January 2014

Retrievals Of The Deep Convective System Ice Cloud Microphysical Properties Using The Arm Radar And Aircraft In-Situ Measurements

Jingjing Tian

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation
Tian, Jingjing, "Retrievals Of The Deep Convective System Ice Cloud Microphysical Properties Using The Arm Radar And Aircraft In-Situ Measurements" (2014). Theses and Dissertations. 1722.
https://commons.und.edu/theses/1722

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.
RETRIEVALS OF THE DEEP CONVECTIVE SYSTEM ICE CLOUD MICROPHYSICAL PROPERTIES USING THE ARM RADAR AND AIRCRAFT IN-SITU MEASUREMENTS

by

Jingjing Tian
Bachelor of Science, Nanjing University of Information Science and Technology, 2011

A Thesis
Submitted to the Graduate Faculty
of the
University of North Dakota
In partial fulfillment of the requirements
for the degree of
Master of Science

Grand Forks, North Dakota
August
2014
This thesis, submitted by Jingjing Tian in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Dr. Xiquan Dong

Dr. Baike Xi

Dr. Mark Anthony Askelson

This thesis is being submitted by the appointed advisory committee as having met all of the requirements of the Graduate School at the University of North Dakota and is hereby approved.

Wayne Swisher
Dean of the Graduate School

Date July 7, 2014
PERMISSION

Title Retrievals of the Deep Convective System Ice Cloud Microphysical Properties Using the ARM Radar and Aircraft In-situ Measurements

Department Atmospheric Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of the University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor why supervised my thesis work or, in his absence, by the chairperson of the department of the dean of the Graduate School. It is understood that any copying or publication or other use of the thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Jingjing Tian

Date 07-02-2014
TABLE OF CONTENTS

LIST OF FIGURES ... vii
LIST OF TABLES ... x
ACKNOWLEDGEMENTS ... xi
ABSTRACT .. xii

CHAPTER

I. INTRODUCTION ... 1

II. DATA AND METHODOLOGY ... 8

 Data ... 8

 ARM Ground-based Observations .. 9

 Aircraft In-situ Measurements ... 11

 Next Generation Weather Radar (NEXRAD) data ... 17

 Discrete Dipole Approximation (DDA) dataset ... 20

 Geostationary Operational Environmental Satellite (GOES) data 25

 Methodology ... 28

 Retrieval Algorithm ... 28

 Sensitivity Studies ... 30

III. RESULTS .. 36
Radar retrievals ...36
Validation with Aircraft In-situ Measurements39
Validation of the Assumptions in the Radar-based retrieval algorithms ..45
Comparisons with GOES Satellite Retrievals47
Cloud-top Height (CTH) ...47
DCS Ice Cloud Particle Size ..49

IV. CONCLUSIONS AND FUTURE WORK55
Conclusions ..55
Future Work ..56
Apply Retrieval Method to NEXRAD56
Improve Satellite Nighttime Particle Size59
Development of Algorithms for Retrieving Cloud Microphysical Properties of Mixed-phase and Liquid/precipitation Layers of DCSs during MC3E60

APPENDIX ..61

REFERENCES CITED ..64
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a) Joss-Waldvogel impact disdrometer (JWD)-measured rain rate (red line) and MWR-retrieved cloud LWP (black line), (b) ARM SGP KAZR ARSCL reflectivity (above ground level, AGL) and (c) Combined ARM SGP UAZR calibrated, JWD adjusted KAZR reflectivity.</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>(a) UND Citation II aircraft flight patterns (black lines) over the ARM SGP site during 20 May 2011. (b) ARM SGP corrected KAZR reflectivity with aircraft flight trajectory (thick black line with blue Leg1 and red Leg2) and temperature contours (thin black lines) on 20 May 2011.</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>A series of 2-min averaged particle size distributions (PSDs) derived from a combination of 2DC (30-3,000 µm) and High Volume Precipitation Spectrometer (HVPS, 300 and 30,000 µm) (filled circle) measurements obtained with the UND Citation II Research aircraft on 20 May 2011.</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>(a) The classified DCS components (CC-Convective Core; SR-Stratiform; AC-Anvil Cloud) based on NEXRAD observations using the Feng et al. (2011) CSA classification algorithm with the aircraft flight pattern (black lines) over the ARM SGP site (red diamond) during 14:15-14:32 UTC (Leg 1, SR region of DCS), 20 May 2011. (b) same as (a) except for the period 16:07-16:16 UTC (Leg 2, AC region of DCS).</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>(a) Time series of ARM SGP adjusted KAZR reflectivity during the period 13:00-17:00 UTC when the UND aircraft data are available, (b) NEXRAD cross section at the ARM SGP site and (c) adjusted KAZR reflectivity minus NEXRAD reflectivity.</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Radar backscatter cross section σ at 35 GHz around -22°C as a function of maximum dimension D for 11 non-spherical ice crystals (colored lines) calculated using the discrete dipole approximation (DDA) method (Liu, 2008).</td>
<td>22</td>
</tr>
<tr>
<td>7.</td>
<td>Comparisons between calculated reflectivity using 4 kinds of bullet rosettes ice habits σ information from DDA database and parameterized bullet rosette σ-D relationship (red lines) for (a) Leg 1 and (b) Leg 2.</td>
<td>22</td>
</tr>
<tr>
<td>8.</td>
<td>As in Fig. 6 but for radar backscatter cross section s at 35 GHz from -20°C to -40°C.</td>
<td>24</td>
</tr>
</tbody>
</table>
9. GOES retrieved daytime cloud optical depth \(\tau \), cloud top height CTH and particle size \(D_e \) at 14:15 UTC on 20 May, 2011.

10. Dependence of radar-retrieved ice cloud effective radius \(r_e \) on \(N_t \) and \(a \) for a given ice crystal category: (a) bullet rosette, (b) snowflake, (c) plate and (d) column habits.

11. As in Fig. 10 but for retrieved cloud IWC.

12. Dependence of radar-retrieved ice cloud \(r_e \) and IWC on temperature for a given ice crystal category: (a) bullet rosette, (b) snowflake, (c) plate and (d) column habits.

13. Cloud Particle Imaging (CPI) probe images from the 23 May 2011 MC3E event.

14. (a) ARM SGP adjusted KAZR reflectivity, radar-retrieved (b) \(r_e \) and (c) IWC, with modified gamma size distribution and \(a=2.0 \) using bullet rosette \(\sigma-D \) relationship.

15. The 1-min averages of (a) ARM SGP adjusted KAZR reflectivity, (b) radar-retrieved \(r_e \) (black lines) and (c) IWC (black lines) with corresponding aircraft derived \(r_e \) and IWC values (filled red circles) from 2DC and HVPS measurements at the same altitudes (~7.6 km) as radar retrievals.

16. Comparisons between the retrieved (b) \(r_e \) and (c) IWC using the mean \(N_t \) value of 47 L\(^{-1}\) (solid lines) and in-situ measured time-series \(N_t \) values (dashed lines) using (a) 1-min averaged adjusted KAZR reflectivity.

17. Comparisons between the aircraft calculated using 11 kinds of ice habits \(\sigma \) information (same as Fig. 6) from DDA and aircraft measured PSD and the adjusted KAZR reflectivity (black line) in (a) Leg 1 and (b) Leg 2.

18. The DOE ARM KAZR derived CTHs (1-hour average) and matched GOES derived CTHs (1°×1° grid box, diamonds) for the DCSs over the ARM SGP site during the MC3E.

19. As in Fig. 17, except scatterplots for all four cases during MC3E.

20. (a) ARM SGP adjusted KAZR reflectivity, (b) radar-retrieved \(D_e \) assuming hexagonal columns habits and (c) \(D_e \) assuming bullet rosette habits.

21. As in Fig. 13, except for at temperatures around -40°C.
22. GOES and ARM retrieved D_e averaged at different reflectivity thresholds. The mean value of GOES retrieved D_e is 81 μm. ...52

23. Comparisons between KAZR-retrieved (with bullet rosettes ice habits) and GOES retrieved D_e values during the MC3E. ...53

24. Comparison between the 0 dBZ height and the GOES retrieved effective cloud height H_{eff}. ..54

25. As in Fig. 6 except for 10 cm wavelength and -25 °C ..57

26. The 1-min averages of (a) NEXRAD reflectivity along aircraft track, (b) radar-retrieved r_e (black lines) and (c) IWC (black lines) with corresponding aircraft derived r_e (filled red circles) and IWC values (filled blue circles) from 2DC and HVPS measurements at the same altitudes (~ 7.6 km) as radar retrievals. ..58

27. Comparison between KAZR-retrieved (with hexagonal column and bullet rosette ice habits) and GOES-retrieved (during both daytime and nighttime) D_e on 20 May 2011 ..60
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mean values of variance parameter λ for different α values from 0.05 to 3.0</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Characteristics of 11 non-crystal ice particles defined in the DDA method and regrouped into four categories of ice crystal habits in this study</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Comparison of calculated mean reflectivity values using parameterized bullet rosette σ-D relationship and DDA database results</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>Retrieved r_e results at different α and N_t values</td>
<td>32</td>
</tr>
<tr>
<td>5.</td>
<td>Retrieved IWC results at different α and N_t values</td>
<td>33</td>
</tr>
<tr>
<td>6.</td>
<td>Dependence of radar reflectivity-retrieved r_e and IWC on radar reflectivity with a fixed value of $N_t=50 #$/L and $\alpha=2.0$ for four ice crystal habits: bullet rosette, snowflake, plate and column</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from adjusted KAZR reflectivity</td>
<td>43</td>
</tr>
<tr>
<td>8.</td>
<td>Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from adjusted KAZR reflectivity using the mean N_t value and in-situ time-series N_t values</td>
<td>45</td>
</tr>
<tr>
<td>9.</td>
<td>Mean, mean difference, RMSE, and correlation coefficient values of ARM and GOES retrieved D_e</td>
<td>53</td>
</tr>
<tr>
<td>10.</td>
<td>Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from NEXRAD reflectivity</td>
<td>59</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to thank my advisors, Drs. Xiquan Dong and Baike Xi for providing me the opportunity to work on this research and for his guidance and support. Additionally, I would like to thank the remainder of my advisement committee, Dr. Mark Anthony Askelson for their comments, suggestions, and expert input into this thesis. I appreciate the assistance of Scott Giangrande and Tami Toto from BNL for providing the adjusted KAZR data. Thanks to Jingyu Wang for providing the in situ data and NEXRAD CSA results.

My grateful thanks are also extended to the members of my research group, as well as the remaining faculty, staff, and graduate students of the Department of Atmospheric Sciences at the University of North Dakota. Last but not least, I want to thank my parents for always being supportive to my life and my decisions.

The data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy (DOE) Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division. This study was primarily supported by DOE ASR project at University of North Dakota with award number DE-SC0008468 and the NASA CERES project at University of North Dakota project under Grant NNX10AI05G.
ABSTRACT

This study presents an algorithm for retrieving the Deep Convective Systems (DCSs) ice cloud microphysical properties using the DOE Atmospheric Radiation Measurement (ARM) Ka-band Zenith Radar (KAZR) reflectivity during the Midlatitude Continental Convective Clouds Experiment (MC3E) at the ARM Southern Great Plain (SGP) site (36° 36’ 18.0” N, 97° 29’ 6.0” W) from April-June 2011. It is a challenge to retrieve DCS ice cloud microphysical properties due to the attenuation of cloud radar reflectivity, unknown particle size distributions (PSDs), and the bulk habit of the ice particles within the sample volume. To address the most pronounced of these radar limitations, the original KAZR reflectivity measurements have been adjusted using data collected with both a collocated unattenuated 915-MHz profiling radar system UHF ARM Zenith Radar (UAZR) and a Joss-Waldvogel impact disdrometer (JWD). Additionally, aircraft in-situ measurements provide PSDs and best-estimate ice water content (IWC) for validating radar retrievals. With the aid of the scattering database (SCATDB), the relationships between backscatter cross section (σ) and particle dimension (D) are parameterized for four ice crystal habits (bullet rosettes, snowflakes, columns and plates).

The DCS ice cloud IWC and effective radius (r_e) on 20 May 2011 during the MC3E have been retrieved from adjusted KAZR reflectivity assuming a modified gamma distribution with size shape \(\alpha = 2 \), and a bullet rosette \(\sigma-D \) relationship. The averaged IWC and \(r_e \) from
radar retrievals over the stratiform rain (SR) region of the DCS are 0.34 g m$^{-3}$ and 338 µm, in excellent agreement with aircraft in-situ measured IWC (0.34 g m$^{-3}$) and r_e (337 µm). Over the anvil cloud (AC) region, the retrieved and measured IWCs are 0.18 g m$^{-3}$ and 0.23 g m$^{-3}$ and their respective r_e values are 250 µm and 305 µm. The radar retrieved r_e and IWC can increase to 283 µm and 0.23 g m$^{-3}$ if a 2 dB uncertainty is added to the adjusted KAZR reflectivity over the AC region, following the sensitivities of 13%/2 dB in r_e and 26%/2 dB in IWC.

