze, there were no significant differences in the amount of time spent 

in the open areas [F(2, 40) = 2.81, p = 0.07] (Figure 19A). There was a statistically significant 

difference between groups in the number of entries into the open areas of the zero maze 

[F(2, 40) = 4.32, p = 0.02] (Figure 19B). Post-hoc testing showed that α1BAR-KO mice made 

fewer entries into the open areas compared with WT mice (p < 0.05). There were no sex 

differences in either the time spent in [F(1, 36) = 3.25, p = 0.07] or entries into the open 

areas [F(1, 37) = 0.44, p = 0.51]. The results show a possibility that α1BAR-KO mice have a 

higher level of anxiety than WT mice based on the reduced entries into the open areas of 

the elevated zero maze. However, this was not confirmed in the time spent in the open 

areas of the maze.  

Light Dark Exploration 

In an earlier study, we saw no difference in anxiety behavior in the light dark 

exploration after transgenic or pharmacological activation of the α1AAR or α1BAR (Doze et 

al., 2009). In a more recent study, α1AAR activation significantly increased the time spent in 

the light side of the light dark exploration test (Doze et al., 2011). We hypothesized that KO 

of the α1AAR would lead to a higher level of anxiety in the light dark exploration test. 

In the current study, there were no statistically significant differences in the light 

dark exploration for the time spent in the light side [F(2, 39) = 1.34, p = 0.27] (Figure 19C), 

entries to the light side [F(2, 40) = 1.21, p =0.30] (Figure 19D), or latency to enter the dark 

side [F(2, 39) = 1.04, p =0.36] (Figure 19E). There was a main effect of sex in the time spent  
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Figure 19. Anxiety in Group 2: Zero maze, light dark exploration, and marble burying test. Lack of 
α1AAR or α1BAR function did not reliably affect anxiety behavior. In the zero maze, there were no 
significant differences between WT, α1AAR-KO, or α1BAR-KO for the A) time spent in the open areas 
(p = 0.054). There was a main effect of genotype in the B) entries made into the open areas of the 
zero maze (p = 0.015). Tukey’s post-hoc test revealed that α1BAR-KO mice made fewer entries into 
the open areas when compared with WT and α1AAR-KO mice (p < 0.05 for each comparison). In the 
light dark exploration, there was no effect of genotype in the C) time spent in the light side (p = 
0.272), D) entries to the light side (p = 0.308), or E) latency to enter the dark side of the maze (p = 
0.362). In the marble burying test, there was a significant difference in the number of marbles 
buried between groups (p  = 0.005). A Dunn’s post-hoc test showed that α1BAR-KO mice buried 
significantly more marbles than α1AAR-KO mice but not WT mice. * p < 0.05, ** p < 0.01 
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in the light side [F(1, 36) = 7.12, p = 0.011]; however, no post-hoc differences were seen. 

The results suggest there are no differences in anxiety between genotypes in light dark 

exploration.  

Marble Burying Test 

We have previously shown that transgenic or pharmacological α1AAR activation 

decreases the number of marbles buried in the marble burying test, showing a lower level 

of anxiety than in WT or control mice (Doze et al., 2009). Activation of the α1BAR did not 

have an effect on the number of marbles buried. Therefore, we hypothesized that KO of the 

α1AAR would increase anxiety behavior in the marble burying test compared with WT mice 

but α1BAR-KO would have no effect.  

There was a statistically significant difference in the number of marbles buried [χ2(3) 

= 10.54, p = 0.005] (Figure 19F). A Dunn’s post-hoc test showed that α1BAR-KO mice buried 

more marbles than α1AAR-KO mice (p < 0.01) but not more than WT mice (p > 0.05). There 

was no main effect of sex in the marble burying test [F(1, 37) = 0.75, p = 0.39]. The results of 

the marble burying test suggest there are no differences in obsessive-compulsive type 

anxiety between the α1BAR-KO and WT but that α1BAR-KO mice have a higher level of 

anxiety compared with α1AAR-KO mice.  

Tail Suspension Test 

Loss of α1BAR function decreased immobility when tail climbing was reduced. 

Activation of the α1AAR, either using transgenic mice or pharmacological means, previously 

showed a robust decrease in depression-like behavior in the tail suspension test which was 
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blocked by prazosin, an α1AAR antagonist (Doze et al., 2009, 2011). Transgenic α1BAR 

activation led to a higher level depression-like behavior in the tail suspension test.  

In the current study, there were no significant differences in the time spent 

immobile in the tail suspension test [F(2, 30) = 0.50, p = 0.61] (Figure 20A). However, two 

mice per group had to be excluded for tail climbing greater than 20 percent of the time. 

Other mice spent time tail climbing that they otherwise may have spent immobile; 

however, tail climbing in these mice was not present for greater than 20 percent of test 

time. In order to detect potential differences, a hard plastic tail tube was used to prevent 

mice from climbing their tail (Can et al., 2012). To assess the effect of the plastic tube as a 

barrier to tail climbing, all data were pooled. The reduction in tail climbing was statistically 

significant (U = 236.5, p < 0.0001) (Figure 20B). Under these conditions, there was a 

difference in the time spent immobile between groups [F(2, 28) = 10.80, p = 0.0003]. A 

Tukey post-hoc test showed that α1BAR-KO mice spent less time immobile than both WT (p 

<0.001) and α1AAR-KO mice (p < 0.01) (Figure 20C). There were no sex differences in the no-

tail-tube [F(1, 27) = 0.60, p = 0.44] or tail tube version of the tail suspension test [F(1, 25) = 

x2.01, p = 0.16]. These results suggest that α1BAR-KO results in lower levels of depression-

like behavior. 

Discussion 

Locomotion was not different between groups overall, similar to another study using 

only male α1BAR-KO mice (Spreng et al., 2001). However, another report using male α1BAR- 

KO mice showed a reduction in open field locomotion. In the current study, both α1A- and 

α1BAR-KO female mice traveled less distance in the open field but an interaction of
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Figure 20. Depression-like behavior in Group 2, Tail suspension test. In the tail suspension test, there 
was no effect of genotype on A) the time spent immobile when mice were tested without an 
obstruction to tail climbing (p = 0.610). Using a hard plastic tube to impede tail climbing there was B) 
a significant reduction in the amount of time spent tail climbing (p < 0.0001). Retesting with a tail 
tube revealed C) a main effect of genotype on the time spent immobile (p = 0.0003). A Tukey post-
hoc test showed that α1BAR-KO mice spent less time immobile when compared with both WT (p < 
0.001) and α1AAR-KO (p < 0.01) mice. * p < 0.05, ** p < 0.01, *** p < 0.0001 

 

genotype and sex makes the result difficult to interpret. Locomotion was not likely a 

confounding factor as no sex differences were found in any behavioral tests. This is the first 

study to examine anxiety and depression-like behavior after KO of the α1AAR- and α1BAR 

(Spreng et al., 2001). Our results show that the α1AAR subtypes are involved in anxiety 

behavior in 4-month old mice lacking the α1AAR only in those mice that did not have 

observed seizures. Conversely, mice lacking the α1BAR receptor subtype exhibited less 

depression-like behavior and unclear effects on anxiety.  
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Therapeutics for depression often alleviate symptoms of both depression and 

anxiety, which is a common comorbid finding (Kessler et al., 2003). Previous research has 

shown conflicting results for the α1AR’s role in depression and anxiety, likely due to the lack 

of highly selective agonists and antagonists able to cross the blood brain barrier (Cunha et 

al., 2013; Danysz et al., 1986; Borsini et al., 1984; Pulvirenti and Samanin, 1986). The current 

study furthers our understanding of α1AR function in the central nervous system and the 

behaviors elicited. Early behavioral work from our lab showed that activation of the α1AAR 

led to a lower level of depression and marble burying but not anxiety behavior in the 

elevated plus maze or light dark exploration (Doze et al., 2009, Figure 21). In a subsequent 

study, we utilized littermate controls and lowered the lighting for the elevated zero maze to 

better mimic the natural mouse habitat. Our findings were that α1AAR activation also led to 

a lower level of anxiety in the elevated zero maze and light dark exploration tests (Doze et 

al., 2011). In corroboration with these studies, in the current investigation α1BAR-KO mice 

had a lower level of depression compared with WT demonstrating a role for this subtype in 

depression. Both transgenic and pharmacological activation studies suggested a role for the 

α1AAR in depression. Surprisingly, α1AAR-KO mice did not show more depression-like 

behavior even after removing the opportunity for tail climbing. The role of the α1AR 

subtypes in depression and anxiety appears to be more complex than anticipated and 

additional factors are likely involved.  
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Figure 21. Overview of activation and KO of α1AR subtype effects on behavior. Previous studies 
showed that transgenic activation of the α1AAR reduces depression and anxiety-like behaviors and 
increases the seizure threshold, showing anti-epileptic properties (Doze et al., 2009, 2011, Doze, 
Jurgens, Nelson, and Goldenstein, unpublished data). Pharmacological activation of the α1AAR also 
reduced depression levels (Doze et al., 2009). Activation of the α1BAR increased depression-like 
behavior but had no effect on anxiety. In the current study, α1AAR-KO did not affect depression-like 
behavior but had a potentially age-related effect on seizure activity and anxiety. Older mice, Group 
1, mice had a higher occurrence of seizures and mice in Group 1 that did not have seizures had 
increased anxiety. The younger mice, Group 2, had a lower occurrence of seizures and no change in 
anxiety levels. α1BAR-KO mice had lower depression-like behavior but no change in anxiety in Group 
1 mice and unclear results on anxiety in Group 2 mice. 
 

There are many potential explanations for the unclear results; one is that the 

receptor subtypes require heterodimerization for some behavioral effects. GPCRs are 

known to heterodimerize in vitro and in vivo, with some heterodimers required for or 

changing downstream effects of the receptors alone. There is also in vivo evidence that 

GPCR heterodimerization is involved in neuropsychiatric disorders. The D1-D2 heterodimer 

is increased in human post-mortem brain and blocking formation of the heterodimer in rats 

led to a reduction in immobility in the forced swim test (Pei et al., 2010).  The α1AR subtypes 

can form heterodimers in vitro, which could potentially confer functional changes (Uberti et 
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al., 2003). Heterodimers of the α1AAR and α1BAR subtypes increase binding site density and 

protein expression of the α1AAR with no change in the α1BAR (Uberti et al., 2003). Increased 

density and protein expression suggest sensitization to the ligand and could increase 

downstream activity in vivo. The ratio of receptor subtypes may also be important.  

In the CAM-α1BAR mice, the α1AAR is still present though at lower levels and activity 

than the α1BAR, likely even after accounting for increased α1AAR expression due to potential 

heterodimerization. The increased ratio of α1BARs and their constitutive activity appears 

sufficient to induce depression (Doze et al., 2009). In the current study, α1BAR-KO reduces 

depression-like behavior but it is unknown if the lack of α1BAR signaling is sufficient for this 

reduction or if the still present α1AAR is necessary. α1AAR-KO mice show no change in 

depressive activity, which suggests that lack of α1AAR activity alone is not sufficient to 

induce depression. It is interesting to speculate that heterodimerization to increase α1AAR 

density and expression may be needed. In CAM-α1AAR mice, with both constitutive α1AAR 

activity and increased surface expression of the α1AAR due to hetero-dimerization, 

depression is reduced. But it is also reduced when the endogenous α1AAR is activated via an 

α1AAR agonist, cirazoline, and returns to control levels when CAM-α1AAR mice are treated 

with an α1AR antagonist, prazosin (Doze et al., 2009).  

