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ABSTRACT 

Websites keeps getting more important in business and other aspects of society. 

Making the websites as usable as possible is crucial as difficult to use systems tend to 

frustrate users, which might lead to users leaving or lost revenue for a business. Usability 

testing is needed to identify and fix those issues. Manual tests in usability labs can be 

very time consuming and costly. An automated system could reduce time and cost of 

testing, but are often too focused on one aspect to give a clear view of what needs to be 

fixed. A system to improve this is needed. 4 separate modules focusing on different 

aspects of testing the information structure and navigation of a website are implemented 

and tested. The modules are combined in a system that gather the results from each 

module and provide a better overview of the usability issues of a website. 
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CHAPTER I 
INTRODUCTION 

It has become very important for every company and organization to have an 

online presence today. It is not only a valuable source of information for users, but can be 

the livelihood for a company. With the growing number of websites, the complexity and 

amount of information on the Internet keeps growing. Keeping all that information 

organized and accessible to the end user is a challenging task for a website owner. With 

the growing number of users and websites the competition is getting harsher and the 

website owner will as a result have to work harder to retain or attract new users. Wu and 

Offutt  (Wu & Offutt, 2002)  mention how there appears to be no “site loyalty” when it 

comes to websites, which can make it very hard to retain users when they are very likely 

to move on to another website of better quality. This is one of the reasons why making 

sure a website meet user expectations is very important and failure to do so can result in 

lost revenue.  

User satisfaction with websites comes down to many factors and usability is just 

one of them. If a site is perceived by a user to not be very usable it will most likely 

discourage them from completing their transaction or coming back at a later time. Most 

users navigate to a website with a specific goal in mind. The goal might be to purchase 

goods, gather information, communicate with other users, and so on. To aid the user in 

accomplishing the goal the website should be organized in a logical manner. Performing 
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tests to uncover potential usability issues is therefore crucial to any website owner. 

Usability testing is usually done in two ways (classical and automated) (Rukshan & 

Baravalle, 2012)  and will be discussed in further detail later.  

The problem with existing work is that they either have a manual process that 

requires a lot of time and resources to perform or automated testing that might not 

uncover the issues. The few that focus on automated usability testing have a very narrow 

view of the issues and therefore cannot uncover some of the other issues with a website 

or they still require some sort of user interaction or expert knowledge.  

There is a need for a system to combine some of these efforts into a larger system 

that works with information already available such as the website graph / information 

architecture. The proposed system will introduce several modules that can be used 

separately to perform automated usability testing, but combined in a larger system will 

give a better view of usability issues with a website. Harty stated that automated usability 

testing could uncover many types of issues if combinations of several techniques are used 

(Harty, 2011). The proposed method is not supposed to be used as the only measure of 

usability of a website, but should be able to uncover usability issues related to the 

organization of the pages (information architecture), and can be used in combination with 

other types of usability testing techniques.  

The system works by crawling a website to generate a website graph where the 

pages are nodes and links are edges. This graph can then be augmented with information 

about the actual usage collected from web server logs. Using the website graph features 

such as number of nodes, number of edges and how connected each node a machine 

learning model is first trained and later used to predict the usability score of a website. 
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The machine-learning model will also be able to identify which features are more 

important in relation to usability so the website owner can focus on those in potential 

redesign efforts. The last part of the system provides the website owner with a tool to 

inspect specific paths from one page to another and identify issues with the path. The 

links on those pages can then be rearranged to optimize the path a user takes through the 

website. Two extremes in how websites are organized are shallow (Figure 1) and deep 

(Figure 2). A shallow graph would give the user a shorter path to the destination, but 

more choices at each page. A deep graph provides fewer choices at each page, but results 

in a longer path. The system will identify the different graph types and usability issues 

that might be present in the website. 

 

Figure 1. Example of shallow graph 
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Figure 2. Example of deep graph 
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CHAPTER II 
RELATED WORKS 

Usability testing 

There are multiple definitions for usability, but Seffah, Donyaee, Kline and Padda 

attempted to consolidate this into a single model called Quality in Use Integrated 

Measurement (QUIM) which includes 10 factors: efficiency, effectiveness, productivity, 

satisfaction, learnability, safety, trustfulness, accessibility, universality and usefulness  

(Seffah, Donyaee, Kline, & Padda, 2006) . The factors are further broken down into 26 

criteria that can be measured. The method proposed in this paper will only focus on a 

subset of those 10 factors: efficiency, productivity, satisfaction and learnability.  

There exist a wide variety of techniques to uncover usability issues. Each 

technique focusing on different areas, requiring different information and can be 

performed at different stages of software development. Nielsen presents four basic ways 

of evaluating user interfaces: automatically, empirically, formally and informally 

(Nielsen, 1994). He further goes on to discuss a number of usability inspection methods:  

• Heuristic evaluation 

• Cognitive walkthroughs 

• Formal usability inspections 

• Pluralistic walkthroughs 

• Feature inspection 
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• Consistency inspection 

• Standards inspection 

A single evaluator at a time is required while performing some of the methods; 

while others like pluralistic walkthroughs require multiple evaluators.  

Evaluating a user interface can be done using methods such as heuristic 

evaluation or usability testing in a laboratory with actual users. In studies by Jeffries and 

Desurvire they find that it is not an either or scenario  (Jeffries & Desurvire, 1992) . 

Heuristic evaluation is performed by experts and could identify a lot of issues early on 

and would not require actual users to be involved. On the other hand the usability tests 

conducted with users in a laboratory was able to uncover a lot of the same issues as the 

heuristic evaluation in addition to others. This technique would also be able to uncover 

the issues real users would have with the system, reducing the time spent fixing issues 

that would not have a real impact on the overall usability of the system. Because the 

different techniques have different strengths they suggest that a mix of several techniques 

should be used when evaluating the usability of a system to uncover a wide variety of 

issues.  

Scholtz discussed the advantages and disadvantages of the different approaches to 

usability evaluation and the phases of usability engineering (requirements analysis, 

design/testing/development, and installation) (Scholtz, 2004). The main benefit of a 

model based evaluation approach is that once the model has been defined it can be used 

repeatedly without much extra cost. One disadvantage of the model base approach is that 

it can be difficult to define the model initially. The process of defining the model is very 

time consuming as well. User-centered evaluations on the other hand are beneficial 
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because actual users are involved and the results can often uncover specific usability 

issues of a system that model based evaluation might overlook. One of the disadvantages 

of user-centered evaluations is that is very time consuming and expensive to administer 

the test. Another approach is expert-based evaluation and is usually less time-consuming 

and less expensive than the user-based approach. This method is possibly not as accurate 

as there are typically a few individuals reviewing the site and this might be very time 

consuming for larger systems. Research has found that 10 ± 2 is the optimal number of 

test users needed to discover 80% of usability issues  (Hwang & Salvendy, 2010) . 

The differences between automated and classic usability evaluation techniques are 

many. Automated usability evaluation could reach a larger number of subjects with a 

larger geographic demographic compared to classic usability evaluation.  The automated 

approach focuses on breath compared to depth (Rukshan & Baravalle, 2012) .  

Another issue issue with user-based usability evaluation is that the presence of an 

observer in a laboratory affects the subject and their emotion, performance and 

physiological measures  (Sonderegger & Sauer, 2009) . Sonderegger and Sauer also show 

that the set-up of the laboratory could affect responses from subjects.  

Evaluating link structure 

Evaluating the link structure of a website could be done using information about 

user behavior  (Zhou & Chen, 2002) . Zhou and Chen’s approach starts with first defining 

a link structure model. This model is represented as a weighted directed graph where the 

nodes represent the web pages and the hyperlinks represent the edges. The data from web 

logs is used to determine user behavior and calculate the edge weights. The model could 

then be used to calculate the website complexity using Association Degree and 
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Convenience Degree of page pairs. Kung, Liu and Hsia have a similar approach as well 

where they create a model from the link structure. Instead of a directed graph they create 

a finite state machine (FSM), which they call a Page Navigation Diagram (Kung, Liu, & 

Hsia, 2000) .  

The breath and depth of menu design influence task complexity (JACKO & 

SALVENDY, 1996) . They did a study on the following menu structures: 22, 23, 26, 82, 83 

and 86 (XY where X is the number of choices at each level and Y is the number of levels). 

Increased menu depth resulted in perceived complexity of a task. Campbell discussed 4 

characteristics that describe complexity: multiple paths, multiple outcomes, conflicting 

interdependence among paths and uncertain/probabilistic linkages (Campbell, 1988).  