These retrieval results are also compared with Geostationary Operational Environmental Satellite (GOES) retrieved cloud effective diameter (D_e) during MC3E. In addition to the spatially averaged GOES retrievals within a 1°×1° grid box centered over the ARM SGP site and the temporally averaged ARM retrievals within 1 hr ($±0.5$ hr GOES image), the ARM-retrieved D_e values were also averaged from cloud top down to where the reflectivity is around 0 dBZ to best match the GOES retrievals. During daytime, GOES retrieved D_e, on average, agrees with the ARM retrievals within ~25 µm despite the vastly different temporal and spatial resolutions of vertically pointing ground-based radar and cloud-top-viewing satellite instruments. GOES retrieved cloud top heights (CTHs) are also compared with ARM KAZR reflectivity profiles, having an excellent agreement with differences of ~0.2 km.
CHAPTER I
INTRODUCTION

Accurate representation of convective processes in numerical models is necessary for improving current and future simulations of the Earth’s climate system. However, lack of understandings of the detailed cloud properties of convective systems is an important issue to prevent and accurate parameterization, especially for cloud microphysical properties. These cloud properties, including height, effective particle size, and condensed/frozen water path, are the key parameters needed to link atmospheric radiation and hydrological budgets (Dong et al., 2008; Minnis et al., 2011). Although some of these properties are directly and reliably measured using research aircraft, most aircraft cannot be operated under all convective conditions (safely) and therefore the collected aircraft in-situ measurements represent very limited convective storm sampling volumes (both spatially and temporally). Thus, it is beneficial to develop targeted retrievals from long-term observations to assist in filling gaps of the ice cloud microphysical properties within convective systems.

Quite often, in model simulations, deep convective systems DCSs can be partitioned according to bulk precipitation and/or cloud regimes to assist in evaluating dominant microphysical behaviors within each region, or can be partitioned in the context of other bulk latent heating profiling considerations (e.g., Tao et al., 1990; Schumacher et al., 2004). Based on radar measurements, a DCS can be classified into convective core (CC) regions
(heavy rain), stratiform rain (SR) regions (moderate-light rain), and anvil cloud (AC) regions (little or no rain) (Feng et al., 2011). The SR and AC regions of DCSs produce about 10 times the spatial coverage of the CC regions (Feng et al., 2011). The upper portions of SR and AC regions are mainly ice particles, and these ice layers dominate the DCS radiation budget (Wang et al., 2005; Feng et al., 2012). To better estimate the Earth’s radiation budget and improve climate forecast capabilities, accurate vertical distributions and temporal variations of the ice cloud microphysical properties in the SR and AC regions of DCSs are needed.

Unlike single-layer thin cirrus clouds, deep convective clouds, except their thin anvil regions, are optically thick. Various retrieval algorithms for single-layer thin cirrus cloud microphysical properties have been developed (e.g. Mace et al., 1998 and 2002; Wang and Sassen, 2002; Deng and Mace, 2006; Comstock et al., 2007), which introduced different methods to retrieve the microphysical properties and can help with development of a new algorithm for retrieval of DCS ice cloud microphysical properties. The retrieval algorithms for single-layer thin cirrus clouds depend upon instrument type—for example, radiometer, lidar and radar. Each instrument has its own advantages and disadvantages, so combining various measurements can exploit the natural synergy among the measurements. Combining radiometer and/or lidar observations with radar observations offers considerable insights into ice cloud microphysics (e.g. Mace et al., 1998; Matrosov, 1999; Donovan and Van Lammeren, 2001; Matrosov et al., 2002; Wang and Sassen, 2002; Comstock et al., 2007; Delanoe and Hogan, 2008). However, these remote sensing approaches are limited by either lidar attenuation or infrared saturation in optically thick DCS clouds. Additionally, most of these algorithms only work in the regions where
clouds are detected by all instruments, which limit their application. Thus, retrieval approaches relying solely on the use of Doppler radar reflectivity and velocity measurements have been suggested (e.g. Mace et al., 2002; Matrosov et al., 2002). Without the issues of lidar attenuation and infrared saturation, the radar-only algorithms can be used to retrieve cloud properties in multilayered and optically thick clouds (Comstock et al., 2007). However, the contribution of ice crystal fall speed to the measured mean Doppler velocity must be separated from the air motion before applying the Doppler velocity-based retrieval. In the Doppler-velocity-based retrieval algorithms, one must assume that the residual air motions should be much less than the sedimentation speeds of the particles that contribute mostly to the radar Doppler velocity measurements after proper time averaging (usually on the order of several hours). This approach can only be used to estimate the particle fall velocities for clouds that do not have strong updrafts/downdrafts. Owning to the strong air turbulence and no reliable estimate of the air turbulence within a DCS, this approach cannot be applied in microphysical property retrievals for DCSs. Thus, the intent is to develop a new retrieval approach utilizing radar reflectivity only.

As discussed above, although many algorithms have been developed for single-layer optically thin cirrus clouds, studies that focused on retrieving cloud microphysical properties from optically thick DCSs are limited. To study the microphysical properties of convectively generated optically thick cirrus clouds, the National Aeronautics and Space Administration (NASA) conducted a field experiment named the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE). During CRYSTAL-FACE, more than 10 convectively generated cirrus clouds
were sampled using the University of North Dakota (UND) research aircraft and their microphysical properties were retrieved from 9.6 and 94 GHz radars reflectivity measurements aboard the high-altitude ER-2 aircraft (Heymsfield et al., 2007). Heymsfield et al. (2005) calculated IWCs from a total of 5000 PSDs, and developed an empirical relationship between radar reflectivity and IWC based on radar reflectivities at 9.6 and 94 GHz frequencies. Wang et al. (2005) developed an algorithm to retrieve optically thick ice cloud microphysical properties using 9.6 and 94 GHz radar measurements aboard the high-altitude ER-2 aircraft, and fitted both the ratios of 9.6 GHz radar reflectivity to IWC and particle size as function of Dual Wavelength Ratio (DWR). In contrast to ground-based radar measurements, airborne radar measurements avoid attenuation from precipitation associated with DCSs. However, aircraft cannot be used to obtain continuous and long-term radar observations.

To investigate formation-dissipation processes and microphysical properties of continental DCSs, a field campaign was conducted through the joint support of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) and the NASA Global Precipitation Measurement (GPM) mission. The field campaign named the Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted at the ARM Southern Great Plains (SGP) site from April-June 2011 (Jensen et al., 2010). The MC3E was a highly successful field campaign with six deep convective cases sampled using the UND Citation II research aircraft and observed using multiple ground-based sensors. The best-estimate PSDs and IWCs of the ice-phase layer of the DCSs during the MC3E have been provided using a combination of a two-dimensional cloud probe (2DC), a High Volume Precipitation Spectrometer (HVPS), Nevzorov hot-wire total water
content (TWC) probe, and a King hot wire LWC probe. In addition to the aircraft measurements, the adjusted Ka-band ARM Zenith Radar (KAZR) reflectivity is also a motivation to develop a new algorithm for retrieving DCS ice cloud microphysical properties in this study. The ARM SGP KAZR radar reflectivity measurements are normally attenuated during the heavy precipitation events. Thus, its measurements are highly questionable under heavy precipitation conditions. To address this issue, multiple ground-based precipitation sensors, including longer-wavelength unattenuated profiling radars, were collocated with KAZR during the MC3E campaign (e.g., Tridon et al., 2013, Giangrande et al., 2013). The adjusted KAZR reflectivity has provided a solid basis for developing a reliable retrieval algorithm in this study. The aircraft in-situ measurements during the MC3E will provide a validation data source for newly retrieved DCSs ice cloud microphysical properties. With the newly developed retrieval method described in this study, GOES satellite retrieved cloud-top heights (CTHs) and particle size during the MC3E are compared with ARM radar observations and retrievals.

The NASA’s Clouds and Earth’s Radiant Energy System (CERES) project has provided long-term global estimates of the Earth’s broadband radiation budget and retrieved cloud properties that produce consistent radiative fluxes from the surface to the top of the atmosphere (TOA) (Wielicki et al., 1998; Minnis et al., 2011a). A climate data record of the CERES surface and TOA radiative fluxes with collocated cloud properties is a valuable dataset for investigating the role clouds play in the radiative balance of the climate system (Wielicki et al., 1998). These products are designed to improve understanding of cloud-radiation interactions and to help answer crucial climate questions.
The NASA-Langley cloud working group produced cloud and radiation products using the Visible Infrared Solar-infrared Split-Window Technique (VISST) and Solar-infrared Infrared Split-Window Technique (SIST) based on long-term satellite observations. GOES channels are used in these techniques to detect clouds and retrieve cloud properties. It is important to validate these satellite retrievals using both ground-based data and aircraft in-situ measurements and find a meaningful way to interpret these results (Dong et al. 2002 and 2008; Yost et al., 2010). However, due to lack of reliable radar observations and retrievals, GOES retrieved cloud properties have not yet been fully evaluated. In addition, Minnis et al. (2008) improved the estimation of the physical cloud top heights (CTHs) for optically thick ice clouds using a combination of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Aqua Moderate Resolution Imaging Spectroadiometer (MODIS) data. However, Sheroowd et al. (2004) demonstrated that deep convective clouds do not have sharply defined boundaries in the IR spectrum, thus it has a significant biases in satellite retrieval. Thus, comparison of satellite retrieved CTH is also performed in this study.

In a series of studies, algorithms for retrieving DCS ice, mixed-phase and liquid cloud microphysical properties will be developed from multiple ground-based measurements during the MCE3 field campaign, with aircraft in-situ measurements used as a validation source. The first part of this study focuses on DCS ice cloud microphysical properties. Section 2 presents the datasets and retrieval methodology. Section 3 discusses the results for the DCS case of 20 May 2011 and the application of retrieval algorithm: comparing GOES retrievals using ARM measurements and retrievals
collected/performed during MC3E. Finally, a summary and description of future work is provided in section 4.
CHAPTER II
DATA AND METHODOLOGY

Data

One of the MC3E goals was to advance understanding of cloud microphysical properties of DCSs using multi-platform observations, such as those from the ground-based ARM cloud radar KAZR, microwave radiometers (MWRs), JWDs, and radiosonde soundings, with the help of additional ground-based radars, precipitation sensors, and the UND Citation II research aircraft in-situ measurements (Jensen et al., 2010). As previously mentioned, six DCS cases were observed during the MC3E campaign. However, during most of the flights, the aircraft flew far away from the ARM SGP site/cloud radar KAZR location. The distance between aircraft track and the SGP site/KAZR location was commonly greater than 30 km. At this distance, it is hard to ensure that the same DCS cloud microphysical properties were measured with the aircraft and KAZR. Fortunately, the UND Citation aircraft flew mostly within 20 km of the ARM SGP central facility during the 20 May 2011 MC3E case. In addition, during this flight, there are two different kinds of legs, one was in the SR region of DCS, and another was in the AC region of DCS. The aircraft in-situ measurements from SR and AC regions of the same DCS is comparable. Thus, this case was chosen as a starting point for developing the retrieval algorithm. Early in the morning of 20 May 2011, an intense north-to-south oriented convective line moved over the ARM SGP site and was
extensively sampled using ground-based instruments. Shortly after, the SR and AC regions of the DCS were sampled using the UND Citation II near the ARM SGP site. This classic DCS case on 20 May 2011 became known as the “Dream Scenario”, and represents one of the best examples of coordinated measurements obtained throughout the entire MC3E campaign—for both observational and modeling communities (Petersen and Jensen, 2012; Tao et al., 2013).

