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ABSTRACT 

Wireless communication systems can be affected by several factors, including propagation 

losses, co-channel interference, and multipath fading. Uncertainty affects all of these factors 

making it even more difficult to model these systems. This dissertation proposes the use of 

probabilistic graphical models (PGM), such as Bayesian Networks and Influence Diagrams, as the 

core for reasoning and decision making in adaptive radios operating under uncertainty.  PGM 

constitute a tool to understand and model complex relations among random variables. This 

dissertation explains how to build effective communication models that perform its functions 

under uncertainty. In addition, this work also presents a spectrum sensing technique based on the 

autocorrelation of samples to estimate the utilization level of wireless channels.   
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CHAPTER 1 

INTRODUCTION 

The environment conditions in Wireless networks change rapidly.  Noise, co-channel 

interference, spectrum availability, multipath fading, propagation losses, Doppler phase, and 

Doppler frequency shift vary randomly impacting the overall performance of the wireless 

communication systems. Designers of conventional wireless communication systems assume that 

the conditions in which these systems are to operate will fall within certain intervals.   For 

instance, when calculating the power budget of mobile and wireless links, a margin is included to 

account for the received power fading caused by the multipath propagation [1, 2].  Another 

typical assumption is that the radio system will tune in to channels allocated statically [3, 4]. In 

other words, conventional wireless communication systems are designed to work under 

predetermined conditions and lack adaptability to dynamic environments.  Some problems of this 

conventional approach are: the conditions wherein radio systems operate are dynamic; and as the 

amount of wireless devices and services increases, a more optimal use of the radio spectrum 

becomes critical.   

Cognitive radio (CR) technology has appeared as a potential alternative to conventional 

radio systems: one wherein the wireless system itself can learn from the environment and adapt 

to it. Although cognitive radio (CR) originally emerged as a technology for implementing 
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dynamic Spectrum access (DSA), its field of action can go further than the mere use of the 

spectrum.  A CR can change not only its operating frequency but also its modulation scheme, 

spectral efficiency, transmission power, bandwidth, and other parameters in order to increase its 

performance in the midst of its surrounding conditions.   

A cognitive radio (CR) is made of two main blocks: a software defined radio (SDR) block 

and an artificial intelligence (AI) block or cognitive engine (CE). The SDR performs the 

baseband signal processing operations by means of software, which provides flexibility when it 

comes to implementing radio systems, since the same hardware platform serves to realize 

different types of radios by changing the code in charge of the digital signal processing (DSP). 

The AI block, or CE, executes reasoning, learning, and decision making operations; and interacts 

with the SDR to control the DSP, so that the radio system adjusts its configuration according to 

the surrounding conditions and the performance objectives of the CR. The CR knows well its 

performance objectives; however, when it comes to knowing its surrounding conditions the CR 

has to face a problem: uncertainty.  Therefore, a question arises: how can a cognitive radio learn, 

and make decisions in the midst of random conditions?    

One possible answer to this question, explored in this dissertation is the use of probabilistic 

graphical models (PGMs) as a solution to represent wireless communication systems, while 

capturing the ever present uncertainty. In this dissertation, there are two types of PGM: Bayesian 

networks (BN) and influence diagrams (ID), which are an intuitive way to show how 

deterministic and random variables influence one to another. Bayesian networks are also known 

as belief networks, since their function is to constantly update their beliefs regarding the 

variables that compose them. In the context of PGM, those beliefs are on the states of the 
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variables. These beliefs are represented as probability distributions, so that calculations can be 

made in order to update those beliefs each time the system gets new evidence. 

 For instance, if we saw the sky totally blue, our belief about having no rain (NR) is stronger 

than the one about having rain (R); we can assign numbers to these beliefs: [p(R) = 0.1, p(NR) = 

0.9]. Let us notice that all those numbers are positive and their sum is one; therefore, we can 

consider [p(R) = 0.1, p(NR) = 0.9], where p(R) and p(NR) represent the probability of having  

rain and no rain respectively. Suppose the sky is still blue but we start seeing some clouds; this is 

new evidence that makes us change our belief: now we think that is more probable that will see 

rain (R); so the numbers change to [p(R) = 0.4, p(NR) = 0.6]. Later on, dark clouds appear, new 

piece of evidence that reinforces the belief we have about having rain (R); therefore, the numbers 

change again:  [p(R) = 0.8, p(NR) = 0.2]. Finally, it starts raining; now we are certain we have 

rain and the numbers tell so: [p(R) = 1, p(NR) = 0]. In this example, we can declare a variable, 

rain, with two states: rain (R) and no rain (NR). This variable is random; therefore, we need a 

probability distribution to characterize it. This probability distribution gets updated as new 

evidence comes. Bayesian networks are about declaring variables, their interaction, their states, 

and the probabilities of those states.  This example has brought up something that as humans we 

do every day:  we have beliefs about people, our environment, etc., we adjust our beliefs when 

we get new information (evidence), and we adapt to people and our environment. We do not 

assign numbers to those beliefs though; but we reason like in our example: in a Bayesian way.   

Let us translate these ideas into the field of wireless communication systems. In those 

systems, we can find several random and deterministic variables in constant interaction. Some of 

these are noise, co-channel interference, propagation losses, transmission power, received power, 
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carrier frequency, bit error rate, etc.  We can build the probabilistic graphical model (PGM) of a 

wireless communication system by defining the states of these variables, and characterizing 

qualitatively and quantitatively how they influence one another.  Once built, this model can 

answer several queries; for instance, how likely it is that the co-channel interference in certain 

channel will be high (of course we have to define what high means)?, how likely it is that the bit 

error rate will be under certain level?, what is the configuration that fits the best the system user 

expectations about performance in a particular scenario?. This is the ultimate goal of this 

dissertation: having a model able to answer questions that a cognitive radio needs to learn and 

make decisions.   

 The main advantage of the PGM approach is that it can equip a CR with the means to learn 

about an uncertain environment, and rank decisions according to how satisfactory they are for 

the system. These tasks suit well the mission of cognitive radio systems: learn from the 

environment and adapt to it. With the increasing number of wireless systems and mobility 

services, this capability will become critical.   Other benefits of PGMs: PGMs are modular; 

PGMs allow for the integration of knowledge, experimental data, and simulations; PGMs are 

intuitive.  

This dissertation is organized as follows. Chapter 2 presents a background on cognitive 

radio (CR) technology and probabilistic graphical models (PGM). Chapter 3 describes the 

probabilistic models proposed to assist a cognitive radio in learning from the environment and 

making decisions; specifically, this work presents two models: one that takes the bit error rate 

(BER) as evidence to update the probability distributions of several variables that characterize 

the environment, such as co-channel interference, multipath fading, and noise; and other one that 
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calculates the utility of several configurations to find the ones with the highest utility for the 

wireless system. Chapter 4 presents several simulations that used to show the functionality of the 

proposed Bayesian network and Influence diagram. Chapter 5 explains the experiments 

performed on spectrum sensing, channel utilization estimation, and channel sounding. This 

chapter proposes a technique for spectrum sensing based on the autocorrelation of the received 

samples. This technique is applied to estimating the utilization level of several channels. In 

addition, this dissertation proposes to see the channel utilization level as a random variable and 

apply Bayesian probability to update its probability distribution each time the cognitive radio 

senses the state of the channel: busy or empty. Additionally, I present the results of experiments 

on channel sounding, the purpose of which is to estimate the channel impulse response of the 

wireless channel.   
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CHAPTER 2 

BACKGROUND 

2.1 Cognitive Radio Overview 

Cognitive Radio is an emerging technology whose primary objective is the efficient 

utilization of the radio spectrum. A cognitive radio, built on a software-defined radio (SDR), is 

defined in [5] as an intelligent wireless communication system that is aware of the environment, 

learns from it and adapts to statistical variations in the input stimuli, with two main purposes:  

Highly reliable communication whenever and wherever needed: since a cognitive radio can 

be aware of the conditions of the channel it can adapt to overcome propagation problems and 

increase the reliability.  

Efficient use of radio spectrum: when primary users, incumbent licensees, are not using 

certain portions of the spectrum, secondary users, which are cognitive users, can use them 

opportunistically.  

In this definition of cognitive radio, the term environment refers to the electromagnetic 

conditions surrounding the cognitive radio that fall within the frequencies of interest. Although 

the 
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input stimuli are mainly focused on the electromagnetic signals, the original idea of cognitive 

radio also contemplates other variables such as temperature and location [6]. 

To accomplish its mission, a cognitive radio executes a series of processes known as a 

cognitive cycle [6]. Figure 2.1.1 illustrates a simplified version of the cognitive cycle suggested 

by Doyle [3].  This cycle encompasses three parts: Observing, Decision Making and Taking 

Action. In each stage of the cycle, there are different processes taking place that involve 

techniques from different fields such as digital signal processing, estimation theory and artificial 

intelligence. A summary of the main aspects of each one follows. 

 

 

 

 

 

2.1.1 Observing 

A cognitive radio is aware of the context where it operates. This awareness includes 

knowledge of the environment, the communication requirements of the users, the regulatory 

policies and its own capabilities [3]. Knowledge of the environment mainly includes 

understanding the surrounding radio spectrum scene. Spectrum sensing and channel estimation 

support the context awareness of a cognitive radio. Spectrum sensing is the process of obtaining 

awareness about the spectrum usage and existence of primary users in a determined area [7]. 

 

Figure 2.1.1: Cognitive Cycle (Modified from [16]) 



8 

 

Channel estimation is the process of collecting the channel- state information (CSI) to assess the 

channel capacity [8] and other characteristics. In spectrum sensing we have to decide between two 

situations, primary user transmitting or primary user not transmitting. Therefore, the decision is 

between two discrete values. On the other hand, in channel estimation we have to obtain the 

approximate value of one or several parameters of a system that can take continuous values in a 

search domain [9].   

Spectrum Sensing 

Spectrum sensing falls in the domain of signal detection theory, in which we want to decide 

among some finite number of possible situations or “states of nature” [10]. In the context of 

cognitive radio, the decision is on whether or not there is a primary user present in the space and 

channel of interest for the secondary user.  The more precise this decision is, the fewer the 

numbers of false alarms and misdetections will be. Each false alarm implies that the secondary 

user has wasted the opportunity of using an empty channel. Similarly, each misdetection can lead 

the secondary user to interfere with the primary user. Among the different tasks needed by 

cognitive radio, perhaps spectrum sensing is the one that has received the most attention from 

researchers. The main objective pursued by these researchers is to reduce the number of false 

alarms and misdetections, as well as the complexity and sensing time.  The most common types of 

detectors mentioned in the literature are the energy detector, the cyclostationary detector, and the 

matched filter detector. Figure 2.1.2 compares these techniques in terms of complexity and 

accuracy.  
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The energy detector is the simplest but also the least accurate .This sensor does not require 

any previous knowledge of the signal. The signal is detected by comparing the output of the 

energy detector with a threshold which depends on the noise floor [11]. The problem with this 

type of detector is that it does not distinguish between the signal to be detected and the noise. 

Additionally it performs poorly at low SNR.   

The cyclostationarity detector takes advantage of the fact that the statistical parameters of 

practical communication signals vary periodically [12]. Examples of these signals include 

sinusoidal carriers in amplitude, phase, and frequency modulation systems, and periodic keying of 

the amplitude, phase, or frequency in digital modulation systems [13]. The cyclostationarity   can 

be extracted by the spectral-correlation density (SCD) function [13-15]. The SCD function of 

modulated signals takes nonzero values at some nonzero cyclic frequencies. On the other hand, 

since noise is not cyclostationary its SCD has zero values at all non-zero cyclic frequencies. 

Therefore, by analyzing the SCD function it is possible to differentiate a particular signal from 

noise.  In addition, the SCD provides a way to distinguish the signal type because different signals 

 

Figure 2.1.2: Comparison of spectrum sensing 

techniques (Modified from [17]) 
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have different non-zero cyclic frequencies [12]. Although cyclostationarity sensing performs well 

under low SNR conditions and uncertainty in the propagation channel, it has some drawbacks 

such as: (1) the sampling rate needs to be high, (2) the computation of SCD requires a large 

amount of samples, (3) the sampling time error and frequency offset could affect the cyclic 

frequencies [12] and (4) it is more complex compared with energy detection.    

The matched filter detector is the most precise method for detecting primary users in cases 

where the transmitted signal is known. Its main advantage is that it takes less time than the other 

techniques to achieve a determined probability of false alarm or misdetection [16]. Nevertheless, 

matched filter sensing requires the cognitive radio to demodulate received signals. This condition 

means that the receiver needs to know signal features of the primary user such as bandwidth, 

operating frequency, modulation type, pulse shaping, and frame format [7]. That implies that the 

cognitive radio needs a different receiver for each type of signal it expects to detect.  

Out of these three methods, ED is perhaps the simplest and popular method; however it 

requires knowledge of the noise power.  MF and CSD need information about the signal prior to 

receive it. Inaccuracy in the knowledge of the noise power causes mistakes in the detection of 

signals. Similarly, the need of prior information about the signal increases complexity.   

Covariance spectrum sensing can overcome these problems, since it capitalizes on the fact 

that the covariance matrix of noise and signals behave differently; therefore, it requires no 

information about the noise power or the signal [17]. The covariance matrix of the samples 

collected by the receiver contains information exploitable for the purpose of spectrum sensing. 

Zeng and Liang [17, 18] have proposed two methods that extract information out of the 
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covariance matrix of the samples. In [17] these authors introduce two statistics: the sum of the 

matrix elements that are not in the main diagonal, and the sum of the elements that are in the 

main diagonal.  Comparing the ratio of these statistics with a threshold can tell the presence of 

either signal or noise. In [18] the authors use two metrics: the maximum to minimum eigenvalue 

(MME) ratio and the average received power to minimum eigenvalue ratio, also called energy 

with minimum eigenvalue (EME) detection.  As in [17], the comparison of these ratios with a 

threshold can differentiate between noise and signal. The authors present simulations to evaluate 

the performance of their methods. Mate et al. [19]  performed experiments with GNU Radio 

software and USRP (universal software radio peripheral) devices to evaluate the covariance and 

MME detection methods proposed in [17, 18]. They found that these two methods performed 

implausibly in the practice because the noise samples are not delta correlated as assumed in [17, 

18] 

To understand the principle behind the autocorrelation based sensing method, let us define 

( ) ( ) ( )x n s n n   as the received samples, where ( )s n is the primary user signal, and ( )n  

noise.  Two hypotheses exist: 1) 0 , i.e. absence of signal, and 2) 1 , i.e. presence of signal.   

These hypotheses are given in [17, 18] and defined as  

 0 : ( ) ( )x n n    (2.1.1) 

 1 : ( ) ( ) ( )x n s n n   .  (2.1.2) 

Let one define the vectors x  and s   as   

 ( ) [ ( ) ( 1) (1)]Tn x n x n x x ,  (2.1.3) 

and  
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 ( ) [ ( ) ( 1) (1)]Tn s n s n s s  .  (2.1.4) 

The statistical covariance matrices of these vectors, defined in terms of the expectation E  

are   

 [ ( ) ( )]TE n nxR x x , (2.1.5) 

and  

 [ ( ) ( )]TE n nsR s s , (2.1.6) 

respectively.  

According to [17], the matrix xR  can be expressed as   

 
2

 x sR R I  , (2.1.7) 

where 
2

  is the variance of the noise  , and I  the identity matrix. Therefore, in absence of 

signal sR  is zero as well as the non-diagonal elements of xR . Based on this assumption,   Zeng 

and Liang [17] have proposed the ratio between the sum of all the elements of xR , 

1 | |nm

n m

T r , and the sum its diagonal elements, 2 | |nn

n

T r ,  as metric to detect the absence 

or presence of signal. In absence of signal this ratio is supposed to be one, whereas with signal 

present this ratio is greater than one. It is clear that in the first case the ratio is 

2

2









I

I
, whereas in 

the second case it is 

2

2









sR I

I
. However, in the practice, even in absence of signal xR  is a non-

diagonal matrix and 1 / 2 1T T  [19].  
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The assumption about   made in [17] is that ( ( ) ( )) 0E n n     for any 0  . This 

condition holds when the noise is Gaussian, the problem is noise of the some receivers is colored 

and non-delta correlated, something to consider when analyzing the covariance or 

autocorrelation of the signal in order to decide between 0  and 1 .  

The method proposed in this dissertation calculates the autocorrelation of the samples defined 

as   

 
1

0

( ) ( ) *( )
sN

m

l x m x m l




  , (2.1.8) 

where sN  is the number of samples and the symbol * represents the complex conjugate 

operation. Nevertheless, rather than using ( )l  to build a covariance matrix as in [17-19], this 

work uses the Euclidean distance between  ( )l   and a reference line.  Chapter 5 explains further 

details. 

Channel Estimation 

In addition to use spectrum sensing to know the availability of channels, their 

characterization becomes instrumental for the configuration and operation of wireless networks. 

Knowing the channel characteristics allows for the planning and adjustment of operation 

parameters of radio equipment, including transmission techniques, bandwidth, transmission 

power, bit rates and other parameters. Usually, these characteristics are gathered through 

exhaustive measurement campaigns.  However, when looking for managing the radio spectrum 

dynamically, it is more useful to update the characteristics of the channel of interest with recent 

information.   
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During recent years and due to the increase of mobile wireless networks, the study of 

wireless channels that vary rapidly has attracted the attention of many researchers. Bello [20] 

introduced the assumption that the channel is wide-sense stationary uncorrelated scattering 

(WSSUS), which although relatively old remains in use today [21].  Recently in [22, 23]  the 

authors show that the WSSUS assumption still holds although limited to a local context. In [21, 

24] the author gives some guidance to approximate non-WSSUS channels to WSSUS channels. 

Literature presents several methods for estimating the response of the channel. The methods 

suggested in the literature can be divided into blind and non-blind methods. The blind methods 

obtain the channel response estimate without sending any pilot or training sequence. These 

methods estimate this response out of the samples the receiver takes. Maximum likelihood (ML) 

has been used to perform blind estimation [25, 26]. Even though ML has a good performance, it is 

computationally expensive. Some methods to reduce that complexity have appeared in the 

literature [27] including: Cyclic ML [26], Boolean Quadratic Program [28], and Expectation-

Maximization [29, 30].  Other techniques such as subspaces [31] , second order statistics [32] and 

high order statistics [27] have also contributed to the improvement of blind estimation. On the 

other hand, non-blind estimation, which uses a pilot or training sequence has also been 

considered. As matter of fact, this approach is one of the most intensively studied methods for 

time-varying channels, which have short coherence time [33]. The pilots are previously known 

signals located in the time domain for single carrier systems and in the frequency domain for 

OFDM systems. Some of the proposed and most studied pilot aided estimators are linear 

minimum square error (LMMSE) estimator [34, 35], the least square (LS) estimator, and the best 

linear unbiased estimator (BLUE) [21]. What these methods have in common is that they use a 
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previously known sequence and the received signal to estimate the response of the channel. 

Another method is the correlation sounding technique, which takes advantage of the statistical 

properties of pseudo noise sequences and employs correlation to estimate the channel impulse 

response.  

When propagating through a wireless channel, signals experience a variety of phenomena. 

These phenomena include multipath fading, shadowing, Doppler shift, and attenuation. Multipath 

is due to reflectors and scatters existing on the way of the signal; shadowing comes from obstacles 

that absorb energy from the signals; Doppler shift originates from the relative movement between 

transmitters and receivers; and attenuation is caused by the medium between nodes. Doppler shift 

also occurs when scatters and obstacles, located in the trajectory of the signal, move. Moreover, 

interferers affect the signal in such a way that can destroy it. Interferers are those devices 

transmitting at the same frequency as the system of interest. Sometimes this interference is 

temporary; therefore it is not always possible to detect it during the measurement campaign.  

In order to quantify the magnitude of the aforementioned phenomena, the channel impulse 

response (CIR) has come into play. The Channel Impulse Response (CIR) of a wireless channel 

provides the information needed for the characterization of the channel. This information 

comprehends the number of paths used by the signal to propagate, the attenuation on each path 

and the relative delay between paths. Generally in the literature ( )h   symbolizes CIR as a 

function of the delay  . However, since the behavior of the channel changes with time, the CIR 

also changes.  In equation 2.1.9, ( , )h t    represents the time varying CIR (TV-CIR), t  is the time, 
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  is the delay, ( )ia t  is the time varying complex attenuation for the path i , ( )i    is the delta 

function representing the path with delay i  and L  is the number of paths  [36] .       

         
1

( , ) ( ) ( ).
L

i i

i

h t a t   


       (2.1.9)  

Different transformations of ( , )h t   produce diverse functions that characterize the channel in 

different domains, such as time, frequency, delay and Doppler [1, 21, 37]. 

 

 

 

 

 

Figure 2.1.3: Channel System Functions Transformations. [1] 

Figure 2.1.3 shows how ( , )h t   generates other functions by means of the Fourier transform,

, and the inverse Fourier transform, 1 . These functions are the scattering function, ( , )s   , 

the  Doppler variant transfer function, ( , )D f , and the time variant transfer function, ( , )H t f . 

Although these functions depend on two variables, the Fourier transformations are with respect to 

one variable that can be  t  (time), f  (frequency),   (delay), or   (Doppler frequency). For 

instance,    symbolizes Fourier transform with respect to the variable  ,  
1




 inverse Fourier 
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transform with respect to the variable  , and so on. The aforementioned functions are 

deterministic and characterize the channel in different but equivalent ways [1]. Specifically, the 

function ( , )h t   illustrates how the multiple propagation paths, their relative delays and 

attenuation levels change over time. Equivalently, the function ( , )s   shows the multiple paths 

over time and the shift experienced by the central frequency due to the Doppler effect. The 

function ( , )D f exhibits the effect of multipath in the frequency domain along with the Doppler 

effect. Finally, the function ( , )H t f  is similar to ( , )h t  ; however, it shows how the multiple paths 

affect the channel in the frequency domain.  

In the context of cognitive radio, the information provided by the functions explained 

previously needs to be expressed in a more condense way. The reason is that the reasoning, 

learning and decision making processes taking place in a CR can use more efficiently the 

information given in such a format than the whole information provided by the functions, which is 

helpful when graphically describing and analyzing the behavior of wireless channels. In this 

dissertation I am particularly interested in two condensed parameters: Delay spread and Doppler 

spread. These parameters lead to the coherence bandwidth and coherence time respectively. The 

coherence bandwidth, cB , imposes restrictions over the bandwidth of the signal to transmit 

through the channel. Likewise, the coherence time, cT  limits the symbol time [1].   

The Delay spread and the Doppler spread are the normalized second order central moments 

of the power delay profile (PDP) and the Doppler power spectrum (DPS) [1, 37, 38].  The PDP 

and the DPS come from considering the channel system functions as random processes. In fact 

this consideration is necessary since the original channel functions are deterministic and 
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unpredictable in the practice [21]. Therefore, statistical descriptions of the channel become 

necessary. These descriptions treat ( , )h t  , ( , )s   , ( , )D f , and ( , )H t f  as stochastic processes. 

To simplify these stochastic descriptions of the channel, the autocorrelation function along with 

the assumption that the channel is wide sense stationary-uncorrelated scattering (WSSUS) provide 

the necessary tools.  For instance, by applying the autocorrelation function (ACF) to  ( , )h t   we 

have [37] 

                  
*

1 2 1 2 1 1 2 2( , , , ) [ ( , ) ( , )]hR t t E h t h t                                        (2.1.10) 

where *  is the complex conjugate and [·]E  is the expected value operation. The WSSUS, which 

is broadly accepted for mobile channels [39] model has two assumptions. The first assumption is 

that the stochastic process is wide sense stationary, WSS, which implies that the ACF depends 

only on 2 1t t t   , and not on the absolute time, t . Therefore, equation (2.1.10) becomes 

*

1 2 1 2( , , ) [ ( , ) ( , )]hR t E h t h t t                                (2.1.11) 

The second assumption is that the amplitudes and phases of the different paths are 

uncorrelated, which means the channel has uncorrelated scattering, US. Therefore, the ACF is 

zero when 1 2   and has a peak when 1 2  .   By applying this assumption to equation (2.1.11) 

we obtain

*( , ) [ ( , ) ( , )]hR t E h t h t t     ,                     (2.1.12) 
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which when calculated at 0t   yields the function ( ) ( ) ( ,0)h h hp R R    , known in most of 

the literature as power delay profile [37]. The PDP represents the distribution of the power among 

the delayed paths of the signal arriving at the receiver. By normalizing the PDP, it turns into a 

probability density function, designated as ( )p  .  Equation (2.1.13) shows this normalization.   

( ) ( )
( )

( ) ( )

h h

h h

R p
p

R d p d

 


   
 

 

 

 
                     (2.1.14) 

The normalized second order central moment of ( )p   is  

2( ) ( )S D p d   



                      (2.1.15), 

known as the delay spread.  In equation (2.1.15)      

[ ] ( )D E p d    



                        (2.1.16),  

which is the mean delay.  

Since in the practice, we will have only a limited number of discrete signals, we use the 

discrete versions of equations (2.1.15) and (2.1.16) as given by [37, 40]  

                                               

2( ) ( )

( )

i h i

h i

D p
S

p





 








 ,                    (2.1.17)  

where     
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( )

( )

i h i

h i

p
D

p


 






 .                   (2.1.18)      

A similar process works when calculating the Delay spread denoted as S  in this dissertation. 

In this case, we integrate the scattering function ( , )s   with respect to  . This integration yields

( )Dp  , which is the Doppler spectrum. The equations (2.1.14) to (2.1.18) applied to ( )Dp   

produce the parameter S . 

Matz and Hlawatsch [21] provide a definition of the coherence bandwidth cB  and the time 

bandwidth cT   in terms of the  S  and S  respectively as given by equations (2.1.19) and (2.1.20). 

1
cB

S
 ,                    (2.1.19) 

1
cT

S
 .                                                          (2.1.20) 

The knowledge of the cB , S , cT  , and S  helps the communication system to adapt its 

operating configuration to fit better  with the current conditions of the channel. Constraints on 

these parameters for different communication systems appear in the literature.  For instance, in the 

case of an OFDM symbol with total symbol time T S GT T T  , where ST  is the symbol time and 

GT  is the guard time, Matolak [41] suggests   

 TT S  to avoid channel dispersion and get flat fading on each subcarrier, 
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 GT S  to avoid inter-block inter-symbol interference, 

 c TT T  to have coherent detection, 

 c fT T  to obtain slow fading, where fT  is the duration of a frame consisting in N  

symbols with duration ST  .  

Similarly, Molisch [1] affirms that S  has strong impact on the bit error rate BER. 

Specifically, the error floor is proportional to S . The delay spread depends on the scenery. Table 

1 shows some typical values of  S  for certain environments [1, 42]. 

Table 2.21: Typical values of S  for different environments [1, 42] 

Environment Typical Delay Spread  S  

Indoor residential building 5-10 ns; but up to 30 ns  

Indoor residential building 10-100 ns; but up to 300 ns  

Factories and airport halls 50-200 ns 

Microcells with Line of Sight (LOS) 5-100 ns 

Microcells with no Line of Sight (non-LOS) 100-500 ns 

Tunnels and Mines Tunnels : 20 ns; Mines: up to 100 ns 

Typical urban and suburban environments 100-800 ns; but up to 3 µs  

Bad Urban and Hilly Terrain environment S  up to 18 µs with clusters of 50 µs in cities and 

100µs in mountainous terrain.  A cluster is a group 

of signals from different trajectories arriving almost 

at the same time.  

We have no similar measurements of S , since this parameter depends on the carrier 

frequency, the relative speed between transmitter, and receiver and the angles between them.          
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The time varying- channel impulse response (TV-CIR) is then the basis for obtaining all the 

information needed for characterizing the channel. Therefore, the characterization of the channel 

starts with the estimation of ( , )h t  . Rappaport [40, 43] classifies the methods for estimating ( , )h t   

as follows: 

 Pulse Envelope Measurement Systems: The transmitter sends a very short pulse 

approximate to the ideal pulse.  Since the signal transmitted through the channel is an 

approximation of an impulse, the received signal is considered as an approximation of the 

TV-CIR or ( , )h t  . The fact that these systems have to manage high power peaks creates a 

disadvantage since RF components working at high power are expensive and exhibit 

nonlinearities [1].   

 PN Sequence Generator/Correlation System:  The transmitter emits a pseudo-noise (PN) 

signal through the channel of interest. The receiver correlates the received signal with a 

stored copy of the PN sequence.  The result of this correlation is an approximation of ( )h  , 

which when calculated several times becomes an estimation of  ( , )h t  . 

 Frequency Domain Channel Measurement: this method employs a vector network analyzer 

to measure the frequency response of the channel, which imposes a limitation, since both 

the transmitter and the receiver have to be connected to the network analyzer [43].  

In cognitive radio systems, channel estimation is necessary for optimal adjustment of system 

parameters to changing conditions.  In mobile communication systems such as UAS networks the 

received signal strength oscillates as the vehicle travels through interference patterns caused by 
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multipath, shadowing due to obstacles, and the change in distance between nodes. Generally, CR 

systems are designed to maximize their throughput and reliability for a given quality of service 

(QoS). This can be accomplished by adapting the system parameters to the fluctuations created by 

multipath and shadowing. This process requires estimation, prediction, and tracking of the 

received signal as accurate as possible [44].   

Estimation is a statistical process that takes samples from the physical system to calculate 

approximate values of the parameters of the system. Normally, the parameter is identified as  

and its estimate as . The main idea behind estimation is to obtain an estimate as close as possible 

to the actual value of the parameter.  There are different approaches to deal with   and . Two 

of the most popular estimation approaches are Bayesian estimation and Maximum likelihood 

estimation. 

The Bayesian estimation theory is based on the Bayesian risk and the cost function of the 

estimation error .  The goal of a Bayesian estimator is to minimize the Bayesian risk , 

which is defined in (2.1.21) as the expected value  of the cost function   [10, 45] .  