Machine learning in usability testing 

The work of Oztekin, Delen, Turkyilmaz and Zaim where they compare four 

different models (multiple linear regression, decision trees, neural networks, and support 

vector machines) and how they performed on the data collected is a great example of how 

machine learning techniques have been utilized in usability testing (Oztekin, Delen, 

Turkyilmaz, & Zaim, 2013) . A checklist called UseLearn was used in collecting data 

focusing on factors such as error prevention, visibility, flexibility, accessibility, etc. The 

data was collected from the users of an online cell biology course. They trained and 

analyzed the results from the different models using 10-fold cross-validation. They 

showed that a multi-layer perceptron neural network performed better than the other 

methods with their data. The ability to identify the important features that had the biggest 

impact on the overall usability score was also discussed.  
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Web crawling 

Web pages connected with hyperlinks make up a website. A wide variety of 

technologies/languages such as HTML (Hypertext Markup Language) for structuring the 

document, CSS (Cascading Style Sheets) for the look and feel and some times JavaScript 

for frontend logic are used in making the website. On the backend a 

programming/scripting language is commonly used for generating the dynamic content 

that is saved on file or in a database. A user can navigate from one web page to another 

using hyperlinks that connect the pages. A crawler would be able to navigate the website 

in a similar manner by identifying the links on each page and following them. There are 

many issues with crawlers and depending on the implementation and parameters used the 

crawler might behave very differently (Cothey, 2004). The ability to crawl an entire 

website depends on a number of factors like: forms (where the input given might lead to 

different pages), client-side validation and server-side manipulation as discussed by 

Marchetto,Tiella, Tonella, Alshahwan and Harman  (Marchetto, Tiella, Tonella, 

Alshahwan, & Harman, 2011) . Liu, Janssen and Milios worked on creating a smarter 

crawler based on user data and Hidden Markov Models (HMM). This method would give 

the ability to crawl the most relevant pages first (Liu, Janssen, & Milios, 2006) .  

Web log mining 

Web servers often record every request made to the server in a log file. The log 

file can then be parsed for usage patterns to identify how a user moved through a website.  

Srivastava et al. provides a general survey of Web Usage mining and the 

techniques, methods, challenges and benefits of different web usage mining approaches. 
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They claim web mining can be divided into three different categories: structure mining, 

usage mining and content mining  (Srivastava, Cooley, Deshpande, & Tan, 2000) . They 

also discuss different approaches to extract the data from server side web access logs and 

some of the challenges like a multiple user can access the web server from the same IP 

address, etc.  In addition they provided a list of projects in the web usage-mining field, 

which showed that a majority of them used an access log captured on the server side 

compared to proxy or client side.  

Joshi and Krishnapuram demonstrated a method of clustering user sessions based 

on pair-wise dissimilarities, which was done using a fuzzy clustering algorithms that 

outperforms association rule based approaches  (Joshi & Krishnapuram, 2000) . They 

also discuss how to extract individual user sessions from the access logs by using the IP 

address and time of request in addition to filtering out unwanted entries such as errors, 

other request methods than “GET” and resources such as images. Work has also been 

done to dynamically improve the hypertext structure based on the data provided by usage 

mining  (Masseglia, Poncelet, & Teisseire, 1999) .  

Catledge and Pitkow found in their three-week study that the mean between each 

user interface event was 9.3 minutes and that events occurring over 25.5 minutes apart 

would be considered separate sessions (Catledge & Pitkow, 1995) . 



 11 

CHAPTER III 
METHODOLOGY 

System overview 

Previous work shows that to get a clear picture of the usability of a website or 

system in general multiple techniques should be utilized  (Jeffries & Desurvire, 1992; 

Nielsen, 1994) . This is why a system with multiple modules where each part deals with 

different data and produce different reports can be more powerful when put together.  

The system presented is composed of multiple modules that on their own could be 

used to produce results, but as a whole it can generate more detailed reports. Figure 3 

shows how the modules are connected and what type of data is required for each module. 

The “Get structure” module is a web crawler that takes a website and generates a directed 

graph with nodes representing web pages and edges representing the links connecting the 

separate web pages. Usage processing takes web logs collected by a web server and 

identifies how users are navigating though the website graph. The Path analyzer can be 

used to analyze specific paths in a website graph using the output from both of the 

aforementioned modules. The artificial intelligence (AI) module takes the structure to 

extracts features, which can be used with training data to train a machine-learning model. 

The model can then be used to predict the overall usability score of the website in 

addition to identify which features are more important and should be focused on in a 
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possible restructuring of a website. All the modules will be described in more detail in the 

following sections.  

 

Figure 3. System overview 

Get structure of website 

How the pages are linked together and organized can be referred to as the website 

graph or information architecture and is what will be used to determine the level of 

usability of a website. Manually creating this graph is time consuming and some times 

close to impossible with a very large website. Therefore an automated approach would be 

preferred to cut down the time it would take to create a website graph.  

The simple crawler that was created takes a domain name like http://python.org to 

keep the crawling contained within the domain and a start URL like 

http://python.org/about/ to indicate where to start the crawling. It is preferred to crawl the 

entire website, but in very large sites this can be very time consuming. In a website graph 

with N number of nodes where every page is linking to every other page and to itself 

there will be N2 number of edges.  
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A simple Breadth-First Search approach was taken for simplicity. A Breadth-First 

approach works by exploring all the nodes connected to the current node first before 

moving on to the next level. A Depth-First approach is different where it explores as deep 

as possible before moving back up and repeating the approach. Some work suggest that 

using a Breadth-First approach will discover the more important pages quicker because 

they are not likely to be hidden deep inside the structure (Najork & Wiener, 2001) . Time 

to crawl the entire website will depend on bandwidth and number of pages and 

hyperlinks. The results are stored in a database to allow the next steps to work with the 

data without having to wait for the crawler to run on the website every time.  

As mentioned earlier there are many factors that influence a crawlers ability to 

successfully parse the entire website (Marchetto et al., 2011). If there are pages in the 

overall website graph that are not linked together with the rest of the graph, this 

implementation of a crawler would no be able to reach those pages. A user navigating 

though a website using the hyperlinks would not be able to reach those pages either, so 

this would indicate a usability issue the website owner would have to correct if they 

wanted users to access those pages.  

 

Algorithm 1: Crawling algorithm 

Input: website domain, start url 

Output: website graph G 

Steps: 

1. Add start url to queue Q 

2. Pop url from Q 
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3. Add a node N to the website graph G 

4. Get all links from webpage pointed to by current url and add them to Q and the 

website graph G 

5. Repeat steps 2-4 until Q is empty 

 
The website graph is created from the data gathered during crawling with first 

adding all the pages as nodes N. Then adding edges E to represent the link from node i to 

node j. Algorithm showing the simple crawling method and graph generation is shown in 

Algorithm 1. An example representation of a graph created using this technique in Figure 

4. Using a similar technique as described by Zhou and Chen  (Zhou & Chen, 2002)  

weights could be added to the edges for further analysis, but that is the responsibility of 

the usage-processing module.   

 

Figure 4. Example graph created by the module 
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The directed graph is defined as follows:  

G=(N,E)  

𝑁 = 𝑁!: 𝑖 ∈ 1,𝑛   

𝐸 = {𝐸!,!: 𝑖, 𝑗 ∈ {1,𝑛}}  

  

This module could also be expanded or replaced by a new module where the user 

could define the graph manually instead of crawling an existing website. Creating the 

website graph manually would allow testing earlier in the development process of a 

website, even at the design stage. By identifying issues before the website is implemented 

can reduce the time it would have taken to restructure the system. A manual approach 

like this could be time consuming in systems with a large amount of pages or a system 

that is highly dynamic and the pages/links change constantly.  

Artificial Intelligence Module 

Developing heuristics to be used in usability testing can be a difficult task and 

often end up being based on the implementer’s intuition and experience. The heuristics 

might be very useful in some cases, but some times they might not be accurate at all. 

What a normal user perceives as usable might be completely different than what an 

expert user who is defining the heuristics.  

Expert systems, which work with rules usually defined by domain experts, can 

generate great results when used in many areas. Some research shows that expert systems 

and machine learning models generate pretty similar results when applied to a credit 



 16 

score prediction  (Ben-David & Frank, 2009) . The expert system is only as good as the 

rules defined by domain experts. Domain experts might not always be available and the 

expertise will vary from person to person. On the other hand, machine-learning models 

require a lot of existing data to be trained, which might not always be available. A 

machine-learning model will usually be able to generate more accurate predictions, as 

more data is made available.  

Because of the issues with expert systems a machine learning method was 

implemented to evaluate the website graph features and give a usability score based on 

previous data. Normal users would rate a website as usable or not and with a large 

enough data set a model could be trained and successfully identify if a website is usable 

or not just based on the website graph features.  