ARM Ground-based Observations

KAZR is a profiling Doppler radar that operates at a frequency of approximately 35 GHz (8.6 mm wavelength/ Ka band) and has excellent sensitivity for detecting cloud droplets, ice crystals and light drizzle. This radar can be significantly attenuated in heavier precipitation and can be of questionable use for retrievals even for non-precipitating DCS cases including those having large liquid water paths (LWPs) (Lhermitte, 1990; Moran et al., 1998; Kollias et al., 2007; Dong et al., 2008; Feng et al., 2009). For example, *Feng et al.* (2009) found that specific attenuation is a function of LWC and the hydrometeor temperature. Figure 1a shows the JWD-measured surface rain rate and MWR-retrieved cloud LWP at the ARM SGP site on 20 May 2011. The cloud LWP is retrieved from interpolated radiosonde profiles using optimal estimation in an iterative scheme (Turner et al., 2004). The surface rain rate is measured from the JWD at the ARM SGP Central Facility in close proximity to the KAZR. As shown in Fig. 1a, the maximum rain rate reached up to 100 mm hr$^{-1}$ during the peak period between 10:30-11:00 UTC, and cloud LWPs are as large as 5 kg m$^{-2}$ during the period from 09:00 – 16:00 UTC. The attenuated ARM KAZR product Active Remote Sensing of Clouds
(ARSCL, e.g. Clothiaux et al., 2000) reflectivities are shown in Fig. 1b, with a clear attenuation band during the period 10:30-11:00 UTC.

Although KAZR reflectivities are attenuated in rain during DCS conditions, these measurements may be improved significantly when coupled with unattenuated profiling references (e.g., Matrasov, 2005; Feng et al., 2009 and 2014). During the MC3E, the KAZR was collocated with the unattenuated 915 MHz profiler UAZR and adjusted using UAZR measurements and a JWD (e.g., Tridon et al., 2013; Giangrande et al., 2013). The KAZR was cross-calibrated against available surface disdrometers, ARM and NASA campaign radars, and nearby Next Generation Weather Radar (NEXRAD) data to promote a relative calibration to within several dB (shown later). By combining reflectivity and Doppler velocity data from both KAZR and UAZR as well as from a surface disdrometer, a merging was performed to better estimate bulk KAZR reflectivity offsets aloft and to adjust KAZR measurements for well-known system calibration biases, attenuation in rain, and additional wet-radome effects. Manual checks of individual profiles were performed to ensure modest merging success near the surface. These products are assumed to be sufficient for the use of adjusted KAZR reflectivity as a foundation for successful retrieval of DCS ice cloud microphysical properties in a manner similar to top-down aircraft studies (e.g. Heymsfield et al., 2002a and 2002b). The adjusted KAZR reflectivities used in the retrieval (Fig. 1c) are noticeably higher than the original KAZR ARSCL reflectivities (Fig. 1b) for this event. The isotherms in Fig. 1b and 1c are estimated from ARM merged soundings that were generated from a combination of observations from radiosonde soundings, MWR, surface meteorological
instruments, and European Centre for Medium Range Weather Forecasts (ECMWF) model output.

Figure 1. (a) Joss-Waldvogel impact disdrometer (JWD)-measured rain rate (red line) and MWR-retrieved cloud LWP (black line), (b) ARM SGP KAZR ARSCL reflectivity (above ground level, AGL) and (c) Combined ARM SGP UAZR calibrated, JWD adjusted KAZR reflectivity. Temperature contours (black lines) are from ARM Merged-Sounding VAP on 20 May 2011.

Aircraft In-situ Measurements

The UND Citation II research aircraft was one of the primary research aircraft deployed during the ARM MC3E field campaign, and was fully equipped for cloud physics research. The onboard probes used in this study consist of a 2DC, HVPS, Nevzorov hot wire TWC probe, and the King hot wire LWC probe. For example, the
Droplet Measurement Technologies (DMT) Cloud Droplet Probe (CDP) can be used to measure cloud particles smaller than 50 μm, the 2DC probe can be used to measure a range of particle sizes from 30 to 3000 μm, and the HVPS probe has a broad range between 300 and 30,000 μm. In the following discussion, the entire spectrum is constructed using only a combination of 2DC and HVPS measurements because this study mainly focuses on the DCS ice cloud microphysical properties, for which the CDP probe measurements are not overly useful due to associated large uncertainties when measuring irregularly-shaped ice crystals and due to its limited size-sensitivity range (D < 50 μm). In addition, for the overlapping spectrum region measured with both the 2DC and HVPS, HVPS measurements were used to reduce uncertainty due to the fact that with the 2DC one can only reconstruct the images of particles larger than 1000 μm (McFarquhar et al., 2007). Moreover, the first three channels of the 2DC (D < ~ 90 μm) were discarded due to artifacts associated with the shattering of ice crystals and collision-induced breakup of raindrops (McFarquhar et al., 2004). Both the 2DC and HVPS probes were well calibrated and functioning well before the field campaign. For cloud water content measurement, the Citation II was equipped with a Nevzorov hot wire LWC/TWC probe (CWCM-U2) (Korolev et al., 1998) and a Particle Measurement System (PMS) King hot-wire LWC probe (King et al., 1978 and 1985). In this study, the PSDs are assumed to have shapes given by the modified gamma distribution, and the IWC and \(r_e \) values that are calculated from aircraft measurements are used to validate the radar-reflectivity-based retrievals.

Figure 2a shows the aircraft flight trajectory from 13:05:39 UTC to 17:02:04 UTC on 20 May 2011. As illustrated in Fig. 2, the UND Citation aircraft flew mostly within 20
km of the ARM SGP central facility, especially for the two time periods used in this study: Leg 1 (14:15-14:32 UTC at ~ 7.6 km) over the SR region of the DCS and Leg 2 (16:07-16:16 UTC at ~ 7.6 km) over the AC region of DCS.

Figure 2. (a) UND Citation II aircraft flight patterns (black lines) over the ARM SGP site during 20 May 2011. (b) ARM SGP corrected KAZR reflectivity with aircraft flight trajectory (thick black line with blue Leg1 and red Leg2) and temperature contours (thin black lines) on 20 May 2011.

To provide additional details about microphysical properties measurements from the aircraft at times during the two legs on 20 May 2011, a series of 2-min averaged PSDs derived from a combination of 2DC and HVPS measurements (filled circles) are shown in Fig. 3. Figure 3 also demonstrates the modified gamma function with different shape
parameter α values (color lines). The modified gamma function $N(D)$ can be expressed as

$$N(D) = N_x e^{\alpha \left(\frac{D}{D_x} \right)^\alpha} \exp(-\alpha \frac{D}{D_x}),$$

where N_x is the number of particles per unit volume per unit length at the size D_x where the function $N(D)$ is a maximum (Gossard, 1994; Mace et al., 1998; Wang and Sassen, 2002; Deng et al., 2006). The α parameter denotes the breadth of the spectrum; the larger the magnitude of α, the narrower the spectrum becomes. For any given 2-min averaged particle spectra, it is easy to find the maximum of the number concentration and corresponding D. We assume this identified maximum number concentration value as N_x, and the corresponding particle size value as D_x. Then, with given N_x and D_x, α values are varied (colored lines), based on (1), and a PSD plot can be generated (Fig. 3).

Although it is clear in Fig. 3 that the observed α values during Leg 1 are close to 2.0, for Leg 2, they are close to 1.5 or 1.0. A simple statistical method is used to minimize the variance parameter (X) between the calculated and observed PSDs. X is defined as

$$X = \sum W_i \left(\log_{10}(Y_{obs}) - \log_{10}(Y_i) \right)^2,$$ \hspace{1cm} (2)

where Y_i is the calculated PSD number concentration, Y_{obs} is the observed PSD number concentration, and W_i is the weighting function. Here, Gaussian weighting is used:

$$W_i = 1.0/(standard_deviation \ (\log_{10}(Y_{obs})))^2.$$ \hspace{1cm} (3)

Using the logarithm form in (2) and (3) can limit the impact of differences for small hydrometeors, for which the concentrations and, thus, differences, are expected to be much larger. In addition, the unit of reflectivity factor is dBZ, which is a logarithmic dimensionless technical unit, thus a logarithm form was used in (2) and (3). Table 1 shows the X values for different α values during the two legs. The modified gamma distribution with $\alpha=2.0$ has a minimum value of X during leg 1, while the modified
gamma distribution with $\alpha=1.5$ reaches its minimum value of X during leg 2. The retrieved r_e and IWC differences using α values of 1.5 and 2 are less than 3% and 6%, respectively. To keep the retrievals consistent, the modified gamma with $\alpha=2$ has been used in the radar retrievals. Deng and Mace (2006) developed an algorithm that uses millimeter-wavelength radar Doppler moments to retrieve single-layer cirrus cloud microphysical properties assuming a modified gamma PSD (1) with α equal to 5, which was proved to produce accurate retrievals. For single-layer cirrus clouds, the maximum particle size shown in PSD plots is around 1000 μm (800 μm in Mace et al., 2002; 1200 μm in Deng and Mace, 2006). However, for DCS ice clouds, the maximum particle size shown in Fig. 3 can greater than 4000 μm. This result demonstrates that the DCS ice clouds have a much broader spectrum compared to a single layer cirrus clouds. Based on the physical meaning of α, the broader spectrum will lead to a smaller α value, which also supports the use of a smaller $\alpha=2.0$ value for DCS ice clouds.
\(\alpha = 0.05 \) \(\alpha = 0.50 \) \(\alpha = 1.00 \) \(\alpha = 1.50 \) \(\alpha = 2.00 \) \(\alpha = 3.00 \) • aircraft

Figure 3. A series of 2-min averaged particle size distributions (PSDs) derived from a combination of 2DC (30-3,000 µm) and High Volume Precipitation Spectrometer (HVPS, 300 and 30,000 µm) (filled circle) measurements obtained with the UND Citation II Research aircraft on 20 May 2011. The modified gamma functions are plotted with different shape parameter \(\alpha \) values (Color lines for \(\alpha = 0.05, 0.5, 1.0, 1.5, 2.0, \) and 3.0).

Table 1. Mean values of variance parameter \(\mathcal{X} \) for different \(\alpha \) values from 0.05 to 3.0

<table>
<thead>
<tr>
<th></th>
<th>0.05</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg 1</td>
<td>41.5</td>
<td>24.4</td>
<td>11.5</td>
<td>4.9</td>
<td>4.6</td>
<td>22.8</td>
</tr>
<tr>
<td>Leg 2</td>
<td>49.4</td>
<td>22.7</td>
<td>7.3</td>
<td>6.9</td>
<td>21.5</td>
<td>95.7</td>
</tr>
</tbody>
</table>
Next Generation Weather Radar (NEXRAD) data

The NEXRAD is operated at a wavelength of 10 cm (S band) and is used to monitor the environment in a preprogrammed sequence of 360° azimuthal sweeps at various elevation angles. Thus, NEXRAD observations represent a close instantaneous measurement of radar reflectivity at a given elevation and azimuth angle. The NEXRAD radar dataset used in this study was obtained from the National Severe Storms Laboratory National Mosaic and Multi-Sensor Quantitative Precipitation Estimate project (Zhang et al., 2011). Feng et al. (2011) classifies a DCS into three components, CC, SR, and AC regions, using the Convective Stratiform Anvil (CSA) classification algorithm. CC is defined as strong, vertically oriented reflectivity maxima that produce intense precipitation, with contiguous (no radar reflectivity gap from echo base to echo top) echoes having tops above 6 km. SR is defined as widespread precipitation that has a weak horizontal reflectivity gradient and (at times) enhanced reflectivity near the 0 °C level (bright band), along with contiguous echoes with tops above 6 km. An AC region is defined as neither convective nor stratiform rain. Following the Feng et al. (2011) CSA classification, Leg 1 is in the SR region of the DCS (Fig. 4a), while Leg 2 is in the non-precipitating AC region of the DCS (Fig. 4b). The cloud temperatures for both Legs are below -20 °C, so it is reasonable to assume that cloud properties are dominated by ice particles.
Figure 4. (a) The classified DCS components (CC-Convective Core; SR-Stratiform; AC-Anvil Cloud) based on NEXRAD observations using the Feng et al. (2011) CSA classification algorithm with the aircraft flight pattern (black lines) over the ARM SGP site (red diamond) during 14:15-14.32 UTC (Leg 1, SR region of DCS), 20 May 2011. (b) same as (a) except for the period 16:07-16:16 UTC (Leg 2, AC region of DCS).

Figure 5 shows a time series of ARM SGP adjusted KAZR reflectivity, NEXRAD cross-section reflectivity over the ARM SGP site, and differences between the two. The
KAZR reflectivities are averaged every 5 minutes to match the constraints of the NEXRAD data temporal resolution. As shown in Fig. 5a and 5b (after 16 UTC), small ice crystals in cirrus anvils cannot be detected using NEXRAD data due to their operational configuration and low sensitivity to non-precipitating particles. The reflectivity differences between adjusted KAZR and NEXRAD are -3 dB and -5 dB for Leg 1 and Leg 2, respectively. That is, the adjusted KAZR reflectivity is still a few dB less than NEXRAD observations if those were considered as one potential independent “ground truth”.

