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ABSTRACT 

A dramatic growth of interest for wearable technology has been fostered by recent 

technological advances in sensors, low-power integrated circuits and wireless 

communications. This interest originates from the need of monitoring a patient over 

extensive period of time. For cardiac patients, wearable heart monitoring sensors have 

already become a life-saving intervention ensuring continuous monitoring during daily 

life. Therefore, it is essential for an accurate monitoring and diagnosis of heart patients. 

Patients can be equipped with wireless, miniature and lightweight sensors. The sensors 

temporarily store physiological data and then periodically upload the data to a database 

server. These recorded data sets are then analyzed to predict any possibility of worsening 

patient's situation or explored to assess the effect of clinical intervention. To obtain 

accurate response with less computational complexity as well as long battery life time, 

there is a demand of developing fast and accurate algorithm and prototypes for wearable 

heart monitoring sensors. A computationally efficient QRS detection algorithm is 

indispensable for low power operation on electrocardiogram (ECG) signal. 

In need of detecting QRS complex, most of the early works were proposed based on 

derivatives of ECG signal. They can be easily implemented with high computational 

speed. But owing to the inherent variability in ECG, these methods are highly affected by 

large derivatives of baseline noises. Algorithms based on neural network (NN) showed 

relatively robust performance against noise but requires exhaustive training and 

estimation of model parameter. On the other hand, wavelet based methods have the 



  xiii 

choice problem of mother wavelet. Hence, none of these methods is suitable for giving a 

long battery performance in wearable devices with high accuracy. 

Recently, Wang et al. proposed a novel dual slope QRS detection algorithm which 

has less computational complexity as well as high accuracy. Considering that the width of 

the QRS complex is relatively fixed, this algorithm is based on the fact that the largest 

change of slope usually happens at the peak of QRS complex. The hardware requirement 

is also low. However, the method has a set of time consuming slope calculations on both 

sides of each sample. To avoid such time consuming slope calculation, only one sample 

on each side can be highlighted. In addition, the multiplication of the left and right hand 

side slope should give us a very high value in QRS complex. 

The goal of this thesis is to develop a new computationally efficient method to detect 

QRS complexes and compare with the other renowned QRS detection algorithms. MIT-

BIH arrhythmia database based on patients of different heart diseases and database 

containing ECG from healthy subjects are used. To analyze the performance, false 

negative (FN) and false positive (FP) are evaluated. A false negative (FN) occurs when 

algorithm fails to detect an actual QRS complex quoted in the corresponding annotation 

file of the database record and a false positive (FP) means a false beat detection. Error 

rate (ER) , Sensitivity (Se) and Specificity (Sp) are calculated using FP and FN.   
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CHAPTER 1  

INTRODUCTION 

The heart is one of most crucial organs in the entire human body without which survival is 

next to impossible. Thus, the development of methods for monitoring the state of cardiac heart is 

of the utmost importance in medical science. Electrocardiography (ECG) is regarded as one of 

the most important cardiac investigations available for monitoring the functionality of  the  heart. 

It is simple and old, yet it can provide a wealth of useful information and remains an essential 

part of the assessment of cardiac patients. 

1.1 Electrocardiogram  

Electrocardiogram (ECG) is a diagnostic signal which provides the graphical representation 

of the electrical activity of the heart muscle. ECG signals are obtained by connecting specially 

designed electrodes to the surface of the body which is then be used in identification of different 

heart diseases [1]. 

The morphology of electrocardiogram always reflects the functionality of human heart. Any 

disorder in the morphological pattern is an indication of cardiac arrhythmia which could be 

detected by analyzing the recorded ECG waveform. The amplitude and duration of the P-QRS-T 

wave in ECG signal contains useful information about the nature of disease afflicting the heart. 

The ECG signal provides the following information of a human heart [2]: 
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• heart position and its relative chamber size 

• impulse origin and propagation 

• heart rhythm and conduction disturbances 

• extent and location of myocardial ischemia 

• changes in electrolyte concentrations 

• effects of drugs on the heart. 

1.2 The Anatomy of Heart 

The heart has four chambers. The upper chambers are called the left and right atria, and the 

lower chambers are called the left and right ventricles. Several atrioventricular and sinoatrial 

nodes are presented in the heart. Figure 1 shows an overview of the anatomy. 

The atria and ventricles are separated  by fibrous which is a non-conductive tissue that keeps 

them electrically isolated from each other. The circulation of blood to the lungs is performed by 

a pumping system containing the right atrium and the right ventricle . First, oxygen-poor blood is 

received through large veins called the superior and inferior vena cava and flows into the right 

atrium. Then it contracts and forces blood into the right ventricle. The ventricle is then stretched 

and started to maximize its pumping (contraction) efficiency. The blood is then pumped into the 

lungs when the right ventricle starts contraction. The blood is oxygenated in the lungs. Similarly, 

the left atrium and the left ventricle together form a pump to circulate oxygen-enriched blood 

received from the lungs (via the pulmonary veins) to the rest of the bod [3]. 
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Figure 1. The Heart conduction system [3]. 

This whole conduction system begins with spontaneous depolarization of the sinus node 

situated in the high right atrium. A wave of electrical impulses then spreads through the right 

atrium and across the inter-atrial septum into the left atrium. This causes the muscle cell to 

depolarize and contract. This depolarization of the heart muscles collectively generates a strong 

ionic current. This current starts flowing through the resistive body tissues and causing a voltage 

drop. The magnitude of this voltage drop is large enough to be measured by electrodes attached 

to the surface of body. ECGs are thus recordings of voltage drops across the skin caused by ionic 

current flow generated from myocardial depolarization‟s [3]. Figure 2 shows the 

electrophysiological activity of the heart. 
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Figure 2. Basic Electrophysiology of the Heart [4]. 

The atrial depolarization appears as the P-wave in ECG signal. The following P-R segments 

depict the proceeding of electrical impulses into the ventricles. When signal leaves the atria, it 

enters the ventricles via AV node located at inter atrial septum. It then enters the bundle of His 

and spreads through the bundle brunches via Purkinji fibers along the ventricle walls. As the 

signal spreads through the ventricles the contractile fibers depolarize and start to contract very 

rapidly. This rapid depolarization of ventricles is the ECG‟s QRS complex. Atrial repolarization 

also occurs at this time. But any atrial activity is hidden on the ECG signal by the QRS complex. 

Finally as the signal passes out of the ventricles, the ventricular walls relax and recover. The T 

waves mark this ventricular repolarization. In ECG, ST segments depicts the period when 

ventricles are depolarized.  These different waves and intervals are shown in Figure 3. 
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Figure 3. Different ECG Waves and Intervals [4]. 

1.3 ECG Measurement and Leads 

ECG signals are typically measured using 12 leads system including 3 bipolar leads, 3 

augmented unipolar leads and 3 chest (precordial) leads. A lead is a pair of electrodes (+ve and –

ve) which is placed in some selected anatomical locations in our body and connected to a ECG 

recorder [2]. 

Bipolar leads are used to record the potential difference between two points (+ve & -ve 

poles) whereas the electrical potential at a particular point by means of a single exploring 

electrode is measured by unipolar leads. 

Leads I, II and III are commonly referred to bipolar leads as they use only two electrodes to 

derive a view. One electrode acts as the positive electrode while the other as the negative 

electrode (hence bipolar) [1]. 
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Table 1. Types of leads used in ECG monitoring 

Standard Leads Limb Leads Chest Leads 

Bipolar leads Unipolar leads Unipolar leads 

Lead I 

Lead II 

Lead III 

aVR 

aVL 

aVF 

V1 

V2 

V3 

V4 

V5 

Measuring ECG signal measurement using Einthoven leads is old and common. Einthoven's 

triangle is an imaginary triangle formed by the two shoulders and the pubis using three limb 

leads [1]. This forms an inverted equilateral triangle shape with the heart at the center that 

produces zero potential when the voltages are summed. Here, Lead I records potentials between 

the left and right arm, Lead II between the right arm and left leg and Lead III measures voltage 

between the left arm and left leg. Figure 4 shows the position of the leads: 

 

 

 

 

 

 

 

 

Figure 4. Einthoven‟s triangle - Line of site of the bipolar [1] 
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Goldberger leads are unipolar augmented limb leads in the frontal plane. The purpose of 

augmentation is to make the ECG waves more perceivable. The leads are annotated as aVR, aVL 

and aVF. Here, “a” stands for augmented, “V” for voltage, “R” for Right, “L” for left arm and 

“F” is for left foot. For measuring ECG, The lead connected to +ve terminal acts as the different 

electrode, while the other two limbs connected to the –ve terminal serve as the reference [3].  

Wilson leads (V1–V6) are unipolar chest leads positioned on the left side of the thorax in a 

nearly horizontal plane. The indifferent electrode is obtained by connecting the 3 standard limb 

leads. When used in combination with the unipolar limb leads in the frontal plane, they provide a 

three dimensional view of the integral vector. This chest leads (precordial) are place as follows 

V1: 4th intercostal space, right sternal edge. 

V2: 4th intercostal space, left sternal edge. 

V3: between the 2nd and 4th electrodes. 

V4: 5th intercostal space in the midclavicular line. 

V5: on 5th rib, anterior axillary line. 

V6: in the midaxillary line.  

To make recordings with the chest leads (different electrode), the three limb leads are 

connected to form an indifferent electrode with high resistances. The chest leads mainly detect 

potential vectors directed towards the back. These vectors are hardly detectable in the frontal 

plane [1]. Since the mean QRS vector is usually directed downwards and towards the left back 

region, the QRS vectors recorded by leads V1–V3 are usually negative, while those detected by 

V5 and V6 are positive [3]. In leads V1 and V2, QRS = -ve because, the chest electrode in these 

leads is nearer to the base of the heart, which is the direction of electronegativity during most of 

the ventricular depolarization process. In leads V4, V5, V6, QRS = +ve because the chest 
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electrode in these leads is nearer the heart apex, which is the direction of electropositivity during 

most of depolarization [2]. 

 

 

 

 

 

 

 

 

Figure 5. Precordial chest electrodes are normally placed on the left side of the chest [1]. 

1.4 ECG Waves and Intervals  

Waves Representation and Significance 

P wave As mentioned earlier, it represents the atrial depolarization. The amplitude 

is normally between 0.05 to 0.25 mV. A clear P wave proceeding the QRS 

complex represents sinus rhythm. Absence of P waves may suggest atrial 

fibrillation, Sinoatrial arrest,  Hypokalemia or hyperkalemia. P waves are 

very hard to detect if the ECG signal contains a high signal-to-noise ratio. 

QRS 

complex 

The QRS complex is the most visually obvious graphical deflection part in 

ECG. It corresponds to the depolarization of the ventricles. The amplitude 

is the largest approximately 10– 20 mV but may vary in size depending on 
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age and gender. Cardiac diseases can be diagnosed from observing the 

amplitude, duration and activation time of QRS complex. 

T wave T wave corresponds to ventricular repolarization [2]. Large T waves may 

cause ischemia, and Hyperkalemia. Sometimes the large T waves are 

considered as noise when detecting QRS complex.  

 

The Table 2 shows features of P-wave, QRS complex and T wave in maximum amplitude 

and its duration. According to medical definition [5], the duration of each RR-interval is about 

0.4-1.2s. 

Table 2. Amplitude and duration of waves, intervals and segments [5]–[7]. 

Features Amplitude (mV) Duration (ms) 

P wave 0.1-0.2 60-80 

PR-segment - 50-120 

PR- interval - 120-200 

QRS complex <3 60-100 

ST-segment - 100-120 

T –wave 0.1-0.3 120-160 

ST-interval - 320 

RR-interval - (0.4-1.2)s 

1.5 Artifacts in ECG 

The ECG signal generally contains different types of noises and artifacts within its 

frequency band. Sources of noise include EMG (electromyogram) signal, power line 

interference, baseline wander, artifacts due to the motion of electrode and T waves containing 

high frequency components similar to QRS complexes. Hence, the characteristics of ECG signal 
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might be changed due to these noises making it difficult to extract useful information. The major 

noises that contaminate ECG signal are the following: 

1.5.1 Power line interferences 

The power line interference is caused by improper grounding. It appears as 60Hz (in 

U.S.)/50Hz (in Europe) spike in the frequency content of ECG signal. Additional spikes can also 

appear at harmonics. The amplitude can be up to 50 percent of peak-to-peak amplitude of ECG 

signal. By using a 60/50 Hz notch filter, this power line interference can be removed from the 

signal [5]. 

 

 

 

 

Figure 6. 60 Hz Power line interference [6]. 

1.5.2 Baseline drift 

Baseline drift can be caused by patient‟s motion, deep breathing, coughing, loosely 

connected electrodes, metal dust on skin, dirty tips of the electrode cables, and voltage changes 

in the wall electricity. Variation in temperature or biased instrumentation can also be the source 

of this noise. The frequency range is generally bellow 0.5 Hz. A high pass filter with 0.5 cut-off 

frequency can be used to remove baseline drift [5]. 
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Figure 7. Baseline drifts in ECG signal [6]. 

1.5.3 Motion artifacts  

The movement of the electrode gel under the electrode is major cause of motion artifacts. It 

significantly affect the transmission of signal from skin to electrode. Its peak amplitude can be 

500 percent of peak-to-peak ECG amplitude. Normally, adaptive filters are designed to remove 

such noises [5]. 

 

 

 

 

 

Figure 8. Motion Artifacts in ECG signal [6]. 