Some features were extracted from the website graph to be used by the machine 

learning models. The five features used in this system are as follows, but could be 

expanded in future studies:  

1. Number of nodes (pages) 

2. Number of edges (unique links between pages) 

3. Average out degree  

4. Average in degree 

5. Graph radius (the minimum eccentricity of the graph) 

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 = 𝑁  

𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠 = 𝐸  

𝑎𝑣𝑔𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 outDegree(𝑛)

!∈!
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𝑎𝑣𝑔𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 inDegree(𝑛)

!∈!

 

Those website graph features were chosen because of their relation to the 

information architecture and navigation of a website. The number of nodes, number of 

edges, average in/out degree say something about how connected and complex a website 

is, and the graph radius is related to the maximum distance from the start page to any 

other page in the website.  

Training the machine-learning model is a challenging task and often requires a 

very large data set to be able to predict the usability of a new website not already 

categorized as good or bad. As a large dataset does not exist for this purpose a dataset 

was generated to test the method. A program was successfully created to randomly 

generate website graphs and extract features and a usability score. The website graphs 

created fall into 2 different size categories (large and small) which refers to the number of 

nodes/pages in the graph. Small graphs contain between 25-50 nodes, while large graphs 

contain between 100-200 nodes. The two size categories are then divided up into two 

groups based on their connectivity (high and low). A high connectivity means that the 

nodes in the graph are highly connected and therefore providing more choices for paths 

through the graph. Low connectivity represents websites with fewer links between the 

nodes, which in turn constricts the user to certain paths through he graph. The scoring is 

done using a simple 5-star system (0-5) where 5 stars means the website is very usable 

and 0 stars mean poor usability. The score for the different categories of test graphs is in 

Table 1. These numbers and scores where chosen after looking at a random selection of 

websites, but could easily be changed if there was a need for this in future studies. The 
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beauty of the system is that it will adapt as more data is provided and produce more 

accurate results. The scores are based on previous experience and best practices to give a 

baseline for testing. Scores could be collected by asking users to rank the perceived 

usability of websites. This data would in turn reflect the actual preferences of the users 

and give more accurate results. As most of the machine learning models require a large 

amount of data to give reasonable predictions a random graph generator will be used 

while testing this module. Certain features were made more important to see if the model 

would be able to distinguish them from the rest of the random data. An example of this 

training data set is shown in Table 2.  

 

Table 1. Website graph types and score 

 High Low 

Large 2 - 4 0 - 2 

Small 4 - 5 3 - 4 

 

Table 2. Example training data set 

Score(0-5) Feature #1 Feature #2 Feature #3 Feature #4 Feature #5 

4 545 293,803 20 65 2 

2 167 9,863 92 50 4 

 

A variety of different models from a python machine-learning library called 

scikit-learn (Pedregosa et al., 2011) were trained, tested and compared to identify the 

model that worked best with this data set. Using 10-fold cross validation the different 
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models were evaluated with a logloss scoring function with a variety of data-set sizes to 

identify the best model (Korvald, Kim, & Reza, ) . A linear regression model was the 

most consistent and performed well even with smaller data set sizes.  

When the machine-learning model has been trained it is ready to be used to 

categorize new websites. The method consist of three steps to generate the reports for a 

website owner: 

1. Get features of a website graph 

2. Run the characteristics through the trained model and get score 

3. Rank the features to determine which features of the website graph has the biggest 

impact on overall usability 

The trained model takes the features and predicts the usability score (0-5). This 

will give the website owner a general idea if there is a need for major changes. If the 

result from the prediction indicated that the usability was bad, the trained model could be 

used to determine which features should be focused on in the redesign of the website. 

Spending a lot of time fixing issues that will not have a great impact on the overall 

usability of a website might not be viable in a situation with limited resources or time 

constraints. Therefore the redesign efforts should be focused on the most important 

factors that influence the usability. An example of ranking feature importance is shown in 

Figure 5.  
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Figure 5. Example of features ranked by importance 

Usage processing 

Insight into the usability of a website can be derived just by looking at the 

structure of the website, but what is even more interesting is how the website is actually 

being used by the users. Traditionally recording usage patterns can be done in a usability 

lab where the user is physically present with a human monitoring them and/or some sort 

of software recording every click made or eye movement. There are multiple problems 

with this and one of them is the observer effect, which means that the users are not acting 

the way they would in their normal environment  (Sonderegger & Sauer, 2009) . When 

the users are not acting like they normally would, the data collected does not represent 

real-world use. A non-intrusive recording of the usage patterns would be preferred and 

this can be done by the web server on the backend.   
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A simple, yet powerful method would be to utilize the information already 

gathered by the web servers. Most web servers keep some sort of access log, which has 

the information on every request made. The raw access logs are stored differently based 

on web server configuration. Each line in the access log corresponds to a single resource 

requested by the user. When the user requests a web page it will often also have to 

request other resources such as images, style sheets, JavaScript, etc. that all make up the 

page. The log is therefore full of entries that do not mean anything in regards to figuring 

out usage patterns. Because of all the noise in the data set the unwanted entries will have 

to be filtered out. Another problem with the access logs is that some browsers will keep a 

local cache of some pages/resources to reduce load time. If a user is clicking the back 

button in a browser it could load that from the local cache and the server would not be 

able to record this. 

A common log format (often referred to as NCSA Common log format) usually 

contain the following pieces of information: 

• Remote IP address 

• User identification if server requires user authentication. 

• Time and date of request 

• Request method (GET, POST, PUT, DELETE) 

• Request URL 

• HTTP version 

• HTTP status code 

• Content-length (size) of the document transferred 
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Example entry in a log:  

127.0.0.1 user-id [5/Oct/2000:13:55:36-0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 

 

Algorithm 2. Extract user sessions from web access: 

1) Read file 

2) Filter entries 

a) Extract the parts needed using regular expressions  

b) Only POST and GET requests are kept 

c) Everything with HTTP code over 300 is discarded 

d) Only web pages are kept 

e) Date is parsed to a UNIX timestamp 

3) Records are organized by IP address 

4) For each IP address 

a) Sort by time 

b) If time between two requests are over X seconds, it is recorded as a new 

transaction. 

c) For each user session 

i. Update the global navigation list with navigation from page X to 

page Y 

5) Output global navigation list to screen or file 

 

The program defined in Algorithm 2 will read in the content of a file and put each 

line in a list. The list now contains all the entries from the original access log. Because 
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we are only interested in a subset of the entries in the log it will be filtered on multiple 

fields. Each line will be parsed using a regular expression to extract each field according 

to the common log format described earlier. 

The first filter will remove all the requests that are not of the method POST or 

GET. This is to ensure we only get the requests made by the user while navigating the 

web page. PUT and DELETE are normally used with RESTful services, which has 

nothing to do with the user navigating through a website. 

The second filter will remove all requests with an HTTP status code over 300 as 

they are related to requests where something went wrong. The HTTP status codes are 1xx 

(informational), 2xx (success), 3xx (redirection), 4xx (client error), 5xx (server error). 

The last filter is more complex as it tries to filter out any resources that are not 

pure HTML pages based on the URL in the request. This is done by checking for known 

file extensions for web pages (.html, .php, .aspx, etc.) discarding images, videos, style 

sheets, JavaScript or other files needed to render a single web page. 

After unwanted requests are filtered out the time stamp is converted to a Unix 

timestamp for easier sorting later and added to the list of filtered requests for further 

processing. 

The filtered requests are then stored in a hash table where the IP address is the key 

and the value is a list of all requests associated with that IP address. For the sake of 

simplicity we are assuming that only one user will be accessing the website from same IP 

address at one time. This is not always the case and could possibly result in two or more 

user sessions being combined into one. This is not that common and the issue will 

therefore be ignored in the current implementation. 
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For each IP address the requests are sorted by time from oldest to newest request. 

This will yield a list of requests in the order the user accessed them and is crucial to 

identifying the path he/she took through the website. 

The next step is to break those requests up into user sessions. A user session is 

defined as a list of requests made by that user in one sitting. If the time between two 

requests is over a certain threshold (30 min in this case) it is considered as a new user 

session. The sessions are then used to determine how many times a user navigated from 

page X to page Y. If the user session only includes one entry it will be discarded because 

the user never navigated between two pages. 

If we have a user session with pages A, B, C, D this would result in 3 entries in 

the global navigation list where A → B, B→C and C→D will be counted. If we have 

another user session with A, B, C, E we get A→B, B→C and C→E. 

The resulting global navigation list is then printed to the screen or saved to a file. 

The output from this algorithm can then be used to calculate the probability of a user at 

page X navigate to a page Y. An example of a global navigation list is provided in Table 

3.  