Figure 5. (a) Time series of ARM SGP adjusted KAZR reflectivity during the period 13:00-17:00 UTC when the UND aircraft data are available, (b) NEXRAD cross section at the ARM SGP site and (c) adjusted KAZR reflectivity minus NEXRAD reflectivity. Black lines are the time series of UND Citation II aircraft flight altitude with blue line for Leg 1 and red line for Leg 2.
There are several published methods for calculating the scattering of non-spherical particles, such as the T-matrix method, finite-difference time domain method (FDTD), improved geometrical optics method (IGOM), and the discrete dipole approximation method (DDA). Ice crystal habit can significantly impact retrieved microphysical properties, so DDA methods, which are suitable for determining complex habits at cloud radar frequencies, have been widely used to calculate radar backscattering properties of non-spherical ice crystals (e.g., Schneider and Stephens, 1995; Liu and Illingworth, 1997; Aydin and Tang, 1997; Aydin and Walsh, 1999; Lemke and Quante, 1999; Okamoto, 2002; Sato and Okamoto, 2006; Hong, 2007; Liu, 2008). The scattering properties for non-spherical ice particles in this study are from the DDA dataset (Liu, 2008), which contains the scattering properties at frequencies from 15 to 340 GHz over a range of temperatures from −40 °C to 0 °C, particle maximum dimensions D from 50 μm to 12,500 μm, and 11 particle shapes (Table 2) (the DDA database can be downloaded at http://cirrus.met.fsu.edu/research/scatdb.html). Usually, large amounts of computing time and memory are required to generate scattering properties of non-spherical ice particles (e.g. Kim, 2006; Hong, 2007). Thus, parameterization schemes of the scattering properties of non-spherical ice crystals have been used, and the scattering properties of non-spherical ice crystals are generally parameterized as functions of ice crystal sizes (e.g. Hong, 2007; Liu, 2008). Formulating the equations in terms of power law relations allows some flexibility for developing solutions for different particle habits (Mace et al., 2002). For this study, 11 non-spherical ice crystals from the DDA database were regrouped into four categories (bullet rosette, snowflake, plate, and column), and for each
category, a parameterization was made with radar backscatter cross section σ as a function of D in the form of

$$\sigma = sD^t,$$

(4)

where σ is in units of mm^2, D is in units of mm, and s and t are fitting coefficients (Fig. 6).

For example, the long columns, short columns and block columns in the DDA database have been regrouped into the column category (Table 2 and Fig. 6) in this study. Figure 6 shows 11 non-spherical σ values (at 35 GHz and -22°C, which is the mean temperature of leg 1 and leg 2) (colored lines) and four regrouped ice crystal habits (symbols) as a function of D. The results from the four regrouped parameterizations are in agreement with those from the DDA database with correlations of 0.8 to 0.95. Fig. 7 shows the comparisons between calculated reflectivity using 4 kinds of bullet rosettes ice habits σ information from DDA database and parameterized bullet rosette σ-D relationship aircraft two flight legs. Following, table 3 provides the calculated mean reflectivity values using parameterized bullet rosette σ-D relationship and DDA database results.

Table 2. Characteristics of 11 non-crystal ice particles defined in the DDA method and regrouped into four categories of ice crystal habits in this study

<table>
<thead>
<tr>
<th>shape name</th>
<th>Ice habit</th>
</tr>
</thead>
<tbody>
<tr>
<td>long column</td>
<td>Column</td>
</tr>
<tr>
<td>short column</td>
<td></td>
</tr>
<tr>
<td>block column</td>
<td></td>
</tr>
<tr>
<td>thick plate</td>
<td>Plate</td>
</tr>
<tr>
<td>thin plate</td>
<td></td>
</tr>
<tr>
<td>3-bullet rosette</td>
<td>Bullet rosette</td>
</tr>
<tr>
<td>4-bullet rosette</td>
<td></td>
</tr>
</tbody>
</table>

21
(Table 2 cont’)

<table>
<thead>
<tr>
<th>Ice Crystal Type</th>
<th>Reflectivity Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-bullet rosette</td>
<td></td>
</tr>
<tr>
<td>6-bullet rosette</td>
<td></td>
</tr>
<tr>
<td>sector snowflake</td>
<td>Snowflake</td>
</tr>
<tr>
<td>dendrite snowflake</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Radar backscatter cross section σ at 35 GHz around -22 °C as a function of maximum dimension D for 11 non-spherical ice crystals (colored lines) calculated using the discrete dipole approximation (DDA) method (Liu, 2008). Regroup 11 non-spherical ice crystals into four categories (bullet rosette, snowflake, plate, and column), and parameterize σ as a function of D for each category in this study.

Figure 7. Comparisons between calculated reflectivity using 4 kinds of bullet rosettes ice habits σ information from DDA database and parameterized bullet rosette σ–D relationship (red lines) for (a) Leg 1 and (b) Leg 2.
Table 3. Comparison of calculated mean reflectivity values using parameterized bullet rosette σ–D relationship and DDA database results.

<table>
<thead>
<tr>
<th></th>
<th>Parameterized bullet rosette</th>
<th>3 branches bullet rosette</th>
<th>4 branches bullet rosette</th>
<th>5 branches bullet rosette</th>
<th>6 branches bullet rosette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg 1</td>
<td>7.8</td>
<td>7.8</td>
<td>4.4</td>
<td>6.2</td>
<td>7.6</td>
</tr>
<tr>
<td>Leg 2</td>
<td>6.6</td>
<td>7.0</td>
<td>3.8</td>
<td>5.5</td>
<td>6.9</td>
</tr>
</tbody>
</table>

On 20 May 2011, measured temperatures along the flight path are almost constant (-22 °C), therefore, the DDA parameterization should not vary with temperature. Fig. 8 shows the temperature dependent (changed every 4 °C for each panel from -20°C to -40°C) of DDA parameterization, which may be used in other cases and studies. The fitting coefficients s and t change very slightly with temperature.
Figure 8. As in Fig. 6 but for radar backscatter cross section σ at 35 GHz from -20°C to -40°C.
Cloud parameters derived from half-hourly, 4 km radiances obtained with GOES-11 (hereafter GOES) during the MC3E are compared with the ground-based observations. All satellite cloud properties in this study were derived from GOES data as described by Minnis et al. (2008, 2011). Satellite cloud retrieval data were provided by Dr. Minnis group at the NASA Langley Research Center.

During daytime, defined as solar zenith angle (SZA) < 82°, the VISST is used to retrieve cloud D_e which relies on the solar infrared (SI: 3.9 μm) radiance. The VISST computes a set of radiances for all four wavelengths (Visible (VIS): 0.65 μm; SI: 3.9 μm; infrared (IR): 10.8 μm; split-window channel (SWC): 12 μm) over a range of optical depths and effective particle sizes of ice crystals at given viewing and illumination angles and a profile of temperature and humidity. The computations use a set of cloud SI, IR, and SWC emittance parameterizations along with VIS and SI reflectance lookup tables (Minnis et al., 1998) in simplified radiative transfer models of the atmosphere (Minnis et al., 1993). The ice cloud properties are computed iteratively until the theoretical calculations of the VIS, SI, and IR channels match to the measured counterparts (Minnis et al., 2011). For the GOES retrievals, means were computed for CTH and D_e using all of the pixels within a 100 km × 100 km box centered on the SGP central facility every 30 minutes.

VISST relies on the infrared (10.8 mm) radiance to determine cloud temperature (Minnis et al., 2011). Cloud effective temperature (T_{eff}) corresponds to the radiating center of the cloud, and is used to define the cloud effective height (H_{eff}), which is close to the infrared effective radiating height. H_{eff} is determined using the lowest altitude
where the atmosphere-corrected IR temperature matches a vertical temperature profile (Minnis et al., 2011). Rapid Update Cycle (RUC) analyses (Benjamin et al., 2004) were used to represent the vertical atmospheric temperature profile above 700 hPa, while a surface temperature-anchored lapse rate defines the temperature profile at lower altitudes as described by Minnis et al. (2011). For optically thick clouds (effective emittance exceeding 0.98, visible optical depth greater than 6), most IR radiation reaching the satellite sensor is emitted by the uppermost part of the cloud. Therefore, CTH is assumed to be close to H_{eff} for DCSs (Smith et al., 2008; Minnis et al., 2008 and 2011). Minnis et al. (2008) performed a regression using the CALIPSO derived CTH and GOES retrieved H_{eff} for even-day data only for ice clouds with effective pressures less than 500 hPa, yielding CTH=1.041H_{eff}+1.32 km. The linear fit between CTH and H_{eff}, applied to odd-day data, yields a difference of 0.03±1.21 km and were used to estimate CTH from infrared-based H_{eff} for optically thick ice clouds.

Figure 9 shows GOES retrieved daytime cloud optical depth τ, CTH and D_{e} on 20 May 2011. Figure 9 demonstrates clearly that 20 May case is a strong deep convective case with large cloud optical depth, CTH and D_{e} values. As shown in Fig. 9 the maximum optical depth can reach up to 130, the highest CTH is around 17 km, and the retrieved D_{e} is ~60 μm. Notice that CTH has a negative correlation with D_{e}, that is, the higher of CTH is, the smaller of D_{e} will be. Satellite retrieved CTH and D_{e} are compared with ARM radar measurements and retrievals in this study.
Figure 9. GOES retrieved daytime cloud optical depth τ, cloud top height CTH and particle size D_e at 14:15 UTC on 20 May, 2011.
Methodology

Retrieval Algorithm

Radar backscattering properties have been extensively used to retrieve ice cloud microphysical properties, as mentioned before. The radar reflectivity factor for ice particles Z_i (in units of mm6 m$^{-3}$) is defined as (e.g., Donovan et al., 2004; Sato and Okamoto, 2006; Hong, 2007)

$$Z_i = \frac{\lambda^4}{\pi^5|K_i|^2} \int_0^\infty \sigma(D) N(D) dD,$$ \hspace{1cm} (5)

where λ is the wavelength at 35 GHz, coefficient $|K_i|$ is $|(m^2 - 1)/(m^2 + 1)|$, and m is the complex refractive index of ice crystals at 35 GHz. Radar reflectivity measurements Z_e are referred to as water equivalent reflectivity in KAZR. On the basis of Z_i, the radar reflectivity factor Z_e used in KAZR is derived by the relation (Smith, 1984; Atlas et al., 1995),

$$Z_e = Z_i \frac{|K_i|^2}{|K_w|^2},$$ \hspace{1cm} (6)

where $|K_w|^2$ is the dielectric factor for liquid-water and is approximately 0.88 for KAZR (Widener et al., 2012). To relate the observations of Z_e to the PSD, we combine (5) and (6) to get

$$Z_e = \frac{\lambda^4}{\pi^5|K_w|^2} \int_0^\infty \sigma(D) N(D) dD.$$

Thus, using (1) and (4), (7) can be expressed as,

$$Z_e = \frac{\lambda^4}{\pi^5|K_w|^2} \cdot S \cdot N_x e^{\alpha} \cdot D^{\alpha+1}_x \cdot \frac{\Gamma(t+\alpha+1)}{\alpha!^{t+\alpha+1}},$$ \hspace{1cm} (8)
where \(\Gamma \) is the gamma function \([\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt]\). Other parameters of interest can be derived similarly. For instance, the total number concentration \(N_t \) can be written as

\[
N_t = \int_0^\infty N(D) dD = N_x e^{\alpha D_x} \frac{\Gamma(\alpha+1)}{\alpha+1},
\]

and \(r_e \) is defined in terms of the total volume of the distribution to the total area (Parol et al., 1991; Mace et al., 1998),

\[
r_e = \frac{1}{2} \int_0^\infty D^3 N(D) dD = \frac{1}{2} D_x \frac{\alpha+3}{\alpha}.
\]

Combined with (9) and (10), \(N_t \) and \(D_x \) in (8) can be expressed as functions of \(r_e \) and \(N_t \).

Then, (8) can be written as

\[
Z_e = \frac{\lambda^4}{\pi^5 |K_w|^2} \cdot N_t \cdot \frac{2 \cdot r_e}{r_e} \cdot \frac{\Gamma(t+\alpha+1)}{\Gamma(\alpha)(3+\alpha)}.
\]

Solving for \(r_e \) in (11) produces

\[
r_e = \frac{1}{2} \left[Z_e \cdot \left(\frac{\pi^5 |K_w|^2}{\lambda^4} \right) \cdot \frac{1}{N_t} \cdot \frac{\Gamma(\alpha+1)(3+\alpha)}{\Gamma(t+\alpha+1)} \cdot \frac{1}{s} \right]^{(1/t)}.
\]

Equation (12) is used to retrieve \(r_e \) based on adjusted KAZR reflectivity in this study. It is easily seen that the retrieved \(r_e \) is a function of \(N_t \), \(Z_e \), the PSD \(\alpha \) value, and DDA parameterization coefficient values related to ice habits.