1.5.4 Muscle contraction (EMG) 

Electromyogram (EMG) is the signal produced due to muscle activity. It is referred as a 

transient bursts of zero-mean band-limited Gaussian noise [5]. The presence of EMG signal 
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component causes a rapid fluctuation in ECG signal. Its frequency content is between 5 Hz to 

450 Hz [3]. To remove the EMG interference, a unit square-wave structuring morphological 

filter can be applied. 

 

 

 

 

 

Figure 9. Muscle contraction [6]. 

1.6 Abnormalities in ECG Signal 

In medical field, the term sinus rhythm means that the heart is beating with its normal 

rhythm as measured by the ECG. It indicates the fact that SA node is firing at a constant rate and 

pacing the heart. It has certain generic features that serve as hallmarks for comparison with 

normal ECGs. The normal sinus rhythm will usually fall between 60 and 100 beats per minute 

(bpm) [1]. The regularity of the R-R interval varies slightly with the breathing cycle. 

When heart rate increase above its normal level, it is known as tachycardia. This is due to 

provide a higher blood circulation and is not an arrhythmia. However, when the heart is beating 

too fast, the ventricles don‟t get enough chance to be filled before contraction. The pumping 

efficiency can drop, adversely affecting perfusion. On the other hand, if the heart rate is too slow 

which is known as bradycardia, the effects can be detrimental for the vital organs. 
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Figure 10. (A) Normal sinus rhythm, (B) Sinus tachycardia [1]. 

Atrial arrhythmias arise outside the S-A node. These arrhythmias types are described as 

follow. 

1.6.1 Sinus Node Arrhythmias 

This type of arrhythmia is caused by sinus node dysfunction. Symptoms may be minimal or 

include weakness, effort intolerance, palpitations, and syncope. These arrhythmias are the 

following types: Sinus arrhythmia, Sinus bradycardia, and Sinus arrest. 

1.6.2 Atrial Arrhythmias 

Atrial arrhythmias arise outside the S-A node. These following arrhythmias types exit: 

Premature Atrial Contractions (PAC)  

PACs occur when another region of the atria depolarizes before the sinoatrial node and thus 

triggers a premature heartbeat. It results an abnormal P wave followed by normal QRS complex 

and T wave. The exact cause is still unknown while several liable conditions exist. It may occur 

as a couplet where two PACs are generated consecutively. But three or more consecutive 

occurrences of PACs can lead to atrial tachycardia. 
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Atrial Tachycardia  

Atrial tachycardia is a supraventricular tachycardia (SVT) that does not require AV junction 

or ventricular tissue for its initiation. The heart rate ranges from 160 to 240 beats per minute. It 

can occur to individual with normal heart as well as those with structurally abnormal hearts, 

including people with congenital heart disease (particularly after surgery for repair or correction 

of congenital or valvular heart disease). 

Atrial Flutter  

In atrial flutter, the abnormal P-waves occur so quickly that they take the shape of saw-tooth 

waveform which is called flutter (F) waves. The atrial rate ranges from 240 to 360 beats/minute. 

Atrial Fibrillation  

This arrhythmia originates from uncoordinated activation and contraction of different parts 

of the atria which lead to ineffective blood pumping to the ventricles. The atrial rate may exceeds 

350 beats per minute in this type of arrhythmias [1]. 

 

 

 

 

 

 

 

Figure 11. Atrial arrhythmias, (A) Premature Atrial Contractions, (B) atrial tachycardia, (C) 

Atrial Flutter, (D) atrial fibrillation [1]. 
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1.6.3  Junctional Arrhythmias  

Junctional arrhythmias occur in the form of the impulses comprising the AV node and its 

Bundle. P wave abnormality such as reverse polarity to that of the normal polarity of sinus P-

wave can occur since depolarisation is propagated in the opposite direction. 

Premature Junctional Contractions (PJC)  

In premature junctional escape contraction, a prematurely QRS complex appears without a 

preceding P-wave but with a normal T-wave [1]. It occurs when an ectopic pacemaker initiates a 

ventricular contraction in AV node. 

 

 

 

 

 

Figure 12. Junctional arrhythmias [1]. 

1.6.4 Ventricular Arrhythmias  

In ventricular arrhythmias, wide and bizarre shape of QRS complex can be found. The 

spikes start off the ventricles and go through the outside to rest of the heart. 

 

Premature Ventricular Contractions (PVC) 

PVC occurs when the heartbeat is initiated not from the SA node but from Purkinje fibers in 

the ventricles. It may appear as a "skipped beat" or fill like palpitations in the chest. However, 

isolated PVC can be asymptomatic in healthy individuals and do not usually pose a danger [1]. 
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Figure 13. Junctional arrhythmias (A) Premature Ventricular Contractions, (B) Ventricular 

Tachycardia, (C) Ventricular Fibrillation [1]. 

Ventricular Tachycardia (VT) 

The QRS complex is abnormally wide, out of the ordinary in shape and of a different 

direction from the normal QRS complex in ventricular tachycardia. The heart rate ranges from 

110 to 250 beats per minute. It is life-threatening due to lack of effective ventricular blood filling 

which can result in a drop in cardiac output. 

Ventricular Fibrillation 

Similar to atrial fibrillation, non-synchronous fashion of heart beats appears as the firing of 

impulses begins with ectopic pacemakers not with SA node. Ventricular flutter exhibits a very 

rapid ventricular rate with a saw-tooth like ECG waveform. 

1.6.5 Atrioventricular Blocks 

In atrioventricular Blocks, the propagation of impulses in the heart is normal but it may 

delay or completely block the conduction to the rest of the body.  
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A first-degree AV block is occurred when all the P-waves are conducted to the ventricles, 

but the PR-interval is prolonged. Second-degree AV blocks are occurred when some of the P 

waves fail to conduct to the ventricles. In third-degree AV block, the rhythm of the P-waves is 

completely dissociated from the rhythm of the QRS-complexes. Each beat at their own rate [1]. 

 

 

 

 

 

 

 

Figure 14. Atrioventricular Blocks (A) first degree AV block, (B) Second degree AV block, (C) 

Third degree AV blocks [1].  

1.6.6 Bundle Branch blocks 

Bundle branch block ceases the conduction of the impulse from the AV-node to the whole 

conduction system. Due to this block, myocardial infarction or cardiac surgery may occur[1]. 

 

 

 

 

Figure 15. Bundle Branch blocks [1]. 
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The bundle branch block are two types. These are left bundle branch block beat (LBBB) and 

right bundle branch block beat (RBBB). The electrical impulse from the AV node is not able 

propagate to the conduction network to depolarise the left ventricular when the left bundle 

branch is blocked. On the other hand in RBBB, prevention occurs for depolarising the right 

ventricular in the normal way. 

1.7 Motivation 

Since 1970, cardiovascular disease is the leading cause of deaths worldwide [8]. In United 

State, one-third of the total number of death is accounted for heart disease and stroke [9]. ECG, if 

properly analyzed, can provide information regarding various diseases related to heart. However, 

cardiac patients are needed to be monitored over an extensive period of time. Clinical 

observation of ECG can hence take long period of time and can be very tiresome. Moreover, the 

possibility of missing the crucial information by physicians is high and visual observation cannot 

be relied upon. Therefore, there is a growing interest in wearable technology for computer based 

analysis of ECG and classification of diseases. In addition, this interest originates in order to 

reduce the cost by providing a continuous monitoring system to cardiac patients during their 

daily life. Physicians can use the system to monitor several patients at a time and provide 

feedback on day-to-day basis, which helps to reduce the number of visits required as well. To 

obtain accurate response with less computational complexity as well as long battery life time in 

such system, developing fast and accurate QRS detection algorithms and prototypes is 

indispensable. Here, a method of QRS detection based on two slopes on both sides of an R peak 

is presented which is computationally efficient. Based on the slopes, first a variable measuring 

steepness is developed. Later, by introducing an adjustable R-R interval based window, and 
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adaptive thresholding techniques depending on the number of peaks detected in such window, R 

peaks are detected.  
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CHAPTER 2  

QRS COMPLEX DETECTION BACKGROUND 

Systems which are designed to perform signal processing tasks on ECG signal such as 12-lead 

offline ECG analysis, Holter tape analysis and real-time patient monitoring, have already proven 

that medical services can be achieved in an extremely efficient manner. But for all these 

applications at first, an accurate detection of QRS complex is crucial. The detection of QRS 

complex provides the fundamentals for almost all ECG analysis techniques due to the 

characteristic shape of the complex. Beginning about 40 years ago, many different approaches to 

detect QRS complex have been proposed in the literature and the research is still going on [10]. 

QRS detection is difficult not only because of the physiological variability of  it but also because 

of the various types of noise mentioned earlier. However because of the rapid development of 

microcomputers, replacing more and more hardware based QRS detectors to software based 

QRS detections, it is possible to reduce the influence of such noise sources as well as improve 

the signal to noise ratio (SNR) without changing the morphology of ECG signal. Derivatives, 

digital filtering, wavelet transforms, neural networks, filter banks, hidden Markov models, 

genetic algorithms as well as other heuristic methods based software QRS detections are all 

developed to find the optimum automatic QRS complex detection algorithm [10]. 
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2.1 Overview of Existing QRS Detection Methods 

Already in the early years of developing QRS complex detection method, structure shown in 

Figure 16 is followed by many algorithms. This structure is divided into a preprocessing or 

feature extraction stage which includes linear and nonlinear filtering techniques for de-noising 

and pattern recognizing and a decision making stage based on peak recognition and 

determination logic. In order to determine the exact location of the assumed QRS complex, an 

extra block of processing is often introduced. In the literature, most of the approaches of 

detecting QRS complex can be discriminated based on their preprocessing stages. This is due to 

the fact that most of the time the decision making stages are rather heuristic and depends on the 

preprocessing results [10]. 

 

 

 

 

 

 

 

 

 

Figure 16. Common structure of QRS complex detection [10]. 
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2.1.1 Derivatives and Digital Filter Based Approaches 

The range of the frequency component of QRS complex is typically from 10 Hz to 25 Hz 

[10]. Therefore, a combination of high and low pass filters in other words a bandpass filter can 

be used to remove noises such as P-wave, T-wave, baseline drift and incoupling noises. Whereas 

a high pass filtering accomplishes the removing of  P-wave, T-wave and baseline drift, a low 

pass filter is required to remove incoupling noise before the real detection begins. This filtered 

signal can then be used for generation of some features. QRS complex is detected by comparing 

these features with fixed or adaptive thresholds. This logic of detection is then frequently 

completed after applying some additional decision rules in order to reduce false positive 

detections.  

Some algorithms, such as [11]–[16], use only high-pass filter part. This high-pass filter part 

is often, particularly in the older algorithms, realized as a differentiator which indicates the usage 

of the characteristic steep slope of the QRS complex for its detection. Some algorithm also 

computed second derivatives [11] [17] to extract the features.  

Algorithms based on more sophisticated digital filters were published in [18]–[30]. In [30], 

two different low-pass filters with different cut-off frequencies are used in parallel along with a 

nonlinear operation on the signal. This causes a slight smoothing of the peaks. The threshold is 

computed adaptively.  

In [22] and [26], a bandpass filter and afterwards differentiator are used as preprocessor. 

After squaring and averaging the output of the differentiator, features are computed. The 

bandpass and differentiator use filter coefficients that are particularly suited for an 

implementation on fixed-point processors with a short word length. For peak detection, a 
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variable is introduced along with an adaptive decision system. Figure 17 shows the fundamental 

of this kind of peak detection technique.  

 

 

 

 

 

 

 

 

 

Figure 17. R peak detection proposed in [10]. 

One of the most popular QRS detection algorithms, introduced by Pan and Tompkins in 

[26], is based on this principle which is virtually included in all biomedical signal processing 

textbooks. Among all the techniques based on derivative and digital filtering, this method 

reliably recognizes QRS complexes. An overview of this algorithm is given below. 
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Pan and Tomkins Algorithm 

 

 

 

 

Figure 18. Graphical representation of QRS detection algorithm by Pan and Tomkins [26]. 

As shown in Figure 18, this algorithm uses basically the same preprocessor technique. At 

first, the ECG signal is passed through a low pass and a high pass filter. The low pass filter is 

given by the following equation: 

 ( )     (   )    (    )   ( )     (    )   (    )                ( ) 

The high pass filter is described by 

 ( )   (   )   
 

  
 ( )   (    )   (    )  
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After filtering, the signal is differentiated in order to get slope information by using the 

following equation 

 ( )   
 

 
[  ( )   (   )   (   )    (   )]                                    ( ) 

To make all the data points positive for emphasizing the higher frequencies, the signal is 

then squared point by point. 

 ( )    ( )                 ( ) 

After squaring, the algorithm performs moving window integration to obtain waveform 

feature information. 
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where N is the size of the moving window and depends on the sampling rate. Figure 19 shows 

signals at various stages in processing. 

Figure 19. Different processing steps of Pan-Tompkins method. (a) Raw ECG signal (b) Output 

of bandpass filter (c) Output of differentiator (d) Output of Squaring process (e) Detected QRS 

(Averaged with 30 samples length, Black is noise level, Green is Adaptive Threshold, RED is 

Sig Level and the Red circles are QRS adaptive threshold). 

A temporal location of the QRS is then marked from the rising edge of the integrated 

waveform. For peak detection, two thresholds are adjusted. Comparing with the higher of the 

two thresholds, R peaks are evaluated from the feature signal. If no peak is detected in a certain 
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time interval then the lower threshold is used for a search back technique where the algorithm 

has to search back in time for a lost peak. A peak is a local maxima determined by observing 

when the signal changes direction within a predefined time interval. When a new peak is 

identified, this peak is classified as a signal peak if it exceeds the high threshold or the low 

threshold if we search back in time. If it does not exceeds then it is classified as a noise peak. 