                                                (2.1.21) 

There are different kinds of cost functions. The most common ones are quadratic and step 

function [45]. When using the quadratic cost function, we have a minimum mean square error 

(MMSE) estimator. In the MMSE, we want to minimize , where the expectation is with 

respect to the power density function (PDF) .   is the PDF of  , the vector of input 

samples, with  as a parameter. On the other hand, when using the step function, also known as 


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“hit-or-miss” function, we have a maximum a posteriori (MAP) estimator.  The “hit-or-miss” 

function assigns  when  or , where  is the error threshold, and  otherwise. To 

minimize the Bayes risk with such cost function we have to maximize , which is the 

conditional, a posteriori, PDF of  conditioned on  as explained in [45].    

The maximum likelihood estimation (MLE) is the most popular approach to implementing 

practical estimators [45]. It is useful when the PDF of the parameter  is unknown [9]. The 

objective of the MLE estimator is to choose  so that the likelihood function is maximized   [9, 

10, 45].    

2.1.2 Taking Action 

Taking action for a cognitive radio (CR is to configure its transmission and reception 

parameters to obtain a desired behavior in order to accomplish a determined goal or set of goals 

[3]. The actions executed focus on two main activities. The first one is shaping the transmission 

profile and configuring any pertinent radio parameters to use efficiently the resources given to the 

CR and simultaneously not interfering with the resources of other radios. The second one is 

reshaping the transmission profile and reconfiguring the parameters when the resources change. 

The resources given to a CR are a set or frequencies, a set of time slots, and a set of antennas with 

beams pointed to different directions or any kind of combination of these. The cognitive engine 

(CE) is the entity that ultimately decides which actions the CR must take.  

Any action over the physical level of the communication that is realizable by digital signal 

processing (DSP) can be implemented in a CR. The possibilities range from signal modulation to 

bean forming in smart antennas.  The limitations are imposed mostly by the hardware, specifically 

1    0  0

( | )p  x

x 




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by the analog to digital converters and their sampling frequency. The DSP takes place in the SDR 

under the control of the CE. The CE decides the type of action to be taken. For instance, the CE 

can decide to increase the number of bits per symbol when the SNR allows it. This decision will 

increase the spectral efficiency. On the other hand, if the SNR is low because of attenuation, 

multipath fading, or other reasons; and the CE wants to maintain the wireless link, it can decide to 

reduce the number of bits per symbol in order to make the communication less prone to noise.  

Another example would be when the CR works with a smart antenna and the CE takes advantage 

of the steering capability of the antenna to exploit the space dimension. In conclusion, the actions 

taken by the CR affect the communication system in different aspects such as frequency, spatial 

fingerprint, robustness, and throughput. 

2.1.3 Decision Making 

The capability of making decisions is what distinguishes a cognitive radio from a 

conventional radio.  This capability enables the cognitive radio to adapt itself to fulfill the specific 

requirements of a determined application. For instance, if the radio starts experiencing problems 

due to interference, the logical move is to switch to another channel. The CR needs to have a 

strategy to decide when it is going to switch the channel, which is the best channel to switch to, 

etc., always having in mind a goal. The goal could be maximizing throughput, reliability, or 

minimizing power consumption, and/or delay. It also can be a combination of these features or 

others. All these features need to be quantifiable in order to formulate a mathematical procedure 

to be executed in a computer or computation device.  
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Making decisions has associated other processes: orienting, planning, and learning [6]. 

Orienting establishes priorities based on the observations. If the priority is normal, the next stage 

is planning, which implies to generate and/or evaluate the alternatives. If the priority is high the 

next stage is making a decision on the resources that would be allocated. Learning receives 

information from the other processes to build knowledge. This knowledge is fed back to the 

system to refine the deciding process.  

The cognitive engine (CE) is the entity in the CR that executes the orienting, planning, 

deciding and learning tasks. The CE takes the stimuli, analyzes them and classifies the situation. It 

also determines the suitable response to the stimuli and decides how to reconfigure the system. 

The CE along with the SDR form the CR. Figure 2.1.4  shows the interaction of the CE with the 

SDR and the sensor [46]. In [3] the author compares a CR with a conventional radio having 

meters and knobs. Some examples of knobs are carrier frequency, bandwidth, signal duration, 

modulation scheme, transmission power, etc. She compares the meters to the sensing part of CR 

and the knobs with actuators in CR. In a conventional radio, it is a human operator who would 

decide when and how to move the knobs. In CR, the CE performs this task by using artificial 

intelligence (AI) techniques.    

 

 

 

 

 

Figure 2.1.4: Cognitive engine and SDR (Modified from [30]) 
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Diverse AI techniques have been proposed and are being investigated by researchers in an 

endeavor to have smarter cognitive radios [46-49]. Some of the proposed techniques are:  

Artificial Neural Networks (ANN), metaheuristic algorithms, and hidden Markov model (HMM). 

The literature reports the application of those techniques to different processes of CR including 

classification of signals for spectrum sensing  [50, 51], radio parameter adaptation [52], [53], 

spectrum occupancy prediction [54], [55],  and multi-objective optimization [56], [57]. 

Artificial neural networks (ANN) are a set of non-linear functions with configurable 

parameters that learn patterns from training data and can give outputs to new data according to the 

learned patterns. They provide a means of describing functions, processes or classes that are 

difficult to model analytically [47] .  They have had different applications to cognitive radio, such 

as signal and modulation detection and classification [46]. For instance, for signal detection in 

low SNRs environments, ANNs have been combined with cyclostationarity-based spectrum 

sensing [58]. ANNs have shown their applicability in optimization of cognitive radios (CR) and 

performance characterization for different environments [48]. 

Metaheuristic algorithms have found place in CR implementations due to the lack of explicit 

relationships between the CR parameters and performance metrics. These algorithms scan through 

a set candidate configurations for suboptimal solutions. Genetic Algorithms (GA) fall under this 

category. They based their principles on genetic evolution and natural selection. The main idea is 

to combine the best candidates of chromosomes to produce better chromosomes, while 

eliminating the most deficient ones. The authors of   [59] propose a multi-objective GA method 

for optimizing spectrum sensing to maximize the number of spectrum holes while keeping the 
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sensing overhead at certain limit.  Rondeau and Warren [46]  propose GA as a means for 

optimizing the configuration of CRs to satisfy specific performance goals. Huang et al. [60] 

propose the use of another heuristic algorithm called ant-colony-optimization (ACO) to improve 

the routing process in cognitive radio networks (CRN), which have to face variable spectrum 

availability and diverse quality of service (QoS) requirements.  

Characterization of the activity of primary users (PUs) is the major field of application for 

hidden Markov models (HMM) to cognitive radio systems. Choi et al. [61] proposed the use of 

HMMs to estimate the duration of active and inactive periods for the PUs as well as the PU signal 

strength.  Spectrum occupancy prediction has also benefited from HMMs [62]. Chen et al. [63] 

proposed a HMM-based channel state prediction model to reduce the negative impact of response 

delays created by hardware platforms. HMMs have also been considered for optimizing the 

handoff process in order for the secondary users (SUs) to maximize their transmission time, while 

minimizing collisions with PUs [64, 65]. For reducing such collisions, the SUs use past 

observations to estimate when the PUs will transmit again, so that they can vacate the channel 

before colliding with the PUs.  

2.2  Probabilistic Graphical Models 

2.2.1 The Bayesian Rule and probabilistic reasoning 

Thomas Bayes and Pierre-Simon Laplace discovered independently the probabilistic theorem 

known today as the Bayes’ rule [66] . Laplace, a renowned mathematician, gave this rule its 

mathematical form and scientific application [67]. Bayes’ rule provides a tool to rigorously 

analyze evidence in the context of previous experience or knowledge [66]. The core of Bayes’ 
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rule is the notion of conditional probability.  When we have evidence that an event A  has 

happened, we can adjust our belief about the occurrence of an event B , in other words, the 

probability of event B  conditioned to event A , represented in the literature as ( | )P B A .  The 

conditional probability ( | )P B A , also called the probability of B  given A ,  is defined as  

                                                
( , )

( | )
( )

P A B
P B A

P A
 ,      (2.2.1) 

where  ( , )P A B  is the probability of events A  and B  occurring at the same time, also called joint 

probability of A  and B , and ( )P A  is the probability of event A  occurs, also called prior 

probability of A  [68, 69]. If ( ) 0P A  , ( | )P A B  is undefined.  By rearranging equation 2.2.1 we 

get 

                                               ( , ) ( ) ( | )P A B P A P B A ,    (2.2.2)                      

known as chain rule of conditional probabilities [69]. Equation 2.2.2 extended to more events 

becomes  

                  1 1 2 1 1 1( , , ) ( ) ( | ) ( | )n n nP A A P A P A A P A A A    ; (2.2.3) 

therefore, we can factorize the joint probability  of  the combination of n  events as the product of 

the probabilities of the first event, the second event conditioned to the first, the third event 

conditioned  to the two first ones, and so on. Equation 2.2.3 holds for any order of events.  

From 2.2.1 and considering that ( , ) ( , )P A B P B A  we can obtain the Bayes’ rule [68]; 
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( | ) ( )

( | )
( )

P B A P A
P A B

P B
                                                      (2.2.4)  

Bayes’ rule can provide information about a hidden variable, or hypothesis, based on 

available data.  Equation 2.2.4 written in a more general way becomes 

( | ) ( )
( | )

( )

P data hypothesis P hypothesis
P hypothesis data

P data
 , (2.2.5) 

where  ( | )P hypothesis data  is the posterior probability , ( | )P data hypothesis  is the likelihood, 

( )P hypothesis is the prior probability  or belief  about the hypothesis,  and   ( )P data   is the 

marginal likelihood [66].  

2.2.2 Bayesian Networks 

A Bayesian network or belief network (BN) is a directed acyclic graph that expresses the 

beliefs about random variables along with their dependence relationships [70] . BNs make 

possible reasoning under uncertainty and combine the benefits of visual representation with the 

solid foundation of Bayesian probability [71].  They consist of two components: qualitative and 

qualitative components [72]. The qualitative component is the structure of the network that tells 

how the random variables relate one to another. The quantitative component contains the 

probability distributions that characterize the variables.  The graphical representation makes easier 

the communication of domain knowledge among experts, users and systems. A Bayesian network 

can be built out of expert knowledge and/or from data collected from the process [72]. 

In a BN the vertices, or nodes, represent the random variables and the edges, or arcs, 

connecting them represent causal or dependence relationships among those variables. Child nodes 
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depend on parent nodes. The arcs, drawn as arrows, point from a parent to its children, indicating 

a causal dependence relationship. Each node has a probability distribution that quantifies the 

beliefs that the modeler has about the states of the variable. A root node is parentless and its 

probability distribution can come from expert knowledge and/or historical data. Children nodes 

have conditional probability distributions, the values of which depend on the different 

combinations of their parent states.   

Bayesian networks are a tool for factorizing and performing operations over joint 

distributions [68, 69]. Joint distributions assign probabilities to events or states in terms of a set of 

random variables. Let 1{ , , }nX X   be a set of random variables and 1( , , )nP X X  the joint 

distribution that assigns probabilities to events specified in terms of the variables in .  We can 

write 1( , , )nP X X  as a product of conditional probabilities [68]. To give an illustration, from 

[68], let us consider the joint probability ( , , , )P T J R S , where ( , , , )T J R S  are binary random 

variables. By applying Bayes’ rule  

 1 2
1 2

1

( , )
( | )

( )

P X X
P X X

P X
 , (2.2.6) 

several times to ( , , , )P T J R S we obtain the following factorization 

                            

( , , , ) ( | , , ) ( , , )

( | , , ) ( | , ) ( , )

( | , , ) ( | , ) ( | ) ( ).

P T J R S P T J R S P J R S

P T J R S P J R S P R S

P T J R S P J R S P R S P S







                    (2.2.7) 

To specify ( | , , )P T J R S  we need 32 8  values corresponding to the joint states of ( , , )J R S

. Similarly, we need 4 , 2 ,1  values for ( | , )P J R S  , ( | )P R S , and ( )P S , respectively, which 
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gives a total of 8 4 2 1 15     values. Extended to a case with n  binary random values this 

amounts to 2n  values. A Bayesian network helps to simplify the factorization of a joint 

distribution by describing conditional independencies graphically. It could happen that in this 

example T  depends only directly on R  and S , and J  only on R , and R  does not depend on S

.   The Bayesian network in figure 2.2.1 illustrates these conditional independence relations.  

 

Figure 2.2.1: Bayesian Network 

By considering these independence relations the factors in 2.2.7 now become 

 ( | , , ) ( | , )P T J R S P T R S  (2.2.8) 

 ( | , ) ( | )P J R S P J R  (2.2.9) 

 ( | ) ( )P R S P R , (2.2.10) 

and the factorization of ( , , , )P T J R S  now is 

 ( , , , ) ( | , ) ( | ) ( ) ( )P T J R S P T R S P J R P R P S , (2.2.11) 

which reduces the amount of values needed to 4 2 1 1 8    . This is almost half the number of  

values needed when we ignore the conditional independences. 
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Equation 2.2.7 is an application of the chain rule for Bayesian networks defined in [69, 72] 

as  

 1

1

( , , ) ( | )
i

n

n i X

i

P X X P X Pa


  , (2.2.12) 

where 
iXPa  symbolizes the parents of the random variable iX .  Each factor ( | )

ii XP X Pa is a 

conditional probability distribution (CPD).   

The probabilistic influence not only does propagate from a parent to its children but also 

through trails that connect the nodes via intermediate nodes. Figure 2.2.2 shows how 

probabilistic influence propagates.  In the four cases shown in figure 2.2.2 a trail between X  and 

Y  exists through Z . In the two first cases, a) and b), we consider X  as indirect cause of Y . 

Figure 2.2.2.a shows the indirect causal effect of X  over Y . Since X  influences Z , Z  

influences Y . This effect propagates only when Z  is not observed. If we observe Z , we no 

longer care about X , which means X  loses influence over Y . Figure 2.2.2.b shows an indirect 

evidential effect of Y  over X . Although, X  causes Y , what we know about Y  influences our 

belief about X . Nevertheless, as in the previous case, this holds only when Z  is not observed. 

In figure 2.2.2.c, Z  causes both X  and Y . What we know about X  impacts our belief about Y  

and vice versa. Likewise the previous cases, observing Z  stops the probabilistic influence of X  

over Y , and Y  over X .   In the three previous cases |X Y Z , where   means 

conditionally independent. In figure 2.2.2.d, Z  is a common effect of X and Y . When Z  is 

unknown the trail between X  and Y  is inactive, which means X Y .Unlike the previous 
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cases, observing Z  propagates the probabilistic influence between X  and Y , i.e. X  |Y Z , 

where   means conditionally dependent.  

 

Figure 2.2.2: Flow of influence in Bayesian Networks 

2.2.3 Influence Diagrams 

When a Bayesian network is complemented with decision variables and utility nodes, it 

becomes an influence diagram (ID). An influence diagram facilitates decision making under 

uncertainty [68, 69, 72]. The random nodes of the diagram represent the uncertainty in the 

process. Some of the random nodes provide information to the decision nodes, which in turn 

affect other random variables.  The utility nodes encode the preferences of the decision maker by 

assigning a particular value to each possible combination of choices and the states of the random 

variables. An ID permits the application of the maximum expected utility (MEU) principle to 

find the choice that favors the most to the decision maker in a particular situation. When building 

IDs is important to remember some simple rules: decision nodes can either be root nodes or 

depend on other decision nodes as well as chance nodes. They have to parent other decision 

nodes, chance nodes, or utility nodes. Utility nodes depend on decision and chance nodes, and 

have no children. An influence diagram needs at least one chance node, one decision node, and 
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one utility node. If the ID has several decision nodes, the designer of the ID must consider the 

order in which the decisions take place as well as the variables observed before making each 

decision.   

Figure 2.2.3 illustrates a simple influence diagram, classical example from the literature 

[69]. The ovals represent chance or random variables, the rectangles decision variables, and the 

rhombuses utility nodes. The purpose of this ID is to help a business man decide whether or not 

to found a new business. The variable Market reflects how good the market is. It has three states: 

0m , 1m , and 2m  that represent bad market, medium market, and good quality market 

respectively. Good quality market means that the market can return high profits.  The node 

Survey represents the results of a study done on the quality of the market. It has four states: 0s , 1s ,

2s , and ncs  that represent the results of the study estimate the market as bad, medium, and good 

quality respectively.  The state ncs  means survey not conducted. The nodes Test and Found are 

binary nodes representing the decisions on doing the survey and founding the business. The 

states 0t , and 
0f  indicate action not taken, whereas the states 1t  and 

1f  action taken. The utility 

node Cost reflects the expenses of conducting the survey. We represent this variable as SV . If the 

survey takes place, 1SV   , otherwise 0SV  . The node Value signifies the estimated return 

obtained depending on the situation of the market. RV  represents that return. 7RV   , 5RV  , 

and 20RV   when the market is bad, medium and good respectively.  Notice we use negative 

values to indicate costs, or losses. For instance, when the market is bad, the businessman will 

lose money if he decides to found the business.            
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Figure 2.2.3: Example of Influence Diagram [69]  

The nodes in this example have the following conditional probability tables (CPT).  The 

table for Market is: 

 

 

the table for Survey is: 

0m   
2m  

0.5 

 

 

 

 

 

0.3 0.2 

 0s  1s  2s  

0m  0.6 0.3 0.1 

1m  0.3 0.4 0.3 

2m  0.1 0.4 0.5 

1m
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Notice that ncs  does not appear in the table; the reason is that this state only makes sense 

when the study is not conducted. We can express that fact with the conditional probability

0( | , ) 1ncP s t m   , which holds for all the states of the node Market represented as m .  

The purpose of an influence diagram is to analyze the convenience of different courses of 

actions or strategies taken by an agent in an uncertain scenario. To accomplish that, each 

decision node D  has a decision rule D  telling it what to do under all possible state 

combinations of its parent nodes [69].  A decision rule D   is a conditional probability 

( | )DP D Pa  that acts as a function to map each instantiation Dpa  of DPa  to a probability 

distribution over the all different choices of D .  A decision rule is deterministic if 

( | ) 1D DD pa   for exactly one value of D . A strategy D  is the complete assignment of 

decision rules D  to each decision node of the influence diagram [69].  Changing a strategy 

means assigning other set of decision rules D   to the decision variables D  of   the influence 

diagram.  

The influence diagram approach assumes a single agent making decisions one at a time in 

some specific order. Another assumption is that the agent remembers all its previous decisions 

and the information that it has acquired previously. Literature calls this perfect recall or no 

forgetting assumption [68, 69, 72].  Before making a decision the agents might or might not 

observe some random variables. This decision sometimes affects other random variables. Since 

an influence diagram is an acyclic graph, the agent cannot see the variables affected by the 

decision. To specify the order in the decisions, we partition the random variables  into disjoint 
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sets 0 , , n  so that the variables in set i  contains the variables observed after decision iD  

and before decision 1iD  .  For instance, the agent observes 0  before 1D . The ordering of the 

influence diagram is expressed as 

 0 1 1 2 1n n nD D D , (2.2.13) 

where the symbol  represents precedence, 0  the set of variables observed before  making the 

first decision ( 1D ), and n  the set of variables observed after the last decision ( nD ) is made. In 

some cases, the agent makes the first decision without observing any variable, i.e. 0   and 

observes no variable after the last decision, i.e. n   .  

2.2.4 Maximum Expected Utility 

After specifying all the details of the influence diagram, we can proceed to calculate the 

expected utility for different strategies. We use [ ]  to represent the influence diagram with 

strategies  [69].  Since the decision rules over decision nodes are probability distributions, we 

can think of them as conditional probability distributions and see the decision nodes as 

deterministic nodes. Therefore, [ ]   becomes to a Bayesian network that defines a probability 

distribution over the possible outcomes   [69, 73]. We represent this BN as [ ]  following the 

format in [69]. The expected utility of [ ]  corresponds to [68, 69, 72] 

 
[ ]

EU[ [ ]] ( ) ( )P U




   ,  (2.2.14) 
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where ( )U   is the utility of the outcome   corresponding to the sum of each utility variable in 

that outcome: 

 ( )
V

U V 


   . (2.2.15) 

An alternative to equation 2.2.14 that expresses more explicitly the factors that parameterize 

the network is:   

 
:

EU[ [ ]] ( | )
X

i

a D i

i VX D

P X P V 
  

    
      

     
   . (2.2.16) 

The main purpose of calculating the expected utility (EU) is to find the strategy that the 

agent must follow to obtain the highest benefit, satisfaction or utility. That strategy, better known 

as maximum expected utility (MEU) strategy * , maximizes the expected utility (EU). 

Therefore, the decision making progress assisted by ID comes down to find: 

 
11

, ,arg max EU[ [ , , ]]
D D kk

D D     , (2.2.17) 

which the literature refers to as MEU principle [68, 69, 72]. 

In the case of the example shown in figure 2.2.3 when the MEU principle is applied the best 

strategy turns out to be to perform the study and found the business when the result of the study 

is either 1s  or 2s . The EU of this strategy is 3.22. Details can be found in chapter 23 of [69].  
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2.2.5 Probabilistic Inference in Bayesian Networks and Influence Diagrams 

Bayesian networks and influence diagrams have the ability of answering different types of 

queries about the nodes they contain. Making queries to a BN or ID is a form of probabilistic 

reasoning or probabilistic inference [68]. Normally, the inference starts when we have evidence, 

which means we observe a variable or set of variables, and we want to know the probability of 

other variables given the evidence. For example, in the situation described by figure 2.2.4 we 

observe that 1J  , and want to know the probability of 0R  ; we represent this query as 

( 0 | 1)P R J  . This operation is known as conditioning. Another query is marginalization, in 

which we look for the probability of a variable no conditioned to the other variables. In the 

example shown in figure 2.2.4 we could marginalize to obtain ( )P J , ( )P T , ( )P S , or ( )P R . 

Other operations that BNs allow are: most probable explanation (MPE), maximum a posteriori 

probability (MAP), and sensitivity analysis [69, 72, 74].   

 

Figure 2.2.4: Example of Bayesian Network 

Let us have a BN composed of the sets E  and Q . The set E  contains the evidence 

variables, whereas Q  contains the remainder of the variables of the BN that are not evidence. 

When E e ,  MPE finds the instantiation q  of Q  that maximizes the probability ( | )P q e . If 

E e , MAP finds the instantiation subq  of  sub Q Q  that maximizes the probability ( | )subP q e . 
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MPE looks for the instantiation of all the non-evidence variables, Q , that explains E e  with the 

highest probability. MAP does so but only for some of the non-evidence variables.  

Out of the aforementioned types of queries, conditioning or conditional probability query is 

the most common [69]. For solving this type of queries there exist exact and approximate 

inference algorithms.  For this dissertation I use an exact inference algorithm called variable 

elimination (VE). The main idea behind the VE algorithm is to eliminate the variables that are 

neither query nor evidence. The VE algorithm takes the factorized joint probability distribution 

and sums out the variables that it needs to eliminate. This operation is also called factor 

marginalization.  

The factorized form of the joint probability distribution obtained with the chain rule for 

Bayesian networks - equation 2.2.7 - can be seen as the product of factors . A factor is a 

function that maps a set of variables X  to a real number; : ( )Val X , where ( )Val X  

means value of the variable X  and  means map to. The set X  is called scope of the factor; 

therefore, [ ]Scope   X .   Equation 2.2.18 shows the chain rule for Bayesian networks as a 

product of factors:     

                             1

1 1

( , , ) ( | )
i i

n n

n i X X

i i

P X X P X Pa 
 

    ,                                         (2.2.18) 

where   the conditional probability ( | )
ii XP X Pa  is represented by the factor 

iX . The scope of  

iX  is the variable iX  and its parents
iXPa .   
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Let us consider the set of variables X  and a variable YX   being the scope of the factor  : 

( , )Y X . The factor marginalization of Y  in  , denoted ( , )
Y

Y X , is equivalent to a factor    

over X  such that [69] : 

                                                       ( ) ( , )
Y

Y X X .                                                  (2.2.19) 

Another name for the operation in 2.2.19 is summing out of Y  in   . In this operation we 

only should sum up combinations where the states of X  coincide.  

The factor product and summation operations have properties equivalent to those of the 

product and summation over numbers [69]. Both operations are commutative: 1 2 2 1· ·     and 

X Y Y X

   ; the product is associative: 1 2 3 1 2 3( ) ( )          ; and they are 

interchangeable: 

                                                             1 2 1 2( · ) ·
X X

     ,                                        (2.2.20)    

if 1[ ]X Scope  .  This property allows to “push in” the summation, so that the summation is 

performed only on the subset of factors that contain the variable we want to eliminate. For 

instance, in 2.2.20 since we want to eliminate X , we push in the summation to sum only over 2  

because 1  does not contain X .      

The variable elimination (VE) algorithm takes advantage of the aforementioned properties. 

Figure 2.2.5 shows a very simple Bayesian network. The joint probability distribution for this 
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Bayesian network is: ( , , , ) · · ·A B C DP A B C D     .  If for instance we want to know the marginal 

probability of D , ( )P D , we apply factor marginalization: ( ) ( , , , )
C B A

P D P A B C D . By 

applying property 2.2.15 to it we get:  

 

( ) · · ·

· · ·

· · · .

A B C D

C B A

C D A B

C B A

D C A B

C B A

P D    

   

   



 
  

 

  
   

  



 

  

                               (2.2.21) 

The procedure in 2.2.21 can be summarized as: 

 
Z 




  .                                                (2.2.22) 

 

Figure 2.2.5: Simple BN for illustration 

The expression 2.2.22 is also called sum-product inference task [69]. The variable 

elimination (VE) algorithm performs this inference task to sum out variables once at a time by 

using the property 2.2.20. When summing a variable, we multiply the factors that contain such 

variable to obtain a product factor. The next step is to sum out the variable from this product 

factor to generate a new factor, which will go to the next iteration as part of the new set of factors 

that the VE algorithm will be apply on. The VE algorithm will iterate until it removes all the 

variables it aim to eliminate.  We can summarize the VE algorithm as follows [68, 69]: 
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The VE algorithm receives a set of factors  , a set of variables to eliminate Z  and an 

ordering on ,Z . If the set Z  is 1[ , , ]kZ Z , let the ordering  be i jZ Z  if and only if i j . 

The set Z  encompasses those variables that are neither query nor evidence. We refer to this 

algorithm as procedure Sum-Product-VE( , , Z ).  The procedure Sum-Product-VE( , , Z ) 

follows these steps: 

 1, ,i k for  do 

           Sum-Product-Eliminate-Var ( , )iZ  

         *


 


  after completing the thk  iteration. 

*return  at the end. 

The procedure Sum-Product-Eliminate-Var ( , )iZ  is performed for each of the iterations

1, ,i k  . This process receives the set of factors , and the variable to be eliminated Z ; then it 

performs the next operations: 

1. Form a set     with the factors that have Z  in their scope:          

 

 

2. Form a set     with the factors that do not have Z  in their scope, which is the set   

without   :  

 

{ : [ ]}Z Scope    

  
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3. Multiply the factors in the set    and save the result in factor  : 

 

 

4. Add up the elements of the factor  where Z  varies; this action eliminates Z  from that 

factor. After eliminating Z  from   save the result in the factor  : 

 

 

 

5. Return the union between the set    and the factor   

 

   

The VE algorithm also applies when introducing evidence.  Let us have a Bayesian network 

  that parameterizes the set of variables , the set of query variables Y , and evidence E e . 

When introducing evidence the task is to compute ( , )P Y e . To execute this task, the factors  are 

reduced by E e  and eliminate the variables  Y E  before applying the  Sum-Product-VE

( , , ) Z  procedure to the network  . The factor * ,which comes from Sum-Product-VE

( , , ) Z ,divided by   is ( , )P Y e . This whole procedure whereby ( , )P Y e  is obtained is called 

Cond-Prob-VE ( , , ) Y E  procedure. This procedure encompasses the next steps [69]: 

1.    Factors parameterizing   

2. Replace each    by [ ] E e    

3. Set an elimination ordering  



 




Z

 

{ } return
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4.    Z Y E  

5. *    Sum-Product-VE ( , , ) Z  

6. 
( )

*( )
y Val

y 


 
Y

 

7. , * return  
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CHAPTER 3 

BAYESIAN APPROACH FOR COGNITIVE RADIO 

3.1 Introduction 

Uncertainty affects all cognitive radio systems’ processes. It appears everywhere in the 

cognitive radio cycle in terms of observing, decision-making, and taking action [6]. In the 

observing stage, uncertainty impacts the measurements taken by the CR, and concealed 

environmental factors that affect the measurements. In the next stage, the CR makes decisions 

based on what it senses from the environment and its own knowledge base. However, sometimes 

the CR knowledge base is built on models that leave out uncertainty. When making decisions and 

taking actions, the CR expects certain results, which in the practice are impacted by uncertainty.  

This dissertation proposes to deal with uncertainty by using probabilistic graphical models 

(PGM), namely Bayesian networks (BN) and influence diagrams (ID).  BN and ID intuitively 

define the interactions among deterministic and random variables utilizing directed graphs, 

where the cause variables point towards the effect variables.  BN and ID deal with uncertainty by 

expressing random variables through probability distributions.  Another important benefit of 

these techniques: they allow the integration of the knowledge about a problem with the data 

obtained from the scenario being modeled either through experiments or simulations. As an 

illustration, let us consider the free space loss function, dBFSL :  

   32.45 20·log( ) 20·log( )dB Km MHzFSL D Fc   , (3.1.1) 
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where dBFSL  represents the free space loss in dB, KmD  , the distance between the transmitter 

and the receiver given in kilometers, and MHzFc , the carrier frequency in MHz. This expression 

not only provides a way to calculate dBFSL  but also describes how the variables KmD  and MHzFc  

influence the variable dBFSL . In the field of wireless communications, expressions like 3.1.1 

conform our preliminary knowledge, which combined with data and experience can be used the 

probabilistic model of the system.     