Table 3. Example of a global navigation list 

Path Number 

A → B 2 

B → C 2 

C → D 1 

C → E 1 
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Parallelizing it using Message Passing Interface (MPI) so it can run on multiple 

nodes increased the performance of this method  (Gropp, Lusk, & Skjellum, 1999) . The 

external library mpi4py was used to utilize MPI with Python. It tries to mimic the 

functions in the C++ MPI implementation  (Dalcín, Paz, & Storti, 2005; Dalcín, Paz, 

Storti, & D’Elía, 2008) . There is some coordination that needs to be done between nodes 

because user sessions cannot be broken up over several nodes in the current 

implementation. The master node will read in the file and divide the data in equal chunks 

that are sent to the other nodes for processing. The filtering and timestamp conversion is 

done on separate nodes until the results are sent back to the master node. The master node 

assembles the requests and organizes them by IP address. The data is then divided and 

sent to the other nodes again with keeping requests from one IP together to prevent user 

sessions breaking up. User sessions are then calculated in parallel before sending it all 

back to the master node for reassembly and output to screen/file. 

Path analyzer 

Website owners will often times need to know how well a campaign is 

performing or how the users are navigating through the website to get to certain pages. 

To do this a tool to analyze specific paths through a website is needed. The tool would 

identify the most likely path a user is to take from page A to page B. This is computed by 

performing a simple shortest path algorithm like Dijkstra’s algorithm  (Cormen, 

Leiserson, Rivest, & Stein, 2001) . If the specified path is not what the website owner 

intended, this is a sign that something needs to be changed in order to modify the users 

behavior. The website owner could then add a direct link between page A and B or 
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change other pages along the path to increase the likelihood of the user to choose the 

intended path.  

When users are navigating through a website they go from page to page using the 

hyperlinks provided on each page. To identify usability issues related to the navigation 

you could look at specific paths from node A to node B.  If there is a website graph 

looking like the one presented in Figure 4 you might expect the user to navigate from 

node 1 to node 6 through node 3 like shown in Figure 6. While this looks like the shortest 

path from 1 to 6, this might not be the most likely path of a user. The user might be 

navigating in a roundabout way like illustrated in Figure 7. There are many different 

reasons why the user is navigating in this manner instead of the expected path. Links 

might not be obvious enough, the layout/design of the page might hide the link to node 3, 

the text of the links might not be descriptive enough and so on.  

The path analyzer module will be able to identify those navigation path issues and 

show the website owner the most likely path of a user from one page to another.  

The module is getting the most likely path of a user by calculating the shortest 

path through a website graph. This is improved upon using the probabilities gathered by 

the usage pattern module to give each edge in the graph a specific weight. Using methods 

such as Dijkstra's algorithm(Cormen et al., 2001) the module will be able to predict with 

higher accuracy how the users of a website are moving though the website graph. Using 

this information a website owner might want to improve upon the structure/design of the 

website to make certain paths more probable.  
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Figure 6. Expected path through a website graph 

 

Figure 7. Actual path through website graph 
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Combining the modules 

The modules were combined in a system presenting the results to a tester on one 

screen. This was implemented as a simple website pulling the information from the 

different modules. A database was used to save the results from each module as much as 

possible to reduce the amount of information needing to be recalculated every time. The 

system has two main screens. In Figure 8 a screenshot of the main screen of the system 

with a list of all the websites tested with hyperlinks to more information and usability test 

results. The screenshot in Figure 9 show the most important part of the system, where it 

presents statistics from the website graph with a usability score generated by the 

machine-learning model. This screen also has the path analyzer where paths between 

specific pages can be shown. More screenshots from specific tests are shown in 0. 
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Figure 8. System screenshot (list of websites) 
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Figure 9. System screenshot (details of a website) 
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CHAPTER IV 
RESULTS 

Get structure of website 

To test the crawler module a smaller website was chosen for simplicity, but the 

steps shown could be performed on a larger website as well. The UND Computer Science 

website was a good candidate as it has a fairly low number of pages and a simple 

structure. It is the website for the Computer Science Department at the University of 

North Dakota and contain information for current and prospective students about 

different majors and program details. It also has some news, contact information for 

faculty and staff as well as other information related to the department or program of 

study. A screenshot of the front page is provided in Figure 10.  
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Figure 10. UND Computer Science Website 

 

Crawling a website can be challenging because very few websites adheres 

correctly to all the standards. There were some issues with crawling the website and one 

of them was that links pointing to the same page were written differently on certain 

pages. Example of this is a link to Default.aspx that was also written as default.aspx, 

which would record these as separate pages while in reality they are the same. This is 

hard to fix as web servers treat URLs differently. Some use case-sensitive URLs, while 

others don’t. The host name (domain) can be specified in both upper and lower case  

(Berners-Lee, Masinter, & McCahill, 1994) , but most of the time it’s converted to 

lowercase, as it doesn’t matter. Because some pages are saved more than once it might 



 33 

not give completely accurate representation of the actual website, but since this is occurs 

rarely it will be ignored in this test.  

Running the crawler identified 86 web pages with 2767 connections. Each 

connection has a value (or weight) associated with it that represents the number of links 

from one page to another. The maximum depth from the front page was 3, meaning it 

would take maximum of 3 clicks to navigate from the front page to any other page on the 

website provided the user took the shortest path. The website graph was successfully 

saved to the database and a visualization created and shown in Figure 11. Because of the 

number of nodes and edges it becomes very hard to give a clear visualization of the 

graph, but in smaller graphs it can be very helpful.  

 

Figure 11. UND Computer Science Website Graph 
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Artificial Intelligence 

As described in Error! Reference source not found., the machine-learning 

model has been trained with a large dataset that was randomly generated. The range of 

scores given to each type of website graph is shown in Table 1.  

When running 4 types of randomly generated graphs (Large-High, Large-Low, 

Small-High, and Small-Low) through the model it provided the usability scores shown in 

Table 4. When comparing the 4 test graphs with the ranges used in the training data it is 

clear that they all fall within the correct ranges. Therefore showing that the model could 

successfully predict the score of a website graph based on previous training data. As 

expected the small graph with high connectivity got a high score of 5, while a large graph 

with low connectivity got a low score. Running the UND Computer Science website 

through the machine-learning model gives a score of 2 because it falls into the large size 

category and is not highly connected.  

 

Table 4. Machine learning prediction results 

Size Connectivity Usability score 

Large High 4 

Large Low 1 

Small High 5 

Small Low 3 
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The machine-learning model can also be utilized to indicate which of the website 

graph features are most important when it comes to the usability score. Running the 

randomly generated training data from before it gave the following ranking:  

1. Feature 1: Number of nodes (pages) 

2. Feature 2: Number of edges (unique links between pages) 

3. Feature 4: Average in degree 

4. Feature 3: Average out degree 

5. Feature 5: Graph radius (the minimum eccentricity of the graph) 

This can also be seen in Figure 12 with the standard deviation shown with blue 

lines on each bar. The value corresponds to the percentage of importance it has in 

determining the usability score. It shows that the two most important factors with this test 

data is the number of nodes and number of edges. This corresponds to the results shown 

in Table 4 where a low number of nodes and high number of edges (high connectivity) 

gave a better score than high number of nodes and low number of edges (low 

connectivity). To improve the usability score of a website, the main focus should be to 

increase the connectivity as this will have the biggest impact.  
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Figure 12. Important Feature Ranking 

Usage 

To test this module a website with a decent amount of traffic was chosen. The 

data set used to test the implementation of the usage module was a raw access logs from a 

Norwegian website with about 50,000 unique users per month. The file was 653 MB 

containing 2,371,220 unique entries for the month of April 2014. If you collected data for 

a year with the same amount of traffic the file would contain over 28 million entries with 

a size of 7.6 GB. 

Running the program on the April 2014 data set gave the results shown in Table 

5. The results show that web access logs contain a lot of entries that are not necessary to 

determine a user session. From the 2,371,220 entries only 45,564 were kept for further 
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processing. That comes out to 1.9 percent of usable data. The results also show that from 

5,222 unique IP addresses the program was able to extract 8,740 separate user sessions, 

with 13,904 entries in the global navigation list. 

Table 5. Usage module output 

Lines read 2,371,220 

Lines in list 45,564 

Lines skipped 2,325,656 

IP addresses 5,222 

User sessions 8,740 

User nav 13,904 

 

Path Analyzer 

An example of testing a path would be from the start page to a news article titled 

“Emerson Process to visit UND for student recruitment”. The shortest path required the 

user to first navigate to the section named “News” with a total of 2 clicks to arrive at the 

desired page. This does not seem bad, as it was logically located on the news page. If this 

was a high profile news article the website owner wanted to promote the path could be 

shortened by providing a link on the home page, which would reduce the shortest path by 

1 click. Another example is from the start page to the page with information about the 

Masters program. This path only required 1 click (shown in Figure 13), which is very 

good.  