Based on these signal and noise peaks, the thresholds are automatically adjusted to float over the 

noise. The integration waveform and the filters signals are further investigated to get different 

values of thresholds at different point of the processing making it robust in terms of detection. To 

be identified as a QRS complex, a peak must be recognized as a QRS in both integration and 

filtered waveform. 

In [31] using a similar way to [22] and [26] but different filters, the feature signal is 

achieved. This feature signal is then divided into segments of 15 points where the maximum of 

each segment is compared to an adaptive noise level. An adaptive peak level estimate classifies 

depending on the distance to each of the estimates.  

Based on the assumption that a QRS complex is characterized by simultaneously occurring 

frequency components within the passbands of the two bandpass filters, [32] is proposed. Here 

by using a feature extractor based on two different bandpass digital filters and a multiplier 

performing AND operation, QRS detection is performed. 

The algorithms described in [28] and [29] are based on the MOBD (multiplication of 

backward difference) technique. It is essentially an AND-combination of adjacent magnitude. 

In [33], an algorithm is proposed based on the use of recursive and nonrecursive filters. 

Feature signal is acquired by using a combination of two median filters and one smoothing filter. 

The additional signal processing steps are similar to [22] and [26] . 
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Generalized digital filters which have a linear phase response are proposed in [18] and [27] 

in order to detect QRS complex with a transfer function. These are computationally highly 

efficient. 

2.1.2 Wavelet Based Approaches 

Like time-frequency representation of short-time Fourier transform (STFT), wavelet 

transform (WT) of a function gives a time-scale representation. In contrast to STFT, WT uses a 

set of analyzing functions derived from a mother wavelet to get details of time and frequency 

resolution for different frequency bands. This mother wavelet is a short oscillation with zero 

mean as depicted in Figure 20, as an example. Using the set of analyzing functions deduced from 

different mother wavelet function, different approaches are made to detect QRS complex from 

sampled ECG signal. 

 

 

 

 

 

 

 

Figure 20. Example of a wavelet function (Daubechies-4 wavelet) [10]. 

Detection methods mentioned in [34]–[38] are based on Mallat‟s and Hwang‟s approach for 

singularity detection and classification using local maxima of the wavelet coefficient signals 

[39]. That means the analysis involves with the correlation between a function‟s local maxima in 
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its wavelet transform and its singularity. Figure 21 clarifies this relation. The peak classification 

is acquired by computing the singularity degree also known as the peakiness of the wave. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Example of the correlation between a function‟s local maxima in its wavelet 

transform Wf (a, t) and its singularity. The mother wavelet is the derivative of a smoothing 

function θ(t) [10]. 

In [37], by searching for modulus maxima in the relative scales of the WT, R-peaks are 

detected. Lipschitz regularity is checked for a valid detection. Beside this condition, further 

heuristic decision rules are applied such as within the different scales, putting condition on peak 

occurrence sign and timing. [34] is directly derived from [37]. Both algorithms are much more 

comprehensible than the original approach. 
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QRS detection algorithms based on local maxima and the coefficients of discrete WT are 

presented in [35] [36] and [38]. In  [35], characteristic points are acquired by comparing the 

coefficients of the discrete WT on selected scales against fixed thresholds. [38] divides the ECG 

into segments of a fixed length. R-peaks are detected when the locations of modulus maxima of 

adjacent scales exceed a threshold that is calculated for every segment. In [40], the wavelet-

based zero crossing representation from [41] is used for pattern recognition. The wavelet 

transform has also been used for classification in [42]–[44] with several other noise reduction 

techniques. 

In [45], Afonso et al. reported a low computational QRS detection algorithm based on filter 

bank technique. Filter banks are closely related to wavelets and can be used for low computation 

compared to the wavelet based algorithms. The theory behind this algorithm is given below. 

Filter Banks Technique by Afonso 

The algorithm consists of two stages: a feature extraction stage and a sophisticated detection 

logic stage as shown in figure. 22.  

 

 

 

Figure 22. Signal flow diagram of the algorithm [45]. 
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       In the feature extraction stage, a 32 channel filter bank is used for extracting three features 

which is shown in figure 23. The outputs wi(n) are band pass filtered and downsampled versions 

of the input signal x(n). 

 

 

Figur

e 23. 

Filter 

bank 

for 

the 

gener

ation 

of the feature signals [45]. 

The bandpass filters are designed according to a method proposed in [46]. For a lossy 

compression of the ECG, the filter bank is used to allow a perfect or near perfect reconstruction. 

Because such filter banks gives us a much higher stop band attenuation. In this algorithm, the 

order of the filters is N=320. This allows for a signal to noise ratio of about 60 dB after the 

reconstruction which is highly sufficient for ECG signals. If reconstruction is not desired then 

other filters that extract the same frequency information can be used with less constraints. Hence, 

they would need fewer filter coefficients. 

From the output signals of the filter bank, three features are computed as follows 
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Afterwards the features Pi are smoothened by a moving window integrator. The 

downsampling and the usage of only four out of 32 channels for the computation of the features 

results in a significant reduction of samples to process and hence a significant reduction of the 

computation complexity. These features are then compared with a signal adaptive thresholds. A 

sophisticated detection logic processes the detected events, determines the probability for an 

event to be a QRS complex and eventually performs the classification. The exact timing 

information about the QRS complex is obtained by a maximum search in the ECG signal within 

a certain range around the detected event. For the determination of the timing information the 

electrical position of the heart must be taken into consideration. 

2.1.3 Neural Network Based Approaches 

Artificial neural networks have been widely applied in nonlinear signal processing, 

classification, and optimization. In many applications, their performance was shown to be 

superior to classical linear approaches. In ECG signal processing, mostly the multilayer 

perceptron (MLP), radial basis function (RBF) networks, and learning vector quantization (LVQ) 

networks are used [10].  

As shown in Figure 24, multilayer perceptron (MLP) has several layers of interconnected 

neurons. Here, a neuron always represent a processing function.  
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Figure 24. Multilayer perceptron [10]. 

 

Radial basis function (RBF) networks are closely related to fuzzy logic methods [47]. The 

possibility to interpret the parameters is a big advantage of radial basis function networks over 

multilayer perceptron networks. This gives us more reliable results. 

The LVQ network consists of an input layer, a competitive layer, and a linear layer. The 

structure of the LVQ network is shown in Figure 25. 
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Figure 25. Example of a wavelet function (Daubechies-4 wavelet) [10]. 

In order to accomplish the application-dependent task (e.g. approximation or classification), 

the parameters of the network need to be trained. Whereas the MLP and RBF networks are 

trained by supervised learning algorithms, the LVQ network is adjusted in an unsupervised 

manner. Appropriate training algorithms are described in the literature; for example, in [48] and 

[49]. The application of neural networks in the field of ECG waveform classification is reported 

in [32], [50]–[60]. 
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2.1.4 Additional  Approaches 

To detect QRS complex different other techniques have also been used. The application of 

adaptive prediction filters to QRS detection has been investigated in [22] and [61]. In [62] the 

application of hidden Markov models (HMM) to QRS and ECG waveform detection is 

investigated. The use of mathematical morphology operators for QRS detection was described in 

[63]. Besides the neural-network-based matched filtering approach in [64], there are linear 

matched filtering approaches as reported in [65]–[68]. In [69], genetic algorithm has been 

applied to a combined design of optimal polynomial filters for the preprocessing of the ECG and 

the parameters of a decision stage. In [70], the use of the Hilbert transform for QRS detection is 

proposed. In [71], the application of length and energy transforms to QRS detection is 

investigated. The transforms are defined for multichannel ECG signals but may also be used for 

single-channel ECG analysis. QRS detection based on zero crossing counts is proposed in [72]. 

Syntactic algorithms for ECG processing have been proposed in [73]–[76]. 

In [77], Wang et al. proposed a novel dual-slope QRS detection algorithm with low 

computational complexity. This method calculates the slopes on both sides of a peak in ECG 

signal. Based on these slopes, three criteria are developed for simultaneously checking steepness, 

shape and height of the signal in order to locate the QRS complex. Our proposed method is based 

on this discovery. To understand the concept of dual slope technique in detection of QRS 

complex, a short description of their algorithm is given in the next section. 

 

Dual-Slope QRS Detection Algorithm by Wang et al. 

Considering the fact that the half of the width of QRS complex is in the range of 0.3-0.5 sec, 

all slopes between the current sample and the samples 0.3-0.5 sec away on both sides are 
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calculated. The maximum and minimum slopes from each side are then evaluated with signs. 

Subtracting the maximum slope of one side and minimum slope of other side, a variable 

          is defined by taking the maximum value of slope difference. As the wearable devices 

are for heart patients, the range is extended to 0.027-0.063 sec to increase the sensitivity for 

abnormal heart beats. 

The equation of calculating the maximum and minimum slopes on both sides and the 

variable measuring steepness           are given below: 
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where fs is the sampling frequency, a and b are the nearest integers of 0.027fs and 0.063fs, 

respectively and z
n
 is the n

th
 sample in ECG signal.  

   An adaptive preset threshold is defined as       which must be updated according to 

average value of           of previously detected 8 peaks.           must be larger than       to 

satisfy the first criteria. The rules for updating are given below: 
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To avoid false high values of           causing from flat slope on one side and steep slope 

from other side, another criterion is introduced to check the shape. QRS complex should have a 

ramp like shape on both sides at an R peak. So the sign of the slope on both sides should be 

opposite and the value should be grater then a minimum value. The conditions are: 

        (|      | |      |)  and 
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where the value of       is 1536/ fs. 

The third criterion is based on the height of the slope. For noise and other sharp waves, we 

have high values of slope but the heights of the slopes are not as high as in QRS complex. So 

checking the height will eliminate the possibility of detecting such unwanted peaks. Therefore, 

the third condition is: 

                                                                    (  ) 

where      is the height of current slope and      is the average slope height of previous 8 

detected peaks. If all the criteria are satisfied then we look forward to find the local extremes in 

that signal section followed by adjustment to avoid multiple detections within one section. The 

one with large value of           is considered as the R peak. 
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2.2 Available Benchmark Databases 

There are several well-annotated standard ECG databases available in order to evaluate QRS 

detection algorithms. Evaluation of theses algorithms on such databases produce reproducible 

and comparable results. Furthermore, these databases contain large variations with rarely 

observed but clinically important signals. Available standard databases include: 

2.2.1 MIT-BIH Database 

The MIT/BIH arrhythmia database [78] is used in almost all study for performance 

evaluation of algorithms. It is a standard database of 48  ECG recordings. These recordings have 

11 bit resolution over 10 mV and are sampled at 360Hz. Each tape includes two channel taken 

from modified limb lead II and one of the modified leads V1, V2, V4 or V5. The duration is 30 

minutes for each recording selected from 24-hr recordings of 47 individuals. The subjects were 

taken from, 25 men aged 32 to 89 years, and 22 women aged 23 to 89 years and the records 201 

and 202 came from the same male subject. Tape 100 to 124 (containing 23 recordings) are 

provided as a representative sample of routine clinical. On the other hands, Tape 200 to 234 

(containing 25 recordings) are the signals containing different arrhythmias. The database 

contains annotation for both timing information and beat class information verified by 

independent experts [79].  

2.2.2 LBNP Database 

When a subject goes through a graded lower body negative pressure (LBNP), their heart rate 

is increased [80]. LBNP Database was created from such signals. Eighteen of the recordings 

were taken from 18 subjects (age: 27.6±3.6 years, weight: 71.22±11.9 kg and height: 174.3± 7 

cm, 15 male and 3 female). Signals were recorded using an NI 9205 analog input module 
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(National Instruments, Austin, TX). The ECG‟s R wave was manually annotated for a total of 

37000 cardiac cycles.   Signals were recorded at Aerospace Physiology Laboratory at Simon 

Fraser University Under an Ethics Approval from the same institute. Written consent was given 

by all participants.   

2.2.3 AHA Database 

The AHA (American Heart Association) Database is a database containing 155 recordings 

for analyzing ventricular arrhythmia detectors [81]. The signals have a resolution of 12 bits over 

20 mV and sampling frequency of 250 Hz. Each tape has 2.5 hours of unannotated signal 

followed by 30 minutes of annotated ECG. In each recording, eight groups are arranged to 

represent different levels of ectopic excitation. Tape 1001 to 1020 of the first group show no 

extra systoles, whereas records 8001 to 8010 consist of ventricular fibrillation. 

2.2.4 AAMI  Database 

To emphasize on classifying ventricular ectopic beats from the non- ventricular ectopic 

beats, MIT-BIH heartbeat types are combined according to Association for the Advancement of 

Medical Instrumentation (AAMI) recommendation [82]. Each recording contains one ECG 

signal sampled at 720 Hz with 12-bit resolution. AAMI also recommends that each ECG beat 

can be classified into either Normal (N), supraventricular ectopic (SVEBs), ventricular ectopic 

beats (VEBs), fusion (F) or unclassified (Q) beats. 

2.2.5 Other standard Database 

More libraries available for evaluation of detection and classification algorithms are the 

Common Standards for Electrocardiography (CSE) Database [83], the IMPROVE Data Library 
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[84], European ST-T Database [85], the ECG Reference Data Set of the Physikalisch-Technische 

Bundesanstalt (PTB) [86], the QT Database [87] and the MGH Database [88]. 