Influence diagrams provide a viable means to make the decision, i.e. choose the action, 

which returns the highest utility for a particular application. To define the utility functions (UF) 

that calculate this utility, we will define criteria that the UF can weigh to calculate the utility. The 

method the utility function uses to weigh the criteria depends on the particular scenario. For 

instance, in one scenario, the highest data rate will weigh more than in another scenario, where 

saving energy weighs the most. In applications where spectrum auctioning is enabled, the cost of 

using a particular channel should then impact the selection of the most optimal configuration. 

Table 3.1.1 Summary of  benefits of using BN and ID.  

Table 3.1.1: Advantages of using Bayesian Networks and Influence Diagrams  
Advantage Description 
Handling of uncertainty BN incorporate uncertainty in the model as they base their 

parameters on the beliefs the modeler has about the problem.  

Several uncertain variables affect the wireless system, which in turn 

impacts the spectrum decision.  

Modularity Variables can be added or taken out of the models, as the modeler 

learns more about the problem. 

Integration of data and expert 

knowledge 

To build the model, we integrate our theoretical knowledge about 

wireless channels with real data obtained during the field 

experiments.   

Graphical representation The graphical representation makes it easier to represent and share 

our understanding about the interaction among the random variables.  

Small number of samples Even with a small number of samples, we can do probabilistic 

reasoning.  
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Table 3.1.1: Advantages of using Bayesian Networks and Influence Diagram (cont.) 

Work with incomplete data In situations where the system has incomplete data, for example, 

some of the sensors fail to provide measurements; expected 

maximization algorithms can still perform reasoning.  

Decision- making under 

uncertainty 

We decide which configuration is best to obtain the performance of a 

determined service profile.  

 

3.2 Building the Model 

Building a probabilistic graphical model (PGM) involves having three main elements: 

variables, causal relationships among variables, and the characterization of those relationships by 

means of conditional probability distributions (CPD). If we want to assess decisions we make 

regarding variables of the model, we implement those decisions by giving specific values to the 

states of the variables that we want to manipulate. Since we need to evaluate the outcome of such 

decisions to see which one fits the most with our goal, we must represent our preferences by 

means of utility functions.  

This section will explain the process involved in constructing the Bayesian models that I 

present in this dissertation.  

3.2.1 Identification of Variables and their Characterization 

The starting point for this stage is knowing what is wanted from the model. In this 

dissertation, my main intention is to improve the performance of wireless links in the midst of 

uncertainty and limited conditions. Therefore, I should identify which variables can tell me 

something about the performance of the channel, called indicators in this dissertation, which 

variables influence these indicators, and which variables I can manipulate to increase the 

probability that the indicators will have values representing high performance.  

One of the most important indicators in communication links is the bit error rate (BER); 

therefore, this dissertation focuses on analyzing and characterizing probabilistically how 



50 

 

different factors and parameters affect this indicator.  Factors depend on the environment and the 

operational conditions of the communication system. Factors that affect BER are: noise, co-

channel interference, multipath, and propagation losses.  Parameters are configuration values or 

choices that tell the devices, such as transmitter and receivers, how they should operate. The user 

or designer of the communication system determines the values for the parameters. This 

dissertation considers the parameters: transmission power, modulation scheme, carrier frequency, 

and time of symbol.  

After identifying the factors, parameters, and indicators, the variables encompassed by each 

factor and parameter are determined. Some of these variables will be deterministic and some of 

them random. Parameters are deterministic variables, since the user, the designer, or the system 

itself chooses their values; therefore, they have certainty about those values. Factors encompass 

random variables, since they depend upon the environment, and in realistic applications it is not 

possible to either control or have certainty about the scenarios in which wireless communication 

systems operate. However, some factors are affected by the parameters. For example, the 

propagation losses are affected among others by: the carrier frequency, which is a parameter; the 

distance, which is a random variable in mobile wireless networks; and multipath, which is 

another factor affected by the environment. Factors affected by parameters are still random. 

Variables that depend upon deterministic and random variables remain random. Hence, in this 

dissertation we consider three types of variables: deterministic, random, and influenced random 

variables.  

Knowing which variables we want to incorporate into the probabilistic model we need to 

determine how to represent them. Representing those variables entails deciding between discrete 
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or continuous representation. When a variable is discrete, it takes finite states; whereas when the 

variable is continuous, it takes values from a set of real numbers. In this dissertation we use 

discrete representation due to the following reasons. First, most of the probabilistic inference 

algorithms work with discrete variables and the algorithms compatible with continuous variables 

only work with Gaussian variables  or  non-Gaussian variables either discretized or 

approximated as combinations of Gaussian variables. Second, the open source software libraries 

for probabilistic inference work mostly with discrete variables. Even commercial software 

packages discretize continuous variables to make them fit with algorithms devoted to discrete 

variables. Finally, in the practice, variables are not always Gaussian; therefore, in some cases it is 

necessary to approximate some variables. Additionally, discrete representation of variables fits 

with discrete probabilistic inference algorithms such as variable elimination, which have shown 

their maturity and stability.       

The space or set of states that a discrete variable can take must be exhaustive and mutually 

exclusive [72]. Exhaustiveness means that the state space comprises all the possible states of the 

variable. Mutual exclusiveness means that no variable must take several states at the same time.  

For instance, a variable that represents the states of a machine must not have these 

states:{working,not_working, working_or_not_working}. The reason is that the machine taking 

the state working_or_not_working implies that it is simultaneously at the state working or the 

state not_working, which is impossible.     

The following pages will describe the variables included in the Bayesian model proposed by 

this dissertation, the goal of which is to improve the performance of wireless communications 

links. This description includes two ways of sorting these variables: one sorts the variables as 
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parameters, factors, or indicators; the other one as deterministic, random or influenced random. 

The description also includes the explanation of the state space of each variable.  By the name of 

each variable, it will appear a shorter name to be used in tables and graphs. 

Parameters 

As mentioned before, the user, designer, or system chooses the operating parameters; 

consequently those parameters are deterministic. This dissertation represents parameters as nodes 

or vertices of a Bayesian network. To represent the parameters as nodes, they are expressed in 

terms of probability distributions. Because of their deterministic character, the probability 

distributions only include 1s and 0s. For instance, if we want to choose 10dbm as the 

transmission power (“Tx”) out of these options :{0dBm, 10dBm, 20dBm, 30dBm}; the 

probability distribution for  “TX” is: [0,1,0,0], since we know for sure that “Tx” will be 10dBm, 

but not 0dbm, 20dBm, or 30dBm.  

Transmission power (“Tx”): This dissertation considers four levels of transmission power: 0 

dBm, 10 dBm, 20dBm, and 30 dBm. These values are based on the typical levels of power used 

by systems that operate in the ISM (Industrial, Scientific, and Medical) bands. The variable “Tx” 

has four states: [Tx_1, Tx_2, Tx_3, Tx_4]; which correspond to [0 dBm, 10 dBm, 20dBm, 30 

dBm], respectively. This assignment can be adjusted according to the specific problem. The 

Bayesian network mostly cares about the probability of a variable being at certain state. The 

states can be single numbers, intervals of numbers, operating settings, etc.  The probability 

distribution for “Tx” is: 
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Table 3.2.1: Probability distributions (PD) for Tx. Use I, II, III, or IV for setting “Tx” at Tx_1,Tx_2,Tx_3, and Tx_4 

respectively. 

 

             PD 

States 

I II III IV 

Tx_1 1 0 0 0 

Tx_2 0 1 0 0 

Tx_3 0 0 1 0 

Tx_4 0 0 0 1 

 

Carrier Frequency (“Fc”):  For illustration purposes, this dissertation considers three 

frequencies falling into different regions of the ISM bands: 915 MHz, 2400 MHz, and 5800 

MHz. The states of “Fc” assigned to these frequencies in the same order are: [Fc_1, Fc_2, Fc_3]. 

The probability distribution for “Fc” is: 

Table 3.2.2:  Probability distributions (PD) for Fc. Use I, II, or III for setting “Fc” at Fc_1,Fc_2, or Fc_3 

respectively. 
           PD 

States 

I II III 

Fc_1 1 0 0 

Fc_2 0 1 0 

Fc_3 0 0 1 

 

Modulation Scheme (“Mod”): Three different modulation schemes are used through this 

dissertation: differential BPSK, differential QPSK, and differential 8PSK, represented as states 

[2dpsk,4dpsk,8dpsk], respectively. The model proposed in this dissertation can work with other 

modulation schemes; however, for simplicity and demonstration purposes, only three are used. 

The probability distribution for the variable “Mod” is:   

Table 3.2.3:  Probability distributions (PD) for Mod. Use I, II, or III for setting “Mod” at 2dpsk, 4dpsk, or 8dpsk 

respectively. 

         PD      

States 

I II III SE 

2dpsk 1 0 0 1 

4dpsk 0 1 0 2 

8dpsk 0 0 1 3 
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A modulation scheme has a feature called spectral efficiency that indicates how many bits per  

symbol it transmits. The proposed model represents the spectral efficiency as “SE” and adds it in 

the model as a parameter depending on the modulation “Mod”.  Table 3.2.3 shows the value 

taken by “SE” for each modulation scheme.  

Time of Symbol (“Ts”): The proposed model considers three different symbol times: [1.0µs, 

4.0µs, 20.0µs]. The states assigned to those are: [Ts_1, Ts_2, Ts_3]. The symbol time tells the 

system which transmission bandwidth it should operate in. This document expresses the 

bandwidth in terms of the symbol time because it makes easier to introduce the concept of 

narrowband flat fading channel. This dissertation assumes that the wireless system being 

modeled uses narrowband flat fading channels. The section describing the multipath factor 

explains better the concept of narrowband flat fading channels.  The probability distribution for 

the variable “Ts” is:   

Table 3.2.4: Probability distributions (PD) for Ts. Use I, II, or III for setting “Ts” at Ts_1,Ts_2 or Ts_3, respectively. 

 

          PD 

States 

I II III 

Ts_1 1 0 0 

Ts_2 0 1 0 

Ts_3 0 0 1 

 

Factors 

The factors considered in this dissertation are: noise, co-channel interference, multipath, and 

propagation losses.  Each of this factors includes several variables.  For instance, co-channel 

interference includes the variables interference power and signal to interference power.   
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1. Noise 

Noise Density(“N0”):  This is the noise power in a bandwidth of 1 MHz expressed in dBm.  This 

factor is mostly influenced by the environment in which the system operates.   To determine the 

values on table 3.2.5, this model uses the equation that defines the noise power NP   in terms of 

the equivalent noise temperature NT , and the noise equivalent bandwidth NB [75]. PN is given by  

 · ·N N NP k T B , (3.2.1) 

where, 231.38 10 /k J K   is the Boltzmann’s constant. For defining the ranges for the variable 

“N0”, it is considered that 
61 10NB MHz Hz  . Similarly SYST , system equivalent noise 

temperature, replaces NT .  SYST  represents the noise contribution of the receiver system, which 

includes the antenna, the low noise amplifier, the cable connecting the antenna to the receiver, 

and the receiver itself. Figure 3.2.1 shows a typical receiver system wherein the equivalent noise 

temperature of each component contributes to the total equivalent noise temperature of the 

system.    

 

Figure 3.2.1: Typical Receiver System. [75] 

The system noise temperature is [75]: 

 0 0( 1)· ·( 1)·
SYS A LNA

LNA LNA

L T L F T
T T T

G G

 
    , (3.2.2) 
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Where, AT  is the antenna noise temperature, LNAT  is the noise temperature of the low noise 

amplifier (LNA), L  is the attenuation of the cable, 0T is the environment temperature, and F  is 

the noise factor of the receiver. We can consider that 0T  ranges between 290 K  to 305 K .  AT  

represents the noise captured by the antenna, which depends on the radiation of the objects 

surrounding the antenna and its radiation pattern. In land wireless communications AT  ranges 

between 50K and 300K; therefore, by using equation 3.2.2 the noise temperature system SYST  is 

between 155K and 405K. With this SYST  scope, the noise power · ·N SYS NP k T B  with 1NB MHz  

is within the interval 14282.9 10 mW  to 14580.2 10 mW .  When expressing these numbers in 

dBm, the interval becomes [-116.7 dBm , -112.36 dBm], which after being approximated is [-117 

dBm, -112 dBm).  Table 3.2.5 shows the probability distribution for different subintervals of this 

range. 

Table 3.2.5:Probability distribution for N0. Spectral noise density relative to 1 MHz and 1 mW. 

State Interval Probability 

N0_1 [-117,-115.75) 0.25 

N0_2 [-115.75,-114.5) 0.25 

N0_3 [-114.5,-113.25) 0.25 

N0_4 [-113.25,-112) 0.25 

 

Noise Power (“N”):  This is noise power, which depends on the noise density “N0” and the 

bandwidth - expressed in this dissertation in terms of the time of symbol “Ts”. The relation 

between the variables “N0” and “Ts” used to determine the intervals for the states of the variable 

is: 

 0 10·log( )N N Ts  ,   (3.2.3) 
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Where,  log  represents the logarithm to base 10. Equation helps also in eliciting the probability 

distribution of “N”.  The details about elicitation of probability distribution will appear in section 

3.2.3. This applies to the other variables for which analytical formulas that establish the relation 

among their parents exist.  

Knowing the scope for “N0” and the values assigned to “Ts” allows for the calculation of  

the scope wherein the variable “N” will be. Then,  that scope is divided into intervals. For “N” 

the number of intervals is 5, namely [N_1, N_2, N_3, N_4, N_5]. The ranges for each interval 

are: {N_1: [-130.1 , -124  ); N_2: [-124, -121)  ; N_3: [-121,-118); N_4: [-118, - 115); N_5: [-

115, -112) }. The criterion to define those intervals was to have smaller intervals in regions 

considered more critical; therefore, at the lowest level of noise the interval is 6 dB wide, while at 

the highest levels the intervals are 3 dB wide. Table 3.2.6 shows the CPD for the noise power 

“N”.    

Table 3.2.6: Conditional probability distribution (CPD) for N. Noise power in dBm 

          CPD 

 

Parents 

N_1 N_2 N_3 N_4 N_5              CPD 

 

Parents 

N_1 N_2 N_3 N_4 N_5 

N0_1 Ts_1 0 0 0 1 0 N0_3 Ts_1 0 0 0 0 1 

N0_1 Ts_2 0 1 0 0 0 N0_3 Ts_2 0 0 1 0 0 

N0_1 Ts_3 1 0 0 0 0 N0_3 Ts_3 1 0 0 0 0 

N0_2 Ts_1 0 0 0 0.565 0.435 N0_4 Ts_1 0 0 0 0 1 

N0_2 Ts_2 0 0.595 0.405 0 0 N0_4 Ts_2 0 0 1 0 0 

N0_2 Ts_3 1 0 0 0 0 N0_4 Ts_3 1 0 0 0 0 

 

Energy of Bit to Noise Spectral Density(“EbN0”): This variable has as parent the variables: 

spectral efficiency  “SE”, received power “Rx”, and noise power “N”. The relation among these 

variables is:    

 0 10·log( )EbN Rx N SE   . (3.2.4) 
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Equation 3.2.4 is also used in the elicitation of the CPD for “EbN0”.  The scope of “EbN0” 

has been divided into 6 intervals, namely [EbN0_1, EbN0_2, EbN0_3, EbN0_4, EbN0_5, 

EnN0_6].  The ranges for each interval are: {EbN0_1: [-72.8db, 0db); EbN0_2: [0db, 10db); 

EbN0_3: [10db   , 13db); EbN0_4: [13db, 16db); EbN0_5: [16db, 19db); EbN0_6: [19db, 

109.1db)}. Notice that the intervals EbN0_2 to EbN0_5 are narrower than the intervals EbN0_1 

and EbN0_6. The reason is that the proposed models considers this variable more critical at these 

intervals; therefore, the need of a better resolution at those regions. An “EbN0” greater than 19 

dB is good enough for the receiver to have acceptable performance; therefore, we only need an 

interval, EbN0_6, to represent  when “EbN0” is greater than 19 dB. The maximum EbN0 

possible is 109.1 dB, which occurs when Rx is maximum, and N and SE minimum. Table 3.2.7 

shows the conditional probability distribution for the variable EbN0.  

Table 3.2.7: Conditional probability distribution (CPD) for EbN0. Bit energy to spectral noise density ratio in dB. 

This table has 75 different combinations. We show only a portion of the table. The whole table can be found in 

appendix 1  
             

 CPD 

 

Parents 

 

EbN0_1 

 

EbN0_2 

 

EbN0_3 

 

EbN0_4 

 

EbN0_5 

 

EbN0_6 

SE_1 Rx_1 N_1 1 0 0 0 0 0 

SE_1 Rx_1 N_5 1 0 0 0 0 0 

SE_1 Rx_3 N_1 0 0 0 0.02 0.095 0.885 

SE_1 Rx_3 N_5 0 0.465 0.165 0.175 0.17 0.025 

SE_1 Rx_5 N_1 0 0 0 0 0 1 

 SE_1 Rx_5 N_5 0 0 0 0 0 1 

SE_2 Rx_1 N_1 1 0 0 0 0 0 

SE_2 Rx_1 N_5 1 0 0 0 0 0 

SE_2 Rx_3 N_1 0 0 0.04 0.17 0.165 0.625 

SE_2 Rx_3 N_5 0.015 0.645 0.17 0.155 0.015 0 

SE_2 Rx_5 N_1 0 0 0 0 0 1 

 SE_2 Rx_5 N_5 0 0 0 0 0 1 

SE_3 Rx_1 N_1 1 0 0 0 0 0 

SE_3 Rx_1 N_5 1 0 0 0 0 0 

SE_3 Rx_3 N_1 0 0.01 0.075 0.17 0.16 0.585 

SE_3 Rx_3 N_5 0.12 0.655 0.17 0.055 0 0 

SE_3 Rx_5 N_1 0 0 0 0 0 1 

 SE_3 Rx_5 N_5 0 0 0 0 0 1 
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2. Co-channel Interference 

Interference power (“Co_Ch”):  This variable represents the intensity of the co-channel 

interference affecting the receiver. This variable depends upon the environment wherein the 

receiver operates. The distance between the receiver and other systems operating at the same 

frequency affects this parameter. The power of the transmitters of co-channel systems also affects 

this variable. Table 3.2.8 shows the probability distribution for “Co_Ch”. I set the intervals 

shown in this table to have better resolution in the last three intervals. The first interval, CC_1, is 

the broadest, because the levels of power that it contains are so small that the effect over the C/I 

is almost negligible; therefore, more precision for this interval is not necessary. 

Table 3.2.8: Probability distribution for Co_Ch. Co_Channel interference relative to 1 mW. 

State Interval Probability 

CC_1 [-180  -130.1) 0.2 

CC_2 [-130.1    -110) 0.2 

CC_3 [-110     -95) 0.2 

CC_4 [-95       -70) 0.2 

CC_5 [-70       -21) 0.2 

 

 

Signal to Interference Ratio (“C/I”): This variable is the relation between the received power 

“Rx” and the co-channel interference power “Co_Ch”.  As they are expressed in dBm their 

relation is given by:   

 / _C I Rx Co Ch  . (3.2.5) 

Equation 3.2.5 is also used in the elicitation of the CPD for “C/I”.  The scope of this variable 

splits into 6 intervals: [C/I_1, C/I _2, C/I _3, C/I _4, C/I _5, C/I _6]. The ranges for each interval 

are: {C/I _1: [-159, 0); C/I _2: [0, 20); C/I _3: [20, 30); C/I _4: [30, 40); C/I _5: [40, 50);  C/I _6: 

[50, 159)} with values given in dB. During the simulations, it was  observed that after 50 dB 
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further increments on “C/I” have low impact on the bit error rate BER; therefore C/I ratios bigger 

than 50 dB can be considered as part of the same interval. The maximum C/I ratio possible 

occurs when the Rx level is maximum and the co-channel interference is minimum, in this case, 

the maximum C/I possible is 159 dB.  Table 3.2.9 gives the CPD for “C/I”.  

Table 3.2.9: Conditional probability distribution (CPD) for C/I. Signal to co-channel interference ratio in dB.   

       CPD 
 

Parents 

C/I_1 C/I_2 C/I_3 C/I_4 C/I_5 C/I_6    CPD 
 

Parents 

C/I_1 C/I_2 C/I_3 C/I_4 C/I_5 C/I_6 

Rx_1 CC_1 0.465 0.33 0.105 0.085 0.015 0 Rx_3 CC_3 0.525 0.475 0.2 0.2 0.2  

Rx_1 CC_2 1 0 0 0 0 0 Rx_3 CC_4 1 0 0 0 0 0 

Rx_1 CC_3 1 0 0 0 0 0 Rx_3 CC_5 1 0 0 0 0 0 

Rx_1 CC_4 1 0 0 0 0 0 Rx_4 CC_1 0 0 0 0 0.065 0.935 

Rx_1 CC_5 1 0 0 0 0 0 Rx_4 CC_2 0 0.025 0.2 0.43 0.245 0.1 

Rx_2 CC_1 0 0.22 0.195 0.17 0.205 0.21 Rx_4 CC_3 0 0.55 0.31 0.14 0 0 

Rx_2 CC_2 0.57 0.43 0 0 0 0 Rx_4 CC_4 0.47 0.5 0.03 0 0 0 

Rx_2 CC_3 1 0 0 0 0 0 Rx_4 CC_5 1 0 0 0 0 0 

Rx_2 CC_4 1 0 0 0 0 0 Rx_5 CC_1 0 0 0 0 0 1 

Rx_2 CC_5 1 0 0 0 0 0 Rx_5 CC_2 0 0 0 0 0.035 0.965 

Rx_3 CC_1 0 0 0.04 0.245 0.17 0.545 Rx_5 CC_3 0 0 0.01 0.125 0.28 0.585 

Rx_3 CC_2 0 0.59 0.36 0.05 0 0 Rx_5 CC_4 0 0.155 0.185 0.18 0.255 0.225 

 Rx_5 CC_5 0.51 0.33 0.1 0.06 0 0 

 

 

3. Multipath 

As mentioned in chapter 2, S ,the time delay between the arrival of the first and last 

components of the same symbol, tells how much a wireless channel stretches a symbol in time 

[2]. The relation between the delay spread and the time of symbol Ts will determine if the 

channel behaves as flat fading or selective fading channel. A flat fading channel responds 

uniformly over the bandwidth of the transmitted signal, whereas a selective channel behaves 

differently depending on the frequency even within the bandwidth of the signal.  

Figure 3.2.2 shows the behavior of a flat fading channel, also called narrowband channel. 

This behavior happens when Ts S . Notice that under this condition the multipath 

components of the same symbol arrive within the same delay bin making impossible for the 
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receiver to distinguish them. Hence, the receiver sees those components as one. However, the 

constructive and destructive interference among the multipath components affect the amplitude 

of the received symbol.   

 

Figure 3.2.2: Flat Fading Channel. 

In contrast, if Ts S , the channel exhibits a frequency selective behavior as shown in 

figure 3.2.3. In a selective fading channel, also called wideband channel, the multipath 

components arrive at different delay bins. This causes components of a symbol to interfere with 

adjacent symbols, something called inter symbol interference (ISI).   In order to counteract the 

ISI caused by multipath propagation, one common technique is the use of multiple narrowband 

channels instead of a single wideband channel. This dissertation assumes that the symbol time Ts 

has a such value that the channel is narrowband; therefore, the delay spread is not considered, 

since the channel satisfies the conditionTs S . Nevertheless, the other variables related with 

multipath, such as Doppler frequency and Doppler phase shift should be considered because they 

affect flat as well as selective channels.   
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Figure 3.2.3: Selective Fading Channel 

 

Doppler Frequency Shift (“Fd”):  This variable has three different states: [Fd_1, Fd_2, Fd_3], 

the ranges of which are: [0- 169.5), [169.5, 444.5), and [444.5, 1075), with values given in Hz. 

Those ranges depend upon the carrier frequency “Fc”, the speed and the angle between the 

trajectories of transmitter and receiver. For simplicity, this work assumes a constant speed of 100 

Km, and uniform distribution of the angle within the range [0, 2 ). The expression to obtain the 

ranges and CPD for “Fd” is: 

 
· ·cos( )cv F

Fd
c


 ,  (3.2.6) 

Where, v  is the speed difference between the transmitter and the receiver, cF  is the carrier 

frequency,   is the angle formed by the trajectories of the transmitter and  receiver, and c  is the 

speed of light. The ranges for “Fd” indicated previously resulted from evaluating equation 3.2.6 

at each carrier frequency, assuming that the speed difference is maximum; 200 /Km h  - and   

is either 0  or  , so that cos( ) 1  .  This assumption yields the maximum Doppler frequency 

shift possible at each carrier frequency. The conditional probability table (CPT) for “Fd” is: 
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Table 3.2.10: Conditional probability distribution (CPD)  for Fd. Doppler frequency shift in Hz.   

    CPD 

Parents 

Fd_1 Fd_2 Fd_3 

Fc_1 1 0 0 

Fc_2 0.5 0.5 0 

Fc_3 0.33 0.33 0.33 

 

To obtain table 3.2.10 we need to notice that if Fc=Fc_1, Fd falls for sure into the interval 

Fd_1; therefore the probability distribution is [1, 0, 0]. In case Fc=Fc_2, Fd is in either in Fd_1 

or Fd_2 with equal probability, since the angle   is uniformly distributed; therefore, the 

probabilities are: [0.5, 0.5, 0]. For the same reason, if Fc=Fc_3 the probabilities are: [0.33, 0.33, 

0.33].  

Doppler Phase Shift (“Dop_Phi”): The Doppler phase shift is the change in phase accumulated 

during the transmission of one symbol with duration “Ts”. The Doppler frequency shift 

represents the rate of change of the phase. Therefore, the Doppler phase shift is given by [2] 

 _ 2 ·D
Ts

Dop Phi Fd dt    .   (3.2.7)  

Since we consider “Fd” constant during the symbol, equation 3.2.7 becomes:  

 _ 2 · ·DDop Phi Fd Ts   .    (3.2.8) 

Equation 3.2.8 determines the ranges for “Dop_Phi” as well as its CPD.  Table 3.2.11 shows 

the CPD for “Dop_Phi”.  The intervals Phi_1, Phi_2, and Phi_3 corresponds to [0, 0.05), [0.05, 

0.1), and [0.1, 0.136) respectively. The numbers in these intervals are in radians.  
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Table 3.2.11: Probability distribution for Dop_Phi. Doppler phase shift in radians.  

    CPD 

Parents 

Phi_1 Phi_2 Phi_3 

Fd_1 Ts_1 1 0 0 

Fd_1 Ts_2 1 0 0 

Fd_1 Ts_3 1 0 0 

Fd_2 Ts_1 1 0 0 

Fd_2 Ts_2 1 0 0 

Fd_2 Ts_3 0.855 0.145 0 

Fd_3 Ts_1 1 0 0 

Fd_3 Ts_2 1 0 0 

Fd_3 Ts_3 0 0.595 0.405 

 

 

4. Propagation Losses 

Distance (“Dist”):  Distance is one of the parameters that influences the propagation losses. For 

this variable it is assumed that the distance between the transmitter and the receiver falls within 

some of the four intervals shown in table 3.2.12. We can imagine that the transmitter (TX) is at 

the center of the innermost circle shown in figure 3.2.4, and that the receiver (RX) can be within 

any of the other regions circumscribed by the outer circles.   The probability distribution in table 

3.2.12 depends upon the pattern of movement of transmitter and receiver.  

 

Figure 3.2.4: Distance ranges. Distances are in Kilometers.  
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Table 3.2.12: Probability distribution for Dist. Distance in Kilometers.  

State Interval Probability 

D_1 [0.01  0.1) 0.25 

D_2 [0.1    1.0) 0.25 

D_3 [1.0    2.0) 0.25 

D_4 [2.0    4.0) 0.25 

 

Table 3.2.12 shows a uniform probability distribution; however, this distribution will change 

depending on the specific pattern of movement of the wireless nodes. There are different ways to 

update the probability distribution of this variable: From GPS information transmitted in each 

packet by the communicating nodes; from probabilistic inference performed over the Bayesian 

network explained in this chapter; or from a combination of both. Nowadays, location 

information provided by GPS systems is being exploited in many fields, such as transportation 

[76], commerce, and tracking [77] . Similarly, in the field of wireless networks, location 

information exchanged among the nodes can serve to calculate the distance separating those 

nodes, and estimate the movement patterns.  

Free Space Losses (“FSL”):  This variable represents the power loss in free space. The parents 

of this variable are the distance “Dist” and the carrier frequency “Fc”.  I divided the scope of this 

variables into four intervals defined as: {FSL _1: [51, 82); FSL _2: [82, 107); FSL _3: [107, 

114); FSL _4: [114,120)}. The expression how “Dist” and “Fc” influence “FSL” is:  

 32.45 20·log( ) 20·log( )FSL Dist Fc   .   (3.2.9) 

Equation 3.2.9 also helps in determining the scope of “FSL” and the CPD. The intervals 

FSL_3 and FSL_4 where made narrower, since at these levels FSL is more critical; we require 

more resolution. Table 3.2.13 shows the CPD for “FSL” with values in dB.   
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Table 3.2.13: Probability distribution for FSL. Free space losses in dB.  