To add to the complexity, the α1AR subtypes are not expressed at the same levels in 

all brain areas and there is evidence that the expression level affects whether receptors 

homo- or heterodimerize. Heterodimerization can also occur between different classes of 

receptors, such as with the D2 and SST receptors (Molchan et al., 1991). Clearly, more work 

is needed to clarify the role of each receptor subtype in depression behavior. Using α1AR 
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selective agonists or antagonists in CAM-α1BAR, α1AAR-KO, and α1BAR-KO mice would be a 

logical next step. Future research in this area should also explore α1AAR activation and 

α1BAR blocking in a mouse model of depression. Do these actions change only basal levels of 

depression, prevent depression, or relieve depression once it has begun? 

The remaining question about anxiety behavior is also complex. There was no clear 

outcome for knockout of either subtype in other measures of anxiety. Possibly, the 

expression of both subtypes is necessary for changes in anxiety. Future work could utilize 

double-KOs of the α1AAR and α1BAR subtypes and combinations of single gene knockouts 

and α1AR ligands.  

In summary, we showed that α1BAR-KO reduced depression-like behavior in the tail 

suspension test while α1AAR-KO affected anxiety in Group 1 animals that did not have 

seizures. These results provide evidence for a negative role of the α1BAR in depression and 

confirms a positive role for the α1AAR, which could be taken advantage of when designing 

therapeutics.  
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CHAPTER 4 
TREATMENT WITH CIRAZOLINE, AN ALPHA1AAR AGONIST, DOES NOT INFLUENCE FINAL 

CELL FATE IN THE ADULT MOUSE DENTATE GYRUS DURING ADULT NEUROGENESIS 
 

Abstract 

Adrenergic receptors (ARs), α1, α2, and β bind to the endogenous ligand 

norepinephrine. Each family of AR has three subtypes and the present study examined the 

α1AAR subtype’s role in adult neurogenesis. Adult neurogenesis occurs in two areas of the 

adult brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone 

(SGZ) of the dentate gyrus. α1AAR activation, via transgenic manipulation using a 

constitutively active mutant form of the receptor (CAM-α1AAR mice), increases proliferation 

of neural progenitor cells in both the SVZ and SGZ. In vitro work using adult-derived 

neurospheres from the SVZ of wild type and CAM-α1AAR animals suggested a role for these 

receptors in the differentiation stage of adult neurogenesis as well. In the present study, we 

treated C57BL/6 mice with the α1AAR agonist cirazoline for 8 wks and injected the S phase 

marker BrdU after 4 wks of treatment. We then performed double-labeling 

immunohistochemistry to examine the fate of the newly created cells at the 4 wk timepoint. 

We found that cirazoline treatment did not change the number or percent of cells that 

became NeuN+ mature neurons or GFAP+ mature astrocytes. There was a large effect size, 

but no statistical significance, suggesting a decrease in the number of DCX+ immature  
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neurons in the cirazoline treated group. The results suggest that the role of the α1AARs is 

complex and may be related only to the early stages of proliferation and differentiation. 

Introduction 

The catecholamine neurotransmitter norepinephrine signals through the α1-, α2-, 

and β adrenergic receptors (ARs). Each type of AR has three subtypes and the present study 

examined the role of the α1AAR subtype in adult neurogenesis. Adult neurogenesis is the 

process whereby new brain cells are generated in the adult brain (Figure 22). It occurs in 

two discrete areas, the subgranular zone (SGZ) of the hippocampal dentate gyrus and the 

subventricular zone (SVZ) of the lateral ventricles. The process includes several steps: 

proliferation, migration/ differentiation, and survival/ integration. It is mediated by growth 

factors, synaptic input, and neurotransmitters among others.  

The role of norepinephrine, and the α1AR subtypes, in the process of adult 

neurogenesis is not well understood. Xenopus laevis embryos and cell culture studies 

suggest a role for norepinephrine and the αARs in differentiation. For example, 

norepinephrine increases the number of embryonic cells that differentiate into neurons via 

α1ARs (Rowe et al., 1993; Messenger et al., 1999). However, not all regulators of embryonic 

neurogenesis are involved in adult neurogenesis. In adult mice, we previously showed that 

α1AAR activation, via transgenic or pharmacological methods, increases proliferation in the 

SGZ and the SVZ (Gupta et al., 2009). Our work with adult neurospheres cultured from 

mouse lateral ventricles shows that α1AAR stimulation affects differentiation and survival of 

new brain cells. 
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Figure 22. Adult neurogenic process. Proliferation: A) Neural stem cell (T1) dividing symmetrically or 
asymmetrically, B) Neural progenitor cell (T2) dividing symmetrically or asymmetrically, Migration 
and Differentiation: C) differentiating cells migrating into the granule cell layer, and Integration/ 
survival: D) integrating into the local circuitry. Adapted from Suh et al., 2009. 

 

In neonatal neurospheres derived from normal mice or transgenic mice that express 

a constitutively active mutant form of the α1AAR (CAM-α1AAR mice), stimulation with 

phenylephrine, an α1AR agonist, increases differentiation and migration and promotes 

survival of new cells (Gupta et al., 2009). In α1AAR-knockout mouse-derived neurospheres, 

the cells revert to or maintain an undifferentiated state, as assessed by an increase in 

nestin RNA expression and lack of changes in differentiation-related transcription factors. 

α1AAR signaling also promotes the survival of cultured neural progenitor cells by reducing 

stress-induced apoptosis (Ohashi et al., 2007). In vivo, only 60 percent of adult-generated 

cells in the SGZ survive more than two weeks (Kempermann and Gage, 2002). Those that 
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do survive are mostly of the neuronal phenotype and survive for at least eleven months 

(Kempermann et al., 2003).   

Approximately 50-60 percent of the new cells in the SGZ are neurons (Reviewed in 

Abrous et al., 2005; Steiner et al., 2004). Approximately 10 percent are astrocytes and 25 

percent of new cells are of an unknown phenotype. Astrocytes are important in the process 

of adult neurogenesis, releasing paracrine factors and balancing inflammatory mediators 

(Ashton et al., 2012; Lie et al., 2005). Astrocytes also promote the differentiation step of 

adult neurogenesis (Song et al., 2002; Oh et al., 2010). We previously showed that 

neurospheres derived from adult mouse SVZ and treated with phenylephrine increases glial 

markers (Gupta et al., 2009).  

In the current study, we hypothesized that α1AAR activation, via the selective 

agonist cirazoline, would promote survival of adult-born cells in the SGZ. Based on our 

adult-derived neurosphere evidence, we also hypothesized that a higher number of 

astrocytes would be generated when compared with wild type. 

Methods 

Animals 

Animals were C57BL/6 wild type (WT) mice kindly donated by Dr. Colin Combs and 

Dr. Kendra Puig at the University of North Dakota. All animals were provided veterinary care 

at the University of North Dakota, an American Association for Laboratory Animal Science 

accredited institution. The Institutional Animal Care and Use Committee approved all 

protocols. Eight mice/ sex/ group were 10 wks old at the start of the study. Standard 

acidified water, provided by the Center for Biomedical Research at UND was provided in 
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250 ml glass bottles with intake monitored weekly. Harlan Teklad chow with 5 percent fat 

was provided ad libitum and intake monitored on a weekly basis.  

Drug Treatment and BrdU Administration 

Cirazoline hydrochloride was diluted to 40 µM in water provided by the Center for 

Biomedical Research animal facility (Tocris Bioscience, Minneapolis, MN). Control mice 

received the same water without drug. Treatment began when mice were 10 wks of age 

and continued until cardiac perfusion at 18 wks of age (Figure 23). After 4 wks of cirazoline 

treatment, BrdU was injected to label S phase dividing cells. BrdU was diluted to 10 mg/ml 

in saline then warmed and mixed by vortex for several min. BrdU was administered IP at 50 

mg/kg twice per day, 12 hrs apart, for 5 d.  

Tissue Preparation 

Eight weeks after the start of cirazoline or control water administration, mice were 

anesthetized with a terminal dose of pentobarbital (150 mg/ml) and perfused. Using gravity 

perfusion equipment, 10 ml of ice-cold heparinized saline (0.02 mg/ml in 0.9 percent saline) 

was infused through the left ventricle using a 22G short bevel needle. This was followed by 

30 ml of 4 percent paraformaldehyde (Fisher Scientific, Hanover Park, IL). Brains were 

removed and post-fixed for 2 d in 4 percent paraformaldehyde then transferred to 0.1 M 

phosphate buffered saline with 0.01 percent sodium azide (Fisher Scientific, Hanover Park, 

IL). Brains embedded in 3 percent agarose were sectioned at 40 μm on a vibrating 

microtome (MICROM, Thermoscientific, Watham, MA) in an ice cold PBS bath. Sections 

were collected and placed in PBS, ethylene glycol, and glycerol-containing cryoprotectant 

solution in 96 well plates. Approximately 60-70 sections per brain were kept with one
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Figure 23. Treatment timeline. Mice were 10 wks old at the start of treatment. Cirazoline treatment 
lasted for 8 wks. BrdU was injected IP 2x/ d for 5 days after 4 wks of cirazoline treatment. 
 

section per well and one brain per plate. Sections in well plates were stored at -20 C until 

used for immunohistochemistry. 

Immunohistochemistry 

Brains used for immunohistochemistry were pseudorandomly chosen from each 

group. For each labeling experiment, a 1 in 6 series of sections was used, with the starting 

section determined by the roll of a 6-sided die. Free-floating labeling took place in 12 well 

plates, each well containing the sections from one mouse. Negative controls, for specificity 

of the secondary antibody, included a well without primary antibody and one well 

containing primary antibody host IgG at the same concentration as the antibody (Jackson 

Immunoresearch, West Grove, PA). Positive controls for BrdU and DCX were from a 4 wk old 

mouse injected at a 2 hr BrdU timepoint. Positive controls for astrocytes (GFAP) were cells 

in the hilus and molecular layer of the dentate gyrus. All sections were double-labeled with 

Rat x BrdU and one of the following primary antibodies: Mouse x NeuN, Goat x DCX, or 

Mouse x GFAP (Table 2). AlexaFluor (AF) secondary antibodies included Goat x Rat AF488, 

Goat x Mouse AF568, and Donkey x Goat AF568. Either DAPI or TOPRO-3 was used as a 

counterstain.  
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Mature neurons: BrdU + NeuN. Sections were washed with 1X (0.1 M) phosphate 

buffered saline, incubated with 2N HCl for 30 min at 37 C, then rinsed with 0.1 M borate 

buffer. Sections labeled for Ms x NeuN were blocked using a Ms x Ms blocking buffer 

(Scytek, Cat. #MTM008, Logan, UT). NeuN sections were also blocked with 10 percent 

bovine serum albumin diluted in 5 percent normal serum from the secondary antibody host 

species in 1X PBS. Primary antibody incubation lasted 24 hr. Sections were washed then 

incubated with corresponding secondary antibodies for 2 hr. Sections were protected from 

light during secondary antibody incubation and thereafter. After the secondary antibody, 

the sections were washed, and incubated with 10 mM CuSO4 solution in a 50 mM 

Ch3COONH4 buffer for  1 hr. After rinsing, sections were counterstained with DAPI at 1 

μg/ml and mounted on SuperFrost Plus slides in a 0.1M phosphate buffer, coverslipped with 

a PVA/ DABCO mounting medium (cite Peterson’s chapter here). Slides were left to dry 

overnight and then stored at 4°C until imaging. 