2.3 Evaluation and Comparison of Detection Algorithms 

To analyze the performance of detection algorithms, true positive (TP), false negative (FN) 

and false positive (FP) are normally evaluated. When an algorithm detects R peaks correctly a 

true positive happens. A false negative (FN) occurs when an algorithm fails to detect an actual 

QRS complex quoted in the corresponding annotation file of the record. And false positive (FP) 

means a false beat detection. In order to compare algorithms, error rate, sensitivity and  positive 

predictivity should be used as benchmark parameters.  

Using FP and FN, error rate (ER) is calculated based on the following equation: 
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where total QRS is total number of QRS complex in the ECG data. The other two parameters, 

sensitivity and positive predictivity, are computed by 
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The percentage of true beats that were detected correctly is reported by sensitivity Se. The 

positive predictivity +P reports the percentage of beat detection which are true beats according 

to annotation. 
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CHAPTER 3  

PROPOSED METHOD 

Typically, the Q, R and S peaks are three deflections, which depict specific events and occur 

in a periodic manner in ECG signal. Starting from Q wave, a downward deflection, R wave 

follows with steepest upward deflection and S wave is any downward deflection after the R 

wave. The time taken by this event is relatively fixed in normal conditions, in the range of 0.06-

0.1 second. If we calculate the slope of straight line between two samples, which is about the half 

of the width of QRS complex away from each other, the largest values of slope can be found in 

QRS complex. Moreover, QRS complexes are periodic, normally in the range of 0.6-1 seconds 

[77]. Therefore, by introducing a window of time which is automatically adjustable to ECG 

changes such as QRS morphology and heart rate, a faster QRS detection process is possible. 

Within this window, adaptive thersholding techniques can be used in order to consider a signal 

section as QRS complex. If thersholding criteria are satisfied then local extreme can be searched 

within QRS complex to locate R peak. Based on this idea, this new QRS detection algorithm is 

proposed. 

3.1.1  Calculation of slopes 

As half of QRS complex width is in the range of 0.03-0.05 second, the processing of sample 

begins by calculating one slope between the current sample and the sample 0.3 second away on 

both sides. From the range of 0.3-0.5 second, this distance between samples is carefully chosen 
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to 0.3 second over others in order to eliminate the possibility of low slope values caused by the 

different shapes of QRS complexes. The equations to calculate the slopes are:  

        (
   ( )     (   ) 
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)                             (  ) 

where    ( ) is the current sample.    (   ) and    (   ) are the samples which are 

0.03fs away from both sides of the current sample. fs is the sampling frequency and   is 

equivalent to the nearest integer value of 0.03fs. By multiplying SLeft with SRight for each sample, a 

steepness measuring variable SMult is evaluated as follows: 

                                                                                           (  ) 

As the sign of slope on both sides should be opposite at R peaks, the following condition is 

verified: 

   (     )       (      )                                        (  ) 

If the sign of slopes on both sides is opposite, this steepness measuring variable SMult 

indicates very high values of this variable around QRS complex as shown in the Figure 26. 

 

Figure 26. Tape 100 of MIT-BIH database showing values of variable  SMult. 
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To eliminate false beat detection, the SMult must be larger than a threshold value. In order to 

define a universal adaptive thresholding technique, a learning stage based on first 3 second of 

data is introduced where at least 2 QRS complexes are required to occur to initialize parameters 

based on RR-interval. Therefore, to initialize detection threshold and RR-interval based 

parameters, at first SMult has been calculated for the first 3 seconds. Then, the threshold is 

considered as: 

  
   (     )

 
                                                   (  ) 

This means a signal is considered as R peaks if the value of SMult is greater than one-third of 

the maximum value of SMult for first 3 second. This value of T is selected by trial and error to get 

optimal result. In order to adapt with the ECG changes, for subsequent signal sections this 

threshold has been updated after every 8 detected peaks based on the average value of SMult of 

these peaks. The updating equation is: 
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where        is the average value of SMult variable of last eight detected peaks. 

3.1.2 R-R interval window 

An R-R interval is the interval between two R peaks which is in the range of 0.6-1 second 

for normal resting adult human heart. But R peaks can occur faster than the average to respond to 

many conditions such as external stress. However, once an R peak is detected, there is a 200 

millisecond refractory period before the next R peak since physiologically it cannot happen more 

closely than this refractory period [26]. For faster detection of QRS complex, a “moving 

window” of time can be used based on most recent RR interval values. To achieve reliable 

performance, this moving window of time is calculated as follows: 
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                                                              (  ) 

where Where RRint is the average interval between last 8 detected peaks and ∆R is considered as 

0.48fs. This ∆R is carefully chosen based on the refractory time and average RR-interval of 

human heart to eliminate the chances of creating false negatives.  

In this period of time, for normal resting heart only one peak should be detected. But as 

mentioned earlier, R peaks can occur more quickly than the average. At the same time, T wave, 

P wave or noise sections can produce large slopes as well. However, the height of this slopes are 

usually much smaller than those of QRS complex.  

To avoid wrong detection of R peaks, if two peaks are detected within single period of 

window, then both of them are compared with the average height of previously detected eight 

peaks Have. If they are larger than a certain factor, then both of them are considered as R peaks. 

Otherwise, the peak with high value of SMult is considered as R peaks only. Following is the 

condition: 

                                                         (  )  

Within one period of window more than two peaks cannot be possible as based on recent 

RRint the moving window is adapting with time. So, if the detection of the peaks is more than two 

then the peaks with lower values of SMult among them are ignored. 

3.1.3 Search back technique 

Sometimes the amplitude of the ECG as well as the amplitude of R peaks gets significantly 

shorter when switching from one patient‟s ECG to another. So it might be possible that peaks 

cannot be detected in that region because of low value of the calculated slopes while the value of 

threshold based on previously detected peaks is high. Such a case is shown in Figure 27. 
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Figure 27. Tape 109 of MIT-BIH database showing variation of amplitude in ECG signal. 

The algorithm needs to be rapidly adaptable without requiring any special learning phases in 

a situation like this. Thus for threshold re-adjustment, if in a period of time corresponding to 

average QRS complex interval elapses without a beat detection, the threshold is lowered by half 

of the previous threshold value. By searching back through the same time interval, the sensitivity 

of detection can be increased to avoid missing valid R peaks on that region. 

3.1.4 Adjustment within QRS complex 

If all the above criteria are met then local maximum and minimum are searched in current 

signal section to determine the location of R peaks. To avoid multiple detections within one QRS 

complex, the one with the largest value of SMult is retained as an R peak, while the other is 

discarded. 

A flow chart of the proposed method is given bellow:  
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Figure 28. Block diagram of the proposed algorithm 
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CHAPTER 4  

RESULTS AND DISCUSSION  

Several QRS detection algorithms have been proposed during the last four decades. 

However, this large variety of QRS detection algorithms and continuous attempt for their 

improvement indicates that no single algorithm is clearly superior over all others. This is due to 

large diversity of QRS waveform and wide variation of noise and artifact in ECG signal [10]. 

Among all these algorithms, Pan-Tompkins‟s algorithm [26] is probably the most widely used  

QRS detection algorithm. On the other hand, the algorithm developed by Afonso et al. [45] has 

been reported to have lower computational load as well as good accuracy [8]. Due to the high 

acceptability of Pan-Tompkins method and low computational complexity of Afonso method, 

these two algorithms were used to be compared with the proposed approach. 

For evaluation, two types of database were selected. As both of the algorithms, Pan-

Tompkins and Afonso were evaluated on MIT-BIH database by the respective authors, MIT-BIH 

database was selected to analyze the performance based on different arrhythmias. Testing was 

performed on channel 1. The LBNP database was used to check the performance of the 

algorithms for healthy subjects under different stress. 
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4.1 Performance on MIT-BIH database 

Since Pan-Tompkins and Afonso methods were not applied to the same data on the same 

computer, in order to get an impartial comparison of the accuracy and complexity, all three 

algorithms were evaluated in the same length of data using MATLAB environment on the same 

computer. The MATLAB code for Pan-Tompkins approach is provided by [89]. For Afonso 

technique, codes from [90] was used. Table 3 shows the accuracy of these codes according to 

their error rates mentioned by the authors based on MIT-BIH database. The accuracy of these m 

files (MATLAB files) is close enough to consider them for evaluation of these techniques. 

Table 3. Accuracy of  the M files 

Method 
Total 

QRS 

Paper M file 

FP FN Error rate (%) FP FN Error rate (%) 

Pan and 

Tompkins [26] 
109,508 507 277 0.72 441 757 1.09 

Afonso [45] 90,782 406 374 0.86 1,189 613 1.98 

 

Table 4 shows the summary of QRS detection for all algorithms based on FN and FP. T is 

the runtime of the corresponding program using the same MATLAB environment on the same 

computer for all methods. As mentioned in [10], Tape 108 is very noisy and has very low SNR. 

This proposed algorithm in this paper has 41 FPs and 41 FNs whereas the other algorithms have 

more than 100 false detections.  

As the variable SMult has been calculated based on the width of QRS complex, this algorithm 

is sensitive to the width. In this database, some of the annotated R peaks because of premature 
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ventricular contraction (PVC) have more width than the usual range. Tape 208 has more than 

992 beats with wider width. Because of this reason the sensitivity of the algorithm (detection of 

FN‟s) is greatly affected by PVC. Those PVCs have been eliminated before running the 

algorithm as those are not our main concern. The total number of deleted signal contains 1,041 R 

peaks and is 0.067% of the total data. Tape 208 was not considered because of its high PVC 

contains. 

Table 4. Performance of the algorithms using MIT-BIH database. 

Tape Total 
Pan Tompkins [26] Afonso [45] 

New Dual-slope based 

algorithm 

FN FP T (sec) FN FP T(sec) FN FP T(sec) 

100 2273 0 0 5.23 2 0 2.10 2 0 2.45 

101 1865 2 3 3.72 1 2 1.67 1 2 2.13 

102 2187 0 0 3.93 1 0 1.69 4 0 2.26 

103 2084 0 0 3.41 2 0 1.68 2 0 2.33 

104 2229 104 101 3.79 44 81 1.72 16 49 2.36 

105 2572 17 43 4.22 11 40 1.74 5 23 2.66 

106 1507 0 0 3.81 0 0 1.75 0 0 1.98 

107 2137 18 2 3.54 20 58 1.73 16 1 2.43 

108 1774 125 282 4.54 19 184 1.68 41 41 2.05 

109 2532 5 0 2.81 97 3 1.72 15 0 2.71 

111 2124 9 0 3.88 3 2 1.68 1 0 2.38 

112 2539 0 0 3.52 2 1 1.72 1 0 2.66 

113 1795 0 0 3.68 3 0 1.67 1 0 2.07 

114 1879 2 7 4.30 2 4 1.69 23 6 2.03 

115 1953 0 0 3.91 3 0 1.68 1 0 2.20 

116 2412 24 4 3.41 24 2 1.72 27 0 2.46 

117 1535 0 0 3.88 2 0 1.70 1 0 1.80 

118 2278 0 1 3.82 2 4 1.69 1 0 2.50 

119 1543 0 1 3.86 0 0 1.70 0 0 1.07 

121 1863 2 0 3.91 2 3 1.68 3 0 2.19 

122 2476 0 0 3.44 4 0 1.68 1 0 2.65 

123 1518 3 0 3.92 2 0 1.63 4 0 1.80 

124 1572 0 0 3.37 0 1 1.64 0 0 1.90 

200 2601 4 1 4.05 8 14 1.74 9 7 2.23 

201 1625 0 0 3.95 0 0 1.69 0 0 1.91 

202 2136 8 1 3.63 10 0 1.69 46 0 2.12 
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Table 4. cont. 

203 2980 4 19 3.98 60 51 1.80 212 34 2.41 

205 2656 8 0 3.78 10 0 1.75 49 0 2.68 

207 1477 0 4 3.77 3 16 1.70 8 5 2.87 

209 3004 0 1 4.19 2 2 1.78 2 0 2.86 

210 2423 0 5 3.74 0 9 1.75 0 5 2.52 

212 2748 0 1 3.92 3 2 1.75 1 0 2.82 

213 2641 0 0 4.17 0 0 1.90 0 0 3.03 

214 2265 3 0 3.72 10 2 1.71 19 0 2.32 

215 2533 0 0 5.12 0 0 1.82 0 0 2.87 

217 2209 8 1 3.42 4 2 1.71 10 1 2.42 

219 1553 0 0 3.48 0 0 1.73 0 0 2.32 

220 2048 0 0 3.70 3 0 1.65 2 0 2.28 

221 2031 0 0 3.85 0 0 1.75 0 0 2.18 

222 2483 18 19 4.38 3 2 1.75 31 1 2.27 

223 2605 10 0 3.75 9 0 1.74 59 0 2.60 

228 2053 16 7 4.32 7 61 1.70 18 17 2.17 

230 2256 0 0 4.30 3 2 1.68 2 0 2.45 

231 1571 0 0 3.75 2 0 1.77 2 0 2.05 

232 1780 1 2 4.66 1 9 1.76 2 1 2.03 

233 3079 2 0 3.85 22 1 1.82 18 0 2.53 

234 2753 1 0 4.00 6 0 1.75 5 0 2.84 

Total 105112 394 505 3.90 412 558 1.73 661 193 2.34 

 

Furthermore, Table 5 shows the overall error rate, sensitivity, positive predictivity, and 

processing time based on TP, FP, and FN. As shown in the table, because of the higher positive 

predictivity the overall error rate is higher. Due to wider width of PVCs the sensitivity of this 

method is lower than the others. On the other hand, the complexity has been analyzed based on 

time taken to run the code. The proposed method is faster than Pan Tompkins by 1.56 second 

and slower than Afonso‟s method by 0.61 second which can be considered small enough for 

wearable devices. 
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Table 5. Comparison of the algorithms based on MIT-BIH database. 