       CPD 

 

Parents 

FSL_1 FSL_2 FSL_3 FSL_4       CPD 

 

Parents 

FSL_1 FSL_2 FSL_3 FSL_4 

D_1 Fc_1 1 0 0 0 D_3 Fc_1 0 1 0 0 

D_1 Fc_2 1 0 0 0 D_3 Fc_2 0 1 0 0 

D_1 Fc_3 0.47 0.53 0 0 D_3 Fc_3 0 0 1 0 

D_2 Fc_1 0.235 0.765 0 0 D_4 Fc_1 0 1 0 0 

D_2 Fc_2 0.025 0.975 0 0 D_4 Fc_2 0 0.125 0.875 0 

D_2 Fc_3 0 0.9 0.1 0 D_4 Fc_3 0 0 0.02 0.98 

 

 

Multipath Fading (“Fade”): This variable represents the fading of the power caused by the 

combination of multiple versions of the same signal that arrive at the receiver with different 

phases and amplitudes.  These multiple versions of the signal come from reflectors and scatterers 

present in the environment where the signal propagates. This variable also includes the 

shadowing due to obstacles.  Therefore, this variable depends on the environment. The scope for 

“Fade” has been defined between 0db to 60 dB, which can cover the range that this variable 

could have in a realistic scenario. This scope is divided into three intervals, namely {Sh _1: [0, 

5); Sh _2: [5, 15); Sh _3: [15, 60)}, with values in dB. The letter “Sh” in the names of the 

intervals come from shadowing, included in this variable.   

Table 3.2.14: Probability distribution for Fade. Multipath fading or shadowing due to obstacles expressed in dB.  

State Interval Probability 

Sh_1 [0        5) 0.33 

Sh_2 [5      15) 0.33 

Sh_3 [15    60) 0.33 

 

Total Losses (“Attn”):   This variable represents the total propagation losses in the system, which 

are the summation of two main components: free space losses “FSL” and multipath fading, 

represented here as “Fade”. The scope of this variable is divided into four intervals:  {Attn _1: 
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[51, 88.25); Attn _2: [88.25, 119.25); Attn _3: [119.25, 150.75); Attn _4: [150.75, 180.0)}, with 

values given in dB. The influence of “FSL” and “Fade” over “Attn” is determined by 

 Attn FSL Fade    (3.2.10) 

Table 3.2.15 shows the CPD for this variable.  

Table 3.2.15: Conditional probability distribution  (CPD) for Attn.  Total attenuation expressed in dB.  

      CPD 

Parents 

Attn_1 Attn_2 Attn_3 Attn_4     CPD 

Parents 

Attn_1 Attn_2 Attn_3 Attn_4 

FSL_1 Sh_1 1 0 0 0 FSL_3 Sh_1 0 1 0 0 

FSL_1 Sh_2 0.865 0.135 0 0 FSL_3 Sh_2 0 0.375 0.625 0 

FSL_1 Sh_3 0.185 0.585 0.23 0 FSL_3 Sh_3 0 0 0.54 0.46 

FSL_2 Sh_1 0.14 0.86 0 0 FSL_4 Sh_1 0 0.405 0.595 0 

FSL_2 Sh_2 0.005 0.98 0.015 0 FSL_4 Sh_2 0 0.005 0.995 0 

FSL_2 Sh_3 0 0.2 0.665 0.135 FSL_4 Sh_3 0 0 0.41 0.59 

 

Received Power (Rx):  This variable represents the power at the receiver, which depends upon 

the transmission power “Tx” and the total propagation losses “Attn” according to this 

expression:  

 Rx Tx Attn     (3.2.11) 

We can calculate the minimum and maximum value of Rx with the expression 3.2.11 and 

minimum and maximum values of Tx and Attn.  For instance, to obtain the minimum value of Rx 

we evaluate that expression with the minimum value of Tx and the maximum value of Attn, 

which yields -180.0 dBm. Similarly, the expression 3.2.11 evaluated at the maximum Tx and the 

minimum Attn  produces the maximum value of Rx, -21.0 dBm.  

The extent of this variable, -180 dBm to -21 dBm, has been divided into five intervals: {Rx 

_1: [-180.0, -130.1); Rx _2: [-130.1, -121.0); Rx _3: [-121.0, -100.0); RX _4: [-100.0, -80.0); RX 

_5: [-80.0, -21.0)}, with values in dBm. Table 3.2.16 shows the CPD for the variable “Attn”, 

elicited with the assistance of the expression 3.2.11. 
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Table 3.2.16: Conditional probability distribution (CPD) for Rx. Received power expressed dBm.  

    CPD 

 
Parents 

RX_1 RX_2 RX_3 RX_4 RX_5   CPD 

 
Parents 

RX_1 RX_2 RX_3 RX_4 RX_5 

Attn_1 Tx_1 0 0 0 0.215 0.785 Attn_3 Tx_1 0.645 0.285 0.07 0 0 

Attn_1 Tx_2 0 0 0 0 1 Attn_3 Tx_2 0.275 0.31 0.415 0.2 0.2 

Attn_1 Tx_3 0 0 0 0 1 Attn_3 Tx_3 0.03 0.315 0.605 0.05 0.2 

Attn_1 Tx_4 0 0 0 0 1 Attn_3 Tx_4 0 0 0.65 0.35 0 

Attn_2 Tx_1 0 0 0.65 0.35 0 Attn_4 Tx_1 1 0 0 0 0 

Attn_2 Tx_2 0 0 0.355 0.6 0.045 Attn_4 Tx_2 1 0 0 0 0 

Attn_2 Tx_3 0 0 0 0.66 0.34 Attn_4 Tx_3 1 0 0 0 0 

Attn_2 Tx_4 0 0 0 0.355 0.645 Attn_4 Tx_4 0.68 0.3 0.02 0 0 

 

 

Indicator 

An indicator is a variable that tells how the system is performing. It is also an influenced 

random variable. In the communication systems arena, the bit error rate (BER) is the most 

prevalent indicator of wireless, wired and optical channels. BER is a random variable; however, 

by manipulating some of the factors that influence it, it is possible to increase the probability of 

this variable  going or staying into the state that the systems needs it to be.  

Bit Error Rate(“BER”): The bit error rate  is defined as the number of erroneous bits divided by 

the total number of transmitted bits. This variable has as parents: “EbN0”, “C/I”, “Dop_Phi”,  

and “Mod”.  For simplicity, this dissertation uses a different conditional probability distribution 

(CPD) per each modulation scheme. The Bayesian network model will load the CPD 

corresponding to the modulation scheme it is using. Therefore, these CPDs will have only three 

parents:  “EbN0”, “C/I”, and “Dop_Phi”. “BER” extents from 0 (0% erroneous bits) to 1 (100% 

erroneous bits).  This scope contains five intervals:{BER_1: [0, 510 ); BER_2: [ 510 , 310 ); 

BER_3: [ 310 , 210 ); BER_4: [ 210 , 110 ); BER_5: [ 110 ,1)}, where the numbers have no units.  

Due to the lack of an analytical or empirical expression describing how the variables 

“EbN0”, “C/I”, and “Dop_Phi” impact “BER” for different modulation schemes, simulation of  a 
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wireless communication system with different modulation schemes is necessary in order to elicit 

the CPDs of this variable. For demonstration purposes, this dissertation considers three different 

modulation schemes: differential binary shift keying (DBPSK), differential quaternary shift 

keying (DQPSK), and differential eight phase shift keying (D8PSK). This method applies to 

other modulation schemes as well. Tables 3.2.16 to 3.2.18 show fragments of the CPDs for 

DBPSK, DQPSK, and D8PSK modulation schemes. These tables show only fragments, since 

each CPD has 108 different combinations (6 states for “EbN0” times 6 states for “C/I” times 3 

states for “Dop_Phi”). Appendix 1 contains the whole CPDs of  “BER” for the aforementioned 

modulation schemes; section 3.2.3 describes the details of the elicitation of these CPDs. 

 

Table 3.2.17: Conditional probability distribution (CPD) for BER in DBPSK. The CPD for BER has 108 different 

combinations. This tables only shows the first and the last set of combinations. The whole table can be found in 

appendix 1 as Table A.1.1. 
      CPD 

Parents 

BER_1 BER_2 BER_3 BER_4 BER_5 

EbN0_1 C/I_1 Phi_1 0 0 0 0 1 

EbN0_1 C/I_5 Phi_2 0 0 0 0 1 

EbN0_1 C/I_6 Phi_3 0 0 0 0 1 

EbN0_2 C/I_1 Phi_1 0 0 0 0 1 

EbN0_2 C/I_5 Phi_2 0 0.09 0.17 0.46 0.28 

EbN0_2 C/I_6 Phi_3 0 0.105 0.19 0.445 0.26 

EbN0_3 C/I_1 Phi_1 0 0 0 0 1 

EbN0_3 C/I_5 Phi_2 0.645 0.355 0 0 0 

EbN0_3 C/I_6 Phi_3 0.635 0.365 0 0 0 

EbN0_4 C/I_1 Phi_1 0 0 0 0 1 

EbN0_4 C/I_5 Phi_2 0.995 0.005 0 0 0 

EbN0_4 C/I_6 Phi_3 1 0 0 0 0 

EbN0_5 C/I_1 Phi_1 0 0 0 0 1 

EbN0_5 C/I_5 Phi_2 1 0 0 0 0 

EbN0_5 C/I_6 Phi_3 1 0 0 0 0 

EbN0_6 C/I_1 Phi_1 0 0 0 0 1 

EbN0_6 C/I_5 Phi_2 1 0 0 0 0 

EbN0_6 C/I_6 Phi_3 1 0 0 0 0 
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Table 3.2.18: Probability distribution for BER in DQPSK . The CPD for BER has 108 different combinations. This 

tables only shows the first and the last set of combinations. The whole table can be found in appendix 1 as Table 

A.1.2.     
          CPD 

Parents 
BER_1 BER_2 BER_3 BER_4 BER_5 

EbN0_1 C/I_1 Phi_1 0 0 0 0 1 

EbN0_1 C/I_5 Phi_2 0 0 0 0 1 

EbN0_1 C/I_6 Phi_3 0 0 0 0 1 

EbN0_2 C/I_1 Phi_1 0 0 0 0 1 

EbN0_2 C/I_5 Phi_2 0 0 0 0.46 0.54 

EbN0_2 C/I_6 Phi_3 0 0 0 0.465 0.535 

EbN0_3 C/I_1 Phi_1 0 0 0 0 1 

EbN0_3 C/I_5 Phi_2 0 0.03 0.86 0.11 0 

EbN0_3 C/I_6 Phi_3 0 0.005 0.82 0.175 0 

EbN0_4 C/I_1 Phi_1 0 0 0 0 1 

EbN0_4 C/I_5 Phi_2 0.125 0.84 0.035 0 0 

EbN0_4 C/I_6 Phi_3 0.055 0.83 0.115 0 0 

EbN0_5 C/I_1 Phi_1 0 0 0 0 1 

EbN0_5 C/I_5 Phi_2 0.875 0.125 0 0 0 

EbN0_5 C/I_6 Phi_3 0.735 0.265 0 0 0 

EbN0_6 C/I_1 Phi_1 0 0 0 0 1 

EbN0_6 C/I_5 Phi_2 1 0 0 0 0 

EbN0_6 C/I_6 Phi_3 1 0 0 0 0 

 

 

Table 3.2.19: Probability distribution for BER in D8PSK. The CPD for BER has 108 different combinations. This 

tables only shows the first and the last set of combinations. The whole table can be found in appendix 1 1 as Table 

A.1.3. 
           CPD 

Parents 

BER_1 BER_2 BER_3 BER_4 BER_5 

EbN0_1 C/I_1 Phi_1 0 0 0 0 1 

EbN0_1 C/I_5 Phi_2 0 0 0 0 1 

EbN0_1 C/I_6 Phi_3 0 0 0 0 1 

EbN0_2 C/I_1 Phi_1 0 0 0 0 1 

EbN0_2 C/I_5 Phi_2 0 0 0 0.135 0.865 

EbN0_2 C/I_6 Phi_3 0 0 0 0.095 0.905 

EbN0_3 C/I_1 Phi_1 0 0 0 0 1 

EbN0_3 C/I_5 Phi_2 0 0 0 1 0 

EbN0_3 C/I_6 Phi_3 0 0 0 1 0 

EbN0_4 C/I_1 Phi_1 0 0 0 0 1 

EbN0_4 C/I_5 Phi_2 0 0 0.145 0.855 0 

EbN0_4 C/I_6 Phi_3 0 0 0 1 0 

EbN0_5 C/I_1 Phi_1 0 0 0 0 1 

EbN0_5 C/I_5 Phi_2 0 0.08 0.92 0 0 

EbN0_5 C/I_6 Phi_3 0 0 0.855 0.145 0 

EbN0_6 C/I_1 Phi_1 0 0 0 0 1 

EbN0_6 C/I_5 Phi_2 0.96 0.04 0 0 0 

EbN0_6 C/I_6 Phi_3 0.955 0.045 0 0 0 

 

 

3.2.2 Identification of the Structure of the Model 

After identifying the variables of the model, the next step is to establish how they influence 

one another. In the case of wireless communication systems, there is a set of analytical and 
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empirical expressions that relate different variables. I have already used some of these 

expressions through the last section to determine the ranges of some variables. I can use the same 

expressions to establish causal relations among the variables of my proposed model. However, in 

some cases there are not analytical expressions that consider how a variable depends upon 

others. For instance, there are not analytical expressions telling how the bit error rate (“BER”) 

depends on  the combination of: “Mod” ,“EbN0”, “C/I”, and “Dop_Phi”. Although, I lack such 

expressions, I  know that “Mod”, “EbN0”, “C/I”, and “Dop_Phi” impact “BER”. Therefore, I 

have the information to determine the structure of a local Bayesian network containing “BER” 

and its parents: “Mod”, “EbN0”, “C/I”, and “Dop_Phi”. Figure 3.2.5 shows that Bayesian 

network.  

 

Figure 3.2.5: Local Bayesian network for “BER”.  Green color means the variable is a parameter, brownish color 

the variable is an influenced random variable, and blue color the variable is an indicator.     

 

I have started with the “BER” because this is the indicator for the Bayesian model under 

construction. That model is intended for the system to perform probabilistic inference on the 

variables that impact “BER”, so that it can manipulate its parameters to reduce “BER”. The 
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manipulation of the parameters will be based on the principle of maximum expected utility 

(MEU), explained in chapter 2.   

After determining which the parents of “BER” are, I need to find the parents of the parents 

of “BER”. Then I find the parents of these parents and so on. In summary, to figure out the 

structure of the Bayesian I start by finding the parents of the variable of interest, “BER” in this 

case”, and then proceed to do the same with the parent variables all the way until I find the root 

variables.  Figures 3.2.5 through 3.2.8 show how the Bayesian model was built gradually.  

 

Figure 3.2.6: Bayesian network for “BER” extended one generation back.  Green color means the variable is a 

parameter, yellow color the variable is a random variable, brownish color the variable is an influenced random 

variable, and blue color the variable is an indicator.     
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Figure 3.2.7: Bayesian network for “BER” extended two generations back.  Green color means the variable is a 

parameter, yellow color the variable is a random variable, brownish color the variable is an influenced random 

variable, and blue color the variable is an indicator.     

 

Figure 3.2.8: Bayesian network for “BER” extended three generations back.  Green color means the variable is a 

parameter, yellow color the variable is a random variable, brownish color the variable is an influenced random 

variable, and blue color the variable is an indicator.     

 

3.2.3 Elicitation of the Conditional Probability Distributions  

To elicit the conditional probability distributions (CPD), I take each variable and analyze 

how its probability distribution behaves per each different combination of its parents. If the 
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variable is parentless, I analyze how its behavior could look like in a particular scenario. Such 

analysis can be based on experience, experiments, or simulations. In some cases, rough estimates 

of the probability distributions are good enough, since the Bayesian model will update these 

distributions as it gets evidence and learns through experience. Therefore, in the case of the 

variables “Co_Ch”, “Dist”, “Fade”, and “N0” I start the model with estimates of their probability 

distributions (PD). When the system receives evidence, in this case the state of “BER”, the 

Bayesian model performs probabilistic inference on these variables to update their PD 

(probability distribution).     

When the variable has parents, I take each combination of the states of its parents and find 

the probability of that variable being in each state. To find those probabilities, I need an 

expression or function telling which state the variable will take depending on the combination of 

the parents. If the states of the variables were single numbers, this process would come down to 

simply evaluating the functions. However, in the practice, variables Bayesian models have 

variables with states defined either as single numbers or as intervals. Therefore, the process of 

eliciting the numbers entails more than evaluating functions: it requires to take multiple samples 

per each interval, for each possible combination of parent variables and using the function to find 

in which of its interval the child variable falls.   The steps to estimate the CPDs of the Bayesian 

model random variables are the following:  

1. Build a local Bayesian network with the variable for which I want to elicit the CPD. 

Figure 3.2.6 e) shows the local BN for Rx.  

2. Enumerate all the possible combinations of parent variable states. The total number of 

combinations amounts to the product of number of states of the parent variables. For 
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example, “Tx” and “Attn”, the parents of “Rx” have 5 and 4 states, respectively; hence 

the number of total combinations is 20, as seen in table 3.2.16. 

3. Find a function that expresses the child variable in terms of its parents.  Equations 3.2.3 

to 3.2.11 from the previous section are used in this step. When I lack such kind of 

expression, like in the case of the variable “BER”, I must create a simulation able to take 

samples of the parent variables per each possible combination and yield a sample of the 

child variable. 

4. Obtain random samples of all the intervals that define the states of the variables.  The 

functions or simulations mentioned in step 3 will take samples, i.e. single numbers, per 

each interval. The more samples per interval I take, the more precise the CPDs will be. 

Continuing with the variable “Rx”, I need to take N samples from each of the 5 intervals 

of “Tx” and from each of the 4 intervals of “Attn”. Then, I evaluate the function or run 

the simulation per each possible combination of samples of “Tx” and “Attn”. In other 

words, I evaluate the function or run the simulation N times the total amount of 

combinations of the parent states. In the case of “Tx” and “Attn” I evaluate function 3.2.2 

N X 5 X 4 times.         

5. Out of the previous step I obtained a matrix of samples: one row per each time I 

evaluated the function or ran the simulation; one column per each parent and one for the 

child variable. In the case of “Rx”, I have three columns: two for “Tx” and “Attn” and 

one for “Rx”.   

6. The matrix of data from step 5 must be discretized, since the CPDs of the Bayesian 

network are in terms of the states of the variables not in terms of single numbers. To 
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discretize the data means to replace each sample by the name of the state to which it 

belongs. The discretization process uses the definition of ranges shown in section 3.2.1.  

7. Finally, I use maximum likelihood estimation (MLE) [69] to learn the CPD of the child 

variable using the data obtained in step 6 and the structure (BN) from step 1. 

Figure 3.2.9 shows the local Bayesian networks used to elicit the CPDs for the variables of 

the model. Appendix 2 contains the python routines used for the elicitation of the CPDs. Chapter 

4 explains the simulation performed to obtain the CPD for “BER”. 

 

Figure 3.2.9: Local Bayesian Networks used for eliciting the conditional probability distributions (CPD). a) BN for 

“FSL”, b)BN for “Attn”, c)BN for “N”, d)BN for EbN0, e) BN for “Rx”, f) BN for “C/I”, g) BN for “BER”, and h) 

BN for “Dop_Phi”.   

 

3.2.4 The Utility Function 

The main goal of the Bayesian model being presented in this dissertation is to assist the 

cognitive radio in making decisions that satisfy the best the requirements of the wireless 



77 

 

communication system. A utility function (“UF”) provides a means to represent the preferences 

of the system making decisions.  The utility function takes as arguments the variables over which 

I want to express my preference. The utility function “UF” has as its arguments the indicators, 

“BER” in this case, parameter variables, and other random or influenced random variables that 

can help in assessing the convenience of certain configuration for the system given the 

probabilistic distribution of the indicator.  I can express a “UF” either as a function or as a table 

that assigns a number to each possible combination of the states of its arguments: it must assign 

higher numbers to the more convenient combinations, and lower or negative numbers to the less 

convenient or inconvenient combinations.   In my model, the arguments of “UF” are: the 

indicator “BER”, and the parameters “Tx” and “SE”. Table 3.2.20 shows the utility function. 

Table 3.2.20: Utility function. The numbers are dimensionless. 

Arguments of  UF 

UF 

Arguments of  UF 

Utility Arguments of  UF 

 

Utility 

Tx_1 SE_1 BER_1 60 Tx_3 SE_1 BER_1 80 
Tx_1 SE_1 BER_2 10 Tx_3 SE_1 BER_2 70 
Tx_1 SE_1 BER_3 -10 Tx_3 SE_1 BER_3 -20 
Tx_1 SE_1 BER_4 -15 Tx_3 SE_1 BER_4 -30 
Tx_1 SE_1 BER_5 -20 Tx_3 SE_1 BER_5 -40 
Tx_1 SE_2 BER_1 80 Tx_3 SE_2 BER_1 75 
Tx_1 SE_2 BER_2 20 Tx_3 SE_2 BER_2 70 
Tx_1 SE_2 BER_3 -5 Tx_3 SE_2 BER_3 -25 
Tx_1 SE_2 BER_4 -10 Tx_3 SE_2 BER_4 -35 
Tx_1 SE_2 BER_5 -15 Tx_3 SE_2 BER_5 -35 
Tx_1 SE_3 BER_1 100 Tx_3 SE_3 BER_1 80 
Tx_1 SE_3 BER_2 30 Tx_3 SE_3 BER_2 75 
Tx_1 SE_3 BER_3 -3 Tx_3 SE_3 BER_3 -20 
Tx_1 SE_3 BER_4 -6 Tx_3 SE_3 BER_4 -30 
Tx_1 SE_3 BER_5 -10 Tx_3 SE_3 BER_5 -40 
Tx_2 SE_1 BER_1 50 Tx_4 SE_1 BER_1 60 
Tx_2 SE_1 BER_2 5 Tx_4 SE_1 BER_2 55 
Tx_2 SE_1 BER_3 -15 Tx_4 SE_1 BER_3 -35 
Tx_2 SE_1 BER_4 -20 Tx_4 SE_1 BER_4 -40 
Tx_2 SE_1 BER_5 -25 Tx_4 SE_1 BER_5 -60 
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Table 3.2.20: Utility function. The numbers are dimensionless. (Cont.) 

Tx_2 SE_2 BER_1 75 Tx_4 SE_2 BER_1 70 
Tx_2 SE_2 BER_2 15 Tx_4 SE_2 BER_2 65 
Tx_2 SE_2 BER_3 -10 Tx_4 SE_2 BER_3 -20 
Tx_2 SE_2 BER_4 --15 Tx_4 SE_2 BER_4 -30 
Tx_2 SE_2 BER_5 -20 Tx_4 SE_2 BER_5 -40 
Tx_2 SE_3 BER_1 90 Tx_4 SE_3 BER_1 50 
Tx_2 SE_3 BER_2 85 Tx_4 SE_3 BER_2 40 
Tx_2 SE_3 BER_3 0 Tx_4 SE_3 BER_3 -40 
Tx_2 SE_3 BER_4 -5 Tx_4 SE_3 BER_4 -45 
Tx_2 SE_3 BER_5 -15 Tx_4 SE_3 BER_5 -55 

 

In this case the cognitive radio (CR) makes decisions as of how to adjust its parameters to 

increase the probability that the bit error rate “BER” is at lower levels, states BER_1 and BER_2. 

Accomplishing this with low power, Tx_1, or Tx_2, and high spectral efficiency, SE_3, is 

preferable to accomplishing it with higher power and low spectral efficiency; for instance, the 

combination [Tx_1, SE_3,BER_1] has bigger utility than the combination [Tx_4, SE_1, BER_1], 

table 3.2.20. Table 3.2.20 also shows that combinations with high values of BER, BER_4, 

BER_5, have negative utility. I can incorporate the “UF” into the model by adding it as a node to 

the Bayesian network, which turn the BN into an influence diagram (ID).  Figure 3.2.10 shows 

the ID proposed to assist the CR in adjusting its parameters to improve the performance of the 

wireless communication system.    
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Figure 3.2.10: Influence diagram for decision making.  Green color means the variable is a parameter, yellow color 

the variable is a random variable, brownish color the variable is an influenced random variable, and blue color the 

variable is an indicator. The hexagon represents the utility function “UF”.     
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CHAPTER 4 

SIMULATIONS OF THE BAYESIAN MODELS FOR WIRELESS 

COMMUNICATION SYSTEMS 
 

This chapter describes the simulations of the proposed Bayesian model. The first section 

describes the simulation performed to obtain the CPD of different modulation schemes. The 

second section presents a simulation of how the Bayesian network probabilistically reasons on 

random variables of a wireless system. Finally, the third section explains how the Bayesian 

model assists the wireless communication system in selecting the configuration with the highest 

expected utility. 

4.1 Simulation of Digital Modulation Schemes to Obtain the CPD of BER  
 

As mentioned in chapter 3, I lack an empirical or analytical function able to express the bit 

error rate BER in terms of  EbN0, Dop_Phi, and C/I, which I could use to generate data to elicit 

its conditional probability distribution. Hence, I need to simulate a modulator-demodulator set 

for each of the modulation scheme I want to consider.  For demonstration purposes this 

dissertation includes the modulation schemes: differential BPSK (2dpsk); differential QPSK 

(4dpsk), and differential 8PSK (8dpsk).  

4.1.1 Methodology 

 

In this dissertation, I consider that the bit error rate BER is affected by EbN0, C/I, and 

Dop_Phi. In the previous chapter, I defined the state domain for each of the parent variables 
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EbN0, C/I, and Dop_Phi. Because these variables affect BER simultaneously, I must simulate the 

modulator-demodulator link at each possible combination of the parent variables to observe the 

state taken by BER under that combination. For every possible combination of EbN0, C/I, and 

Dop_Phi I generate N samples from the intervals represented by the states of the variables.  For 

instance, if the combination is {EbN0_4:[16,  19); C/I_4:[20,  30); Phi_2:[0,  0.005)}, I generate 

N uniformly distributed random samples  within the intervals  [16, 19), [20, 30), and [0, 0.005). 

Then, I run the simulation N times: one time per each combination of samples from those 

intervals. The bigger the number N, the more precise the results are. For every iteration of the 

simulation, I generate, modulate, and send K random symbols. At the receiver I demodulate the 

symbols, compare them with the transmitted symbols and accumulate the number of errors. At 

the end of the K iteration, I divide the number of errors by the total amount of transmitted bits to 

obtain the bit error rate “BER”.    

Figure 4.1.1 summarizes the process of simulating the transmission and demodulation of 

each of the K symbols mentioned in the previous paragraph, the purpose of which is to estimate 

the bit error rate, BER, for different levels of noise, interference, and Doppler phase shift. In ① 

the transmitter block selects randomly a symbol, which maps to one or several bits according to 

the modulation scheme. The phase   of the carrier is modified to represent the selected symbol; 

the tables in figure 4.1.1 show the phases and bits per each symbol for modulations DBPSK, 

DQPSK, and D8QPSK. In ② the phase of the symbol is modified to simulate the Doppler effect. 

In ③ noise and interference are added to the symbol. In ④  the symbol is demodulated as 

explained in figures 4.1.2 and 4.1.3. In ⑤ the demodulated bits are compared with the 

transmitted bits, and in ⑥ the errors are accumulated to update the BER. The next paragraphs 
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explain in more details the demodulation process. 

 

Figure  4.1.1: Sending symbols to estimate the bit error rate (BER) under different conditions of EbN0, noise, and 

Doppler phase shift for modulations DBPSK, DQPSK, and D8PSK.  

 

 

Generally, simulations of digital modulation schemes consider the impact of additive white 

Gaussian noise (AWGN) at the receiver. Figure 4.1.2 shows the structure of a receiver operating 

with M-ary differential phase shift keying (DPSK) modulation; 2bM  , where b  is the number 

of bits per symbol [78]. The received signal ( )r t  is the summation of the incoming signal ( )is t  

and the Gaussian noise ( )n t .  In order to consider the effect of co-channel interference, 

represented by C/I, and Doppler phase, represented by Dop_Phi, I have modified the system 

shown in figure 4.1.1. In figure 4.1.2 the phase of the symbols ( )s uiE s t  is modified by the 

Doppler phase shift D , then the co-channel interference ( )ci t , and the noise  ( )n t  are added at 

the receiver.         
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Figure  4.1.2: M-ary DPSK receiver with only noise [78] 

 

Figure  4.1.3: M-ary DPSK receiver with noise, co-channel inference and Doppler phase shift 

 

To simulate the effect of the Doppler phase shift, I first represent the symbols as exponential 

numbers with phases corresponding to the M-ary constellation being simulated, then I multiply 

those numbers by an exponential number with a phase equal to the Doppler phase shift, so that I 

alter the phase of the received symbol accordingly.  Below are the python code lines that perform 

this process: 
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phases= (2*pi/M)*np.arange(M) #Generate phases according to constellation  

exp_symbols= np.exp(phases*1j) #Represent symbols as exponential numbers 

 

tx_signal=exp_symbols[is1] #random symbol as exponential number       

            

channel=np.exp(FD*1j) #Doppler effect represented exponential number             

         

rx_symbol=tx_signal*channel  #Alter the tx_signal according to Doppler phase shift 

 

rx_phase=cmath.phase(rx_symbol)  #Phase of the symbol at the receiver  

 

 

With the modified phase, I generate a sinusoidal signal using this python code line: 

sws=np.concatenate((sws[Ns:],sqrt(2*Es/Ts)*np.cos(wc*t+rx_phase)),axis=1)) #Represent the symbol  

                                                                                                                          #as sinusoidal signal 

 

This sinusoidal signal represents the received signal ( )is t , to which I add Gaussian noise 

and co-channel interference as explained in the next paragraphs.  