The path analyzer successfully identified the shortest path from a start node to an 

end node. It is up to the website owner to interpret this information and decide if this is 
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the intended path or if it needs to be modified. As with the example of the news article it 

could easily be improved by adding a link on the start page to the news article in 

question.   

 

 

Figure 13. Path analyzer example 

Putting them all together 

Each module provides a different view of the usability of a website and can be 

used by itself. When the results from all the modules are combined it gives a better view 

of the total usability. One of the modules might give a high score, but when looked at in a 

larger context it might not be good enough. The full analysis view of the system is shown 

in Figure 14 and includes information from all the different modules in one screen. The 

path analyzer can be used from this screen as well. The results from all the generated test 

graphs are shown in Table 6.  

The system successfully generated the data in this view to give a website owner 

the information needed to identify usability issues related to user navigation and 

information architecture.  
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Figure 14. Screenshot of website analysis 
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Table 6. Results from generated graphs 

Size Connectivity Nodes Edges Avg. 

in/out 

degree 

Max 

depth 

Avg. 

shortest 

path 

Usability 

score 

Large High 169 15210 90 2 1.4643 4 

Large Low 47 1810 10 4 2.5041 1 

Small High 27 702 26 1 1.0 5 

Small Low 29 174 6 3 2.0074 3 
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CHAPTER V 
CONCLUSION 

Testing usability will continue to be a very challenging task because of all the 

different aspects that impact usability. Specialized tools and methods has been shown in 

previous work to give good results on specific areas, but there is not a general method or 

tool for testing everything.  

A system utilizing multiple modules with very specific tasks to give a better view 

of usability issues with a website has been implemented and demonstrated. The crawler 

successfully automatically navigate a website and create a website graph representing the 

structure of how the pages of a website are connected. The website graph could also be 

manually created allowing for a website structure to be tested before implementation. To 

improve the information in the website graph a module was created to incorporate data 

related to actual use of a website. Parsing web access logs saved by the web server 

identified paths traversed by real users. The information on navigation patterns resulted 

in a better guess on most likely path a user would take from one page to another. The 

features extracted from the website graph like number of nodes, number of edges, in/out 

degree and radius was the basis of for training the machine-learning model and 

identifying issues in other website. The machine-learning model successfully identified 

usability issues when trained and tested with data automatically generated. The model 

could be trained with real world data at a later point if enough data could be gathered and 
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would then give better results when testing real websites. The results from all of the 

modules were combined in a system that presented the information to the tester, which 

could be used to improve the website.  

While the modules are useful when used in isolation, the real potential of the 

system is when the modules are combined to give a better view of issues. The system 

mostly focuses on issues related to user navigation and organization of pages 

(information architecture). Navigation and organization on websites is very important as 

they both relate to how easily a user can access the information or perform certain 

actions. If a user is not able to perform the desired actions it might result in lost revenue 

for the website owner. The system presented is able to identify specific issues with 

navigation from one page to another, giving the website owner the most likely path a user 

would take. The data collected by each module and the combined results could have 

many other use cases, but the system presented has primarily focused on usability related 

to navigation and information architecture.  

The machine-learning module could be improved in future work by changing the 

features used for training and prediction. The module could probably yield more accurate 

results with real world data as well. The data gathering would be very time intensive, as 

most machine learning models require a large amount of data to give accurate results. An 

efficient method to visualize paths through a large website graph is another area that 

could benefit from more research.  
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Appendix A  

Crawler source code 

""" 
Crawl a website and save it to the databse 
 
""" 
from bs4 import BeautifulSoup 
import urllib2 
import urlparse 
import oursql 
import sys 
from OrderedSet import OrderedSet 
 
 
def linkInDomain(link,domain): 
 domain = urlparse.urlparse(domain)[1] 
 linkDomain = urlparse.urlparse(link)[1] 
 return domain == linkDomain 
 
def withProtocol(url,protocols): 
 #convert to list if not already 
 if type(protocols) is str: protocols = [protocols]  
  
 t = urlparse.urlparse(url) 
 return t.scheme in protocols 
 
#Remove the fragments at the end of urls 
def cleanUrl(url,domain=None): 
 if domain != None: aurl = urlparse.urljoin(domain,url) 
 else: aurl = url 
 
 t = urlparse.urlparse(aurl) 
 s = t[0]+"://"+t[1]+t[2] 
 if t[2] == '': s += '/' 
 if t[3]: s += ";"+t[3] 
 if t[4]: s += "?"+t[4] 
 return s 
 
def isWebPage(url): 
 extensions = ('.asp','.aspx','.axd','.asx','.asmx','.ashx', 
  '.cfm', 
  '.yaws', 
  '.html','.htm','.xhtml','.jhtml', 
  '.jsp','.jspx','.wss','.do','.action', 
  '.pl', 
  '.php','.php4','.php3','.phtml', 
  '.py', 
  '.rb', 
  '.cgi','.dll', 
  '.adp','.r') 
 t = urlparse.urlparse(url) 
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 #If there is no extension, assume it's still a web page 
 if "." not in t.path: return True 
 if t.path.endswith('/') or t.path.endswith(extensions): return 
True 
  
 #More robust way to check the response (takes a little longer) 
 try: 
  r = urllib2.urlopen(url).info() 
  if r != None and r['content-type'] == 'text/html': return 
True 
 except: 
  return False 
   
 return False 
 
 
 
def getLinks(url,domain,crawledLinks=[],unCrawledLinks=[]): 
 
 print "- Crawling",url 
 try: 
  html_doc = urllib2.urlopen(url).read() 
 except: 
  print "- Error: could not open",url 
  return [] 
 
 soup = BeautifulSoup(html_doc) 
 
 links = soup.select('a[href]') 
 
 temp = [] 
 for l in links: 
  href = cleanUrl(l['href'],domain) 
  if href not in temp and \ 
   href not in crawledLinks and \ 
   href not in unCrawledLinks and \ 
   linkInDomain(href,domain) and \ 
   withProtocol(href,['http','https']) and \ 
   isWebPage(href): temp.append(href) 
 return temp 
 
def crawlWithMaxLinks(startUrl,maxLinks,domain): 
 
 struct = {} 
 crawledLinks = OrderedSet() 
 unCrawledLinks = OrderedSet([startUrl]) 
 """ 
 links = getLinks(startUrl,domain,crawledLinks,unCrawledLinks) 
 for l in links: 
  if l not in unCrawledLinks: unCrawledLinks.add(l) 
 """ 
 duplicates = 0 
 while len(crawledLinks) < maxLinks and len(unCrawledLinks) > 0: 
  c = unCrawledLinks.pop(False) 
  #print "Popping:",c 
  struct[c] = {} 
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  newLinks = getLinks(c,domain) 
  for l in newLinks: 
   #Add to the struct 
   if l in struct[c]: struct[c][l] += 1 
   else: struct[c][l] = 1 
 
   #Add to the uncrawled list 
   if l in unCrawledLinks or l in crawledLinks or l == 
c: duplicates += 1 
   else: unCrawledLinks.add(l) 
 
  crawledLinks.add(c) 
 
 return struct,crawledLinks,unCrawledLinks,duplicates 
 
 
def insertPage(url,wsid): 
 with dbConn.cursor(oursql.DictCursor) as db2: 
  db2.execute("SELECT pid FROM pages WHERE url = ? AND wsid = 
?",(url,wsid)) 
  existingPid = db2.fetchone() 
  if existingPid != None: 
   return int(existingPid['pid']) 
  else: 
   db2.execute('INSERT INTO pages (url,wsid) VALUES 
(?,?)',(url,wsid)) 
   return db2.lastrowid 
 
 
 
if __name__ == '__main__': 
 """ 
 
 To run crawler use:  
 python crawl.py <uid> "<websiteName>" <domain> <startUrl> 
<maxLinks>  
 
 """ 
 args = sys.argv 
 
 if(len(sys.argv) < 6): #Not enough parameters 
  print "To run the crawler use: \n","python crawl.py <uid> 
\"<websiteName>\" <domain> <startUrl> <maxLinks> " 
  sys.exit() 
 
 uid = args[1] 
 websiteName = args[2] 
 domain = args[3] 
 startUrl = args[4] 
 maxLinks = int(args[5]) 
 
 
 print "uid:",uid 
 print "websiteName:",websiteName 
 print "domain:",domain 
 print "startUrl:",startUrl 
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 print "maxLinks:",maxLinks 
 
 s,c,u,d = crawlWithMaxLinks(startUrl,maxLinks,domain) 
 