Method Total TP FN FP Accuracy Sensitivity 
Positive 

predictivity 

Processing 

Time 

Afonso et 

al. [45] 
101745 412 558 99.0505 0.9960 0.9945 1.73 

 

Pan and 

Tompkins 

[26]  

101763 394 505 99.1200 0.9961 0.9951 3.90 

 

New 

Algorithm 

101496 661 193 99.1640 0.9935 0.9981 2.34 

 

4.2 Performance on LBNP database 

The LBNP database contains noisy data as the subjects were under different stresses. 

Sometimes because of the movement of the subject or displacement of ECG electrodes, noises 

similar to what is shown in Figure 29 can appear. An algorithm needs to be robust enough to 

detect such cases. Other than this, different types of other noises can also appear when an 

individual is running or moving rapidly. To implement a QRS detection algorithm on wearable 

devices, signals from such cases are needed to be analysed. This database has been chosen to 

evaluate the algorithms on such ECG signals. 
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Figure 29. Tape 17 of LBNP database showing rapid movement noises. 

Tables 6 and 7 show the performance of all algorithms on LBNP database in the same way. 

If noises appear, similar to what is shown in Figure 29, Pan-Tompkins method is very sensitive 

to them. For tape 05, 14 and 17, Pan-Tompkins method was not able to run properly because of 

getting very high derivative values and missing out several R peaks. This new dual slope based 

algorithm is also sensitive for such tapes as Smult gets very high values because of large slopes on 

such signal sections. But by eliminating such value of Smult from calculating the average       , 

this new algorithm can run smoothly for such cases. If the height of Smult of current section is 3 

times greater than the last average then to calculate the next average using the value of previous 

       instead of this new high Smult this problem can be solved. On the other hand, having a 

frequency-based technique Afonso method does not need such condition. Results on Table 4 are 

shown after eliminating these signal sections as Pan-Tompkins method was not detecting R 

peaks for several tapes.  
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Table 6. Performance of the algorithms on LBNP database. 

Tape Total 

Pan Tompkins [26] Afonso [45] 
New Dual-slope based 

algorithm 

FP FN 
T 

(sec) 
FP FN 

T 

(sec) 
FP FN 

T 

(sec) 

01 1822 2 0 7.97 9 0 7.34 1 0 5.46 

02 1829 2 0 6.65 15 0 9.28 1 9 6.15 

03 1665 3 2 6.13 40 5 9.27 13 0 5.98 

04 2184 20 3 6.92 2 0 9.28 2 3 6.14 

05 2303 0 0 9.38 6 1 14.31 3 25 6.40 

06 2002 0 0 6.31 0 2 9.86 0 0 5.74 

07 1071 0 1 6.99 2 4 10.15 0 0 6.55 

08 2114 4 0 6.46 9 2 9.47 0 1 6.12 

09 1772 0 0 5.83 0 1 8.38 1 2 5.46 

10 2292 14 2 6.25 41 4 8.39 12 2 6.11 

11 2813 0 79 6.57 0 0 9.69 0 0 6.39 

12 1143 7 3 7.01 16 4 9.05 6 1 5.80 

13 2390 0 0 6.45 0 2 9.33 0 0 6.14 

14 2417 0 0 5.44 0 0 9.28 3 8 6.40 

15 2067 0 0 6.32 1 3 9.74 0 4 5.74 

16 2948 0 1 6.67 3 3 9.22 2 5 6.55 

17 2370 0 0 5.91 9 1 11.05 13 0 8.67 

18 2252 2 4 8.32 5 0 6.35 2 1 5.61 

Total 37454 54 95 6.75 158 32 9.41 59 61 6.19 

 

From Table 7, this new approach is showing highest accuracy among all. The sensitivity and 

positive predictivity are also very similar. But at a sampling rate of 1000, frequency based 

Afonso‟s algorithm does not have comparable processing time. More time is needed to process 

the data.    
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Table 7. Comparison of the algorithms based on LBNP database. 

Method 
Total 

TP 

Total 

FN 

Total 

FP 
Accuracy Sensitivity 

Positive 

predictivity 

Processing 

Time 

Afonso et al.  

[26] 
37422 32 158 99.4927 99.9146 99.5796 9.41 

 

Pan and 

Tompkins [45] 

37359 95 54 99.6022 99.7464 99.8557 6.75 

 

New 

Algorithm 

37393 61 59 99.6796 99.8371 99.8425 6.19 

 

Figs. 30 and 31 show the robustness of this new algorithm against baseline drift and signals 

with large T waves respectively by demonstrating the detected R peaks marked as circle “o”. It is 

clear that regardless of baseline drift or signals with large T waves the QRS complex can be 

accurately detected. 

 

 

 

 

 

 

 

     Figure 30. QRS detection over tape 105 of MIT-BIH database with baseline drifts. 
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        Figure 31. QRS detection over tape 205 of MIT-BIH database with large T waves. 

4.3 Comparison with Wang et al method [77]: 

As this new approach is based on the approach introduced by Wang et al., comparing this 

algorithm with their approach was essential and also our first to-do task. At the beginning of 

developing this algorithm, these two methods were compared with each other using MIT-BIH 

algorithm. The Wang et al. approach was implemented in MATLAB based on the technique 

mentioned in [77]. This comparison is shown in table 8. 

 

Table 8. Comparison with Wang et al method [77]. 

Method Total FN Total FP Error rate Processing Time 

Proposed Dual-Slope 206 409 0.62 1.66 

Dual-Slope [77] 192 291 0.56 20.71 
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CHAPTER 5  

CONCLUSION AND FUTUREWORK 

5.1 Conclusion 

In this paper, a new QRS detection algorithm was presented and its performance was 

compared with the performances of Pan-Tompkins‟s and Afonso‟s algorithms when applied to 

MIT-BIH and LBNP database in MATLAB. The number of annotated beats, used in evaluation 

of the algorithms, can be considered sufficient enough as these databases contain a large 

variation of the possible morphologies found in ECG signals. When applying to MIT-BIH 

database, the sensitivity of this new approach is 0.9935 but overall detection rate is 99.1640 

which is almost same as the detection rate of Pan-Tomkins (99.1200) and Afonso‟s (99.0505) 

method because of its high positive preditivity (0.9981). On LBNP database, it also showed 

similar results. The detection rate is 99.6796 with the sensitivity as well as positive predictivity 

of 0.9984 where the detection rate of Pan-Tompkins is 99.6022 and Afonso is 99.4927. Overall, 

this new algorithm showed over 99% accuracy on both databases. This makes this new approach 

very useful in applications where the environment is rapidly changing and the distortions in ECG 

are different from the one in laboratory or ambulatory measured ECG. 

Furthermore, the performance of Afonso and Pan Tompkins approach were not consistent on 

the databases during the evaluation. The Pan-Tomkins method was not detecting when the signal 

contains a transient rise of signal amplitude due to noise. Whereas Afonso‟s processing time was 

not consistent due to variation in sampling frequency of the signal. With less processing time and 

better stability, this new algorithm showed almost similar results. Hence, the method is highly 

suitable for battery-driven ECG signal devices. 
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5.2 Future work 

The future work will aim at extensive testing of this new dual slope based algorithm.  

Different other databases and algorithms will be taken account for verifying its performance. 

EC13 and EMI databases can be used next because of their large variety of signal. And also new 

approaches will be introduced to analyze and detect premature ventricular contraction (PVC) 

beats in future. In this algorithm, as the calculations are based on only one slope on both side of 

each sample, this detection process is giving low value of Smult when it comes to premature 

ventricular contraction (PVC) beats if they have large width. We are hoping that by taking 

another slope far away from the sample, we will be able to modify the Smult variable to detect 

PVC beats. Also different thersholding values are taken based on trial and error method. These 

thresholding approaches can be investigated in order to check the possibility of reducing the 

error rate furthermore. 

5.3 My Contribution 

My contribution to this research was to develop an algorithm  to detect QRS complexes in 

ECG signal as accurate as possible with low computational complexity. So that it can be 

implemented for low power operation on ECG signal. As the result of research conducted in this 

thesis, the following journal and conference papers were published: 
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APPENDIX A  

Appendix A contains the MATLAB® of the proposed algorithm 

function [mslope,RR,I,t] = new21(val,fs) 

  

  
RR = 0; I = 0; p=0; 

  
tic; 

  
a = round(.027*fs); b=round(.063*fs); 
k=a; 

  
for (i=1+b:3*fs-b) 

     
    slopeleft(i) = (val(i)-val(i-k))/k; 
    sloperight(i) = (val(i)-val(i+k))/(-(k)); 

     
    if(sign(slopeleft(i))~= sign(sloperight(i))) 
        mslope(i+1) = (-1*slopeleft(i)*sloperight(i)); 
    else 
        mslope(i+1) = 0; 
    end 
    i=i+1; 

     
end 

  
maximum = max(mslope); 
i=1; 
Index_prev =0;j=1;l=1; 

  
while (i<3*fs-b) 
    if (mslope(i)> maximum/2) 
        [Index]=extreme(val,i,a,b); % This index will give me perfect the 

index in my data (here "val") 
        if(Index > (Index_prev+round(0.2*fs)) && i>=Index) %Can't be the same 

index of previous and the index needs to be i==index otherwise lot of points 

around Index will be considered 
            I(j)= Index; 
            peakvalue(j)=val(I(j));         % If We need to check height of R 

peaks 
            peakmslope(j)= mslope(Index);   % For updating adaptive threshold 
            if (j>=2)                       % Calculation of RR interval #for 

RR we need at least 2 peaks 
                RR(l) = (I(j) - I(j-1)); 
                l = l+1; 
            end 
            j=j+1; 
            Index_prev=Index; 
            mslope(i:Index+b) = 0; 
            i=Index+b; 
        end 
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    end 
    i=i+1; 
end 

  
%End of 2 seconds period. Start to check whole data. Variables update 1st. 

  
peakvalue_avg =(sum(peakvalue)/length(peakvalue)); 
peakmslope_avg = round(sum(peakmslope)/length(peakmslope)); 

  
RR_avg = round(sum(RR)/length(RR)); 
delta_RR = round(0.5*fs); 

  
i = I(j-1); lm = I(j-1); n=1;m=1; 

  
start = lm+RR_avg(end)-delta_RR; 
finish = lm+RR_avg(end)+delta_RR; 

  
%run the rest of the data 

  
while (i<length(val)-b) 

     
    if(finish+k>=length(val)) 
        break; 
    end 

     
    q=0; 
    for(i = start:1:finish) 

         
        slopeleft(i) = (val(i)-val(i-k))/k; 
        sloperight(i) = (val(i)-val(i+k))/(-(k)); 
        if(sign(slopeleft(i))== 1 && sign(sloperight(i))== -1) 
            mslope(i+1) = (-1*slopeleft(i)*sloperight(i)); 
        else 
            mslope(i+1) = 0; 
        end 

         
        if (mslope(i)> maximum/3) 
            [Index]=extreme(val,i,a,b); % This index will give me perfect the 

index in my data (here "val") 
            if(Index > (Index_prev+round(0.2*fs)) && i>=Index) %Can't be the 

same index of previous and the index needs to be i==index otherwise lot of 

points around Index will be considered 
                q=q+1; 
                p=1; 

                 
                if(q<2) 
                    I(j)= Index; 
                    peakvalue(j)=val(I(j));         % If We need to check 

height of R peaks 
                    peakmslope(j)= mslope(Index);   % For updating adaptive 

threshold 
                    if (j>=2)                       % Calculation of RR 

interval #for RR we need at least 2 peaks 
                        RR(l) = (I(j) - I(j-1)); 
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                        l = l+1; 
                    end 
                    j=j+1; 
                    Index_prev=Index; 
                    mslope(i:Index+b) = 0; 
                    i=Index+b; 

                     
                elseif(q==2) 

                     
                    if (length(RR)==8*m+4)                     % avg 
                        peakvalue_avg(m)  = sum(peakvalue(j-8:j-1))/8; 
                        peakmslope_avg(m)  = sum(peakmslope(j-8:j-1))/8; 
                        maximum = peakmslope_avg(m); 
                        RR_avg(m) = round(sum(RR(l-9:l-2))/8); 
                        m=m+1; 
                    end 

                     
                    peakvalue1=val(Index); 
                    if(peakvalue1>0.7*peakvalue_avg(end)) 
                        I(j)= Index; 
                        peakvalue(j)=val(I(j)); 
                        peakmslope(j)= mslope(Index);   % For updating 

adaptive threshold 
                        if (j>=2)                       % Calculation of RR 

interval #for RR we need at least 2 peaks 
                            RR(l) = (I(j) - I(j-1)); 
                            l = l+1; 
                        end 
                        j=j+1; 
                        Index_prev=Index; 
                        mslope(i:Index+b) = 0; 
                        i=Index+b; 
                    end 