Immature neurons and mature astrocytes: BrdU + DCX and BrdU + GFAP. Sections 

were washed in 10X Tris buffered saline, incubated in 10N HCl at 37C for 10 min, then 

rinsed in 0.1 M borate buffer. Sections were blocked with Ms x Ms blocking buffer, if 

needed, then blocked with 5 percent normal serum of the secondary antibody host species 

diluted in 10X TBS. Primary antibody incubation was 72 hr (GFAP and DCX) at 4°C. Sections 

were rinsed with blocking buffer containing 5 percent normal serum two times, 1 hr each. 

While protected from light, sections were incubated with secondary antibodies for 2 hr then 

rinsed and incubated with CuSO4/ Ch3COONH4 solution, mounted, cover-slipped, and stored 

as above until counting. 
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Imaging and Cell Counting 

BrdU + NeuN labeled samples were imaged using a 5X51WI Olympus DSU 

microscope at the Center for Stem Cell and Regenerative Medicine Confocal Stereology 

Research Laboratory at Rosalind Franklin University (Olympus Scientific Solutions, Waltham, 

MA). StereoInvestigator 11.0 and the Virtual Tissue feature were used to set up the 

contours and imaging continued overnight (MBF Bioscience, Williston, VT). Image files were 

provided to the University of North Dakota via Dropbox (Dropbox, Inc., San Francisco, CA). 

One hemisphere was counted. Cells labeled with BrdU and double-labeled with NeuN were 

counted exhaustively in the 1 in 6 series of sections using StereoInvestigator 10.0, excluding 

any cells where the top of the cell was out of focus. The total number of BrdU+ and 

BrdU+NeuN+ cells were determined by multiplying the number of counted cells by 2 (for the 

other hemisphere) and then by 6 for the 1 in 6 series. The percentage of double-labeled 

cells was determined using the total counts of BrdU+ and BrdU+NeuN+ cells. All other images 

were taken on an Olympus Fluoview 1000 at the University of North Dakota.   

BrdU + DCX and BrdU + GFAP cell counting. Double-labeling experiments for BrdU 

and either DCX or GFAP were counted on an Olympus Fluoview 300 microscope using 

epifluorescence (Olympus Scientific Solutions, Waltham, MA). BrdU and double-labeled cells 

were counted exhaustively in the 1 in 6 series of sections. DCX only cells were counted in a 

1 in 12 series of the same samples. Missing sections were accounted for by adding the 

average number of cells in a brain to the final counts.  
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Statistics 

Data were analyzed using GraphPad Prism 5.04. Kolmogorov-Smirnov test was used 

to assess normality and the Bartlett’s test for equal variances. Unpaired t-tests were used 

for normally distributed data when the means were equal. If the assumption of normality 

was not met, a non-parametric Mann-Whitney test was used. Data with unequal variances 

was assessed using a t-test with Welch’s correction. Effect sizes were analyzed using 

Cohen’s d test.  

Results 

Body Weight and Water Intake 

Cirazoline decreases food intake, without a change in water intake, when given 

acutely (Wellman and Davies, 1992; Davies and Wellman, 1992). Caloric restriction can 

affect the proliferation stage of neurogenesis. Therefore, we analyzed body weight and 

water intake to ensure cirazoline did not induce caloric restriction. There were no statistical 

differences in body weight between control and cirazoline-treated mice [F(1, 287) = 0.10, p 

= 0.74]. There was a difference in weight over time but that was expected based on the age 

of the mice [F(7, 287) = 105.6, p < 0.0001]. That there was no difference in body weight 

between groups suggests there was no difference in food intake. In a separate study, there 

was no difference in food intake between control and cirazoline-treated mice over 20 wks 

of treatment (Collette and Doze, unpublished).  

A two-way ANOVA showed a difference in water intake between groups [F(1, 273) = 

12.84, p < 0.0009] and over time [F(7, 273) = 13.97, p < 0.0001]. Post-hoc testing revealed 

that cirazoline-treated mice drank less water on Weeks 2-8 (Figure 24). The estimated daily 
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dose for cirazoline, based on water intake, was 0.4 mg/day. There was a main effect of 

treatment on the amount of water drank when analyzed for sex differences [F(1, 37) = 1.44, 

p = 0.03]. There was not a main effect of sex [F(1, 37) = 1.44, p = 0.23] and there was an 

interaction between treatment and sex [F(1, 37) = 19.03, p < 0.0001]. The interaction makes 

the results difficult to interpret. However, a Bonferroni post-hoc test showed that 

cirazoline-treated female mice drank less water than female control mice (p < 0.0001). 

Survival 

The total number of BrdU+ cells surviving after four weeks was not significantly 

different between groups [U(70, 100) = 22.50, p = 0.22, Figure 25A]. This suggests that 

α1AAR activation does not affect cell survival.  

Differentiation 

Immature neurons. The total number of DCX+ cells was not significantly different 

between control and cirazoline-treated groups [t(5) = 2.11, p = 0.08, Figure 25B]. However, 

the effect size was very large (Cohen’s d = 1.22). The variability in the control group was 

much higher (95% confidence intervals: control 14,065 - 46,701 vs cirazoline: 10,731 - 

21,887). The high variability could likely be resolved with a higher number of animals, 

clarifying the results. 

BrdU+DCX+ cells, adult-created cells in the immature neuron stage four weeks post-

BrdU, was not statistically different [t(5) = 1.94, p = 0.10, Figure 25C]. Again, the effect size 

was large (Cohen’s d = 1.12) and confidence interval was larger in the control group (301 - 

730) than the treated group (304 - 396). The percentage of double-labeled cells was also not 

different [U(44, 34) = 13.00, p = 0.46, Figure 25D]. 
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Figure 24. Water intake and body weight. A) Cirazoline-treated mice drank significantly less water 
than control mice after Week 1 but B) body weight did not differ between the groups (p = 0.74). *p < 
0.05, **p < 0.01 

 

Mature neurons. There was no difference between control and cirazoline-treated 

mice in the total number [U(43.5, 34.5) = 13.50, p = 0.52, Figure 26A] or percent [U(47.5, 

30.5) = 9.50, p = 0.19, Figure 26B] of BrdU+NeuN+ mature neurons after 4 wk. The 

percentage of new cells differentiating into neurons was similar to previous research 

(Steiner et al., 2004; Kempermann and Gage, 2002). These results suggest that cirazoline 
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Figure 25. Immature neurons. A) There was no difference in the total number of BrdU+ cells (p = 
0.22). B) There was also no statistically significant difference between groups in the total number of 
DCX+ cells (p = 0.08). However, C) there was a large effect size, but no significant difference in the 
number of double-labeled BrdU+DCX+ cells in the cirazoline group (p = 0.04) and D) the percent of 
BrdU+DCX+ cells was not different (0.46). Representative images are shown for E) control and F) 
cirazoline-treated animals. Arrowheads show double-labeled cells, arrows show single-labeled BrdU 
cells.  
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Figure 26. Mature neurons. There was no difference between control and cirazoline-treated mice in 
the A) total number (p = 0.52) or B) percent (p = 0.19) of BrdU+NeuN+ cells after 4 wk. 
Representative images are shown for C) control and D) cirazoline groups. Arrowhead shows double-
labeled cells, arrow shows single-labeled BrdU cells. 
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treatment does not change the number or percent of new cells that differentiate into 

mature neurons. 

Astrocytes 

Chromogen. There was no statistical difference between control and cirazoline-

treated groups in the total number of BrdU+GFAP+ cells 4 wks post-BrdU [U(54, 99) = 33.00, 

p = 0.95, Figure 27A]. There was also no difference in the percent of double-labeled cells 

[U(56, 80) = 25.00, p = 0.63, Figure 27B].  

Fluorescence. There was no difference in the number of BrdU+GFAP+ cells when 

counted in fluorescence [t(10) = 7.13, p = 0.49, Figure 27C]. There was also no difference in 

the percentage of new astrocytes [U(38, 40) = 17.00, p = 0.93, Figure 27D]. The average 

percent of new GFAP+ SGZ cells is commonly 10-12 percent (Steiner et al., 2004). In both 

control and cirazoline-treated mice in chromogen and fluorescence, we found only 4-5 

percent of new cells 4 wks after BrdU were GFAP+ astrocytes. These results suggest that 

chronic α1AAR activation via cirazoline does not change the number or percent of new cells 

that differentiate into mature astrocytes. 

Discussion 

Our results show there is no change in survival or differentiation of new cells in the 

adult mouse dentate gyrus after treatment with the α1AAR agonist cirazoline. Previously, in 

vitro culture with adult-derived neurospheres from the SVZ induced cells to differentiate 

into glial cells (Gupta et al., 2009). SVZ-derived and SGZ-derived neurospheres, theoretically, 

should both be the same type of neural stem cell therefore culturing and reacting to stimuli  
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Figure 27. Mature astrocytes. With chromogen labeling and counting in brightfield with stereology, 
there was no statistically significant difference between control and cirazoline-treated groups in the 
A) total number of BrdU+GFAP+ cells (p = 0.95) or the B) percent of cells double-labeled 4 wks after 
BrdU injection (p = 0.63). Similarly, there was no difference between groups in the C) number (p = 
0.49) or D) percent (p = 0.93) of matured astrocytes when counted in epifluorescence without 
stereology. Representative images are shown for E) control and F) cirazoline mice. Arrowhead shows 
double-labeled cells, arrow shows single-labeled BrdU cells. 
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similarly. However, the SGZ-derived neurospheres may have responded differently. Some 

labs have claimed to culture SGZ-derived cells without contamination from the nearby SVZ 

but it is currently controversial (Walker and Kempermann, 2014; Devesa et al., 2014; Jhaveri 

et al., 2014). One study treated SGZ-derived neurospheres with cirazoline or prazosin and 

did not show a difference in the proportion of cells differentiating into neurons (βIII-tubulin) 

or astrocytes (GFAP) (Jhaveri et al., 2014). This report did not assess differentiation in vivo. 

The lack of a change in the number or percent of BrdU+ cells after 4 wks suggests 

that α1AAR treatment does not increase, and may decrease, cell survival. Sixty percent of 

newly generated cells in the adult mouse do not survive past two wks (Dayer et al., 2003). 

An assay of activated caspase 3 (AC3) or TUNEL for apoptotic cell death would be another 

way to assess cell survival. It is possible that α1AAR activation could be inducing division of 

neural stem cells rather than neural progenitor cells. In that case, it is possible the stem cell 

pool was exhausted leading to an apparent decrease in survival (Ables et al., 2010). To 

address this, Nestin GFP mice could be used to count Type 1 (NSC) and Type 2 (NPC) cells by 

morphology and determine whether Type 1 cells are decreased after chronic α1AAR 

activation.  

In addition, we previously showed that cirazoline treatment increases the density of 

BrdU+ cells in the adult mouse dentate gyrus, which could have confounded our results in 

the current study (Gupta et al., 2009). Because cirazoline treatment began 4 wks prior to 

BrdU injection, a higher number of proliferating cells in the cirazoline-treated group were 

likely labeled. The percentage of cells labeled with both BrdU and DCX partially addresses 

this and boosts the finding that α1AAR activation did not affect cell survival. To confirm, 
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future studies should include a paradigm in which control and cirazoline-treated groups are 

injected with BrdU at a 2 hr timepoint and a separate cohort of mice injected and allowed 

to survive for 4 wks. Comparison of the number of BrdU+ cells at 2 hr and 4 wks would 

better address the question of whether α1AAR activation influences cell survival.  

DCX is often used as a proxy for BrdU as a measure of proliferation because it labels 

only immature neurons. Surprisingly, there was no difference in the number of DCX+ cells in 

the cirazoline-treated group. There was, in fact, a trend toward fewer DCX+ cells after α1AAR 

treatment and the effect size of these results was very large. Additional control animals to 

reduce the variability in that group would clarify these findings.  