To simulate the effect of Gaussian noise on the communication system, I generate Gaussian 

random numbers with standard deviation 1   and scale them by a factor according to the 
0

bE

N
 

level being simulated.  The portion of the python code that performs that operation is:  

    

         SN_EB=round(10*np.log10(b),1)   # This term is to convert EbN0 to SNR in dB    

                                                                    # according to b, bits per symbol.                                                                     

SNRdB=EbN0 +SN_EB; # convert to SNR in dB 

SNR=10**(SNRdB/10) # convert SBRdB to linear 

N0=b*(Es/b)/SNR; sigma2=N0/2; sgmsT=sqrt(sigma2/T)  #sgmsT is to scale the  

                                                                                               #noise according to Eb/N0 

 

       #The next line represents the noise as a sinusoidal signal       

        bp_noise=  np.cos(wct)*np.random.normal(0,1,Ns)+ np.sin(wct)*np.random.normal(0,1,Ns)   

        bp_noise = sgmsT* bp_noise  #Scaling the noise according to EbN0 

 

 

To simulate the effect of co_channel interference I add a sinusoidal signal scaled according 

to the signal to co-channel interference ratio. This is the python code that performs that operation 
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#The next line converts C/I to linear and multiplies the sinusoidal representing the 

         #co-channel interference, so that it matches C/I 

Co_Channel= CI_lin(C_I,Es,Ts)* sqrt(2*Es/Ts)*np.cos(wc*t+np.random.uniform(0,2*pi)) 

 

After I have the signal affected by Doppler effect, the noise, and the co-channel interference, 

I add them to obtain the received signal ( )r t .  Then I correlate ( )r t  with the in-phase and in-

quadrature components stored in the receiver to obtain the phase of the incoming signal, as 

shown by the formulas in figures 4.1.2 and 4.1.3.  

For convenience, I grouped these processes in a function called BER (EbB0, C_I, Doppler, 

b, MaxIter), which takes as arguments: EbN0; C_I; Doppler; b, the number of bits per symbol; 

and MaxIter, the number of iterations. The arguments EbN0, C_I, and Doppler are random 

numbers within the intervals corresponding to the state of these variables. MaxIter represents the 

number of symbols transmitted and used to calculate the bit error rate every time I execute the 

function BER.  The whole python code can be found in the appendix portion of this dissertation.  

I executed the function BER 200 times for every combination of the states of the variables EbN0, 

C/I and Dop_Phi. Since these states represent intervals wherein each variable falls, I generated 

random samples from these intervals each time I ran the function. For instance, if I were working 

with the combination: {EbN0_5, C/I_3, Phi_1}, where the states represent the intervals [16, 19), 

[20, 30), and [0, 0.05) respectively, I would take a random sample within each interval when I 

ran the function, ① in figure 4.1.3. After generating these raw data, I discretize them to 

represent states of the variables, since the algorithm for learning the probability distributions 

works with the states of the variables but not with actual numbers, ② in figure 4.1.3. Finally, in 

③ I pass the discretized data, obtained in ②, through a portion of code that learns the 

conditional probability distribution (CPD) from the discretized data and the local Bayesian 
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network for the variable BER.  As mentioned in chapter 3, I use local Bayesian networks as a 

tool to elicit conditional probability distributions, CPDs.  

 

Figure 4.1.4: Process for learning the conditional probability distribution (CPD) for BER. In this example, the 

modulation system is DQPSK.  
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4.1.2 Results and Discussion 

 

Tables 4.1.1 and 4.1.2 show the conditional probability distributions (CPD) for BER 

obtained after performing the simulation for different modulation schemes: differential binary 

phase shift keying (DBPSK), differential quaternary phase shift keying (DQPSK), and 

differential 8 phase shift keying (D8PSK). A CPD describes how the probability distribution of a 

random variable changes according to its influencing variables. When a random variable depends 

on discrete variables, its CPD must map each combination of the states of these variables, its 

parents, to its probability distribution. The CPD of the bit error rate, BER has 108 combinations 

due to the different states of the parents: 6 states for EbN0 times 6 states for C/I times 3 states for 

Dop_Phi. The probability distribution of BER falls over 5 states: BER_1, BER_2, BER_3, 

BER_4, and BER_5. BER_1 is the preferable state for the communication system, since it 

corresponds to the lowest error rate. Therefore, the parameters of the system must be 

manipulated so that the probability of the BER being low (states BER_1, or BER_2) increases 

and the probability of being high (states BER_3 to BER_5) decreases.  

Since these tables include a high number of combinations, I will analyze only some of the 

more interesting combinations; the whole tables can be found in the appendix 1. Let us start with 

the combinations where the probability of BER being high is the greatest. This situation happens 

when either EbN0 or C/I is low and gets more critical as I increase the number of bits per 

symbol. When EbN0=EbN0_1, no matter what the states of C/I and Dop_Phi are, BER= BER_5 

with probability 1. This happens for all the modulation schemes used in this dissertation: 

DBPSK, DQPSK, and D8PSK. One can see that in table 4.1.1 that the probability distribution of  

BER is [0, 0, 0, 0, 1], which corresponds to the probabilities of this variable being in the states 
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BER_1, BER_2, BER_3, BER_4, and BER_5 respectively, in other words: [p(BER=BER_1), 

p(BER=BER_2), p(BER=BER_3),  p(BER=BER_4),  p(BER=BER_5)]. 

 

   Table 4.1.1: Probability distribution of BER for DBPSK, DQPSK, and D8PSK when EbN0 is EbN0_1. 

States of the Parents Probability distribution of BER 

  

EbN0_1 

   

C/I_1 to 

C/I_6 

 

Phi_1 to Phi_3 

 

 

    0     0 

 

    0 

 

    0    1 

 

 

The probability distribution of BER is also [0, 0, 0, 0, 1] when C/I is at its lowest values, 

state C/I_1, regardless of the states of the other variables and the modulation scheme.   

 

Table 4.1.2: Probability distribution of BER for DBPSK, DQPSK, and D8PSK when C/I is C/I_1. 

States of the Parents Probability distribution of BER 

   

EbN0_1to EbN0_6 

   

C/I_1 

 

Phi_1 to Phi_3 

 

 

    0     0 

 

    0 

 

    0    1 

 

When EbN0 increases, the probability distribution of BER is no longer [0, 0, 0, 0, 1]. One 

can see in Tables 4.1.3 through 4.1.5 that when EbN0=EbN0_2, the p(BER_1) to p(BER_4)  

increase, whereas the p(BER_5) decreases. This is more noticeable at high values of C/I. In table 

4.1.3, let us compare the row identified with I with the one identified with II. I can observe that 

in I, C/I is C/I_2, the probability distribution of BER is [0, 0, 0.1, 0.31, 0.59], whereas in II, C/I 

is C/I_6 the probability distribution is [0.01, 0.07, 0.235, 0.455, 0.23]. It makes sense that if C/I 

is higher the error rate diminishes. I can also see that  p(BER=BER_5) drops from 0.59 to 0.23 

when C/I goes from  C/I_2 to C/I_6. This pattern holds in Tables 4.1.4 and 4.1.5, although   

p(BER=BER_5) drops by a smaller amount. These tables correspond to the DQPSK and D8PSK 
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modulations respectively, which are more susceptible to noise and interference, or in other words 

exhibit high error probability for a given EbN0 and C/I.  

Table 4.1.3: Probability distribution of BER for DBPSK EbN0 is EbN0_2. 

States of the parents Probability distribution of BER  

  EbN0_2  C/I_2  Phi_1 0 0 0.1 0.31 0.59 I 

  EbN0_2  C/I_2  Phi_2 0 0 0.075 0.39 0.535  

  EbN0_2  C/I_2  Phi_3 0 0 0.1 0.27 0.63 

  EbN0_2  C/I_3  Phi_1 0 0.09 0.28 0.405 0.225 

  EbN0_2  C/I_3  Phi_2 0.005 0.06 0.295 0.36 0.28 

  EbN0_2  C/I_3  Phi_3 0 0.065 0.255 0.415 0.265 

  EbN0_2  C/I_4  Phi_1 0 0.08 0.22 0.44 0.26 

  EbN0_2  C/I_4  Phi_2 0.005 0.095 0.175 0.47 0.255 

  EbN0_2  C/I_4  Phi_3 0 0.12 0.19 0.405 0.285 

  EbN0_2  C/I_5  Phi_1 0 0.11 0.25 0.385 0.255 

  EbN0_2  C/I_5  Phi_2 0 0.09 0.17 0.46 0.28 

  EbN0_2  C/I_5  Phi_3 0 0.08 0.22 0.41 0.29 

  EbN0_2  C/I_6  Phi_1 0.01 0.07 0.235 0.455 0.23 II 

  EbN0_2  C/I_6  Phi_2 0 0.06 0.245 0.435 0.26  

  EbN0_2  C/I_6  Phi_3 0 0.105 0.19 0.445 0.26 

 

Table 4.1.4: Probability distribution of BER for DQPSK EbN0 is EbN0_2. 

States of the parents Probability distribution of BER  

  EbN0_2  C/I_2  Phi_1 0 0 0 0.2 0.8 I 

  EbN0_2  C/I_2  Phi_2 0 0 0 0.165 0.835  

  EbN0_2  C/I_2  Phi_3 0 0 0 0.155 0.845 

  EbN0_2  C/I_3  Phi_1 0 0 0 0.47 0.53 

  EbN0_2  C/I_3  Phi_2 0 0 0 0.47 0.53 

  EbN0_2  C/I_3  Phi_3 0 0 0 0.47 0.53 

  EbN0_2  C/I_4  Phi_1 0 0 0 0.465 0.535 

  EbN0_2  C/I_4  Phi_2 0 0 0 0.56 0.44 

  EbN0_2  C/I_4  Phi_3 0 0 0 0.505 0.495 

  EbN0_2  C/I_5  Phi_1 0 0 0.005 0.405 0.59 

  EbN0_2  C/I_5  Phi_2 0 0 0 0.46 0.54 

  EbN0_2  C/I_5  Phi_3 0 0 0 0.455 0.545 

  EbN0_2  C/I_6  Phi_1 0 0 0.005 0.465 0.53 II 

  EbN0_2  C/I_6  Phi_2 0 0 0 0.52 0.48  
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Table 4.1.5: Probability distribution of BER for D8PSK EbN0 is EbN0_2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 4.1.6 through 4.1.8 show that when EbN0 reaches its maximum, EbN0=EbN0_6, 

p(BER=BER_1) gets its highest values and even reaches 1. It is important to mention that if the 

variable C/I is at a low value, it also affects the probability distribution of BER. This influence 

becomes stronger as I move from DBPSK to D8PSK modulation: the bits per symbol augment.  

Table 4.1.6 shows that with DBPSK modulation p(BER=BER_1)= 1 when C/I   C/I_3. 

Remember that I want p(BER=BER_1) to be as high as possible, so that I can have fewer errors 

and retransmissions in the network. What table 4.1.6 tells is that with DBPSK modulation this is 

more probable to obtain than with DQPSK and D8PSK modulation. Indeed, this is something 

that the literature suggests. In this dissertation I are expressing this knowledge by means of 

probability tables such as tables 4.1.6 through 4.1.8. Bayesian networks and influence diagrams 

require this type of tables to perform probabilistic reasoning.  

 

States of the parents Probability distribution of BER  

  EbN0_2  C/I_2  Phi_1 0 0 0 0 1 I 

  EbN0_2  C/I_2  Phi_2 0 0 0 0 1  

  EbN0_2  C/I_2  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_3  Phi_1 0 0 0 0.085 0.915 

  EbN0_2  C/I_3  Phi_2 0 0 0 0.08 0.92 

  EbN0_2  C/I_3  Phi_3 0 0 0 0.065 0.935 

  EbN0_2  C/I_4  Phi_1 0 0 0 0.085 0.915 

  EbN0_2  C/I_4  Phi_2 0 0 0 0.135 0.865 

  EbN0_2  C/I_4  Phi_3 0 0 0 0.115 0.885 

  EbN0_2  C/I_5  Phi_1 0 0 0 0.12 0.88 

  EbN0_2  C/I_5  Phi_2 0 0 0 0.135 0.865 

  EbN0_2  C/I_5  Phi_3 0 0 0 0.105 0.895 

  EbN0_2  C/I_6  Phi_1 0 0 0 0.105 0.895 II 

  EbN0_2  C/I_6  Phi_2 0 0 0 0.145 0.855  

  EbN0_2  C/I_6  Phi_3 0 0 0 0.095 0.905 

  EbN0_2  C/I_6  Phi_3 0 0 0 0.465 0.535 
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Table 4.1.6: Probability distribution of BER for DBPSK when EbN0 is EbN0_6. 
States of the parents Probability distribution of BER  

  EbN0_6  C/I_2  Phi_1 0.65 0 0.025 0.07 0.255 I 

  EbN0_6  C/I_2  Phi_2 0.63 0.03 0.015 0.08 0.245  

  EbN0_6  C/I_2  Phi_3 0.605 0.04 0.025 0.07 0.26 

  EbN0_6  C/I_3  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_3 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_3 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_3 1 0 0 0 0 

  EbN0_6  C/I_6  Phi_1 1 0 0 0 0 II 

  EbN0_6  C/I_6  Phi_2 1 0 0 0 0  

  EbN0_6  C/I_6  Phi_3 1 0 0 0 0 

 

Table 4.1.7: Probability distribution of BER for DQPSK when EbN0 is EbN0_6. 

States of the parents Probability distribution of BER  

  EbN0_6  C/I_2  Phi_1 0.375 0.03 0.015 0.135 0.445 I 

  EbN0_6  C/I_2  Phi_2 0.355 0.06 0.07 0.12 0.395  

  EbN0_6  C/I_2  Phi_3 0.25 0.07 0.1 0.165 0.415 

  EbN0_6  C/I_3  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_3 0.995 0.005 0 0 0 

  EbN0_6  C/I_4  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_3 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_3 0.995 0.005 0 0 0 

  EbN0_6  C/I_6  Phi_1 1 0 0 0 0 II 

  EbN0_6  C/I_6  Phi_2 1 0 0 0 0  

  EbN0_6  C/I_6  Phi_3 1 0 0 0 0 
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Table 4.1.8: Probability distribution of BER for D8PSK when EbN0 is EbN0_6. 

States of the parents Probability distribution of BER  

  EbN0_6  C/I_2  Phi_1 0.025 0.015 0.035 0.25 0.675 I 

  EbN0_6  C/I_2  Phi_2 0 0.01 0.07 0.235 0.685  

  EbN0_6  C/I_2  Phi_3 0 0 0.025 0.355 0.62 

  EbN0_6  C/I_3  Phi_1 0.96 0.035 0.005 0 0 

  EbN0_6  C/I_3  Phi_2 0.725 0.225 0.05 0 0 

  EbN0_6  C/I_3  Phi_3 0.36 0.34 0.295 0.005 0 

  EbN0_6  C/I_4  Phi_1 0.96 0.04 0 0 0 

  EbN0_6  C/I_4  Phi_2 0.945 0.055 0 0 0 

  EbN0_6  C/I_4  Phi_3 0.935 0.06 0.005 0 0 

  EbN0_6  C/I_5  Phi_1 0.985 0.015 0 0 0 

  EbN0_6  C/I_5  Phi_2 0.96 0.04 0 0 0 

  EbN0_6  C/I_5  Phi_3 0.915 0.06 0.025 0 0 

  EbN0_6  C/I_6  Phi_1 0.99 0.01 0 0 0 II 

  EbN0_6  C/I_6  Phi_2 0.945 0.05 0.005 0 0  

  EbN0_6  C/I_6  Phi_3 0.955 0.045 0 0 0 

 

 

4.2 Simulation of the Bayesian Network  

 
In chapter 3, I presented the Bayesian model to perform probabilistic inference on random 

variables that affect the performance of the wireless communication system. This section 

presents how the Bayesian network can answer some queries about specific variables based on 

evidence. I will analyze several cases that show how the wireless system Bayesian network 

(WBN) updates the conditional probability tables (CPD) of some random variables as it gets new 

evidence. The variables of interest in this case are:  N0 (Noise Density), Co_Ch (Interference 

Power), Fade (Multipath Fading), and Dist (Distance).  

 

4.2.1 Methodology 

 

To see how the WBN responds to queries I first assume that I have no knowledge about the 

probability distribution of the variables of interest: N0, Co_Ch, Fade, and Dist. In the Bayesian 
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model described in chapter 3, these are random variables that affect the operation of the wireless 

communication system. Because of their random nature, the way I have to estimate how they can 

impact the wireless system is through their probability distributions. Since at the beginning I 

ignore the probability distribution of the aforementioned variables, I start with uniform 

probability distributions. Then, I can update the probability distributions of these variables by 

observing the state of one of the variables they influence.  In this case, I observe the state of the 

variable bit error rate, BER, ① in figure 4.2.1. I can call this process getting evidence.  This 

evidence is used to reduce the factor that represents the conditional probability distribution 

(CPD) of BER, ② in figure 4.2.1; I explained the factor reduction process in chapter 2. After 

this CPD is reduced, the variable elimination, VE, algorithm is used to get rid of all the other 

variables except for the ones, whose CPDs I want to infer, ③ in figure 4.2.1.  I already 

explained the VE algorithm in the second part of chapter 2. From that explanation, remember 

that eliminating a variable means to summing out all the occurrences of that variable in the 

factors that represent the Bayesian network.  

 
Figure 4.2.1: Variable elimination (VE) based on evidence. The evidence is the state of BER that the receiver 

observes.  

Once I have the CPDs, I use them the next time I get new evidence; therefore in each 
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iteration I perform probabilistic inference with CPDs updated in the previous step. Figure 4.2.2 

illustrates the wireless system Bayesian network (WBN) as an entity that receives as inputs: 

Setup_n, the values of the parameters at the iteration n; Evidence_n, the observed value of BER 

at the iteration n; Query_n, set of variables for which I want to infer the CPDs; CPD_n, CPDs of 

the query variables at the iteration n. With those inputs the WBN yields CPD_n+1, the updated 

CPDs of the query variables to be used in the next iteration, n+1.  If in the iteration 0 I have no 

previous knowledge about the query variables, CPD_0 is uniform for  all the variables. In case I 

have some preliminary knowledge about the query variables that comes from former experiments 

and measurements, the CPD_0 are no longer uniform but contain probabilistic information won 

through experience. For instance, the radio device could measure the interference power 

(Co_Ch) regularly, and from these measurements estimate the CPD of this variable.  

 

Figure 4.2.2: Updating the conditional probability tables based on the evidence obtained in each iteration. 

 

To show how the Bayesian network learns from new evidence I perform simulations, 

wherein I observe BER several times, and show how the CPDs evolve with each observation. 

Each time I run these simulations, I assume initial uniform probability distributions for the 
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variables N0 (Noise Density), Co_Ch (Interference Power), Fade (Multipath Fading), and Dist 

(Distance).  I follow the procedure described in figure 4.2.2: each time I get new evidence, I 

make a query, and use the CPDs obtained in the query in the next iteration. In the set of 

experiments that assume uniform probabilities at the beginning, the initial CPDs are: 

N0:{0.25,0.25,0.25,0.25}; Co_Ch:{0.2,0.2,0.2,0.2,0.2}; Dist:{0.25,0.25,0.25,0.25};    

Fade:{0.333,0.333,0.333}.  

I analyze different cases:  

1. The BER is mostly low, the transmission power Tx is low, Tx_1, the spectral efficiency 

is high, SE_3, and modulation D8PSK.  

2. The BER is mostly low, the transmission power Tx is high, Tx_4, the spectral efficiency 

is low, SE_1, and modulation DBPSK. 

3. The BER is mostly high, the transmission power Tx is low, Tx_1, the spectral efficiency 

is high, SE_3 and modulation D8PSK. 

4. The BER is mostly high, the transmission power Tx is high, Tx_4, the spectral efficiency 

is low, SE_1, and modulation DBPSK. 

In all the four cases, I kept the carrier frequency Fc, and the time of symbol Ts at Fc_1, and 

Ts_1 respectively.   

4.2.2 Results and Discussion 

 

As I present the probability distributions in this section, let us remember that in chapter 3, I 

defined these probability distributions as follows: 

 

N0: [p(N0=N0_1), p(N0=N0_2), p(N0=N0_3), p(N0=N0_4)], where N0_1 <  N0_2 <  N0_3 < 

N0_4.  
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Co_Ch: [p(Co_Ch=CC_1), p(Co_Ch=CC_2), p(Co_Ch=CC_3), p(Co_Ch=CC_4), 

p(Co_Ch=CC_5)], where CC_1 <  CC_2 <  CC_3 <  CC_4 < CC_5.  

 

Dist: [p(Dist=D_1), p(Dist=D_2), p(Dist=D_3), p(Dist=D_4)], where D_1 <  D_2 <  D_3 < D_4.  

 

Fade: [p(Fade=Sh_1), p(Fade=Sh_2), p(Fade=Sh_3)], where Sh_1 <  Sh_2 <  Sh_3.  

 

 

Let us remember also that p(x=x_1) means the probability that the variable x is in the state 

x_1. For sake of brevity, in some cases I use p(x_1) to represent p(x=x_1).  For instance, either 

p(Co_Ch=CC_1) or p(CC_1) represents the probability that the co-channel interference power 

Co_Ch is at its lowest values, state CC_1.  

 

Case 1: BER is mostly low, the transmission power Tx is low, Tx_1, the spectral efficiency is 

high, SE_3 and modulation D8PSK.  

The setup is: {'Fc': 'Fc_1', 'Ts': 'Ts_1', 'Tx': 'Tx_1', 'SE': 'SE_3'} 

The initial probability distributions, before observing BER, are: 
 

N0: [0.25, 0.25, 0.25, 0.25] 

 

Co_Ch: [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Dist: [0.25, 0.25, 0.25, 0.25] 

 

Fade: [0.333, 0.333, 0.333] 

 

 

After observing BER, the probability distributions become: 

 

Observation 1: BER= BER_1 
 

N0: [0.267, 0.267, 0.267, 0.199] 

 

Co_Ch: [0.306, 0.296, 0.235, 0.137, 0.025] 

 

Dist: [0.529, 0.220, 0.125, 0.125] 

 

Fade: [0.499, 0.389, 0.112] 
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Before observation 1, it is equally probable for the variables to be at low, medium, or high 

levels. Notice that after observing that BER is low, the network yields CPDs with higher 

probabilities for states that cause BER=BER_1.  This is because lower values of noise power 

density N0, distance Dist, and multipath fading Fade increase the probability of EbN0 being at 

high values, which reduces the probability of error or BER; similarly, lower values of co-channel 

interference power Co_Ch, increase the probability of C/I being at high values, which along with 

a high EbN0 also contribute to reduce the BER.     

 

Observation 2: BER =BER_2  
 

N0: [0.273, 0.273, 0.273, 0.180] 

 

Co_Ch: [0.398, 0.316, 0.187, 0.093, 0.007] 

 

Dist: [0.565, 0.208, 0.113, 0.113] 

 

Fade: [0.532, 0.407, 0.061] 

 

After observation 2, the trend continues. The probabilities of lower values of N0, Co_Ch, 

Dist, and Fade decrease, whereas those of higher values decrease.   

 

Observation 3: BER = BER_1 
 

N0: [0.282, 0.282, 0.282, 0.153] 

 

Co_Ch: [0.431, 0.335, 0.173, 0.059, 0.000] 

 

Dist: [0.770, 0.134, 0.048, 0.048] 

 

Fade: [0.591, 0.389, 0.02] 

 

Observation 4: BER = BER_1  
 

N0: [0.289, 0.289, 0.289, 0.134] 

 

Co_Ch: [0.452, 0.347, 0.160, 0.040, 0.000] 

 

Dist: [0.888, 0.075, 0.018, 0.018] 
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Fade: [0.628, 0.365, 0.007] 

 

Observation 5: BER=BER_1 
 

N0: [0.294, 0.294, 0.294, 0.118] 

 

Co_Ch': [0.468, 0.354, 0.149, 0.027, 0], 

 

Dist: [0.948, 0.039, 0.007, 0.007] 

 

Fade: [0.656, 0.341, 0.002] 

 

 

Notice in observations 3 through 5 that the Bayesian network reinforces its beliefs that N0, 

Co_Ch, Dist, and Fade are at their lowest values. For instance, the initial probabilities for CC_1 

and CC_5 are both 0.2; after observation 1, p(Co_Ch = CC_1) rises to 0.306 and p(Co_Ch = 

CC_5) drops to 0.025. This trend continues through all the observations; by observation 5, 

p(Co_Ch = CC_1) has risen to 0.468, whereas p(Co_Ch = CC_5) has dropped to zero.  

 

Case 2: BER is mostly low, the transmission power Tx is high, Tx_4, the spectral efficiency is 

low, SE_1 and modulation DBPSK.  

The setup is: {'Fc': 'Fc_1', 'Ts': 'Ts_1', 'Tx': 'Tx_4', 'SE': 'SE_1'} 

The initial probability distributions, before I observe BER, are: 
 

N0: [0.25, 0.25, 0.25, 0.25] 

 

Co_Ch: [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Dist: [0.25, 0.25, 0.25, 0.25] 

 

Fade: [0.333, 0.333, 0.333] 

 

After observing BER, the probability distributions become: 

 
 

Observation 1: BER= BER_1 
 

N0: [0.255, 0.255, 0.255, 0.233] 

 

Co_Ch: [0.26, 0.254, 0.2344, 0.186, 0.066] 
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Dist: [0.292, 0.245, 0.231, 0.231]  

 

Fade: [0.392, 0.384, 0.223] 

 

 

As in the previous case, BER is mostly low. However, the transmission power Tx is set at a 

high value and the modulation scheme is DBPSK, which is more tolerant to noise and 

interference than the modulation used in case 1, D8PSK.  With such a configuration, and if the 

environment remains with the same conditions as in case 1, p(BER=BER_1) should go higher, 

since the signal power has increased and a modulation scheme is less prone to error. Like in case 

1, the BN starts with uniform probability distributions. After observation 1, p(Co_Ch=CC_1) 

goes up to 0.26 and p(Co_Ch=CC_5) falls to 0.066. The same behavior took place in case 1; 

however, in this case the change in the probability distribution of Co_Ch is smaller. Since Tx is 

high, Tx=Tx_4,  the fact that BER=BER_1 could be caused more by the high level of Tx than by 

the low value of Co_Ch. Therefore, the belief the Bayesian network has about Co_Ch being low 

is less strong than in case 1.  

Observation 2: BER = BER_2 
 

N0: [0.203, 0.203, 0.203, 0.391] 

 

Co_Ch: [0.382, 0.382, 0.19, 0.045, 0.0] 

 

Dist: [0.117, 0.271, 0.306, 0.306] 

 

Fade: [0.112, 0.156, 0.732] 

 

 

The setting of the transmitter is such that p(BER=BER_1) should be high. The transmission 

power is high and the modulation scheme is less prone to noise. Therefore, if the evidence tells 

BER=BER_2 or higher, the Bayesian network (BN) modifies its beliefs about the environment. 

The BN starts to believe the environment has such conditions that causes more transmission 
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errors; this change in beliefs is represented through a change in the probability distributions of 

the variables N0, Co_Ch, Fade, and Dist. Let us remember that a Bayesian network (BN) is also 

called Belief network because it represents its beliefs about the state of variables as probabilities, 

which it adjusts as it gets new evidence; the stronger the belief, the higher the probability, and 

the weaker the belief, the lower the probability.  

Let us notice the changes in the probability distributions of N0, Fade, and Dist after 

observation 2; the probabilities of higher values have increased, this is due to the fact that higher 

values of noise density (N0) and multipath fading (Fade), and larger distances (Dist) increase the 

probability of error (BER). Therefore, the probability distributions, beliefs of the Bayesian 

network, evolved accordingly: p(N0_4)=0.391, p(D_4)= 0.306,  and p(Sh_3) = 0.732. When in 

case 1 the evidence told BER=BER_2, those probability distributions did not suffer such a 

dramatic change; the probabilities for N0, Fade and Dist being at their lowest values remained 

high. The explanation: in case 1, the transmission power was low, Tx=Tx_1, while the spectral 

efficiency high, modulation D8PSK with SE=SE_3. This setup makes the communication system 

more prone to error; therefore, the fact that BER increased to BER_2 is due more to the 

configuration than to the environment.  

 

Observation 3: BER = BER_1 
 

N0: [0.221, 0.221, 0.221, 0.337]  

 

Co_Ch: [0.415, 0.390, 0.166, 0.028, 0.0]  

 

Dist: [0.156, 0.277, 0.283, 0.283] 

 

Fade: [0.162, 0.223, 0.615] 

 

Observation 4:BER= BER_1 

 

N0: [0.235, 0.235, 0.235, 0.295] 
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Co_Ch: [0.440, 0.394, 0.148, 0.018, 0.0] 

 

Dist: [0.193, 0.279, 0.264, 0.264]  

 

Fade: [0.214, 0.291, 0.495] 

 

Observation 5: BER =BER_1 
 

N0: [0.246, 0.246, 0.246, 0.263]  

 

Co_Ch: [0.459, 0.395, 0.133, 0.012, 0.0]  

 

Dist: [0.226, 0.277, 0.248, 0.248]  

 

Fade: [0.262, 0.353, 0.385] 

 

 

In observations 3 to 5, the evidence telling repeatedly that BER=BER_1 has made p(N0_4), 

p(D_4),  and p(Sh_3) start dropping and p(N0_1), p(D_1);  and p(Sh_1) start increasing. Which 

means that shorter distances, lower noise, and lower multipath fading have started to be more 

probable.  

 

Case 3: The BER is mostly high, the transmission power Tx is high, Tx_4, the spectral 

efficiency is low, SE_1 and modulation DBPSK. 