\(IWC \) can be derived by integrating the individual particle mass over the PSD,

\[
IWC = \int_0^\infty M(D) N(D) dD.
\]

For the modified gamma PSD considered here, by using a mass dimension power-law relationship

\[
M(D) = p D^q,
\]

where \(p \) and \(q \) are the power-law parameters, the \(IWC \) can be estimated as

\[
IWC = \int_0^\infty p D^q N_x e^{\alpha D_x} \alpha \exp(-\alpha D_x) dD.
\]
Combining (9) and (10) with (15), \(IWC \) can similarly be expressed as

\[
IWC = N_t \cdot p \cdot \left(\frac{2r_e \cdot \Gamma(\alpha+3)}{\Gamma(\alpha+4)} \right) q \cdot \frac{\Gamma(\alpha+q+1)}{\Gamma(\alpha+1)}.
\]

(16)

Thus, by substituting the \(r_e \) expression in (12) into (16) one can estimate \(IWC \) from \(Z_e \) using

\[
IWC = p \cdot N_t \left(\frac{1-q/t}{t} \right) \cdot \left[Z_e \cdot \left(\frac{\pi^5 |k_w|^2}{\lambda^4} \right) \cdot \frac{\Gamma(\alpha+1)}{\Gamma(t+\alpha+1)} \cdot \frac{1}{s} \right] (q/t) \cdot \frac{\Gamma(\alpha+q+1)}{\Gamma(\alpha+1)}.
\]

(17)

Equation (17) is used to retrieve \(IWC \) based on adjusted KAZR reflectivity in this study. Similarly, it also shows that the retrieved \(IWC \) is a function of \(N_t, Z_e \), the \(\alpha \) value of the PSD, and DDA parameterization coefficient values related to ice habits. The retrieved \(IWC \) also depends upon the parameters in the mass-dimension relationship. The mass-dimension relationship is derived from aircraft in-situ measurements during the MC3E as \(M(D) = 0.00309D^{1.98} \) provided by Jingyu Wang (personal communication).

Both retrieved \(r_e \) and \(IWC \) are related to the assumed \(\alpha \) value in the PSD, \(N_t \), ice crystal habits and radar reflectivity according to (12) and (17). Thus, in evaluating the utility of this algorithm, sensitivities to PSD, \(N_t \), and DDA parameterization fitting coefficients related to ice crystal habits must be considered.

Sensitivity Studies

For this sensitivity study, the radar reflectivity is fixed at 7.6 dBZ, which represents the mean value of radar reflectivity along Leg 1. As shown in Fig. 10, the retrieved \(r_e \) values increase with decreasing \(\alpha \) for a given \(N_t \), but this relationship does not hold when \(N_t > 1.0 \) /Liter (L). Conversely, the retrieved \(r_e \) values increase significantly with decreasing \(N_t \) for a given \(\alpha \). Thus, the retrieved \(r_e \) values are negatively proportional to both \(\alpha \) and \(N_t \), and much more negatively proportional to \(N_t \). The mix of particle habits
makes it difficult to confirm which kind of ice crystal habits might be occurring in sampling volume at a particular time, leading to large uncertainties in retrievals (Mace et al., 2002). Bullet rosettes and snowflakes typically yield larger values of r_e, which suggests that the retrieved r_e values with plate and column habits are less sensitive to α and N_t than r_e values retrieved with bullet rosette and snowflake habits.

![Diagram showing dependence of radar-retrieved ice cloud effective radius r_e on N_t and α](image)

Figure 10. Dependence of radar-retrieved ice cloud effective radius r_e on N_t and α for a given ice crystal category: (a) bullet rosette, (b) snowflake, (c) plate and (d) column habits. The reflectivity value used in this sensitivity study is 7.6 dBZ, which represents the mean value of radar reflectivity along Leg 1 of the aircraft track.

In order to show more statistics results, retrieved r_e results using different α and N_t values are shown in table 4. If an α is fixed and increase or decrease 10 #/L for N_t, the retrieved r_e will decrease or increase \sim6.5%. If an N_t is fixed and increase or decrease 1 for α, the retrieved r_e will decrease or increase \sim6%.
Table 4: Retrieved \(r_e \) results at different \(\alpha \) and \(N_t \) values

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(N_t) (#/L)</th>
<th>17</th>
<th>27</th>
<th>37</th>
<th>47</th>
<th>57</th>
<th>67</th>
<th>77</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td>496</td>
<td>437</td>
<td>401</td>
<td>376</td>
<td>356</td>
<td>341</td>
<td>328</td>
<td>317</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>472</td>
<td>416</td>
<td>381</td>
<td>357</td>
<td>339</td>
<td>324</td>
<td>312</td>
<td>302</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>444</td>
<td>391</td>
<td>359</td>
<td>336</td>
<td>319</td>
<td>305</td>
<td>293</td>
<td>284</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>428</td>
<td>377</td>
<td>346</td>
<td>324</td>
<td>307</td>
<td>294</td>
<td>283</td>
<td>274</td>
</tr>
</tbody>
</table>

Figure 11 shows sensitivities of retrieved \(IWC \) to different \(\alpha \) and \(N_t \) values for four kinds of ice crystal habits. The mass dimension relationship is derived from aircraft in-situ measurements during the MC3E as \(M(D) = 0.00309D^{1.98} \) provided by Jingyu Wang (personal communication). As shown in Fig. 11, the dependence of the retrieved \(IWC \) are opposite to those of the retrieved \(r_e \) in Fig. 10. That is, retrieved \(IWC \) increases \(N_t \) and \(\alpha \). Similarly, the retrieved \(IWC \) values with plate and column habits are less sensitive to \(\alpha \) and \(N_t \) than those with bullet rosette and snowflake habits.

![Figure 11](image)

Figure 11. As in Fig. 10 but for retrieved cloud \(IWC \).
Similarly, retrieved IWC results using different α and N_t values are shown in table 5. If an α is fixed and increase or decrease 10 #/L for N_t, the retrieved IWC will increase or decrease \sim10.0%. If an N_t is fixed and increase or decrease 1 for α, the retrieved r_e will increase or decrease \sim10%.

Table.5 Retrieved IWC results at different α and N_t values

<table>
<thead>
<tr>
<th>α</th>
<th>17</th>
<th>27</th>
<th>37</th>
<th>47</th>
<th>57</th>
<th>67</th>
<th>77</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.167</td>
<td>0.206</td>
<td>0.238</td>
<td>0.266</td>
<td>0.29</td>
<td>0.312</td>
<td>0.333</td>
<td>0.352</td>
</tr>
<tr>
<td>1.0</td>
<td>0.185</td>
<td>0.228</td>
<td>0.263</td>
<td>0.294</td>
<td>0.321</td>
<td>0.346</td>
<td>0.368</td>
<td>0.39</td>
</tr>
<tr>
<td>2.0</td>
<td>0.209</td>
<td>0.259</td>
<td>0.299</td>
<td>0.333</td>
<td>0.364</td>
<td>0.392</td>
<td>0.418</td>
<td>0.442</td>
</tr>
<tr>
<td>3.0</td>
<td>0.226</td>
<td>0.279</td>
<td>0.322</td>
<td>0.359</td>
<td>0.392</td>
<td>0.422</td>
<td>0.45</td>
<td>0.476</td>
</tr>
</tbody>
</table>

As mentioned before, with change in temperature, the parameterized DDA fitting coefficients change slightly. However, it is still not conclusive if minor changes in DDA fitting coefficients can significantly affect retrievals. To answer this question, Fig. 12 was plotted to illustrate the retrieved ice cloud r_e and IWC values at different temperatures. As demonstrated in Fig. 12, with constant reflectivity, N_t and α values, the retrieved ice cloud r_e and IWC values are almost invariant in a range of temperatures from -20 °C to -40 °C.
Figure 12. Dependence of radar-retrieved ice cloud r_e and IWC on temperature for a given ice crystal category: (a) bullet rosette, (b) snowflake, (c) plate and (d) column habits. The value used in this sensitivity study is $\alpha=2.0$ with 7.6 dBZ, $N_t=50$ #/L, which represent the mean reflectivity and N_t values along Leg 1 of the aircraft track.

Since the accuracy to which the KAZR reflectivity can be adjusted (accounting for several known radar biases) should also impact retrieval results and uncertainty, additional sensitivities for radar-retrieved r_e and IWC contingent on radar reflectivity were presented. Table 6 lists the retrieved r_e and IWC values from the radar reflectivity values of 2, 4, 6, 8 and 10 dBZ, assuming $N_t=50$ #/L and $\alpha=2.0$ for bullet rosette, snowflake, plate and column ice crystal habits. For the bullet rosette ice crystal habit, r_e
decreases ~22% and IWC decreases ~39% when the radar reflectivity drops to 2 dBZ from 6 dBZ. When the radar reflectivity increases from 6 dBZ to 10 dBZ, r_e increases ~29% and IWC increases ~64%. Thus, with 2 dBZ uncertainty of KAZR reflectivity within a range from 2 to 10 dBZ, the retrieved r_e and IWC uncertainties are roughly 13% and 26%, respectively.

Table 6. Dependence of radar reflectivity-retrieved r_e and IWC on radar reflectivity with a fixed value of $N_v=50$ #/L and $\alpha=2.0$ for four ice crystal habits: bullet rosette, snowflake, plate and column.

<table>
<thead>
<tr>
<th></th>
<th>2.0 dBZ</th>
<th>4.0 dBZ</th>
<th>6.0 dBZ</th>
<th>8.0 dBZ</th>
<th>10.0 dBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_e (µm)</td>
<td>IWC (g/m3)</td>
<td>r_e (µm)</td>
<td>IWC (g/m3)</td>
<td>r_e (µm)</td>
</tr>
<tr>
<td>Bullet rosette</td>
<td>232</td>
<td>0.17</td>
<td>263</td>
<td>0.22</td>
<td>298</td>
</tr>
<tr>
<td>Snowflake</td>
<td>168</td>
<td>0.09</td>
<td>200</td>
<td>0.13</td>
<td>236</td>
</tr>
<tr>
<td>Plate</td>
<td>62</td>
<td>0.012</td>
<td>71.6</td>
<td>0.017</td>
<td>83</td>
</tr>
<tr>
<td>Column</td>
<td>58</td>
<td>0.01</td>
<td>66</td>
<td>0.014</td>
<td>77</td>
</tr>
</tbody>
</table>
CHAPTER III

RESULTS

Radar Retrievals

As discussed in the sensitivity study, the assumption of ice particle habit can affect radar retrievals. Thus, it is necessary to know which class of ice particle habit should be applied for this study. The cloud particle imager (CPI) is designed to identify ice crystal habits, but the CPI was not functional during the 20 May 2011 event. Fortunately, in-situ CPI images are available on 23 May 2011, which involved strongly forced DCS events following 20 the May 2011 storm, and it was found that most of the ice particles are aggregates of individual crystals in a range of temperatures from -30 °C to -22 °C (Fig. 13). Heymsfield et al. (2002a) also found that aggregates are one of the possible ice crystal habits in the stratiform region of DCSs. Therefore, the ice crystal aggregate habit was used in retrieving the DCS ice microphysical properties in this study.

The σ–D relationship is primarily a function of ice particle habit. However, the exact combination of ice crystals cannot necessarily be determined using routinely available ground-based data. The choice of σ–D relationship is usually not clear even for a single layer cirrus cloud (Mace et al., 2002). There are multiple definitions of ice crystal habits found in different studies. In this study, a bullet rosette is depicted as an aggregation of columns connected at the center (Liu, 2008) and essentially belongs to the polycrystalline habit group (Bailey and Hallett, 2004; Hong, 2007). Thus, the bullet
rosette σ-D parameterization in Fig. 6 has been used to estimate the aggregate σ-D relationship in this study.

In addition, empirical relationships (such as the aggregates σ-D relationship) developed or updated by other studies, can be easily used in the retrieval algorithm developed in this study. However, aggregates have different forms, which are complex in their composition. It is very challenging to develop a database describing the backscattering characteristics of aggregates and to confirm which kind of aggregate parameterization relationship can be used in retrieval algorithms. This is also one of the reasons that bullet rosettes σ-D relationship was used instead to perform microphysical property retrievals here.

![Image](image_url)

Figure 13. Cloud Particle Imaging (CPI) probe images from the 23 May 2011 MC3E event.