Our previous work showed a higher density of BrdU+ cells in the SGZ. For a better 

comparison, density of DCX+ cells in the current samples could be analyzed but would 

require confocal-quality fluorescent imaging of the samples to accurately determine the 

dentate gyrus volume. Another possibility is that chronic cirazoline treatment accelerated 

the maturation of new cells which resulted in lower numbers of DCX+ cells after 4 wks (David 

et al., 2009; Wang et al., 2008). If that was the case, we would expect a higher number of 

either mature neurons or astrocytes, which was not seen. It is also possible that 

differentiation of the immature neurons was stunted, keeping them in an immature state. 

Approximately 25 percent of adult-born cells are of an unknown phenotype so there is a 

remote possibility that cirazoline increased cell fate toward an unknown phenotype. As yet, 

it is not possible to answer this question. 

Our hypothesis was that cirazoline would push differentiation toward astrocytes 

rather than neurons. There was no difference in the number or percent of cells that were 
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BrdU+GFAP+ vs BrdU+NeuN+. The percent of new neurons was similar to published research 

but the percent of new GFAP+ astrocytes was half of what previous studies have found. This 

could be due to the difficulty of quantifying double-labeling of BrdU and GFAP in brightfield 

and epifluorescence. Imaging with confocal-like quality would alleviate this issue. To confirm 

the finding of astrocytes, double-labeling for BrdU and S100β would be informative. Most 

GFAP+ cells 4 wks after BrdU administration are also S100β+ (Steiner et al., 2004). In 

addition, S100β does not label neural stem cells, which may provide a more accurate 

assessment of differentiated cells.  

The results of the current study are interesting and important despite the lack of 

statistical significance. The large effect size of the DCX results coupled with the trend toward 

fewer BrdU+DCX+ cells implies a potential effect of chronic α1AAR activation on the rate of 

differentiation. Coupled with our previous work showing an increase in the density of BrdU+ 

cells in the SGZ of CAM-α1AAR mice, this could mean that the proliferating cells are kept in 

the immature neuron state rather than continuing through differentiation. In recent years, 

the field of adult neurogenesis and learning has shown an importance for adult-born cells 

not surviving past the first few weeks (Denny et al., 2012; Drew et al., 2013). These new cells 

have increased plasticity and are important for retaining memories, particularly during 

pattern separation. If chronic α1AAR activation is indeed keeping cells in this immature state, 

it could potentially explain the enhancements in learning and memory we have previously 

reported (Doze et al., 2011).  

Overall, our results suggest that α1AAR activation does not affect survival or the final 

cell fate in the adult mouse dentate gyrus during adult neurogenesis. In the future, 
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additional animals and the proposed experiments could clarify the effect of cirazoline on cell 

survival and differentiation. 
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CHAPTER 5 

 

LONG-TERM ALPHA1B-ADRENERGIC RECEPTOR ACTIVATION SHORTENS LIFESPAN WHILE 

ALPHA1A-ADRENERGIC RECEPTOR STIMULATION PROLONGS LIFESPAN IN ASSOCIATION 

WITH DECREASED CANCER INCIDENCE 

 

Abstract 

The α1-adrenergic receptor (α1AR) subtypes, α1AAR and α1BAR, have differential 

effects in the heart and central nervous system. Long-term stimulation of the α1AAR subtype 

prolongs lifespan and provides cardio- and neuro-protective effects. We examined the 

lifespan of CAM-α1BAR mice and the incidence of cancer in mice expressing the 

constitutively active mutant (CAM) form of either the α1AAR (CAM-α1AAR mice) or α1BAR. 

CAM-α1BAR mice have a significantly shortened lifespan when compared with wild type 

(WT) animals; however, the effect was sex dependent. Female CAM-α1BAR mice lived 

significantly shorter lives while the median lifespan of male CAM-α1BAR mice was not 

different when compared with WT animals. There was no difference in the incidence of 

cancer in either sex of CAM-α1BAR mice. The incidence of cancer was significantly decreased 

in CAM-α1AAR mice when compared with WT and no sex dependent effects were observed. 

Further study is warranted on cancer incidence after activation of each α1AR subtype and 

the effect of sex on lifespan following activation of the α1BAR. The implications of a 

decrease in cancer incidence following long-term α1AAR stimulation could lead to improved 

treatments for cancer. 
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Introduction 

Epinephrine and norepinephrine are catecholamines that act as chemical 

messengers. They are synthesized in the adrenal medulla and in adrenergic neurons in the 

brain, respectively, as well as in post-ganglionic neurons in the sympathetic nervous system. 

In the periphery, both epinephrine and norepinephrine help regulate heart rate and blood 

vessel constriction and modulate the force of heart contraction and physiological arousal. 

When stressed, the body releases both chemicals to mediate the fight-or-flight response. All 

of these effects are a result of epinephrine or norepinephrine binding to adrenergic 

receptors (ARs), of which there are three families: α1, α2, and β.  

Our lab has found differential effects of activating either the α1A or α1BAR subtype. 

Long-term stimulation of the α1AAR, either pharmacologically or through transgenic 

manipulation, increases adult neurogenesis, reduces depression and anxiety-like behavior, 

and enhances learning and memory in the mouse (Gupta et al., 2009; Doze et al., 2011, 

2009). Mice with a constitutively active mutant form of the α1AAR (CAM-α1AAR) also live 

significantly longer lives when compared with wild type (WT) animals of the same 

background (Doze et al., 2011). In contrast, chronic activation of the α1BAR increases 

depression-like behavior (Doze et al. 2009). Chronic α1BAR activity also leads to age-related 

apoptotic neurodegeneration, a synucleinopathy with Parkinson-like movement deficits 

similar to human multiple system atrophy (Papay et al., 2002; Zuscik et al., 2000). The 

neurodegeneration begins in areas of the brain with a high density of α1BARs and leads to a 

substantial loss of dopaminergic neurons in the substantia nigra. The α1AR-selective 

antagonist terazosin protects against α-synuclein aggregates, neurodegeneration, and 
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partially rescues the movement deficits. Terazosin treatment also ameliorated the α1BAR 

activation’s detrimental effect on early mortality; however, animals were only followed up 

to 70 wks of age. Taken together, these results suggest the α1AR subtypes mediate 

neurogenesis and neurodegeneration which is in line with their role in proliferation in the 

peripheral nervous system.  

The α1ARs can mediate proliferation and cell growth in the periphery (Michelotti et 

al., 2000; Hoffman and Hu, 2000). α1AR activation stimulates DNA synthesis in human 

vascular smooth muscle cells through a PI3 kinase and MAPK pathway (Hu et al., 1996; 

Hoffman and Hu, 2000). It also induces the expression of the proto-oncogenes c-fos and c-

jun in arterial smooth muscle (Okazaki et al., 1994). In a Rat-1 fibroblast microarray, the 

α1AR subtypes preferentially induced transcription of genes that regulate the cell cycle 

(Gonzalez-Cabrera et al., 2004). The microarray results suggested α1A and α1DARs halt the 

cell cycle at the G1-S checkpoint. α1BAR expression led to cell cycle progression through the 

G1-S checkpoint by inducing transcription of cdk-6- and cyclin E-associated kinases. This cell 

cycle progression is evident in Rat-1 and NIH-3T3 fibroblast cells transfected with α1BARs 

which enhances focus formation after agonist stimulation. The cells are also tumorigenic 

when injected into nude mice, implicating the gene as a potential proto-oncogene (Allen et 

al., 1991; Gonzalez-Cabrera et al., 2004). That is the only study to date that has examined in 

vivo tumor formation mediated by the α1AR subtypes. The role of the α1AAR subtype in 

cancer incidence has not been examined prior to the current study. 

Our hypothesis was that long-term transgenic activation of the α1A and α1BARs 

would lead to a decrease and increase in the incidence of cancer, respectively. It was 
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expected that chronic activation of the α1BAR would lead to a shorter lifespan due to cancer 

and neurodegeneration. In this study, we followed transgenic mice overexpressing the α1A 

or α1BAR throughout their lifespan. We also completed necropsy on subsets of each group 

to assess cancer incidence. Surprisingly, we found that chronic α1BAR activation had no 

significant effect on cancer but did reduce longevity, presumably secondary to increased 

neurodegeneration. Importantly, we observed that long-term α1AAR stimulation was 

associated with a significantly lower incidence of cancer and longer lifespan. 

Methods 

Animals 

This study used transgenic mice overexpressing a constitutively active mutant (CAM) 

form of either the α1A or α1BAR that were created on a B6CBA background. The CAM 

receptor genes were expressed under the endogenous promoters and the animals have 

been previously characterized (Zuscik et al., 2000; Rorabaugh et al., 2005). The longevity 

part of the study included 235 mice and the pathology study included 157 mice with some 

overlap. Animals were bred and provided with identifying ear tags at the Cleveland Clinic 

Foundation and transferred to the University of North Dakota. Both facilities are accredited 

by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). 

The experimental protocols employed in this study conform to the Guide for the Care and 

Use of Laboratory Animals, published by the US National Institutes of Health, and were 

approved by the Animal Care and Use Committee at both institutions.  

Mice were housed in translucent, polycarbonate boxes, 17 × 28 × 13 cm, 1-5 mice 

per box with one rodent clubhouse. Animals were maintained on a 12 h light-dark cycle 
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with lights on at 0700. Harlan diet 8640 and water were provided ad libitum (Harlan, 

Indianapolis, IN). The temperature was held constant at 22 °C and the humidity at 23-27%.  

Longevity 

Animals were observed daily by facility personnel but handled only for cage changes 

and clinical assessments. All staff members who observed and handled the mice were 

trained to detect and record signs of illness and notified the veterinarian and research team 

immediately regarding sick animals. The veterinarian and researchers examined the mice 

for severity of illness or impairment and animals were euthanized if they were not likely to 

survive for another 48 h. The likelihood of survival was based on the occurrence of at least 

two of the following clinical signs set forth by The Jackson Laboratory (Yuan et al., 2009). 

The signs included: failure to drink or eat; extreme weight loss over a short period of time; 

severe weakness based on responsiveness to touch; serious locomotor impairments; or 

tumors that had ulcerated or were bleeding (Ray et al., 2010). The date of death for each 

mouse was logged and the number of days lived was calculated and used for analysis. The 

mean age at death for the euthanized mice was not significantly different from the mice 

which died spontaneously, therefore euthanized mice were included in the analysis.  

Pathology 

Mice were removed from their cages as soon as possible after death and frozen at -

20 °C until pathological analysis. Animals sacrificed at a younger age were included in the 

analysis to increase statistical power (See Appendix A for further information). At necropsy, 

the mice were visually inspected and the exterior palpated to assess skin condition and any 

outward signs of abscess, disease, or tumors. The abdomen and thoracic cavities were 



96 
 

opened and organs inspected and removed. Tumors were digitally photographed in situ and 

after removal with a measurement scale clearly visible. Samples of the heart, lungs, spleen, 

kidney, liver, and intestine were immersion-fixed in neutral buffered 10% formalin for at 

least 24 h. Samples were dehydrated in graded ethanol, cleared in xylene, infiltrated, and 

paraffin embedded. Serial sections were cut at 3-5 μm, stained with hematoxylin and eosin, 

and evaluated for cancerous cells on a Carl Zeiss Axioskop 50 microscope (Zeiss, Germany). 