The setup is:  {'Fc': 'Fc_1', 'Ts': 'Ts_1', 'Tx': 'Tx_4', 'SE': 'SE_1'} 

The initial probability distributions, before I observe BER, are: 
 

N0: [0.25, 0.25, 0.25, 0.25] 

 

Co_Ch: [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Dist: [0.25, 0.25, 0.25, 0.25] 

 

Fade: [0.333, 0.333, 0.333] 

 

When I start observing BER, the probability distribution become: 
 

Observation 1: BER= BER_4  
 

N0: [0.219, 0.219, 0.219, 0.344] 
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Co_Ch: [0.242, 0.246, 0.207, 0.165, 0.140]  

 

Dist: [0.156, 0.260, 0.292, 0.292]  

 

Fade: [0.179, 0.202, 0.618 ] 

 

 

After observation 1, the probability distributions show that high values of noise density N0, 

multipath fading Fade, and distance Dist are more probable than lower values: p(N0_4) = 0.344, 

p(D_4) = 0.292, p(Sh_3) = 0.618, whereas p(N0_1) = 0.219, p(D_1) = 0.156, and p(Sh_1) = 

0.179. An environment with such conditions increases the error probability BER. Since BER is 

high, BER=BER_4, the Bayesian network, BN, has modified its beliefs accordingly.   

 

Observation 2: BER= BER_2 
 

N0: [0.212, 0.212, 0.212, 0.364] 

 

Co_Ch: [0.404, 0.412, 0.156, 0.028, 0.0] 

 

Dist: [0.071, 0.257, 0.335, 0.335]  

 

Fade: [0.036, 0.053, 0.910] 

 

 

In this observation, BER=BER_2, which is lower than in the previous observation; however, 

high values of noise density N0, multipath fading Fade, and distance Dist  are even more 

probable than before. If I consider that with this setup, Tx=Tx_4, and modulation DBPSK, I 

should get low BER. BER=BER_2  implies that the conditions of the environment are such that  

BER is higher than expected.  
 

Observation 3: BER =BER_3  
 

N0: [0.202, 0.202, 0.202, 0.393]  

 

Co_Ch: [0.431, 0.467, 0.096, 0.005, 0.0] 

 

Dist: [0.032, 0.24, 0.364, 0.364]  

 

Fade: [0.005, 0.009, 0.986] 
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Observation 4: BER= BER_4 
 

N0: [0.191, 0.191, 0.191, 0.425]  

 

Co_Ch: [0.455, 0.484, 0.059, 0.001, 0.0] 

 

Dist: [0.014, 0.218, 0.383, 0.383]  

 

Fade: [0.000, 0.002, 0.998] 

 

In observations 3 and 4 I have the same trend that I have in the two first observations.  

Observation 5: BER = BER_1 
 

N0: [0.224, 0.224, 0.224, 0.328]  

 

Co_Ch: [0.488, 0.467, 0.045, 0.000, 0.0]  

 

Dist: [0.022, 0.241, 0.368, 0.368]  

 

Fade: [0.001, 0.003, 0.996] 

 

When BER is low, BER=BER_1, I see a trend slightly different from the one of the first four 

observations: the probabilities of high values start decreasing, whereas the probabilities of low 

values start increasing. This indicates that the environment has become more favorable for 

obtaining lower error probabilities; therefore, the probability distributions change accordingly.  

 

Case 4: The BER is mostly high, the transmission power Tx is low, Tx_1, the spectral efficiency 

is high, SE_3 and modulation D8PSK. 

The setup is:  {'Fc': 'Fc_1', 'Ts': 'Ts_1', 'Tx': 'Tx_1', 'SE': 'SE_3'} 

The initial probability distributions, before observing BER, are: 
 

N0: [0.25, 0.25, 0.25, 0.25] 

 

Co_Ch: [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Dist: [0.25, 0.25, 0.25, 0.25] 

 

Fade: [0.333, 0.333, 0.333] 

 

After observing BER, the probability distribution become: 
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Observation 1: BER = BER_5  
 

N0: [0.242, 0.242, 0.242, 0.275] 

 

Co_Ch: [0.135, 0.153, 0.192, 0.236, 0.283]  

 

Dist: [0.154, 0.260, 0.292, 0.292]  

 

Fade: [0.266, 0.301, 0.433 ] 

 

 

In this case, the configuration is less favorable for getting low error probabilities than the 

one used in case 3. Hence, it is natural seeing high values of BER, which in turn causes that the 

changes observed  in the probability distributions are smaller and less extreme than the ones 

observed in case 1. In case 3, the probabilities tended to be either very low or very high. On the 

other hand, in this case, (case 4) the probability distributions look more evenly distributed. An 

almost evenly distributed probability distribution provides less information than a biased 

probability distribution: the more bias a probability distribution has, the more information it 

provides about the random variable characterized by that distribution; for instance, if the 

probability distribution for the variable Distance is Dist:[0.948, 0.039, 0.007, 0.007], since p 

(D_1) is so high, I am almost sure that this variable is in state D_1, which represents distances 

between 10 and 100 meters.  On the other hand, if the probability distribution is Dist: [0.154, 

0.260, 0.293, 0.293] I cannot be as certain about the state of the variable as I was with the 

previous probability distribution. Let us look at the numbers; none of them is much bigger than 

the others, which means I have less information about the variable Distance. The reason: with the 

configuration used in this case, low power and modulation prone to error (D8PSK), the error 

probability is high; hence, if the evidence tells the BER is high, there is no surprise because I was 

expecting that; therefore, I get less information out of this evidence. The less surprising the 
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evidence is, the less information it provides. Despite of that, the Bayesian network still learns as 

it gets new evidence; however, it needs to collect more pieces of evidence.  

 

Observation 2: BER = BER_4  
 

N0: [0.263, 0.263, 0.263, 0.211]  

 

Co_Ch: [0.329, 0.269, 0.194, 0.144, 0.062]  

 

Dist: [0.156, 0.260, 0.292, 0.292]  

 

Fade: [0.353, 0.419, 0.228] 

 

Observation 3: BER= BER_5 
 

N0: [0.249, 0.249, 0.249, 0.252]  

 

Co_Ch: [0.243, 0.234, 0.218, 0.203, 0.101]  

 

Dist: [0.068, 0.256, 0.337, 0.337]  

 

Fade: [0.279, 0.386, 0.334] 

 

Observation 4: BER= BER_4 
 

N0: [0.274, 0.274, 0.274, 0.178]  

 

Co_Ch: [0.443, 0.303, 0.158, 0.084, 0.011]  

 

Dist: [0.047, 0.247, 0.353, 0.353]  

 

Fade: [0.338, 0.513, 0.148] 

 

Observation 5: BER =BER_5 
 

N0: [0.256, 0.256, 0.256, 0.231]  

 

Co_Ch: [0.352, 0.291, 0.203, 0.134, 0.019]  

 

Dist: [0.014, 0.222, 0.382, 0.382]  

 

Fade: [0.275, 0.488, 0.237] 

 

4.3 Simulation of the Influence Diagram 
 

In the previous section, I presented simulations showing how the wireless system Bayesian 

network (WBN) uses evidence to update its beliefs about some of the random variables of the 
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network.   In this section, I perform some simulations to demonstrate how the influence diagram 

(ID), explained in chapter 3, can assist the wireless communication system in selecting the 

configuration that suits it the best in the midst of the random conditions of the environment, 

characterized by the conditional probability distributions (CPD). Remember from chapter 3 that I 

can build an influence diagram by adding one or several utility function nodes to a Bayesian 

network. In figure 4.3.1,  I have added a utility function to the BN I used in the previous section.  

 

Figure 4.3.1. Influence Diagram for Decision Making in Wireless Communication System. A Bayesian network plus 

one or several utility functions turns into an Influence Diagram. 

 

4.3.1 Methodology 

 

To show the functionality of the influence diagram (ID), I first have to briefly explain how 

the wireless communication system Bayesian network (WBN) and the ID work together. The 

WBN updates the CPD as it gets new evidence, and passes them along to the ID, which 

calculates the utilities for different policies in order to select the one with the maximum utility.  

Figure 4.3.2 illustrates this process.   
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Figure 4.3.2. Bayesian Network interacting with the Influence Diagram. The influence diagram calculates the utility 

for each policy based on the CPDs passed by the Bayesian network.   

 

For demonstration purposes, I suppose different scenarios wherein the wireless system 

operates and have the influence diagram calculate the utility for different policies applied in 

those scenarios. In this context, a policy is a set of decisions as of how to configure the wireless 

communication system. In other words, a policy is a specific configuration, which contains the 

values for the parameters: transmission power (Tx), carrier frequency (Fc), time of symbol (Ts), 

modulation scheme (Mod), and spectral efficiency (SE). I first load the conditional probability 

distributions (CPD) into the influence diagram (ID), then pass the policy of which I want to 

calculate the utility, and finally sort the policies descendently according to their utilities.      

To represent different scenarios, I manipulate the probability distributions of the variables 

N0 (Noise Density), Co_Ch (Interference Power), Fade (Multipath Fading), and Dist (Distance) 

accordingly; I assign high probabilities to states that I would expect to see more in that scenario. 

For example, the probability distributions for a scenario wherein the distances tend to be short, 

the multipath fading low, and the noise density medium could look like: N0:[0.05, 0.4, 0.5, 0.05]; 

Fade:[0.8, 0.2, 0]; Dist:[0.7, 0.2, 0.08, 0.02]. On the other hand, if the scenario is characterized 
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by long distances, high multipath fading, and high noise density, the probability distributions 

would be N0:[0, 0.2, 0.15, 0.65]; Fade:[0, 0.2, 0.8]; Dist:[0.05, 0.15, 0.3, 0.5].  In each radio 

frequency channel, I find different levels of co-channel interference. Consequently, the 

probability distribution of the co-channel interference power, Co_Ch, changes according to the 

carrier frequency of the channel used by the communication system. This does not mean that the 

carrier frequency controls the level of interference; what it means is that the random behavior of 

the co-channel interference found in a channel differs from the one encountered in another 

channel. In the following simulations, as I change the value of the carrier frequency Fc, I assign 

different probability distributions to the variable Co_Ch.   

I represent the policies through the probability distributions of the parameters. Although I 

consider the parameters as deterministic variables, I must assign probability distributions to 

them, so that they can make part of the influence diagram and Bayesian network. I simply assign 

probability 1 to the state that represents the current setup value of the parameter. For instance, let 

use this configuration or policy: transmission power (Tx) = 0dBm; carrier frequency (Fc) = 2400 

MHz; time of symbol (Ts) = 1 microsecond; spectral efficiency (SE) = 1bps/Hz. The probability 

distributions for the parameters would be: Tx:[1, 0, 0, 0]; Fc:[0, 1, 0]; Ts:[1, 0, 0]; and SE:[1, 0, 

0].  

 

4.3.2 Results and Discussion 

 

In this section, I present and discuss the results from simulations in different scenarios, 

wherein I calculated the utilities of several policies. In all these cases, I supposed that the co-

channel interference power behaved according to these probability distributions: if  Fc=Fc_1, 
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then Co_Ch:[0.2, 0.2, 0.3, 0.3, 0] ; if Fc=Fc_2, then Co_Ch: [0.1, 0.4, 0.4, 0.1, 0]; and if 

Fc=Fc_3, then Co_Ch:[0.4, 0.3, 0.2, 0.1, 0]. For each scenario, I show the ten policies with the 

highest utilities in descending order. I specify each policy by listing the values I assign to each 

parameter, and by the side of the policy I write down the utility. For instance, in the line 

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 72.98],  

{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_3'} is the policy and 

72.98 is the utility that the influence diagram has calculated for that policy.  

Let us remember from chapter 3 what the values of the parameters represent: [Fc_1, Fc_2, 

Fc_3] = [915 MHz, 2400 MHz, 5800 MHz]; [Ts_1, Ts_2, Ts_3] = [1.0µs, 4.0µs, 20.0µs]; [Tx_1, 

Tx_2, Tx_3, Tx_4] = [0 dBm, 10 dBm, 20dBm, 30 dBm]; and [SE_1, SE_2, SE_3] = [1bps/Hz, 

2bps/Hz, 3bps/Hz]  

Scenario 1: In this scenario the distances tend to be short, the multipath fading low, and the 

noise power density medium. The probability distributions in this case are: N0:[0.05, 0.4, 0.5, 

0.05]; Fade:[0.8, 0.2, 0]; Dist:[0.7, 0.2, 0.08, 0.02]; Co_Ch(Fc_1):[0.2, 0.2, 0.3, 0.3, 0]; 

Co_Ch(Fc_2): [0.1, 0.4, 0.4, 0.1, 0]; and Co_Ch(Fc_3):[0.4, 0.3, 0.2, 0.1, 0].   

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 72.98] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_1', 'SE': 'SE_3'}, 72.59] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_2', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 71.49] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 70.99] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 70.52] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 70.12] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_2', 'Tx': 'Tx_1', 'SE': 'SE_3'}, 70.03] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_1', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 69.81] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_1', 'SE': 'SE_3'}, 69.69] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_2', 'SE': 'SE_3'}, 69.2] 

 

In this case the configuration with the highest utility, 72.98,  is {'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 

'Tx_2', 'SE': 'SE_3'}, which means tuning the radio at 2400 MHz, using a time of symbol of 20 
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μsec, transmission power of 10 dBm, and D8PSK modulation, whose spectral efficiency is 

3bps/Hz. Let us remember that this configuration is the best according to the preferences I have 

expressed through the utility function (UF) explained in chapter 3. This utility function has as 

arguments BER, SE, and Tx. BER is an indicator, which depends on the conditions of the 

environment and the parameters, whereas SE and Tx are parameters chosen by the user or the 

system.  Since I have no preferences regarding the carrier frequency (Fc) and time of symbol 

(Ts), I did not include them as parameters of the UF.  However, by calculating the utilities of 

different policies, the influence diagram can suggest which values of Fc and Ts can fit the best 

my preferences. The trend in this scenario is that the distances are short and the power fading due 

to multipath propagation is low, which causes the total attenuation to be low. This explain the 

fact that the policies that make the top of the list include low levels of power, Tx_1, and Tx_2, 

and medium frequency, Fc_2.  

Scenario 2:  In this scenario the distances are long, the multipath fading is high, and the noise 

power density is high. The probability distributions in this case are: N0:[0, 0.2, 0.15, 0.65]; 

Fade:[0, 0.2, 0.8]; Dist:[0.05, 0.15, 0.3, 0.5] ; Co_Ch(Fc_1):[0.2, 0.2, 0.3, 0.3, 0]; Co_Ch(Fc_2): 

[0.1, 0.4, 0.4, 0.1, 0]; and Co_Ch(Fc_3):[0.4, 0.3, 0.2, 0.1, 0].   

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 3.99] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_2'}, 3.22] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_1', 'SE': 'SE_3'}, 2.03] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_1', 'SE': 'SE_2'}, -0.08] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_3'}, -0.22] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_2'}, -0.34] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_1', 'SE': 'SE_3'}, -0.54] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_2', 'SE': 'SE_2'}, -0.65] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_1', 'SE': 'SE_3'}, -0.97] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_2', 'SE': 'SE_1'}, -1.25] 
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This scenario has such difficult conditions that the probability of error (BER) tends to be 

high. This fact causes the utility of all the policies to be relatively low compared with the ones 

obtained in other scenarios, scenario 1 and scenario 3.  I even got negative utilities. This result 

suggests that the configurations available to set up the communication system are unfit for the 

scenario represented by the probability distributions enunciated in the previous paragraph. 

Because of the long distances and high multipath fading, the total attenuation is high. This, 

combined with the high value noise density decreases EbN0, which in turn makes BER go up. 

One solution to this situation would be to use higher transmission power and lower carrier 

frequency Fc.   

Scenario 3:  In this scenario, the distances are medium, the multipath fading is medium, and the 

noise power density is low. The probability distributions in this case are: N0:[0.7, 0.2, 0.1, 0]; 

Fade:[0.1, 0.8, 0.1]; Dist:[0.1, 0.4, 0.5, 0] ; Co_Ch(Fc_1):[0.2, 0.2, 0.3, 0.3, 0]; Co_Ch(Fc_2): 

[0.1, 0.4, 0.4, 0.1, 0]; and Co_Ch(Fc_3):[0.4, 0.3, 0.2, 0.1, 0].   

[{'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 51.23] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 51.03] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 50.87] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_1', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 49.13] 

[{'Fc': 'Fc_2', 'Ts': 'Ts_1', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 45.3] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 44.95] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 44.78] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_3', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 43.66] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_2', 'Tx': 'Tx_3', 'SE': 'SE_3'}, 43.21] 

[{'Fc': 'Fc_1', 'Ts': 'Ts_1', 'Tx': 'Tx_3', 'SE': 'SE_2'}, 43.17] 

 

In this scenario, the conditions are not as good as in scenario 1, and not as bad as in scenario 

2.  In this case the configuration with the highest utility, 51.23,  is {'Fc': 'Fc_2', 'Ts': 'Ts_3', 'Tx': 

'Tx_3', 'SE': 'SE_3'}, which means tuning the radio at 2400 MHz, using a time of symbol of 20 

μsec, transmission power of  20 dBm, and D8PSK modulation, whose spectral efficiency is 
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3bps/Hz. This utility is smaller than the maximum utility I got in scenario 1, 72.98. Since the 

conditions of the environment have changed, the marginal probability distribution of BER 

changed as well. This change makes the utility function UF yield a different number, which 

means the UF depends not only on the conditions of the environment but also on the policy. 

Hence, in the same scenario, the utility function (fed by the influence diagram) can tell which 

configurations or policies satisfy the best the preferences of the system.     
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CHAPTER 5 

EXPERIMENTS ON SPECTRUM SENSING AND CHANNEL 

ESTIMATION 
 

This chapter describes experiments performed on channel sensing and channel sounding, 

which are processes that a cognitive radio (CR) needs to acquire knowledge about the 

environment wherein it operates.  First section describes experiments on spectrum sensing using 

an algorithm based on the autocorrelation of the received samples. Second section presents this 

method applied to scanning different channels in order to obtain their utilization levels.  Third 

section describes method that uses Bayesian probability to learn the utilization of the channels 

based on previous and current observations.  Finally, fourth section describes experiments on 

channel sounding.   

 

5.1 Experiments on Spectrum Sensing.  
 

5.1.1 Methodology 

 

Let us define ( ) ( ) ( )x n s n n   as the received samples, where ( )s n , is the primary user 

signal and ( )n  is the noise. Two hypotheses exist: 1) 0 , i.e. absence of signal, and 2) 1 , i.e. 

presence of signal.   These hypotheses are given in [17, 18] and defined as  

 0 : ( ) ( )x n n    (5.1.1) 

 1 : ( ) ( ) ( )x n s n n   .  (5.1.2) 
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Let one define the vectors x  and s   as  

         ( ) [ ( ) ( 1) (1)]Tn x n x n x x ,                           (5.1.3) 

and  

 ( ) [ ( ) ( 1) (1)]Tn s n s n s s  .  (5.14) 

The statistical covariance matrices of these vectors, defined in terms of the expectation E  are   

 [ ( ) ( )]TE n nxR x x , (5.1.5) 

and  

 [ ( ) ( )]TE n nsR s s , (5.1.6) 

respectively.  

According to [17], the matrix xR  can be expressed as   

 
2

 x sR R I  , (5.1.7) 

where 
2

  is the variance of the noise  , and I  the identity matrix. Therefore, in absence of 

signal sR  is zero as well as the non-diagonal elements of xR . Based on this assumption,   Zeng 

and Liang [17] have proposed the ratio between the sum of all the elements of xR , 

1 | |nm

n m

T r  and the sum of its diagonal elements, 2 | |nn

n

T r ,  as metric to detect the 

absence or presence of signal. In absence of signal this ratio is supposed to be one whereas with 

signal present this ratio is greater than one. It is clear that in the first case the ratio is 

2

2









I

I
, 
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whereas in the second case it is 

2

2









sR I

I
; however, in the practice, even in absence of signal xR  

is a non-diagonal matrix and 1 / 2 1T T  [19].  

The assumption about   made in [17] is that ( ( ) ( )) 0E n n     for any 0  . This 

condition holds when the noise is Gaussian; the problem is that the noise of the USRP receiver is 

colored and non-delta correlated, something to consider when analyzing the covariance or 

autocorrelation of the signal in order to decide between 0  and 1 .  

In the proposed method  I calculate the autocorrelation of the samples defined as   

 
1

0

( ) ( ) *( )
sN

m

l x m x m l




  , (5.1.8) 

where, sN  is the number of samples and the symbol * represents the complex conjugate 

operation. Nevertheless, rather than using ( )l  to build a covariance matrix as in [17-19], I use 

the Euclidean distance between  ( )l  and a reference line.  

This reference line corresponds to the ACF of the samples when the signal is strong enough 

to have certainty about its presence. Ideally this reference line is a slope. Figure 5.1.1 shows the 

ACF of the samples in the absence of signal. As one can see ACF is not delta function.  This 

figure also shows that when the signal is strong enough, it practically coincides with the 

reference line. Therefore, comparing the ACF with the reference line can provide information 

about the presence or absence of signal. Since the reference line is a slope, its equation is given 

by y mx b  (equation of a line). I generate sN  points of this line and store them in a vector 

called refACF . To perform the spectrum sensing I take sN  samples and store them in a vector 
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called inACF . The Euclidean distance between inACF  and refACF  , called EuclideanD , is the metric 

that I compare with a threshold 1  to decide between 0  and 1 .  

 
Figure 5.1.1: Distance from th ACF to a reference line as a metric for signal detection  

 

The proposed method is compared with the autocorrelation at the first lag, (1)ACF . Ideally, 

(1) 0ACF   when only noise exists, and (1) 0ACF   when a signal and noise are present. In 

[10], (1)ACF  has been proposed as a metric for spectrum sensing [79]. However, my 

experiments show that (1) 0ACF   in presence of only noise with low standard deviation. The 

reason for that is that the USRP generates colored noise with is not delta correlated; therefore, 

when this noise is stronger than the white noise received from the environment, the ACF is not 

delta correlated either. This fact can wrongly indicate that there is a signal present, when indeed 

it is the colored noise generated by the USRP the one that makes the ACF look like there is a 

signal.    I attempted to solve this situation by subtracting the noise caused by the USRP receiver. 

To do this, I stored in a matrix several vectors containing sN samples taken by the USRP with the 

signal generator turned off.  Then, I calculated the average of all the vectors, stored it in USRP  

and subtracted it from the signal being received by the USRP during the experiments. After 
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subtracting, in absence of signal (only noise) I obtained an ACF that looked more like a delta 

function.   Next section, figure 5.1.3, shows some results in which I can observe that this method 

helped in counteracting the effect of the USRP noise on the ACF.  

Figure 5.1.2 shows the experimental setup used to perform the experiments. A signal 

generator was connected to a USRP N200 unit by means of a cable. The purpose of connecting 

them by a cable was to reduce the random external noise as much as possible. Reducing the 

external noise allowed me to generate noise samples, whose standard deviation I could control. 

For the simulations, I simulated standard normal noise samples, Sim , with different standard 

deviations, which were added to the signal samples collected by the USRP. I estimated the noise 

produced by the receiver, USRP , and subtracted it from the received samples as explained in the 

previous section. I also performed experiments without subtracting USRP . The processing of the 

signal was done in GNU Radio software using Python language and the USRP units served as 

interface between the analog RF domain and the digital software domain. 

 
Figure 5.1.2: Experimental Setup. 

 

5.1.2 Results and Discussion 

 

Examples of some of the results obtained during the experiments are illustrated in figure 

5.1.3. This figure represents the change in the behavior of ACF with respect to delay at different 
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levels of Signal-to-Noise Ratio (SNR) ranging from 0dB to +25 dB and when no signal is 

provided by the signal generator. With no signal the ACF should be 1 at 0 and zero, or almost 

zero, at the other values. However, at the left of figure 5.1.3, which shows the results obtained 

without subtracting the USRP noise, I observe that with no signal ACF is not zero at values of 

delay where it should be. The right of figure 5.1.3 shows that after subtracting USRP , the ACF 

obtained with no signal is as it should be: 1 at 0 and almost zero at the other values.  

 
Figure 5.1.3: Behavior of the ACF with No signal and different values of SNR. Notice that the Euclidean distance 

from ACF to the reference line decreases as SNR increases. The standard deviation of Sim  is 0.01. 

Figure 5.1.4 represents the plots Normalized values of Euclidean Distance and ACF (1) with 

respect to SNR for different values of standard deviations of the simulated noise Sim .   As one 

can see with no signal present, the ACF is the farthest from the reference line. Hence, at certain 

value of EuclideanD , a threshold differentiates two situations:  signal absent ( 0 ) and signal present 

( 1 ). The left of figure 4 shows that the Euclidean distance exceeding certain threshold means 

absence of signal ( 0 ), whereas when it is below that threshold means presence of signal ( 1 ).  

On the other hand, the right of figure 4 shows that ACF (1) exceeding a threshold indicates 

presence of signal ( 1 ), whereas when it is under the threshold means absence of signal ( 0 ). 
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Figure 5.1.4: Behavior of 

EuclideanD  as SNR changes with different standard deviations of Sim   (Left). Behavior of 

ACF(1) as SNR changes with different standard deviations of Sim  (Right). 

 

To evaluate the impact of the threshold selection on the performance of the method, I 

performed experiments with different thresholds for both methods and calculated the probability 

of detection ( dP ) for several signal to noise ratios. Examples of results are given in Figure 5.1.5. 

This figure represents the change of probability of detection with respect to SNR at different 

levels of threshold for both Euclidean distance method and ACF (1) method. As one can see the 

best threshold for the Euclidean distance method is 0.95 and for the ACF (1) method is 0.1, since 

they yield the highest dP  at the lowest SNR. 

 
Figure 5.1.5: Behavior of Probability of Detection as SNR changes with different threshold levels of (left) ACF(1) 

and (right) 
EuclideanD . 
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Finally, Figure 5.1.6 compares both methods set up at their best thresholds for 1024 

samples. In this figure, the results clearly indicate that the Euclidean distance method 

outperforms the ACF (1) method, since it achieves a probability of detection 100%dP   at a 

lower SNR. The difference in SNR is about 4 dB. 

Figure 5.1.6: Behavior of Probability of Detection as SNR changes for 1024 samples and threshold levels of 

EuclideanD  = 0.95 and ACF(1) = 0.1 

The results have shown that the Euclidean distance method takes into consideration the 

inherent noise of the USRP receiver not assuming that the ACF in absence of signal is a delta 

function, which is the assumption of the covariance and eigenvalue based methods.  The results 

of the experiments showed that the Euclidean distance method performs better than the ACF (1) 

method having a SNR gain of about 4 dB for a given SNR.  

5.2 Channel Scanning Experiment  
 

5.2.1 Methodology 

 

The autocorrelation based spectrum sensing technique explained in the previous section can 

be extended to scan different channels in order to establish their utilization level.  The objective 

behind determining the utilization level of channels is for the cognitive radio (CR) to have a 
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selection of the least used channels to choose from, so in case it needs to share the radio 

spectrum with other devices, it has some knowledge to pick a channel wherein it will experience 

fewer collisions. Cognitive Radio technology contemplates dynamic spectrum access (DSA) and 

spectrum sharing not only in unlicensed bands but also in low utilization licensed bands. The 

motivation for this is to exploit the spectrum as much as possible. Since the utilization of 

channels varies according to location, time, and frequency, the CR needs updated information 

about this variable, which it can get by scanning the channels of interest. Conventional spectrum 

analyzers have the channel scanning utility, which works by measuring the power in each 

channel and comparing it with a threshold. This approach follows the same principle of the 

energy detection method mentioned in chapter 2.  One drawback that the energy detection 

method has is that it makes no difference between signal and noise power, which can cause the 

spectrum sensor to detect a signal when indeed only noise exists.  I propose scan the channels of 

interest using the autocorrelation based technique exposed in the previous section. As explained 

before this technique analyzes the autocorrelation function of received samples to determine if 

they contain only noise or signal plus noise.  I think this technique serves well the purpose of 

determining the utilization level of a determined channel, since I need to know if there are 

signals being transmitted more than I need to know their power.  

I scanned channels in four bands: 850MHz, 1910MHz, 2400MHz and 5800 MHz. The first 

two bands are licensed and have been allocated to mobile communications, whereas the last two 

bands are unlicensed and used for different wireless communication systems such as WiFi, 

Bluetooth, and Zigbee. These systems share this bands.   In the 850 MHz band, the central 

frequencies in MHz for the scanned channels were: 824, 827, 829, 832, 834, 837, 839, 842, 844, 
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847, 849, 869, 872, 874, 877, 879, 882, 884, 887, 889, 892, and 894. In the 1910 MHz band the 

channels were: 1850, 1856, 1862, 1868, 1874, 1880, 1886, 1892, 1898, 1904, 1910, 1930, 1936, 

1942, 1948, 1954, 1960, 1966, 1972, 1978, 1984, 1990. In the 2400MHz band, the central 

frequencies in MHz for the scanned channels were: 2400, 2402, 2407, 2412*, 2417*, 2422*, 

2427*, 2432*, 2437*, 2442*, 2447*, 2452*, 2457*, 2462*, 2467*, 2472*, 2477, 2482, 2484, 

2487, 2492, and 2497; where the asterisks indicate that the frequency is a standard Wi-Fi 

channel.  In the 5800 MHz band, the scanned channels were:  5725, 5730, 5735, 5740, 5745, 

5750, 5755, 5760, 5765, 5770, 5775, 5780, 5785, 5790, 5795, 5800, 5805, 5810, 5815, 5820, 

5825, 5830, 5835, 5840, 5845, 5850, 5855, 5860, 5865, 5870, and 5875.  

I used two USRP N200 units: one for the 850MHz and 1910MHz bands, and the other one 

for the bands 2400 MHz and 5800 MHz. Due to limitations in the hardware each USRP unit 

scanned only one channel at a time. The following are the steps followed during this channel 

scanning process: 

1. Tune the USRP unit to the central frequency of the first channel of the list. 

2. Take 1024 samples. 

3. Execute the Euclidean distance autocorrelation based algorithm. 

4. Make the decision as whether or not the channel is busy or empty. The decision has two  

values: 0 represents the channel is empty, and 1 represents the channel is occupied.  