                     
                else 
                    break; 
                end 

                 
            end 
        end 
    end 

     
    %If nothing is detected go back and change the threshold maximum/6 

     
    if(length(RR_avg)>1) 
        if(p==0) 
            [maximum1,Index1] = max(mslope(start:finish)); 
            Index = start+Index1; 
            if (maximum1> maximum/6) 
                if(Index > (Index_prev+round(0.2*fs))) %Can't be the same 

index of previous and the index needs to be i==index otherwise lot of points 

around Index will be considered 
                    I(j)= Index; 
                    p=1; 
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                    peakvalue(j)=val(I(j));         % If We need to check 

height of R peaks 
                    peakmslope(j)= mslope(Index);   % For updating adaptive 

threshold 
                    if (j>=2)                       % Calculation of RR 

interval #for RR we need at least 2 peaks 
                        RR(l) = (I(j) - I(j-1)); 
                        l = l+1; 
                    end 
                    j=j+1; 
                    Index_prev=Index; 
                    mslope(i:Index+b) = 0; 
                    i=Index+b; 
                end 
            end 
        end 
    end 

     
    % Leave that window if nothing is detected after maximum/6 

     
    if(p~=1) 
        lm = lm+RR_avg(end); 
        start = lm+RR_avg(end)-delta_RR; 
        finish = lm+RR_avg(end)+delta_RR; 
    else 
        lm = I(j-1); 
        i = I(j-1); 
        start = lm+RR_avg(end)-delta_RR; 
        finish = lm+RR_avg(end)+delta_RR; 
    end 

     
    %Update RR_avg and peakmslope_avg 

     
    if (length(RR)==8*m+4)                     % avg 
        peakvalue_avg(m)  = sum(peakvalue(j-8:j-1))/8; 
        peakmslope_avg(m)  = sum(peakmslope(j-8:j-1))/8; 
        maximum = peakmslope_avg(m); 
        RR_avg(m) = round(sum(RR(l-9:l-2))/8); 
        m=m+1; 
    end 

     
    p=0; 

     
end 

  
t=toc; 

  
% mslope1=(mslope(1:end)/max(mslope(1:end))); 
% figure;plot(mslope1); 
%  
% figure;plot(mslope1/max(mslope1),'r'); 
% hold on 
% x = 1:1:length(val); 
% h2 = plot(x,2+val/max(val),x(I),2+val(I)/max(val),'bo'); 
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% % saveas(h2,'our_result.fig') 
% 
% I3=diff(I); 
% h1 = figure;plot(I3); 
% % saveas(h1,'our_RR peaks.fig') 

  

  
end 
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APPENDIX B  

Appendix B contains the MATLAB® of Data extracting coding for MIT-BIH database. 

function [I_new,Rpeaks_new] = detection(I,Rpeaks) 

  
r=0; 
l=1; 
for p=1:length(I); 
    for j=1:length(Rpeaks); 
if  I(p)>=Rpeaks(j)-50 && I(p)<=Rpeaks(j)+50; 
   I_new(l)=I(p); 
   Rpeaks_new(l)=Rpeaks(j); 
   l=l+1; 
else 
    r=r+1; 
end 
    end 
end 

  
end 

 

function [Rpeaks] = convert(textdata) 

  
j=1; 

  
for i=2:length(textdata) 
c = textdata{i,3}; 
ch = 

['N';'L';'R';'B';'A';'a';'J';'S';'V';'r';'F';'e';'j';'n';'E';'/';'f';'Q';'?';

]; 
for k=1:length(ch) 
if c == ch(k)  
a = textdata{i,2}; 
b = str2num(a); 
Rpeaks(j)= b; 
j=j+1; 
end 
end 
end 
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APPENDIX C  

Appendix B contains the MATLAB® of the Pan-Tompins Algorithm 

function [qrs_i_raw,t1]=pan_tompkin(ecg,fs,gr) 

  
%% function [qrs_amp_raw,qrs_i_raw,delay]=pan_tompkin(ecg,fs) 
% Complete implementation of Pan-Tompkins algorithm 

  
%% Inputs 
% ecg : raw ecg vector signal 1d signal 
% fs : sampling frequency e.g. 200Hz, 400Hz and etc 
% gr : flag to plot or not plot (set it 1 to have a plot or set it zero not 
% to see any plots 
%% Outputs 
% qrs_amp_raw : amplitude of R waves amplitudes 
% qrs_i_raw : index of R waves 
% delay : number of samples which the signal is delayed due to the 
% filtering 
%% Method : 

  
%% PreProcessing 
% 1) Signal is preprocessed , if the sampling frequency is higher then it is 

downsampled 
% and if it is lower upsampled to make the sampling frequency 200 Hz 
% with the same filtering setups introduced in Pan 
% tompkins paper (a combination of low pass and high pass filter 5-15 Hz) 
% to get rid of the baseline wander and muscle noise.  

  
% 2) The filtered signal 
% is derivated using a derivating filter to high light the QRS complex. 

  
% 3) Signal is squared.4)Signal is averaged with a moving window to get rid 
% of noise (0.150 seconds length). 

  
% 5) depending on the sampling frequency of your signal the filtering 
% options are changed to best match the characteristics of your ecg signal 

  
% 6) Unlike the other implementations in this implementation the desicion 
% rule of the Pan tompkins is implemented completely. 

  
%% Decision Rule  
% At this point in the algorithm, the preceding stages have produced a 

roughly pulse-shaped 
% waveform at the output of the MWI . The determination as to whether this 

pulse 
% corresponds to a QRS complex (as opposed to a high-sloped T-wave or a noise 

artefact) is 
% performed with an adaptive thresholding operation and other decision 
% rules outlined below; 

  
% a) FIDUCIAL MARK - The waveform is first processed to produce a set of 

weighted unit 
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% samples at the location of the MWI maxima. This is done in order to 

localize the QRS 
% complex to a single instant of time. The w[k] weighting is the maxima 

value. 

  
% b) THRESHOLDING - When analyzing the amplitude of the MWI output, the 

algorithm uses 
% two threshold values (THR_SIG and THR_NOISE, appropriately initialized 

during a brief 
% 2 second training phase) that continuously adapt to changing ECG signal 

quality. The 
% first pass through y[n] uses these thresholds to classify the each non-zero 

sample 
% (CURRENTPEAK) as either signal or noise: 
% If CURRENTPEAK > THR_SIG, that location is identified as a “QRS complex 
% candidate” and the signal level (SIG_LEV) is updated: 
% SIG _ LEV = 0.125 ×CURRENTPEAK + 0.875× SIG _ LEV 

  
% If THR_NOISE < CURRENTPEAK < THR_SIG, then that location is identified as a 
% “noise peak” and the noise level (NOISE_LEV) is updated: 
% NOISE _ LEV = 0.125×CURRENTPEAK + 0.875× NOISE _ LEV 
% Based on new estimates of the signal and noise levels (SIG_LEV and 

NOISE_LEV, 
% respectively) at that point in the ECG, the thresholds are adjusted as 

follows: 
% THR _ SIG = NOISE _ LEV + 0.25 × (SIG _ LEV ? NOISE _ LEV ) 
% THR _ NOISE = 0.5× (THR _ SIG) 
% These adjustments lower the threshold gradually in signal segments that are 

deemed to 
% be of poorer quality. 

  

  
% c) SEARCHBACK FOR MISSED QRS COMPLEXES - In the thresholding step above, if 
% CURRENTPEAK < THR_SIG, the peak is deemed not to have resulted from a QRS 
% complex. If however, an unreasonably long period has expired without an 

abovethreshold 
% peak, the algorithm will assume a QRS has been missed and perform a 
% searchback. This limits the number of false negatives. The minimum time 

used to trigger 
% a searchback is 1.66 times the current R peak to R peak time period (called 

the RR 
% interval). This value has a physiological origin - the time value between 

adjacent 
% heartbeats cannot change more quickly than this. The missed QRS complex is 

assumed 
% to occur at the location of the highest peak in the interval that lies 

between THR_SIG and 
% THR_NOISE. In this algorithm, two average RR intervals are stored,the first 

RR interval is  
% calculated as an average of the last eight QRS locations in order to adapt 

to changing heart  
% rate and the second RR interval mean is the mean  
% of the most regular RR intervals . The threshold is lowered if the heart 

rate is not regular  
% to improve detection. 
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% d) ELIMINATION OF MULTIPLE DETECTIONS WITHIN REFRACTORY PERIOD - It is 
% impossible for a legitimate QRS complex to occur if it lies within 200ms 

after a previously 
% detected one. This constraint is a physiological one – due to the 

refractory period during 
% which ventricular depolarization cannot occur despite a stimulus[1]. As QRS 

complex 
% candidates are generated, the algorithm eliminates such physically 

impossible events, 
% thereby reducing false positives. 

  
% e) T WAVE DISCRIMINATION - Finally, if a QRS candidate occurs after the 

200ms 
% refractory period but within 360ms of the previous QRS, the algorithm 

determines 
% whether this is a genuine QRS complex of the next heartbeat or an 

abnormally prominent 
% T wave. This decision is based on the mean slope of the waveform at that 

position. A slope of 
% less than one half that of the previous QRS complex is consistent with the 

slower 
% changing behaviour of a T wave – otherwise, it becomes a QRS detection. 
% Extra concept : beside the points mentioned in the paper, this code also 
% checks if the occured peak which is less than 360 msec latency has also a 
% latency less than 0,5*mean_RR if yes this is counted as noise 

  
% f) In the final stage , the output of R waves detected in smoothed signal 

is analyzed and double 
% checked with the help of the output of the bandpass signal to improve 
% detection and find the original index of the real R waves on the raw ecg 
% signal 

  
%% References : 

  
%[1]PAN.J, TOMPKINS. W.J,"A Real-Time QRS Detection Algorithm" IEEE 
%TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-32, NO. 3, MARCH 1985. 

  
%% Author : Hooman Sedghamiz 
% Linkoping university  
% email : hoose792@student.liu.se 
% hooman.sedghamiz@medel.com 

  
% Any direct or indirect use of this code should be referenced  
% Copyright march 2014 
%% 
tic; 

  
if ~isvector(ecg) 
  error('ecg must be a row or column vector'); 
end 

  

  
if nargin < 3 
    gr = 1;   % on default the function always plots 
end 
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ecg = ecg(:); % vectorize 

  
%% Initialize 
qrs_c =[]; %amplitude of R 
qrs_i =[]; %index 
SIG_LEV = 0;  
nois_c =[]; 
nois_i =[]; 
delay = 0; 
skip = 0; % becomes one when a T wave is detected 
not_nois = 0; % it is not noise when not_nois = 1 
selected_RR =[]; % Selected RR intervals 
m_selected_RR = 0; 
mean_RR = 0; 
qrs_i_raw =[]; 
qrs_amp_raw=[]; 
ser_back = 0;  
test_m = 0; 
SIGL_buf = []; 
NOISL_buf = []; 
THRS_buf = []; 
SIGL_buf1 = []; 
NOISL_buf1 = []; 
THRS_buf1 = []; 

  
%% Upsample or downsample to 200 Hz default sampling rate of Pan-tompkins 

algorithm 
out =~rem(fs,200)*fs/200 ; 
if out ~= 0 
ecg = downsample(ecg,out); 
fs = 200; %new fs 
end 

  
% ecg = resample(ecg,200,fs); 
% fs = 200; 

  
%% Plot differently based on filtering settings 
if gr 
 if fs == 200 
  figure,  ax(1)=subplot(321);plot(ecg);axis tight;title('Raw ECG Signal'); 
 else 
  figure,  ax(1)=subplot(3,2,[1 2]);plot(ecg);axis tight;title('Raw ECG 

Signal'); 
 end 
end     
%% Noise cancelation(Filtering) % Filters (Filter in between 5-15 Hz) 
if fs == 200 
%% Low Pass Filter  H(z) = ((1 - z^(-6))^2)/(1 - z^(-1))^2 
b = [1 0 0 0 0 0 -2 0 0 0 0 0 1]; 
a = [1 -2 1]; 
h_l = filter(b,a,[1 zeros(1,12)]);  
ecg_l = conv (ecg ,h_l); 
ecg_l = ecg_l/ max( abs(ecg_l)); 
delay = 6; %based on the paper 
if gr 
ax(2)=subplot(322);plot(ecg_l);axis tight;title('Low pass filtered'); 
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end 
%% High Pass filter H(z) = (-1+32z^(-16)+z^(-32))/(1+z^(-1)) 
b = [-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]; 
a = [1 -1]; 
h_h = filter(b,a,[1 zeros(1,32)]);  
ecg_h = conv (ecg_l ,h_h); 
ecg_h = ecg_h/ max( abs(ecg_h)); 
delay = delay + 16; % 16 samples for highpass filtering 
if gr 
ax(3)=subplot(323);plot(ecg_h);axis tight;title('High Pass Filtered'); 
end 
else 
%% bandpass filter for Noise cancelation of other sampling 

frequencies(Filtering) 
f1=5; %cuttoff low frequency to get rid of baseline wander 
f2=15; %cuttoff frequency to discard high frequency noise 
Wn=[f1 f2]*2/fs; % cutt off based on fs 
N = 3; % order of 3 less processing 
[a,b] = butter(N,Wn); %bandpass filtering 
ecg_h = filtfilt(a,b,ecg); 
ecg_h = ecg_h/ max( abs(ecg_h)); 
if gr 
ax(3)=subplot(323);plot(ecg_h);axis tight;title('Band Pass Filtered'); 
end 
end 
%% derivative filter H(z) = (1/8T)(-z^(-2) - 2z^(-1) + 2z + z^(2)) 
h_d = [-1 -2 0 2 1]*(1/8);%1/8*fs 
ecg_d = conv (ecg_h ,h_d); 
ecg_d = ecg_d/max(ecg_d); 
delay = delay + 2; % delay of derivative filter 2 samples 
if gr 
ax(4)=subplot(324);plot(ecg_d);axis tight;title('Filtered with the derivative 

filter'); 
end 
%% Squaring nonlinearly enhance the dominant peaks 
ecg_s = ecg_d.^2; 
if gr 
ax(5)=subplot(325);plot(ecg_s);axis tight;title('Squared'); 
end 