Classification of tumors was based on the current World Health Organization Classification 

of Tumors with modifications, as needed, for mouse tissue. The primary diagnosis for each 

animal was used for analysis; tumor burden was not assessed.  

Statistical Analysis 

Survival was analyzed using Kaplan Meier survival curves and the log-rank (Mantel-

Cox) test with GraphPad Prism 5.04 (San Diego, CA). The median lifespan was the point at 

which the fractional survival of each curve equaled 50 percent. Cancer incidence was 

analyzed using a 2 test on raw data but is presented as percentages for clarity. Mice still 

alive at the end of the study were interval-censored. An unpaired t-test was used for 

comparison of maximal lifespan. Significance levels were set at p < 0.05. 

Results 

Chronic Activation of the α1BAR Leads to Decreased Body Weight Starting During Middle 
Age While Long-Term α1AAR Stimulation Does Not Affect Adult Weight 

 
We weighed cohorts of mice at various ages to rule out increased lifespan due to 

caloric restriction because acute activation of the α1AAR can suppress appetite (Davies and 

Wellman, 1992; Morien et al., 1993). Just after weaning, CAM-α1AAR (p < 0.05) and CAM-

α1BAR mice (p < 0.001) weighed significantly less than WT mice (Figure 28). Between the 2nd 
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Figure 28. Weight across the lifespan. CAM-α1BAR mice weighed significantly less than WT mice at 
most time points after 9 mo of age * p < 0.05, ** p < 0.01, *** p < 0.001 

 

mo and the end of the 8th mo of age there were no significant differences in weight 

between groups. However, CAM-α1BAR animals weighed significantly less when compared 

with WT mice starting at approximately 9 mo of age. The 21-24 mo age range had a low 

number of CAM-α1BAR animals and no significant differences in weight were observed.  

CAM-α1AAR Mice Have an Increased Lifespan While CAM-α1BAR Mice Have Shorter Lives 

We previously reported that CAM-α1AAR mice have a significant increase in median 

and maximal lifespan when compared with WT animals (Doze et al., 2011). The CAM-α1AAR 

longevity data included here is the previously published data and is included only for 

comparison. There was no significant difference between lifespans of previously published 

WT animals and WT mice that have died since; therefore, both groups are included here to 
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provide statistical power (Figure 29, Table 3, Appendix A). Comparison of WT mice excluding 

previously published data and CAM-α1BAR mice can be found in Appendix A.  

Within the WT group, there was no significant difference between female (711 d) 

and male mice (721 d, 2 = 2.300, df = 1, p = 0.129). The median lifespan of CAM-α1BAR mice 

(637 d) was significantly shorter than WT animals (719 d, 2 = 7.194, df = 1, p = 0.007), a 

decrease of approximately 11% (Figure 29, Table 3). There was no significant difference in 

lifespan between the male CAM-α1BAR mice (652 d) and male WT animals (721 d, 2 =0.251, 

df = 1, p = 0.616). Female CAM-α1BAR mice (619 d) lived significantly shorter lives than 

female WT animals (711 d, 2 = 9.415, df = 1, p = 0.002).  

Maximal lifespan is an index of slowed aging and is calculated by comparing the ages 

of the 10% longest living mice in each group. The maximal lifespan of CAM-α1BAR mice was  

significantly shorter than WT mice (p = 0.025). Female CAM-α1BAR mice had a significantly 

shorter maximal lifespan than female WT animals (p = 0.009). However, the maximal 

lifespan of male CAM-α1BAR mice was significantly increased when compared with male WT 

mice (p = 0.004).  

The sigmoidal shape of all three survival curves suggests deaths were not due to a 

terminal infectious agent or a disease causing rapid death (Van Zwieten et al., 1981). The 

CAM-α1BAR curve begins to deviate from the WT curve at approximately 9-10 mo (270-300 

d) of age suggesting normal development to that point. The longest living CAM-α1BAR 

animals lived to similar ages as WT animals, likely due to incomplete penetrance of the 
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Figure 29. Kaplan-Meier survival plots. CAM-α1BAR mice (n = 87) have a shorter lifespan than WT 
mice (n = 112, p = 0.007). As previously published, CAM-α1AAR animals (n = 36) live significantly 
longer than WT mice (p = 0.004) (Doze et al., 2011). 
 

transgene in those animals. Similarly, the CAM-α1AAR curve shifts closer to WT at the end of 

life stage.  

Chronic α1BAR Stimulation Has No Significant Effect on the Incidence of Cancer While 
Activating α1AARs Decreases Cancer Incidence 

 
The overall cancer incidence between CAM-α1BAR (n = 34) and WT mice (n = 70) did 

not differ (2 = 0.1242, df 1, p = 0.7245, Figure 30). In contrast, CAM-α1AAR mice (n = 53) 

had a significantly lower overall incidence of cancer than WT animals (n = 70) (2 = 17.83, df 

1, p < 0.0001). There was no significant difference in cancer incidence between male and 

female animals for any of the groups.  

The most common diagnoses among WT mice were epithelial and hematological 

cancers (Table 4). CAM-α1AAR and CAM-α1BAR animals had a similar incidence for the type  
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Table 3. Lifespan data of CAM-α1BAR, WT, and CAM-α1AAR mice 
 

Genotype Median 
(d) 

Mean 
(d) 

S.D. 
(d) 

S.E.M.  
(d) 

95% CI  
(d) 

90th Percentile 
(d) 

Deaths 
(n) 

        

CAM-α1BAR 637 617 200 21 575 - 660 890 87 

Male 652 635 204 29 576 - 694 907 48 

Female 619 595 196 31 532 - 659 882 39 

        

Wild type 719 689 203 19 651 - 727 912 112 

Male 721 674 195 28 618 - 729 875 50 

Female 711 701 210 27 648 - 754 932 62 

        

CAM-α1AAR 819 806 146 24 757 - 856 982 36 

Male 822 821 150 35 746 - 895 999 18 

Female 819 792 145 34 720 - 864 928 18 

 

of cancers as WT mice. Epithelial cancers included adenocarcinoma of the lung, renal cell 

carcinoma, hepatocellular carcinoma, and neuroendocrine carcinoma. Hematological 

cancers included lymphoma and leukemia involving various organs. The only mesenchymal 

cancer was spindle cell sarcoma. Non-cancerous epithelial lesions included hepatocellular  

and small intestine adenomas and one case of hepatocellular hyperplasia. The only non-

cancerous hematological finding was lymphoid hyperplasia. Mesenchymal tumors included 

hemangioma and a non-cancerous fibroma. Non-tumor lesions included pathologies such as 

pulmonary edema, chronic inflammation, glomerular disease, cardiomyopathy, and heart 

thrombi. Representative images of common diagnoses are shown in Figure 31.
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Figure 30. Cancer incidence. CAM-α1AAR (n = 53) mice had a significantly lower incidence of cancer 
when compared with WT animals (n = 70, p < 0.0001). The incidence of cancer in CAM-α1BAR mice 
did not differ from that of WT mice (n = 34, p = 0.7245). 

 

Discussion 

It is well documented that caloric restriction increases lifespan in many species 

including rodents (Reviewed in Masoro, 2005). Injection of α1AR agonists systemically or 

into the paraventricular nucleus of the hypothalamus can cause appetite suppression in 

acute studies (Davies and Wellman, 1992; Morien et al., 1993). In our lab, long-term 

treatment (8-9 wks) with cirazoline, an α1AAR-selective agonist, has not reduced food or 

water intake nor reduced body weight (Doze, Goldenstein, and Collette, unpublished data). 

To our knowledge, food intake has not been studied in CAM-α1AAR or CAM-α1BAR mice. 

However, because even modest caloric restriction can reduce body weight we weighed 

cohorts of mice to determine whether transgenic activation of either α1AR subtype 

decreased body weight with a subsequent increase in lifespan (Colman et al., 2009). There 
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Table 4. Pathology of WT, CAM-α1AAR, and CAM-α1BAR mice at death 
 

 
B6CBA WT  

(n = 70) 
CAM-α1AAR  

(n = 53) 
CAM-α1BAR  

(n = 34) 

 
Cancerous 

 
45.7% (32) 

 
13.2% (7) 

 
38.2% (13) 

 Epithelial 25.7% (18) 5.7% (3) 23.5% (8) 

 Hematological 18.6% (13) 7.5% (4) 8.8% (3) 

 Mesenchymal 1.4% (1) 0.0% (0) 5.9% (2) 

 
Noncancerous 

 
54.3% (38) 

 
86.8% (46) 

 
61.8% (21) 

 Benign tumor    

 Epithelial 7.1% (5) 3.8% (2) 0.0% (0) 

 Hematological 2.9% (2) 3.8% (2) 11.8% (4) 

 Mesenchymal 0.0% (0) 3.8% (2) 2.9% (1) 

 Non-tumor lesions 35.7% (25) 49.1% (26) 35.3% (12) 

 No abnormal findings 8.6% (6) 26.4% (14) 11.8% (4) 

 

was no difference in body weight between CAM-α1AAR and WT mice except one timepoint 

after weaning. Body weight of the CAM-α1BAR animals was significantly lower when 

compared with WT mice after weaning and again after approximately 9 mo of age. 

However, the lifespan of CAM-α1BAR mice was decreased rather than increased so the 

effect was not positive on lifespan. Food intake was not assessed during the longevity study 

so we cannot definitively conclude that the α1AAR-stimulated lifespan increase was not 

through a caloric reduction mechanism but it seems unlikely because the CAM-α1AAR 

animals were of normal weight. 
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Figure 31. Representative photomicrographs of the most common pathological findings at death. A) 
Pulmonary edema in a CAM-α1AAR mouse, B) lymphoma in a WT mouse, C) adenocarcinoma in a WT 
mouse, and D) lymphoma of the lung in a CAM-α1BAR mouse. 

 

Previous studies of increased lifespan in mouse found a 15-80 percent extension, 

depending on the intervention (Blüher et al., 2003; Brown-Borg et al., 1996). Shortened 

lifespan is not reported as often but in certain transgenic models death in utero or within 

the early postnatal period is not uncommon if the mutated gene is involved in critical 

developmental processes (Thyagarajan et al., 2003). In our study, CAM-α1BAR mice had an 

11 percent decrease in lifespan when compared with WT animals but the cause of the 

decrease is still unknown. Some genetic models with shortened lifespan showed 
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accelerated aging or increased cancer incidence with subsequent lifespan decreases of 25-

50 percent (Rudolph et al., 1999; Keyes et al., 2005). We observed signs of accelerated aging 

including reduced body weight, alopecia, and spine curvature in our model but did not 

examine other factors such as bone density or cellular senescence (de Boer et al., 2002; Sun 

et al., 2004). Cancer incidence was similar to WT mice. Another factor which must be 

considered in mouse models of aging is the background strain because the baseline lifespan 

is variable. 

There have not been any studies yet on the lifespan of the B6CBA mouse, which is a 

cross between the C57BL/6 and CBA strains. The median age of C57BL/6 mice varies 

depending upon environment but ranges from 682-930 d (Ikeno et al. 2005; Selman and 

Withers 2011, and Reviewed in Nadon et al. 2008). In a study of 31 inbred strains at Jackson 

Labs, C57BL/6J mice had median ages of 866 d for males and 901 d for females (Yuan et al., 

2009). In the same study, CBA/J mice had median ages of 679 d for males and 644 d for 

females. Our WT B6CBA animals had a median age of 719 d, which is between the two 

strains, but slightly closer to the CBA/J median age.  