Figure 14 shows retrieved r_e and IWC profiles (≥ 7 km) using the ARM SGP adjusted KAZR reflectivity with a modified gamma size distribution, $\alpha=2.0$, and the bullet rosette σ-D relationship. N_i is roughly estimated by a linear relationship $[N_i (\#/cm^3) = height (km) \times 0.014-0.054)]$, which is curve fitted from the aircraft in-situ measurements.
along the aircraft track (above 4 km melting layer) as shown in Fig. 2 and 3. IWC is retrieved using (17) based upon the aircraft derived $M(D) = 0.00309D^{1.98}$ mass dimension relationship. As illustrated in Fig. 14a, the adjusted KAZR reflectivity profiles (≥ 7 km) during 20 May have significant variability both temporally and vertically. It is clear that the adjusted KAZR reflectivities before 12:00 UTC are much larger than those after that time, primarily due to the fact that the convective cores of the DCS moved over the SGP site before 12:00 UTC, and the KAZR reflectivities were associated with the SR and AC regions after 12:00 UTC. Before 12:00 UTC the adjusted KAZR reflectivities are around 20-30 dBZ at 7 km, and drop to \sim20 dBZ above 12 km. After 12:00 UTC, KAZR reflectivities are consistently much lower, about 5-10 dBZ at 7 km and -30 dBZ at 10-11 km.

As demonstrated in Fig. 14, the temporal and vertical variations of retrieved r_e and IWC generally follow the variations of KAZR reflectivity. Both r_e and IWC retrievals before 12:00 UTC are much larger than those after 12:00 UTC, and for some periods, the retrieved r_e values are larger than 1000 μm and IWC values are higher than 3 g m$^{-3}$ (between 7-9 km). During the aircraft flight period (13:05:39 - 17:02:04 UTC) the retrieved r_e and IWC values have no significant change temporally, but clearly have stratified r_e and IWC values vertically. The retrieved r_e values decrease from \sim400 μm at 7 km to 50-75 μm at 11 km, and the IWC values range from ~ 0.9 g m$^{-3}$ at 7 km to 0.01 g m$^{-3}$ at 11 km. Similar to a previous study (Yost et al., 2010), mean r_e and IWC are shown to decrease with altitude in the top few kilometers of the cloud.
Figure 14. (a) ARM SGP adjusted KAZR reflectivity, radar-retrieved (b) r_e and (c) IWC, with modified gamma size distribution and $\alpha=2.0$ using bullet rosette σ-D relationship.

Validation with Aircraft In-situ Measurements

By using the retrieval algorithm developed in this study, the vertical profile of retrieved r_e and IWC are shown in Fig. 14. However, do these results match the aircraft
in-situ measurements? To answer this question, the aircraft in-situ measurements on 20 May are used to validate the ARM radar retrievals.

The ARM SGP KAZR has a field of view of approximately 0.2 degrees. The range resolution is around 30 meters and a sample volume of approximately 70,000 m3 at a height of 8 km for the vertical radar beam. The sample volume rate of 2DC and HVPS are about 0.3 and 1.2 m3 s$^{-1}$ with 100 m s$^{-1}$ airspeed. The KAZR sampling rate is on the order of 10 seconds, thus the radar sampling volume is about 4 orders of magnitude larger than those of the in situ probes. Some form of averaging is necessary in order to correctly compare the radar retrievals and aircraft in-situ measurements. In this study, the radar-retrieved r_e and IWC values in Fig. 15 are averaged into 1 min means, and then these 1 min means are compared with corresponding aircraft derived r_e and IWC values (also 1 min means) at the same altitudes (~7.6 km). That is, the 1 min radar retrievals have been selected when they are collocated with the aircraft measurements at the same altitudes during the two legs.

As illustrated in Fig. 15a, the adjusted radar reflectivities at the aircraft flight height (~7.6 km) during Leg 1 vary from 3 to 10 dBZ. As demonstrated in Fig. 15b and 15c, and summarized in Table 7, the radar retrieved r_e and IWC values during Leg 1 have excellent agreement with the aircraft in-situ measurements where most of the aircraft 1 min mean values fall within an uncertainty of 2 dBZ. The averages of radar retrieved and aircraft measured r_e during Leg 1 are 338 µm and 337 µm, indicating 0.3% difference. Their corresponding IWC averages are 0.34 g m$^{-3}$, which result in no difference at all. Given the excellent agreement in both IWC and r_e between the radar retrievals and aircraft in-situ measurements during Leg 1, the adjusted KAZR reflectivity performed better than
expected despite having an apparent negative bias of 3 dB as compared to the gridded regional NEXRAD (Fig. 5c). It is well known that operational NEXRAD datasets may be less useful at higher altitudes due to lower sensitivity to smaller ice crystals. Similarly, NEXRAD calibration for system and other factors cannot be guaranteed to better than 1-2 dB using methods relying on intrinsic properties of precipitation such that this operational reference may also have been overestimating reflectivity factor during this campaign (e.g., Ryzhkov et al., 2005; Giangrande and Ryzhkov, 2005). Nevertheless, Leg 1 situations are typically better-suited for this corrected KAZR retrieval approach than Leg 2, since these times may more directly benefit from collocated UAZR profiling system measurements.

The comparisons of r_e and IWC during Leg 2 are not as promising as those from Leg 1. For Leg 2, the averages of radar-retrieved r_e and IWC are 250 µm and 0.18 g m$^{-3}$, and for aircraft measurements they are 305 µm and 0.23 g m$^{-3}$. That is, the radar retrievals are 55 µm (18%) less than r_e from aircraft in-situ measurements, and 0.05 g m$^{-3}$ (22%) lower than IWC from aircraft in-situ measurements over the AC region of the DCS. Again as shown in Fig. 5c, the apparent biases in the adjusted KAZR reflectivity during Leg 1 and Leg 2 are -3 dB and -5 dB, respectively. Although NEXRAD observations are not well-suited to sample extended anvil regions, one may note some additional discrepancy between adjusted KAZR observations and those from the NEXRAD (~2 dB). In Leg 2 anvil regions, the adjusted KAZR profiles benefit less from direct comparisons with the unattenuated UAZR and surface disdrometer. Under these circumstances, the complementary platforms only act in an indirect role to provide reference to KAZR system offsets. Along these KAZR profiles, additional adjustments are made for gaseous attenuation (water vapor and oxygen), drawing from available sounding data during the
MC3E campaign (e.g., Kollias et al., 2014). However, possible in-cloud attenuation and poorly-matched sounding data may introduce additional discrepancies in the anvil regions. Notice that both the adjusted KAZR and NEXRAD reflectivities are nearly the same (~5-10 dBZ) during both Legs 1 and 2, thus it is reasonable to believe that the uncertainty of the adjusted KAZR reflectivity during Leg 2 is around 2 dB. As mentioned before, an uncertainty of 2 dB can lead to a 13% difference in r_e and 26% in IWC retrievals. If 2 dB were added to the adjusted KAZR reflectivity in Leg 2, then the retrieved r_e and IWC would be 283 μm and 0.23 g m\(^{-3}\). The differences between retrievals and in situ measurements would be reduced to -22 μm (7%) in r_e and almost no difference in IWC.

Figure 15. The 1-min averages of (a) ARM SGP adjusted KAZR reflectivity, (b) radar-retrieved r_e (black lines) and (c) IWC (black lines) with corresponding aircraft derived r_e and IWC values (filled red circles) from 2DC and HVPS measurements at the same altitudes (~7.6 km) as radar retrievals. The grey shaded area represents (a) 2 dB uncertainties of the adjusted KAZR reflectivity and the range of the retrieved (b) r_e and (c) IWC with 2 dB uncertainties. The yellow shaded area represents (a) 4 dB uncertainties of the adjusted KAZR reflectivity and the range of the retrieved (b) r_e and (c) IWC with 4 dB uncertainties.
Table 7. Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from adjusted KAZR reflectivity

<table>
<thead>
<tr>
<th></th>
<th>Reflectivity, $\bar{N}i$, $R{\text{eff}}$, \bar{IWC}</th>
<th>In situ r_e, SDV, μm</th>
<th>Retrieved r_e, SDV, μm</th>
<th>In situ IWC, SDV, g m$^{-3}$</th>
<th>Retrieved IWC, SDV, g m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg1</td>
<td>7.6, 47, 337, 27.5, 0.34</td>
<td>338, 2.75</td>
<td>0.34</td>
<td>0.34</td>
<td>0.055</td>
</tr>
<tr>
<td>Leg2</td>
<td>2.96, 47, 305, 9.7, 0.23</td>
<td>250, 9</td>
<td>0.18</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

One of other possible reasons is needed to be discussed here. The modified gamma distribution with $\alpha=2$ is used in the radar retrievals, while an α of 1.5 or 1.0 may better reflect the “true” PSD over the anvil region as shown in Fig. 3. As previously discussed, the retrieved r_e and IWC will increase 3% and 6%, respectively, if $\alpha=1.5$ is used in the retrieval instead of $\alpha=2$.

Certainly, some uncertainties are present when performing this retrieval, although the retrieval results are consistent with aircraft in-situ measurements in the leg 1 SR region. First, a mean N_i value of 47 L$^{-1}$ is assumed when generating Fig.15. However, the standard derivation of N_i is \sim14 L$^{-1}$, with a minimum value of 17 L$^{-1}$ and maximum value of 86 L$^{-1}$ during leg 1. Also, the α value varies in DCS ice clouds. $\alpha=2.0$ can be used to reproduce PSD in DCS SR regions, while $\alpha=1.0$ or 1.5 can be used to better reflect PSD in DCS AC regions. As mentioned before, if one changes N_i in 20#/L, it will result in 13% change in retrieved r_e values and 20% change retrieved IWC values. If one increases or decreases α by 1, it will result in 6% change in retrieved r_e values and 10% change in retrieved IWC values. In addition, an uncertainty of 2 dB can lead to a 13% difference in r_e and 26% in IWC retrievals. Thus, the total uncertainty in this retrieval is roughly estimated as 19.3% $[\sqrt{((13\%)^2+(6\%)^2+(13\%)^2)}]$ in r_e and 34.3% $[\sqrt{((20\%)^2+(10\%)^2+(26\%)^2)}]$ in IWC. Secondly, horizontal gradients in wind
velocity, wind shear, and dispersion of ice particle fall speeds may result in the aircraft and KAZR sampling different parts of clouds (Dong et al., 1998 and 2002; Heymsfield et al., 2002a). Thirdly, since there is a difference of four orders of magnitude in sampling volume between the in situ probes and the radar, the mismatched sampling volumes between the two platforms could play an important role in discrepancies (Mace et al., 2002). And, finally, uncertainties associated with using a bullet rosette σ-D relationship instead of that of aggregates cannot be ignored.

The N_i value that was used is 47 L$^{-1}$, which is the mean value measured using the aircraft. As there exists variation in the N_i values, the retrieved microphysical properties using in-situ measured time-series N_i values are also shown in Fig.16. The retrieval difference by using the mean N_i value and time-series N_i values are not very large (also in Table 8). However, Fig. 16 shows larger variation in microphysical properties retrieval if using time-series N_i values instead of the mean N_i value. The error at each time were also computed using the mean N_i value to do the retrieval, and the mean absolute error are 1.9 μm for r_e and 0.006 g m$^{-3}$ for IWC in leg1, and 56.2 μm for r_e and 0.04 g m$^{-3}$ for IWC in leg2. Using the time-series N_i value to do the retrieval instead, the mean absolute error are 10.5 μm for r_e and 0.0035 g m$^{-3}$ for IWC in leg1, and 54.6 μm for r_e and 0.04 g m$^{-3}$ for IWC in leg2.
Figure 16. Comparisons between the retrieved (b) r_e and (c) IWC using the mean N_t value of 47 L$^{-1}$ (solid lines) and in-situ measured time-series N_t values (dashed lines) using (a) 1-min averaged adjusted KAZR reflectivity.

Table 8. Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from adjusted KAZR reflectivity using the mean N_t value and in-situ time-series N_t values.