  

  

  
%% Moving average Y(nt) = (1/N)[x(nT-(N - 1)T)+ x(nT - (N - 2)T)+...+x(nT)] 
ecg_m = conv(ecg_s ,ones(1 ,round(0.150*fs))/round(0.150*fs)); 
delay = delay + 15; 

  
if gr 
ax(6)=subplot(326);plot(ecg_m);axis tight;title('Averaged with 30 samples 

length,Black noise,Green Adaptive Threshold,RED Sig Level,Red circles QRS 

adaptive threshold'); 
axis tight; 
end 

  
%% Fiducial Mark  
% Note : a minimum distance of 40 samples is considered between each R wave 
% since in physiological point of view no RR wave can occur in less than 
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% 200 msec distance 
[pks,locs] = findpeaks(ecg_m,'MINPEAKDISTANCE',0.2*fs); 

  

  

  

  
%% initialize the training phase (2 seconds of the signal) to determine the 

THR_SIG and THR_NOISE 
THR_SIG = max(ecg_m(1:2*fs))*1/3; % 0.25 of the max amplitude  
THR_NOISE = mean(ecg_m(1:2*fs))*1/2; % 0.5 of the mean signal is considered 

to be noise 
SIG_LEV= THR_SIG; 
NOISE_LEV = THR_NOISE; 

  

  
%% Initialize bandpath filter threshold(2 seconds of the bandpass signal) 
THR_SIG1 = max(ecg_h(1:2*fs))*1/3; % 0.25 of the max amplitude  
THR_NOISE1 = mean(ecg_h(1:2*fs))*1/2; % 
SIG_LEV1 = THR_SIG1; % Signal level in Bandpassed filter 
NOISE_LEV1 = THR_NOISE1; % Noise level in Bandpassed filter 
%% Thresholding and online desicion rule 

  
for i = 1 : length(pks) 

     
   %% locate the corresponding peak in the filtered signal  
    if locs(i)-round(0.150*fs)>= 1 && locs(i)<= length(ecg_h) 
          [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):locs(i))); 
       else 
          if i == 1 
            [y_i x_i] = max(ecg_h(1:locs(i))); 
            ser_back = 1; 
          elseif locs(i)>= length(ecg_h) 
            [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):end)); 
          end 

         
     end 

     

     
  %% update the heart_rate (Two heart rate means one the moste recent and the 

other selected) 
    if length(qrs_c) >= 9  

         
        diffRR = diff(qrs_i(end-8:end)); %calculate RR interval 
        mean_RR = mean(diffRR); % calculate the mean of 8 previous R waves 

interval 
        comp =qrs_i(end)-qrs_i(end-1); %latest RR 
        if comp <= 0.92*mean_RR || comp >= 1.16*mean_RR 
            % lower down thresholds to detect better in MVI 
                THR_SIG = 0.5*(THR_SIG); 
                %THR_NOISE = 0.5*(THR_SIG);   
               % lower down thresholds to detect better in Bandpass filtered  
                THR_SIG1 = 0.5*(THR_SIG1); 
                %THR_NOISE1 = 0.5*(THR_SIG1);  
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        else 
            m_selected_RR = mean_RR; %the latest regular beats mean 
        end  

           
    end 

     
      %% calculate the mean of the last 8 R waves to make sure that QRS is 

not 
       % missing(If no R detected , trigger a search back) 1.66*mean 

        
       if m_selected_RR 
           test_m = m_selected_RR; %if the regular RR availabe use it    
       elseif mean_RR && m_selected_RR == 0 
           test_m = mean_RR;    
       else 
           test_m = 0; 
       end 

         
    if test_m 
          if (locs(i) - qrs_i(end)) >= round(1.66*test_m)% it shows a QRS is 

missed  
              [pks_temp,locs_temp] = max(ecg_m(qrs_i(end)+ 

round(0.200*fs):locs(i)-round(0.200*fs))); % search back and locate the max 

in this interval 
              locs_temp = qrs_i(end)+ round(0.200*fs) + locs_temp -1; 

%location  

              
              if pks_temp > THR_NOISE 
               qrs_c = [qrs_c pks_temp]; 
               qrs_i = [qrs_i locs_temp]; 

               
               % find the location in filtered sig 
               if locs_temp <= length(ecg_h) 
                [y_i_t x_i_t] = max(ecg_h(locs_temp-

round(0.150*fs):locs_temp)); 
               else 
                [y_i_t x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):end)); 
               end 
               % take care of bandpass signal threshold 
               if y_i_t > THR_NOISE1  

                         
                      qrs_i_raw = [qrs_i_raw locs_temp-round(0.150*fs)+ 

(x_i_t - 1)];% save index of bandpass  
                      qrs_amp_raw =[qrs_amp_raw y_i_t]; %save amplitude of 

bandpass  
                      SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1; %when found with 

the second thres  
               end 

                
               not_nois = 1; 
               SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV ;  %when found with the 

second threshold              
             end  

               
          else 
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              not_nois = 0; 

               
          end 
    end 

       

     

     

     
    %%  find noise and QRS peaks 
    if pks(i) >= THR_SIG 

         
                 % if a QRS candidate occurs within 360ms of the previous QRS 
                 % ,the algorithm determines if its T wave or QRS 
                 if length(qrs_c) >= 3 
                      if (locs(i)-qrs_i(end)) <= round(0.3600*fs) 
                        Slope1 = mean(diff(ecg_m(locs(i)-

round(0.075*fs):locs(i)))); %mean slope of the waveform at that position 
                        Slope2 = mean(diff(ecg_m(qrs_i(end)-

round(0.075*fs):qrs_i(end)))); %mean slope of previous R wave 
                             if abs(Slope1) <= abs(0.5*(Slope2)) || (locs(i)-

qrs_i(end)) <= round(0.4*test_m)  % slope less then 0.5 of previous R 
                                 nois_c = [nois_c pks(i)]; 
                                 nois_i = [nois_i locs(i)]; 
                                 skip = 1; % T wave identification 
                                 % adjust noise level in both filtered and 
                                 % MVI 
                                 NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
                                 NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;  
                             else 
                                 skip = 0; 
                             end 

             
                      end 
                 end 

         
        if skip == 0  % skip is 1 when a T wave is detected        
        qrs_c = [qrs_c pks(i)]; 
        qrs_i = [qrs_i locs(i)]; 

         
        % bandpass filter check threshold 
         if y_i >= THR_SIG1 
                        if ser_back  
                           qrs_i_raw = [qrs_i_raw x_i];  % save index of 

bandpass  
                        else 
                           qrs_i_raw = [qrs_i_raw locs(i)-round(0.150*fs)+ 

(x_i - 1)];% save index of bandpass  
                        end 
                           qrs_amp_raw =[qrs_amp_raw y_i];% save amplitude of 

bandpass  
          SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1;% adjust threshold for 

bandpass filtered sig 
         end 

          
        % adjust Signal level 
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        SIG_LEV = 0.125*pks(i) + 0.875*SIG_LEV ; 
        end 

         

         
    elseif THR_NOISE <= pks(i) && pks(i)<THR_SIG 

         
         %adjust Noise level in filtered sig 
         NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
         %adjust Noise level in MVI 
         NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;  

         

         

       
    elseif pks(i) < THR_NOISE 
        nois_c = [nois_c pks(i)]; 
        nois_i = [nois_i locs(i)]; 

         
        % noise level in filtered signal 
        NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
        %end 

         
         %adjust Noise level in MVI 
        NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;   

         

            
    end 

     

     

     

  

     
    %% adjust the threshold with SNR 
    if NOISE_LEV ~= 0 || SIG_LEV ~= 0 
        THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV)); 
        THR_NOISE = 0.5*(THR_SIG); 
    end 

     
    % adjust the threshold with SNR for bandpassed signal 
    if NOISE_LEV1 ~= 0 || SIG_LEV1 ~= 0 
        THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1)); 
        THR_NOISE1 = 0.5*(THR_SIG1); 
    end 

     

     
% take a track of thresholds of smoothed signal 
SIGL_buf = [SIGL_buf SIG_LEV]; 
NOISL_buf = [NOISL_buf NOISE_LEV]; 
THRS_buf = [THRS_buf THR_SIG]; 

  
% take a track of thresholds of filtered signal 
SIGL_buf1 = [SIGL_buf1 SIG_LEV1]; 
NOISL_buf1 = [NOISL_buf1 NOISE_LEV1]; 
THRS_buf1 = [THRS_buf1 THR_SIG1]; 
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 skip = 0; %reset parameters 
 not_nois = 0; %reset parameters 
 ser_back = 0;  %reset bandpass param    
end 

  
if gr 
hold on,scatter(qrs_i,qrs_c,'m'); 
hold on,plot(locs,NOISL_buf,'--k','LineWidth',2); 
hold on,plot(locs,SIGL_buf,'--r','LineWidth',2); 
hold on,plot(locs,THRS_buf,'--g','LineWidth',2); 
if ax(:) 
linkaxes(ax,'x'); 
zoom on; 
end 
end 

  

  

  

  
%% overlay on the signals 
if gr 
figure,az(1)=subplot(311);plot(ecg_h);title('QRS on Filtered Signal');axis 

tight; 
hold on,scatter(qrs_i_raw,qrs_amp_raw,'m'); 
hold on,plot(locs,NOISL_buf1,'LineWidth',2,'Linestyle','--','color','k'); 
hold on,plot(locs,SIGL_buf1,'LineWidth',2,'Linestyle','-.','color','r'); 
hold on,plot(locs,THRS_buf1,'LineWidth',2,'Linestyle','-.','color','g'); 
az(2)=subplot(312);plot(ecg_m);title('QRS on MVI signal and Noise 

level(black),Signal Level (red) and Adaptive Threshold(green)');axis tight; 
hold on,scatter(qrs_i,qrs_c,'m'); 
hold on,plot(locs,NOISL_buf,'LineWidth',2,'Linestyle','--','color','k'); 
hold on,plot(locs,SIGL_buf,'LineWidth',2,'Linestyle','-.','color','r'); 
hold on,plot(locs,THRS_buf,'LineWidth',2,'Linestyle','-.','color','g'); 
az(3)=subplot(313);plot(ecg-mean(ecg));title('Pulse train of the found QRS on 

ECG signal');axis tight; 
line(repmat(qrs_i_raw,[2 1]),repmat([min(ecg-mean(ecg))/2; max(ecg-

mean(ecg))/2],size(qrs_i_raw)),'LineWidth',2.5,'LineStyle','-.','Color','r'); 
linkaxes(az,'x'); 
zoom on; 
end 

  
t1=toc; 

  

  

  

  
end 
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APPENDIX D  

Appendix D contains the MATLAB® of the Afonso algorithm 

function [QRS,t2]=afonso(S,fs); 
% nqrsdetect - detection of QRS-complexes 
% 
%   QRS=nqrsdetect(S,fs); 
% 
% INPUT 
%   S       ecg signal data 
%   fs      sample rate 
% 
% OUTPUT 
%   QRS     fiducial points of qrs complexes 
% 
% 
% see also: QRSDETECT 
% 
% Reference(s): 
% [1]: V. Afonso, W. Tompkins, T. Nguyen, and S. Luo, "ECG beat detection 

using filter banks," 
%   IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192--202, Feb. 1999 
% 
% [2]: A.V. Oppenheim, R.W. Schafer, and J.R. Buck,  Discrete-Time Signal 
%   Processing, second edition, Prentice Hall, 1999, chapter 4.7.3 

  
% Copyright (C) 2006 by Rupert Ortner 
% 
%% This program is free software; you can redistribute it and/or modify 
%% it under the terms of the GNU General Public License as published by 
%% the Free Software Foundation; either version 2 of the License, or 
%% (at your option) any later version. 
%% 
%% This program is distributed in the hope that it will be useful, ... 
%% but WITHOUT ANY WARRANTY; without even the implied warranty of 
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
%% GNU General Public License for more details. 
%% 
%% You should have received a copy of the GNU General Public License 
%% along with this program; if not, write to the Free Software 
%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 
%% USA 
tic; 

  
S=S(:); 
S=full(S); 
N=round(fs);   %Filter order 
%--------------------------------------- 
%Replaces filter bank in [1] 
Bw=5.6;     %filter bandwidth 
Bwn=1/(fs/2)*Bw;     
M=round((fs/2)/Bw); %downsampling rate 

  
Wn0=Bwn;    %bandwidth of the first filter 
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Wn1=[Bwn 2*Bwn];    %bandwidth of the second filter 
Wn2=[2*Bwn 3*Bwn]; 
Wn3=[3*Bwn 4*Bwn]; 
Wn4=[4*Bwn 5*Bwn]; 

  
h0=fir1(N,Wn0); %impulse response of the first filter 
h1=fir1(N,Wn1,'bandpass'); 
h2=fir1(N,Wn2,'bandpass'); 
h3=fir1(N,Wn3,'bandpass'); 
h4=fir1(N,Wn4,'bandpass'); 