Prior to this work, survival had been assessed in CAM-α1BAR mice, then called T1 

mice, for up to 70 wks (Papay et al., 2002). However, no previous studies followed all 

animals until the natural date of death. In the current study, the survival of CAM-α1BAR 

animals began to deviate from WT mice at approximately 9 mo of age, the timing of which 

coincides with the pathological appearance of neurodegeneration and the age at which 

body weight begins to differ (Papay et al., 2002). The α1AR antagonist terazosin protects 

these mice against the weight loss and neurodegeneration. Terazosin also increased survival 
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rates in the T1 mice but the animals were not followed until natural death so the effect of 

terazosin on full lifespan is unknown. The combination of that study and the current results 

suggest the effects of α1BAR over-activation can cause a shortened lifespan. The α-

synucleinopathy induced by chronic activation of α1BARs is similar to multiple system 

atrophy (Zuscik et al., 2000; Papp et al., 1989). Multiple system atrophy can lead to early 

death in humans by sudden cardiopulmonary arrest or pneumonia (Papapetropoulos et al., 

2007). In our study, there was no increased incidence of either event in CAM-α1BAR mice. 

The mechanism by which α1BAR activation can decrease lifespan is still unknown. 

The sex differences in median and maximal lifespan in CAM-α1BAR mice were an 

unexpected result, particularly because cancer incidence was not different for either sex. 

However, we did not examine cancer progression over time, which could have clarified 

whether cancer in the female mice was more aggressive with a quicker latency to death. We 

have not found sex differences in other studies using the CAM-α1BAR mice (Doze et al., 

2009). There is a dearth of data on sex differences in general in the scientific literature and 

only one published study on sex differences in relation to the adrenergic receptors 

(Novakova et al., 2010). In this report, female mice had higher basal α1AR receptor densities 

in the lung and immobilization stress decreased the level of all three α1AR subtypes. In male 

mice, only the α1AAR level was decreased following stress. In the current study, shortened 

lifespan in the female CAM-α1BAR animals may have involved hormonal changes mediated 

by the α1BAR. There are noradrenergic innervations to the breast and ovarian follicles, 

where norepinephrine release can increase the levels of estradiol and progesterone and a 

decrease of sympathetic input can slow tumor growth (Romeo et al., 1991; Piccinato et al., 
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2012). Furthermore, the norepinephrine reuptake inhibitor desipramine promotes breast 

cancer progression with α2AR activation however, phenylephrine, a non-selective α1AR 

agonist, did not have an effect (Szpunar et al. 2013). It’s possible the α1BAR is involved in 

hormone-related cancer progression but further work should be done to clarify if there is a 

role for the receptor. 

The decrease in lifespan in the CAM-α1BAR mice is unlikely due to heart failure, 

which is not present in this mouse model. While animal studies suggest that chronic 

activation of the α1BAR subtype may be “bad” or maladaptive for the heart, the amount of 

dysfunction does not lead to heart failure if overexpression is more physiologically relevant 

or the heart is not stress-induced. CAM-α1BAR mice also have a mild cardiac hypertrophy, 

decreased cardiac output, some diastolic dysfunction, and inflammation. These conditions 

did not, however, progress to heart failure on their own (Zuscik et al., 2001; Yun et al., 

2003). Other groups have demonstrated that myocyte-targeted CAM-α1BAR also induces a 

mild hypertrophy when the receptor is only overexpressed 3-fold or less, as it is in our 

mouse model, but only progressed to heart failure after blood pressure overload (Milano et 

al., 1994). Therefore, chronic stimulation of the 1BAR leads to hypertrophy and some 

cardiac dysfunction but only induces heart failure when the receptor is artificially 

overloaded. As this aging study only used non-stressed mice, it is unlikely that CAM-α1BAR 

mice die younger because of heart failure. Furthermore, in the present study one case of 

heart-related dysfunction was noted in CAM-α1BAR mice, a heart thrombus. 

On the other hand, previous studies have suggested the CAM-α1AAR mice are cardio-

protected, which may contribute to its increased longevity (Reviewed in Perez and Doze 
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2011). While CAM-α1AAR mice also display cardiac hypertrophy as in CAM-α1BAR mice, 

α1AAR activation results in positive adaptation of the heart to protect against ischemic 

damage through preconditioning via cardiac protective IL-6 and JAK/STAT pathways or by 

preventing apoptosis due to increased glucose uptake (Rorabaugh et al. 2005; Papay et al. 

2013, Perez, unpublished data). In the current study, one case of heart dysfunction was 

found in CAM-α1AAR mice: endocarditis/ myocarditis. 

The decrease in lifespan in CAM-α1BAR mice does not appear to be due to an 

increase in cancer incidence. In vitro, α1BAR overexpression and activation results in focus 

formations (Allen et al., 1991). In addition, the cells form tumors when injected into 

immune-compromised mice. Due to the tumorigenic quality of transplanted α1BAR-

expressing cells, we hypothesized CAM-α1BAR mice would have an increased incidence of 

cancer. Surprisingly, there was no significant difference in cancer incidence between CAM-

α1BAR mice and WT animals. The α1BAR can regulate the cell cycle through cdk-6 and cyclin 

E-associated kinases but the α1BAR effect on proliferation may be cell type specific 

(Gonzalez-Cabrera et al., 2004). For example, in CHO cells transfected with the α1BAR the 

cell cycle was stopped when activated by phenylephrine (Shibata et al., 2003). In TRAMP 

cells which expressed mostly the α1BAR subtype, doubling time was faster with decreasing 

α1BAR and increasing α1AAR and α1DAR expression (Shi et al., 2007). However, the cancerous 

state is highly complex and does not solely depend on a dysregulation of the cell cycle. Ours 

is the first study to explore the effect of α1BAR activation in cancer in an immunocompetent 

mouse strain.  
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In most cell types studied, the α1AAR subtype increases the levels of the cdk inhibitor 

p27Kip1 and halts the cell cycle at the G1-S checkpoint (Gonzalez-Cabrera et al., 2004; 

Saeed et al., 2004; Shibata et al., 2003). In our study, there was a significant reduction in 

cancer incidence in CAM-α1AAR mice, which could be due to this cell cycle stoppage. The cell 

type specificity of α1AR subtype localization, downstream pathways, and subsequently 

physiological effects are imperative to the mechanism behind the reduction. For example, in 

human prostate cancer cells, the α1AR selective antagonist naftopidil stops growth through 

the same mechanism by which agonists halt the cycle, via p27Kip1 (Kanda et al., 2008). 

These contradictions are perplexing much as contradictory studies were prior to the 

delineation of the three α1AR subtypes. The answers may lie in the regulators of G-protein 

signaling (RGS), reactive oxygen species, and cell type specific downstream effects 

(Abramow-Newerly et al., 2006; Hu et al., 1999; Shi et al., 2006).  

Previous studies have implicated other ARs in longevity function, but these studies 

indicated shortened lifespan due to disease onset rather than increased lifespan. β2ARs 

promote aging and reduced lifespan mostly due to adverse effects on cardiac and 

pulmonary functions and its age-related impairment to regulate insulin secretion (Gao et al., 

2003; Santulli and Iaccarino, 2013; Santulli et al., 2012). However, it could also be due to 

polymorphisms in the receptor. For example, one study compared β2AR polymorphisms and 

found two variants that were associated with increased longevity in the Han Chinese 

population (Zhao et al., 2012). These polymorphisms reduced translational efficiency and 

receptor expression in transfected cells suggesting that decreased β2AR function promoted 
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longevity. In contrast, our results are the first to report that increasing AR activity would 

promote a longer lifespan, but specifically through the α1AAR subtype. 

Human longevity has continued to increase as sanitation, healthcare, and modern 

medicine have evolved. Ideally, increased longevity will also translate into improved health 

in later years. Cancer is one of the leading causes of death worldwide with approximately 

50% of cases occurring in persons older than 65 years of age. Current therapeutics are not 

ideal because they kill all dividing cells indiscriminately which can lead to uncomfortable 

and dangerous side effects. Preferential activation of the α1BAR subtype has negative effects 

in the heart and brain and may increase proliferation in some cell types, while stimulating 

the α1AAR shows positive effects in these areas. The current work is the first to show that 

chronic activation of the α1BAR can shorten lifespan. Whether this is due to accelerated 

neurodegeneration and/or other disease process(es) is still unknown. Importantly, we 

found that long-term α1AAR stimulation significantly decreases cancer incidence which may 

account in part for our previous finding that it increases lifespan. While more work is 

needed, it is clear that activating the α1AR subtypes leads to differential effects. α1AAR 

subtype-specific therapeutics may lead to improved cancer therapeutics with fewer adverse 

effects.  
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CHAPTER 6 

DISCUSSION 

There are several key findings herein on the role of α1AR subtypes in brain, and 

potentially peripheral, function. α1AAR activation does not influence survival and cell fate 

during adult neurogenesis. However, it does affect survival at the systemic level by 

increasing median and maximal longevity. Behaviorally, the lack of α1AAR function does not 

reliably change levels of anxiety or depression in relation to WT mice. In slightly older α1AR 

mice, anxiety levels are higher in the zero maze if the mice have not had seizures. Lack of 

α1BAR function reduces depression-like behavior but does not change anxiety-like behavior 

when compared with WT. Both KO groups had deficits in novel object recognition based on 

their memory of the original object failing to be higher than chance level. Lack of α1A- or 

α1BAR function does not change spatial memory or cognitive flexibility in the Morris water 

maze. Despite this, α1AAR-KO mice did not significantly increase path efficiency over the 

course of testing. Overall, the combined results are an important step in determining the 

role of α1AR function.  

Contribution to the field 

The field of α1ARs and brain/ behavioral function was previously limited by the use 

of non-selective agonists and antagonists that cross the blood brain barrier. Though 

activation and KO mouse models have been available for over a decade, they are 

predominantly used to study cardiac and cardiovascular function in the periphery. Our work
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 with transgenic animals is currently the leading research in the field in the area of brain and 

behavioral function of α1ARs. In the context of adult neurogenesis, norepinephrine is the 

only main neurotransmitter in which the function has not been studied in depth. No other 

lab has published research regarding the effect of the α1AR subtypes’ role in differentiation 

in vivo. Additionally, previous research suggested the α1BAR as a proto-oncogene based on 

in vitro work and subcutaneous injection of cancer cells (Allen et al., 1991). Our results show 

this does not appear to translate to the whole animal. Therefore, the research presented in 

this dissertation added a significant amount of new knowledge and proposes new avenues 

for study based on this knowledge. 

Learning and memory 

The role of the α1AR and α1AAR subtypes in learning and memory has not been clear 

and has been somewhat controversial due to conflicting results. Research examining the 

role of the receptors in prefrontal cortex-based learning and memory suggests that α1ARs 

and even the α1AAR subtype may be detrimental to learning and memory (Gibbs and 

Summers, 2001; Gibbs and Bowser, 2010; Mao et al., 1999; Arnsten et al., 1999; Arnsten 

and Jentsch, 1997; Torkaman-Boutorabi et al., 2014). The role of the receptor subtypes 

could be region-based: activation in the prefrontal cortex could be disruptive while 

activation in the hippocampus is enhancing. However, many of the studies that found 

deficits used only acute administration of agonists and antagonists, and they were mostly 

not selective for the receptor subtypes. In an early study with α1BAR-KO mice, KO enhanced 

object recognition memory but impaired spatial memory when compared with WT mice 

(Spreng et al., 2001).  
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Our prior research showed that chronic α1AAR activation, either using cirazoline or 

CAM activation of each subtype, enhanced both learning and memory in several measures. 