5. Store the decision taken along with the current time and central frequency of the channel. 

6. Go to the next channel in the list and repeat the procedure.  

7. After scanning all the channels in the list go back to the first channel and repeat until  

the experiment is over.  
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Figure 5.2.1 Scanning several channels with the Euclidean distance autocorrelation based sensing method. The 

arrows in steps 1,2,and 7 indicate the exchange of information between the computer and the USRP. Steps 3 to 4 

take place in the computer 

 

After finishing the experiment, I processed the data. This process is summarized in the following 

steps: 

1. Filter the data according the day of the week, the interval of time, and the central frequency. I 

divided the day into five intervals: midnight: [12:00 AM to 6 AM); morning: [6 AM  to 12 

PM); afternoon: [12 PM to 4 PM); evening: [4PM to 8 PM), and night: [8 PM to 12 AM). A 

bracket indicates that the interval includes the value following it, whereas a parenthesis 

indicates that the interval excludes the value preceding it. For instance, the interval midnight 

includes 12:00 AM but not 6 AM.  After filtering, I will have the results yielded by the sensor 

(ones or zeros) grouped by time interval, and carrier frequency.  

2. For each time interval and frequency I store the results (1 and 0) in an array. At the end of 

this step I will have an array of length L, where L equals the number of times the sensor has 

observed that particular channel within the time interval.  

3. For each time interval and frequency I sum the elements of the corresponding L long array 

and divide by L to get an estimate of the utilization level at that particular time interval and 
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frequency.  

4. At the end of this process, I will have an estimate of the utilization level for each frequency 

and time interval. 

5.2.2 Results and Discussion 

Figures 5.2.2 and 5.2.3 summarize the results obtained during one week of scanning several 

channels at the 850 MHz, 1910 MHz, 2400 MHz, and 5800 MHz bands. What I observe for each 

time interval is the average of the channel utilization levels estimated for the time interval per 

each day of the week. I observed a marked contrast between the utilization level of the channels 

in the 850 MHz and 1910 MHz and the one of the 2400 MHz and 5800 MHz band channels. In 

the first two bands I observed occupancy levels ranging between 25% and 100 %; whereas, in 

the last two bands the occupancy level falls in the range 0.5 % to around 7 %.  The 850 MHz and 

1910 MHz band are licensed and have been allocated to the cell phone communication system.  

According to this in the area where performed the experiment, the 850 MHz and 1910 MHz band 

channels are not good candidates for neither dynamic spectrum access (DSA) nor spectrum 

sharing.  Conversely, the low utilization of the 2.4 GHz and 5.8 GHz channels make them good 

candidates for spectrum sharing and DSA.  
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Figure 5.2.2 Results of the scanning of channels in the band of 2.4 GHz and 5.8 GHz obtained during a one 

week period in the Signal processing laboratory of the Electrical Engineering Department at the University of 

North Dakota.  

 

 
 

Figure 5.2.3 Results of the scanning of channels in the band of 2.4 GHz and 5.8 GHz obtained during a one 

week period in the Signal processing laboratory of the Electrical Engineering Department at the University of 

North Dakota.  

 

Notice in figure 5.2.3 that the utilization level is higher in the 2.4 GHz band than in the 5.8 

GHz band, something that makes sense considering the higher number of devices that operate at 

range of frequency compared to the ones that operate in the 5.8 GHz range. I also can see that the 

occupancy is the lowest during the morning and the highest during the evening and afternoon.  
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5.3 Bayesian Approach for Learning Spectrum Utilization   

 
5.3.1 Methodology 

 
In the previous experiment I estimated the use of several channels by sampling several times 

a counting the number of occurrences at the end to calculate the percentage of utilization of the 

channels. The numbers obtained can be seen as a survey of the channel usage during a period of 

time. In such experiment, there was no learning involved. In the experiment described in this 

section, the radio starts ignorant of the channel usage, and as it scans the channel it learns about 

its utilization level. I can see the utilization level as a number between 0 and 1 meaning 0% and 

100% usage respectively.  The channel utilization level is a random variable that follows a 

probability distribution. The objective of this experiment is to learn that probability distribution 

for the channels of interest. I start the experiment with a prior probability distribution for the 

channel utilization level. I use a uniform distribution, since I am just starting the experiment and 

have no knowledge about this variable.   To obtain evidence, I observe the channel with the 

Euclidean distance autocorrelation based sensor explained in section 5.1. This sensor yields 1 

when it detects a signal being transmitted in the channel (channel occupied), and 0 when it sees 

only noise (channel not occupied). The cognitive radio adjusts the probability distributions of the 

channels as it receives new evidence from the sensor.   

The steps followed for estimating the channel utilization level using the Bayesian approach 

are: 

1. Start with a uniform probability distribution for the channel utilization level. 

2. Tune the USRP unit to the central frequency of the channel of interest. 

3. Take 1024 samples. 
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4. Execute the Euclidean distance autocorrelation based algorithm. 

5. Make the decision as whether or not the channel is busy or empty. The decision has two 

values: 0 represents the channel is empty, and 1 represents the channel is occupied.  

6. Use the observation from step 5 as evidence for updating the prior probability 

distribution to obtain the posterior probability distribution of the channel utilization 

level.  

7. Save the updated probability distribution periodically, and at the end of each time 

interval, so that the next opportunity the cognitive radio (CR) observes the channel at the 

beginning of that time interval, it starts with a prior knowledge of the channel usage 

level corresponding to that particular time interval. For instance, the CR observes the 

channel during the time interval I have called morning, [6 AM  to 12 PM); the first day  

at 6 AM it starts with a uniform prior probability. At 12 PM the CR stores the posterior 

probability that will be used the next day at 6 AM as prior probability.   

8. Start again in step 1. But this time use the posterior probability from step 6 as prior 

probability.  
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Figure 5.3.1 Using Bayesian probability for estimating the usage level of one or several wireless channels. The 

arrows in steps 1,2  indicate the exchange of information between the computer and the USRP. Steps 3 to 8 take 

place in the computer 

 

5.3.2 Results and Discussion 

I think the best way to present the results from this experiment is to illustrate how the 

probability distribution of the channel utilization evolves. For simplicity I monitored only one 

channel, 2410 MHz; however, the method can scan several channels like in the process described 

in section 5.2.   Figure 5.3.2.a shows that I start with a uniform distribution. Figure 5.3.2.b shows 

the posterior probability obtained after observing the channel once.  Notice that utilization 0% 

has the highest probability and the probability for the other utilization levels descend linearly. 

Figure 5.3.2.c shows that with two samples the probability for utilization 0% is still the highest; 

however the probabilities for the other levels reduce faster. After 10 observations, figure 5.3.2.d, 

the maximum is no longer at 0% but has shifted to a value around 10%, 0.1 in the horizontal 

scale. With 100 observations, figure 5.3.2.e, the peak moves to around 5% (0.05 in the horizontal 

scale) and the curve narrowed. Figure 5.3.2.f shows that with 1000 observations the peak stayed 

at 5% and the curve narrowed even more.   This example has shown the CR using Bayesian 
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probability to learn how much a radio frequency channel is being utilized.    

 
Figure 5.3.2 Evolution of the probability distribution for the channel utilization level. The horizontal axis 

represents the utilization level, where 0 is 0% and 1 is 100%. The vertical axis is the probability, which goes 

from 0 to 1. a.) Prior probability distribution; b.)Posterior probability distribution after 1 observation; c.) 

Posterior probability distribution after 2 observations; d.) Posterior probability distribution after 10 

observations;   e.) Posterior probability distribution after 100 observations; f.) Posterior probability distribution 

after 1000 observations. The curves are normalized to set up the maximum at 1.  
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5.4 Channel Sounding Experiment  

 
5.4.1 Methodology 

 

Channel Impulse Response 

The channel is characterized by estimating the channel impulse response (CIR) and 

calculating two parameters from it: Doppler Spread and Delay Spread, which condense the 

information provided by the CIR. These parameters lead to the coherence bandwidth and 

coherence time. The coherence bandwidth, cB , imposes restrictions over the bandwidth of the 

signal to transmit through the channel. Likewise, the coherence time,  cT  limits the symbol time 

[1].  Matz and Hlawatsch [21] provide a definition of the coherence bandwidth and the coherence 

time as shown in equation (5.4.1).  

       
1

cB
S

 ,       
1

cT
S

  ,            (5.4.1) 

where S  and S  represents the Delay Spread and Doppler Spread respectively. 

Knowing , , ,and  helps the communication system -for instance, a cognitive radio- 

to adapt its operating configuration to fit better  with the current conditions of the channel.  

The channel impulse response (CIR) – represented as ( , )h t   in equation 5.4.2 – indicates 

the number of paths used by the signal to propagate, the attenuation on each path, and the 

relative delay between paths.  

                                        (5.4.2)                   

cB S cT S

1

( , ) ( ) ( ),
L

i i

i

h t a t   


 
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where t  is the time,   is the delay, ( )ia t  is the time varying complex attenuation for the path i , 

the delta function ( )i    represents the path i  with delay i , and L  is the number of paths 

[36]. The Fourier transform of ( , )h t   with respect to t  yields ( , )s    – the scattering function – 

which shows the change of the paths and the shift of the central frequency due to the Doppler 

effect. 

Condense Parameters of the Channel 

The Delay spread and the Doppler spread are the normalized second order central moments 

of the power delay profile (PDP) and the Doppler power spectrum (DPS)  [1, 37, 38] .  To 

calculate PDP and DPS ( , )h t   and ( , )s   are considered stochastic processes, which is 

necessary, since they are unpredictable in the practice [21]. To simplify ( , )h t   and ( , )s    I use 

the autocorrelation function (ACF) and assume that the channel is wide sense stationary – 

uncorrelated scattering (WSSUS) [21, 39].  For instance, by applying the ACF to  ( , )h t   I have 

[37] 

       
*

1 2 1 2 1 1 2 2( , , , ) [ ( , ) ( , )]hR t t E h t h t                     (5.4.3) 

 

where   is the complex conjugate of  and  is the expected value operation. The WSSUS 

model, which is broadly accepted for mobile channels [39], has two assumptions. The first 

assumption is that the stochastic process is wide sense stationary, WSS, which implies that the 

ACF depends only on , and not on the absolute time, . Therefore, equation (5.4.3) 

becomes 

.           (5.4.4) 

*h h [·]E

2 1t t t   t

*

1 2 1 2( , , ) [ ( , ) ( , )]hR t E h t h t t     
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The second assumption is that the amplitudes and phases of the different paths are 

uncorrelated, which means the channel has uncorrelated scattering, US. Therefore, the ACF is 

zero when  and has a peak when .    By applying this assumption to equation (5.4.4) 

it becomes

 ,                     (5.4.5) 

which calculated at  yields the function  or  power delay profile  –

PDP [37]. The PDP represents the distribution of the power among the delayed paths of the 

signal arriving at the receiver. By normalizing the PDP, it turns into a probability density 

function, designated as .  Equation (5.4.6) shows this normalization.   

 .           (5.4.6) 

The normalized second order central moment of  is  

 ,      (5.4.7)        

the delay spread.  In equation (5.4.7)      

  ,                    (5.4.8)  

the mean delay.  

Since in the practice, only a limited number of discrete signals avail, I use the discrete 

versions of equations (5.4.7) and (5.4.8) as given by [37, 40] 

 

1 2  1 2 

*( , ) [ ( , ) ( , )]hR t E h t h t t    

0t  ( ) ( ) ( ,0)h h hp R R   
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R d p d

 


   
 

 

 

 

( )p 

2( ) ( )S D p d   



 

[ ] ( )D E p d    



  



133 

 

 ,                       (5.4.9) 

where     

 .                                            (5.4.10)                  

A similar process works when calculating the Delay Spread – ; the integral of the 

scattering function ( , )s   with respect to  yields , known as the Doppler spectrum. The 

equations (5.4.6) to (5.4.10) applied to  return . 

Estimation of the Channel Impulse Response and the Condense Parameters of the Channel  

To estimate ( , )h t  , S , and S  a pseudo-random (PN) sequence is transmitted through the 

channel and its autocorrelation calculated at the receiver. This method bases on the fact that the 

autocorrelation of white noise is an impulse [80]. Since sending white noise through a channel is 

impractical, I used a signal PN sequence because its autocorrelation resembles the 

autocorrelation of white noise [81]. Figure 5.4.1 shows that the transmitter and receiver combine 

of GNU Radio software along with a USRP (Universal Software Radio Peripheral) unit. The 

USRP TX sends a PN sequence through a channel with response ( , )h t  . The USRP RX takes the 

signal from the channel, processes and delivers it to the PN correlator block that calculates the 

autocorrelation to obtain ˆ( , )h t   – an estimate of ( , )h t  . The next block takes this estimate to 

calculate S  and S  using the aforementioned equations. The PN sequence originates from a 

Galois linear feedback shift register (GLFSR) generator [82]. A GLFSR generator has a 

polynomial, whose degree n  determines the length sequence L  according to 2 1nL   . The 

2( ) ( )
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h i

D p
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GLFSR and PN correlator blocks have both two parameters: mask and degree, which must agree 

to calculate a autocorrelation, otherwise the PN correlator would calculate the cross-correlation. 

The configuration used for the experiments was: degree 9 and mask 0 to get a 511 bits long 

autocorrelation sequence. Each autocorrelation sequence represents the channel impulse response 

at certain instant it . Several of these sequences arranged one after another form ( , )h t  . Figure 

5.4.2 in the next section illustrates examples of ( , )h t   and ( , )s   . 

 

Figure 5.4.1:  Block Diagram of the Channel Sounder 

 

5.4.2 Results and Discussion 
 

The experiments were performed at different environments – an anechoic chamber, a 

parking lot surrounded by buildings, and a street located between two parking lots – and at the 

frequencies: 850MHz, 1910MHz, 2410MHz and 5850MHz. The two first frequencies are 

commonly used in cellphone networks and two last ones belong to the group of ISM (Industrial, 

Scientific, and Medical) bands, which are unlicensed and prevalently used in wireless networks, 

such as Wi-Fi, Bluetooth and Zigbee. The Delay and Doppler spread were calculated every 8 

seconds, 220 times per each experiment.  The experiments in the anechoic chamber were 

performed with and without interference; a signal generator was adjusted at 5 and 10 dBm to 
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create two levels of interference.  The outdoor experiments were made in the morning and in the 

afternoon observing the surrounding activity, such as movement of cars and people (their 

portable devices), in order to see how the results were affected.   

Figure 5.4.2 provides examples of the channel impulse response  and scattering 

function obtained during the experiments performed in the parking lot. As one can see 

Figures 5.4.2a and 5.4.2b show only one path and no Doppler shift, whereas figures 5.4.2c and 

5.4.2d show multiple paths and Doppler shifts. The sampling rate was configured to one million 

of samples per second, which set the bit rate at 1 Mbps and the time resolution at 1 µs. Figures 

5.4.2a and 5.4.2c show how forms from putting each autocorrelation one after another 

along the axis,“Time (us)”. Since each autocorrelation sequence is 511 bits long and the time of 

bit is 1 µsec, its duration is 511 µsec. Therefore,  is sampled every 511 µsec, which 

corresponds to the sampling time, .The inverse of  is the sampling rate, , which  is 

1956 Hz. Figures 5.4.2b and 5.3.2d illustrate , the Fourier transform of   with 

respect to time.  Since   is 1956 Hz, the axis “Doppler frequency (Hz)” in figures 5.4.2b and 

5.4.2d ranges between  and  [83].  

( , )h t 

( , )s  

( , )h t 

( , )h t 

sampT sampT sF

( , )s   ( , )h t 

sF

978
2

sF
Hz   978

2

sF
Hz
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Figure 5.4.2:  Examples of time varying impulse response ( , )h t   and scattering function ( , )s    obtained 

during experiments performed in a parking lot.  

Experiments in Controlled Environment 

Figure 5.4.3 shows the Delay and Doppler Spread functions in the anechoic chamber. As 

expected in such environment free of reflections and movement, the Delay and Doppler spreads 

were zero. Figures 5.4.4 and 5.4.5 show examples of results obtained using a continuous signal 

as a source of interference. As expected, the Delay and Doppler functions consistently differed 

from zero and concentrated around the average value.  Experiments performed at other 

frequencies - 5850 MHz, 1910 MHz, and 850 MHz - yielded similar results, Delay and Doppler 

spread functions were equal to zero in absence of interference, whereas with interference they 

always differed from zero and their averages increased as the power of the interference 

increased. 
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Figure 5.4.3:  Example of results at the anechoic chamber with no signal generator. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.4:  Example of results at the anechoic chamber with signal generator at 10 dBm. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.5:  Example of results at the anechoic chamber with signal generator at 5 dBm. 
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non-null values ranged in a wide scope. Figures 5.4.10 through 5.4.13 give examples of the 

results obtained in a street located between two parking lots at the same frequencies comport 

alike.  

 

 

 

 

 

 

Figure 5.4.6:  Example of results obtained in the parking lot surrounded by buildings at 5850 MHz. 

 

 

 

 

 

 

Figure 5.4.7:  Example of results obtained in the parking lot surrounded by buildings at 2410 MHz. 

 

 

 

 

 

 

 

Figure 5.4.8:  Example of results obtained in the parking lot surrounded by buildings at 1910 MHz. 
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Figure 5.4.9:  Example of results obtained in the parking lot surrounded by buildings at 850 MHz. 

 

 

 

 

 

Figure 5.4.10:  Example of results for experiments obtained in a street between two parking lots at 5850 MHz. 

 

 

 

 

 

 

Figure 5.4.11:  Example of results for experiments obtained in a street between two parking lots at 2410 MHz. 

 

 

 

 

 

 

 

 

Figure 5.4.12:  Example of results for experiments obtained in a street between two parking lots at 1910 MHz. 
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Figure 5.4.13:  Example of results for experiments obtained in a street between two parking lots at 850 MHz. 
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although in some cases the change was small, such as at 5850 MHz in the parking lot and at 2410 

MHz in the street. 
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In presence of interference, the results obtained at the anechoic chamber for Delay and 

Doppler spread differed consistently from zero. This means that interference influenced the 

results given by the channel sounder, since the anechoic chamber is an environment free of 

reflections and scatterers. The impact of the interference on the results depends on its intensity as 

shown in table 5.4.1. In the outdoor experiments the outcomes also agreed with what I expected; 

the results mostly equated zero, which makes sense, considering that the distances between the 

channel sounder and sources of multipath or Doppler shift, such as reflectors and scatterers, were 

less than 300 meters, distance needed to have delays of 1 µsec – the time resolution of my 

channel sounder. However, some results differed from zero. For instance, some Doppler Spread 

results differed from zero even in absence of movement, which means they must have come from 

interference.  

Table 5.4.1: Average delay spread, Doppler spread and percentage of non-null results 
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During the outdoor experiments I observed an association between the frequency and the 

non-null results. For example, the percentages of non-null results at 2410 MHz exceeded those 

obtained at 5850 MHz. This observation coincides with the fact that 2410 MHz is more common 

than 5850 MHz.  At 1910 MHz the results were smaller compared to those at 850 MHz. A 

possible explanation is that the higher the frequency, the higher the propagation losses; therefore, 

at 1910 MHz the signal and the interference  are more attenuated, which can explain the results 

shown in table 5.4.1 and figures 5.4.6 to 5.4.13. The non-null results obtained in the outdoor 

experiments were fewer and sparser than those obtained in the anechoic chamber, because in the 

anechoic chamber the interference was constant, whereas in the outdoor scenarios it was 

intermittent and changed its intensity randomly. Another association observed during these 

experiments was between the transit of cars and non-null Delay and Doppler spread results; in 

the experiments performed in the street, when the cars passed between transmitter and receiver 

the results differed from zero. A possible explanation for this is that the cars attenuated the signal 

and/or created multipath signals as they interrupted the line of sight between the transmitter and 

receiver affecting the results. 
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CONCLUSIONS 

In this dissertation, I have presented a probabilistic approach to cognitive radio (CR) 

technology. I have identified the variables that interact in a wireless communication system, and 

seen them either deterministic or random variables.  This variable identification has included the 

specification of the state domain of each variable. I have also established how these variables 

influence one to another by applying the knowledge on communication system available to me, 

as well simulations to generate data that allow me to establish the causal relationships among 

variables. For instance, from the literature I know that the received power (Rx) equals the 

transmitted power (Tx) minus the total propagation losses (Attn), therefore I used this knowledge 

to generate samples that the MLE (maximum likelihood estimation) algorithm used the learn the 

conditional probability distributions (CPD) that represent the influence that the variables Tx and 

Attn have over the variable Rx.  

With the outcome from the process described in the previous paragraph, I built a Bayesian 

network (BN) and an influence diagram (ID) to learn from evidence, bit error rate (BER), and 

make better informed decisions in the midst of uncertainty, the random conditions of the 

environment wherein the systems functions.  To show the functionality of these probabilistic 

graphical models, I assumed different scenarios and different setups of the radio. I also supposed 

the bit error rate (BER) falling at different states according to some trend: sometimes 
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tending to be low, and others high. Through several examples, I demonstrated how the BN 

modified its beliefs (probability distributions) as it got new evidence. As for the influence 

diagram (ID) I assumed scenarios with distinct conditions, which I represented through 

probability distributions in agreement with the scenarios under consideration. I showed and 

explained how the ID yielded different utility values for the same policy, configuration, being 

implemented under different conditions, scenarios.    

As I discussed earlier in this document, a CR gets information from the environment 

(observing stage), reasons, learns from it, decides how to act (decision making stage), and acts 

(taking action stage). Since one important aspect of the observing stage is spectrum sensing, in 

this work I proposed and tested a technique for spectrum sensing that exploits the autocorrelation 

of the received samples. Let us remember that the purpose of spectrum sensing is to determine 

when a wireless channel is empty or being used by other device’s radio transmission. After 

testing the proposed spectrum sensing technique in one channel, I used it to scan several 

channels in order to estimate their utilization level. To perform such estimation I used two 

methods: frequentist and Bayesian. In the frequentist method, I got the channel utilization 

estimate after having observed the channel several times. On the other hand, in the Bayesian 

method, I considered the channel utilization as a random variable having uniform initial 

probability distribution. This probability distribution got adjusted with each observation of the 

channel, which provides a constantly updated estimation of the channel utilization.  

To the best of my knowledge, this is the first work that proposes a probabilistic graphical 

model (Bayesian Network and Influence Diagram) to assist a cognitive radio (CR) in dealing 

with uncertainty in wireless communication systems.  I have proposed how to analyze and 
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characterize several random variables that affect communication systems, which has included the 

definition of ranges for those variables and their division in intervals represented through states. 

Specifically, I have shown the causal relations among variables and proposed methods for 

eliciting the conditional probability distributions that describe quantitatively those causal 

relations.  

I have shown through some simulations that the proposed Bayesian network is able to 

update its beliefs (represented as probability distributions) about the environment as it gets new 

evidence. In my model, the state of the bit error rate (BER) serves as evidence.  I can think of 

this ability as a capability that the wireless communication system has for learning from 

experience (evidence), although because of the uncertainty present in the environment, this 

learning is probabilistic.   

The idea of influence diagrams for decision making in wireless communication is another 

contribution of this dissertation. By means of an influence diagram (ID), a cognitive radio can 

evaluate quantitatively how well a determined set of parameters fits with its goals and 

preferences. To do so, the ID includes a node called utility function, which assigns numbers to 

the combinations of the parameters and the value of BER. I showed that the utility of a policy 

differs from one scenario to another.  I can think of the utility as a measure of the level of 

convenience or satisfaction. A policy that is convenient (high utility) for the system in one 

scenario could be less convenient or even inconvenient (low or negative utility) in other scenario.  

In this dissertation, I presented an example wherein I have high preference for setups with which 

I obtain low BER with low transmission power and high spectral efficiency; hence the utility 

function of the proposed ID takes as arguments: BER, spectral efficiency, and transmission 
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power. However, I can also extend the ID to applications where I have preferences about 

frequency, bandwidth, and other parameters. For instance, it has been foreseen that wireless 

channels will be auctioned or rented; therefore, I would like to consider the cost of renting when 

deciding which channel to use. Influence diagrams are a tool I could consider in such 

application.  

This dissertation is the starting point of a long term research on probabilistic graphical 

modelling applied to cognitive radio and wireless communication system. In this work, I have 

used simulations to demonstrate the functionality of the proposed Bayesian models. I consider 

that future work should include the integration of these models with a software defined radio 

(SDR) platform such as USRP radios. After integrating these parts I will be able to perform 

experiments in controlled as well as in realistic scenarios.  

Future work includes adding to the model other random variables such as packet delivery 

ratio (PDR), bad packet ratio (BPR), clear channel assessment (CCA), and received signal 

strength indicator (RSSI). These random variables are performance metrics that are commonly 

available in communication systems, but currently unexploited.   By describing in my model how 

the environment influences these metrics, I can use them to enrich my evidence to update the 

beliefs (probability distributions) the Bayesian network has about the factors that affect the 

performance of the communication system. 

In this work, I have represented the utility function as a table; however, as I increase the 

number of variables and the number of discrete states taken for each variable, this table format 

might become tedious. Therefore, future work should include searching for ways to generate 
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utility functions in a more friendly way, such as a piece of code that maps my preferences to 

numbers creating a table compatible with the format used by the influence diagram.  

In this dissertation, I have shown how to use probabilistic graphical models (PGM) to assist 

a cognitive radio (CR) in learning from evidence and deciding what the most optimal 

configuration is. However, wireless communication systems have other needs that I can explore 

how to satisfy with PGM. For instance, one need in cognitive radio systems using dynamical 

spectrum access is to select the most convenient radio frequency channel to tune in. This 

particular area of cognitive radio is called spectrum decision.  Upcoming work derived from this 

dissertation include building probabilistic graphical models to support cognitive radio in this 

task, spectrum decision.    areas of future work include: investigate how fade depth and fade 

duration affect the bit error rate (BER), and incorporate this knowledge into the Bayesian model; 

include methods in the model to take into consideration the intermodulation products and the 

adjacent channel interference (ACI) that might arise when selecting and combining radio 

frequency channels.   
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APPENDIX 1 

CONDITIONAL PROBABILITY TABLES FOR BIT ERROR RATE (BER) 

In this appendix we present the conditional probability distributions for the 

variable bit error rate (BER) for different modulation schemes: DBPSK, DQPSK, 

and D8PSK.  The tables are divided into two sections: one titled states of the 

parents, which contains the combinations of the states of the variables EbN0, C/I, 

and Dop_Phi; and the other one titled probability distribution, which contains the 

probability for each state of BER. 

Table A.1.1: Conditional probability distribution (CPD) for BER in DBPSK. 

States of the parents Probability Distribution of BER 

  EbN0_1  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_1  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_1  C/I_2 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_2 Phi_2 0 0 0 0 1 

  EbN0_1  C/I_2 Phi_3 0 0 0 0 1 

  EbN0_1  C/I_3 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_3 Phi_2 0 0 0 0 1 

  EbN0_1  C/I_3 Phi_3 0 0 0 0 1 

  EbN0_1  C/I_4 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_4 Phi_2 0 0 0 0 1 

  EbN0_1  C/I_4 Phi_3 0 0 0 0 1 

  EbN0_1  C/I_5 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_5 Phi_2 0 0 0 0 1 
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Table A.1.1: Conditional probability distribution (CPD) for BER in DBPSK. (Cont.) 

  EbN0_1  C/I_5 Phi_3 0 0 0 0 1 

  EbN0_1  C/I_6 Phi_1 0 0 0 0 1 

  EbN0_1  C/I_6 Phi_2 0 0 0 0 1 

  EbN0_1  C/I_6 Phi_3 0 0 0 0 1 

  EbN0_2  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_2  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_2  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_2  C/I_2 Phi_1 0 0 0.1 0.31 0.59 

  EbN0_2  C/I_2 Phi_2 0 0 0.075 0.39 0.535 

  EbN0_2  C/I_2 Phi_3 0 0 0.1 0.27 0.63 

  EbN0_2  C/I_3 Phi_1 0 0.09 0.28 0.405 0.225 

  EbN0_2  C/I_3 Phi_2 0.005 0.06 0.295 0.36 0.28 

  EbN0_2  C/I_3 Phi_3 0 0.065 0.255 0.415 0.265 

  EbN0_2  C/I_4 Phi_1 0 0.08 0.22 0.44 0.26 

  EbN0_2  C/I_4 Phi_2 0.005 0.095 0.175 0.47 0.255 

  EbN0_2  C/I_4 Phi_3 0 0.12 0.19 0.405 0.285 

  EbN0_2  C/I_5 Phi_1 0 0.11 0.25 0.385 0.255 

  EbN0_2  C/I_5 Phi_2 0 0.09 0.17 0.46 0.28 

  EbN0_2  C/I_5 Phi_3 0 0.08 0.22 0.41 0.29 

  EbN0_2  C/I_6 Phi_1 0.01 0.07 0.235 0.455 0.23 

  EbN0_2  C/I_6 Phi_2 0 0.06 0.245 0.435 0.26 

  EbN0_2  C/I_6 Phi_3 0 0.105 0.19 0.445 0.26 

  EbN0_3  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_3  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_3  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_3  C/I_2 Phi_1 0.065 0.22 0.245 0.165 0.305 

  EbN0_3  C/I_2 Phi_2 0.04 0.29 0.205 0.18 0.285 

  EbN0_3  C/I_2 Phi_3 0.045 0.265 0.19 0.17 0.33 

  EbN0_3  C/I_3 Phi_1 0.505 0.49 0.005 0 0 

  EbN0_3  C/I_3 Phi_2 0.605 0.39 0.005 0 0 

  EbN0_3  C/I_3 Phi_3 0.425 0.575 0 0 0 

  EbN0_3  C/I_4 Phi_1 0.69 0.31 0 0 0 

  EbN0_3  C/I_4 Phi_2 0.66 0.34 0 0 0 

  EbN0_3  C/I_4 Phi_3 0.62 0.38 0 0 0 

  EbN0_3  C/I_5 Phi_1 0.675 0.325 0 0 0 

  EbN0_3  C/I_5 Phi_2 0.645 0.355 0 0 0 

  EbN0_3  C/I_5 Phi_3 0.595 0.405 0 0 0 
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Table A.1.1: Conditional probability distribution (CPD) for BER in DBPSK. (Cont.) 