<table>
<thead>
<tr>
<th></th>
<th>Reflectivity, r_e</th>
<th>N_t</th>
<th>In situ r_e</th>
<th>Retrieved r_e</th>
<th>Retrieved N_t</th>
<th>In situ IWC</th>
<th>Retrieved IWC</th>
<th>Retrieved IWC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean, dBZ</td>
<td>Mean, #/L</td>
<td>mean, mm</td>
<td>SDV, mm</td>
<td>mean, g m$^{-3}$</td>
<td>SDV, g m$^{-3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg1</td>
<td>7.6</td>
<td>47</td>
<td>337</td>
<td>338</td>
<td>27.5</td>
<td>0.34</td>
<td>0.34</td>
<td>0.055</td>
</tr>
<tr>
<td>Leg2</td>
<td>2.96</td>
<td>47</td>
<td>305</td>
<td>250</td>
<td>9.7</td>
<td>0.23</td>
<td>0.18</td>
<td>0.014</td>
</tr>
<tr>
<td>Leg1</td>
<td>7.6</td>
<td>47</td>
<td>337</td>
<td>344</td>
<td>52.8</td>
<td>0.34</td>
<td>0.33</td>
<td>0.047</td>
</tr>
<tr>
<td>Leg2</td>
<td>2.96</td>
<td>47</td>
<td>305</td>
<td>251</td>
<td>17.5</td>
<td>0.23</td>
<td>0.18</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Validation of the Assumptions in the Radar-based Retrieval Algorithms

The relationship between the reflectivity, PSD and the ice habits is shown in (7). In this section, calculated reflectivity using aircraft measurements will be provided to further prove that the assumptions used in the retrieval algorithm are reasonable. The aircraft in-situ measured PSD will be used as $N(D)$ in (7), and DDA results for 11 kinds
of ice habits will be used to provide the σ information in (7). Figure 17 compares the calculated reflectivity using 11 kinds of ice habits, σ information from DDA, and aircraft measured PSD with adjusted KAZR reflectivity in Leg 1 and 2. The calculated reflectivity using bullet rosette backscattering information from DDA is close to the adjusted KAZR reflectivity, especially in Leg 1. For Leg 2, the calculated reflectivity using dendrite snowflake backscattering information from DDA is closer to the adjusted KAZR reflectivity. This may also explain discrepancies with the retrievals during Leg 2. More importantly, the consistency between adjusted KAZR reflectivity and calculated reflectivity further indicates that the assumptions (modified gamma PSD assumption and bullet rosette σ-D parameterized relationship) used in the radar retrieval algorithm are reasonable.

Figure 17. Comparisons between the aircraft calculated using 11 kinds of ice habits σ information (same as Fig. 6) from DDA and aircraft measured PSD and the adjusted KAZR reflectivity (black line) in (a) Leg 1 and (b) Leg 2.
Comparisons with GOES Satellite Retrievals

As mentioned above, GOES retrieved DCS CTH and particle size have not yet been fully validated. Thus, in this section, the GOES-satellite-retrieved DCS ice cloud CTH and particle size will be compared with the ARM KAZR measurements and retrievals during the MC3E.

Cloud Top Height (CTH)

Since there are significant spatial and temporal differences between the ground-based remote sensors and satellite observations, such as the relatively small sizes of the ARM KAZR field of view as compared to the much larger satellite field of view, temporal and spatial scales should be matched as closely as possible during the surface-satellite comparison. Based on the results and discussions in Dong et al. (2002, 2008), 100 km averaging yields the best match between temporally averaged surface results and spatially averaged satellite results assuming that the 1 h averaging interval is equivalent to a frozen turbulence spatial scale of 108 km with high-level winds of 30 m s\(^{-1}\). Figure 18 shows the ARM-adjusted KAZR reflectivity with GOES retrieved CTH during MC3E. On average, GOES CTHs agree with the ARM CTHs within 0.5 km. For all cases, over the anvil regions, the GOES derived CTHs agree well with the ARM CTHs. However, near convective cores with heavy precipitation, the GOES derived CTHs are 1-2 km higher than the radar CTHs possibly because radar signals are attenuated by the heavy precipitation. For all of the DCS cases during MC3E, the GOES retrieved CTHs are on average about 0.2 km higher than the ARM CTHs with relatively large differences for individual events due to the attenuation of radar signals with heavy precipitation and large liquid paths. Figure 19 shows the corresponding scatterplots of the
GOES and ARM retrieved CTHs with the mean values, mean standard deviations, correlation coefficients, and root mean square errors (RMSE). These statistical results reveal that the GOES CTHs agree with the ARM observations very well with small mean difference, standard deviation, and RMSE.

Figure 18. The DOE ARM KAZR derived CTHs (1-hour average) and matched GOES derived CTHs (1°×1° grid box, diamonds) for the DCSs over the ARM SGP site during the MC3E.

Figure 19. As in Fig. 18, except scatterplots for all four cases during MC3E.
DCS Ice Cloud Particle Size

It is well known that ice particles have a variety of shapes that are highly irregular and non-spherical (Yang et al., 2003). Therefore, it is common to classify ice crystals by their length or maximum dimension D, their width W, and the size distribution $n(D)$. To be consistent with the VISST cloud retrieval algorithms, the equation used to retrieve effective diameter D_e from the ARM KAZR reflectivity is modified as to (Minnis et al., 1998; Yost et al., 2010)

$$D_e = \frac{\int DW^2 n(D)dD}{\int Wdn(D)dD}. \quad (20)$$

In this study, (20) is used for both ARM and GOES D_e retrievals. Two ice crystal habits are used in the ARM retrievals: hexagonal columns and bullet rosettes. Wyser and Yang (1998) determined a functional relationship between L and D for the case of hexagonal columns given by $D=2.5 L^{0.6}$. For the bullet rosettes ice habit, the aspect ratio (D/L) is assumed to be 0.4 ($D=0.4 L$). This aspect ratio of bullets rosettes was developed using aircraft CPI measurements (Heymsfield et al., 2003).

Figure 20 shows the retrieved D_e values assuming hexagonal column and bullet rosette ice habits from the adjusted KAZR reflectivity, and only daytime results are used to compare with the GOES retrievals in this study. As demonstrated in Fig. 20, the KAZR retrieved D_e values with hexagonal column habits are much lower than those with bullet rosette habits. In addition, the KAZR retrieved D_e values with hexagonal column habits also much lower than those (60 μm) from the single-layered cirrus clouds at the SGP site (Table 1, Mace et al., 2005). Therefore, it is concluded that the KAZR retrieved D_e values using hexagonal columns habits are too small to be trusted in this study. To future
investigate which kind of habits should be used in ARM retrievals, Fig. 21 shows the CPI images collected on 23 May 2011 at temperatures around -40°C. Compared to Fig. 13, more small ice particles were collected by CPI shown in Fig. 21 indicating that D_e decreases with altitude in the upper layer of deep convective clouds (Yost et al., 2010). Figure 21 also shows that almost all large ice particles imaged by CPI are aggregated. In addition, as mentioned in the Radar Retrievals section, the bullet rosettes and aggregates have most similar backscatter information for cloud radar. Therefore, it is reasonable to assume bullet rosettes for retrieving the DCS ice cloud microphysical properties in this study.

Figure 20. (a) ARM SGP adjusted KAZR reflectivity, (b) radar-retrieved D_e assuming hexagonal columns habits and (c) D_e assuming bullet rosette habits.
Figure 21. As in Fig. 13, except for at temperatures around -40°C.

Above, as discussed, the bullet rosette ice habits can be used in the ARM retrievals. Now, another question need to be answer: if both KAZR and GOES retrieved D_e values are correct, are they the same?

The speed of a cloud system at 10 km with respect to the ground, on average, is about 25-30 m s$^{-1}$ from the ARM merged sounding profiles for the DCS cases during the MC3E. Following the spatial and temporal averaging method in Dong et al. (2002 and 2008), GOES retrievals are averaged within a 1°×1° grid box centered over the ARM SGP site, while ARM retrievals are averaged within 1 hr (±0.5 hr GOES image). According to Minnis et al. (2008), the satellite retrieved H_{eff} should represent an optical depth of ~1 down from the cloud top, which corresponds to ~1-2 km in ice clouds, even for optically thick ice clouds. Following this method, a KAZR reflectivity threshold (-5 dBZ/ -2.5 dBZ/ 0 dBZ/ 2.5 dBZ) was set up instead of the optical depth. Then average the KAZR retrieved D_e values from cloud top to the altitudes where the KAZR reflectivity...
threshold at to calculate the layer mean D_e values, and finally use these layer-mean D_e values to compare with GOES retrievals.

Figure 22 shows the dependence upon different reflectivity thresholds (-5 dBZ/ -2.5 dBZ/ 0 dBZ/ 2.5 dBZ). Mean, mean difference, RMSE and correlation coefficient values between KAZR and GOES retrieved D_e are calculated and shown in Table 9. The definition of total difference is

$$\text{Total difference} = \sum_{1}^{\text{sample}} \left| \frac{D_e^{\text{KAZR}} - D_e^{\text{GOES}}}{D_e^{\text{GOES}}} \right|,$$

where D_e^{KAZR} and D_e^{GOES} represent the KAZR and GOES retrieved D_e, respectively. Though the 0 dBZ has the lowest RMSE and mean difference, not the highest Correlation coefficient. However, if the 2 dB uncertainties from adjusted KAZR reflectivity was considered, the selection for 0 dBZ may be a very reasonable choice. This means that the satellite retrieved D_e can be compared to the ARM KAZR retrieved D_e values averaged from cloud top down to where the reflectivity is 0 dBZ.

Figure 22. GOES and ARM retrieved D_e averaged at different reflectivity thresholds. The mean value of GOES retrieved D_e is 81 um.
Table 9. Mean, mean difference, RMSE, and correlation coefficient values of ARM and GOES retrieved D_e.

<table>
<thead>
<tr>
<th></th>
<th>-5 dBZ</th>
<th>-2.5 dBZ</th>
<th>0 dBZ</th>
<th>2.5 dBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (µm)</td>
<td>65.6</td>
<td>72.9</td>
<td>81</td>
<td>90</td>
</tr>
<tr>
<td>Mean(KAZR)-Mean(GOES) (µm)</td>
<td>-15.4</td>
<td>-8.1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total difference (µm)</td>
<td>9</td>
<td>7.8</td>
<td>8.4</td>
<td>10</td>
</tr>
<tr>
<td>RMSE</td>
<td>24.6</td>
<td>20.3</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.15</td>
<td>0.26</td>
<td>0.36</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Comparisons between GOES retrievals and KAZR layer-mean using 0 dBZ as a reflectivity threshold are shown in Fig. 23. The KAZR-retrieved D_e values with hexagonal column habits are much lower than GOES retrievals, while those with bullet rosette habits are very close to GOES retrievals. As illustrated in Fig. 23, the averaged KAZR D_e values for the four selected cases are around 81 µm (for bullet rosettes), while the GOES retrievals range from 51.2 µm on 23 May to 101.1 µm on 20 May.

Figure 23. Comparisons between KAZR-retrieved (with bullet rosettes ice habits) and GOES retrieved D_e values during the MC3E.
In order to explain the physical meaning of the reflectivity threshold, a comparison between the height of the 0 dBZ isosurface and H_{eff} is shown in Fig. 24. On average, the height of the 0 dBZ isosurface is about 0.8 km lower than the GOES retrieved H_{eff} (11 km), which corresponds to the cloud radiative center. To get more solid results, more cases must be examined and analyzed statistically.

Figure 24. Comparison between the 0 dBZ height and the GOES retrieved effective cloud height H_{eff}.

![Graph](image-url)
CHAPTER IV
CONCLUSIONS AND FUTURE WORK

Conclusions

In this study, a new algorithm for retrieving DCS ice cloud microphysical properties has been developed using the ARM SGP adjusted KAZR reflectivity with a modified gamma size distribution, \(\alpha=2.0 \), a bullet rosette \(\sigma-D \) relationship, and data collected during the MC3E field experiment. The ARM retrievals are then compared with aircraft in situ measurements and GOES satellite retrievals collected/produced during the MC3E. The findings from this study are summarized as follows:

1) A new algorithm has been developed for retrieving DCS ice cloud microphysical properties using adjusted KAZR reflectivity. The PSD size parameter, \(\alpha=2 \), in the modified gamma distribution and the shape of the ice crystal habit (aggregate) have been determined using aircraft in situ measurements collected during the MC3E. The adjusted KAZR reflectivity, determined \(\alpha \) value, and use of bullet rosette \(\sigma-D \) relationship influence the degree of success for this retrieval method.

2) The radar retrieved \(r_e \) and \(IWC \) basically follow the variations of KAZR reflectivity on 20 May 2011. Both \(r_e \) and \(IWC \) retrievals before 12:00 UTC are much larger than those after 12:00 UTC, and for some periods, the retrieved \(r_e \) values are larger than 1000 \(\mu m \) and \(IWC \) values are higher than 3 g m\(^{-3}\) at altitudes of 7-9 km. During the aircraft flight period (13:05:39-17:02:04 UTC), the
retrieved \(r_e \) and \(IWC \) values have no significant temporal change, but clearly have vertically stratified values. The retrieved \(r_e \) values decrease from \(\sim 400 \mu m \) at 7 km to 50-75 \(\mu m \) at 11 km, and the \(IWC \) values range from \(\sim 0.9 \text{ g m}^{-3} \) at 7 km to 0.01 \(\text{ g m}^{-3} \) at 11 km.