Our hypothesis for the experiments herein was that KO of the α1AAR subtype would worsen 

learning and memory measures; a hypothesis that was not upheld by the results except in 

the novel object recognition test. We also hypothesized that α1BAR-KO would mirror the 

learning and memory results of the Spreng study: enhanced novel object recognition but 

impaired spatial memory (Spreng et al., 2001). Instead, we found impaired novel object 

recognition (though not in relation to WT) and no difference in spatial memory compared 

with either the WT or α1AAR-KO mice. A limitation of using KO mice is the potential for other 

pathways to compensate for the missing receptor. To confirm the findings presented 

herein, further research could use α1AR subtype-selective antagonists via a ventricular 

cannula or a conditional KO mouse model. However, in combination with the conflicting 

mood results, the possibility that the α1AR subtypes interact to mediate behavioral effects is 

intriguing.  

Depression and anxiety 

Depression and anxiety are highly intertwined and often comorbid in humans. While 

the α1AR subtypes have not been previously studied in the context of depression and 

anxiety by other labs, there is evidence for α1AR involvement in the mechanism of 

antidepressant action. Antidepressants with α1AR antagonist properties can block anxiety 

and depressive-like behavior in animal models (Danysz et al., 1986; Kakui et al., 2009; Kitada 

et al., 1983). The α1AR agonist, phenylephrine, potentiates the effect of the atypical 

antidepressant lamotrigine (Puumala et al., 1996). Furthermore, α1AR subtype activation 
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increases the density of α1A- and α1BARs in specific brain regions (Hanft and Gross, 1990; 

Perry et al., 1990).  

Our earlier research showed that chronic α1AAR activation decreases the basal level 

of depression and anxiety when compared with WT mice. Based on these results and the 

work of others, we hypothesized that α1AAR-KO mice would have increased levels of 

depression and anxiety-like behaviors when compared with WT and α1BAR-KO mice would 

have decreased  levels of depression. We did not expect a difference in anxiety behavior in 

α1BAR-KO mice in comparison to WT mice because we had seen no differences in anxiety 

after α1BAR activation. The results were interesting. α1AAR-KO did not change anxiety levels 

except in one test after removing mice that had experienced seizures. α1BAR-KO mice had 

increased anxiety-like behavior in one parameter of the elevated zero maze compared with 

WT but a decreased depression level. Because depression and anxiety are inter-related, 

these conflicting results are difficult to interpret. One main difference between the CAM 

transgenic mice and the KO mice is that in the CAM mice both receptors are still present but 

at differing ratios of expression and activation. One explanation for the behavioral results of 

the current studies is that of in vivo receptor heterodimerization. This idea that the 

receptors dimerize to affect function and surface expression is particularly intriguing when 

exploring the mood results. This will be an important avenue in future research and is 

already being pursued in at least one other lab (Collette, personal communication).  

In order to make strong conclusions about using α1AAR activation as a treatment for 

depression additional research must be undertaken. Our previous and the current research 

show α1AAR activation does, while α1AAR-KO does not, change basal levels of depression. 
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Future research needs to include more ethologically valid experiments. One such possibility 

is to use a chronic mild stress paradigm to induce depression in rodents to model stress-

induced depression in humans. Treatment could include a selective α1AAR agonist or 

antagonist into the lateral ventricles via a cannula. Behavioral testing would show whether 

activation can rescue a depression phenotype or if blocking α1AAR function would further 

increase depression behaviors.  

Adult neurogenesis 

Chronic activation of the α1AAR in vitro and in vivo increases proliferation and directs 

cell fate in neurosphere culture (Gupta et al., 2009). Neurospheres cultured from normal 

adult mouse SVZ stimulated with phenylephrine, an α1AR agonist, induces differentiation 

into glial cells. Neurospheres isolated from neonatal CAM-α1AAR transgenic mice increases 

the differentiation markers Dlx2, Mash1, and NeuroD. Neurospheres from α1AAR-KO mice 

increase expression of Nestin, a stem cell marker, suggesting a reversion to a less 

differentiated state. In contrast, a recently published paper used SGZ-derived neurospheres 

to study the role of adrenergic receptors on proliferation and cell fate (Jhaveri et al., 2014). 

Successfully deriving neural stem cells from the hippocampus without SVZ contamination is 

highly controversial. However, using cirazoline on the neurospheres, there was no 

difference in the percentage of cells differentiating into astrocytes (S100β). They also did 

not see an increase in the number of new neurons (using βIIItubulin as a marker).  

The work presented herein examined the differentiation and survival stages of adult 

neurogenesis in vivo. Based on prior results, we hypothesized that newly created cells 

would differentiate preferentially into astrocytes rather than neurons in the adult mouse 
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SGZ. We found no difference in the number or percentage of new cells that became mature 

neurons, BrdU+NeuN+, or astrocytes, BrdU+GFAP+. There was a large effect size but no 

significant reduction in the number of immature neurons, BrdU+DCX+ cells 4 wks after BrdU 

injection. A reduction in immature neurons at this timepoint could mean that the rate of 

differentiation was faster after cirazoline treatment. If that was the case, the number of 

new mature neurons, BrdU+NeuN+, or astrocytes, BrdU+GFAP+, should have been increased 

and it was not. Taking the lack of increase in mature cell markers into account, it is also 

possible the rate of differentiation was decreased and newly generated cells did not 

progress past the immature neuron stage. This is also not likely because the percentage of 

mature neurons and astrocytes would have been decreased in the cirazoline group 

compared with controls and it was not. Analysis of DCX morphology of double-labeled cells 

could potentially answer this question. A better way would be to perform a time course of 

BrdU injections and cell counts. It is clear from the BrdU+NeuN+ and BrdU+GFAP+ results that 

the ratio of new cells is unchanged by chronic α1AAR activation but the DCX results are very 

interesting and should be further studied.  

Longevity and cancer 

Ours is currently the only published research regarding the α1AR subtypes and 

longevity (Collette et al., 2014). Survival to a 70 wk timepoint in another study was reduced 

to 75 percent in CAM-α1BAR mice (Papay et al., 2002). In the current study, the number of 

early deaths in the CAM-α1BAR was not quite that drastic but lifespan was significantly 

reduced compared with WT mice. One of the pioneers of AR research, Robert Lefkowitz, 

previously proposed that the α1BAR was a proto-oncogene (Allen et al., 1991). This was 
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based on his lab’s work showing that α1BARs formed foci when transfected into cells and 

tumors when injected subcutaneously into nude mice. In addition, the α1BAR gene is 

associated with mitogenesis and cell cycle progression, which could lead to cancer 

(Gonzalez-Cabrera et al., 2004). The results herein, show that the in vivo picture is more 

complex. Chronic activation of the α1BAR over the lifespan does not increase cancer 

incidence but it does decrease lifespan (Collette et al., 2014). Cancer is the most common 

cause of death in aged mice but our results show that activation of the α1BAR is not 

responsible but could be contributing. CAM-α1BAR mice develop a synucleinopathy similar 

to multiple system atrophy in humans which includes locomotor deficits, synuclein 

aggregates and neurodegeneration, autonomic dysfunction, and ultimately death (Papay et 

al., 2002). The decrease in lifespan after α1BAR activation is likely due to this 

neurodegeneration but this was not tested in the current study.  

Chronic α1AAR activation in CAM-α1AAR mice increases lifespan and significantly 

decreased cancer incidence in our population, which included mice at the end of life and a 

small number of younger mice. In this case, the correlation between increased lifespan and 

decreased cancer is an especially exciting finding and should be pursued. A potential 

mechanism could be regulation of the cell cycle by the α1AAR subtype. In a gene microarray 

using Rat-1 fibroblasts, α1AARs were associated with cell cycle regulators that stop the cell 

cycle at the G1-S checkpoint (Gonzalez-Cabrera et al., 2004). Important factors to consider 

when expanding this line of study include using a prospective, rather than retrospective 

analysis of lifespan and cancer; removing confounding variables such as behavioral testing; 

and use transgenic animals of the same F generation (Appendix A). It would also be 



117 
 

interesting to use mice that already have cancer and treat with an α1AAR agonist or 

antagonist. In studying peripheral cancers, such as in the present study, there is not a need 

for a drug to cross the blood brain barrier. The lab is now investigating the incidence of 

cancer in α1AAR-KO and α1BAR mice. The current study is a promising lead on a potential 

cancer prevention therapy in high-risk populations and expansion of this research would 

show whether it could also be used to stop cancer progression. 

Conclusions 

The progression of AR research has been akin to a funnel. Early on, it became clear 

there were different types of receptors with different downstream effects. It was thought 

that studying each of these types of receptors would clarify their roles in the body. 

However, it did not. Soon after, the subtypes were introduced but were difficult to study 

because there were no selective drugs. When drugs were developed they did not cross the 

blood brain barrier. Localization of the subtypes in the brain was even limited because there 

were not, and still are not, selective antibodies. The studies presented herein are an 

important step forward because they show the complexity of the α1AR subtypes and 

suggest another level of specification. ARs are regulated by many factors including such 

basic input as how tightly an agonist binds which can activate a different G-protein. Future 

work will continue to whittle down the differences and explore how to best utilize the ARs 

as therapeutic targets. Our work suggests that α1AAR-selective agonists could be promising 

treatments for diseases with cognitive disruptions, depression, anxiety, and even 

prevention of cancer. α1BAR-selective antagonists may prevent synucleinopathic 

neurodegeneration and could be used in conjunction with α1AAR agonists for depression. 



APPENDIX 
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APPENDIX A 

Lifespan, Cancer, and Loss of Phenotype 

Data Collection 

Data collection for the longevity study began prior to my arrival in the Doze lab; 

however, I did the majority of the data collection. I also verified dates of birth and death of 

all mice using mortality logs from the Center for Biomedical Research, shipment sheets from 

Cleveland Clinic, and cage cards. In some cases, there were mice with different birth dates 

in the same cage so if they did not have an ear tag at death they were not included because 

there was no way to verify the number of days lived.  

Retrospective Analysis 

The longevity study was a retrospective analysis of mice used in various behavioral 

studies over the span of several years. The mice were not included in any seizure studies 

nor were they given any treatments or drugs. A small retrospective analysis may be 

appropriate to provide data for a power analysis to determine how many animals would be 

needed for a full prospective study. However, standard procedure for a lifespan study is to 

predetermine the number of animals per group from the same F generation of breeding and 

begin tracking lifespan when they are the same age. Equal numbers of male and female 

mice would allow for reliable determinations of sex differences. Additionally, all 

confounding variables possible should be eliminated including behavioral testing. The mice 

should be allowed to age, undisturbed except for cage changes and food and water intake 

assessment, for their full lifespan. 
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Regarding Previously Published Lifespan Data 

Previously published wild type (WT) mouse lifespan data was included in analysis for 

additional power. There was no significant difference between WT data that had been 

previously published and WT data gathered for additional WT mice (Doze et al., 2011). 

However, the data excluding the previously published WT data is presented here for 

completeness (Figure 32). When comparing only the non-published WT and CAM-α1BAR 

lifespan there is not a significant difference in the number of days lived (χ2(1) = 1.83, p = 

0.055).  

Loss of Phenotype 

During analysis of the longevity and pathology data, we had initially planned to 

include additional CAM-α1AAR mice that had died since our 2011 publication, as we did with 

the WT data. However, I noticed a pattern that CAM-α1AAR mice received from Cleveland 

Clinic after our initial longevity study were dying at much younger ages than previously 

observed.  