  EbN0_3  C/I_6 Phi_1 0.68 0.32 0 0 0 

  EbN0_3  C/I_6 Phi_2 0.7 0.3 0 0 0 

  EbN0_3  C/I_6 Phi_3 0.635 0.365 0 0 0 

  EbN0_4  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_4  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_4  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_4  C/I_2 Phi_1 0.31 0.165 0.085 0.12 0.32 

  EbN0_4  C/I_2 Phi_2 0.33 0.185 0.08 0.125 0.28 

  EbN0_4  C/I_2 Phi_3 0.32 0.145 0.09 0.135 0.31 

  EbN0_4  C/I_3 Phi_1 1 0 0 0 0 

  EbN0_4  C/I_3 Phi_2 1 0 0 0 0 

  EbN0_4  C/I_3 Phi_3 0.975 0.025 0 0 0 

  EbN0_4  C/I_4 Phi_1 1 0 0 0 0 

  EbN0_4  C/I_4 Phi_2 1 0 0 0 0 

  EbN0_4  C/I_4 Phi_3 1 0 0 0 0 

  EbN0_4  C/I_5 Phi_1 1 0 0 0 0 

  EbN0_4  C/I_5 Phi_2 0.995 0.005 0 0 0 

  EbN0_4  C/I_5 Phi_3 0.995 0.005 0 0 0 

  EbN0_4  C/I_6 Phi_1 1 0 0 0 0 

  EbN0_4  C/I_6 Phi_2 1 0 0 0 0 

  EbN0_4  C/I_6 Phi_3 1 0 0 0 0 

  EbN0_5  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_5  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_5  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_5  C/I_2 Phi_1 0.475 0.085 0.06 0.13 0.25 

  EbN0_5  C/I_2 Phi_2 0.405 0.07 0.08 0.085 0.36 

  EbN0_5  C/I_2 Phi_3 0.46 0.1 0.105 0.085 0.25 

  EbN0_5  C/I_3 Phi_1 1 0 0 0 0 

  EbN0_5  C/I_3 Phi_2 1 0 0 0 0 

  EbN0_5  C/I_3 Phi_3 1 0 0 0 0 

  EbN0_5  C/I_4 Phi_1 1 0 0 0 0 

  EbN0_5  C/I_4 Phi_2 1 0 0 0 0 

  EbN0_5  C/I_4 Phi_3 1 0 0 0 0 

  EbN0_5  C/I_5 Phi_1 1 0 0 0 0 

  EbN0_5  C/I_5 Phi_2 1 0 0 0 0 

  EbN0_5  C/I_5 Phi_3 1 0 0 0 0 

  EbN0_5  C/I_6 Phi_1 1 0 0 0 0 
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Table A.1.1: Conditional probability distribution (CPD) for BER in DBPSK. (Cont.) 

  EbN0_5  C/I_6 Phi_2 1 0 0 0 0 

  EbN0_5  C/I_6 Phi_3 1 0 0 0 0 

  EbN0_6  C/I_1 Phi_1 0 0 0 0 1 

  EbN0_6  C/I_1 Phi_2 0 0 0 0 1 

  EbN0_6  C/I_1 Phi_3 0 0 0 0 1 

  EbN0_6  C/I_2 Phi_1 0.65 0 0.025 0.07 0.255 

  EbN0_6  C/I_2 Phi_2 0.63 0.03 0.015 0.08 0.245 

  EbN0_6  C/I_2 Phi_3 0.605 0.04 0.025 0.07 0.26 

  EbN0_6  C/I_3 Phi_1 1 0 0 0 0 

  EbN0_6  C/I_3 Phi_2 1 0 0 0 0 

  EbN0_6  C/I_3 Phi_3 1 0 0 0 0 

  EbN0_6  C/I_4 Phi_1 1 0 0 0 0 

  EbN0_6  C/I_4 Phi_2 1 0 0 0 0 

  EbN0_6  C/I_4 Phi_3 1 0 0 0 0 

  EbN0_6  C/I_5 Phi_1 1 0 0 0 0 

  EbN0_6  C/I_5 Phi_2 1 0 0 0 0 

  EbN0_6  C/I_5 Phi_3 1 0 0 0 0 

  EbN0_6  C/I_6 Phi_1 1 0 0 0 0 

  EbN0_6  C/I_6 Phi_2 1 0 0 0 0 

  EbN0_6  C/I_6 Phi_3 1 0 0 0 0 
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Table A.1.2: Conditional probability distribution (CPD) for BER in DQPSK 

States of the parents Probability Distribution of BER 

  EbN0_1  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_2  Phi_1 0 0 0 0.2 0.8 

  EbN0_2  C/I_2  Phi_2 0 0 0 0.165 0.835 

  EbN0_2  C/I_2  Phi_3 0 0 0 0.155 0.845 

  EbN0_2  C/I_3  Phi_1 0 0 0 0.47 0.53 

  EbN0_2  C/I_3  Phi_2 0 0 0 0.47 0.53 

  EbN0_2  C/I_3  Phi_3 0 0 0 0.47 0.53 

  EbN0_2  C/I_4  Phi_1 0 0 0 0.465 0.535 

  EbN0_2  C/I_4  Phi_2 0 0 0 0.56 0.44 

  EbN0_2  C/I_4  Phi_3 0 0 0 0.505 0.495 

  EbN0_2  C/I_5  Phi_1 0 0 0.005 0.405 0.59 

  EbN0_2  C/I_5  Phi_2 0 0 0 0.46 0.54 

  EbN0_2  C/I_5  Phi_3 0 0 0 0.455 0.545 

  EbN0_2  C/I_6  Phi_1 0 0 0.005 0.465 0.53 

  EbN0_2  C/I_6  Phi_2 0 0 0 0.52 0.48 

  EbN0_2  C/I_6  Phi_3 0 0 0 0.465 0.535 
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Table A.1.2: Conditional probability distribution (CPD) for BER in DQPSK. (Cont.) 

  EbN0_3  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_3  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_3  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_3  C/I_2  Phi_1 0 0 0.085 0.43 0.485 

  EbN0_3  C/I_2  Phi_2 0 0 0.095 0.445 0.46 

  EbN0_3  C/I_2  Phi_3 0 0 0.075 0.4 0.525 

  EbN0_3  C/I_3  Phi_1 0 0.025 0.795 0.18 0 

  EbN0_3  C/I_3  Phi_2 0 0 0.75 0.25 0 

  EbN0_3  C/I_3  Phi_3 0 0 0.725 0.275 0 

  EbN0_3  C/I_4  Phi_1 0 0.09 0.865 0.045 0 

  EbN0_3  C/I_4  Phi_2 0 0.025 0.88 0.095 0 

  EbN0_3  C/I_4  Phi_3 0 0 0.825 0.175 0 

  EbN0_3  C/I_5  Phi_1 0 0.14 0.82 0.04 0 

  EbN0_3  C/I_5  Phi_2 0 0.03 0.86 0.11 0 

  EbN0_3  C/I_5  Phi_3 0 0 0.825 0.175 0 

  EbN0_3  C/I_6  Phi_1 0 0.09 0.845 0.065 0 

  EbN0_3  C/I_6  Phi_2 0 0.045 0.9 0.055 0 

  EbN0_3  C/I_6  Phi_3 0 0.005 0.82 0.175 0 

  EbN0_4  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_4  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_4  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_4  C/I_2  Phi_1 0 0.065 0.205 0.22 0.51 

  EbN0_4  C/I_2  Phi_2 0 0.01 0.23 0.275 0.485 

  EbN0_4  C/I_2  Phi_3 0 0.01 0.21 0.335 0.445 

  EbN0_4  C/I_3  Phi_1 0.08 0.785 0.135 0 0 

  EbN0_4  C/I_3  Phi_2 0.04 0.77 0.19 0 0 

  EbN0_4  C/I_3  Phi_3 0.015 0.64 0.345 0 0 

  EbN0_4  C/I_4  Phi_1 0.185 0.81 0.005 0 0 

  EbN0_4  C/I_4  Phi_2 0.13 0.825 0.045 0 0 

  EbN0_4  C/I_4  Phi_3 0.05 0.805 0.145 0 0 

  EbN0_4  C/I_5  Phi_1 0.295 0.69 0.015 0 0 

  EbN0_4  C/I_5  Phi_2 0.125 0.84 0.035 0 0 

  EbN0_4  C/I_5  Phi_3 0.07 0.815 0.115 0 0 

  EbN0_4  C/I_6  Phi_1 0.235 0.76 0.005 0 0 

  EbN0_4  C/I_6  Phi_2 0.155 0.83 0.015 0 0 

  EbN0_4  C/I_6  Phi_3 0.055 0.83 0.115 0 0 

  EbN0_5  C/I_1  Phi_1 0 0 0 0 1 

 



154 

 

Table A.1.2: Conditional probability distribution (CPD) for BER in DQPSK. (Cont.) 

  EbN0_5  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_5  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_5  C/I_2  Phi_1 0.015 0.23 0.14 0.26 0.355 

  EbN0_5  C/I_2  Phi_2 0.01 0.175 0.13 0.215 0.47 

  EbN0_5  C/I_2  Phi_3 0.005 0.145 0.15 0.26 0.44 

  EbN0_5  C/I_3  Phi_1 0.805 0.195 0 0 0 

  EbN0_5  C/I_3  Phi_2 0.63 0.37 0 0 0 

  EbN0_5  C/I_3  Phi_3 0.47 0.53 0 0 0 

  EbN0_5  C/I_4  Phi_1 0.94 0.06 0 0 0 

  EbN0_5  C/I_4  Phi_2 0.915 0.085 0 0 0 

  EbN0_5  C/I_4  Phi_3 0.755 0.245 0 0 0 

  EbN0_5  C/I_5  Phi_1 0.93 0.07 0 0 0 

  EbN0_5  C/I_5  Phi_2 0.875 0.125 0 0 0 

  EbN0_5  C/I_5  Phi_3 0.745 0.255 0 0 0 

  EbN0_5  C/I_6  Phi_1 0.945 0.055 0 0 0 

  EbN0_5  C/I_6  Phi_2 0.885 0.115 0 0 0 

  EbN0_5  C/I_6  Phi_3 0.735 0.265 0 0 0 

  EbN0_6  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_6  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_6  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_6  C/I_2  Phi_1 0.375 0.03 0.015 0.135 0.445 

  EbN0_6  C/I_2  Phi_2 0.355 0.06 0.07 0.12 0.395 

  EbN0_6  C/I_2  Phi_3 0.25 0.07 0.1 0.165 0.415 

  EbN0_6  C/I_3  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_3  Phi_3 0.995 0.005 0 0 0 

  EbN0_6  C/I_4  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_4  Phi_3 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_5  Phi_3 0.995 0.005 0 0 0 

  EbN0_6  C/I_6  Phi_1 1 0 0 0 0 

  EbN0_6  C/I_6  Phi_2 1 0 0 0 0 

  EbN0_6  C/I_6  Phi_3 1 0 0 0 0 
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Table A.1.3: Conditional probability distribution (CPD) for BER in D8PSK. 

States of the parents Probability Distribution of BER 

  EbN0_1  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_2  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_3  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_4  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_5  Phi_3 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_1 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_2 0 0 0 0 1 

  EbN0_1  C/I_6  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_2  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_2  Phi_1 0 0 0 0 1 

  EbN0_2  C/I_2  Phi_2 0 0 0 0 1 

  EbN0_2  C/I_2  Phi_3 0 0 0 0 1 

  EbN0_2  C/I_3  Phi_1 0 0 0 0.085 0.915 

  EbN0_2  C/I_3  Phi_2 0 0 0 0.08 0.92 

  EbN0_2  C/I_3  Phi_3 0 0 0 0.065 0.935 

  EbN0_2  C/I_4  Phi_1 0 0 0 0.085 0.915 

  EbN0_2  C/I_4  Phi_2 0 0 0 0.135 0.865 

  EbN0_2  C/I_4  Phi_3 0 0 0 0.115 0.885 

  EbN0_2  C/I_5  Phi_1 0 0 0 0.12 0.88 

  EbN0_2  C/I_5  Phi_2 0 0 0 0.135 0.865 

  EbN0_2  C/I_5  Phi_3 0 0 0 0.105 0.895 

  EbN0_2  C/I_6  Phi_1 0 0 0 0.105 0.895 

  EbN0_2  C/I_6  Phi_2 0 0 0 0.145 0.855 

  EbN0_2  C/I_6  Phi_3 0 0 0 0.095 0.905 
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                         Table A.1.3: Conditional probability distribution (CPD) for BER in D8PSK. 

  EbN0_3  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_3  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_3  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_3  C/I_2  Phi_1 0 0 0 0.2 0.8 

  EbN0_3  C/I_2  Phi_2 0 0 0 0.135 0.865 

  EbN0_3  C/I_2  Phi_3 0 0 0 0.175 0.825 

  EbN0_3  C/I_3  Phi_1 0 0 0 1 0 

  EbN0_3  C/I_3  Phi_2 0 0 0 1 0 

  EbN0_3  C/I_3  Phi_3 0 0 0 0.99 0.01 

  EbN0_3  C/I_4  Phi_1 0 0 0 1 0 

  EbN0_3  C/I_4  Phi_2 0 0 0 1 0 

  EbN0_3  C/I_4  Phi_3 0 0 0 1 0 

  EbN0_3  C/I_5  Phi_1 0 0 0 1 0 

  EbN0_3  C/I_5  Phi_2 0 0 0 1 0 

  EbN0_3  C/I_5  Phi_3 0 0 0 0.995 0.005 

  EbN0_3  C/I_6  Phi_1 0 0 0 1 0 

  EbN0_3  C/I_6  Phi_2 0 0 0 0.995 0.005 

  EbN0_3  C/I_6  Phi_3 0 0 0 1 0 

  EbN0_4  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_4  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_4  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_4  C/I_2  Phi_1 0 0 0 0.315 0.685 

  EbN0_4  C/I_2  Phi_2 0 0 0 0.38 0.62 

  EbN0_4  C/I_2  Phi_3 0 0 0 0.305 0.695 

  EbN0_4  C/I_3  Phi_1 0 0 0.06 0.94 0 

  EbN0_4  C/I_3  Phi_2 0 0 0.015 0.985 0 

  EbN0_4  C/I_3  Phi_3 0 0 0 1 0 

  EbN0_4  C/I_4  Phi_1 0 0 0.27 0.73 0 

  EbN0_4  C/I_4  Phi_2 0 0 0.085 0.915 0 

  EbN0_4  C/I_4  Phi_3 0 0 0 1 0 

  EbN0_4  C/I_5  Phi_1 0 0 0.31 0.69 0 

  EbN0_4  C/I_5  Phi_2 0 0 0.145 0.855 0 

  EbN0_4  C/I_5  Phi_3 0 0 0.015 0.985 0 

  EbN0_4  C/I_6  Phi_1 0 0 0.25 0.75 0 

  EbN0_4  C/I_6  Phi_2 0 0 0.12 0.88 0 

  EbN0_4  C/I_6  Phi_3 0 0 0 1 0 

  EbN0_5  C/I_1  Phi_1 0 0 0 0 1 
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Table A.1.3: Conditional probability distribution (CPD) for BER in D8PSK 

  EbN0_5  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_5  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_5  C/I_2  Phi_1 0 0 0.005 0.385 0.61 

  EbN0_5  C/I_2  Phi_2 0 0 0 0.4 0.6 

  EbN0_5  C/I_2  Phi_3 0 0 0 0.355 0.645 

  EbN0_5  C/I_3  Phi_1 0 0.03 0.74 0.23 0 

  EbN0_5  C/I_3  Phi_2 0 0 0.615 0.385 0 

  EbN0_5  C/I_3  Phi_3 0 0 0.345 0.655 0 

  EbN0_5  C/I_4  Phi_1 0 0.26 0.74 0 0 

  EbN0_5  C/I_4  Phi_2 0 0.05 0.945 0.005 0 

  EbN0_5  C/I_4  Phi_3 0 0 0.79 0.21 0 

  EbN0_5  C/I_5  Phi_1 0 0.375 0.625 0 0 

  EbN0_5  C/I_5  Phi_2 0 0.08 0.92 0 0 

  EbN0_5  C/I_5  Phi_3 0 0 0.82 0.18 0 

  EbN0_5  C/I_6  Phi_1 0 0.37 0.63 0 0 

  EbN0_5  C/I_6  Phi_2 0 0.045 0.945 0.01 0 

  EbN0_5  C/I_6  Phi_3 0 0 0.855 0.145 0 

  EbN0_6  C/I_1  Phi_1 0 0 0 0 1 

  EbN0_6  C/I_1  Phi_2 0 0 0 0 1 

  EbN0_6  C/I_1  Phi_3 0 0 0 0 1 

  EbN0_6  C/I_2  Phi_1 0.025 0.015 0.035 0.25 0.675 

  EbN0_6  C/I_2  Phi_2 0 0.01 0.07 0.235 0.685 

  EbN0_6  C/I_2  Phi_3 0 0 0.025 0.355 0.62 

  EbN0_6  C/I_3  Phi_1 0.96 0.035 0.005 0 0 

  EbN0_6  C/I_3  Phi_2 0.725 0.225 0.05 0 0 

  EbN0_6  C/I_3  Phi_3 0.36 0.34 0.295 0.005 0 

  EbN0_6  C/I_4  Phi_1 0.96 0.04 0 0 0 

  EbN0_6  C/I_4  Phi_2 0.945 0.055 0 0 0 

  EbN0_6  C/I_4  Phi_3 0.935 0.06 0.005 0 0 

  EbN0_6  C/I_5  Phi_1 0.985 0.015 0 0 0 

  EbN0_6  C/I_5  Phi_2 0.96 0.04 0 0 0 

  EbN0_6  C/I_5  Phi_3 0.915 0.06 0.025 0 0 

  EbN0_6  C/I_6  Phi_1 0.99 0.01 0 0 0 

  EbN0_6  C/I_6  Phi_2 0.945 0.05 0.005 0 0 

  EbN0_6  C/I_6  Phi_3 0.955 0.045 0 0 0 
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APPENDIX 2 

PYTHON CODE 

 

Code for simulating DBPSK, DQPSK, and D8PSK 

This code implements the function BER. This function takes as arguments 

EbN0,C_I,Doppler,b, MaxIter. EbN0 is the ratio between the energy of bit and the spectral noise 

density in dB. C_I is the ratio between the carrier and the co-channel interference in dB. Doppler 

represents the Doppler phase shift in radians. The argument b is the number of bits per symbol. 

MaxIter is the number of symbols sent for each combination of  EbN0,C_I,Doppler, and b.  After 

completing a number of iterations equal to MaxIter the function returns the bit error rate (BER) 

for the symbols transmitted, MaxIter. This is the function used for eliciting the conditional 

probability distribution (CPD) of the variable BER, which has as parents the variables 

EbN0,C_I,Doppler. The part of the code that sends symbols to estimate BER was modified from 

a simulation program in the book [78].  The code in this book was written in matlab and only 

considers noise as a factor affecting the BER. I have written the code in python and modified to 

include co-channel interference and Doppler phase shift.  

from __future__ import division 

import math 

import cmath 

import numpy as np 

from pylab import * 

RAND_SEED = 42 

pi=math.pi 



159 

 

def CI_lin(C_I,Es,Ts): 

    return sqrt(2*Es/Ts)*10**(-1*(C_I/20)) 

def BER(EbN0,C_I,Doppler,b, MaxIter): 

  

    M=2**b  #b is the number of bits per symbol 

    Tb=1; Ts= b*Tb 

    Nb=32; Ns= b*Nb 

    nd=1 

    T=Ts/Ns; LB=4*Ns ; LBN1= LB-Ns; scope=range(LBN1,LB) ;scope0=range(LBN1-nd,LB-nd) 

    Es=b;sqEs=sqrt(Es) 

    ss_1=np.array([[0],[1]]) #1 bit per symbol 

    ss_2=np.array([[0,0],[0,1],[1,1],[1,0]]) # 2 bits per symbol    

    ss_3=np.array([[0,0,0],[0,0,1],[1,0,1],[1,0,0],[1,1,0],[1,1,1],[0,1,1],[0,1,0]]) #3 bits per symbol  

    ss= [[], ss_1, ss_2, ss_3]  

    phases= (2*pi/M)*np.arange(M) #Generate phases accoding to constellation  

    exp_symbols= np.exp(phases*1j) #Represent symbols as exponential numbers 

    wc=8*pi/Ts; t=np.arange(Ns)*T; wcT=wc*T 

    wct=wcT*np.arange(Ns) 

    symbols=np.zeros([M,len(t)]) 

    su=np.zeros([2,len(t)]) 

    for i in np.arange(M):symbols[i,:]=sqrt(2*Es/Ts)*np.cos(wc*t+phases[i]) 

    su[0,:]=np.cos(wc*t);su[1,:]=-np.sin(wc*t);su=su*sqrt(2/Ts);suT=su*T  #Symbols stored in the receiver for comparison 

    SN_EB=round(10*np.log10(b),1)  #This term is to convert EbN0 to SNR in dB according to b, bits per symbol. 

    SNRdB=EbN0  # convert to SNR in dB 

    SNR=10**(SNRdB/10) # convert SBRdB to linear  

    N0=b*(Es/b)/SNR; sigma2=N0/2; sgmsT=sqrt(sigma2/T) #sgmsT is to scale the noise according to Eb/N0 

    sws=np.zeros(LB); yr=np.zeros([2,LB]) 

    nobe=0      

    is0=0  #Initial Signal 

    th0=0  #Initial guess of signal phase     
       

    for k in range(1,MaxIter+1): 

 

        i=np.random.randint(M);s=ss[b][i,:]  

        is_k=(is0+i)%M; is1=is_k      

        tx_signal=exp_symbols[is1]#random symbol as exponential number       
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        FD= np.random.uniform(-Doppler,Doppler) # Generate the random Doppler phase shift         

        channel=np.exp(FD*1j) #Doppler effect represented exponential number                    

        rx_symbol=tx_signal*channel # Alter the tx_signal according to Doppler phase shift 

        rx_phase=cmath.phase(rx_symbol) #Phase of the symbol at the receiver 

        sws=np.concatenate((sws[Ns:],sqrt(2*Es/Ts)*np.cos(wc*t+rx_phase)),axis=1)  #Represent the symbol as sinusoidal signal  

#The next line represents the noise as a sinusoidal signal       

        bp_noise=  np.cos(wct)*np.random.normal(0,1,Ns)+ np.sin(wct)*np.random.normal(0,1,Ns)   

        bp_noise = sgmsT* bp_noise  #Scaling the noise according to EbN0 

 #The next line converts C/I to linear and multiplies the sinusoidal representing the  co-channel interference, so that it matches C/I 

        Co_Channel= CI_lin(C_I,Es,Ts)* sqrt(2*Es/Ts)*np.cos(wc*t+np.random.uniform(0,2*pi)) 

        rn=sws[scope0]+ bp_noise + Co_Channel 

        yr=np.concatenate((yr[:,Ns:],suT*rn),axis=1) 

        ycsk= np.sum(yr[:,scope],axis=1) 

        th=np.arctan2(ycsk[1],ycsk[0]);dth=th-th0 

        if dth<-pi/M: dth=dth+2*pi 

        mmin=np.argmin(abs(dth-phases)) 

        d=ss[b][mmin,:] 

        nobe=nobe+sum(s!=d) 

        is0=is_k; th0=th 

        if nobe >100: break                

    return (nobe/(k*b)) 

 

Code for generating data to elicit the conditional probability distribution (CPD) of the 

variable BER 

This piece of code calls the function BER for different combinations of the states of the 

parents of the variable BER to generate data that will be used for eliciting the CPD of BER.  

from __future__ import division 

import math 

import cmath 

#import random 

import numpy as np 

from pylab import * 

import itertools 
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from BER import BER 

#bins= list with the intervals for each state 

#samples= Number of samples per interval 

#function= It is the function that tells the relation among the variables. 

#datafile= name of the file where we want to save the output 

def discretizer(in_data,bins,states,variables,out_data): 

#This function discretizes the data generated by the function cpddata. 

#It receives: bins(Definition of the intervals for the variables), samples(number of samples we want to generate for interval ), 

#function(the relation among the parent variables to generate the children variable), out_file(the file where we want to save the result. 

     mydata=np.load(in_data)  

    discrete=np.zeros(len(mydata)).reshape(len(mydata),1) 

    newbins=[]  

    for i in range(len(bins)):         

        newbins.append(sorted(list(set(list(itertools.chain(*bins[i])))))) 

        bins=newbins 

    for i in range(len(bins)):  

     inds=np.digitize(mydata[:,i],bins[i]) 

           inds=inds-1 

     inds=list(inds)      

     discretized=states[i][inds]  

     discretized2=discretized.reshape(len(mydata),1) 

     discrete=np.hstack((discrete,discretized2)) 

    discrete=discrete[:,range(1,len(bins)+1)]      

    dlist=[] 

    for i in range(len(discrete)): 

        sample=zip(variables,discrete[i,:]) 

        sample.reverse() 

        sample=dict(sample) 

        dlist.append(sample) 

    np.save(out_data,dlist)  

    return  

def cpddata(bins,samples,function,out_file):   

#This function creates the data for getting the CPD of the variables 

#It receives: bins(Definition of the intervals for the variables), samples(number of samples we want to generate for interval ), 
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#function(the relation among the parent variables to generate the children variable), out_file(the file where we want to save the result. 

    bins.pop() 

    data=[] 

    arg=[]    

    combined= list(itertools.product(*bins)) 

    combined=combined*samples 

    for i in range(len(combined)):         

        for j in range(len(combined[i])):            

            argnew= np.random.uniform(combined[i][j][0],combined[i][j][1])  

            arg=np.hstack((arg,argnew)) 

    rows=int(len(arg)/len(combined[0])) 

    col= len(combined[0]) 

    arg=np.reshape(arg,(rows,col))   

    for i in range(rows): 

        data_new=np.hstack((arg[i],function(arg[i])))  

        data=np.hstack((data,data_new))     

    data=np.reshape(data,(rows,col+1)) 

    np.save(out_file,data)  

    return 

############################################################################################################# 

# This section creates the data for generating the CPDs of BER: Bit Error Rate 

############################################################################################################## 

#Parents: EbN0,C_I, and Dop_Phi  

#We import the function BER(EbN0,C_I,Doppler,b, MaxIter), which is defined in a  

#separeted file, since it is long. 

#The next functions define the relation between parents and the child variable. 

#These functions receive the arguments in the array x. x[0]=EbNO, X[1]=C_I,  

# and X[2]=Dop_Phi  

def BER_2d(x):                                 #This function if for 2DPSK modulation                  

    b=1    #Bits per symbol 

    MaxIter=10000    

    ber=BER(x[0],x[1],x[2],b,MaxIter) 

    return ber 

def BER_4d(x):                                 #This function if for 4DPSK modulation                  
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    b=2   #Bits per symbol 

    MaxIter=10000    

    ber=BER(x[0],x[1],x[2],b,MaxIter) 

    return ber 

def BER_8d(x):                                 #This function if for 8DPSK modulation                  

    b=3    #Bits per symbol  

    MaxIter=10000    

    ber=BER(x[0],x[1],x[2],b,MaxIter) 

    return ber 

binsEbN0= [[0.0, 3.0],[3.0, 6.0],[6.0, 10.0],[10.0, 14.0],[14.0,1000.0]] 

binsC_I= [[0.0, 3.0],[3.0,6.0],[6.0, 12.0],[12.0 , 20.0],[20.0, 1000.0]] 

binsPhi= [[0.001,0.08],[0.08,0.136]] #These are given in radians 

binsBER= [[0.0, 1e-5],[1e-5, 1e-3],[1e-3, 1e-1],[1e-1, 1.0 ]] 

bins=[binsEbN0,binsC_I,binsPhi,binsBER] 

states_EBN0=np.array(["EbN0_1","EbN0_2","EbN0_3","EbN0_4","EbN0_5"]) 

states_C_I=np.array(["C/I_1","C/I_2","C/I_3","C/I_4","C/I_5"]) 

states_Phi=np.array(["Phi_1","Phi_2"]) 

states_BER=np.array(["BER_1","BER_2","BER_3","BER_4"]) 

states=[states_EBN0,states_C_I,states_Phi,states_BER] 

var=["EbN0","C/I","Dop_Phi","BER"] 

samples=1 

#This section is for 2dpsk modulation 

################################################################################################### 

BER2_data= 'BER2_data.npy'    

cpddata(bins,samples,BER_2d,BER2_data) #cdpdata(bins,samples,function,out_data) 

bins=[binsEbN0,binsC_I,binsPhi,binsBER] #Redefinitions of bins for the next function 

discretizer(BER2_data,bins,states,var,BER2_data) #discretizer(in_data,bins,states,variables,out_data) 

#This section is for 4dpsk modulation 

################################################################################################### 

BER4_data= 'BER4_data.npy'    

cpddata(bins,samples,BER_4d,BER4_data) #cdpdata(bins,samples,function,out_data) 

bins=[binsEbN0,binsC_I,binsPhi,binsBER] #Redefinitions of bins for the next function 

discretizer(BER4_data,bins,states,var,BER4_data) #discretizer(in_data,bins,states,variables,out_data) 

#This section is for 8dpsk modulation 
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################################################################################################### 

BER8_data= 'BER8_data.npy'    

cpddata(bins,samples,BER_8d,BER8_data) #cdpdata(bins,samples,function,out_data) 

bins=[binsEbN0,binsC_I,binsPhi,binsBER] #Redefinitions of bins for the next function 

discretizer(BER8_data,bins,states,var,BER8_data) #discretizer(in_data,bins,states,variables,out_data)    
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