 
 #Connect to the database 
 dbConn = oursql.connect(host='127.0.0.1', user='root', 
passwd='root', 
     db='thesis') 
 db = dbConn.cursor(oursql.DictCursor) 
 
 db.execute('INSERT INTO websites (name,domain,uid,start_url) 
VALUES (?,?,?,?)',(websiteName,domain,uid,startUrl)) 
 wsid = db.lastrowid 
 print wsid 
 print "Crawled: ",len(c) 
 print "Not crawled: ",len(u) 
 print "Duplicates:",d 
 
 for k in s: 
  print "##",k,"##" 
   
  fromPid = insertPage(k,wsid) 
  for k2 in s[k]: 
   toPid = insertPage(k2,wsid) 
   #print "- saving link from",fromPid,"to",toPid,"with 
count",s[k][k2] 
   db.execute('INSERT INTO links (fromPid,toPid,count) 
VALUES (?,?,?)',(fromPid,toPid,s[k][k2])) 
 
   print str(s[k][k2]),":",k2 
 #print s 
 
 
 #Close database 
 dbConn.close() 
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Appendix B  

System index source code 

#!/usr/bin/env python 
# -*- coding: UTF-8 -*- 
 
import sys 
sys.path.append('../crawler') 
sys.path.append('../graph') 
 
# enable debugging 
import cgitb 
cgitb.enable() 
import cgi 
sys.stderr = sys.stdout 
 
 
from graph2 import * 
from crawl import * 
 
import oursql 
 
#get our config for the app 
from config import config  
 
#Connect to the database 
dbConn = oursql.connect(host='127.0.0.1', user='root', passwd='root', 
db='thesis') 
db = dbConn.cursor(oursql.DictCursor) 
 
 
 
db.execute("SELECT * FROM users WHERE uid = ?",(config['uid'],)) 
user = db.fetchone() 
 
 
print "Content-Type: text/html;charset=utf-8" 
print  
 
 
print """<!DOCTYPE html> 
<html> 
  <head> 
    <title>Usability testing</title> 
    <meta name="viewport" content="width=device-width, initial-
scale=1.0"> 
    <!-- Bootstrap --> 
    <link href="css/bootstrap.min.css" rel="stylesheet"> 
    <link href="css/style.css" rel="stylesheet"> 
  </head> 
  <body> 
 
  <header class="row"> 
   <div class="col-xs-6"> 
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   <a href="/index.py"> 
    <h1><span class="glyphicon glyphicon-user"></span> 
""",config['siteName'],"""</h1> 
   </a> 
 </div> 
  <div class="col-xs-6 text-right"> 
   <aside> 
    <span class="user_pic"><span> 
    <span class="user_name">""",user['name'],"""</span> 
   </aside> 
  </div> 
 
  </header> 
 
  <div class="container"> 
 
  <div class="row"> 
     
""" 
 
db.execute("SELECT * FROM websites WHERE uid = ?",(user['uid'],)) 
 
websites = db.fetchall() 
 
print """ 
<div class="col-lg-12"> 
<table class="table"> 
 <thead> 
  <tr> 
   <th>Name</th> 
   <th>Domain</th> 
      <th>Added</th> 
  </tr> 
 </thead>""" 
for ws in websites: 
 print "<tr>" 
 print '<td><a 
href="analyze.py?wsid='+str(ws['wsid'])+'">'+str(ws['name'])+"</a></td>
" 
 print "<td>",ws['domain'],"</td>" 
 print "<td>",ws['added'],"</td>" 
 print "</tr>" 
 
print """ 
 
  </div> 
 
 
 
 </div> <!-- /row --> 
 </div> <!-- /container --> 
 
    <!-- jQuery (necessary for Bootstrap's JavaScript plugins) --> 
    <script src="https://code.jquery.com/jquery.js"></script> 
    <!-- Include all compiled plugins (below), or include individual 
files as needed --> 
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    <script src="js/bootstrap.min.js"></script> 
  </body> 
</html>""" 
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Appendix C  

Website analysis source code 

#!/usr/bin/env python 
# -*- coding: UTF-8 -*- 
 
import sys 
import os 
import os.path #For checking if image exists 
 
import networkx as nx 
 
import numpy as np 
import sklearn 
from sklearn.neighbors import KNeighborsClassifier 
 
sys.path.append('../graph') 
 
 
# enable debugging 
import cgitb 
cgitb.enable() 
import cgi 
sys.stderr = sys.stdout 
 
 
import generateGraph 
 
import oursql 
 
#get our config for the app 
from config import config  
 
 
 
 
def 
predictScore(numNodes,numEdges,averageOutDegree,averageInDegree,radius)
: 
 predictionEngine = KNeighborsClassifier() #seems to be giving 
consistent results :) 
 
 dataset = 
np.genfromtxt(open('../learning/temp/new_train.txt','r'), 
delimiter=',',dtype="i") 
  
 target = np.array([x[0] for x in dataset]) 
 train = np.array([x[1:] for x in dataset]) 
 
 probas = predictionEngine.fit(train,target) 
 return 
probas.predict([numNodes,numEdges,averageOutDegree,averageInDegree,radi
us]) 
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#Connect to the database 
dbConn = oursql.connect(host='127.0.0.1', user='root', passwd='root', 
db='thesis') 
db = dbConn.cursor(oursql.DictCursor) 
 
db.execute("SELECT * FROM users WHERE uid = ?",(config['uid'],)) 
user = db.fetchone() 
 
print "Content-Type: text/html;charset=utf-8" 
print  
 
 
print """<!DOCTYPE html> 
<html> 
  <head> 
    <title>Usability testing</title> 
    <meta name="viewport" content="width=device-width, initial-
scale=1.0"> 
    <!-- Bootstrap --> 
    <link href="css/bootstrap.min.css" rel="stylesheet"> 
    <link href="css/style.css" rel="stylesheet"> 
  </head> 
  <body> 
 
  <header class="row"> 
   <div class="col-xs-6"> 
   <a href="/index.py"> 
    <h1><span class="glyphicon glyphicon-user"></span> 
""",config['siteName'],"""</h1> 
   </a> 
 </div> 
  <div class="col-xs-6 text-right"> 
   <aside> 
    <span class="user_pic"><span> 
    <span class="user_name">""",user['name'],"""</span> 
   </aside> 
  </div> 
 
  </header> 
 
  <div class="container"> 
     
""" 
 
form = cgi.FieldStorage() 
wsid = form.getvalue("wsid") 
if wsid == None:  
 print "No wsid was specified" 
else: 
 wsid = int(wsid) 
 db.execute("SELECT * FROM websites WHERE uid = ? AND wsid = 
?",(user['uid'],wsid)) 
 
 website = db.fetchall()[0] 
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 print "<h1>",website['name'],"</h1>" 
 
 g = generateGraph.fromDB(db,wsid) 
 
 
 
 db.execute("SELECT pid FROM pages WHERE url LIKE ? AND wsid = 
?",(website['start_url'],wsid)) 
 start_url_id = db.fetchone()['pid'] 
 
 bfs_tree = nx.bfs_tree(g,start_url_id) 
 
 graphImage = "images/graphs/graph-"+str(wsid)+".png" 
 
 numNodes = nx.number_of_nodes(g) 
 numEdges = nx.number_of_edges(g) 
 averageOutDegree = 
(sum(g.out_degree().values())/float(g.number_of_nodes())) 
 averageInDegree = 
(sum(g.in_degree().values())/float(g.number_of_nodes())) 
 averageWeightedOutDegree = 
(sum(g.out_degree(weight='weight').values())/float(g.number_of_nodes())
) 
 averageWeightedInDegree = 
(sum(g.in_degree(weight='weight').values())/float(g.number_of_nodes())) 
 radius = nx.radius(bfs_tree.to_undirected()) 
 numberAttractingComponenets = nx.number_attracting_components(g) 
 averageShortestPath = nx.average_shortest_path_length(g) 
 
 
 def stars(n,maxStars=5): 
  o = '<span class="starRating">' 
  for i in range(maxStars): 
   if (i < n): o += '<span class="glyphicon glyphicon-
star"></span>' 
   else: o += '<span class="glyphicon glyphicon-star-
empty"></span>' 
  o += '</span>' 
  return o 
 
 predictionLabel = {0:'Extreamly bad', 1:'Really bad', 2:'Bad', 
3:'Okay', 4: 'Good', 5: 'Really good'} 
 
 prediction = 
predictScore(numNodes,numEdges,averageOutDegree,averageInDegree,radius) 
 
 
 print ''' 
 <br/><br/> 
 <div class="row"><div class="col-sm-8"> 
 
 <table class="table website-stats"> 
  <thead> 
   <tr> 
    <th colspan="2" class="text-center">Website 
graph</th> 
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   </tr> 
  </thead> 
  <tbody> 
   <tr> 
    <td>Domain</td> 
    <td>''',website['domain'],'''</td> 
   </tr> 
   <tr> 
    <td>Root url</td> 
    <td>''',website['start_url'],'''</td> 
   </tr> 
   <tr> 
    <td>Number of nodes</td> 
    <td>''',numNodes,'''</td> 
   </tr> 
   <tr> 
    <td>Number of edges</td> 
    <td>''',numEdges,'''</td> 
   </tr> 
   <tr> 
    <td>Average in/out degree</td> 
    <td>''',round(averageInDegree,4),'''</td> 
   </tr> 
   <tr> 
    <td>Average in/out degree (weighted)</td> 
   