Initially, we suspected a virus in the colony but further analysis revealed that only 

the CAM-α1AAR mice were dying sooner. Analysis of the lifespan and F generation data 

showed a significant difference in lifespan in CAM-α1AAR mice starting at the F16 generation 

(Figure 33A, F(13, 69) = 12.49, p < 0.0001), post-hoc comparisons in Table 5). By the F20 

generation, some mice were not surviving past weaning or shortly after due to 

hydrocephaly and thus were not transferred to UND. For comparison, Jackson Laboratories 

refreshes their transgenic lines from cryo-storage after 10 generations to ensure a substrain 

does not  
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Figure 32: Kaplan-Meier survival plots. When the previously published WT mice were excluded from 
analysis there was no significant difference in lifespan between CAM-α1BAR (n = 87) and WT mice (n 

= 58, p = 0.055).  
 

develop due to random mutations, which can become fixed after 6-9 generations (The 

Jackson Laboratory, 2013). 

CAM-α1AAR mice included in the lifespan studies in the 2011 paper and for 

comparison in the 2014 paper were of the F5-F14 generation. CAM-α1BAR animals were 

from the F2-F15 generation but most were in the F5-F8 range. We did not receive any CAM-

α1BAR mice bred past F11. There was a main effect of lifespan vs F generation in CAM-α1BAR 

mice [F(7, 37) = 3.29, p = 0.008], and one post-hoc difference between F6 and F9 (p < 0.05). 

There were no differences between any other generations in CAM-α1BAR mice (Figure 33B). 

For future reference, the lifespan vs F generation data, for which there were no significant 

differences, are also included for the α1AAR-KO [F(7, 42) = 0.59, p = 0.75], α1BAR-KO [F(6, 39) 

= 0.52, p = 0.78], and α1AAR-EGFP [F(3, 18) = 0.85, p = 0.48, Figure 33C, D, and E].
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Figure 33: Age at death vs F generation. A) CAM-α1AAR mice starting at the F16 generation lived 
significantly fewer days than mice of the <F15 generation. B) There was a significant difference in 
lifespan in CAM-α1BAR mice of the F6 and F9 generation but no downward trend was observed. 
There were no significant differences in lifespan between the F generations of C) α1AAR-KO, D) 
α1BAR-KO, or E) α1AAR-EGFP. There was a difference for F) α1BAR-EGFP mice but no post-hoc 
differences. 
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Table 5: CAM-α1AAR vs F generation post-hoc testing results.  
 

Tukey's Multiple Comparison Test Significant? P < 0.05? Summary 95% CI of diff 

4. vs 5. No ns -543.2 to 361.2 

4. vs 8. No ns -610.4 to 343.0 

4. vs 9. No ns -457.2 to 351.8 

4. vs 10. No ns -550.3 to 323.5 

4. vs 11. No ns -583.2 to 321.2 

4. vs 12. No ns -514.2 to 338.5 

4. vs 13. No ns -479.0 to 474.4 

4. vs 15. No ns -385.8 to 400.4 

4. vs 16. No ns -141.4 to 648.1 

4. vs 18. No ns -361.7 to 682.7 

4. vs 19. No ns -214.7 to 622.7 

4. vs 20. Yes *** 203.1 to 1077 

4. vs 22. No ns -2.698 to 950.7 

5. vs 8. No ns -441.5 to 356.2 

5. vs 9. No ns -270.6 to 347.2 

5. vs 10. No ns -372.7 to 327.9 

5. vs 11. No ns -409.2 to 329.2 

5. vs 12. No ns -333.9 to 340.2 

5. vs 13. No ns -310.2 to 487.5 

5. vs 15. No ns -195.5 to 392.2 

5. vs 16. Yes ** 48.30 to 640.4 

5. vs 18. No ns -200.7 to 703.7 

5. vs 19. No ns -32.30 to 622.3 

5. vs 20. Yes *** 380.7 to 1081 

5. vs 22. Yes *** 166.2 to 963.8 

8. vs 9. No ns -262.8 to 424.7 

8. vs 10. No ns -361.1 to 401.6 

8. vs 11. No ns -396.2 to 401.5 

8. vs 12. No ns -323.4 to 415.1 

8. vs 13. No ns -295.0 to 557.7 

8. vs 15. No ns -189.3 to 471.3 

8. vs 16. Yes ** 54.80 to 719.2 

8. vs 18. No ns -182.5 to 770.9 
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Table 5 cont.    

Tukey's Multiple Comparison Test Significant? P < 0.05? Summary 95% CI of diff 

8. vs 19. No ns -22.68 to 698.0 

8. vs 20. Yes *** 392.3 to 1155 

8. vs 22. Yes *** 181.3 to 1034 

9. vs 10. No ns -346.7 to 225.3 

9. vs 11. No ns -387.2 to 230.6 

9. vs 12. No ns -304.8 to 234.5 

9. vs 13. No ns -293.4 to 394.1 

9. vs 15. No ns -153.2 to 273.2 

9. vs 16. Yes *** 89.85 to 522.3 

9. vs 18. No ns -191.3 to 617.7 

9. vs 19. No ns -0.6410 to 514.0 

9. vs 20. Yes *** 406.7 to 978.7 

9. vs 22. Yes *** 182.9 to 870.5 

10. vs 11. No ns -367.9 to 332.7 

10. vs 12. No ns -290.6 to 341.8 

10. vs 13. No ns -270.3 to 492.4 

10. vs 15. No ns -148.9 to 390.4 

10. vs 16. Yes ** 94.70 to 638.8 

10. vs 18. No ns -163.0 to 710.8 

10. vs 19. Yes * 11.63 to 623.2 

10. vs 20. Yes *** 423.1 to 1084 

10. vs 22. Yes *** 206.0 to 968.8 

11. vs 12. No ns -293.9 to 380.2 

11. vs 13. No ns -270.2 to 527.5 

11. vs 15. No ns -155.5 to 432.2 

11. vs 16. Yes ** 88.30 to 680.4 

11. vs 18. No ns -160.7 to 743.7 

11. vs 19. Yes * 7.696 to 662.3 

11. vs 20. Yes *** 420.7 to 1121 

11. vs 22. Yes *** 206.2 to 1004 

12. vs 13. No ns -283.7 to 454.7 

12. vs 15. No ns -157.1 to 347.4 

12. vs 16. Yes ** 86.38 to 596.0 
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Table 5 cont.    

Tukey's Multiple Comparison Test Significant? P < 0.05? Summary 95% CI of diff 

12. vs 18. No ns -178.0 to 674.7 

12. vs 19. Yes * 1.310 to 582.4 

12. vs 20. Yes *** 411.6 to 1044 

12. vs 22. Yes *** 192.6 to 931.1 

13. vs 15. No ns -320.6 to 339.9 

13. vs 16. No ns -76.54 to 587.9 

13. vs 18. No ns -313.9 to 639.5 

13. vs 19. No ns -154.0 to 566.7 

13. vs 20. Yes *** 261.0 to 1024 

13. vs 22. Yes * 49.96 to 902.7 

15. vs 16. Yes ** 51.97 to 440.1 

15. vs 18. No ns -239.9 to 546.3 

15. vs 19. No ns -42.36 to 435.7 

15. vs 20. Yes *** 363.0 to 902.3 

15. vs 22. Yes *** 136.4 to 796.9 

16. vs 18. No ns -487.6 to 301.9 

16. vs 19. No ns -291.1 to 192.4 

16. vs 20. Yes *** 114.6 to 658.7 

16. vs 22. No ns -111.6 to 552.9 

18. vs 19. No ns -375.2 to 462.2 

18. vs 20. Yes * 42.60 to 916.4 

18. vs 22. No ns -163.2 to 790.2 

19. vs 20. Yes *** 130.2 to 741.8 

19. vs 22. No ns -90.35 to 630.3 

20. vs 22. No ns -547.4 to 215.4 

 

There was a main effect for α1BAR-EGFP mice [F(4, 15) = 3.56, p = 0.03], however no post-

hoc differences were found, Figure 33F).  

Around the same time the shortened lifespan of CAM-α1AAR mice was found, a 2 hr 

BrdU stereology pilot study was undertaken using CAM-α1AAR mice of the F22-F23  
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Figure 34: BrdU density in <F10 and F21-22 generation mice. A) CAM-α1AAR mice of a generation 
<F10 had a significantly higher density of BrdU+ cells after a 2 h chase period when compared with 
WT mice (Gupta et al., 2009). B) There was no significant difference in BrdU cell density after 2 h 
between CAM-α1AAR of the F21-22 generation and WT mice. 
 

generation. Surprisingly, in contrast to our previously published findings, no significant 

difference was found in BrdU density in the dentate gyrus after a 2 h chase period [t(14) = 

1.72, p = 0.10, Figure 34, Gupta et al., 2009). While sectioning brains for the stereology 

study hydrocephaly, in particular the lateral ventricles of CAM-α1AAR mice were enlarged in 

comparison with WT mice (Figure 35). Discussions with Robert Papay in Dianne Perez’s lab, 

who performed the sectioning for the 2009 neurogenesis paper, revealed that he had 

previously not noticed any gross differences between WT and CAM-α1AAR brains.  

To help confirm the possibility of a loss of phenotype we decided to use a behavioral test in 

which we had seen robust differences to determine if the behavioral phenotype had also 

changed. At the F12-14 generation, there was a main effect of genotype in time spent 

immobile when comparing WT, CAM-α1AAR, and CAM-α1BAR  mice [F(2, 36) = 29.26, p < 

0.001]. Post-hoc testing showed that CAM-α1AAR mice spent less time immobile (p < 0.001) 

and CAM-α1BAR mice spent more time immobile (p <0.01) when compared with WT mice 
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Figure 35: Lateral ventricle enlargement. The lateral ventricles of A) CAM-α1AAR mice were enlarged 
in comparison to B) WT ventricles.  

 

(Figure 36A, Doze et al., 2009). Additionally, CAM-α1AAR mice spent less time immobile at 

the F15-16 generation when compared with WT [t(50) =3.50, p < 0.001, Figure 36B, Doze et 

al., 2011). When F22-F23 generation CAM-α1AAR mice were tested, there was no significant 

difference in the time spent immobile when compared with WT mice [t(33) = 0.83, p = 0.41, 

Figure 36C]. In an attempt to refresh the CAM-α1AAR line, the Perez lab bred CAM-α1AAR 

mice of F20+ generation to WT mice. Some of the resulting animals were sent to UND and 

the tail suspension test was performed. No significant differences were found between WT 

and CAM-α1AAR mice of this F3 generation [t(25) = 0.78, p = 0.43, Figure 36D]. The next step 

to attempt to regain the phenotype seen previously in CAM-α1AAR transgenic mice would 

be to either refresh the line from cryo-storage, if indeed there is such storage. Otherwise, 

the line must be restarted as it was originally.  

A B 
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Figure 36: Tail suspension test in different F generations. CAM-α1AAR mice spent A) less time 
immobile at the F12-F14 generation (Doze et al., 2009) and B) F15-F16 generation (Doze et al., 
2011). There were no differences in time immobile between CAM-α1AAR mice of the C) F22 
generation or the D) refreshed line at F3.  

 

Cancer Data 

As per the Methods for Pathology, “Animals sacrificed at a younger age were included in the 

analysis to increase statistical power”. During review prior to publication, one reviewer 

requested that additional animals, even if sacrificed at a younger age, be included to make a 

solid conclusion regarding cancer incidence in CAM-α1BAR mice. Initially, the comparison 

between WT and CAM-α1BAR mice for cancer incidence had a p value of 0.07, showing a 

trend toward less cancer in the CAM-α1BAR group. Additional animals, including both mice 
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sacrificed at an earlier age and mice re-evaluated by Dr. Zhou via histology, were included in 

the final published manuscript and in this dissertation.  
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