3) The averaged \(IWC \) and \(r_e \) from KAZR retrievals over the SR region of the DCS are 0.34 \(\text{ g m}^{-3} \) and 338 \(\mu m \), in excellent agreement with the aircraft in-situ measured \(IWC \) (0.34 \(\text{ g m}^{-3} \)) and \(r_e \) (337 \(\mu m \)). Over the AC region, the retrieved and measured \(IWCs \) are 0.18 \(\text{ g m}^{-3} \) and 0.23 \(\text{ g m}^{-3} \), and the \(r_e \) values are 250 \(\mu m \) and 305 \(\mu m \), respectively. The radar retrieved \(r_e \) and \(IWC \) can increase to 283 \(\mu m \) and 0.23 \(\text{ g m}^{-3} \) if 2 dB of uncertainty is added to the adjusted KAZR reflectivity over the AC region, with sensitivities of 13%/2 dB in \(r_e \) and 26%/2 dB in \(IWC \).

4) GOES retrieved CTH, on average, is about 0.2 km higher than ARM CTH, which results from cloud radar attenuation in heavy precipitation. Bullet rosette habits should be used for retrieving DCS ice cloud microphysical properties from KAZR reflectivity. Vertically, the satellites retrieved \(D_e \) can be compared to the ARM KAZR retrieved \(D_e \) values averaged from cloud top down to where the reflectivity is 0 dBZ.

Future Work

Apply Retrieval Method to NEXRAD Radar Reflectivity

Since NEXRAD radar reflectivity has little attenuation during the DCS events, it is useful to apply the KAZR-based retrieval algorithm to NEXRAD data. As shown in Fig. 5, the reflectivity differences between adjusted KAZR and NEXRAD are -4 dB on
average in the DCS ice cloud, which is in a reasonable difference range. The same modified gamma PSD and \(N_t\) values are still used here, as they are not affected by the change of radar wavelength used in the algorithm. However, the \(s\) and \(t\) values from DDA should be parameterized for the NEXRAD wavelength (10 cm). Also, the wavelength value used in (12) should be changed to 10 cm. Figure 25 shows the 11 non-spherical \(\sigma\) values (at 10 cm, -25 \(^\circ\)C) (colored lines) and four regrouped ice crystal habits (symbols) as a function of \(D\).

Figure 25. As in Fig. 6 except for 10 cm wavelength and -25 \(^\circ\)C.

With the same modified gamma PSD, \(N_t\), and new DDA parameterization coefficients, \(r_e\) and \(IWC\) can be retrieved using NEXRAD reflectivity. As illustrated in Fig. 26a, NEXRAD reflectivity factors at the aircraft flight height (~ 7.6 km) vary from 0 to 15 dBZ. As demonstrated in Figs. 26b and 26c, and summarized in Table 10, the NEXRAD radar retrieved \(r_e\) and \(IWC\) values during the two legs were higher than the aircraft in-situ measurements. However, most of the aircraft 1-min mean values fall
within uncertainty ranges associated with a reflectivity uncertainty of 4 dB. The average -4 dB reflectivity difference results in r_e values retrieved from NEXRAD reflectivity and aircraft measurements during Leg 1 of 356 µm and 337 µm—a 6% difference. Their corresponding retrieved and aircraft measured IWC averages are 0.36 g m$^{-3}$ and 0.34 g m$^{-3}$, also a 6% difference. For Leg 2, the averages of radar-retrieved r_e and IWC are 304 µm and 0.27 g m$^{-3}$, and for aircraft measurements, they are 305 µm and 0.23 g m$^{-3}$, resulting in almost no difference at all for r_e and a 17% difference in IWC. These results shown as a motivation to apply the KAZR based method to NEXRAD radar reflectivity, which will include more DCS cases and provide more accurate comparisons between the NEXRAD retrievals and aircraft in-situ measurements during MC3E.

Figure 26. The 1-min averages of (a) NEXRAD reflectivity along aircraft track, (b) radar-retrieved r_e (black lines) and (c) IWC (black lines) with corresponding aircraft derived r_e (filled red circles) and IWC values (filled blue circles) from 2DC and HVPS measurements at the same altitudes (~ 7.6 km) as radar retrievals. The grey shaded area represents (a) 4 dB uncertainties of the NEXRAD reflectivity and the ranges of the retrieved (b) r_e and (c) IWC with 4 dB uncertainties.
Table 10. Comparison of ice cloud microphysical properties derived from aircraft measurements and retrieved from NEXRAD reflectivity

<table>
<thead>
<tr>
<th>Leg</th>
<th>Reflectivity, R_{ref}, mean, dBZ</th>
<th>$N_{\text{in situ}}$, mean, #/cm3</th>
<th>In situ r_c, mean, μm</th>
<th>Retrieved r_c, mean, μm</th>
<th>Retrieved r_c, SDV, μm</th>
<th>In situ IWC, mean, g/m3</th>
<th>Retrieved IWC, mean, g/m3</th>
<th>Retrieved IWC, SDV, g/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg1</td>
<td>9.8</td>
<td>0.047</td>
<td>337</td>
<td>426</td>
<td>32</td>
<td>0.34</td>
<td>0.54</td>
<td>0.08</td>
</tr>
<tr>
<td>Leg2</td>
<td>7.0</td>
<td>0.047</td>
<td>305</td>
<td>371</td>
<td>28</td>
<td>0.23</td>
<td>0.41</td>
<td>0.06</td>
</tr>
<tr>
<td>Leg1</td>
<td>13.8</td>
<td>0.047</td>
<td>337</td>
<td>520</td>
<td>39</td>
<td>0.34</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Leg2</td>
<td>11.0</td>
<td>0.047</td>
<td>305</td>
<td>454</td>
<td>35</td>
<td>0.23</td>
<td>0.61</td>
<td>0.09</td>
</tr>
<tr>
<td>Leg1</td>
<td>5.8</td>
<td>0.047</td>
<td>337</td>
<td>356</td>
<td>26</td>
<td>0.34</td>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td>Leg2</td>
<td>3.0</td>
<td>0.047</td>
<td>305</td>
<td>304</td>
<td>23</td>
<td>0.23</td>
<td>0.27</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Improve Satellite Nighttime Particle Size Retrieval

Diurnal variations of DCS ice cloud properties are important for understanding the Earth radiation and heat budgets and for improving climate models. Thus, retrieval of a full range of cloud properties during nighttime will greatly benefit numerical weather predictions (Minnis et al., 2012). Most methods have focused on retrieving cloud properties, such as τ and D_e, during the daytime because cloud optical depth τ is retrieved from the visible channel (Minnis et al., 1995). During both day and night it is possible to estimate cloud heights, but retrievals of τ and D_e have been limited to optically thin clouds ($\tau < \sim 6$) because of the constraints of the blackbody limit (Minnis et al., 2012). Here, two steps are proposed for improving satellite-based nighttime D_e retrievals. The KAZR retrievals should be the same for both day and night. The GOES nighttime D_e retrievals are much lower than the KAZR nighttime retrievals (Fig. 27). The difference in GOES retrievals is due to GOES nighttime retrieval limitations. First, empirical relationships will be developed between daytime D_e and other cloud parameters that should be available during both day and night. Then apply this/these relationship(s) to retrieve nighttime D_e. Secondly, use the KAZR D_e retrievals as “ground-truth” to modify
the relationship(s) and implement the modified relationship to calculate nighttime D_e values.

Figure 27. Comparison between KAZR-retrieved (with hexagonal column and bullet rosette ice habits) and GOES-retrieved (during both daytime and nighttime) D_e on 20 May 2011.

Development of Algorithms for Retrieving Cloud Microphysical Properties of Mixed-phase and Liquid/precipitation Layers of DCSs during MC3E

In a series of studies, this being the first, algorithms for retrieving cloud microphysical properties of the ice-phase, mixed-phase and liquid/precipitation layers of DCSs observed during MC3E will be developed. These retrievals will be validated using UND Citation II research aircraft in-situ measurements. The first step, completed herein, focuses on developing a new retrieval method for the DCS ice cloud microphysical properties and validates the retrievals using the aircraft provided best-estimate r_e, IWC and PSD. The next steps develop new algorithms for retrieving the cloud microphysical properties of the mixed-phase layer and liquid/precipitation layer of DCSs using ARM SGP adjusted KAZR reflectivity and other measurements obtained during the MC3E.
APPENDIX
Appendix

List of Acronyms and Symbols

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Anvil cloud</td>
</tr>
<tr>
<td>AC\textsubscript{trans}</td>
<td>Transitional anvil</td>
</tr>
<tr>
<td>AC\textsubscript{thk}</td>
<td>Thick Anvil</td>
</tr>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement</td>
</tr>
<tr>
<td>CALIPSO</td>
<td>Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations</td>
</tr>
<tr>
<td>CC</td>
<td>Convective core</td>
</tr>
<tr>
<td>CDP</td>
<td>Cloud Droplet Probe</td>
</tr>
<tr>
<td>CERES</td>
<td>Clouds and Earth’s Radiant Energy System</td>
</tr>
<tr>
<td>CPI</td>
<td>Cloud particle imager</td>
</tr>
<tr>
<td>CRYSTAL</td>
<td>Cirrus Regional Study of Tropical Anvils and Cirrus Layers</td>
</tr>
<tr>
<td>CSA</td>
<td>Convective Startiform Anvil classification</td>
</tr>
<tr>
<td>CTH</td>
<td>Cloud top heights</td>
</tr>
<tr>
<td>DCS</td>
<td>Deep Convective Systems</td>
</tr>
<tr>
<td>DDA</td>
<td>Discrete Dipole Approximation</td>
</tr>
<tr>
<td>DMT</td>
<td>Droplet Measurement Technologies</td>
</tr>
<tr>
<td>DWR</td>
<td>Dual Wavelength Ratio</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium Range Weather Forecasts</td>
</tr>
<tr>
<td>FACE</td>
<td>Florida Area Cirrus Experiment</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-difference time domain method</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Operational Environmental Satellite</td>
</tr>
<tr>
<td>HVPS</td>
<td>High Volume Precipitation Spectrometer</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IWC</td>
<td>Ice water content</td>
</tr>
<tr>
<td>JWD</td>
<td>Joss-Waldvogel impact disdrometer</td>
</tr>
<tr>
<td>KAZR</td>
<td>Ka-band ARM Zenith Radar</td>
</tr>
<tr>
<td>LWP</td>
<td>Liquid water path</td>
</tr>
<tr>
<td>MC3E</td>
<td>Midlatitude Continental Convective Clouds Experiment</td>
</tr>
<tr>
<td>MWR</td>
<td>Microwave radiometer (MWR)</td>
</tr>
<tr>
<td>MODIS</td>
<td>Aqua Moderate Resolution Imaging Spectro radiometer</td>
</tr>
<tr>
<td>NEXRAD</td>
<td>Next Generation Weather Radar</td>
</tr>
<tr>
<td>NSAS</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>PMS</td>
<td>Particle Measurement System</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle size distribution</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square errors</td>
</tr>
<tr>
<td>RUC</td>
<td>Rapid Update Cycle</td>
</tr>
<tr>
<td>SCATDB</td>
<td>Scattering database</td>
</tr>
</tbody>
</table>
SGP Southern Great Plain
SI Solar infrared
SIST Solar-infrared Infrared Split-Window Technique
SR Stratiform rain
SWC Split-window channel
SZA Solar zenith angle
TOA Top of the atmosphere
TWC Total water content
UAZR UHF ARM Zenith Rada
UND University of North Dakota
VIS Visible
VISST Visible Infrared Solar-infrared Split-Window Technique
2DC Two-dimensional cloud probe
α Size distribution shape parameter
D Particle dimension
D_e Effective diameter
D_{eKAZR} KAZR retrieved effective diameter
D_{eGOES} GOES retrieved effective diameter
H_{eff} Cloud effective height
|K_{W}|^2 Dielectric factor for water
m Complex refractive index
N_t Total number concentration
Γ Gamma function
s DDA parameterization coefficient
D_{DDA} parameterization coefficient
p mass-dimension coefficient
q mass-dimension coefficient
r_e Effective radius
σ Backscatter cross section
T_{eff} Cloud effective temperature
Z_e Equivalent reflectivity factor for water droplets
Z_i Radar reflectivity factor for ice particles
REFERENCES CITED