 <td>''',round(averageWeightedInDegree,4),'''</td> 
   </tr> 
   <tr> 
    <td>Max depth (from root)</td> 
    <td>''',radius,'''</td> 
   </tr> 
   <tr> 
    <td>Attracting components</td> 
    <td>''',numberAttractingComponenets,'''</td> 
   </tr> 
   <tr> 
    <td>Average shortest path</td> 
    <td>''', round(averageShortestPath,4) ,'''</td> 
   </tr> 
   <tr> 
    <td>Usability score</td> 
    <td>''',stars(prediction),''' 
(''',predictionLabel[prediction[0]],''')</td> 
   </tr> 
  </tbody> 
 </table> 
 
 </div></div> 
 
 <br/><br/> 
 
 
 ''' 
 
 db.execute("SELECT * FROM pages WHERE wsid = ?",(wsid,)) 
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 pages = db.fetchall() 
 
 shortestPathFrom = form.getvalue('shortestPathFrom') 
 shortestPathTo = form.getvalue('shortestPathTo') 
 if shortestPathTo != None and shortestPathFrom != None: 
  shortestPathFrom = int(shortestPathFrom) 
  shortestPathTo = int(shortestPathTo) 
 
 print '<form method="post" role="form">' 
 print '<div class="row">' 
 
 print '<div class="col-sm-5">' 
 print '<select name="shortestPathFrom" class="form-control">' 
 for p in pages: 
  print '<option value="'+str(p['pid'])+'"' 
  if shortestPathFrom == p['pid']: print ' 
selected="selected"' 
  print '>'+str(p['url'])+'</option>' 
 print '</select>' 
 print '</div>' 
 
 print '<div class="col-sm-5">' 
 print '<select name="shortestPathTo" class="form-control">' 
 for p in pages: 
  print '<option value="'+str(p['pid'])+'"' 
  if shortestPathTo == p['pid']: print ' selected="selected"' 
  print '>'+str(p['url'])+'</option>' 
 print '</select>' 
 print '</div>' 
 
 print '<div class="col-sm-2">' 
 print '<button class="btn btn-block btn-success" 
type="submit">Shortest Path</button>' 
 print '</div>' 
 
 print '</div>' 
 print '</form>' 
 
 if shortestPathTo != None and shortestPathFrom != None: 
 
  try: 
   sp = 
nx.shortest_path(g,shortestPathFrom,shortestPathTo) 
 
   s = '' 
   for p in sp: 
    s += str(p)+"," 
   s = s[:-1] 
 
   db.execute("SELECT * FROM pages WHERE pid IN ("+s+") 
ORDER BY FIELD(pid,"+s+")") 
 
   pages = db.fetchall() 
   print '<div class="shortestPath">' 
   i = 1 
   prevPid = None 
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   totalProb = None 
   for p in pages: 
    print "<div>" 
    print '<div class="link"><a target="_blank" 
href="'+str(p['url'])+'">',p['url'],"</a></div>" 
    if i < len(pages): print '<div class="arrow 
glyphicon glyphicon-arrow-down"></div>' 
    i += 1 
    print '</div>' 
 
   print "</div>" 
 
 
   #print "Total probability of reaching this node: 
",format(totalProb,'.5f'),"%" 
  except nx.exception.NetworkXNoPath: 
   print '<br><div class="alert alert-danger">There is 
no path between the pages selected</div>' 
 
 
 print '<img src="'+graphImage+'">' 
 
print """ 
 
 </div> 
 
    <!-- jQuery (necessary for Bootstrap's JavaScript plugins) --> 
    <script src="https://code.jquery.com/jquery.js"></script> 
    <!-- Include all compiled plugins (below), or include individual 
files as needed --> 
    <script src="js/bootstrap.min.js"></script> 
  </body> 
</html>""" 
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Appendix D  

Training data generation source code 

""" 
Generate test data for the machine-learning model 
 
""" 
import networkx as nx 
import numpy as np 
import sys 
 
import matplotlib.pyplot as plt 
 
import random 
 
from networkx import expected_degree_graph 
 
import oursql 
 
def fromDB(db,wsid): 
  g = nx.DiGraph() 
  db.execute('SELECT * FROM pages WHERE wsid = ?',(wsid,)) 
  for p in db.fetchall(): 
    g.add_node(int(p['pid'])) 
 
    db.execute('SELECT fromPid,toPid,count FROM links WHERE fromPid = 
?',(int(p['pid']),)) 
    r = db.fetchall() 
    if r != None: 
      for l in r: 
        #w = float(random.randint(0,100))/100.0 
        w = int(l['count']) 
        g.add_edge(int(l['fromPid']),int(l['toPid']),weight=w) 
  return g 
 
def small(maxN=50,maxWeight=3,connectivity='high'): 
  return 
randomGraph(np.random.random_integers(maxN/2,maxN),maxWeight,connectivi
ty) 
 
def large(maxN=200,maxWeight=5,connectivity='high'): 
  return 
randomGraph(np.random.random_integers(maxN/2,maxN),maxWeight,connectivi
ty) 
 
 
 
def randomGraph(n=50,maxWeight=5,connectivity='high'): 
  g = nx.complete_graph(n,create_using=nx.DiGraph()); 
 
  #remove some random edges so the graph is not complete 
  edges = g.edges() 
  numEdges = len(edges) 
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  if(connectivity == 'high'): numEdgesToRemove = numEdges - 
g.number_of_nodes() * np.random.random_integers(50,200) 
  elif(connectivity == 'low'): numEdgesToRemove = numEdges - 
g.number_of_nodes() *  np.random.random_integers(2,10) 
 
  random.shuffle(edges) 
  g.remove_edges_from(edges[:numEdgesToRemove]) 
 
  #Add random weights to the edges 
  for (f,t) in g.edges(): 
    g[f][t]['weight'] = np.random.random_integers(1,maxWeight) 
  return g 
 
 
 
if __name__ == '__main__': 
  """ 
 
  To run generateGraph.py use:  
  python generateGraph.py [<numGraphs> [<maxNodes> [<maxWeight>]]] 
 
  """ 
  args = sys.argv 
 
  if(len(sys.argv) < 2): #Not enough parameters 
    print "To run the Graph generator use: \n"," python 
generateGraph.py <numGraphs>" 
    sys.exit() 
 
  numGraphs = int(args[1]) 
 
  data = [] 
  goodBad = None 
  for i in range(numGraphs): 
    choice = np.random.random_integers(0,3) 
    if(choice == 0): 
      g = small(connectivity='low') 
      goodBad = np.random.random_integers(3,4) 
    elif(choice == 1): 
      g = small(connectivity='high') 
      goodBad = np.random.random_integers(4,5) 
    elif(choice == 2): 
      g = large(connectivity='low') 
      goodBad = np.random.random_integers(0,2) 
    elif(choice == 3): 
      g = large(connectivity='high') 
      goodBad = np.random.random_integers(2,4) 
   
    numNodes = nx.number_of_nodes(g) 
    numEdges = nx.number_of_edges(g) 
    averageOutDegree = 
(sum(g.out_degree().values())/float(g.number_of_nodes())) 
    averageInDegree = 
(sum(g.in_degree().values())/float(g.number_of_nodes())) 
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    averageWeightedOutDegree = 
(sum(g.out_degree(weight='weight').values())/float(g.number_of_nodes())
) 
    averageWeightedInDegree = 
(sum(g.in_degree(weight='weight').values())/float(g.number_of_nodes())) 
    root = np.random.random_integers(0,numNodes-1) 
    while (len(g[root]) <= 0): root = 
np.random.random_integers(0,numNodes-1) 
    bfs_tree = nx.bfs_tree(g,root) 
    radius = nx.radius(bfs_tree.to_undirected()) 
 
    
#data.append((goodBad,numNodes,numEdges,averageWeightedOutDegree,averag
eWeightedInDegree,radius)) 
    print 
str(goodBad)+","+str(numNodes)+","+str(numEdges)+","+str(averageWeighte
dOutDegree)+","+str(averageWeightedInDegree)+","+str(radius) 
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Appendix E  