  
%Polyphase implementation of the filters 
y=cell(1,5);     
y{1}=polyphase_imp(S,h0,M); %W0 (see [1]) filtered and downsampled signal 
y{2}=polyphase_imp(S,h1,M); %W1  
y{3}=polyphase_imp(S,h2,M); %W2 
y{4}=polyphase_imp(S,h3,M); %W3 
y{5}=polyphase_imp(S,h4,M); %W4 
%---------------------------------------------- 

  
cut=ceil(N/M);  %Cutting off of initial transient because of the filtering 
y1=[zeros(cut,1);y{1}(cut:length(y{1}))];   
y2=[zeros(cut,1);y{2}(cut:length(y{2}))]; 
y3=[zeros(cut,1);y{3}(cut:length(y{3}))]; 
y4=[zeros(cut,1);y{4}(cut:length(y{4}))]; 
y5=[zeros(cut,1);y{5}(cut:length(y{5}))]; 
%---------------------------------------- 

  
P1=sum([abs(y2) abs(y3) abs(y4)],2); %see [1] equation (13) 
P2=sum([abs(y2) abs(y3) abs(y4) abs(y5)],2); 
P4=sum([abs(y3) abs(y4) abs(y5)],2); 

  
FL1=MWI(P1); %Feature 1 according to Level 1 in [1] 
FL2=MWI(P2); %Feature 2 according to Level 2 
FL4=MWI(P4); %Feature 4 according to Level 4 
%-------------------------------------- 
%Level 1 [1] 
d=sign(diff(FL1)); 
d1=[0;d]; 
d2=[d;0]; 
f1=find(d1==1); 
f2=find(d2==-1); 
EventsL1=intersect(f1,f2); %Detected events 
%------------------------------------------------------- 
%Level 2 [1] 
meanL1=sum(FL2(EventsL1),1)/length(EventsL1); 
NL=meanL1-meanL1*0.1;   %Start Noise Level 
SL=meanL1+meanL1*0.1;   %Start Signal Level 
threshold1=0.08;    %Threshold detection block 1 
threshold2=0.7;     %Threshold detection block 2 
[SignalL21,Noise1,DS1,Class1]=detectionblock(FL2,EventsL1,NL,SL,threshold1); 
[SignalL22,Noise2,DS2,Class2]=detectionblock(FL2,EventsL1,NL,SL,threshold2); 
%--------------------------------------------------- 
%Level 3 [1] 
ClassL3=[];  
for i=1:length(EventsL1) 
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    C1=Class1(i); 
    C2=Class2(i); 
    if C1==1 
        if C2==1 
            ClassL3=[ClassL3 1];   %Classification as Signal 
        else 
            delta1=(DS1(i)-threshold1)/(1-threshold1); 
            delta2=(threshold2-DS2(i))/threshold2; 
            if delta1>delta2 
                ClassL3=[ClassL3 1]; %Classification as Signal 
            else 
                ClassL3=[ClassL3 0];  %Classification as Noise 
            end 
        end 
    else 
        if C2==1; 
            ClassL3=[ClassL3 1]; %Classification as Signal 
        else 
            ClassL3=[ClassL3 0];  %Classification as Noise 
        end 
    end 
end 
SignalL3=EventsL1(find(ClassL3));   %Signal Level 3 
NoiseL3=EventsL1(find(ClassL3==0)); %Noise Level 3 
%-------------------------------------------- 
%Level 4 [1] 
threshold=0.3; 
VSL=(sum(FL4(SignalL3),1))/length(SignalL3);  
VNL=(sum(FL4(NoiseL3),1))/length(NoiseL3);    
SL=(sum(FL4(SignalL3),1))/length(SignalL3);   %Initial Signal Level 
NL=(sum(FL4(NoiseL3),1))/length(NoiseL3);      %Initial Noise Level 
SignalL4=[]; 
NoiseL4=[]; 
DsL4=[];   %Detection strength Level 4 
for i=1:length(EventsL1) 
    Pkt=EventsL1(i);     
    if ClassL3(i)==1;   %Classification after Level 3 as Signal 
       SignalL4=[SignalL4,EventsL1(i)];  
       SL=history(SL,FL4(Pkt));        
       Ds=(FL4(Pkt)-NL)/(SL-NL);       %Detection strength 
       if Ds<0 
           Ds=0; 
       elseif Ds>1 
           Ds=1; 
       end 
       DsL4=[DsL4 Ds]; 
    else        %Classification after Level 3 as Noise 
       Ds=(FL4(Pkt)-NL)/(SL-NL);    
       if Ds<0 
           Ds=0; 
       elseif Ds>1 
           Ds=1; 
       end 
       DsL4=[DsL4 Ds]; 
       if Ds>threshold          %new classification as Signal  
           SignalL4=[SignalL4,EventsL1(i)];   
           SL=history(SL,FL4(Pkt));      
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       else                      %new classification as Noise 
           NoiseL4=[NoiseL4,EventsL1(i)]; 
           NL=history(NL,FL4(Pkt));       
       end 
   end 
end 
%------------------------------------------------ 
%Level 5   
%if the time between two RR complexes is too long => go back and check the 
%events again with lower threshold 
SignalL5=SignalL4; 
NoiseL5=NoiseL4; 
periods=diff(SignalL4); 
M1=100; 
a=1; 
b=1/(M1)*ones(M1,1); 
meanperiod=filter(b,a,periods); %mean of the RR intervals 
SL=sum(FL4(SignalL4))/length(SignalL4); 
NL=sum(FL4(NoiseL4))/length(NoiseL4); 
threshold=0.2; 
for i=1:length(periods) 
    if periods(i)>meanperiod*1.5     %if RR-interval is to long 
        intervall=SignalL4(i):SignalL4(i+1); 
        critical=intersect(intervall,NoiseL4);    
        for j=1:length(critical) 
            Ds=(FL4(critical(j))-NL)/(SL-NL);  
            if Ds>threshold         %Classification as Signal 
                SignalL5=union(SignalL5,critical(j));    
                NoiseL5=setxor(NoiseL5,critical(j)); 
            end 
        end 
    end 
end 
%--------------------------------------------------- 
%Umrechnung auf Originalsignal (nicht downgesamplet) 
Signaln=conversion(S,FL2,SignalL5,M,N,fs); 
%---------------------------------------------------- 
%Level 6 If interval of two RR-complexes <0.24 => go back and delete one of 

them 
height=FL2(SignalL5);    
Signal=Signaln; 
temp=round(0.1*fs); 
difference=diff(Signaln);  %Difference between two signal points 
k=find(difference<temp); 
for i=1:length(k) 
    pkt1=SignalL5(k(i)); 
    pkt2=SignalL5(k(i)+1); 
    verg=[height(k(i)),height(k(i)+1)];  
    [x,j]=max(verg);     
    if j==1 
        Signal=setxor(Signal,Signaln(k(i)+1)); %Deleting first Event 
    else 
        Signal=setxor(Signal,Signaln(k(i))); %Deleting second Event 
    end 
end 

  
QRS=Signal; 
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t2=toc; 

  

  

  

  
%------------------------------------------------------------------- 
%------------------------------------------------------------------- 
%------------------------------------------------------------------- 
%subfunctions 

  
function y=MWI(S) 

  
% MWI - Moving window integrator, computes the mean of two samples 
%   y=MWI(S) 
% 
% INPUT 
%   S       Signal 
% 
% OUTPUT 
%   y       output signal 
a=[0;S]; 
b=[S;0]; 
c=[a,b]; 
y=sum(c,2)/2; 
y=y(1:length(y)-1); 
%------------------------------------------------ 
function y=polyphase_imp(S,h,M) 

  
% polyphase_imp - polyphase implementation of decimation filters [2] 
%   y=polyphase_imp(S,h,M) 
% 
% INPUT 
%   S       ecg signal data 
%   h       filter coefficients 
%   M       downsampling rate 
% 
% OUTPUT 
%   y       filtered signal 
% 

  
%Determining polyphase components ek 
e=cell(M,1); 
l=1; 
m=mod(length(h),M); 
while m>0 
    for n=1:ceil(length(h)/M) 
        el(n)=h(M*(n-1)+l); 
    end 
    e{l}=el; 
    l=l+1; 
    m=m-1; 
end 
clear el; 
for i=l:M 
    for n=1:floor(length(h)/M) 



80 

        el(n)=h(M*(n-1)+i);       
    end 
    e{i}=el; 
end 
%Filtering 
max=ceil((length(S)+M)/M);  
Sdelay=S; 
for i=1:M 
    Sd=downsample(Sdelay,M); 
    a=filter(e{i},1,Sd);      
    if length(a)<max 
        a=[a;zeros(max-length(a),1)];  
    end 
    w(:,i)=a; 
    Sdelay=[zeros(i,1);S]; 
end 
y=sum(w,2); 
%---------------------------------------------------------- 
function [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold) 

  
% detectionblock - computation of one detection block  
% 
%   [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold) 
% 
% INPUT 
%   mwi         Output of the MWI 
%   Events      Events of Level 1 (see [1]) 
%   NL          Initial Noise Level 
%   SL          Initial Signal Level 
%   threshold   Detection threshold (between [0,1]) 
% 
% OUTPUT 
%   Signal      Events which are computed as Signal 
%   Noise       Events which are computed as Noise 
%   VDs         Detection strength of the Events 
%   Class       Classification: 0=noise, 1=signal 

  
Signal=[]; 
Noise=[]; 
VDs=[]; 
Class=[]; 
sumsignal=SL; 
sumnoise=NL; 
for i=1:length(Events) 
    P=Events(i); 
    Ds=(mwi(P)-NL)/(SL-NL); %Detection strength 
    if Ds<0 
        Ds=0; 
    elseif Ds>1 
        Ds=1; 
    end 
    VDs=[VDs Ds]; 
    if Ds>threshold     %Classification as Signal 
        Signal=[Signal P]; 
        Class=[Class;1]; 
        sumsignal=sumsignal+mwi(P); 
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        SL=sumsignal/(length(Signal)+1);    %Updating the Signal Level 
    else        %Classification as Noise 
        Noise=[Noise P]; 
        Class=[Class;0]; 
        sumnoise=sumnoise+mwi(P); 
        NL=sumnoise/(length(Noise)+1);  %Updating the Noise Level 
    end 
end 
%------------------------------------------------------------ 
function [pnew]=conversion(S,FL2,pold,M,N,fs) 

  
% conversion - sets the fiducial points of the downsampled Signal on the 
% samplepoints of the original Signal 
%  
%   [pnew]=conversion(S,FL2,pold,M,N,fs) 
% 
% INPUT 
%   S           Original ECG Signal 
%   FL2         Feature of Level 2 [1] 
%   pold        old fiducial points 
%   M           M downsampling rate 
%   N           filter order 
%   fs          sample rate 
% 
% OUTPUT 
%   pnew        new fiducial points 
% 

  
Signaln=pold;     
P=M; 
Q=1; 
FL2res=resample(FL2,P,Q);       %Resampling 
nans1=isnan(S); 
nans=find(nans1==1); 
S(nans)=mean(S);    %Replaces NaNs in Signal 
for i=1:length(Signaln) 
    Signaln1(i)=Signaln(i)+(M-1)*(Signaln(i)-1);     
end 
%------------------- Sets the fiducial points on the maximum of FL2 
Signaln2=Signaln1;   
Signaln2=Signaln2';      
int=2*M;    %Window length for the new fiducial point 
range=1:length(FL2res); 
for i=1:length(Signaln2) 
    start=Signaln2(i)-int/2; 
    if start<1 
        start=1; 
    end 
    stop=Signaln2(i)+int/2; 
    if stop>length(FL2res) 
        stop=length(FL2res); 
    end 
    intervall=start:stop;       %interval 
    FL2int=FL2res(intervall); 
    pkt=find(FL2int==max(FL2int));  %Setting point on maximum of FL2 
    if length(pkt)==0   % if pkt=[]; 
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        pkt=Signaln2(i)-start; 
    else 
        pkt=pkt(1);  
    end 
    delay=N/2+M; 
    Signaln3(i)=pkt+Signaln2(i)-int/2-delay;    %fiducial points according to 

FL2 
end 
%Sets the fiducial points on the maximum or minimum 
%of the signal 
Bw=5.6;    
Bwn=1/(fs/2)*Bw; 
Wn=[Bwn 5*Bwn]; 
N1=32; 
b=fir1(N1,Wn,'bandpass'); 
Sf=filtfilt(b,1,S);     %Filtered Signal with bandwidth 5.6-28 Hz 
beg=round(1.5*M); 
fin=1*M; 
for i=1:length(Signaln3) 
    start=Signaln3(i)-beg; 
    if start<1 
        start=1; 
    end 
    stop=Signaln3(i)+fin; 
    if stop>length(Sf) 
        stop=length(Sf); 
    end 
    intervall=start:stop;   %Window for the new fiducial point 
    Sfint=abs(detrend(Sf(intervall),0)); 
    pkt=find(Sfint==max(Sfint));    %Setting point on maximum of Sfint 
    if length(pkt)==0   %if pkt=[]; 
        pkt=Signaln3(i)-start; 
    else 
        pkt=pkt(1);  
    end 
    pkt=pkt(1); 
    Signaln4(i)=pkt+Signaln3(i)-beg-1; 
end 
Signal=Signaln4';   %New fiducial points according to the original signal 

  
cutbeginning=find(Signal<N);    %Cutting out the first points because of 

initial transient of the filter in polyphase_imp 
fpointsb=Signal(cutbeginning); 
cutend=find(Signal>length(S)-N); %Cutting out the last points 
fpointse=Signal(cutend); 
pnew=setxor(Signal,[fpointsb;fpointse]); 

  
%------------------------------------------- 
function yn=history(ynm1,xn) 

  
% history - computes y[n]=(1-lambda)*x[n]+lambda*y[n-1] 
% 
%   yn=history(ynm1,xn) 

  
lambda=0.8; %forgetting factor 
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