Usage processing code 

ChrisPy.py 

import urlparse 
import datetime 
import re 
import sys 
 
userSessionPeriod = 15*60 # 15 min 
regex = '([(\d\.)]+) - - \[(.*?)\] "(GET|POST) (.*?) HTTP/\d+\.\d+" 
(\d+) (\d+|-) "(.*?)" "(.*?)"' 
extensions = ('.asp','.aspx','.axd','.asx','.asmx','.ashx', 
        '.cfm', 
        '.yaws', 
        '.html','.htm','.xhtml','.jhtml', 
        '.jsp','.jspx','.wss','.do','.action', 
        '.pl', 
        '.php','.php4','.php3','.phtml', 
        '.py', 
        '.rb', 
        '.cgi','.dll', 
        '.adp','.r') 
months = {'Jan': 1,'Feb': 2,'Mar': 3,'Apr': 4,'May': 5,'Jun': 6,'Jul': 
7,'Aug': 8,'Sep': 9,'Oct': 10,'Nov': 11,'Dec': 12} 
 
 
data = [] 
lines = [] 
numberOfLinesRead = 0 
linesInList = 0 
numberSkipped = 0 
numberOfUserSessions = 0 
 
users = {} 
userNav = {} 
 
 
 
# Determine if the url is a web page or another resource like 
images,javascript,video,etc. 
def isWebPage(url): 
    t = urlparse.urlparse(url) 
     
    #If there is no extension, assume it's still a web page 
    if "." not in t.path: return True 
    if t.path.endswith('/') or t.path.endswith(extensions): return True 
         
    return False 
 
 
def startProgram(): 
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    if len(sys.argv) < 2: 
        print "To run: python",sys.argv[0],"<inputFileName> 
[<outputFileName>]" 
        sys.exit(); 
 
    inputFileName = sys.argv[1] 
    outputFileName = None 
    if len(sys.argv) == 3: outputFileName = sys.argv[2] 
 
    print "Input file: ",inputFileName 
    print "Output file: ",outputFileName 
 
    return (inputFileName,outputFileName) 
 
#Custom parseDate. Faster than using the "built in" parseDate 
def parseDate(d): 
    date = d[:d.find(":")].split("/") 
    time = d[d.find(":")+1:d.find(" ")].split(":") 
    return 
datetime.datetime(int(date[2]),months[date[1]],int(date[0]),int(time[0]
),int(time[1]),int(time[2])) 
 
 
 
def filterEntries(data,entries): 
    """ 
    Filtering: 
    - Only POST and GET 
    - Everything over 3XX, which is an error 
    - Exclude image,css,javascript,etc 
 
    Converting: 
    - Datetime to timestamp (int) 
    """ 
    numberSkipped = 0 
    for l in data: 
        m = re.match(regex, l) 
        if m != None:  
            m = list(m.groups()) 
            del(m[2]) #Deleting POST/GET value since we don't really 
need it anymore 
            if int(m[3][0]) <= 3: # If status code is below 3xx 
                if isWebPage(m[2]) and not 
m[2].startswith(('/custom/aktivitetskalender/','/wp-cron.php')): # 
check extension. TODO: remove kongsberg.no special case 
                    m[1] = int(parseDate(m[1]).strftime('%s')) 
                    #del(m[3:]) # Remove these for now TODO: remove 
this later 
                    entries.append(m) 
                else: numberSkipped += 1 
            else: numberSkipped += 1 
        else: numberSkipped += 1 
    return numberSkipped 
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def identifyUserSessions(users,userNav): 
    """ 
    User sessions 
    1. Order them by IP address 
    2. Sort items by time 
    3. If time between two requests are over a limit: mark it as a new 
session 
    4. We don't care about two requests to the same page in a row, so 
ignore them 
    """ 
    numberOfUserSessions = 0 
    for u in users: 
        if len(users[u]) > 0: 
            users[u] = sorted(users[u], key=lambda k: k[1]) # Sort by 
time  
            sessions = [] 
            temp = [] 
            prevTime = users[u][0][1] 
            for l in users[u]: 
                temp.append(l) 
                if (prevTime + userSessionPeriod) < l[1]:  
                    #print "-----------------------" 
                    numberOfUserSessions += 1 
                    sessions.append(temp) 
                    temp = [] 
                #print 
datetime.datetime.fromtimestamp(l[1]).strftime('%Y-%m-%d %H:%M:%S'), 
l[2] 
                prevTime = l[1]  
 
            if len(temp) > 0: sessions.append(temp) 
             
            #Put them into a dict: (fromURL,toURL) = numberOfNavs 
            for session in sessions: 
                if len(session) > 1: #If only 1 item, they user does 
not navigate anywhere, so we don't care 
                    for l in range(len(session)-1): 
                        if session[l][2] != session[l+1][2]: 
                            key = (session[l][2],session[l+1][2]) 
                            if key in userNav: userNav[key] += 1 
                            else: userNav[key] = 1 
    return numberOfUserSessions 
 
 
 
 
def output(outputFileName,userNav): 
    if outputFileName != None: 
        with open(outputFileName,"w") as FileObj: 
            for key in userNav: 
                FileObj.write(str(userNav[key])+"|"+str(key)+"\n") 
    """else: #or the screen 
        for n in userNav: 
            print userNav[n],":",n 
    """ 
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def 
programStatus(linesRead,linesInList,linesSkipped,IPaddresses,userSessio
ns,userNav): 
    print 'Number of lines read: ', linesRead 
    print 'Number of lines in list: ',linesInList 
    print 'Number of lines skipped: ',linesSkipped 
    print 'Number of IP addresses: ',IPaddresses 
    print 'Number of user sessions: ', userSessions 
    print 'Number of user nav: ', userNav 
 
 
 
def orderByIP(lines,users): 
    for l in lines: 
        if l[0] not in users: users[l[0]] = [] 
        users[l[0]].append(l) 
 

processLog.py 

#!/usr/bin/python 
 
from ChrisPy import * 
 
 
inputFileName,outputFileName = startProgram() 
 
with open(inputFileName) as FileObj: 
    for l in FileObj: data.append(l) 
 
#Process each entry 
numberSkipped = filterEntries(data,lines) 
numberOfLinesRead = len(data) 
del data 
 
 
#Order them by IP address 
orderByIP(lines,users) 
linesInList = len(lines) 
del lines 
 
#Idenitfy user sessions 
numberOfUserSessions = identifyUserSessions(users,userNav) 
 
 
output(outputFileName,userNav) 
programStatus(numberOfLinesRead,linesInList,numberOfLinesRead-
linesInList,len(users),numberOfUserSessions,len(userNav)) 
 
 
processLogMPI.py 

#!/usr/bin/python 
 
import math 
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from ChrisPy import * 
from mpi4py import MPI 
 
comm = MPI.COMM_WORLD 
size = comm.Get_size() 
rank = comm.Get_rank() 
 
 
if rank == 0: 
 
    inputFileName,outputFileName = startProgram() 
 
    l2 = [] 
    with open(sys.argv[1]) as FileObj: 
        for l in FileObj:  
            l2.append(l) 
            numberOfLinesRead += 1 
 
    chunks = size 
    n = int(math.ceil(float(len(l2))/float(chunks))) 
    for i in xrange(0, len(l2), n): 
            data.append(l2[i:i+n]) 
    del l2 
 
data = comm.scatter(data, root=0) 
 
#Process each entry (in parallel) 
numberSkipped = filterEntries(data,lines) 
 
del data 
data = [] 
 
 
l2 = comm.gather(lines, root=0) 
 
if rank == 0: 
    lines = [] 
    for l in l2: 
        lines += l 
    del l2 
 
    #Order them by IP address 
    orderByIP(lines,users) 
    linesInList = len(lines) 
    del lines 
 
    chunks = size 
    data = [] 
    for i in range(chunks): data.append({}) 
    n = int(math.ceil(float(len(users))/float(chunks))) 
    i = -1 
    c = 0 
    for k in users: 
        if c % n == 0: i += 1 
        data[i][k] = users[k] 
        c += 1 
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users = comm.scatter(data, root=0) 
del data 
 
#Identify user sessions (in parallel) 
numberOfUserSessions = identifyUserSessions(users,userNav) 
 
 
root_userNav = comm.gather(userNav, root=0) 
root_numberOfUserSessions = comm.gather(numberOfUserSessions, root=0) 
root_users = comm.gather(users, root=0) 
 
if rank == 0: 
    userNav = {} 
    for i in root_userNav: userNav.update(i) 
 
    numberOfUserSessions = 0 
    for i in root_numberOfUserSessions: numberOfUserSessions += i 
 
    users = {} 
    for i in root_users: users.update(i) 
 
    output(outputFileName,userNav) 
    programStatus(numberOfLinesRead,linesInList,numberOfLinesRead-
linesInList,len(users),numberOfUserSessions,len(userNav)) 
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Appendix F  

Database model 
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